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Nomenclature

A
0 

reference area

C
D 

drag coefficient (= drag/½pU~
2A
0
)

Cf wall friction coefficient (— r /½pu~~)

C pressure coefficientp

H axisymmetric shape factor

L body length

n distance normal to stream surface

p static pressure

q velocity along streamline

r radial distance

r
0 

local body radius

R radius of curvature

R~ Reynolds number ( U~L/V)

s distance along stream surface

u velocity in x—direction

Ue 
inviscid velocity at r r

0

free stream velocity

x distance along body surface

x
0 

axial distance

y distance normal to body surface

6 boundary—layer thickness

5l* axisymmetric physical displacement thickness

mass deficit area (= f (1 — fl— ) rdy)
J Ue

c eddy viscosity

V kinematic viscosity 
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Nomenclature (Cont.)

angle between tangent to body surface and x
0
—direction

P density

0 momentum deficit area ( i— (1— -fl-- ) rdy)

T surface shear stress
V

All other quantities and subscripts are defined in the text.

All quantities in the text (unless otherwise specified) are made dimension—
less as follows:

distance with respect to L

area with respect to L2

velocity with respect to U~

pressure with respect to 
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Int~roduct ion

The most difficult part of the flow field to compute about a body of

revolution is in the vicinity of the tail—wake juncture , referred to as

the strong interaction region. For applications this region is important

in two respects. First, the drag depends to a large extent on the flow in

this region and second , when a propeller or other propulsive device is added

it always operates in the thick boundary layer near the tail.

This report addresses the problem of calculating the flow field in the

strong interaction region of a body of revolution at zero angle of attack

where the boundary layer does not separate. The aim has been to develop an

engineering tool capable of predicting this flow field with reasonable

accuracy using a blend of available calculation methods plus a new twist to

the displacement body idea. Only the incompressible case is considered .

The phenomenon that occurs in the tail—wake juncture region of a body

of revolution can be explained as follows: Toward the aft end of a body

with a pointed tail the boundary—layer thickness becomes comparable to the

body radius thereby significantly displacing the streamlines of the outer

inviscid flow which in turn modifies the body pressure distribution. In

addition , the streamlines of the outer flow, sensing the wake line of

symmetry approaching, undergo a significant change in direction over a

relatively short distance thereby impressing a non—negligible normal

pressure gradient on the boundary layer. To treat the resulting strong

interaction, the equations governing the boundary layer and the outer

flow need to be solved simultaneously and the assumptions of conventional

boundary—layer theory modified .

_ _ _  —- -~~~~~~-.~~~~~~~~~~ - .--~~~~~~~~~~~~~~~~~ ,- - - -~~~ . -,.., - - -“, .. . J
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Over the past 10 to 15 years a number of methods have appeared for

solving the strong interaction problem . The most common method is the

displacement body approach, the category under which the present work

falls. In this method the boundary—layer displacement thickness is added

to the original body to represent the thickening effect that the outer

flow senses and the boundary layer calculated as though no normal pressure

gradient existed . The new aspect of the present work is that the displacement

body idea is modified by a simple pressure mapping which effectively represents

streamline curvature effects on the boundary layer.

A comprehensive review up to 1976 on methods of treating the strong

interaction problem has been given by Huang et. al. [1]. Since that time

two other papers dealing with new approaches to the problem have appeared .

The work by Schetz and Favin [2] is the most exact approach to the problem

to date. They numerically solve the Navier—Stokes equations with a one

equation transport—type turbulence model in a truncated region which includes

the aft portion of the body and part of the wake. The effect of a propeller

positioned at the tail is modeled by an actuator disk. Unfortunately no

comparison with experiment is given. The recent paper by Dyne [3] is a

streamline curvature method in which the effects of turbulence in the

boundary layer have been accounted for approximately . The calculation

region where the streamline curvature method is applied is the aft portion

of the body and the near wake, similar to the computational region of

Schetz and Favin. The virtue of the streamline curvature method is that

the normal pressure gradient caused by streamline curvature is taken into

account while the simplicity of a boundary layer—like formulation is re-

tained. Agreement with experiment for the one case presented , a modified

spheroid , is good . 

. .~~-. - .  ...--~~---.-~~~-.-. --  ~~-.- - .~---- - ~~~~~~~~~
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2. Pressure Mapping Hypothesis

In the usual displacement body treatment , the pressure from that

body is referred back to the original body along a boundary—layer normal

coordinate. As Weinbaum et al. [4] point out, this transfer implies that

the pressure gradients on the two bodies are related by

‘1ds R ds*,
w V

where the subscript w denotes the surface of the original body, the

superscript * the surface of the displacement body , s is arc length and

R is the local radius of curvature. Equation (1) is a consequence of

the differential arc length relation between the displacement body and

the original body,

= ds*, (2)
w H

which holds provided the bodies are sufficiently smooth and the curvatures

are changing slowly.

The two—dimensional analysis, of Weinbaum et al. for a thick viscous

layer at intermediate Reynolds numbers will now be extended to the axisym—

metric case at high Reynolds numbers. The object of this analysis is to

determine how the conventional displacement body idea must be modified to

account for centrifugal effects in a turbulent wall shear layer at high

Reynolds numbers. With the assumption that the turbulence field can be

modeled by an eddy viscosity, the appropriate set of equations in mean

flow intrinsic coordinates is,

q .?!L9.. = — + —i-— .L. [(1+E)r ~~], (3)
~~ Rer ~n

2

= .
~~~~~ (4

R ~~~
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These equations are the axisymmetric turbulent analogs of Eqs. (2) and

(3) of Weinbaum et al. The above equations have been made dimensionless

with velocities referred to free stream velocity U,,, pressure to

pç
2
, lengths to reference length L and eddy viscosity to kinematic

viscosity v. Equations (3) and (4) are derived by considering the full

axisymmetric Navier—Stokes equations in general orthogonal coordinates,

introducing the usual Reynolds turbulence .averaging, making the boundary—

layer approximation and finally, specializing the result to intrinsic

coordinates of the mean turbulent flow.

Equations (3) and (4) are now ordered in terms of the Reynolds

number by stretching the normal coordinate according to the usual high

Reynolds number boundary—layer scaling:

(5)
Re1

In the intermediate Reynolds number case of Weinbaum et al. both spatial

variables are scaled by the inverse square root of the Reynolds number.

With the scaling given by Eq. (5) the equations of the thick shear layer

become

q
~~~ 

= _ .~~ + 1 
~~~ [ (l+e)r~~~], (6)

2
= Re 2 (7)

R

The convective acceleration term is eliminated by differentiating Eq. (7)

with respect to s, then substituting the result into Eq. (6) which gives

the following equation:

~ + = — 

~~ 
.

~~~~~ 

+ ~=. [(l+c) r 
~~~
]. (8)

I

~1I . ..- . .— ~~~~~~~~~~ -. -~~—— ,
~-.—-—-——-- -.-. . —,--.—— -----.,—-.~~ --- - ..- -—- —. -—--- —.. —- - .- -~~~~ - -~~ 
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Note that Eq. (8) is the high Reynolds number axisymmetric analog of

Eq. (5) of Weinbaum et al. and describes the variation of streamwise

pressure gradient across the shear layer.

To simplify the integration of the left—hand side of Eq. (8) the

local radius of curvature is approximated by

R = R  ~~~~~~~~~~ (9)
V Re

Then integration of Eq. (8) from the wall (Ii = 0) to a point In the shear

layer gives the streamwise pressure gradient at W as

ii .

•~P. = (RW ) (~~
) — 

1 

~~~ f q~d~ — 

~~~ 

‘
~~ ~~~[ (l+~ )r~~ ] d~~}. (10)

Equation (10) shows that the change in streamwise pressure gradient normal

to the wall is dominated by streamline curvature effects, represented by

the first term. The remaining terms, O(Re~~ ) ,  represent respectively

changes due to streacuwise variation in wall curvature and laminar/turbulent

diffusion.

One next applies Eq. (10) at the surface of the displacement

body, assuming that body to be a streamline of the actual flow (which in

reality it Is not). Thus the streamwise pressure gradient along the

displacement body is

= W 
+ O(Re~~). (11)

The pressure gradient on the displacement body is now transferred back to the

original body along the boundary—layer normal according to Eq. (1) which

gives the result

(
~~) = (.

~~~~~) 
( . E) + O(Re~~), (12) 

-
~~~~~~~~~~ ~~~~~~~~~~~~~~~~
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where the subscript wii denotes the wall pressure gradient In the

presence of a normal pressure field . If the following arc length stretch-

ing is now defined :

ds = (~~~
—) ds — = ds*, (13)

w R wa
V

then Eq. (12) becomes

= (
~~~

) + O(R e ½ ) ,  (14)

which is the result obtained by Weinbaum et al. Equations (13) and (14)

are the essence of Weinbaum’s hypothesis which states: “The pressure

gradient along the displacement body constructed in the conventional

manner using first—order boundary—layer theory will be the same as in a

viscous/turbulent shear layer theory which includes centrifugal effects

provided the pressure on the displacement body is referred back to the

original body in a manner that preserves the arc length.” The present

analysis shows that Weinbaum’s hypothesis is unchanged by either axial

symmetry or a turbulent eddy viscosity.

In regions of large changes in the streamline curvature both neglected terms in

Eq. (10) may become 0(1) which will invalidate Weinbaum ’s hypothesis. In the high

Reynolds number case the diffusion term becomes equal in icnportande to the term

arising from streamwise variations in the wall curvature , in contrast to the inter-

mediate Reynolds number case where the diffusion term is 0(Re~~). This behavior is

a consequence of the different scalings.’

The crucial assumption in the preceding development and the one directly respon-

sible for the simple form of Weinbaum ’s hypothesis is Eq. (9), the approximation of

the local radius of curvature . Physically this approximation means that the stream—

lines are locally concentric which is usually not the case near the tail of the body.

The validity of Weinbaum ’s hypothesis with its simplifying assumptions can only be

determined by comparison with experiment over a range of strong interaction cases.
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3. Strong Interaction Calculation Method

The solution for the location of the displacement body requires

that the inviscid pressure distribution be known at the surface of the

original body. In turn, the solution for the pressure distribution on

the original body requires that the displacement body be known . Thus a

coupled nonlinear boundary value problem exists which must be solved by

iteration.

The iteration procedure used here follows closely the schemes used

in displacement body calculations found in the literature [1, 5, 6]. The

general steps in the iteration are as follows:

First iteration

1. Compute the inviscid pressure distribution for the basic body.

2. Modify the pressure distribution from step 1 on the afterbody to

eliminate the rear stagnation point, it is exists, so that boundary—

layer separation will be avoided . Guess the wake pressure distribution

for 1 ~ x0 ~~. 2. Step 2 gives the first approximation of the pressure

distribution over the body—wake combination.

3. With the pressure distribution from step 2 compute the boundary

layer along the actual body and the wake at least one body length

downstream of the tail. This step gives the first approximation

to the displacement body.

Second and succeeding iterations

1. Compute the inviscid pressure distribution using the displacement

body from the last step of the previous Iteration.

2. Transfer the pressure distribution from the displacement body back to

the basic body and the wake centerline, preserving arc length (Weinbaum ’s

hypothesis).

_____ 
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~ —~~~~~
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3. With the pressure distribution from step 2, compute the boundary

layer along the actual body and the wake to obtain a new estimate of the

displacement body shape.

The iteration cycle is continued until convergence is achieved . The

pressure, being the most sensitive variable, is monitored until its

maximum change over successive iterations is sufficiently small. The

steps as outlined above will be elaborated upon as each part of the

calculation cycle is taken up In detail. What distinguishes the present

displacement body method from others is the use of Weinbaum ’s hypothesis

to account for centrifugal effects.

The philosophy followed here has bee:. to use available calculation

methods as much as possible for the components of the strong interaction

calculation — the inviscid flow, the boundary layer and the wake. For the

inviscid flow the method of Hess and Smith [7] is used . For the boundary—

layer calculation transverse curvature terms are included In the equations

(the so—called thick boundary—layer approximation). These equations are

solved by a modified Cebici—Smith finite difference approach [8] which

makes use of the second—order accurate form of Keller ’s box method . The

code in use was generated at ARL and includes a two—layer algebraic

turbulence model composed of the Cebici form for the outer eddy viscosity

[8] and the Crawford—Kays form for the inner eddy viscosity [9]. The inner

eddy viscosity has been modified for a thick axisynimetric boundary layer

and reformulated to work properly in the region of a pointed tail. For

the wake calculation an integtal method Is used which is covered in detail

in the next section.

In the axisymmetric boundary layer three definitions of the disp lacement



r 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

GHH:jrp

thickness exist. The one appropriate to the displacement body is the

so—called physical definition 6i* 
which is derived from the mass flow

defect in the annular boundary layer wrapped around the body:

r +61*cos~ r

2irr udr = 2irr (ue
_u)dr.

r
0

Integration of the above equation with the aid of the geometric relation

r = r
0 
+ ycos4 in the right—hand integral yields

+ ~~1*
2cos~ (1 - ~~)rdy = M, (15)

where ~~ is the mass deficit area. From Eq. (15) the solution for 6
1*

is ½

(2Mcos4 + r 2) — r
0 0 (16)

1 cosc~

From the geometry shown in Fig. 1 the coordinates of the displacement body

are given by:

(r0
) 6~ = r

0 
+ 61*cos~ ,

(x
0
)
6~ 

= x
0 

—

or finally,

2 ½
(r
0
)6~ 

= (2~*cos4 + r0 
) , (17)

(x
0
)6~ 

= x
0 

- tan~[(2A*cos~ + r0
2
)½ - r

0
]. (18)

— -. -— -  —- -- ------ .. - -- —--,----- ---—- —. - .- - ‘ .— ------~~--—-—--.--———-..— .
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4. Wake Model

Because of the presence of a wake the displacement body continues

to infinity downstream of the end of the actual body, but its importance

aft of the tail in establishing curvature effects on the body pressure

distribution is mainly in the near wake region (1.O~~ x0~~ 1.1). Thus

the wake portion of the displacement body must be included in a strong

interaction calculation but the calculation of the wake can be terminated

about one body length downstream of the tail without producing any adverse

effects in the overall solution.

The wake is modeled in the simplest manner possible by using an

integral approach. The two variations in this type of treatment involve

either using an entrainment relation, as in the work of Nakayama, Patel

and Landweber [10], or using a relation between shape factor and inviscid

velocity , as in the work of Granville [11]. Granville ’s variant was chosen

because it leads to a simple closed form solution whereas the entrainment

method must be integrated numerically. Furthermore, as Patel and Guven

point out [12], the assumed variation of H with ue is not crucial to

the determination of the asymptotic wake behavior. But, as will be seen,

the asymptotic behavior does strongly depend on the initial values of u
e

and 0.

In the wake the axisymmetric integral momentum equation with normal

pressure variations neglected reduces to

dR~nu
+ (H+2) 0 dx 

e = 
~~, (19)

which can be wri t ten equivalently in the nearly int egrable fo rm:

= — (H+2) (20)d2~nu
e
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By curve f i t t i n g  axisymmetric wake data Granville finds the following

relation between H and u [11]:
e 1 /q

m u
H = l + ( H  .- l) ( e ) (21)

t 2
~nu e

t

where the subscript t denotes the tail of the body, x0 = 1, and q

is found by Granville to be 7. With the aid of Eq . (21) , Eq. (20) can

be integrated giving the result

0 = 0  u 8 , (22)
~ e

where

~~~~2q + 3 + qH (23)— 

l + q

and 0~, is the momentum deficit area infinitely far downstream in the

wake. In the present context U
e in Eq. (22) is the inviscid velocity

on the wake centerline obtained by transferring the pressure on the dis-

placement body to the wake centerline using Weinbaum ’s hypothesis.

Since we assume that Eq. (22) holds at the initial wake station, we

can determine 0~ in terms of 0~, known from the boundary—layer calculation

at the tail, and u , known from the pressure mapping. Thus
et

= ®tuet 
t (24)

and hence at any other station in the wake 0 is given by Eq. (22) and

H by Eq. (21). Note that Eq. (24) is the expression from which Granville ’s

drag formula is derived.

With 0 and H known at a particular wake station, the displacement

area A* is given by

= HO , (25)
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and finally, the radius of the displacement body Is given by Eq. (17)

which in the wake reduces to

(r ) = (2t~*) ½. (26)
0 6*

The initial values of the wake parameter s to be used in Eq. (24) are

obtained by requiring r
6~ and H to be continuous at the body—wake

juncture. Obviously the displacement body radius must be continuous for

a smooth pressure distribution to exist. The requirement of continuous

H is based on the observation that a non—zero tail angle, which causes

a mismatch or overlap in boundary—layer coordinates with wake (cylindrical)

coordinates, does not appear to introduce a discontinuity in the measured

shape factor. These two conditions are sufficient to determine the remaining

parameters at the body—wake juncture. With r
6~ 

and H known at the

initial wake station t , and with uet given by the pressure mapping,

the other parameters are given by:

= 4 (r6~~~ , (27)

and

(28)
M
t

Although r6~ 
and H are forced to be continuous at x0 

= 1.0, the

other parameters at that point may be discontinuous since a finite

difference boundary—layer solution is being joined to an integral wake

solution. These discontinuities have been found to be quite small. Other

ways of treating the boundary layer—wake juncture were tried but none gave

as satisfactory results as the simple treatment just described .

The Mangler transformation used in the Cebici—Smith boundary—layer

method introduces a singularity into the equations of motion at the tail

~~~~~~~~ —
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when the body radius there is zero. Consequently the boundary layer

solution cannot be calculated all the way to the tail with this method.

This difficulty is overcome by computing the boundary—layer solution to

about x
0 

= 0.99, then obtaining values of r
6~ and H at the tail

station by parabolic extrapolation.
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5. Calculated Results

To begin a strong interaction calculation, the bod y pressure

distribution obtained by solving the potential flow problem about the basic

body without a displacement thickness added is modified in the tail region

to approximate the converged strong interaction solution. The modified

pressure distribution is then extrapolated into the wake. The modification

of the basic pressure distribution begins at about x0 
= 0.85 with the

modified curve passing smoothly through C = 0.2 at x0 = 1.0, then

decaying rapidly to zero in the wake. The wake C~, distribution is

approximated by

= 0.2 sech [20.6(x
0
—l)], x

0 
� 1. (29)

Even though the initial guess is a reasonably good one the second

iteration usually produces an overcorrection to the pressure distribution

which if carried further leads to divergence. This type of behavior was

also found by Nakayama et al. [10]. Their solution to the overcorrection

problem was to compute a pressure distribution for the second iteration

by averaging the Initial guess (first iteration) and the pressure distribution

obtained from the resulting first iteration boundary—layer solution. After

the second iteration, averaging was found to be unnecessary and a convergent

procedure followed. This same procedure was found to work successfully in

the present calculation method. The only difference is that here the

averaging is performed after the application of the pressure mapping .

During the initial stages of this work convergence was found to be

slowest in the region near the tall—wake juncture because spurious jumps

in the pressure distribution occurred . These jumps were found to be

_ _ _  _ _ _ _  J
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caused by discontinuities in the slope and curvature of the displacement

body at the juncture point which In turn stemmed from the incompatibility

of a finite difference boundary layer solution patched to an integral wake

solution.

Huang et al. [1], whose strong interaction calculation method the

present one resembles, also encountered spurious pressure jumps in the

tail—wake juncture region where they represented the displacement body by

a polynomial between 0.95 < x0 < 1.05. When a fifth—order polynomial was

used to ensure continuity of radius, slope and curvature at the juncture

points the pressure jumps disappeared . Their polynomial fairing thus

provided a smoothing of the pressure in the tail—wake juncture region.

Smoothing in the present calculations was performed when needed by

fairing out the spurious jumps in the pressure distribution by hand rather

than fairing the displacement body tail—wake juncture. Although the

present method of eliminating the pressure jumps Is primitive and involves

judgement on the part of the user, the iteration process does converge,

usually within 6 to 8 iterations, and the pressure jumps disappear by the

final iteration. Convergence is considered achieved when the maximum

change in U (rather than C )  is less than about one percent. The

maximum change always occurs close to the tail—wake juncture.

Present experience with the Cebici—Smith boundary—layer calculation Li
method shows that even though the sublayer—buffer region of the turbulent

boundary layer may be adequately resolved at , say, x0 
= 0.95, it will not

be at x0 
= 0.99. The fault lies with the Mangler transformation which is

singular at the tail when body radius Is zero. The step size problem may

be demonstrated as follows: For the first step normal to the body in the

•1 

~~~~~~~-~~~~~~~~~‘ -~~~~‘.~~~~~~~~~ ‘ I
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boundary layer the physical step size Ay1 Is related to the transformed

step size ~fl1 by (see Ref. 8, p. 260)

= constant X —
r0

so that as r
0 

-
~~ 0 with fixed , the physical step size in the

boundary layer becomes large even though ~n1 may be extremely small.

Solutions were computed by the present method for three axisyinmetric

bodies for which experimental data have been published. The three cases

are the model A body of Lyon [13], a modified spheroid [14] and a low—

drag body [15]. The first two bodies have non—zero tail angles while the

last is nearly cusped. In each case comparisons with the data are given

for body pressure coefficient C , momentum deficit area 0, shape factor H and

skin friction coefficient Cf plus selected velocity profiles. Where

possible comparisons are also made with published theoretical results.

Lyon Model A Body

Calculations were made at a body chord Reynolds number of 2.09 X io
6
,

the same as in Lyons ’ experiments (13]. The transition location in the

calculation was adjusted so that 0 in the laminar—turbulent region

(0.1 < x
0 < 0.4) closely fitted the experimental data given in Fig. 24

of ref. 13. These data correspond to the case with a screen ahead of the

model. The turbulent eddy viscosity in the calculation is activated

gradually downstream of the transition station by using the intermittency

factor of Chen and Thyson [16].

The geometry of the Lyon model A body is shown in Fig. 2. Figure 3

presents a comparison between the calculated and measured pressure distrib-

utions on the aft portion of the body. The calculated pressure distribution
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along the wake centerline is also shown where no measurements were made.

In addition, the potential solution (no boundary—layer Interaction) and the

strong interaction solution of Nakayama, Patel and Landweber [10] are

presented for comparison. The agreement of the solution of Nakayama et al.

with the data is slightly better than the present solution. In Fig. 4

the momentum deficit area distribution as predicted by the present method

and that of Nakayama et al. is compared with the experimental data. On the

body both predictions agree closely with experiment. In the wake the

calculated values of Nakayama et al. are above those of the present method.

Since a strong interaction calculation necessarily includes the wake,

one of the results is the body drag which is related to the momentum area

at downstream infinity by

C
D~~~~

1L o~

where A
0 

is the reference area. A comparison between experiment and several

calculations of C
D 

(based on body surface area) for the Lyon model A body

is given in Table 1.

Source C
D

Experiment — Lyon [13] .00436

Present calculation .00401

Calculation — Nakayama et al. [10] .00410

Calculation — Myring [5] J .00397
Table 1. Drag Coefficient for Lyon Model A Body.

The spread in the three calculated values is only 3.2 percent.

The results for Cf and H are shown in Figs. 5 and 6 respectively.

Lyons ’ measured values of Cf display an erroneous trend near the tail of

the body but agree well with the present calculation over the front portion.

_ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . ‘- ~~~~~--—
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The shape factor is predicted better over the last 30 percent of the body

by tl-e integral method of Nakayama et al. than tt.~~ present finite difference

method. The reason for the poor showing of the present method for H is

attributed to inadequency of the algebraic turbulence model in the tail

region even though transverse curvature effects are included in the model

as well as in the boundary—layer equations. Velocity profiles are shown

at x
0 

= 0.6 in Fig. 7, where the thin boundary—layer approximation is

valid, and at x
0 

= 0.9 in Fig. 8 in the strong interaction region where

transverse curvature effects are important. At x0 
= 0.6 agreement with

experiment is excellent but at x
0 

= 0.9 the shape of the predicted profile

is too full near the surface. The latter behavior is typical of the

present method for the three cases presented herein.

Modified Spheroid

The body used by Patel, Nakayama and Damian [14] in their experiments

was a spheroid of approximately 6:1 fineness ratio with the rear 7 percent

removed and a tangent cone added to prevent boundary—layer separation. The

modified spheroid geometry is shown in Fig. 9. Corresponding to the

experiment of Patel et al., strong interaction calculations have been

made at a chord Reynolds number of 1.262 X 10
6 and the eddy viscosity

switched on at x
0 

0.05 to simulate the boundary—layer trip on the actual

body. Comparisons between present calculations, those of Nakayama et al.

[10] and the experiments of Patel et al. are given in Figs. 10 — 15. The

pressure distribution on the body and on the wake centerline as well as the

momentum deficit area distribution, shown in Figs. 10 and 11 respectively ,

are predicted well by both methods except that the calculated pressure peak

near the tail is slightly high. Note that for this body the departure

,-- ~~- — —~~~~~~~~ -----—- - . . - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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from the potential flow pressure distribution begins at x0 0.70. For

both sets of calculations the skin friction coefficient is generally higher

than the experimental values as seen in Fig. 12. The present calculation

indicates that the boundary—layer nearly separates at x
0 

= 0.94 but then recovers.

This trend is not shown by the integral method result of Nakayama et al.

The boundary—layer shape factor prediction by the present

method , shown in Fig. 13, becomes increasingly less accurate as the tail is

approached, as occurred for the Lyon body. The integral method calculation

of Nakayatna et al, is closer to the experimental values in the vicinity

of the tail but in the wake the present method gives a better prediction

of H. Nakayaua et al. point out concerning their calculations for the

modified spheroid that lower values of H and higher values of Cf have

a mutually cancelling effect in the momentum equation in an adverse pressure

gradient which explains why their method as well as the present one predict

the momentum deficit area well near the tail.

The predicted velocity profiles for the modified spheroid, shown in

Figs. 14 and 15, behave in much the same way as for the Lyon body . At

x
0 = 0.662 the prediction agrees well with experiment but at = 0.96,

in the strong interaction region, the predicted velocities are too high

near the wall.

Finally, the experimental and calculated drag coefficients for the

modified spheroid are given in Table 2.

Source C
D

Experiment — Patel et al. [15] .00447 (average)

Present Calculation .00454

Calculation — Nakayama et al. [10] .00485

Calculation — Myring [6] .00464

Table 2. Drag Coefficient for Modified Spheroid . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘
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The present method gives the value closest to experiment.

Note that Patel and Guven [121 show that the use of Cranville ’s

wake formula, Eq. (24), leads to an overprediction of C
D for the

spheroid of 30 percent where presumably they are using measured values

of 0 and u
e at the tail station. The present prediction of C

D does

not bear out their finding possibly because Weinbaum ’s hypothesis is used

here to determine Ue at the tail and 0~ is determined differently.

F—57 Body

The low drag F—57 body tested by Patel and Lee [15] is the last case

Considered. This body, shown in Fig. 16, has a nearly cusped tail so that

the boundary layer on the aft end has a different history from the previous

cases. The chord Reynolds number of the experiment was 1.20 X 10
6 and the

boundary layer was tripped at x0 
= 0.475, just ahead of where laminar

separation would have occurred . Comparisons between present calculations,

those of Patel and Lee [15] and experiment are shown in Figs. 17 — 23.

The computed results of Patel and Lee, which are based on the integral

boundary—layer method of Patel [17], used the measured pressure distribution

at the edge of the boundary layer plus estimated values of the pressure

integrals arising from variations normal to the streamlines. Integration

of the equations was started at x
0 

= 0.70. Hence the calculations of

Patel and Lee are not a true strong interaction solution in which the

pressure distribution is part of the solution.

As Fig. 17 shows, the present pressure distribution calculation agrees

well with experiment both on the body and in the wake. As in previous cases

the calculated result is slightly higher than experiment in the peak region

near the tail. For this body comparison with the potential flow pressure

distribution shows that the strong interaction region begins at x
0 0.75.

I

_________________ 
- ~~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~~~ -
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In computing the boundary—layer solution for the F—57 body,  the station

wher~ the eddy viscosity is introduced was varied until agreement was obta 1 ned

with the measured momentum deficit area in the trip region. As Fig. 18 shows,

the calculated results for 0 by both methods agree well with experiment on the

body but agreement becomes increasingly worse downstream in the wake. Conse-

quently a question arises as to the source of the discrepancy between calculation

~nd experiment for 0 in the wake. Estimates by Patel and Lee (see their Fig. 26)

indicate that the pressure integral Ip arising from streamline curvature is

practically negligible beyond the near wake (x
0 greater than about 1.04).

Hence the wake momentum integral equation , Eq. (19), should adequately represent

the variation of 0, especially if the measured values of H and ue (corresponding

to C on the wake centerline) are used. Such a calculation was made by numeri-

cally integrating Eq. (19) beginning from measured values at x
0 

= 1.04. The

results, shown in Table 3, are practically the same as the present strong inter-

action solution indicating that the experimental values of 0 in the wake by

Patel and Lee are in error . Consequently, the drag coefficient given by Patel

u H 0x l 0~ 0x l O ’
~ ® x l O 4

x0/L exp~r. exper. exper. calc.(l) calc.(2)

1.04 0.9690 1.319 1.509 1.509 1.521
1.06 0.9726 1.305 1.464 1.491 1.497
1.10 0.9803 1.279 1.361 1.453 1.446
1.20 0.9899 1.262 1.291 1.407 1.402
1.30 0.9915 1.235 1.197 1.400 1.390
1 . 4 0  0 . 9 9 6 5  1 . 2 2 2  1 .158 1. 3 7 7  1 . 3 7 5

2 . 4 7  0 . 9 9 9 9  1.124 1 . 0 0 7  1.3 6 2

1 . 0 0 0 0  1.0 0 0  1.3 6 1  1 . 3 5 4

1 - Momentum enuation with experimental H and u
e

2 — Present strong interaction method .

Table 3. Variation of Wake Integral Parameters for F—57 Body. 

-—.--—~~~~~ -~~ - - - —~~~~—— -.- ,---.— —~~~~~~.- -, - ‘-- .- - .- - -
~~~~~~~ ——



—29— July 19, 1978
GHH:jrp

and Lee (based on maximum frontal area) is too low. In fact their value,

based on the measured 0 at x
0 

= 2.47, is incorrect. They give C
D 

= 0.0092

whereas it should be 0.0294. The present calculation gives C
D 

= 0.0396.

The large trip wire used in the experiment (1.664 mm in diameter) is

responsible for the measured values of C
f~ 

shown in Fig. 19, being considerably

higher than the computed curve immediately downstream of the transition region.

Beyond about x
0 

= 0.70 the effect of the wire dies out and the two calculated

curves agree well with experiment . The trip wire also manifests itself in

the shape factor distribution as shown in Fig. 20. Over the last 20 percent

of body length the present calculation is too low but agrees well with

experiment in the wake. The cause of the low H prediction on the aft

end of the body is the algebraic turbulence model, as in the previous two

cases. The shape factor is predicted by the present method more accurately

for a concave tail than a convex one. The velocity profiles, shown in

Figs. 21 — 23, illustrate respectively the trip wire effect near the wall

at x0 
= 0.601, the usual overprediction of the velocity near the wall at

x
0 

= 0.88 and a spurious bump near the wall in the calculated profile at

x
0 

= 0.99 caused by extreme stretching of the normal step size from the

Mangler transformation singularity at the tail. 

- - . , —. . -.—~~~~ ---~~~~~~~~—,-.~~~~~~~~--~~~ - - ,-— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -~~~~~~ --—- ___
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6. •Conclusions

The pressure mappin,g hypothesis of Weinbaum has been found to provide

a simple means of adapting the displacement body concept to simulate stream—

line curvature effects in the high Reynolds number axisymmetric strong

interaction problem. Calculated results by the present method for the three

cases considered generally agree well with experiment except for the boundary—

layer shape factor. The predictions by the present method , where a finite

difference boundary—layer solution is used , are about the same in accuracy

as the predictions of a good integral boundary—layer procedure such as that

of Patel [17], except for the boundary—layer shape factor which is predicted

better by the integral method . The reason for the poor prediction of H

in the tail region by the present method is the basic inadequacy of an

albebraic turbulence model in that region. Such a model does not properly

represent the change from a boundary—layer profile to a wake profile nor

does it include streamline curvature effects. The inadequacy of algebraic

turbulence models in this regard has been noted by other investigators

[3 , 14, 15, 18].

The present calculated results for body drag coefficient have been found

to agree well with experiment and to be as good or better as other published

calculated values, at least for the Lyon model A body and the modified

spheroid tested by Patel et al. For the case of the low drag F—57 body some

doubt exists as to the validity of the measured momentum deficit area in the

wake. The simple integral method of Granville has been used to model the wake

development and hence predict 0 which is sensitive to the initial value of

U
e 

in the wake. By using Weinbaum ’s hypothesis u
e 

has been corrected to

account for streamline curvature effects in the tail—near wake region so

that the predicted value of 0,,, and hence CDI is reasonably accurate.
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•Improvements in the present calculation method could be made in the

following areas, in addition to modifying the turbulence model :

1. The approximation of concentric streamlines, Eq. (9), which leads to

the simple form of Weinbaum ’s hypothesis, could be changed to a more

realistic assumption. The resulting expression for the pressure change

across the boundary layer would undoubtedly lead to a pressure mapping

more complicated than that of Weinbaum.

2. The boundary—layer equations could be integrated in finite difference

form downstream in the wake, as well as along the body , to eliminate

the incompatibility of a finite difference solution with an integral

solution. As long as boundary—layer coordinates are retained , this

approach would work properly only for a body with a cusped tail. For

a body with a nonzero tail angle boundary—layer coordinates do not

mesh properly with cylindrical wake coordinates resulting in an

overlap region in the coordinate systems. To restart the numerical

calculation in the wake would require interpolation of the boundary—

layer solution. Such an interpolation would not be satisfactory

because the boundary—layer approximation is coordinate system

dependent. In addition, the Cebici—Smith boundary—layer scheme

cannot be used in the wake because of the singularity at zero radius

in the Mangler transformation. Physical coordinates should be used

for a finite difference wake calculation.

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  .~~— -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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One possibility of overcoming the coordinate mismatch problem at the

tail—wake juncture is to abandon the usual boundary—layer coordinate system

and use either a conformal system or a skewed system. At this stage the

artificial division of the flow into a boundary layer and an outer inviscid

region hardly seems worthwhile. In ~he new coordinates just mentioned one

could proceed to a parabolized form of the Navier—Stokes equations, with

an appropriate turbulence model, to be solved iteratively for the entire

strong interaction region similar to the scheme of Schetz and Favin [2].

If done properly the machine time required to solve such a system should

be little great~~- than the strong interaction procedure described herein.

Such an alternative is presently under investigation . 

- -~~~~-~~~~~~~~~~~~~~~~~ -—--. - -. . - . - .  _ _
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DISPLACEMENT BODY

O R I G I N A L  BODY

k— x0~~ ~~

Figure 1. Displacement Body Geometry
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88.9cm —

34.7 cm 54.2 c m

Figure 2. Lyon Model A Body Geometry
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Figure 3. Pressure Distribution on Lyon Model A Body 
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Figure 4. Momentum Deficit Area, Lyon Model A Body
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Figure 5. Wall Friction Coefficient , Lyon Model A Body
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Figure 6. Boundary—Layer Shape Factor, Lyon Model A Body
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