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ABSTRACT

An untilled styrene-butadiene vulcanizate was studied under a
biaxial tensile deformation (essentially, pure shear) by stretching thin-
wall cylindrical specimens axially while internal gas pressure wusléyn-
trolled to maintain a constant outside diameter. Between 25 and 90°C,
specimens were stretched at crogshead speeds between 0,02 and 20 inches
per minute; between -40 and 2866. stress-relaxation measurements were
mudﬁ;’ From the data, at axial extension ratios A, up to about 2.5,

"'Wrrb(t) (AW,/DI;)/G(t) and W,/ G(t) (AW, d15)/G(t) were evaluated.
W is analogous to the elastic stored energy; I, = I; = A] + X7 + 1 are
the strain invariants; and G(t) is the small-deformation stress-
relaxation modulus in simple shear. It was found that W, G(t) and
W,/G(t) are time- and temperature-independent, that W, /G(t) is sensibly
constant for I, < 5.5 (i.e., \; < 2,08), and that W, /G(t) is a decreasing
function of I, = I;. From the results, uniaxial tensile data were cal-

culated and found to agree with experimental data.

\»\S; A comparison of rupture data between 25 and 9350 in biaxial and
uniaxial tension showed that the ultimate extension ratios in biaxial
and uniaxial tension are sensibly identical (at the same temperature and
extension rate) but that the uniaxial rupture stress lies between the
axial and circumferential rupture stresses under the biaxial tensile

conditions.

A discussion is also given of the large deformation and ultimate
properties of noncrystallizable vulcanizates in uniaxial tension and of

the large deformation properties of a natural rubber vulcanizate.

\
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~ SECTION I

INTRODUCTION

Studies of stress-strain behavior and ultimate properties in
uniaxial tension of gum and filled vulcanizates have been described in
previous reports.!™ In addition, a method® has been developed for
obtaining data which represent the response to a pure shear deformation,
namely, that for which A; = A3' and Az = 1.0, where the \'s are the
extension ratios in the mutually perpendicular directions. From such
tests, rupture data were obtained on a styrenc-butadiene vulcanizate
(SBR-1V) at various extension rates at temperatures between 25 and 90°C;

a preliminary discussion of these data has been given.%

This Annual Technical Report contains a discussion of: (1) biaxiel
tensile properties (specifically, response to a pure shear deformation)
of SBR-IV under stress-relaxation conditions between -40 and 2d3C, and
both biaxial and uniaxial properties under conditions of constant exten-
sion rate between 25 and QOPC; (2) rupture properties of SBR-1IV under
biaxial and uniaxial tensile conditions between 25 and 90°C; and (3)
current work directed toward obtaining stress-strain and rupture data

under equal biaxial extension (A, = Ay = i?).

Supplementary material is presented in Appendices I, II, and III.
Appendix I is a paper prepared for the Fall 1966 Meeting of the Division
of Organic Coatings and Plastics Chemistry of the American Chemical
Society. Although the paper is in part a review of past work, it con-
tains new material on factors which affect the stress-strain curve in
uniaxial tension and also it gives a comparison of the time dependence of
the ultimate properties of different types of elastomers. Appendix II
is devoted to the time and temperature dependence of stress-strain data
for an unfilled natural rubber vulcanizate. Appendix III gives the com-

pounding recipe for SBR-1V.

In Appendix I, the figures and references are numbered separately

as are the figures, tables and references in Appendix II,

P”‘

wdd




G R i bt o A s ARG 5 i e s i o i B o e

SECTION II

BIAXIAL AND UNIAXIAL TENSILE PROPERTIES

A. Theoretical Considerations

Biaxial tensile properties are currently being studied to explore
facets of nonlinear viscoelastic behavior. The approach is to obtain
data which represent the response of a typical amorphous vulcanizate to
a simple type of mechanical excitation and then to develop a concise
method for repre:znting the data. To verify the general utility of the
method for data representation, studies should be made of the response

characteristics under several types of deformation fields and under

multistep loading histories. Work along these lines is in progress.

Guidelines for data analysis are provided by Rivlin's® phenomeno-

| logical theory for the large-deformation behavior of an incompressible
i material under equilibrium test conditions. For a pure homogeneous

deformation, this theory gives:

“ Gy - 83 = 200 - 23w, + Xg%g‘wa) (1)
“ Gz - 03 = 2()\3 = )\3)(% o Xg%g‘wa) (2)

i, where the g's are the true stresses (stress based on the cross-sectional

area of the deformed specimen) in the three mutually perpendicular
directions, and the A's are the corresponding extension ratios. Also,
W, = 3W/3L, and W, = 3W/3I; where W is the stored elastic (or strain)
energy, a function of the strain invariants I, and I; which are

I, =23 +23 + )% and I; = A§\3 + 2323 + A3A\%. Since Egs. (1) and (2)
apply only to an incompressible material for which A;AgA3 = 1, only two
of the extension ratios are independent quantities. To facilitate

evaluation of W; and Wy from experimental data, Eqs. (1) and (2) can be

rearranged to give:* ]
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16 W, and W,, which in general arve functions ot 1, and 1,, arve
Known tor all attainable values of 1, and 1;, then the equilibrium
response to any type of deformation can be computed. However, to deter-
mine W, and W, completely, data must be obtained which represent the

response to a vaviety of deformation tields.

Relatively little is Kknown about the dependence of Wy and W, on
I, and 1, and on network structure.  Extensive data on a natural rubber
vulcanizate were obtained some years ago by Rivlin and Saunders.® 1n
light of these data, they suggested that W, is sensibly constant and

that W, 1s essentially independent of [, but is a decreastng function

of I, That ts, the strain enevgy W can be written:
LU | O W B 3+ D - 3) (5)
where Wy is a constant and ® is a tunction only of 1. EBquation (8) is

written in this torm because W equals zero when the matervial is (n its
undeformed state, i.e¢., when 1, I, = 3. The data of Rivlin and

% ]
Saunders” also suggest that, to a fivst approximation, W, 3w, 1, and

thus that the strain enevgy is:
"
Wa=W (I, - 3) + 3% 1n (Ig/3) (6)

where w.;‘ is a constant which may be considered to be either an adjustable
parameter or the value attained by Wy, as I, approaches 3.0, This equa-
tion for the strain energy tunction was proposed by Gent and Thomas’
largely because its mathematical simplicity expedites the solution of
various types of elastic problems., If W, is a function of 1, but is
independent of I,, then the strain energy is given by an expression

like Eq. (8) except that Wy now becomes a function of 1,.
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In addition to the results of Rivliin and Saunders, data have been
reported recently by Hutchinson, Becker, and Landel® for a natural
rubber vulcanizate and a polydimethyl siloxane vulcanizate which con-
tained 28% by weight of a reinforcing SiQy filler. Although their data
on the natural rubber vulcanizate were in essential agreement with those
of Rivlin and Saunders, Becker® has pointed out that the data cannot be
represented in a simple manner in terms of Wy and W, , especially at
relatively small deformation. For the filled polydimethyl siloxane
vulcanizate, it was found that W, is an increasing function of 1, and
is essentially independent of I,, and that W, is a decreasing function
of 1, and is also somewhat dependent on 1, . Finally, the characteristics
of the strain energy function for a polvurethane elastomer (Solithane

113) at quite small deformations have been examined by San Miguel ¢

If Eq. (5) is known to be valid, then W, and W, can be evaluated
from data which represent the behavior of the material under one type
of deformation, e.g., pure homogeneous shear for which 1, - 1,
However, tests are required which give at least two of the normal
stresses as a function of the deformation state; otherwise W, and W,
cannot be separately evaluated. To determine whether or not Eq. (8) is
valid, tests must be made which provide data over extended ranges of
I, and I;. Thus far in the present study, tests have been made only in
pure shear for which Iy = Iy = \f + Xf + 1 and in uniaxial tension for

which I; = A\ + 2P and I = X + 2\,

A pure shear deformation ts defined as that for which
g = 1, Ay = X}, and & = 0. For such a deformation, the linear theory
of elasticity shows that 0, = 4Gey, Jy = 20¢;, and thus & &y = 2.0,
where G i8 the shear modulus and €, is the Cauchy strain which equals
A\y = 1 in the limit as )\, approaches unity. For pure shear under large

deformation, Equ. (1) and (2) give:




Fy = 2(W, + W)\ - P (7)

& = 2w, +\Iwy)Q - XP) (8)
. W+DA+a) _, O -DA-a)
& 1 + Ma o (1 +\ja) ®

where o W, Wy . When €, - Xy, - 1 is substituted in Eqs. (7) and (8)

and only terms which contribute in the limit of small strain are

retained, the tollowing results: &, = B(W, + W,)e; and &, = 4(W, + Wy)e, .
This result shows that 2(W, + W,) G in the limit of zero strain.
According to Eq. (9), & .5, 2 only at small strains, except under the

special conditions that o - 1.

To illustrate the way in which d; and &, may vary with )y, we shall
assume that Wy and W, are constants and that W, W, = 0.3 Under these
conditions (chosen only for illustrative purposes), Egs. (7) and (8)

become:

ES I U B v (10)
G
o 1 % -

I ) g\E I 1
a* ifi-(l + 0.307) 1 L) (1)

To indicate the nonlinear deformation characteristics, data representing
Eqs. (10) and (11) are plotted in Fig. 1 as log o, G and log Gy G vs

log (A\y - 1). According to the preceding discussion, data at sufficiently
small deformations (linear response range) are given by

log 3, G = log (A\; - 1) + log 4 and log G, G log (A; - 1) + log 2;

these equations represent the lines of unit slope in Fig. 1 which are
separated by 0.30 logarithmic unit., Because the curves which represent
Eqs. (10) and (11) become coincident with the lines of unit slope only

at very small strains, it is apparent that G cannot normally be evaluated
reliably from the initial linear portion of plots of G, or G, vs Ay - 1.
(This situation arises because of experimental difficulties in maintaining

precisely a pure shear deformation at small extension.) For most
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FIG. 1 DEPENDENCE OF LOG #,'G AND LOG &, G ON LOG (A\=1)
PREDICTED FOR A PURE SHEAR DEFORMATION BY TH
THEORY OF FINITE ELASTICITY WHEN W, W, - 0.3
AND BY CLASSICAL LINEAR ELASTICITY

elastomers, it is expected that Wy will decrease with an increase in )\,;
thus the deviation from linearity may occur at smaller extensions and

may become more pronounced than shown in Fig. 1.

The method used in this report for analyzing time-dependent data is
based on the theory of finite equilibrium elasticity with the exception
that W, and Wy are considered to be functions of time as well as of I,
and Ig. As shown in Section II-E, either W, or Wy can be represented by
the product of a time-dependent function and a strain function. A
critical evaluation of the general utility of these relations would
require that tests be made under complex loading histories (e.g.,

muliistep relaxation or creep tests) and that a nonlinear theory be

T o




applied to determine whether the observed response can be predicted from
the data given in this report. Theories which involve a single integral
representation of time-dependent mechanical response data and which have

been applied to data in uniaxial tension are discussed in Refs, 11-13.

B. Experimental Procedures

The method* for obtaining biaxial tensile data consists of

stretching a thin-wall cylindrical specimen in the axial direction while
gas pressure inside the specimen is regulated to maintain constant its
outside diameter. The axial load and deformation are measured along
with the internal pressure. From these quantities, the three normal
stresses and the associated extension ratios on either the inside or
outside surface of the cylinder can be computed, as discussed previously.®
The extension ratios are defined by )\, = L/lg,A\; = C/(, and Ay = t/ty,
where L, C, and t are the length, circumference (at some location on or
within the specimen's wall), and thickness of the stretched specimen

and lg, G, and ty are the corresponding quantities for the unstretched
specimen. On the outside surface, A, = 1 and thus A, = Xg. Except on
the outside surface, Ay is slightly greater than unity and thus the
deformation is not pure shear, strictly speaking, although the deviation

is quite small for the specimens studied.

To characterize partially the nonlinear response characteristics of
the styrenc-butadiene gum vulcanizate SBR-IV, biaxial tensile data were ﬁ
obtained from: (1) stress-relaxation tests at -40, -30, -20, and 20°¢C
and at about 6 axial extension ratios between about 1.25 and 2.50; and
(2) tests at 5 to 8 constant extension rates at 25, 35, 50, 70, and 90’ C. 3
In addition, data in uniaxial tension were obtained at 10 extension rates 1

at the five temperatures between 25 and 90°C.

The cylindrical specimens for biaxial tests, prepared at the Air
Force Materials Laboratory, have an inside diameter of 1.50 inches, a
wall thickness of about 0.048 inch, and a 6-inch gage section, To obtain

a precise value for the extension ratio (A\;) in the axial direction,




seven fiducial marks were inscribed around the circumference of a
specimen at approximately l-inch intervals along the gage section, This
was accomplished by placing a specimen on a mandrel which was then
turned slowly on a lathe while lines were drawn with a fine ballpoint
pen. 1In addition, one or more vertical lines were drawn lengthwise
along the gage section to aid in vertical alignment of a specimen at the
beginning of a test and to facilitate obtaining precise cathetometer

readings of the fiducial lines.

Table 1 All stress-relaxation tests

DATA WHICH SHOW COMPLETENESS OF were made using only two specimens
RECOVERY OF CYLINDRICAL SPECIMEN (special tests were made on other
AFTER EACH TEST IN A SERIES

specimens). After a test, the

increased 0.235 ¢m, or 1.5%. After
the second extension, the length
was about 0.035 cm greater than prior to the second stretch; an increase
of about 0.23%. However, following each subsequent extension, the
length was nearly the same, remaining between 15.57 and 15.61 ¢m. The
stress-relaxation data did not appear to depend on the particular
specimen tested or on the number of times that a specimen had been

stretched.

specimen was allowed to recover at
Length (cm) Between
Number of Outer Bench Marks room temperature for no less than
Stretches | After Recovery Period one day before it was used in
0 15.210 another test. Subsequent to each
8 54858
1 15.545 recovery period, it was found that
2 15.570
3 15.580 the specimen had regained guite
4 15.595 closelv its original length. Data
5 15.570
6 15.570 which show that the recovery was
2 15'??0 essentially complete are in Table 1.
8 15.565
9 15.590 This table shows that, after the
]
10 158.585 specimen had recovered from the
i1 15.600
12 15.585 first stretceh, the distance between
o
i 20 030 the two extreme bench marks had
14 15.590

e




Prior to making a test, a spare specimen was mounted in the apparatus
and stretched to approximately the extension at which relaxation data
were desired. Gas pressure was admitted to the specimen and the position
of the sensing probe, used to control the pressure, was adjusted until
the outside diameter of the specimen was 1.596 inches. Although the
diameter was carefully determined with precision calipers, the measure-
ment was accurate only to about 0.01 inch, or possibly slightly more.
Greater accuracy was not possible because the specimen deformed some-
what when contacted with the calipers. In carrying out many of the
tests, the outside diameter was inadvertently set at about 1.54 inches.
Because the stress-relaxation data, especially at relatively small
extensions, are quite sensitive to the precise diameter of the specimen
during a test, data from tests made at a diameter of 1.54 inches were
corrected to a diameter of about 1.60 inches. The method for making

this correction is discussed in Section II-D.

After the sensing probe had been positioned, the spare specimen
was removed from the apparatus. Next, a test specimen was mounted and
clamped on the lower end piece and allowed to attain thermal equilibrium
in the temperature-controlled cabinet (containing a multi-pane window)
on the Instron tester. After the positions of the seven fiducial marks
were read with a cathetometer, the upper end of the specimen was clamped
and the Instron crosshead was lowered at 20 inches per minute (the
maximum possible rate) until the desired extension ratio (};) was
reached. During this extension, nitrogen gas was admitted into the
specimen; the rate was controlled by the sensing probe so that a fixed
outside diameter was maintained. While the specimen was maintained at
a fixed elongation and diameter, the axial load and the gas pressure
were recorded during a period of two to three hours. In addition, the
positions of the fiducial marks on the stretched specimen were read;

these readings along with the initial values were used to derive },.

The method for deriving A; from the cathetometer readings of the
fiducial lines on the stretched and unstretched specimen is possibly

novel and thus will be described in some detail. Suppose we designate
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the reading for each fiducial mark on the stretched specimen by (Rs)1
and on the unstretched specimen by (Ru)i' where i =1,2,3 . . . 7 (we
are here considering seven fiducial marks). To illustrate the method,
suppose we have two other readings, (Rsl) and (Ruh)’ where for the

moment these may be considered to be readings for another mark on the

specimen. We can now write:

R, - (R,
(Ru)i -*?Ru%

= A (12)

This equation, which is valid for any value of i, can be rewritten to

give:

(Rs)i

]

M(Ru)i + (RS{> - xl(Ru)o (13a)

1]

MR), +K (13b)

where K is a constant which equals (RS)° - Xl(Ru)o. Equation (13) shows
that a plot of (RS)1 vs (Ru)1 will yield a straight line whose slope is
Ay, provided the extension ratio is the same at all points on the gage
section between the first and the seventh fiducial marks. Equation (13)
also indicates that (RS)0 and (Ruha need not be known; in fact, these
quantities were introduced only to show clearly that the slope of a plot

of (Rs)1 vs (Ru)i equals ), . ‘

The above method was used to obtain highly accurate values of )\, ;
in general, the accuracy appeared to be within - 0.5%, and commonly
better. Table II provides illustrative data. Both sets of data are
represented quite precisely by the equations beneath the table. (In the
table, the subscript i has been omitted from the symbols RS and Ru.)
Data in the table show that the differences between the observed values
of RS and those computed from the equation are quite small, especially
in the case of A\, = 1.47. For A, = 2.26, the differences are somewhat
greater and the tabulated values show that the experimental values of

Rs lie along a shallow curve, instead of a straight line. Although this

10




COMPARISON OF CATHETOMETER READINGS WITH VALUES

| o

Table 11

CALCULATED FROM A LINEAR EQUATION

)\‘ - -"7 X] = 2.26
H;‘;:‘l‘_:‘“l R (em) R (cm)
. R (cm) e R, (em) .
u Obs. |cale.” | pite, Obs. | Calc. [Diff.
1 856,000 77.600 77.57 | -0.03 82,420 | 62,325 | 61.86 -0.365
2 87.635] 81.380 81,37 | -0.01 85.165 | 68.175 | 68.07 -0.105
3 Q0. 2101 85.1756 85.16 | -0.015 87.740 | 73.950 ] 73.69 -0, 26
| 92 785 | 8B.985 88.95 | -0.035 Q0,355 | 76.760 | 79.80 0,04
S 95,275 92,6565 92,61 | ~0.045 92,955 | 85.740 | 85.68 -0.06
6 97.870| 96.465 96.43 | 0. 035 95.660 | 92,105 | 91.79 -0.315
7 100.4001100,135 | 100,14 0. 005 O8. 270 | 97.830 | 97.69 -0.14
4. Computed from the equation: R 1.4707 Ru - 47.51.
-
b. Computed from the equation: R = 22,2600 Ru - 124,40,
S

behavior suggests

gage section,

This new method of determining the extension ratio appears to have

the following advantages over that previously used:* (1) nonuniform

the

that the extension is slightly nonuniform along the

variation

is itndeed quite small.

strain along the gage section can be readily detected;

fiducial marks need not be evenly spaced--a necessary condition for
application of the previous method. It is planned to apply the new

procedure to obtain iy

during tests at constant

After the

Ay had been obtained, an effective gage length Lo = (crosshead travel),

first

relaxation test

(Ay = 1) was calculated.

extension rates.,

and (2) the

from photographs made of the fiducial marks

had been perfomed and a value of

Then 1t was possible to calculate the cross-

head travel required to give approximately the extension ratio desired

in subsequent tests,

Because a specimen was remounted on the end pieces

b p !
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before each test, the actual value of Le varied slightly among tests.
‘ However, for each test the specimen was mounted and clamped in as nearly
| identical a fashion as possible, and the variation in Le among tests was
‘ accordingly small. Essentially all values obtained for Le lay between
| 6.40 and 6.80 inches; the average of numerous determinations was about
| 6.65 inches. For the earlier tests* made at constant extension rates,
A crosshead displacement was converted into )\, -1 by using an effective
b | gage length of 6.40 inches. (This value is the average of those obtained

by photographing fiducial marks during each test.) Since the specimens

for these tests may have been mounted slightly differently than for the
relaxation tests, the agreement between the Le values from the two
methods is quite good. It is concluded that Le = 6.40 inches was prob-
ably the best single value to use in reducing the constant extension

rate data.

Biaxial relaxation tests were made at six extension ratios between
about 1.25 and 2.50 at each test temperature except -40°C. At this low
temperature, data could not be obtained at A, greater than 2.0 because
of an instability in the cylindrical specimen. The instability con-
sisted of a ballooning in a gage section. The reason for this instability

is discussed briefly in Section IV-A.

Each test gave the following raw data: the force in the axial
direction sensed by the load cell of the Instron tester; the gas pressure
inside the specimen; and the extension ratio \; at which the relaxation
data were obtained. From these quantities along with the dimensions of
a specimen at 25°C, G, and G, were computed, where &, is the average
stress (based on the cross-sectional area of the deformed specimen at
the test temperature) in the axial direction and 63 is the circumferen-
tial stress evaluated on the outside surface of the specimen.* The

equations for these computations are included in the discussion

‘Actually, the circumferential stress (5;) based on deformed cross-
sectional area equals the engineering stress op since the area over
which the hoop tension acts is independent of the magnitude of Ay,
provided A\y; = 1.0.

12




previously given.* In making the calculations, it was assumed that at
25°C the inside diameter of each specimen is 1.50 inches and that the
wall thickness is 0.048 inch; the change in these dimensions with tem-
perature was accounted for by using the coefficient of thermal expansion

for SBR-1V.

As discussed in Ref. 4, G, varies slightly across the wall of the
specimen. However, G, on the outside surface differs from the average

value by 1 to 3%, depending on \; and the properties of the material.

Calculations were also made of the values of &, and G; which
develop during the extension of a specimen to the particular value of A,
at which relaxation measurements were made. For these calculations, A,
as a function of time was derived from crosshead travel and the effective
gage length was derived, as mentioned above, from cathetometer readings

on the fiducial marks on the specimen.

The experimental aspects of the tests at a series of constant
extension rates have already been described.* The data were reduced in
a manner similar to that for reducing the stress-relaxation data, except
that for each test A, was obtained from crosshead displacement using an
Le of 6.40 inches. The major difference in the calculation is that
values of 5, and G, were first obtained at a large number of values of
Ay and then by interpolation at a series of fixed values of )\;. Thus,
plots could be made of log &, vs log t and log G; vs t, where points
along single curves correspond to a constant value of )A; and where the
time t equals (Xl-l)/il; A\, is the extension rate which equals the cross-

head speed divided by Le'

[+ Uniaxial Tensile Data

Constant extension rate tests in uniaxial tension were made on rings
cut from cylindrical specimens of SBR-IV. Tests were made at crosshead
speeds between 0.02 and 20 inches per minute at 25, 35, 50, 70, and 90°C.
Other aspects of the test procedure have been discussed previously and

the rupture data have been presented.*

13
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The data were evaluated in the usual manner:™ by first preparing
the plots of log o vs log t, where o along each line corresponds to a
fixed value of A; such plots gave a series of parallel straight lines at
each temperature. As shown in Table II1I, the lines from all plots had
negative slopes, indicating that equilibrium response was not achieved

evenh at the highest test temperature.

Table 111

MOONEY-RIVLIN PARAMETERS AND MODULUS VALUES FROM
ISOCHRONAL DATA ON SBR-IV IN UNIAXIAL TENSION

o b .

Temp. C) ' 20, 2c, F(1) ® (psi)

25 0,015 34.4 60.1 257

35 0.012 36. 8 59.2 260

50 0.018 38.58 57.0 258

70 0.016 38.7 57.8 262

20 0.011 36.0(?) 59.0 267
(a) M = -(d log =, d log t), the slope of plots of log o

vs log t.

(b) F(1) - one-minute modulus from plot of o vs (A-1).

One-minute itsochronal stress-strain data were obtained from the
plots of log o vs log t, and these were used to derive the temperature-
dependent Mooney-Rivlin parameters ¢, and ;. Values of 2¢, and 2¢g at
each temperature were obtained from the intercept and slope, respectively,
of plots of (1) (A-1"%) vs 1%, where (1) is the l-minute stress value.
Both 2C, and 2C; are slightly temperature-dependent, as shown in Table
I11; 2C, increases with temperature whereas 2C; decreases. The data
become increasingly less accurate as the temperature is increased
because specimens ruptured at progressively lower elongations and thus
only limited data were available at elevated temperatures for the

Mooney-Rivlin plots,

14
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One-minute isochronal values of the stress were also used to deter-
mine the one-minute modulus F(1) from the slopes of plots of Ac(l) vs
A-1. These plots were linear at extensions below about 30%; above 30%,
the plots curved downward slightly. As shown in Table III, F(1) tends

to increase somewhat with temperature.

D. Biaxial Tensile Data

X, Time Dependence of Data

As already mentioned, tests were made at 25, 35, 50, 70, and 90°C
at 5 to 8 crosshead speeds between 0,02 and 20 inches per minute. Data
at 35°C are shown in Fig. 2 by plots of log & vs log t and log & vs
log t at values of i; between 1.1 and 2.4. Results at other temperatures
were similar. Stress-relaxation tests were made at 20, -20, -30, and
-40°C at extension ratios of about 1.25, 1.50, 1.75, .00, 2.25, and
2.50. (At -40°C, data could not be obtained at A, values of 2.25 and
2.50 because the specimen ballooned in the gage section.) For illustra-

tive purposes, data at -30°C are shown in Fig. 3.

In all instances, data like those in Figs. 2 and 3 could be repre-
sented by parallel curves; data from the constant extension rate tests
could be represented by straight lines whereas curves were required to
fit the relaxation data. Within the experimental uncertainty,

d log §,/d log t -~ -M; was found to equal d log G,/d log t - -M,, as
shown by the results in Table IV. (From the relaxation data, M; and M,
were evaluated at a time of 10 minutes.) Again within the experimental
uncertainty, M, from uniaxial tests at constant rates of extension were
found (Table IV) to equal those from the biaxial tests. However, the
relaxation rate was quite small (2 to 4% per decade of time) and thus no
firm conclusion can be drawn from this observation. Even at low temper-
atures, at which uniaxial tests were not made, the relaxation rate was
relatively small, being about 9 and 12% per decade of time at -30 and
-4090, respectively.

15
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FIG. 2 PLOTS OF LOG a, AND LOG o, vs LOG t.
Data from biaxial tests at constant extension rates

at 35°C on SBR-IV.
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FIG. 3 PLOTS OF LOG @, AND LOG @, vs LOG 1.
Data from biaxial stress-relaxation tests

at =30°C on SBR-IV,
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Table 1V

RELAXATION RATE OF SBR-IV IN BIAXIAL AND
UNIAXIAL TENSION AT DIFFERENT TEMPERATURES

Biaxial Tests Uniaxial Tests at
Temp. Constant A Constant \ Constant A,
Q
C
(a) (b)
My M My M, My
-40 0.05 0. 050
-30 0.040 0.040
-20 0.025 0.025
20 0.015 0.015
25 0.010 0.015 0.015
35 0.015 0.015 0.012
50 0.010 0.010 0.018
70 0.010 0.015 0.016
90 0.010 0.010 0.011
log &
(a) M = - QAR Ty
d log t
d log &,
SRR o - TR
(b) M d log t
a. Isochronal Data

One-minute isochronal data were read from the plots of log 61 and

log 53 vs log t, illustrated by Fig. 2, and used to prepare a plot of

Gy/65 vs Ay-1 (not shown).

read from the plots representing the stress-relaxation data.
were included on the plot of &, /5, vs Ay -1,
the relaxation tests lay somewhat above those from the constant extension
rate tests. Also, at small extensions, & /§, from the relaxation tests

increased with decreasing Ay -1 instead of continuing to decrease toward

a value of 2.0 at )\, -1, as predicted by Eq. (9).
between &, /&, from relaxation and constant rate tests was attributed to

the fact that Ay was slightly less than unity during the relaxation tests,

17

Similarly, l0-minute isochronal data were

it was found that data from

The lack of agreement

When these
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as mentioned in Section II-B. 1In fact, special tests verified that
51/53 is very sensitive to the precise value of Ay, especially at small

extensions,

The sensitivity of & and §; to the precise value of )\; at which a
test is made can be seen by employing Eqs. (1) and (2) to obtain rela-
tions between (6\)0 and (3, )o and between (oa)c and (B;)o, where (,)o
and (§y)o are values at a )\; different from unity and (6‘)c and (63)c
are values at A\y; = 1. The resulting equations (obtained by recalling

that 53 = 0 and Ay = A} on the outside of the specimen) are:

G a3 -Pa +a
C
we = o (14)
o Al - 20 a + Be
(6")c B v
- = (15)

@lo  0f -2M

wvhere a ~ W, /W,

Although Eqs. (14) and (15) can be readily solved, provided o is
known, we shall now consider that A\; is relatively close to unity and

only examine two limiting cases.

Case 1: A, > 1. In this instance, Eqs. (14) and (15) reduce to:

(G‘)c (1 +a) (16)
ik Q + 3o

.(o;._.)..(_‘ ra 17)
(&3 )o o

If Ag = 0.97 and o = 0.3, then we find that (51)c/(51)0 = 1,01 and
(dg)c/(dg)o = 1.06; this illustrates that at high extensions 3, is rela-

tively insensitive to )\; whereas G; is still quite dependent on \g +

18
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Case 2: g << €, ~ 0.2, where €3 = A3-1 and €; = A;-1. Under
1 these conditions, Egqs. (14) and (15) give:

(€2)0 ~ sz 2ep0
- 1 + - & 1 4+ —s
( 2€, €3) ( 1 +a) o

()
) 1
© )f ek s (19)
.‘\v Lj 1 *‘ -~

Again let us suppose that €¢; = -0.03 (A\; = 0.97) and @ = 0.3 and then
consider the situation when €, = 0.10 (A; = 1.10). Under these condi-
tions, (;l)c,(ﬁl)u - 1.15 and (Fr)cf(ﬁa)n = 2.5. This example illus-
trates that, at small values of Ay, &, is strongly dependent on )z but

that &, is only moderately dependent on A, .

In carrying out experiments on the cylindrical specimens, it is i
quite likely, even when extreme precautions are taken, that A, will lie
somewhere between 0.995 and 1.005; it is not unlikely in certain
instances that the uncertainty in A, will be somewhat larger, e.g.,
¥ 1%. However, if A, = 0.995 (e; = -0.003), then G2)/@a)o = 1.11
at Ay = 1.10. This result illustrates the great difficulty in obtaining

highly accurate values of &, at small values of },.

In conducting the relaxation tests, the outside diameter of the
cylindrical specimens was inadvertently regulated at values close to
1.54 inches instead of at the desired value 1.596 inches. During any
single test, however, the diameter undoubtedly varied by less than 0.01
inch. Thus Eqs. (14) and (15) were employed to correct the observed

values of §; and 5, to those that correspond to Ay = 1.0.

To make the correction, values of Wy and W,, and thus of @, were
derived from the constant extension rate data. (It is believed that A,
remained quite close to unity during these tests.) The values of q,

which depend on A; but which need not be accurately known, were used to
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correct the observed 10-minute isochronal values of 61 and 63. according

to Eqs. (14) and (15); the calculation was made for several values of )‘a'

Then, the ratio 61 /63, from corrected data, was compared with data from
the constant extension rate tests. This comparison showed that the best
value to assume for Xa was 0,.975; this value was used in correcting the

data.

3. Determination of Strain Functions

Ten-minute isochronal data, corrected to )\3 = 1.0, were used along
with l-minute isochronal data from the constant extension rate tests to
prepare plots of log §, and log G, vs log ()\1-1). Plots representing

the relaxation data are shown in Fig. 4.

R T ¥ T
10-MINUTE DATA FROM RELAXATION TESTS
35} IN BIAXIAL TENSION (X, =100)
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FIG. 4 TEN-MINUTE ISOCHRONAL STRESS-STRAIN DATA
FROM BIAXIAL STRESS—-RELAXATION TESTS
AT TEMPERATURES BETWEEN 20 AND -40°C
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As discussed in Section 1I-B and illustrated in Fig. 1, an accurate
value of the small deformation shear modulus cannot be obtained from
curves like those shown in Fig. 4. Thus, values of F(1)/3, which equals
the shear modulus, from the uniaxtal tensile data (Table 111) were used
in reducing the biaxial data from the constant extension rate tests.

The data are shown in Fig. 5 by plots of log 361(1),« F(1) and

log 36':(1)‘ F(1) vs log ()\1—1). The dotted lines, which merge with the
solid curves at small extensions, have a unit slope, are separated by
0,30 logarithmic unit (a factor of two), and at log (A, -1) = 0 they give

33, (1) /FQ1) 4.0 and 35, (1) /F(1) 2.0. 1In other words, they represent

1.0 T T — T T ] T
SBR - IY
(- MINUTE DATA FROM TESTS AT 7
CONSTANT EXTENSION RATES IN f
BIAXIAL TENSION (X, =10) /
() {
& PN 3T
= F()
b |u
- ’f 33,(1) -
o -
F
. 7 s
4 0 7/ { -
s iy 1~
%= / y
b o /?’ P
(2]
A 28" tewn —EW/S
° °C ' psi Kg/em?
-05 O 25 857 603
® 35 867 6.10
A 50 860 605
B A 70 873 6.4
UNIT/ 0 90 890 626
SLOPE | | |
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18 -10 -0.5 0 08

log (X, 1)
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FIG. 5 PLOTS OF LOG 37,(1) F(1) AND LOG 3a,(1) F(1) vs LOG (A, =1)
PROVIDED BY 1-MINUTE ISOCHRONAL DATA FROM BIAXIAL TESTS
AT CONSTANT EXTENSION RATES AT TEMPERATURES BETWEEN
25 AND 90°C. The quantity F(1) is the l=minute constant extension rate
modulus from uniaxial tensile tests.

21




the equations @

= JG(Al—l) and 65 = 2G(A,-1). Because these equations

1
provided by classical elasticity must hold in the limit of zero strain,

the solid curves (representing experimental data) must approach the
dotted lines at small strains. Figure 5 shows that the experimental
data conform to this expectation. In addition, the figure shows that
data at the five temperatures between 25 and 90°¢C superpose to define
quite precisely the individual curves. It perhaps should be explicitly
pointed out that data at times other than 1 minute would yield curves
identical to those in Fig. 5; this follows because the relaxation rate,
as given by d log o/d log t, in uniaxial tension is the same as for the
g. and 53 data from the biaxial tests and because the relaxation rate in

1
each instance is independent of the magnitude of A,.

To reduce the stress-relaxation data, the plots (Fig. 4) of
log 51(10) vs log (A,-1) were shifted along the ordinate to effect super-
position; similarly, the log 52(10) vs log (A;-1) curves were superposed.
The shift distances give relative values of the 10-minute shear modulus;
the relative values from superposing the o, (10) data were sensibly
identical with those from superposing the 53(10) data. To obtain the
shear modulus at 20°C, the curves representing isochronal data at 20" ¢
were shifted vertically to superpose with those in Fig. 5. (Again, the
superposition of the &, and &§; data gave the same shift distances.) From
the modulus at 25°C [specificully, from F(1)/3] and the shift distance,
the 10-minute relaxation shear modulus, G(10), was nbtainod* at 20“C;
values of G(10) at lower temperatures were then derived from the rela-

tive values of G(10).

*Because F(1)/3 is the shear modulus from constant extension rate tests,
it should have been converted, strictly speaking, into G(1), the 1-
minute stress-relaxation modulus, before deriving G(10) at 20°C. The
conversion equation!* is G(1) = [F(1)/3](1 + d log F(1)/d log t];
since d log F(l1)/d log t is about -0.015, G(1) and F(1)/3 differ by
only 1.5%, a small difference which can be neglected.




Plots were next prepared of log &, (10)/G(10)
vs log (A, -1) and these are shown in Fig. 6. The

have been drawn to be

identical with those in Fig.

and log d,(10)/G(10)
solid curves, which

5, represent the

stress-relaxation data between 20 and -40'C quite precisely. The tabu-

lations of modulus values in Figs. 5 and 6 show that G(10) at 20°C is
74.6 psi and that F(1),3 at 256 C 1s 85.7 psi. This difference undoubtedly
arises because the specimens for the relaxation tests were prepared at

a later date than those trom the constant extension rate tests and pro-

bably were not cured to the same extent.
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FIG.6 PLOTS OF LOG ,(10)'G(10) AND LOG 5,(10) G(10) vs LOG (A=1)
PROVIDED BY 10-MINUTE ISOCHRONAL DATA FROM BIAXIAL
STRESS-RELAXATION TESTS AT TEMPERATURES BETWEEN
20 AND -40°C. The quantity G(10) is the 10=-minute stress=-relaxation
modulus in shear. The curves are identical to those in Fig. S.
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Because all biaxial data between -40 and 90°C can be represented by
two curves (those in Fig. 5 are identical with those in Fig. 6), it

follows that the data are given by:
Gy (A, t,T) = 4G(t, T (A,) (20)

53()\1.(.1‘) R 2G(t)T)rg(k1) (21)
where G(t,T) is the shear modulus at time t and temperature T, and
My (Ay) and T (A) are different functions of )\, ; both of these strain

functions reduce to (A;-1) in the limit of zero strain,

E. Evaluation of W, and W,

The quantities W, and Wy can be evaluated from the biaxial data in
Figs. 5 and 6 by using Eqs. (3) and (4), upon recalling that &5 = 0,
Ay = 1.0, and A3 = A}. As shown above, the biaxial data are represented
by Eqs. (20) and (21). Upon substituting these expressions for &, and

*
3z into Eqs. (3) and (4), the following equations result:
2W, (A, 1) = G(OX, () (22)

2W, (A, 1) = GO\ (L) (23)

where Wy (A, t) and Wy (A\;,t) are, in general, functlons" of A\, and t;
X1 (A1) and Xz (A,) are different functions of Ay. From the discussion
in Section II-A, it follows that Wy and W, are strain-independent at
sufficiently small strains and thus 2[W, (1) + W,(t)] = G(t) under such

conditions,

*
It is here assumed that time-temperature superposition is valid and
thus t in Eqs. (22) and (23) should be considered to be t/aT, where
“T is the time-temperature shift factor.

ok
More precisely, W, and Wy are functions of I and I; as well as of time.
In the present case, however, I, = Iy = \{ +X¥ + 1.
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To evaluate 2W; (A, 1) 'G(t) and 2W; (Ay,t)/G(t) (these quantities
ecqual the strain tunctions X\, (Ay) and X, (};), respectively), Egqs. (3)

and (1) can be written as follows:

[ A9 Gq 2W,
= - = —— (A} - 1) (24)
AL <5 3 - f
y Og oy 2w,
S . = — (] - D (25)
! <2 2 -2

1 - A} A - XY G

where for simplicity the dependence of G on t, and of Wy and W, on ),

and t 1s not specifically indicated.

The left side of Eq. (24) and also of Eq. (25) was computed from
data read from the curves in Fig. 6 (identical to those in Fig. 5) and
these quantities are plotted against Xi-l in Figs. 7 and 8. Figure 7
shows that 2W; /G = 0.625 for values of Ay up to about 2.0 (I = I, = 5.25);
thereafter it decreases somewhat with increasing )\, . Figure 8 shows
that 2W, G decrecases continually with increasing A, . The dotted line
was drawn having a slope of 0.357; this slope, which equals the initial
value of 2W,, G, was selected to satisfy the relation 2W, /G + 2W,,G = 1,

where 2W, G = 0.625, as shown in Fig. 7.

Figure 9 shows 2W, G, 2W, G, and W, /W, plotted against I,-3 = I,-3.
The values of 2W, /G and 2W, /G were obtained by reading ordinate values
from the curves in Figs. 7 and 8 and dividing these by the corresponding
values of A\§-1. The resulting data along with Wy /W, are tabulated in
Table V. The dependence of 2W,,/G on I,-3 = I,-3 is qualitatively similar
to the dependence of 2W, on I,-3 found by Rivlin and Saunders® for a
natural rubber vulcanizate. (From their extensive study, they suggested
that W, is a function only of I, and that W; is a constant.) In the
present study, however, data were obtained only in pure shear for which
I, = I, and thus it is not possible to state whether 2W,/G is independent
of I, and likewise whether 2W, /G is independent of I;. The data do indi-

cate, however, that 2W,/G decreases at values of I, = I greater than about

5.3.
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FIG.7 DATA FROM FIGS. S AND 6 PLOTTED TO EVALUATE 2W, G
ACCORDING TO EQ. (29
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FIG.9 PLOTS OF 2W,'G, W, W,, AND 2W, G vs 1,-3 - 1,-3

(Quantities evaluated from curves in Figs. 7 and 8.)
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FIG. 10 PLOT OF @)@ vs X\=1. Open circles represent data from curves

in Figs. 5 and 6 and solid circles represent those obtained by inserting
valves of 2W, G and 2W, G in Eq. ().
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Table V
VALUES OF 2W, /G, 2W,/G, AND W /W,

PO | 2W, /G | 2w, /G W /Wy

0 0 0.625 | 0.375 0.600
0.2 0.134 | 0.625 | 0.359 0.574
0.3 0.282 | 0.625 | 0.326 0.522
0.4 0.470 | 0.625 | 0.297 0.475
0.5 0.694 | 0.625 | 0.278 0.445
0.6 0.951 | 0.625 | 0.258 0.413
0.7 1.236 | 0.625 | 0.240 0.384
0.8 1.549 | 0.625 | 0.222 0.355
0.9 1.887 | 0.625 | 0.207 0.331
1.0 2.250 | 0.625 | 0.193 0.310
i3 3.047 | 0.615 | 0.173 0.281
1.4 3.934 | 0.597 | 0.156 0.262
1.6 4.908 | 0.578 | 0.142 0.245

Data represented by the curves in Fig. 6 were used to obtain g, /0,
and selected values are shown by the open circles in Fig. 10. To check
for internal consistency, values of 2W, /G and 2W;/G from Fig. 9 were
used to calculate G, /5, according to Eq. (9). The results, shown by
solid circles in Fig. 10, are in close agreement with those from the
smoothed experimental data. It is of interest that the data are repre-

sented by the equation &,/G, = 1.18(A;-1) + 1.74 for (A;-1) > 0.5.

As Gent and Thomas’ have proposed Eq. (6) to represent approximately
the strain energy function, it was of interest to determine how closely
the present data conform to this equation. If Eq. (6) is valid, 2W;
should be inversely proportional to I;. Figure 11 shows that the pre-
sent data are represented reasonably well by 2W,/G = 1.04/I;. Although
this equation is possibly invalid at Iz'> 0.3 (), < 1.33), the deviation

from the experimental results is not greater than about 7%. Also, for
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Ay = 1.33, the values of 2W,,/G are less accurate than at larger exten-
sions. Thus, if we assume as a first approximation that 2W, is a con-
stant and that 2W, is dependent only on I, the strain energy function

is represented approximately by:

W = GL0.3125(1,-3) + 0.52 1n(I,/3)] (26)

As I, and I, approach 3, Eq. (26) should approach W = 2G(},-1)%,
the equation given by linear theory. Actually, Eq. (26) approaches
W = 1.943 G()\,-1)° in the limit of zero strain. This limiting form
results because the data in Fig. 11 were fitted by a line of slope 1.04
instead of (3 x 0.375) = 1.125. However, the former slope gives the
best over-all fit to the data, although it gives a somewhat incorrect

result in the limit of zero strain.
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FIG. 11 PLOT OF 2W,/G vs 1/I,
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K. Comparison of Calculated and Experimental Untaxial Tensile Data

From the uniaxial tensile data at five temperatures botween 256 and

o’ C, log 3Aa/F(1) was derived and representative values «: each temper-

ature are shown by the points in Fig., 12, Within experimental error,

A F(1) i temperature-independent,

. The values of 2W, /G and 2W,, G, given in Table V, were used in cal-
culating uniaxial data and the results are shown by the solid curve in
Fig, 12, The calculated values are somewhat less than the experimental

values, although the greatest difference is less than 10%.
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FIG. 12 UNIAXIAL TENSILE DATA (points) FROM TESTS AT CONSTANT
EXTENSION RATES BETWEEN 25 AND 90°C COMPARED WITH
RESULTS (solid curve) CALCULATED FROM BIAXIAL DATA




Equation (26) gives the ftollowing equation for stress-strain data

tn untaxial tension:

3
= = 0.625(*-\"Y) + 1.04 O -1) 27)

23 +1

Within the range 1.2 = A = 2.2, values of \o/G from Eq. (27) agreed very
closely (becween about 0 and 2%) with those derived from the tabulated
values of 2W, /G and 2W,/G. For 2.2 < \ T 2.6, the agreement was some-
what poorer (deviations up to 6%). However, this poorer agreement arises
because Eq. (27) is based on the assumption that 2W, /G is a constant
whereas for A > 2.0, 2W,;/G decreases somewhat with increasing A, as

indicated in Table V.

G. Attempt to Obtain Equilibrium Force-Temperature Data Under Biaxial
Conditions

Attempts were made to determine the temperature dependence of &
and &, under equilibrium conditions at a series of axial extension ratios
for Ay, = 1. 1In principle, such data can be obtained by extending the
cylindrical specimen to the desired value of Ay, waiting until equilib-
rium is established, and then determining the stresses at a series of
temperatures., (Once mechanical equilibrium 1s established, data can be
obtained at other temperatures as soon as thermal equilibrium is estab-
lished.) In practice, more than one day is required for SBR-IV to attain
mechanical equilibrium at room temperature. During this period, the
drift in the load cell and pressure transducer may be appreciable. Thus,
equilibrium must be hastened by exposing a specimen to a higher temper-

ature.

Two tests were made on SBR-IV specimens at A; = 1.0 and Ay, > 1.25.
For each test, the stretched specimen was initially held at 60°C ftor
about 2 hours; it is believed that equilibrium was achieved during this
period. In the first test, the temperature was then decreased in incre-
ments of about 10°C to -40°C, and then the temperature was similarly

increased. Thirty to forty minutes were allowed at each temperature to
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establish thermal equilibrium, after which the axial force and the inter-

nal pressure were noted. Data obtained during the decrease and increase

in temperature were in excellent agreement. However, during this test,
no corrvection was made for the thermal contraction of apparatus components;
thus, the distance between bench marks on the gage section of the specimen

changed slightly with temperature,

In the second test, the crosshead of the Instron was adjusted at
each temperature to maintain a constant distance between bench marks on
the specimen, However, data obtained during the stepwise decrease in
temperature were slightly higher than during the stepwise increase; the
reason for this discrepancy is not known., Also, the axial force was ki
lower by several percent at -40"C than observed in the first test; this
: difference resulted because the length of the specimen was maintained
7 constant during the second test whereas it decreased slightly with
decreasing temperature during the first test. Next, an attempt was made
to obtain data at A\, > 1.50. However, after about 30 minutes at 50°C
and before equilibrium was attained, the specimen ruptured. Another
specimen was stretched to a A; = 1.50 and then heated to 40°C. In this
instance, the specimen ruptured after about 2.5 hours, again betore
equilibrium was established. It thus appears that equilibrium force- a
temperature data cannot be obtained on SBR-IV over an appreciable exten-
sion range owing to the propensity of specimens to rupture before equi-

librium is attained.

Although precise data were not obtained at A = 1.25, it is possible
that the experimental procedure could be refined to give highly reliable i

data at this extension; a special effort would be required to obtain é

\g = 1.0 precisely. (See Section II-D-2.) However, because of the
desirability of obtaining data at a series of extensions, further work {
may possibly be done on a cylindrical specimen of either a natural rubber 3
or silicone vulcanizate. The natural rubber vulcanizate should not rup-
ture under the anticipated test conditions. Although the silicone vul-
canizate may rupture at rather low extensions, equilibrium may be

sensibly established prior to rupture and thus the desired data can

possibly be obtained.
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SECTION II1

RUPTURE OF SBR-1V UNDER BIAXIAL AND UNIAXIAL TENSILE CONDITIONS

Figure 13, reproduced from the previous annual Technical Report,*
shows rupture data from the biaxial tests on temperature-reduced plots ;
of log 2983,/ T\, log 298G,,/T, and log Ay, vs log X‘uT, where the
subscript "d" indicates rupture. (The quantity &,p/A;p is the rupture
stress, in the axial direction, based on the cross-sectional area of the
unstressed specimen.  For the circumferential stress ng, values based
on the cross-sectional area of the stressed specimen are the same as
those based on the deformed area.) Experimentally determined values of
“T gave, within experimental uncertainty, a straight line on a plot of
log Q. Vs 1, T; the slope corresponded to an activation energy of 35 kcal.
Values of log uT from this plot were used to prepare reduced curves
(Fig. 14) of the rupture data from uniaxial tests. (Individual values

of the data are tabulated in Appendix IV of Ref. 1.)

Figure 15 shows a comparison of the uniaxial and biaxial rupture
data. (The stress Oqp is based on the cross-sectional area of unstressed
specimens.) This figure shows that, within the experimental uncertainty,
Aip tS§ the same in both uniaxial and biaxial tension. If it is assumed
that the three-chain network model discussed by Treloar!™ is valid, then |

it might possibly be expected that A;p will be the same under uniaxial

and biaxial conditions. More precisely, the model predicts that Xm(m)
will be the same under both test conditions. (The quantity A () is

discussed in Appendix 1.)

PO TE TR -
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FIG. 13 RUPTURE DATA FROM BIAXIAL TESTS AT CONSTANT
EXTENSION RATES ON SBR-IV BETWEEN 25 AND 90°C.
Symbols and ay values are same as used in Fig. 14. (Flags
designate extension rate according to code shown in Fig. 9

298 7,

o

of Ref. 4.)
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SECTION IV

BIAXIAL TENSILE PROPERTIES UNDER VARIOUS
TYPES OF DEFORMATION FIRLDS

A, Tests on Cylindrical Specimens

The biaxial tensile data presented in this report were obtained
under a deformation field which is essentially pure shear. Data repre-
senting the properties under other deformation states can possibly be
obtained by testing the thin-wall cylindrical specimens in different
ways. For example, stress-relaxation tests can be made by mounting the
ends of a specimen over end pieces whose diameter is greater than that
of the unstressed specimen; the specimen can then be stretched in the
axial direction while the internal gas pressure is regulated to maintain
the diameter of the specimen equal to that of the end pieces. After the
desired extension is reached, the decrease in the axial load and in the
pressure required to maintain a fixed diameter can be monitored. Thus,
it may be possible to obtain data under deformation fields for which
A2 > 1.0.

Several preliminary tests were carried out following the procedure
outlined above. For the tests, the end pieces had the diameter required
to give a A\; = 1.50. At room temperature, the specimen was pressurized
so that the specimen wall was parallel with the outside surfaces of the
upper and lower end pieces and the specimen was stretched axially to a
Ay ¥ 1.25. However, when A, was subsequently increased to about 1.50,
the walls began to balloon, the size of the balloon increasing slowly
with time. Next, a similar test at A\; = 1.50 was made at -20°C. At
this temperature, the specimen ballooned almost to rupture as soon as it
was stretched axially. A similar type of instability was observed during
tests at -40°C at A\; = 1.0 when A\, was greater than about 2.0.

The reason for the instability (ballooning in the gage section of a
specimen) has been mentioned to us by Professor A. N. Gent, who has

studied similar problems. For certain values of W, and Wy, a plot of
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the pressure (P) inside the specimen against A; will give a curve having
a maximum and probably also a minimum at an extension greater than that
at which the maximum occurs. This behavior signifies that A; is a multi-
valued function of P. Under such conditions, dimensional instability is
expected because the specimen will tend to develop two extensions commen-
surate with the same internal pressure. In practice, factors other than
W, and W, may affect the conditions for instability, e.g., end-effects
and the nonhomogeneous stress across the wall of the cylinder possibly

need to be considered.

To obtain a general idea about conditions that may be unstable, we
assumed a Mooney-type of strain energy function and computed P vs ),
curves for different values of C,/C, and for A, = 1.0. When C,/C, is
greater than about 0.07, no maximum occurs, Based on studies * of the
temperature dependence of C; and C; in uniaxial tension, it is expected
that C,/Cy will decrease rapidly below some low temperature because of
a rapid increase in C,. Thus, for the SBR-1IV specimens, the increased
tendency for instability at -40°C may result from an increased Wy. (In
the present context, W, and W, are identical to C;, and C,.) It is
planned to carry out additional calculations of this type and especially

to consider the conditions that may give instability when Ao > 1.0.

B. Apparatus for Tests in Equal Biaxial Tension

An objective of the present study is to determine the stress-strain
characteristics and ultimate properties under different deformation
fields. Experimental methods to obtain both types of data are difficult
because the test specimen must be so designed that rupture does not
occur near the edges where the specimen is gripped. (As discussed above,
a thin-wall cylindrical specimen often cannot be tested when Ay > 1
because instability may develop in the gage section when the specimen is
stretched in the axial direction.) One method which can be used to
obtain both stress-strain and rupture data in equal biaxial tension

Ay = kg = ﬁ?) involves the inflation of a thin rubber sheet into a
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balloon. To obtain data under such conditions, an apparatus, called a

bubble tester, is being assembled.

Although several investigators®'¥®~18 paye obtained data by inflating
either a rubber balloon or a thin rubber sheet, only a few comments about
these studies will be made at this time. Treloar!® studied in consider-
able detail the uniformity of the deformation over the surface of the
bubble and found that the nonuniformity increased progressively with the
distance away from the pole; the nonuniformity was particularly pro-
nounced at high extensions. However, near the pole the deformation is
uniform and the degree of deviation from uniformity depends on the
particular form of the elastic strain energy, as shown by the theoretical

analysis of Adkins and Rivlin.'®

Some rupture data have been reported®'” and the macroscopic rup-
ture mechanism has been considered by Treloar'®? who observed that a
specimen normally fragmented near the pole to give a large number of
petal-shaped pieces. Because the bubble is thinnest at the poles, rup-
ture will begin at or near this point and will be followed'®® by cleavage
of the sheet along radial lines which are parallel to the orientation
direction of the network chains. For the several rubbers tested by
Treloar, all gave a number of petals upon rupture, except for an SBR
loaded with clay. Because a black-loaded SBR gave petals, Treloar con-
cluded that crystallization has "no important bearing on the phenomenon,

as SBR does not crystallize under any conditions."

The apparatus for the proposed study is shown in Fig. 16 and a
schematic diagram is in Fig. 17. For a test, a rubber sheet is c¢lamped
between two circular metal rings (A) 4.0 inches in diameter; it is
inflated into a bubble (B) by gas pressure. The height of the bubble as
a function of time is controlled through the strain-gage sensor (C) and
the associated servo-mechanism. To determine the radius of curvature
and the extension ratio in the vicinity of the bubble's pole, concentric
circles and radial marks will be inscribed on the undeformed sheet. The

displacements of these fiducial lines will be determined, probably by a




FIG. 16 PHOTOGRAFH OF APPARATUS (bubble tester) FOR STUDYING BEHAVIOR
UNDER EQUAL BIANIAL TENSION
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FIG. 17 SCHEMATIC DIAGRAM OF APPARATUS (bubble tester) FOR STUDYING
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photographic method, and the resulting data will be used in deriving
the radius of curvature and the extension ratio. From the observed gas
pressure, the initial thickness of the rubber sheet, and the radius of

curvature we can derive the stress at the pole.

To make a relaxation test, the sensing device is locked in some pre-
determined position and gas pressure applied to inflate the rubber sheet
into a bubble of the desired height. When the size of the bubble is
sufficient to contact the sensing device, the resulting electrical output

from the device activates the solenoid valves (J and K) to regulate the

gas pressure to maintain a constant bubble height. During the ensuing
stress relaxation, the pressure inside the bubble is monitored. When it
is desired that the height of the bubble change continuously during a

test, the sensing arm activates the servo-tracking device that provides

a record of the height of the bubble as a function of time. It is planned,
at least for the first tests, to control the height of the bubble as &
function of time by manually regulating the pressure. For tests under a
constant pressure, the servo-tracking device will give a time record of
the bubble's height and photographic data will provide the extension ratio

and the radius of curvature as a function of time.

To complete the apparatus, it will be necessary to develor a photo-
graphic procedure to determine the displacement of fiducial marks. In
addition, a temperature-controlled cabinet, equipped with windows through
which photographs can be taken, is needed. Work along these lines is in

progress.

To date, only exploratory tests have been made to evaluate the
operation of the servo-mechanism, and to verify that the clamping device
will hold a specimen tightly and that rupture will occur near the pole of
the balloon. For the latter, several sheets of natural rubber and one of
a silicone rubber were inflated until rupture occurred. In each instance,
rupture occurred in the vicinity of the pole. The natural rubber sheets
fragmented explosively into numerous relatively small pieces, but the

silicone sheet ruptured rather quietly to give a single, relatively

11




small fragment. Interestingly, the sizes of the silicone and natural
rubber balloons at the instant of rupture were not too different,
although the ultimate pressure inside the natural rubber balloon was

severalfold greater.
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SECTION V

SUMMARY

Stress-strain characteristics of an unfilled styrene-butadiene
vulcanizate (SBR-1V) were determined under one type of biaxial tensile
deformation at temperatures between -40 and 90°C and also under uniaxial
tensile conditions between 25 and 90°C. The biaxial tensile data, which
represent the response to essentially a pure shear deformation (i.e.,

As = 1.0 and \, = )\}), were obtained by stretching thin-wall cylindrical
specimens in the axial direction while internal gas pressure was con-
trolled to maintain a constant outside diameter. Between 25 and QOJC,
tests were made at constant extension rates (crosshead speeds between
0.02 and 20 inches per minute) whereas between -40 and 20°C, stress
relaxation tests were made at axial extension ratios (xl) up to 2.5.
Uniaxial tensile data were obtained by testing rings, cut from the thin-
wall cylindrical specimens, at crosshead speeds between 0.02 and 20

inches per minute.

The biaxial data can be represented by:

\:"-1 (xlut) = 4G(t)X1 ()\x)

G2 Ay, 1) 26(t)X (1, )

1}

where 5y (A, ,t) and 5;(},,t) are the stresses (each a function of )\, and
the time t) in the axial and circumferential directions, respectively;
G(t) is the small-deformation stress-relaxation modulus in shear; and

X; (X;) and X;(X;) are functions only of \,. These functions become
equal to \;-1 at sufficiently small deformations; under such conditions,
the above equations represent the stress-relaxation characteristics of a

linear viscoelastic material.

From the data, obtained at values of )\, up to about 2.5,
W, /G(t) = (aW/3I,)/G(t) and Wp/G(t) = (J3W/3I,)/G(t) were evaluated. The

quantity W, which is analogous to the elastic stored energy used in the
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theory of finite equilibrium elasticity, is a function of t and the
strain invarients I, = A} + A3 + A} and I, = A§A8 + A§A8 + A2MR. For

the biaxial deformation field used in the present study,

I, = I; = )\] + Xf + 1. In accordance with the above equations for

Fy Ny, t) and 6, (A, t), it was found that W, /G(t) and W,/G(t) are time-
and temperature-independent, that W, /G(t) is sensibly constant for

I, = 5.5 (.e., 1 = )\ = 2.08), and that W,/G(t) is a decreasing function
of I, = I,. Within the range 1 = Ay = 2.5, the ratio W,/W, decreased
trom about 0.60 to 0.25. Over the same range of Ay, the ratio &, /&,
increased from 2.0 (the value given by classical elasticity theory) to

about 3.5; for Ay > 1.6 the stress ratio is given by: &/, = 1.18 A\ + 0,66,

To a reasonably good approximation, W(I,,I.,t) can be represented

Wil » 1o

2

t) = G(t)[0.3125(1,-3) + 0.52 1n (I,/3)]

This equation appears to be valid approximately under the conditions for

which Wy /G(t) is a constant,

From the determined values of W; and W., as well as from the above
equation for W(I,,I,,t), uniaxial tensile data were calculated and found

to agree quite closely with experimental data,

A comparison was made of rupture data obtained between 25 and 90"¢C
in biaxial and uniaxial tension, Within the experimental uncertainty,
the ultimate extension ratios in biaxial and uniaxial tension arve
identical at the same temperature and extension rate. However, the
rupture stress in untaxial tension lies between the axial and circum-

ferential rupture stresses observed under biaxial tensile conditions,

An attempt was made to procure data by stretching the thin-wall
specimens while the circumferential extension ratifo )\, was maintained
constant at a value of 1.5, Under such conditions, the specimens commonly
ballooned in the gage section. This type of instability, which was also

observed at -40°C when Ay = 1.0 and A\, was greater than about 2.0, occurs
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APPENDIX 1

DEFORMATION AND FAILURE OF NONRIGID POLYMERIC MATERIALS

This appendix, an invited paper for presentation before the
Division of Organic Coatings and Plastic Chemistry of the American
Chemical Society at the Fall 1966 Meeting, has been preprinted by the
Division in their preprint series Volume 26, Number 2, September 1966.
Although portions of the paper are of a review nature (as requested by
the organizers of the session at which the paper will be presented),
other portions cover new work. The discussion Uniaxial Tensile Proper-
ties of Noncrystallizable Elastomers is the same as that submitted for
the Informal Discussion Meeting on Nonlinear Viscoelastic Response of
Polymeric Materials held at the Air Force Materials Laboratory,
Wright-Patterson AFB, Ohic, on July 26-27, 1966.




APPENDIX I
DEFORMATION AND FAILURE OF NONRIGID POLYMERIC MATERIALS

Thor L. Smith
Stanford Research Institute
Menlo Park, California

INTRODUCTION

In many technological applications, a polymer experiences mechanical
and thermal stresses which may cause either undue dimensional changes or
rupture. To select the most reliable polymer for a specific need and to
make an optimum engineering design, two types of information are needed.
The first is the stress-strain-time-temperature relationships for the
polymer, i.e.,constitutive equations which represent the response char-
acteristics of the material under the anticipated environmental condi-
tions. (If the material is isotropic and is subjected to small
deformations, constitutive equations can be formulated from experimental
data in terms of the theory of linear viscoelasticity or, in some
instances, of classical elasticity.) The second need is adequate
failure criteria, i.e., a specification of the conditions under which
rupture--or other undesirable instability--will occur. Under service
conditions, the stress throughout a polymeric component is normally
nonhomogeneous, giving regions of stress concentration in which rupture
tends to occur under the existing combined (multiaxial) stress state.
Thus, to predict failure, rupture data from tests under various multi-
axial stress states are needed. Although few data of this type now
exist, a significant amount of work is currently being directed toward
establishing failure criteria and constitutive equations for representing

response at deformations up to rupture.

To a high degree, the mechanical properties of a polymer are
determined by its physical state. A polymer may be either amorphorous
or semicrystalline, depending on its tendency to crystallize, on the

temperature, and on its thermal and mechanical history. Above the glass
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temperature, Tg. of an amorphous polymer, or above the melting point of
a crystalline polymer, a crosslinked polymer is a rubberlike solid, and
a noncrosslinked polymer is a liquid. (More precisely, the latter is an
elastic liquid because under an applied stress, energy is both stored
and dissipated.) The glass temperature (defined by the break-point in a
plot of volume against temperature) is not a thermodynamic transition
and is somewhat dependent on the cooling rate; a tenfold reduction in
cooling rate decreases Tg by roughly 3°C. In the glassy state, the
specific volume is a function of thermal history. In turn, thermal
history affects to some degree the mechanical properties. Also, Tg as
well as mechanical properties are sensitive to traces of soluble

foreign materials,

The present discussion centers around the uniaxial tensile proper-
ties of amorphous polymers at temperatures above Tg' We first consider
certain rheological properties of idealized materihls and then the large
deformation and ultimate (rupture) properties of elastomers in uniaxial
tension. Although emphasis is placed on conventional elastomers, most
of the principles outlined are applicable to highly crosslinked resins

and noncrosslinked polymers at temperatures above Tg.

RHEOLOGICAL PROPERTIES OF MATERIALS WHICH
EXHIBIT LINEAR RESPONSE

Rheology is a branch of mechanics devoted to studies of those
properties of materials which determine their response to mechanical
force. Commonly, Newtonian fluids and Hookean solids are excluded,
because studies of such materials more properly lie in the fields of
hydrodynamics and elasticity. Thus, rheology is concerned primarily
with materials whose response characteristics depend on the stress-
strain history, in addition to the instantaneous states of stress,

deformation, and deformation rate.

To illustrate certain types of behavior, let us consider three

idealized materials: a Hookean solid, a Newtonian liquid, and a linear
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viscoelastic material. Further, let us suppose that each is subjected to
a uniaxial tensile deformation which increases linearly with time, i.e.,
¢ = €t, where ¢, €, and t are strain, strain rate, and time, respectively.
(This strain-time history is considered because the data discussed sub-
sequently were obtained under such conditions.) For the three types of

materials, we obtain:

Hookean Solid o = B¢ or %'= E = Et°
p . : o o

Newtonian Liquid o = ﬂte or - ﬂtt

Linear Viscoelastic Material % = F(t)

where E and ﬂt are the tensile modulus and tensile viscosity, both of
which are independent of the magnitude of the deformation. The ratio
o/€ 1is inversely proportional to time for a Newtonian liquid and is
independent of time (proportional to t°) for a Hookean solid. For a
linear viscoelastic material, o/e¢ is independent of the strain magni-
tude but is a function of time. The time function, F(t), called the
constant-strain-rate modulus!, gives a complete characterization (in
principle) of the linear viscoelastic properties in uniaxial tension,
provided it is known for 0 < t < ®», This modulus is related to the

better known stress-relaxation modulus, E(t), by the equation:

d log F(t)] 1)

E(t) = F(t) [1 + d log t

Figure 1 illustrates the general features of F(t) and E(t) for a
typical high molecular weight noncrosslinked polymer. At very short
times (equivalent to conventional test conditions at a low temperature),
the polymer exhibits glassy response; the modulus (about 10'°3dynes/cnf)
is nearly time-independent. As time increases progressively, the
modulus decreases to the so-called rubbery plateau at 10%° dynes/cnf,
attributed to a transient network of entangled chains. (If the polymer

were crosslinked into a three-dimensional network by primary valence
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bonds, than at long times the modulus would approach an equilibrium
value, determined by the number of chemical crosslinks and permanently
trapped physical entanglements.) At still longer times, the modulus
decreases owing to viscous flow and the associated nonrecoverable

deformation.

Figure 1 shows that the F(t) and E(t) curves are similar, except
at very long times. In the rubber-to-glass transition zone, the
greatest difference between E(t) and F(t) is a factor of about three.
In the terminal relaxation region, F(t) is directly proportional to
t™!, whereas E(t) approaches a vertical asymptote.

The modulus F(t) is related to time by the proportionality
F(t) « tn(t), where the time-dependent exponent n(t) lies on the range
-1 8 n(t) S 0., When n(t) = 0, the material shows Hookean behavior;
when n(t) = -1, it exhibits Newtonian viscous flow. The exponent n(t)
is a qualitative index of the relative amounts of energy dissipated and
stored during the deformation. When n{t) = 0, the energy to deform a
specimen is completely stored, but when n(t) = -1, the energy to maintain

a constant deformation rate is completely dissipated as heat.

UNIAXIAL TENSILE PROPERTIES OF NONCRYSTALLIZABLE ELASTOMERS

Our starting point is the statistical theory of equilibrium
rubber-like elasticity® which is envisioned applicable to a relatively
perfect network structure formed from very long molecules, each molecule
constituting many chains of high molecular weight in the final network.
In the elementary development, the theory is based on the assumptions
that the change in end-to-end separation of each network chain is
directly related to the change in the macroscopic dimensions (an affine
deformation) and that the free energy of each chain (predominantly
entropic) is derivable from a Gaussian probability function. These
assumptions lead directly to the elastic stored energy

W = g (kf + Xg + kg ~ 3), where G is the equilibrium shear modulus and
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the \'s are the extension ratios in the mutually perpendicular directions.

For either uniaxial tension or compression, the stored energy gives:

t=

o = 5'3 (A-A"2) (2)

where o is the stress based on the undeformed cross-sectional area and

the equilibrium tensile modulus Ee equals 3G.

When the chains parallel to the stretch direction are highly ex-
tended, neither the Gaussian probability function nor the affine
deformation assumption is valid. In one approach t< the problem,
Treloar?® applies another probability function to the¢ affine deformation
(assumed) of a specific network model and obtains ¢ aation which for

uniaxial tension reduces to:

A, (=)
g = G 3 1—1[)\/)\“‘(“’)] -

(3)

>J'-'

where xm(m) is the extension ratio (hypothetical) at which do/d\ = « and
f71(x) is the inverse Langevin function of x : X/km(m). Although this
equation should not be considered quantitatively accurate, it predicts
the correct shape of the stress-strain curve. When klkm(m) is less than

about 0.3, Eq. (3) reduces to Eq. (2).

Precise experimental tests of the statistical theory have shown

several unexplained phenomena. First, equilibrium data are exceedingly

difficult (commonly impossible) to obtain owing to a slow, yet persistent,

*For a specimen which is a rectangular parallelepiped, the extension
ratios are A\, = L/Ly, A\ = W/W,, and \3 = T/T,, where L, W, and T are
the length, width, and thickness of the deformed specimen and lp, W,
and Ty, are the dimension of the unstretched specimen. In the present
discussion, the symbol X\ is used in place of },;, where )\, is the
extension ratio in the direction of a uniaxial stretch. The quantity
(A-1), which equals A L/ly, is defined formally the same as the Cauchy
strain €. Because the volume of an elastomer is sensibly constant
during a test, A\ Agla = 1. Thus, the stress based on the cross-
sectional area of a deformed specimen is \o.
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relaxation or creep. For lightly crosslinked elastomers, the time
dependence is normally more pronounced than for those more tightly
crosslinked. Various studies of this phenomenon have been made; among
the several proposed explanations, none has been generally accepted.

The second unexplained phenomenon is that the stress (in uniaxial tension
under near-equilibrium conditions) at intermediate extensions is some-
what less than predicted by Eq. (3), provided G is evaluated from data
at small deformations, The third anomaly is the occurrence of rupture
at small values of Axxm(m). At elevated temperatures, where equilibrium
response is approached most closely, xbxxm(m) ~ 0.2, where Ab is the
extension ratio at break.

Certain general features of uniaxial tensile behavior are illus-
trated® in Fig. 2 by data on a Viton A-HV (hydrofluorocarbon)
vulcanizate. The heavy curve (failure envelope) represents the locus of
rupture data determined at various extension rates at eight temperatures
between -5 and 230°C. The curves to the left of the envelope represent
stress-strain data obtained at the same extension rate (data at two
rates are shown at 55°C). The dashed curve on the envelope's right is
the equilibrium curve derived indirectly as outlined below. The
quantity ()\b)max is the maximum observable ratio and Xm(m), defined
above, is an estimate of the maximum extension ratio that would be

observed under equilibrium conditions if rupture did not intervene.

We shall now consider data from uniaxial tensile tests at different
extension rates and temperatures. (The approach outlined can also be
applied to stress-relaxation and creep data.) The developed stress
c(\,t)--a function of the extension ratio A\ and the time t (= A-1)1),
where i is the constant rate of extension)--can be decomposed into two

functions as follows:
o\, t) = F(OOT(\, 1) (4)

where ['(A,t) is a function which approaches the Cauchy strain, \-1, in
the limit of zero extension. Thus, F(t) is the modulus, discussed in the
previous Section, and I'(A,t)/(\-1) is a measure of the deviation from

linear response.




To evaluate F(t) and ['(A,t) from data at a series of constant
extension rates, plots are first made of log o vs log t, where the
points along a single curve represent data at the same extension. An
illustration is provided by Fig. 3 which shows data obtained on a
Viton A-HV vulcanizate at 130°C. Because the lines are parallel, it

follows that, within the experimental uncertainty, ['(A,t) is independent

of time qver the range being considered. The negative slope shows that
relaxation occurs continuously during a test at each extension rate.
Thus, the curvature in a stress-strain curve is the result of two
effects: (1) the continuous relaxation of stress; and (2) the inherent

nonlinear relation between stress and strain.

To analyze the results further, values of stress and strain are
read at a fixed value of time from the plots of log o vs log t. (The
resulting values are termed isochronal stress-strain data.) Commonly,
I-minute isochronal data are obtained and used to evaluate the l-minute
modulus, F(1); this modulus can conveniently be obtained either from the
initial slope of a plot of \o vs (A-1) or from the position of the line
of unit slope on a plot of log Ao vs log (A-1). After F(1) has been
obtained, l-minute values of the strain function '()\,1) can be obtained

from the relation o(},1)/F(1) = ['(},1).

Over certain ranges of A and t, the function ['(A,t) is independent

*
of time, as well as temperature, and thus:

g, t) - N
e . ) = Ee (5)

where G/Be is the ratio of the equilibrium stress to the equilibrium
tensile modulus, Ee' Consequently, if ['(\) is in fact time-independent

and is available from large-deformation data, then the equilibrium

*
In this discussion, it will be assumed that time-temperature super-
position is applicable to data being considered. Thus, the phrase
"range of time" will tacitly signify an equivalent temperature range.
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stress-strain curve can be derived, provided E0 is known, at extensions

above that at which rupture occurs under "equilibrium'" test conditions.

It was noted some years ago by Guth and coworkers® and by Tobolsky
and Andrews® that the equation o(A,t) = E(t)['()) could often be used to
represent stress-relaxation data. Several years ago, Eq. (5) was shown
to be applicable for representing data®l, at extensions up to rupture,
from tests at constant extension rate on an SBR vulcanizate at temper-
atures from -34 to 93°C. The utility of the equation ¢ = ECF(A) was
explicitly pointed out by Halpinef' who showed that constant extension
rate, stress relaxation, and creep data may (for certain materials)
give sensibly the same ['()\). (His data were on an SBR vulcanizate at

temperatures down to -35°C and extensions up to nearly 700%.)

Let us now consider the conditions under which ['(),t)--at least for
some elastomers--might be expected to be time-independent as well as one
reason for the function being time-dependent under other conditions.
Following the approach of Halpin’, we shall for expediency assume that
the stress-strain curve is given approximately by Eq. (3) except that
xm(m) is replaced by a time-dependent extensibility Am(t) S km(m) and

G is replaced by F(t)/3. This gives:

(6)

>“}»—l

A (t)
G()\rt) . 3 _1_ m = / L

To generalize somewhat and to indicate a graphical method for deriving

Am(t) from experimental data, Eq. (6) can be written in the form:

- S ) S . e = .
F(t) " Y ')—\W - 3_)\;-(_6 hy [)\/}\m(t) ] (7a)
=t (1] (7v)

where the function f[k/km(t)] need not equal that on the right side of
Eq. (7a). Because f~1(x) = 3x + 9x%/5 + . . ., the right side of Eq. (7a)

reduces to A (it becomes time independent) when X/km(t) becomes less than




about 0.3. Equation (7) shows that \,xm(t) is a highly significant
quantity and that account should be taken of \m(t) in comparing stress-

strain data for different materials.

One-minute isochronal data from constant extension rate tests on
a Viton B vulcanizate are shown in Fig. 4 plotted as log ['(},1) vs
log (A-1). Although the l-minute modulus, F(1), increases from about
200 to 300 psi between 70 and -5°C, I'(A,t) is sensibly independent of
temperature (and also of time) at extensions up to about 100%; at
intermediate extensions, the function is smaller than (A~A"°)/3, shown
by the dotted line. At all extensions, [()\,t) is essentially temper-
ature independent between 70 and 25°C; at large extensions below about
25°C. it depends on temperature because of the temperature dependence

of X (t).
m

To obtain relative values of xm(t), plots were made of log
[3Xo,/F(1) + A7) vs log A and these were superposed by shifting along
a line of slope 2.0*; the shift distances gave X;;km, where X; and Xm
are the extensibilities at the reference temperature (25°C) and the
other temperatures, respectively. The tabulated values of \;,Xm in

Fig. 5 show that Xm decreases by about 30% between 25 and -5 C. As

Fig. 5 shows, data at different temperatures superpose quite well except
at intermediate extensions where the points move upward with a temper-
ature decrease. (This behavior arises because of the contribution of a
term analogous to C;, in the Mooney equation.) The ratio of the modulus
to X;/km (tabulated in Fig. 5) is constant, and thus \m is inversely
proportional to the modulus, 298F(1),T. For other vulcanizates, it has
been reported’ that Am(t) £ [E(t)]‘é. Undoubtedly, \m(t) depends in a

complex manner on network topology.

In recent years, considerable data has been obtained, usually
covering three logarithmic decades of extension rate, on a variety of

vulcanizates. (Normally, data were obtained at temperatures not less

L
If Eq. (7b) is valid, then plots of data at different temperatures
(or times) must superpose wher shifted in this manner.
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than 20°C above Tg.) For many vulcanizates under all conditions at which
Xm(t) is constant, isothermal data at extensions up to rupture can be
represented by Eq. (5), o(A,t) = F(t)I'(\). However, for certain vulcan-
izates (commonly those very lightly crosslinked), the equation is
applicable only for A < kc << Xm(t), where xc is seldom less than about

2.0.

A somewhat extreme example of the temperature dependence (and thus
time dependence) of ['(A,t) is provided by data (Fig. 6) on a lightly
crosslinked Viton A-HV vulcanizate. The extensibility Am(t) decreases
below 25°C as shown by the curves which represent data at -5, 10, and
25°C. Because rupture cccurred at relatively low elongations at 130 and
230°C, Xm(t) cannot be estimated, although it is expected to be either
equal to or greater than at 25°C. The reason for values of T'{)\,t) at

130 and 230°C being greater than at 25°C is not known.

A more typical example of the temperature dependence of ['(A,t) is
provided by data (Fig. 7) for a crosslinked poly(methylmethacrylate)
polymer in its rubbery state. For this polymer, '(A,t) increases pro-
gressively as the temperature decreases from 165 to 125°C. (This
behavior is similar to that found by Halpin® in studies of lightly cross-
linked styrene-butadiene rubber vulcanizates; he attributed the behavior
to a nonaffine migration of network junction points at high extensions
and to the p.ogressive increase in this phenomenon as the temperature is
increased.) The relatively rapid increase in ['(A,t) at high extensions
at 125 and 135°C results from finite extensibility effects, i.e., A
begins to approach Am(t), as illustrated more clearly by the data in

Fig. 4.

ULTIMATE PROPERTIES OF ELASTOMERS IN UNIAXIAL TENSION

The ultimate properties in uniaxial tension are the tensile

strength, o and the associate! ultimate extension ratio, )\ . These

b’ b
quantities are strongly dependent on the temperature and the stress-

strain history. Although o, and xb-l are relatively small at elevated

b
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temperatures (150-250”C above TK)' these quantities increase by factors

of about 30 and 10, respectively, as the temperature is decreased. Con-
comitantly, the modulus for some elastomers shows little or no increase,
whereas for others it may increase severalfold. When the temperature is
reduced further, the breaking elongation, (Ab—l)lno, decreases, but the

tensile strength continues to increase; the modulus, however, increases

rapidly and approaches the value for glassy (plastic) polymers.

Before the ultimate properties of different clastomers can be com-
pared, it is necessary to characterize in some detail the time and
temperature dependence of these properties. Two methods are available;
both necessitate the determination of rupture data over broad ranges of
temperature and extension rate. (Equally acceptable for characterization
are rupture data from creep or, within a certain temperature range,
stress-relaxation tests.) Ultimate property data are notoriously non-
reproducible, and thus under given test conditions ultimate properties
ran be specified precisely only by statistically treating data from
repetitive tests. On the other hand, it is usually of greater value to
obtain data at a large number of extension rates than to statistically
define the ultimate properties at a single or even several extension
‘ates; the resulting data can be represented by a smoothed curve which
gives a reasonably good representation of the average or most probable

values at extension rates in the range being considered.

The first method of characterizing ultimate properties is based on
the application of time-temperature superposition to interrelate rupture
data at different temperatures and extension rates® . The superposition
procedure, which appears to be applicable--at least approximately--to
data on amorphous elastomers, leads to composite curves which show the
dependence of the tensile strength on either the temperature-reduced
extension rate, X“T’ or the temperature-reduced time-to-break, lb/u "

T

(The quantity a, is the temperature-dependent shift tactor'® commonly

T
used in superposing curves which represent mechanical property data at
various temperatures to obtain a composite plot.) Such curves, along
with “T as a function of temperature, enable the ultimate properties to
be predicted over wide ranges of extension rate and temperature,
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Because the curves depend on stress-strain history, they are not
suitable for predicting when rupture will occur under an arbitrary

stress-time or strain-time history.

The second method is in terms of a fatlure envelopell, often
represented by a plot of lng\fbt) T vs log (kb_l)‘ (A typical fatlure
envelope is shown in Fig., 8.) Provided time-temperature superposition
is applicable, values of Ty and \b give a single curve (envelope) which
is independent of time (extension rate) and temperature; either a
decrease in temperature or an increase in extension rate merely shifts
a point, representing rupture data, counterclockwise arvound the
envelope. Although the failure envelope may depend somewhat on stress-
strain hlstm'y‘“’ the dependence is apparently slight unless the
histories are grossly dissimilar, e.g., that associated with a cyclice

stress as compared with a monotonically nondecreasing stress,

The failure envelope shows clearly the maximum observable extension

ratio, (xb) At conventional extension rates, (Ab) is observed

max’ max

at a temperature which, depending on the elastomer, is roughly 30-55"C
above the glass temperature. At lower test temperatures, or at the
equivalently higher extension rates, rupture data commonly do not
superpose to provide a smooth extension of the curve defined by data at
higher temperatures or lower extension rates; thus, under these con-
ditions, ultimate properties can probably be characterized only roughly
by a failure envelope or the composite curves which show the time-

dependence of the data.

Two important quantities defined by a failure envelope are (Ab)mu\
and the associated tensile strength (ob)mu\' The maximum extensibility
is quite sensitive to network topology and depends on crosslink density

according to the approximate relation (Xh) &« Mo"' whe ve Mc is the

max
average molecular weight of effective network chains and n should equal
0.5 if the network deforms affinely. In practice, however, n may be
significantly greater' than 0.5, a reflection of the increased oxten-
sibility which results from the nonaffine deformation of the network,

The true tensile strength, (A 0, ) , for the elastomers thus far
b b max
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studied 1s roughly 10 psi, within a factor of 2 to 4, Thus, as a first

ot =1
1 (Ab)

approximation (o, ) i
i : b max

max
The characterization of the ultimate properties for various
elastomers enables their properties to be compared and their endurance
under different test conditions to be predicted. However, the available
data on noncrystallizable elastomers show that their properties are
remarkably similar, provided proper acccount is taken of differences in
glass temperature and crosslink density. An increase (or decrease) in
Tg shifts the composite curves, which represent the time dependence of
the ultimate properties, toward a higher (or lower) temperature, owing
to the change in time-scale for molecular rearvrangements. A change in
crosslink density has a strong effect on the ultimate elongation,
although under many conditions (especially low or high temperature) the

eftect on tensile strength often is rather small,
It is reasonable to assume that different elastomers are in corves-
ponding states when the test conditions are such that rupture occurs at

) . When (xb)/(xb)mwx and log ‘bl\/T are plotted against

b max
log t '(t where (t is the rupture time (temperature reduced)
€ b) max’ b)max I i
at which (Ab)mwx is observed, the curves from data on a variety of
L3

elastomers not only are found to be quite similar in shape but also to
lie rather close together, as shown in Fig. 9. Thus, a change in
chemical structure, and even in crosslink density, gives primarily a

change in (‘b)mux and (xb)max'

The stress-strain and ultimate properties of crystallizable
elastomers are modified markedly when stress-induced crystallization
occurs, The change in stress-strain properties is the composite effect
of stress decay associated with crystallization and the subsequent
increase in the slope of the stress-strain curve caused by the rein-
forcing action of the hard crystalline phase. The ultimate properties
are affected because crystallization probably begins preferentially in
the vicinity of an incipient crack and thus inhibits its formation and
growth. Consequently, under many test conditions, a specimen can be

stretched to a high degree, and thus can sustain a high stress, without
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rupture occurring. When the test conditions are progressively changed
so that the extent of crystallization increases, the ultimate elongation

progressively decreases! 4

Reinforcing filler in a crystallizable elastomer may modify the
conditions under which stress-induced crystallization occurs, and in
this way, alter the ultimate properties. In a noncrystallizable
elastomer, filler decreases the rate of certain relaxation processes
and thus the high-strength regime is displaced toward a higher temper-
ature'® . However, at elevated temperatures, filler has a relatively
small effect®®, the increase in tensile strength being about the same
as that in the modulus; the modulus increase may be nearly that repre-

sented by the Guth-Smallwood equation.

Although a comparison of the macroscopic properties of various
elastomers can provide useful relations between ultimate properties and
network structure, an understanding of rupture can only result from
studies of the rupture mechanism and a delineation of the factors which
affect this process. Rupture entails the formation of a crack whose
growth slowly accelerates until a high-speed terminal velocity is
reached. The new surface area formed during the slow-growth stage may
indeed be quite small, and thus the rupture process can appear to occur
suddenly. However, there is considerable evidence that crack growth may

occur during a significant fraction of the entire test period.

The rupture theories of Bueche and Halpin'® and of Knauss!” pro-
v de relations between ultimate and viscoelastic properties. In the
Bueche-Halpin theory, a viscoelastic function--commonly the creep
compliance--is related to the ultimate properties through two parameters;
one includes the critical stress (or the related critical elongation)
for rupture at the crack tip; and the other is a parameter which is the
ratio of the total time before high-speed crack growth to the rupture
time for each successive filament at the crack tip. In the theory of
Knauss, the relation is formulated in terms of a time-dependent stored
energy; when the product of the crack length and the stored energy

attains a critical value, catastrophic crack propagation ensues.
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APPENDIX II

TIME AND TEMPERATURE DEPENDENCE OF STRESS-STRAIN DATA
FOR AN UNFILLED NATURAL RUBBER VULCANIZATE

Several years ago, the stress-strain behavior and the ultimate
properties in uniaxial tension were determined® ™ on an unfilled
vulcanizate of natural rubber at 8 to 10 crosshead speeds at temper-
atures between -55 and 150°C. (At 150°C some chemical degradation
occurred during the test periods and thus no detailed analysis was made
of the data.) The time (strain rate) and temperature dependence of the

ultimate tensile properties have been discussed® & ¢

and a preliminary--
and thus somewhat approximate--analysis of the stress-strain data has
also been presented.® In this Appendix, a more extensive and somewhat

more refined analysis of the stress-strain data is presented.

When an elastomer is stretched, the decreased configurational
entropy of the network increases the tendency of the chains to cry-
stallize. This is illustrated by the rapid crystallization in a
stretched natural rubber vulcanizate, in contrast to the slow crystalli-
zation in the unstretched vulcanizate. The crystallization rate and the
morphology of the resulting crystalline phase depend on temperature,
strain, and elapsed time, as well as on the mechanical and thermal
histories. Thus, an adequate description of the mechanical properties
of crystallizable elastomers would require a quantitative understanding
not only of crystallization kinetics and crystal morphology but also of
the effect of the crystalline phase on the response characteristics of
the remaining amorphous matrix. Because relatively little is known
about the interplay of such factors, present understanding of large

deformation properties of crystallizable elastomers is largely qualita-

tive.

During the crystallization of a specimen at a fixed extension, the
stress decreases and, under certain conditions, becomes less than zero,

i.e., it becomes compressive. When specimens are tested at a series of
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constant extension rates and temperatures, the stress-strain data are

particularly difficult to interpret because of two competitive processes:

(1) stress relaxation caused by crystallization; (2) reinforcement pro-
vided by the hard crystalline regions dispersed in the rubbery matrix

which reduces the extensibility of the vulcanizate and causes a marked
increase in stress, at a given elongation, over that for the completely

amorphous vulcanizate.

In considering the stress-strain data obtained at different exten-
sion rates on the natural rubber vulcanizate, we shall discuss first the
time dependence of the stress at extensions below those at which crys-
tallization occurs and then at the higher extensions at which the data
reflect the crystallization. Following this discussion, l-minute iso-
chronal stress-strain data at various temperatures are considered pri-
marily in terms of the change in maximum extensibility effected by

differing states of crystallinity.

A. Time Dependence of Stress-Strain Data

The stress-strain curves from tests at the different extension
rates were analyzed by the method which was adopted several years ago.®
Plots were first made of log ¢ vs log t, where each curve results from
data at the same value of the extension ratio A\. (The tensile stress ¢
is based on the cross-sectional area of the unstressed specimen and the
time t equals (A-1)/A, where A is extension rate.) At temperatures
above —5°C, the data gave lines of zero slope, except at large values of
A, i.e., those at which the vulcanizate is in a semicrystalline state.
This behavior shows that the data represent, within the experimental
accuracy, equilibrium response. At and below -5°C, relaxation occurred
during the test periods owing to viscoelastic effects. This behavior is
illustrated in Fig. II-1 which shows data at A = 1.2 at temperatures
between -5 and -45°C. At -5 and -20°C, relaxation occurred to a rela-

tively small extent and only at the shorter times.
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FIG. Il.1 EFFECT OF TEMPERATURE AND
TIME ON THE STRESS IN SPECIMENS
OF A NATURAL RUBBER VULCANIZATE
AT A = 1.2. (Data are from tests at a series
of constant extension rates.)

At high extensions, the behavior is complex because of the com-
petition between relaxation caused by crystallization and the increased
stress from reinforcement by the relatively hard crystalline phase.
This behavior is illustrated by the data in Fig. II-2 which are A = 7.0
and at selected temperatures between 100 and -45°C. The data show the
following: above 10°C, the stress decreases with time whereas at 10°C
the stress is sensibly time-independent; at -5 and -2030, the stress
increases with time, although at -45°C. the stress first decreases and
then increases with time. These dissimilar effects result because the
degree and rate of crystallization are dependent on the temperature,

extension, and extension rate.

Various studies®, as well as thermodynamic considerations, show
that at higher temperatures crystallization begins at a higher exten-
sion and proceeds to a smaller extent than at lower temperatures. Thus,
the decrease in stress with time (i.e., with decreasing extension rate)

at 25 and 100°C is consistent with the assumption that the degree of
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AT X\ = 7.0. (Data are from tests at a series
of constant extension rates.)

crystallization increases with time and that the reinforcement produced
by the crystalline phase, which forms largely at a high extension and in
a relatively small amount, is not sufficient to offset the stress decay
associated with crystallization. This viewpoint is reasonable, although
it seemingly is in disagreement with results (discussed by Treloar®)
from a study of the birefringence of stretched raw rubber; the bire-
fringence data showed that at 25°C crystallization was nearly complete
immediately after extending the specimen and that at 50°C crystalliza-
tion was sensibly complete in the time required (a few seconds) to
extend the specimen. However, these dissimilar observations can
probably be explained by noting that the ingredients added during the
preparation of a vulcanizate normally increase the time required for

crystallization,
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The increase in stress with time at -5 and -20°C can be explained
by assuming that the degree of crystallization again increases with time
and that now a major portion of the crystallization occurs at extension
ratios considerably below 7.0. (These assumptions are in agreement with
results discussed by Treloar.®) The crystalline material which forms at
A < 7.0 acts to augment the stress required to attain a A = 7.0. Thus,
if the degree of crystallization at a A below 7.0 is relatively large
and is an increasing function of time, then the stress at A = 7.0
should also be an increasing function of time. This behavior can result
because the relaxation in stress associated with crystallization at
extensions below A = 7.0 is less than the reinforcing effect produced by
the relatively large fraction of crystalline material which forms during

the test.

At IOPC, the two effects cancel and the stress is time-independent.
The initial decrease in stress at -45°C may result in part from a rela-~
tively long induction period for the beginning of crystallization
(possibly little crystallization occurs at extensions markedly below
A = 7.0); stress decay may also reflect viscoelastic stress relaxation.
The increase in stress at times greater than about 10 minutes undoubtedly
results from the same processes that give a stress increase at -5 and
-20°C. These presumably occur because the test period is sufficiently
long so that considerable crystallization occurs before an extension

ratio of 7.0 is reached.

A qualitative indication of the time dependence of the stress at

extension ratios other than 1.2 and 7.0 is given in Table II-1.
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Table II-1

STRESS-TIME BEHAVIOR OF NATURAL RUBBER VULCANIZATE
AT FIXED EXTENSIONS SHOWN BY DATA
FROM TESTS AT CONSTANT EXTENSION RATES

Temperature Approximate Ranges of A for Indicated Behavior
Q
9 (do/dt) = 0 (do/dt) < 0 (do/dt) > 0
100 < 5.5 > 5.5 -
80 < 5.5 > 8.5 -
60 < 5.8 > §.5 -~
*
40 = .- T
25 - > 2.0 e
10 all A - e
-5 -- -- 25.5
-20 ~- - > 4.0
-35 - - 5.0
*ok *ok * ok
-45 - < 4.5 > 4.5

*
Data are anomalous; do/dt = 0, within experimental uncertainty,
at all .

¥k
For A\ > 4.5, behavior is the same as illustrated in Fig. II-2.

B. Isochronal Stress-Strain Data

One-minute values of the stress, read from the plots of log o vs
log t, were used to construct plots of log Ao vs log (A-1). Data
between -45 and 120°C and for elongations up to about 100% gave a pre-
cise fit to straight lines of unit slope. From these lines, values of
the l-minute modulus, F(1l), were obtained and are tabulated in Table II-2,
Although these values differ only slightly from those obtained from the
previous analysis' of the data, they are tabulated here for convenience

and because they are probably somewhat more reliable.
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Table II-2

VALUES OF THE 1-MINUTE MODULUS, F(1),
FOR NATURAL RUBBER VULCANIZATE

Temperature log F(1) F(1)

e psi psi

120 2.380 240
: 110 2.276 189 1
] ! 100 2.270 186 *

w} 90 2.270 186
80 2.252 179 i

60 2,255 180

40 2.207 161

25 2.208 161

10 2.200 159

« B 2.178 149

-20 2,190 155

~35 2.195 157

-45 2.302 200

Figure II-3 shows data at selected temperatures on plots of

c(1)/F(1) vs A-1, where o(l) is the l-minute value of the stress.
These curves show clearly the change in the stress-strain curve which

.J results from a variation of the degree of crystallinity with temperature.
The temperature dependence of log o(1)/F(l) at A = 7.0 is shown in
Fig. II-4. Because the points representing data at 110 and 120°C lie
somewhat below the dotted line, it is likely that some chemical degrad-
ation occurred during the test period at these elevated temperatures,
although the l-minute modulus at 120°C (Table II-2) appears to be unduly
high instead of low as should be found if degradation occurred. The

curve in Fig. II-4 has a maximum at -35°C, an indication that the degree
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of crystallization is a maximum at this temperature. Russell,” who
studied the crystallization rate of a variety of natural rubber vul-
canizates, found that the maximum crystallization rate in the unstretched
vulcanizates occurs at about -26"C, in conformity with results reported
by Wood”® tor unvulcanized rubber. These findings are in rather close
agreement with the data in Fig. II-4 which show that the stress at

A = 7.0 changes by only a small amount between -20 and -35°C. The plots
in Figs. II-3 and II-4 indicated that less crystallization occurs at
-45°C than at -35"C. In the unstressed state, the crystallization rate
of natural rubber® is sensibly zero below -50"C; stress-relaxation datal®
at A = 1.5 indicate that, even in the stressed state, the rate is very

low at -50"C.

As discussed in Appendix I, an important parameter that affects
stress-strain behavior at large extensions is the maximum extensibility,
Xm(t). This quantity, which is a function of time and thus also of
temperature, is the extension ratio at which do,d\ = &, wheve o and X\
are isochronal values at time t. The l-minute isochronal data for
natural rubber at various temperatures were superposed, following the
method outlined in Appendix I, to obtain the ratio A;‘Xm' where AK is
the maximum extensibility at 100°C and xm the value at temperature T.
The resulting composite plot is shown in Fig. II-5. (Data at all
temperatures between 100 and -45°C could be superposed, although data

at only selected temperatures are shown in Fig. II-5.

The ratio A;/xm, tabulated in Fig. II-5, is seen to increase from
unity at 100°C to 1.43 at -20"C; it probably achieves a maximum at -35°C.
However, this ratio is somewhat lower at -45"C than at -20"C, undoubtedly
because the degree of crystallization is lower than at a somewhat higher

temperature.

Although the present discussion shows that stress-strain data on a
natural rubber vulcanizate can be explained qualitatively, the extent of
crystallinity, and thus the stress-strain behavior, depends on the
mechanical and thermal histories. Thus, the results represented in
Fig. II-5 cannot be used to predict mechanical response under arbitrarily

selected test conditions,
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APPENDIX III

COMPOUNDING RECIPE FOR STYRENE-BUTADIENE VULCANIZATE, SBR-IV

The ingredients in the styrene-butadiene vulcanizate, SBR-IV, and

the cure conditions are given below. The specimens, prepared at the

Air Force Materials Laboratory, were thin-wall cylindrical specimens
whose dimensions are: inside diameter, 1.50 inches; wall thickness
(nominal), 0.05 inch; gage length, 6.0 inches; length of filets between

gage section and oversized end sections, 0.75 inch; and the length and

k!
E |
L |
o

wall thickness of end sections are 1.25 inches and 0.15 inch, respectively.
A schematic diagram and photograph of a specimen are given elsewhere.*
Although the nominal wall thickness of the gage section is 0.05 inch,

the best determined value is 0.048 inch.

Ingredients Quantity
Firestone 1502 SBR 100
Zinc Oxide 4
Methyl Tuads 4
Stearic Acid 1
Altax (MBTS) 1

Formulation cured for 60 minutes at 300°F.

*
Smith, T.L., Biaxial and Uniaxial Tensile Properties of Elastomers,
Technical Report AFML-~TR-65-356, March 1966,
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