i‘

- — L o] sy oy —

ADAQ61207

DDC FiLE copY

—~ 4 t
r———— —

I

ARPA

baon anprovell

This documant bas
for puk’s et =~ end sale; i
distri*. ‘ion is unliznited.

4
b
i
3
t
i

[——

ADA061207

’) !
; (;;{i/i:ij ’;/\')

B e TR

Contract Period

7

Covered by Report: T31 Aug waumg® 7 8 i
ay

s

) ¥ /

Y

A

Quarte Regsearch and Development Technical Report

(@; Spatial Data Management Systemy '

i

Computer Corporation of America

The views and conclusions in Report Authors: ,

this document are those of
the authors and should not

be i{nterpreted as necessarily

representing the official

policies, express or implied,

of the Advanced Research
Projects Agency, or the
‘United States Government.

DDC Fi

‘'

E COPY:

| P

Sponsor:

ARPA Order Number:

ARPA Contract Number: \\\/ ‘

Contract Period:

L ‘ cantoved |
for l‘ll:‘ ic rel ¢ < 1 sale ! e !
distribution 1= unlivvited, |

Chrigtopher F, Herot
) Jim Schmolze
Richard Carling
Mark Friedell
Jerry /Farvell
o
~Reacarch—Btrietonr—
—ed Computer Corporation
of America

617-491-3670

Defense Advanced

Research Projects Agency
Office of Cybernetics

Technologpy

3487

FARVA Ov e
_A5-Februawv. 3978 —

30 November 1979

29 A8S
337

MDA903-78-C=-0122 .’-.-———\
{

\

SDMS - Quarterly Technical Report
Table of Contents

Table of Contents

1. INTRODUCTION

USER INTERFACE
Input/Output Devices
Command Structure

1 Modes of operation

.2 Static menu

<3 SQUEL Monitor

.3, SQUEL transactions

.3.2 Monitor commands

y

W

LU

y

wNNNNNI\)NI’\)NN—‘

1 Menu commands
2 Using the ICDL editor

.

3 Testing ICDL

.

Text in SDMS

.1 Static Text

2 Dynamic Text

3 Encapsulated Text

.4 Generation of Dynamic Text

o o

STRUCTURE OF SDMS

P N~ I i i P i g g wwwww NNNNI\JNNNNNNNN

Editing ICDL - Icon Class Description Language

System Specification - Interactive Input

Page -1i-

—

—
0w~ ouvn

— i — — — o o —
VWE~N~ EEWhN—

o n
w o

RY

ACGESSION tfor £
wton (W

P.,JN

1 The SDMS Process Structure
.1.1 INGRES interface
.2 Concurrent process cooperation
.2.1 Design
2.2 Implementation within UNIX
.2.3 SDMS process interrupts
.3 Log
.4 SDMS Protection Mechanisms
4.1 User protection
.4.2 Symbolic database protection
.4.3 I-Space protection
.4.4 Database Administrator
NTIS
Dh

R 0908
57 1AL

DISTRR T AV

o

SDMS = Quarterly Technical Report Page =1«
INTRODUCTION Section 1

1. INTRODUCTION

This report describes the third quarter of work on the
design and implementation of a prototype Spatial Data
Management System (SDMS). Spatial Data Management 1is a
technique for organizing and retrieving information which
enlists the user's sense of spatiality through the use of

high bandwidth, color, interactive computer graphics.\

The quarter was occupied by the detailed design phase of
the SDMS, the progress of which is summarized herein. A
full description of the detail design will be presented in
the forthcoming design document [HEROT et all. This

report describes several key elements of that design.

Chapter 2 of this report gives an overview of the SDMS
from the perspective of the users of the system, including
the symbolic and graphical languages through which the

users and administrators control the system.

Chapter 3 describes the techniques for dealing with text,
which plays a crucial role, both as a data type and an

element of the graphical data space.

Finally, Chapter 4 presents the framework in which SDMS
will be implemented, with special attention given to the

means by which the various UNIX processes are coordinated.

-~ e

SDMS - Quarterly Technical Report Page =2=-
USER INTERFACE Section 2

2. USER INTERFACE

The Spatial Data Management System provides each user with

a graphical data space (GDS) consisting of nested surfaces 1

of information, referred to as Information Spaces (I=-

Spaces). Each [-Space contains pictograms or icons which
indicate to the user the location of particular items of
information (see Figure 2.1). An [-Space is stored in the

computer as one or more image planes (i-planes) which are

the actual bit arrays used to generate the displayed
image. An [-Space may be composed of more than one image
plane 1in order to allow it to be viewed at several levels
of detail. An I[-Space is thus a two-dimensional world
over which the wuser can "fly", changing his altitude in

order to control how much information he sees at one time.

A user moves from one [-Space to another through ports,
indicated by dashed lines in Figure 2.1. Ports can also

be used to enter perusal spaces which provide techniques

for examining data. A perusal space is a procesé which
runs under UNIX and makes use of some combination of the ‘ j
graphical input/output hardware of the system. One such
perusal space will allow a user to pass through a port in
order to view selected frames from a video disk player.
Another will provide for examining and editing documents

by means of the Ned editor [BILOFSKY].

——————

L SUMS - Quarterly lTechnlcal Report Page =3=
USER INTERFACE Sectlon 2

| B — R AR

i Example Graphical Data Space Figure 2.1

_ K'f.';" —n 0% ““| Top LEVEL 1-SPACE
| VRPN O
£ ™y ['!Em]

i O A~ uwmm
& . &':.‘) @ [+
| &b 5

/ B, lﬂﬂ*ﬂ

"

/
!

’ Personnel |:-Space

i § il s R AT AR

PICE——

E—

L

ey
R N e B T T T
TN T |

Ak A e . At

4 ROCD fow o s wi o in o 0 o o5 o o @ 0 = o

! Personnel (Organized
. bKo anization
chart

‘ ADMINISTRATION

Personnel Organized m&nt. Personnel Otganizp:l

' S ' el] " 5,
SUPPORT SRD S$PD @@@@@@ r‘f
, PEPRERRP o T

/ SOMS
1A Spatisl Dets Mensgement System

Personnel (Organized by project)

SDMS =~ Quarterly Technical Report Page =4-
USER INTERFACE Section 2

In parallel to the graphical data space, the SDMS main=-
tains a symbolic database management system (DBMS). The
DBMS chosen for the prototype SDMS is INGRES [STONEBRAKER,
HELD, WONG]. Tuples in the DBMS may have corresponding
icons in the GDS, allowing the GDS to serve as a view of
the database. The system provides tools for generating
such views as a function of the contents of the database,
sO0 that the user may call up views tailored for specific

purposes.

The following list summarizes the actions which the user

and/or database administrator can perform:
1. Moving through the Graphical Data Space

a. Scrolling (motion in the plane)

b. Zooming (motion perpendicular to the plane)

c¢. Passing through ports (to other I-Spaces or
perusal spaces)

d. Rapid transit directly to a point in an I=-

Space
2. Symbolic Queries

a. Blink a specified icon

b. Frame a specified icon

¢. Find (goto) a specified icon
d. Associate an icon with a tuple

e. Generate an I-Space of icons from a relation

l SDMS - Quarterly Technical Report Page =-5-
USER INTERFACE Section 2

il ARSIk IR e WP

3. Editing the Graphical Data Space

a. Annotation

b. Painting

e b\ A A A5 e

¢. Defining Ports

S —

- Making I-Spaces
- Establishing access controls
é - Making Perusal Spaces
é d. Making i-planes
! 4. Icon Class Description Language (ICDL)

a. Creation/Editing
5 i b. Testing

2.1 Input/Output Devices

i The SDMS user station contains a variety of interaction peri=-
pherals which provide for a wide range of data types and modes
of interaction. They are:
1. three color CRT monitors which can be configured to]
display the contents of the graphical data space, maps ‘

of the data space, output from a video disk player, and

menus;

2. two joysticks which control motion through the data

SDMS - Quarterly Technical Report Page =~6-
USER INTERFACE Section 2

space;

3. a data tablet for input of icons, selection of menu
items, and identification of positions in the graphi-
cal data space;

4, computer controlled sound playback equipment, to allow
sound to be used as a data type; and

5. an alphanumeric keyboard to allow input of symbolic

information.

2.2 Command Structure

SDMS interfaces to the user through two 1languages: SQUEL
and ICDL. SQUEL is the primary command and query language,
and is an extension of the QUEL query 1language of INGRES.
It allows the user to move through the graphical data space,

examine data, and create, modify, and destroy I-Sgaces.

The Icon Class Description Language (ICDL) is used to define
the correspondence between the symbolic data in the DBMS and
the icons in the graphical data space. Through statements
in ICDL, a user or database administrator can define icons

whose appearance is a function of data in the DBMS.

Both languages make use of symbolic input (typing) and

graphical input (menu selection, position input, and shape

L

S~wz

ST - Juarterly Technical lepart fage T
RITY IWIZIFACE Sectizm o
description). The system is constructed to make typing

unnecessary except in cases where the input of actual text

strings (such as attribute names or values) 1is involved.

In most cases, the user is given a choice of typing a coma

mand or seleullong an ALem from o menu.

2.2.1 Modes of operation

The two languages of SDMS define two distinct modes of
operation of the system. The system is normally in SQUEL
mode, which allows manipulating the databases and the

user's view of them. The system may also be used in ICDL

mode in order to define new icon classes.

The mode of operation determines the kind of statements
that a wuser can type at the keyboard and the information
which is displayed on the various monitors. On the other
hand, certain characteristics of SDMS are constant, in
that they are a part of every mode of operation. These
are:

1. The surface of the data tablet is marked with a
static menu which 1s always available for global
operations such as exiting from the system and
entering various modes of operation. It is

described in Section 2.2.2.

2. The main graphics screen always displays a view of

SDMS - Quarterly Technical Report Page -8~
USER INTERFACE Section 2

the ~raphical data space and the joysticks always

allow the user to move around within it.

Other characteristics change depending on the mode of opera-
tion. The SQUEL mode of operation is characterized as fol-
lows:
1. The keyboard is connected to the SDMS monitor which
accepts SQUEL statements and monitor commands (see

Section 2.2.3).

2. The main graphics screen displays a view of the user's

current location in the graphical data space.

L8]

The first auxiliary graphics monitor displays a navi=-
gational aid. This will be a "world-view map" of the

top-level I[-Space.

4. The second auxiliary graphics screen displays one of
two possibilities, selected by the user. Either a
second navigational aid is displayed, or the GDS Edi-

tor menu is displayed.

When a navigational aid is displayed on the second auxiliary
screen, the entire screen is occupied. When the GDS Editor
is displayed, only part of the screen is used. The remain-
ing space will be wused to post menus of commands. This

feature is heavily used by the ICDL mode.

-

T rT——_——

s PN ed ot L3RV

-

SDMS - Quarterly Technical Report Page -9~
USER INTERFACE Section 2

ICDL mode is used for editing 1icon «class decriptions.
ICDL mode 1is defined as follows:

1. The keyboard is connected to the ICDL editor of the
ICDL monitor. The monitor allows manipulations of
entire icon class descriptions while the editor
allows manipulation of the statements in a descrip-

tion (see Section 2.2.4).
2. The main graphics screen displays a view of the GDS.

3. The first auxiliary graphics screen displays a navi=-
gational aid. This will be a "worid-view map" of

the top-level I-Space.

4. The second auxiliary graphics screen displays the
GDS Editor plus one or more menus. The menus are

described in Section 2.2.4.

2.2.2 Static menu

The tablet will have a permanent menu area, each having a
special command associated with it. These commands are of
general applicability and are always available to the
user. The commands are:

1. QUIT - terminates the current session of SDMS.

2. ABORT = interrupts the current action and halts it.

SDMS returns to a passive state. This can be used if

SDMS - Quarterly Technical Report Page =10-
USER INTERFACE Section 2

the user has done something incorrectly and he wants
to abort before destructive action is taken.

3. HELP - offers information to the user concerning the
use of SDMS.

4, STATUS - prints the current status of the system.

5. SQUEL MODE - puts the system into the SQUEL mode of
operation.

6. ICDL MODE - puts system in the mode for editing ICDL.

7. ENABLE GDS EDITOR - makes available the full capabili=-

I ties of the GDS editor. The second auxiliary screen

then displays the GDS Editor.

8. DISABLE GDS EDITOR - disables the GDS editor, causing
a navigational aid (if applicable) to appear on the

second auxiliary screen.

3 2.2.3 SQUEL Monitor

The SQUEL monitor is the primary tool for communicating sym-
,i bolically with SDMS. The SQUEL monitor is similar to the
| QUEL monitor supplied with INGRES, but it has been expanded
to provide more control over the terminal session and to
encompass operations on the graphical data space. Each
transaction that is typed to the monitor must be terminated

by a ";" or by a "\". If the termination character 1is the

l_
|

, ";", the transaction is processed immediately. If the "\" is

s

Loni

T R T

SDMS - Quarterly Technical Report Page =11«
USER INTERFACE Section 2

used, a monitor command is expected to follow 1immediately
after the "\", The monitor commands are listed and

explained in Section 2.2.3.2.

2.2.3.1 SQUEL transactions

SQUEL transactions may be typed in directly to the SDMS
monitor. After the transaction has been entered, it is
sent to the SQUEL processor. Control does not return to
the monitor wuntil the transaction has been processed.
This 18 the primary access method to the symbolic data-

base.

2.2.3.2 Monitor commands

The monitor commands manipulate the 1input of previous
transactions. Each transaction that the user enters is
saved on a history list. The monitor commands allow the
user to manipulate transactions on the history list. For
example, he can edit a previous transaction and process
the edited version. The monitor commands available are 1n
a separate manual [SCHMOLZE, FRIEDELL) that will be

included in the Final Design Document.

1l) SDMS - Quarterly Technical Report Page -12-
g USER INTERFACE Section 2

2.2.4 Editing ICDL - Icon Class Description Language

When the user wishes to define or edit Icon Class Descrip-
tions, he enters ICDL mode. Since ICDL bridges the sym=-
bolic and graphical databases, it makes use of both sym-
bolic and graphical input from the user. Although ICDL
! mode makes special use of some of the 1/0 devices, it
still allows the wuser to navigate through the GDS as he
wishes. The major departure from SQUEL mode is that SQUEL

is not available from ICDL mode.

2.2.4.1 Menu commands

When SDMS is in ICDL mode, a menu devoted to ICDL will
appear on the second auxiliary screen. These menu com=-
mands are useful for manipulating the user's collection of
icon <c¢lass descriptions (ICDs). When the user is not
editing a particular ICD, keyboard input 1is directed to
the ICDL monitor. The commands for this monitor are ident-
ical to the commands on the menu, allowing the user a
choice of input device. The cqmmands are:

1. directory - 1lists the ICDs in the wuser's (or

other's) directory of ICDs

,[f 2. copy - copies one ICD to another ICD.

3. delete - deletes an ICD.

?1‘ 4, edit - starts an editing session for a particular

ICD. This is used for new or old ICDs.

S ———— — I.n_“_m.";;t,h‘

SDMS - Quarterly Technical Report Page =13-
USER INTERFACE Section 2

5. test - enters the test mode for ICDL.
6. SQUEL mode - leaves ICDL mode and returns to SQUEL

mode.

2.2.4.2 Using the ICDL editor

When a particular ICD is to be edited, a second menu appears
and the terminal displays a special version of the Ned edi-
tor. The second menu contains the name of each statement in
ICDL. To wuse this menu, the user positions the Ned cursor
to the 1location where the statement should appear and
touches a menu selection. If the statement requires infor-
mation, such as an attribute name or a location, the user 1is
prompted for it. Afterwards, the statement is generated
automatically and inserted into the ICD at the cursor posi=-
tion. The wuser 1is also free to type in ICDL statements

directly to the editor as well.

The OPEN and CLOSE features of Ned may be used to insert and

delete statements in existing ICDs.

The pictures associated with an ICD will be stored in a spe-
cial [-Space. The primary means of getting to this I-Space
is via a menu selection from the second menu. This [-Space
has only one i-plane which will hold the pictures for all
ICDs. When in this special I-Space, the wuser may browse
through other pictures, but he can only change those pic=-

tures associated with the ICD being edited.

LR -——Mf’

SDMS - Quarterly Technical Report Page -14-
USER INTERFACE Section 2

2.2.4.3 Testing ICDL

The test mode allows the user (o run an ICD and to look at
the results. When test mode is entered, he is prompted for
an [-Space to place the test icon and a qualification for
retrieving a tuple for the test. The icon is generated
and the SDMS flies to the location of the new test icon.
At this point, the user can peruse the icon and the sur-
rounding area. He leaves test mode with a "finished"
command. The test icon is automatically deleted, leaving
the I-Space unchanged, and the user 1is returned to his

original position in the GDS.

2.3 System Specification - Interactive Input

This section describes the routines provided to enable the
user to create and modify the Graphical Data Space (GDS)
of the SDMS.

The usual mode of operation is to maneuver to an I[-Space
and 1ssue the GDS edit command. This command causes a
menu of interactive input commands to appear on the second

auxiliary monitor.

The user may also invoke the edit command in such a way

that the editor starts with a scratch i-plane. This i-

———————————

ol

B e SelaaBY SN e i S T) g e ;
; P L Pl = i oy

SDMS - Quarterly Technical Report Page =15~
USER INTERFACE Section 2

plane can later be inserted into the SDMS database or used

as a source of graphical data to be copied piecemeal into

various [-Spaces, or to be used with ICDL.

In order to perform editing of the graphical display
space, the user 1is provided with a set of tools which can
be used for generating and modifying the I-Space. These
tools allow a user to work with general image areas when

editing or with specific objects.

While editing, the user is at all times free to move about
the GDS, allowing him to perform operations which involve
more than one [-Space, such as copying information from

one [-Space to another.
The graphics oriented functions are summarized as follows:

LINE - allows a user to draw a line of arbitrary
width on the iplane.

FLOOD - allows a user to fill an area with a speci-
fied color.

PICK - defines an area or object to be copied.

PUT - defines an area or location for an object to
be placed.

TEXT - allows the wuser to insert text onto the
seratch pad.

GRID - places a grid on the screen for wuse in

alignment of objects.

SDMS - Quarterly Technical Report Page =16~
USER INTERFACE Section 2

The remaining functions define an 1image area's charac-
teristics.
MAKE ICON - defines a particular icon.
MAKE I-PLANE - defines a particular i-plane.
MAKE PORT - defines a location through which a user
may pass to enter a new i-Space.
DELETE - allows a user to delete image areas, icons,

i-planes and complete I[-Spaces.

SDMS - Quarterly Technical Report Page =17~
Text in SDMS Section 3

3. Text in SDMS

Text will appear in three guises in the SDMS system:

- static text is part of a picture

- dynamic text is generated in part of a picture in

response to user actions (e.g. the result of a user
query may be presented on a portion of the icon to
which it refers.)

- encapsulated text is produced on a dedicated screen

by some subsystem, such as a text editor or message

program.

These three forms of text differ in the time and moce of
their generation, in where and how they are stored, and in

what contexts they may be seen by the user.

3.1 Static Text

Static text is generated as part of a picture, either ﬁ
directly by the user at the time an icon is defined, or ‘
when the ICDL defining the icon 1is executed (perhaps H

automatically at the time a new tuple is added to the sym-

bolic database). It does not change; it 1is an integral

part of the definition of the picture, stored in an image

SDMS - Quarterly Technical Report Page -18-
Text in SDMS Section 3

form in the i-planes of 1its containing I[-Space. From
this, it follows that the text must be converted to pixel
format at icon creation time. (Note that this approach
allows a great deal of latitude in character format, from
hand-drawn through carefully defined, shaded, and de-
Jaggied fonts which can be displayed in arbitrary atti-
tudes.) Such text scrolls onto and off the screen along
with the rest of the view; it grows as the user zooms in,
and shrinks as he zooms out. In the usual case, parallel
i-planes which show a text area at different scales will
have different texts, or even have a text replaced by
lines indicating 1its general shape, if it would be too

small to be distinguishable.

3.2 Dynamic Text

Dynamic text is tied to a particular icon and position in
I-Space, but the value of the text is not defined at the
time the icon is generated, and in fact will normally
change during the course of a user's interaction with
SDMS. Only the area it occupies is predefined in ICDL. A
typical wuse for dynamic text would be to allow symbolic
response to a user query which applies to an indicated
icon. A key issue is the efficient generation of dynamic

text 1in acceptable time and format; this 1issue 1is

. —

SDMS - Quarterly Technical Report Page -19-
Text in SDMS Section 3

discussed in Section 3.4.

3.3 Encapsulated Text

Encapsulated text is not part of the standard SDMS world
of I-Spaces. It belongs to subsystems which have been
incorporated into SDMS, but which assert their own context
once entered. When one of these subsystems, such as the
text editor ned or the msg message system, is entered, it
is allocated a display for its own use, on which its par-
ticular texts will appear. There is again a great deal of
latitude in how the text will actually be presented on the
screen (beginning on which screen holds it). At one end
of the spectrum is a standard text terminal, 24 by 80 or
40 by 80 characters in the usual variety. At the opposite
extreme, on the main SDMS display, text may be formatted
with a high quality font, proportional spacing, justified
margins, "turning" pages, and multiple colors. The choice
within this range will be determined according to the
needs of the subsystem; in an editor, quick response might
prove more desirable than a very high quality image pro-
duced at the expense of additional processor overhead. A
finished document merits more care in the production of

its image, if it is going to be viewed critically.

P

SDMS - Quarterly Technical Report Page -20-
Text in SDMS Section 3

3.4 Generation of Dynamic Text

Because of the ephemeral nature of dynamic text, it cannot
be stored permanently in the i-plane in which it eventu-
ally appears; it must be generated anew in response to a
particular wuser query. Nonetheless, once generated, it
must be stored; at least for as long as it is possible for
the wuser to scroll part of it off the screen and back on
again. The location and format of this storage is one of
the 1issues presented by dynamic text. The other concerns
the time and location of the conversion from ASCII charac-

ter codes to pixels in a 7 X 10 (or whatever) cell.

We have investigated three approaches to dynamic text
storage:

1. Generate it into the i-plane which contains its win-
dow, erasing that window (that is, re-painting it
with the background color) at some later time.

2. Maintain a parallel iplane (possibly with fewer bits
depth) into which the image of the text can be writ-
ten, which is combined with the real i-plane's image
as it is moved to the display. This parallel plane
can simply be discarded when the text is no longer
needed.

3. Store the text in ASCII, and generate pixels only in

the core buffer before an image 1is sent to the

e ———————————satentl]

SDMS - Quarterly Technical Report Page =21~
Text in SDMS Section 3

display (or even have 1t generated 1in the display

itself).
In the interests of minimizing disk i/0, we have settled on
the third option. This has a beneficial side effect, in
that dynamic text can be handled in a uniform fashion with
modification functions (e.g. blinking, framing) specified
for particular areas in an I-Space. For text, the modifica-
tion function is simply TEXT, and the argument is a pointer
to a string carried in the modification database. AS an
area 1s loaded into the «core buffer on the way to the
display, any applicable modifications are performed. In
fact, 1if the display's character generator were acceptable,
generation of the character images could be postponed until
the 1image had actually been transferred to the display.
This approach would require a fair amount of processing to
ensure correct handling of texts which overlie the boun=-

daries of the screen, however,

This raises the second issue, namely the actual conversion
from ASCII characters to character images. The two alterna-
tives are:
a. to do it in software in the PDP-11; or
b. to let the hard/firmware in the display take care of
it.
The latter course appears faster, by a factor of at least

10, and will be used in most cases in SDMS. High-quality

characters, with de-jaggied edges, such as may be required

SDMS - Quarterly Technical Report Page -22-
Text in SDMS Section 3

by some perusal spaces, will require the software

{ approach.

10 BT . v At 4

s Ml SNBSS 0N

ik

a5 A A I 10— 1

SDMS - Quarterly Technical Report Page =23-
STRUCTURE OF SDMS Section 4

4. STRUCTURE OF SDMS

SDMS runs as a user job under the UNIX operating system.
Invocation of SDMS results in the spawning of a hierarchi-
cal structure of concurrent cooperating processes (see
Section 4.1) which communicate through the interprocess

communication schemes described in Section 4.2.

Certain tasks performed by SDMS, especially those con=-
structing graphical images, require rather lengthy compu-
tation and hence are incompatable with the highly interac-
tive nature of the SDMS user environment. The multipro-
cess design of SDMS allows those processes to proceed in a
backround mode as servers to interactive "front-end

processes."

4.1 The SDMS Process Structure

SDMS process consist of one or more functional modules.
Modules are typically grouped into processes by related

functionality. In exceptional cases, modules are grouped

by common access to data structures or INGRES databases.

L —————

SDMS - Quarterly Technical Report
STRUCTURE OF SDMS

Page =24~
Section 4

The SDMS process schema:

Modules of SDMS

Module Name Description

overseer Process overseer

'1 sdms_monitor SDMS Monitor
| squel SQUEL Parser
assoc_dbm Association Database Manager
icon_creation Icon Creation

assoc_proc Association Processor

integrity Integrity Maintenance

icdl_editor ICDL Editor

icdl_dbm ICDL Database Manager

icon_manager

Icon Manager

gds_editor GDS Editor
navigator Navigator
| stager Stager
i disk_io Disk IO
disp_io Display IO
gds_dbm GDS Database Manager
k1 nav_aid Navigational Aids J
'3 pic_const Picture Construction |

menu_monitor Menu Monitor

i

integrity

maintenance

icon creation

assoc¢ . processor

\\\\\\\\\\\\\l

!

OVERSEER

SDMS MONITOR

icdl-editor 7IIIIIII!

MENU MONITOR

SQUEL PROCESSOR

ASSOCIATION-dbm#1

«mmmon»mn»on dbm #2

e

icon manager

gbs-editor
i

! N,
NAVIGATOR

gds - dbm

STAGER
/
~ /
nav aids

pic-const

S ————

24N 0NUQ1S 880044 SWAS

L' adnByy

AUNLONYULS

40 ¢

SWAS
q40day teotuyval Atuajzdend = SWAS

h uoyj3o8g
-Ge= 9ded

SDMS - Quarterly Technical Report Page =206-
STRUCTURE OF SDMS Section 4

4.1.1 INGRES interface

SDMS interfaces to INGRES through EQUEL. EQUEL 1s a
mechanism which allows a programmer to access INGRES from
within programs written in C, the standard language of
UNIX. This mechanism includes a pre-processor which
allows such C-programs to contain QUEL statements.
Through EQUEL, the pre-processor converts the C-embedded
QUEL statements into calls to subroutines which themselves
are a part of INGRES. Currently, the EQUEL processor is
insufficient to handle certain exceptional transactions
with INGRES. Therefore, a few direct calls on the EQUEL
subroutines appear in the SDMS implementation code.
Further development of SDMS and/or EQUEL may make these

direct calls unnecessary.

e

\ '~ 4 o
b

t' Y‘J‘ ¥ | I

SDMS - Quarterly Technical Report Page =27~
STRUCTURE OF SDMS Section 4

4.2 Concurrent process cooperation

As shown in the above discussion, the SDMS implementation
involves a number of cooperating concurrent processes,
For that reason, the various issues of concurrency,
including those dealing with critical regions, shared
resurces, and interprocess communication have been
addressed. A discussion of these problems and their
design solutions within the framework of SDMS is presented
in Section 4.2.1. Section 4,2.2 describes in detail the
actual implementation of this design through the facili-

ties of the (UNIX) host operating system.

4.2.1 Design

The relationships between two cooperating processes within
SDMS are of three types: the type associated with simple
"co=-routine" cooperating process environments, the
"producer-consumer" relationship, and a more complex
"requester-server" relationship often associated with phy-

sical resource management in operating system design.

The nature of the "co-routine" relationship eliminates the
problem of critical regions when co-routine execution is

explicitly 1interleaved: in such an environment, the

active process can freely manipulate shared data as at | _

SDMS - Quarterly Technical Report Page -28-
STRUCTURE OF SDMS Section 4

most one process is active at any time. The synchroniza-
tion of such co=routines can be accomplished through the
following message passing primitives:

SEND(message to cooperating process)

WAIT(message from cooperating process)

Optionally, processing may be included between the SEND
and WAIT operations. This processing, however, must occur
outside the critical region if it is to occur concurrently
with the co-routine. The discipline of not accessing
shared data in this non-critical region becomes a

programmer's responsibility.

An alternative to the "co-routine" relationship which 1is
also utilized in the SDMS implementation, 1is the
"producer-consumer" relationship allowing essentially
asynchronous open-=loop operation of two concurrent
processes connected by a single multiple slot message
buffer. "Empty" and "full" signals denoting the availa-
bility of buffer slots and thereby constraining
"producer-consumer" timing are provided by two additional

buffers of very small (event) signals.

The somewhat more complex "requester-server" relationship
involves a shared software resource, a "server process,"
which can used by one of two or more concurrent processes
at a time. This relationship exists whenever any one pro-

cess performs some function for at least two other

Y it e

SDMS - Quarterly Technical Report Page =-29-
STRUCTURE OF SDMS Section 4

processes.

A resource allocation scheme similar to those wused by
operating systems to allocate physical computer system
resources to a process has been applied to this situation.
Simply stated,
1. a "requester" process issues a request to use the
server and waits until it.is granted
2. the "server" is allocated to a "requester" on a
first-come first-served basis
3. when a "server" is allocated to a "requester," it is

occupied until the "requester" releases it

A single message buffer per shared "server" process is
sufficient to implement the described allocation scheme.
The message buffer contains at most one message which is:
"the ‘'server' 1s available." Any '"requester" process
wishing to use the "server" must issue a request of the
form:

WAIT-IN=-QUEUE(message in buffer)

READ(message).
The "server" freeing primitive becomes:

WRITE(message).

Having been allocated the "server" process, the "reques-
ter" may initiate the "co-routine" or "producer-consumer"
relationship described above. As already discussed, this

relationship continues until the "server" is explicitly

SDMS - Quarterly Technical Report Page =30-
STRUCTURE OF SDMS Section 4

freed by the "requester."

4.2.2 Implementation within UNIX

In order to satisfy the inter-process communication needs
of SDMS, the pipe mechanism which was the primary UNIX
interprocess communication tool has been supplemented by a
shared memory facility referred to as the "large core
buffer area" or LCBA. This is a scheme for reserving a
portion of primary memory which may be accessed by any
number of concurrent processes. Selective wuse of both
pipes and the LCBA provides the necessary process communi=-

cation and timing facilities described below.

Utilization of the LCBA for storage of shared data pro-
vides an interprocess communication technique without the
operating system overhead associated with pipes, and is
therefore used whenever numerous and/or large messages are
involved. Use of the LCBA entails a user process mapping
of an area of the LCBA to an unused page of the process's
virtual data address space. Multiple processes mapping
the same area of the LCBA to their data address spaces may

concurrently access the data stored there.

Process synchronization has been achieved through a

feature 1inherent 1in pipe 1interprocess communication: a

SDMS - Quarterly Technical Report Page =-31-
STRUCTURE OF SDMS Section 4

read on an empty pipe causes the reading process to sleep
in a queue until a message (at least one byte) is avail=-

able in the pipe.

Implementation of the co-routine relationship between two
processes 1is achieved by placing common data areas in the
LCBA and utilizing the following co-routine calling con-
vention:

WRITE(one byte to the co-routine's read pipe)

~ optional processing outside critical region ~

READ(one byte from co-routine's write pipe)
In addition, the single byte timing message may be inter-
preted to supply some further information. In the SDMS
implementation, a timing byte's value is typically inter-
preted by the invoked co~-routine to denote one of up to
265 unique messages. This is often a return code or a

command to perform some operation on the shared data.

Implementation of the producer-consumer relationship is
accomplished through a multiple slot message buffer (as
described in Section 4.2.1) which 1is contained in the
LCBA. Producer-consumer coordination 1is controlled as
follows:
producer - (before writing message)
IF(no message slots available)
THEN WAIT(until slot available)

consumer - (before reading message)

SDMS - Quarterly Technical Report Page =-32=-
STRUCTURE OF SDMS Section 4

IF(no messages slots filled)
THEN WAIT(until a slot is filled)
are implemented with pipes containing event messages which
give the address of a message slot available for writing

or reading.

As discussed in Section 4.2.1., the actual transactions of
the requester-server are 1like that of any co-routine or
producer-consumer. A scheme to allocate the server among
competing requesters 1is what makes this relationship
unique. The implementation of this allocation scheme
involves one pipe per shared server process in addition to
the two in use for interprocess timing and (sparse) com=- |
munication. This pipe contains at most a single one byte
message interpreted as meaning: "the server is available."
In the requester-server environment, an allocation/ deal=-
location protocol must be observed by all requester
processes as follows:
request server =
READ(one Qyte "server available" message) .
free server -
write(one byte "server available" message)
Note that any process requesting the server (READ from
pipe) while it 1is in use (pipe empty) will sleep until
until it becomes available (one byte in pipe) through a

free operation (WRITE to pipe) by the current user.

SDMS - Quarterly Technical Report Page =33~
STRUCTURE OF SDMS Section 4

Finally, a mechanism suitable for exclusive 1locking ‘of
those data structures which may sometimes be available for
shared access has been implemented using a semaphore tech-
nique. Initially the semaphore is equal to the maximum
number of processes which may share the data. Shared use
of the data 1is preceded by a decrement and test of the
semaphore; a non-negative value indicates that shared use
is allowed. If the semaphore's value is negative (shared
access permission denied due to 1its wuse in exclusive
access mode or by the maximum number of shared users) the
requester is required to re-increment the semaphore and
try again after putting itself at the bottom of the run-
qQueue. Relinquishing shared access permission is associ=-

ated with an increment of the semaphore.

A request for exclusive access entails a decrement of the
semaphore by the maximum number of processes allowed
shared access, and repetitive testing of the semaphore
until it is non-negative, again with intervening
reschedules. Freeing the data for shared access is simply
a reinitialization of the semaphore to this maximum number
of shared users. Note that this scheme forces shared
access requesters to queue-up behind an exclusive access
requester and thereby avoids a potential exclusive access

requester lockout.

1

S

SDMS - Quarterly Technical Report Page =34~
STRUCTURE OF SDMS Section 4

4,2.3 SDMS process interrupts

A mechanism to interrupt the normal execution of the vari=-
ous SDMS processes asynchronously has been implemented
which provides the interrupted process with an ID and mes-

sage from the interrupting process.

This mechanism can be described as a table-driven protocol
for the use of the UNIX signal operations. A shared area
of the LCBA contains a table with one entry per process.
Each entry includes four fields:

1. UNIX process_ID

2. interrupts_enabled

3. ID_of_interrupting_process

4. message_from_interrupting process.
The UNIX signal operations are performed using signal
number 14, a signal not currently in use for process ter-

mination by the operating system.

The specific interrupt primitives available and their
realization in the SDMS implementation environment are:
1. INTERRUPTS ON

signal(14,handler);

var=1;
/* here handler is the interrupt handler
routine and var is the interrupts_enabled
field of the process's own entry in the
interrupt table */

2. INTERRUPTS OFF

while(==var)

SDMS -~ Quarterly Technical Report Page -35-
STRUCTURE OF SDMS Section 4

{

++var;

reschedule();

}
/* var is the interrupts_enabled field of
the process's own entry in the interrupt
table */

3. INTERRUPT PROCESS

while(-=-varA)
{
++varaA;
reschedule();
}
varB="process's unique ID";
varC="message to interrupted process";
kill(varD, 14);
/* where varA is the interrupts_enabled
field of the process to be interrupted; varB
is the ID of interrupting process field of
the process to be interrupted; varC is the
message_from_interrupting process field of
the process to be interrupted; varD is the
UNIX process ID field of the process to be
interrupted ¥/

4.3 Log

Log(flags, format, arg, ...)

Log is provides a system-wide utility for noting interesting
or exceptional conditions. In addition, it will be the
standard means of invoking formatted reports of system

status, and of suspending or halting system operation.

In the call to Log, flags is an integer consisting of a

number of bit-flags as described below; format and the

- .

SDMS - Quarterly Technical Report Page -36-
STRUCTURE OF SDMS Section 4

remaining args are a string and other arguments used
exactly as 1in a call to the system function printf. Log
will format a message, with a timestamp and the name of
the caller., as well as the text indicated by the second
and following arguments, and write it to a log file. It
may take further action, as requested by particular flags

being set.

Currently defined flags include:
ERROR the invocation of Log indicates an error con-
dition which requires recovery procedures.
DUMP a detailed, formatted report of common data

areas and system status will be written to a

file.

HALT sdms will exit, returning to unix

DEBUG sdms will enter a debugging mode in which nor-
mal operations are suspended and debugging tools

are made available.

Combinations of these flags can be defined; for example,
CRASH might be ERROR + DUMP + DEBUG. Other flags may be
added as required, without impacting existing uses of the

Log function.

SDMS - Quarterly Technical Report Page -37-
STRUCTURE OF SDMS Section 4

4.4 SDMS Protection Mechanisms

Each I-Space in the GDS has exactly one supporting INGRES
symbolic database. For the general user, protection is
applied at three levels:

1. user

2. symbolic database

3. I-Space

each of which is described below.

4.4.1 User protection

User level protection is a privilege assigned to an indi-
vidual wuser and controls whether he may create I-Spaces.
This capability may be restricted in some systems to the

Database Administrator. All other SDMS protection mechan-

isms are applied per symbolic database or per I-Space.

_ \ ‘-r' vw..laﬁ s - . ¢ V"' L . ._

SDMS -« Quarterly Techniogl Report Page - 8-
STRUCTURE OF SDMS Section 4

4.4,2 Symbolic database protection

Each Ingres symbolic database which supperts SDMS [-Spaces
has an assocliated list of SDMS users authorised to access
it. Most users having access to the database will thave
private relations; however, one user may have shared rela-
tions. In effect, one user may make symbolic 1information
available to all wusers with access privileges to that

database through the use of publicly available relations.

4.4,3 I-Space protection

As in symbolic database protection, each [-Space has an
assocliated 1list of SDMS users with access privileges. I[-
Space access privileges are of four types: read, write,

control, and administer.

Read access to an [-Space provides the wuser with almost
all the facilities of SDMS with the following provisions:
1. Graphical annotation of the GDS will be temporary.
2. Any new links or associations will be temporary.
3. i-planes may not be created.
4, Ports may not be created.

5. Access controls may not be changed.

Write access will 1imply all those privileges of read
access. [In addition, graphical annotation of the GDS will

SDMS - Quarterly Technical Report Page =39-
STRUCTURE OF SDMS Section 4

be permanent.

Control access will imply all those privileges of write
access. In addition, links and associations will be per-

manent, and i-planes and ports may be created.

Only users with administer privileges may destroy an I[-
space or change access controls on it. The creator of an
I-Space is given administrator privileges; he may assign

any combination of privileges to other users.

4,4,4 The database administrator

A very special user, the database administrator, or DBA,
is immune to the SDMS protection mechanisms. The usual

role of the DBA is simply that of administration, namely:

1. The database administrator maintains the 1list of
valid SDMS wusers (who must also be valid UNIX
users). The DBA specifies the create I-Space
privilege for each user.

2. INGRES symbolic databases which support [-Spaces are
created by the DBA. For each such symbolic data-
base, those users authorized to access it are listed

along with the shared relation user (if any).

SDMS - Quarterly Technical Report
STRUCTURE OF SDMS

Page =-U0-
Section 4

References

[HEROT et al)
Herot, C.F.; Schmolze, J.; Carling, R; Farrell,
J.; and Friedell, M. "SDMS Detail Design Docu-
ment", Computer Corporation of America, 575 Tech=-

nology Square, Cambridge Massachusetts 02139,
October 1978.

(BILOFSKY]
Bilofsky, W. "The CRT Text Editor NED -~ Intro-
duction and Reference Manual" Technical Report No.
R-2176-ARPA, The Rand Corporation, December 1977.

[STONEBRAKER, HELD, WONG]
Stonebraker, M.R.; Held, G.D.; Wong, E. "INGRES =

A relational data base system", AFIPS Proceedings
y Volume 44,

[SCHMOLZE, FRIEDELL)
Schmolze, J.; and Friedell, M. "SQUEL User
Manual", Technical Report 1in progress, Computer

Corporation of America, 575 Technology Square,
Cambridge Massachusetts 02139.

