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CONCURREN1 PROGRAMMING ’

R E bryant
J. ~~~, Dennis

Massachusetts Institute of Technology

I. Introduction

Concurrency of activities has long been recognized as an important feature
in many compu ter systems. These systems allow concurrent operations for a
number of reasons of whIch three are particularly common First , by executing
several jobs simultaneously, multiprogramming and time-sharing systems can
make fuller use of the computing resources. Second, real-time transaction systems .
such as airline reservation and point-of-sale terminal systems , allow a number of
users to access a single database concurrently and to obtain responses in
rea l-time. Finally, high speed parallel computers such as array processors
dedicate a number of processors to the execution of a single program to speed up
completion of a computation.

In developing the software for some of the early multiprogramming
systems. programmers soon discovered a need for an abstract and
machine-rndependent means of ex pressing the behavior of systems which involve
concurrent activities. They found that machine level ptogramming was tedious
and very difficult to do correctl y. When many tasks are to proceed concurrently,
the problems of allocating system resources , of sc heduling the order in which
tasks are performed , and of preventing concurrent act lv ltses from disastrously
interfering with one another are difficult to dea l with without assistance from a
high level programming language.

One of the first concepts to emerge in an attempt to satisfy this need for a
more abstract view of concurrent systems was the process concept. In this view ,
t he sequence of actions performed during execution of a sequential program is
viewed as an abstract entit y called a p rocess , and details suc h as which physical
processor is used and the time of execution are ignored . For example, in a
typical multiprogramming system the different user jobs, the Interrupt routines.
and the I/O channel program executions may be viewed as separate processes.
During system operation, the processors and memory may be switched among the
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of Defense, monitored by the Office of Naval Research under contract number
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2 Bryan t and Dennis - Colicur ent Programming

pit s es’.es, so all pi os e~~ t s  i re ~ai lied forward , even thoug h no process retains
exclusive control of all the reso Urces It needs nor runs in one continuous
sequence

Trad itioiial hI~ h level progi .ininlIng languages such as Fot tran, Algol, and
Cobol expres s cumplilallonc as independent, nonin teracting processes. The

in a coiicui I s-nt system , however , may interact with each other for
seveial teasonc hi sr , one pi~’~ecs may convey data to another This Is called
ce”i ”iu nz tat g on Ss’~onJ , p ux esc es may interac t to ensure a cor rect sequencing of
even ts Pio ccc iiiueiac ti o ii which set yes to control the order in which processes
execute is aIled s v ’tc ~ ’~’’u . u m ’ rt These synchroniiat ion opet .stlons may be
iequiied in, sec s - i .il l i l t  it ent reasons , of which two are  particularl y common.

Fit St . if one ptncrcs must pet form some task before a second can proceed. there Is
.0 prm’~ d.’ n e  (~~ IZ ( ( ? I Z ’it between the two processes. For example . the second
process may riced 1 .t i.i whir h is u’mputed by the first Con ve rsel y. if one process
i” odin s -s dat .i to he i, ’ ’ ’ t t  h’, another , then t he producer process cannot produce
more da Ia t han the h u t  t t ’i between t hem .in hold u ntil the consumer process has
u sed some ot t he old d.it,i I len ce , precedence constraints can exist in both
dii ections between p1 oducerc ,urid con sunwrs of da ta Second, processes which
shai e Common resoui crc s u h  as pi ocessors . m emory lsx~tionc , or Input/output
devi r.es require synchio niza t ion so the resources will be allocated In a systemat ic
way This allocition may he a simp le foi m of mu tual exclus ~~n, In which a

ocess r eta ins exclusive ~. ontrol of a resout cc until the process voluntarily
relea ses it , i t wlinh time the resou rce is gianted to any piocecs wa iting for the
resou rce Mote complex allocation schemes can involve such features as a llowing
sevei al pi Ot t ’cccs to use .s i s-so urce simu ltaneously, assigning different priorities to
processes contendllur for a iesource , or al lowing one pro c ess to forcibly remove a
r s-sour e it nm t In’ ont r ol ( It  some other process Traditional pi ogramming
la ng uag es •iir not powei m l  enough to ex pres s these types of interactions.
lnste,id, a p 1 og r am must invoke opei ating system routines to perform the
necessary communication at id s~nc hronizaticin with other pux sse - s in the system.

Besides the inat lul itv to ex piess the interactio ns hetweeti processes,
ti aclitional hig h level laii guiages cannot express nondetei “ti ~t~i( computations.

That is , they can only expiess computations whose output v .iluiec depend only on
the values of inputs in a nondeterminate computation , on the other hand,
out put values an depend on other factors , suc h as the tim es at which events
occur in t he system 1- c ’ u  exam ple . suppose agents at t wo  different remote
terminals of an au line u-set vatuon system both request the last seat on the same
flight One will be g an ted this seat and one will not , bu t which one receives
which res ponse depends on the re lative order in which the requests are received
and processed Nondeter ininacy is essent ial in many concurrent systems.
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Bryant and Dennis - Concurrent Programming 3

The need for high level programming languages which can express the
operation of a system of concurrent processes has led to the development of
programming constructs with which one can express these communication and
synchronization operations. Some of these approaches, suc h as semaphores [13)
and monitors (4 ,5,20). suppose systems in which all processes have access to a
single, shared memor y. Others assume that processes communicate by sending
messa ges to one another (2,21,24). Languages based on actor semantics [16.17,18)
carr y the message-passing concept even further by considering all primitive
operations to be carried out by separate, message-passing processes. Other
approaches to concurrent programming have been developed which, instead of
viewin g a sys tem as a number of communicatin g, sequential processes , view a
program as an unordered set of instructions and permit an Instruction to be
executed any time its operands are ready. This form of program execution can
potentially achieve a higher degree of concurrency than is possible with
sequential processes. Languages based on this approach are called data flow
languages [1,10,12.25.30).

Several issues must be considered when designing programming languages
to support concurrent computation. Of primary importance is expressive power.
The expressive power of a language, in t he context of concurrent systems, means
the forms of concurrent operations. and t he types of communication,
synchronization, and nondeterminac y which can be expressed in the language. A
language which lacks expressive power will force the programmer to rely on a
suitable set of operating system routines to implement desired behaviors. A
properly designed language, on t he other hand, should have sufficient richness to
ex press these functions directly. Furthermore , if t he language lacks expressive
power , a programmer may need to resort to awkward or inefficient programming
techniques to achieve desired results.

A second issue in the design of a language for concurrent programming is
the c larity of programs written in the language, t hat is, how easily the effect of
executing a program can be understood by looking at the program. A properly
designed language can provide a programmer with the tools needed to write
clear and concise programs. To meet this goal, the language must allow
programs to he written in a modular fashion, so tha t the sections of the program
can be viewed independently of one another. This property is critical in
concurrent system design, since the sections of the programs which are executed
concurrently can often a ffect each other in subtle ways , and t hese effects can
ultimately lead to deadlocks, hazards , or other forms of Incorrect behavior.
Furthermore, these effects may cause problems only under relatively rare
combinations of circumstances, and as a result the errors may remain undetected
even after a long period of system operation. Hence, a modular program in
w hich it is quite clea r how the concurrent activities in the system can affect each
other would be of great value to the programmer , and to anyone who wishes to
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4 Bryant and Dennis - Concurrent Programming

nrndily the prog ram la t et . A programming language can also help the
programmer w u ite cleat and concise programs by providing high level constructs
to ex press the synchronization , communication, and nondeterminacy within the
system. This will not only make programming less tedious, it will reduce the
chance of error and make the programs more readable. If concurrent
programming languages are to describe the operation of large and complex
systems , it is important for these languages to have a clarif ying rather than an
obscuring effec t on the programs.

Ultimatel y, one must be concerned with implementation Issues. These
include the ease of implementation of the language - -  whether it can be
implemented on existing computer systems , whether slight modifications to an
exi sting system will be sufticient , or whether it will require a whole new approach
to computer design A second factor in implementation is its efficiency, that Is
whether concurrency ex pressed iii programs can be exploited without undue
overhead . This clesi te for a language which is easy to Implement, yet runs
effn iently. often st-ems in couifl ict with the goals of expressive power and clarity
of programs. and these two goals can themselves conflict with each other.
Inevitably, trade oils must be made, and hence the decision of which approach to
use depends to a large degree on design priorities.

In this cha pter . the main approaches to constructing concurrent programs
will be presented and compared As a basis for comparison , two examples of
systems incorpoiating concurrent operations have been chosen , and programs for
t hese examp les will be presented using the different approaches to concurrent
programming. 01 particular interest arc the semantic issues in language design,
i.e. how the computation is expressed , rather than t he detailed syntax of the
langua ges 1-lence , in the interest of uniformit y, the example programs will be
written in PASCAL (2~1, modified to include the necessary constructs. As will be
seen , the different approaches to concur tent programming differ greatly In their
ex pressive power , clarity of ex pression , and ease and efficiency of implementation.

2. E~ an!.pk 
~Y~’!.!!! ’~

Two exam ples have been chosen as rep resentative of system s for which
concurrent progr amm ing is tequired The fir -st is an airline reservation system.
in which a number of u sers (a gents) can perform transactions interactively with a
sing le database , In such a system concurrency in processing transactions is
requi red to enable sharing of data , reasonab le throughput, and teal-time,
interactive use. The second exa mple is an input/output buffer system in which
severa l input devices can read different files and send these files, via a buffer , to
any of several output devkes. By allowin g the input and output devices to

- - - 5__ 5 , ,.-.S_.S ,s. ..S . .: . ~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ . -. -
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Bryant and Dennis - Concurrent Programmin g S

operate ~oncuirrently, this system can utilize hardware resources more effectively
than would be possible otherwise .

The exam ples have been chosen to convey the basic features of concurrent
systems They have been simplified considerably to av oid the large amounts of
detail ty pically required in real-life systems For example, neither system has any
te~rm of error-chec king. nor is there any provision for terminating system
operation. Of course , it is difficult to draw coic lusions about the merits of
programming language features on the basis of such simple examp les In
considertng these programs . one must also consider how difficult it would be to
add mot e sophistication to the system designs.

The database for the airline reservation system contains information about
the flights for a sing le airline. Initially, each flight has 100 seats available. The
system can accept two types of commands. To reserve seats on a flight, an agent
gives the command ~‘ re.sert~~’ , f , n) .  If at least n seats are available on flight I,
the seats will he reserved, and the system will respond with the message i t r ue)
If that many seats are not available , no seats will be reserved , ani the system will
respond with the message (lake ) . To find out how many seats are available on
flight f, a systenl user gives the command (‘info ’ , f) . The system will respond
with the number of seats which are avai lable on the flight at the time the
command is processed.

The input/output buffe r system conta~ns input devices inp utl , inpu i2,
inpu ij ,  output devices output1, output2 out p ulk , and a single buffer. During
operation, the input devices read their respective blocks of data concui ently.
Once a block has been read in, it is loaded into the buffer , at w hich time the
input device can begin reading a new block. The block in the buffer is then
moved to the local storage of one of the output devices and written out. Each
output device is capable of writing any of the output blocks; hence a block in the
buffer can be transferred to the first available out put device rather than to a
particu lar . predetermined one. The buffer can hold only one block at a time;
hence the readers must contend with each other for use of the buffer. Similarly,
eac h block is to be written out by only one output device; hence the output
devices must contend for the out put blocks. It is assumed that the buffering
operations (i e. moving a block from the input device to the buffer and from the
buffer to the out put device) are much faster than the input and output
operations, so the buffer will not form a bottleneck in the system.

~ 
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6 B rya n t  and Dennis - Concurrent Programmin g

3. Processes Executi ng5 W ith in a Global Environment

The earliest organized approach to cuncurrent programming was to view a
system as a number of sequential processes which execute concurrently In a
common, global environment. This view is a natural abstraction of the operation
of a multiprogramming system , whic h typically contains one or more central
processing units and several input/output processors , all of which can access a
single, shared memory. The processors communicate with one another by
reading or writing mutually agreed upon memory locations according to some
convention Thus, we can view execution of a set of instructions by a processor
as an abstract process and the common memory locations as the global
enviionment for these processes Assignment Statements with global variables on
either the left or the right-hand side express the communication between
processes.

Sonic mechanism is required to synchronize accesses to the global variables.
In Practice this is done using the program interrupt facility of the hardware.
Examples of abstract synchronization mechanisms include the semaphores of
Dij kstra Eli] and the monitors of Brinch Hansen [4 ,5) and Hoare [20). Other
synchronization mechanisms have been developed (8,281. but none have received
as much attention as sema phores and monitors. A semaphore Is a special ty pe of
shared variable u pon which several primitive synchronization operations can be
performed A monitor , on the other hand, is a set of programmer-defined
procedures which can be called by the processes to gain access to global
variables.

3 I. Process Synchronization by Semaphores

A sema phore S is an integer variable initialized to some value. Associated
with the sema phore is a queue which holds names of processes. Two operations
are defined on t he semaphore: wait (SI and i~ignal(S) (Dij kstra called these P and
V, res pectively.) If a process P executes waillS) , then the value of S Is
decremented If this new value is negative , the name of P Is placed on the queue
associated with the sema phore, and P is blocked from executing. If. on the other
hand, ~ is nonnegative . P is allowed to continue. If a process P executes
itignal(S) , then the value of S is incremented . If the new value of S Is less than
or equal to zero, then the name of one ss is removed from the queue, and
this process is allowed to resume execution.

Sema phores provide a means to suspend execution of a process until
cei tain conditions are satisfie d. If processes perform semaphore operations In
conjunction with their’ accesses of the global variables, the necessary
synchronization in the system can be achieved . For example, a semaphore with

- 
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Bryant and Dennis - Concurrent Programming 7

initial value I can be used to maintain mutual exc lusion of processes accessing a
shared variable. A process which is updating the database In the airline
reservation system , for instance, must have exclusive control of the database so
that the database will remain in a consistent state during each transaction . Hence.
to reserve n seats on flight 1~ a process would execute the following code segment:

w a i t (mu ter ) ;
ii available I f)  2 ii

then
begin

ava i lab l e (f J  : - av@ilabl. tf]  — it ;

aurres i:— true

end

eke
surees~: — labia;

a i gna l ( m ue ex) ;

In the above program, mute r is a sema phore with initial value i, and the array
available is a global variable which represents the shared database.

If several processes wish to access the database without changing the
database’s stat e, t hese accesses can proceed concurrently. Furthermore, if a
process wants to read only one word in the database , there is no danger of
finding the database in an inconsistent state , hence this access can proceed even
w hile other processes are updating the database. To find out how many seats
are available on the flight, a process would simply execute the statement

it : — available (flijht) .
Of course, in a more rea listic airline reservation an agent would want to know
more about a flight than the number of seats available. Hence, processing an
‘info ’ request would require readin g several words of memory. If the database
is altered in the middle of these reads , the information returned to the agent may
contain inconsistencies. To program a more sophisticated reservation system, we
would divide the types of transactions into two classc~: those which only read the
data base (the readers), and t hose which alter the database (the writers.) A
number of’ readers can proceed concurrently. but a writer must have exclusive
control of the database. Programs which solve the readers-writers problem
(9.17,20) are considerably more com plex than our simple examp le.

~ 
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8 Rryant and Dennis - Concurrent Programming

Sema phores can also be used to control the order in which processes access
resources For examp le. the input and output processes in the Inputloutput
buffer system would execute codes as follows:

Input~ Output k

while true do while true do
begin beg in

reas i ( inj, inf i lej ) ; wait (loaded)
ouik: buffer;

buffer:— inj; aignal (f ree) ;
i,gnal(loaded) w riie ( o us k, ouifile~ !

end cod

Initial values. free — 1, loaded — 0.

In the above program , the global variable buffer serves as the buffer between
the input and output processes The semaphores free and loaded are used to
maintain correct sequencing between input and output processes. Furthermore,
t he semap hore free is used to guarantee that only one input process can load a
value into t he buffer at a time, and the semaphore loaded guarantees that only
one output process will print a particular buffer value. Thus, the two
semap hores enforce both precedence constraints and mutual exclusion In the
system

The sema phore construct is sufficient to solve a wide variety of process
synchronization problems , although sometimes with great difficulty. Two
concepts which are found in many computer systems , however , are noticeably
lackin g The first is the concept of the time at which events occur. For example,
a process cannot pause for a specified amount of time before continuing
execution. The second is that one process cannot force another process to stop
execution These two features were left out intentionally, since the process
absti -action removes the time at which events actually occur in the system from
the programmer ’s control , and a process can be affected by other processes only
when it makes reference to the global environment.

One ty pe of system whose operations cannot be fully expressed with a
sema phore program is a system in which the processes do not execute within a
single, global environment. If the system consists of processors connected together
by a communication network (27], t he processes execute within a number of local
environments and hence cannot access global variables or semaphores. The
notion of a global environment does not reflect the architecture of such a system.
For example . in t he airline reservation system , one canno cause information to
be transfer red between the remote termin als and the central computer except by
cal ling on the operating system to perform these operations.

5. ~~~~~~~~~~~ -. .~~~~~~~ -... r, 5.~.-_-~_~~~t-~~~~~ _ 
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Bryant and Dennis - Concurrent Programmin g 9

The sema phore concept was a major step forwar d in making programs
involving process synchronization easier to understand, but it still has severa l
flaws as a programming tool. The first is the primitiveness of the semaphore
operations. Semaphores provide a very simple form of process synchronization.
It is left to the programmer to develop conventions about how semaphores will
be used to provide the desired behavior. Complex forms of process
synchronization, in which dif ferent processes have different priorities, such as the
various solutions to t he reader ’s-writer ’s problem (9], typicall y have very obscure
sema phor e programs. Unless the conventions are carefull y documented, the
programs may be difficult to modify at a later date. Moreover , if just one process
falls to obey the conventions as to how resources are to be accessed , the system
may dead lock or in some other way behave improperly.

The second flaw is a total lack of modularity in the programs. Information
about how a shared resource is utilized and how the synchronization is provided
is distributed throughout the programs for the individual processes. For
example, it is difficult to locate all sources of nondeterminacy In the system. The
processes in the input/output buffer system would have the same programs if
there were only one input process and one output process as it does t’~’:~h several
input and several output processes. In the first case , the system is determinate ,
whereas it is not in the second. This lack of modularity, coupled wit h the
primitiveness of semaphore operations, makes it ver y difficult for someone
looking at a semaphore program to determine whether a resource is being
accessed proper ly.

Regarding implementation, semaphores and their corresponding
synchronization operations can be implemented without great difficulty on any
system whose architecture reflects the idea of a global state , such as a
multiprogramming system. The THE system of Dijkstra Eli) is an example of a
simple but elegant operating system which uses semaphores to synchronize
processes.

3.2. Process Synchronization by Monitors

Monitors were developed to allow a more structured format for concurrent
programs than is possible with semaphores. Unlike semaphore programs, all
information about a set of s hared resources and how they are used Is contained
In a single area of the program: the declaration of a monitor. The declaration of
a monitor includes a number of procedures which define operations on the
shared resources. These procedures are available to all processes In the system.
When a process wishes to access a shared resource, such as a global variable or a
Thared hardware resource, It must do so by executing one of the procedures of
the corresponding monitor. It should be emphasized that a monitor does not

----—-.5 -- ~~~~~~~~~~~~~~~~~~~~~~~~ .— ~~~~~~~~~~~~~~~~~~~~~~~~  
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10 Bryant and Dennis - Concurrent Programming

itself cause any action in the system. Instead, it is merely a collection of
procedures which can be executed by the processes in the system. This idea of
limiting the ways In which a shared resource can be accessed to the operations
performed by a small set of procedures was originally proposed In conjunction
with conditional crit ical sections (i9.3].

Monitors are imp lemented In such a way that the execution of the
procedures of a particular monitor are mutually exc lusive. Hence, a process
retains exclusive control of the resources of a monitor while executing one of the
monitor ’s procedures, until it surrenders its control. A process can surrender its
contro l of the monitor in one of several ways. First, it can complete execution of
the monitor procedure, at which time some other process can begin execution of
one of the monitor ’s l)rocedures. This form of control-passing is sufficient to
implement mutual exclusion of processes. The airline reservation system, for
examp le. utilizes only this form of control-passing. Other forms of
contro l-passing are provide by condition variables alon g with the operations delay
and ront inuc (Hoare calls these w ait and ctgnal ). A conditton variable has no
visible value , although it does have an initially empty queue associated with It.
When a process executes the statement dclay (rond) in the body of a monitor
procedure , the process’ name is placed on the queue for cond , the process is
blocked from executing further , and control of the monitor is released. When a
process executes the statement continuoleond) , this process Is temporarily blocked
(unless the queue for roa d is empty), and one of the processes on the queue for
roa d is resumed . Once this reawakened process leaves the monitor procedure,
the process which executed the continuc(cond) statement Is resumed.

In the airline reservation system, accesses to the database would be
controlled by a monitor databaac with procedures rcaerve and info as follows:

L~. . - . 
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mon itor daiahru.;
var a,’nitahlei array (1. . limit) of integori di iniojer i

procedure entry reIerr’e ( f ,  n i integer; su rr,aal b ole...) i
bag in
if ot’oiiohle 111 ~ it

then
begin

~ureeIai— tr u e;
n,’oilnbde If) i — suiaUahj o If) — it;

end
elite Jucrel ar — fal se

cml rnaert4’.

procedure entry info (f,niinsege r) ;
begin n i —  o, ’nUabI,If)
en.) info ;

begin
for i — 1 to l inus do n,’asiahle Ii) s — 1011

enti.

The monitor dninlin,, controls all accesses to the a rm y available, where
avaUahle(f I is the number of seats available on flight I DurIng system
operation, some process initializes the monitor by executing the statement m u
daiaha~e. 1 his auses the body of t he monitor progma m to be executed, setting all
elements of n,ailnhle to 100. Then, to tes erve n seats on flight I, a process
executes the statement

daiabaae, re..erve (f, a, iueeesa) ,
and to find out how many seats are available , it executes

dosahnae ,info(f, n).

For the input/ou tput buffe r system, the buffer would he controlled by a
monitor l/ Oj u~ffer wit h procedures deliver and retrieve as follows:

~~~~~~~~~~~~~~~~~ ~t~~ 5 ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ 
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monitor i/f) buffer ;
,ar bufferiblock ; dnus,iboole.ni froe,lo.d.die.s.di Ii.si

proi ’e.luta entry deliu.er(in:bloekI;
begin

r ii i,uu.’ then delay (free);
buff er; — dii;
inure: — true;
continue I leaded)

cml deliver;

procedure entry reir* ev.Ioutiblock) ;
beg in
ii not imue then delay (loa ded ) ;
p uS : — buffer;

— fal se ;
continue ( f r ee)

end relr *Cte;

begin
iii ua .u.’ — lake

enui.

During system o1ieiatiomi some process must initialize the monitor by executing
the statement m u I/O buff er This cau ses the variable dana. to be set to Iii.. .
Thereafter , the input and output processes execute programs as follows:

lfl Pti t j OUtpUt k

w hil e true tin while true do
begun begin

read Iirij, inf i te j  I i,’O In.ff.r, retrieve (oath) $
i/ f ) juuffcr. drlit’er (inj ) wriec lonth,.aifilek)

cnil end

The expiessive powei of monitors is equivalent to that of semaphores in
the sense that one can wr ite a program (or a monitor aemaplm.re with procedures
un it and r igmi l which models the behavior of a semaphore, and conversely one

at~ wr ite a semap hore progiam which models the behavior of a monitor .
However , if one wis hes to follow the convention that a shared resource in the
system can be accessed only by calling a procedure of the corresponding monitor.
then all acce sses to that resource must he mutually exclusive. For example, in the
.tii hne reseivat lon system several processes cannot execute the procedure
dainhnu’. in fo concuiriently Only by relaxing the restriction s so that th e database
could be accessed direct ly by the processes could the full concurrency in the
system he realized This, however , would compromise the goal of collecting
together all information about how a resource is utilized into one section of the
system speculicatmon

-~~~~~ —..-~~~ --.,~~~~~~~
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The monitor construct provides more modularity than semaphores. and
this yields more understandable programs. The ways in which a resource may
be accessed are contained in a single section of the system specification, rather
than in the programs for each process. This modularity also makes the system
easier to modify. For example. if we wish to modify the Input/output buffer
system so that several blocks could be buffered at once, we need only modify the
monitor procedures . The change would not affect the process programs.

The mutual exclusion of procedure calls, whi le it Is a restriction in terms of
ex pressive power , helps make monitor procedures easier to write than the
equivalent semaphore programs. Monitor procedures are less susceptible to
subtle timing er rors than the y would be if several processes could access the
resources control led by the monitor simultaneously. Perhaps a carefully designed
extension to t he monitor formalism could be developed which allows procedure
cal ls to proceed concurrentl y tinder some circumstances , while retaining the
modularity and clarity of the monitor concept.

As with semaphores , monitors can be implemented without major
difficu lties on a nmltiprogramming system. The Solo operating system of Brinch
Hansen [6,7) is written mainly in Concurrent Pascal 1!’), an extended version of
Pascal which supports monitors. The abilit y to write an operating system in a
high level language . Including the communication and synchronization between
processes~, is an important advance in concurrent programming.

4. Processes Commmin icat ing by Message Passing

In one more modular view of concurrent systems each process executes
within a local environment that cannot be accessed om altered by any other
process. For two processes to interact with each other, one process must send a
message to the other , and the receiving process must accept the message. One of
the first system designs which followed this approach was the Regnecentralen
RCI000 computer system (2] in which the system contained a single CPU yet
supported a number of independent message passing processes.

To illustrate how message-passing semantics might be supported by a
programming language, we shall use a language extension In which a message is
a tri ple (deuj narjon, ~miree , ronscnla) , where deai inosi on is the name of the
receivIng process , source is the name of the sending process, and ceneenta is the
information which the message Is to convey. Messages In this language are of
type record, Thus, for example, the contents field of a message it. is referenced
by the expression m,rorulen m~. Execution of the command scn.l(m) by process P.
where m mc of type message, will cause a message (m.deasinailoa , P. m.eoateata)
to be sent to t he process m.deaiinntlon. Each process has a single input queue

_____________
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into which all incoming messages are placed. Execution of the function reaM..
will first cause the process to wait until a message is placed in its Input queue, if
one is not already present. Then the first message Is removed from the queue
and returned as the value of the function .

These two message- passing operations are sufficient to solve the airlin e
reservation system problem. Whereas in the global environment approach. the
database is a global variable accessed by a number of different processes, with
the message~passing approach we shall define a process transact which has sole
access to the database. All transactions are Initiated by sending messages to
trahisnrt. The contents fields of these messages can have one of two formats:

( ‘ reser ve ’ , fl igh t , number),
and

(‘info ’ .fli gl v )

The program for the process transact is as follows:

process (raruacl ;
var a,,qsilahle: array ( 1 .  . l im i t)  of integer ;

req uest , rep ly : mauiagc ; J, n: intcger;

begin
f or it — 1 to l imit do available (n) s —  100;
while true do
begin

request: — receive;
case requesl .tonteflti .type of
‘ reserve ’ : begin

— requesi .conieuis. fl ighst$
n: — request. contents. number;
ii available (f ) � is

then
begin

rep ly.  coiitenmsi — true;
availab le If) : — available If) — a;

end
else

reply. consent a; — fake
end ;

info ’ : reply. contents: — available ( request . contents. IUglsi)
end;
reply. destination: - request , source;
send (reply)

ensi
end,

Notice that this program does not realize all potential concurrencies in the syste m.
The database transactions are processed sequentially, much as they were in the

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~- . - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - .
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monitor program, because the process transact has exclusive access to the
database, and it Is a sequential process.

For the I/O buffer example, we shall use a process buffer _roms i rol to control
the buffering between Input and output processes. An input process will send a
message containing the input block to buffer .rontrol which in turn will send this
block to one of the output processes. Each output process must notify
buffer_control when it Is ready to receive a block, or else buffer_control would
have no way of knowing what output processes are free. This can be
accomplished by sending a ‘ready’ message. Hence, the contents field of
messages sent to buffer _contro l can have one of two formats:

(‘ data ’ ,inblock) ,
and

(‘ ready’) .
Unlike the processes in the airline reservation system, the process buffer _control
cannot always serv ice its input messages in the order received. For example, it
may receive several ‘ready’ messages before receiving any ‘data ’ messages.
Hence, some means of storing messages In internal queues is required. For this
reason we will use a data type queue on which the operations enqucue and
dequeuo are defined, as well as the boolean-valued function empty. The program
for buffer_control is as follows:

.. — ———— ——-- ~~~~~, . ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~- - - 
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process buffer _control;
va r iatsq, readyq : queue of mcs.age;

inputm, oump utm , datamn , readymimc uge;

begin
w hile true do
begin

isvputm :— receive;
case inpu t ni .eont ents. myp e of
‘data ’: if cmpty (read yq) then cnqueuc(inpsisss,da;sq)

else
begin

read y i n: — dequeue(readyq) ;
out put its , contents: — inpu t ns . contents. inbiock ;
out pus us. destination: — readym. source ;
send lousp usm)

end;
‘ready’ : If cinpty (dataq ) then enqucueUnpsi;ns,readyq)

else
begin

datam; — deqecua(daiaq);
out put in. contemiii: — datara. contents. lnblock;
outputm.deatinamion;— Inpu;m.aourc.;
send (ouep iam)

end
end

end
end.

The input and output processes execute the 1ollowing codes:
lnput~ OUtpUtk

begin begin
in j. destination: — ‘buffer_control’ ; ink, destination: — ‘buffer_control’;
rnj .rontents. type : — ‘data ’ ; ink. eo,iteistJ. type s — ‘ ready ’ ;
while true do while true do
begin begin

rea4i(inj,infilej ); send(mk) ;
inj.eonunts.inhloclc: — inj; outm k:— receive;
send (mj ) write ( outmk. contents, out filek)

c,s.I end
cmi. cnd.

Note that in the above set of programs, there is no means of limiting the
number of blocks buffered by buffer_control. If the input processes send blocks
to buffer _control at a higher rate than buffer_control sends them to the output
processes . the number of blocks stored in the queue dataq will grow without limit.
In order to limit this buffering, additional control messages must be sent between
the input processes and buffer _contro l. For example , an input process may send
a message ‘ready_so_send’ to buffer_control which, when it had sufficient space,
would reply ‘send’ . Only when an input process receives permission would it

— -~~-‘--
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send a block. Thus , message-passing can accomplish synchronIzation as well as
communication between processes.

This view of processes as independent entities which can interact only by
sending messages to one another is certainly more modular than the view of
processes executing withIn a global environment. As a result , it i~ much clearer
to t he programmer exactl y how the processes can affect one another.
Furt hermore, this view corresponds more closely to the way in which processes
are implemented on a distributed computer system. For examp le, the program
for the airline reservati on system very naturally expresses the way in which such
systems a:e imp lemented. In a typical system, remote intelligent” terminals
assemb le messages requesting operations on the database These messages are
then sent to a central computer, wh ich performs the operations and sends back
reply messages. Control messages such as the ones sent between processes in the
input~out put buffer system correspond closely to the control signalling between
the components of a distributed system . When the programming language
reflects the underlying system design, a programmer can understand more fully
how the program will be executed and hence can design programs which run
efficiently on the system. Both the modularity and the closeness to the
implementation make this approach to concurrent programming attractive for
many important applications

The messa ge-passing operations described so far are clearly too primitive
for a high level programming language. Like semaphores, they provide only a
simple form of process communication and synchronization, leaving the
programmer to determine what types of processes are requIred, what types of
control and data messages must be sent between processes , and at what points in
the programs the messages should be sent.

More sophisticated languages have been proposed (21.24) which provide
the programmer with a higher level v iew of the cooperation of message-passing
processes Whereas the illustrative language used for our examples requires a
separate program for each process, a program written in either Kahn’s (24) or
Hoare’s (21) language specifies the operation of a number of processes. A
program is a set of coroutines, where each activation of a coroutine may be
executed by a separate process. This approach provides a more concise view of
t he system and also eliminates some of the duplication In effort needed to write
separate process programs One can specify a set of similar computations as a
coroiitine a rray , ’ in which a set of processes execute the same coroutlne program
with different input parameters. Processes are dynamically created and
terminated by invoking or completing execution of a coroutine. Kahn’s language
achieves an additional degree of semantic elegance by treating the sequence of
messa ges sent f rom one process to another as a single data object called a streaus.
He defines Irimitive operations on streams whIch are analogous to the

_______  _____
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commands send and rt-cc,,c However , since the sequence of messages sent
between each pair of processes is a separate stream, a process can decide wh ich
process to receive its next message from. This enables the programmer to limit
the sources of nondeterminacy in the system. In fact, programs written In Kahn ’s
langu age are inherently determinate. A process must decide in advance which
stream to remove the next messa ge from; hence the order In which messages
arr ive at a process has no effec t on the outcome of the program. If the language
were modified so t hat several processes could enter messages concurrently into a
sing le st ream , however , nondetermmate computations could be expressed. Both
Hoare’s and Kahn’s languages are at very preliminary stages of development and
implementation. More work will be required before these concepts are fully
developed and become tools of programming practice.

Hewitt and Atkinson [17] have proposed a program structure called a
se, iahz cr to provide a more structured and higher level view of concurrent
programming in a message-passing environment. The purpose of the serializer
construct is to provide the programmer with a general framework for resource
controllet s whic h is then customized to fit a particular application, much as the
monitor construct provides a general framework for a resource controller
operating in a global environment. In addition the serlahzer design tries to
correct some of the weaknesses in monitors, such as the complexity of the
operations delay and conti nue , and the limited amount of concurrency. The
behavior of a serializer is defined in terms of the actor mode) of computation
(15.16.18]. a model in which message-passing is viewed as the fundamental
operation. In this model ever y action is performed by an actor , where each actor
behaves like a message-passing process. That Is, It receives input messages,
performs an operation on the input, generates output messages, and possibly
changes its internal state. Unlike processes, however , actors can be dynamically
created and abandoned. With this model a wide variety ci activities can be
ex pressed , such as concurrent operations . dynamic system creation and
reconfiguration , and nondeterminacy. Furthermore, the actor model allows
highly concurrent computations to be expressed more naturally than the
sequential process model does, because the only sequencing constraints between
actor activities ai-e those imposed by the messages. This great expressive power
of the actor model allows a seriahzer to have a much more sophisticated
behavior t han can be expressed in a programming language such as PASCAL
extended with message-passing commands. Furthermore, since the designers of
the serial izer were not constrained by the limited ty pes of behavior exhibited by
sequential, message -passing processes, they could develop a cleaner structure with
greater potential for concurrency . Serlalizers as well as the actor model are still
in an early stage of development. Their influence on future language design and
programming practice remains to be seen.

- — ~~~~~~~~~~~~~~~~~~~~ ~~ I. ~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Sequential processes that communicate by message passing can be
implemented without great diff iculty. The processes can be carried out by a
number of independent processors . such as one typically finds in a distributed
computer system, or even by a more traditional multiprogramming system, such
as the RCIC)OO computer system By extending the RCI000 system with
semaphore operations . Lauesen [26) was able to develop an operating system
which is provably free of deadlocks. Few operating systems which use machine
synchronizat ion instructions can claim this achievement.

A system consisting of a small number of sequential, message-passing
processes can achieve only a limited amount of concurrency, as was seen in the
air line reservation example Since a resource can be accessed by only one
process, and this process operates sequentiall y, concurrent accesses to a single
resource cannot be expressed . In some cases , a large resource can be partitioned
into a number of parts . and eac h part managed by a separate process. For
exam ple, the information about each flight in the airline reservation system could
be maintained by a separate process. However , if we want to add new flights to
the database or remove old ones, some method of dynamically creating and
abandoning processes is required . When the system is divided into many small
parts which can be dynamicall y created and abandoned , it no longer seems
justified to call t hese parts processes; rather they are more like actors. Exactly
where the dividing line between the process model and the actor model lies is a
matter of debate, as are many other issues in developing highly concurrent
systems which operate in a message-passing environment.

5. Data-Dr3ven Program Execut ioii

The programming languages discussed so far (with the exception of those
based on actor semantics) have been based on the concept of communicating,
sequential processes. That is, a system is viewed as a number of processes which
can proceed concurrently, but within each process only one action is performed at
a time. Programming languages designed to express the behavior of these
systems are simi lar to traditional languages, wit h constructs added to express
process communication and synchronization. An alternative to sequential
processes is to view a program as an unordered set of Instructions, each of which
defines how a set of values is to be computed and what Identifier is to be
associated with each value. Within an environment , an identifier must refe r to a
unique value. Rather than executing in strict sequential order , instructions can
be executed as soon as t heir input operands are ready. i e. as soon as the values
required to compute the expressions have themselves been computed. This form
of piogram execution is said to be data-d riven , sinc e the arrival of the operands,

I, rather than the Indication of a program counter, determines when an instruction
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will be executed I anguages which express programs for data-driven execution
are often called data flow languages [1,10,12 ,25,30].

To express an unambiguous computation , instructions in a data flow
language must be side ef Iect-f ree. That is, the effect of executing an instruction
can only be to compute a set of values for a set of identifiers. It cannot alter the
definition of any other identifier in the program. Furthermore, the program
must obey the “single assignment rule”, meaning that each identifier Is defined
only once within an environment. Considering the importance of side-effects and
multiple assignments to variables in traditional programming languages, one
naturally wonders how a lan guage could eliminate both of these properties and
yet be able to ex press useful computations. Data flow languages can make up for
these restrictions wi t h  recursive procedures and with data st reams (23,30).
Recursion cliniinatcs the need for iteration , a control structure which relies
heavily on side effects and mul tip le assignments. Streams allow the programmer
to view a sequence of elementary data values as a single entity. Thus, by writing
a piocedtiie that accepts inputs that are data streams, one can express program
units which perfor m operations on entire sequences of input values. Procedures
which have stream s as inptns and return streams as results will be called modules
to differentiate them f rom procedures which operate on individual data values.
For the airline reservation system examp le, we shall define a module trrznsacl
with inputs reque.;t .~Irea riI: si rcam of mcs~agc and available: array (1. ,timü) of
integer , which w ill compute an output repi ., sl ream: atrca m of m~~aagc. That is,
the module will receive a sequence of requests from the remote terminals and an
initia l state of the data base, and it will produce a sequence of replies.

To make use of streams, we must define some operations on them. To
extract the values horn •~ stream .~. we define two functions: lint (s) which

- 3 i etni ns the (ii st value in the sequence, and res t (s ) w hich returns the stream
consisting of all elements in except for the first one. To construct a stream, we
define a function con s where the value of co nc (x , g) is the stream consisting of x
(w hich cannot be a stream) followed by the elements of stream a. Furthermore,
we must define a rule for procedure invocation in data flow . In the earlier
definitions for data flow languages (10), a procedure P(x ,y, s) canno t be
invoked until all input arguments x, y. and a are ready. With streams, however,
this rule Is modified somewhat. If. for example, x is a str eam, then P could be
Invoked as soon as the first element of stream a is ready. Henct the module
trnn.rnrl can be invoked as soon as the first request has arrived .

With a few modifications to the PASCAL syntax , we can arrive at a
language which is suitable for expressing data flow programs. Most importantly,
to emphasize the idea that an instruction is a definition of how a set of values Is
to be computed, assignment statements

<id>:— <cap>

- ~~~~
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will be replaced by identifier definitions
let <Id> <cap>.

Furthermore, a side-effect free analogy to “updating” the array available is
- required. We will define the function modify(IJ,i,v) w hich returns an array

which is identical to /J, except that the ith element is equal to v. Despite the
syntactic similarities, however, the semantics of the data flow language are
entirely different from PASCAL . In particular, the order in which statements are
listed does not dictate the order in which they are executed.

The program for transact is as follows:
module transact (request_stream: stream of message;

available: array [1. .limit) of Integer) ;

returns reply_stream: stream of message;

var request, reply: message; F, ,u integer;
nrwst ate: array (1, .limit) of integer;

begin
let, request — firsz(request_stream) ;
case requesi.conlenes.lypc of
‘ reserve ’ : begin

let I — request ,contenu,flight :
let n — requczt.cosuents.number;
if available (f) � n

then
begin

let rcply.contents — true;
let ncwstate —

modify (available,!, available (f) —n)
end

else
begin

let reply. contents — false;
let rrewstale — available

end
end;

‘info’: begin -.

let f request.contenss,flight;
let reply. contents — available (11;
let newstate — available

end
end;
let reply. destination — request . source;
let reply_stream —

cons (reply , transact (rest (roqueat_stream, newatat.)))
end.
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The module Iran.~nrt receives its input requests In the form of a single
stream. This stream is composed of elements produced by a number of separate
modules that transmit request messages from agent terminals. So far, no means
for generating such a stream has been discussed. In fact, the data flow language
which has been presented can express only determinate computations: the result
of program execution depends only on the values of the Inputs, and not on the
order in which they are received . The airline reservation system, however,
behaves nondeterminately, and hence some means of ex pressing nondeterminate
operations in the language is required . For this purpose, we will define a
primitive operation m erge, where the value of merge(a 1,s2) is a stream
containing all elements of streams ii and s2, such that the ordering of elements
from ii is preserved , as is the ordering of elements from s2, but the order In
which an element from ~1 and an element from *2 occur is arbitrary. This
operation is sufficient to ex press a wide variety of nondeterminate computations.
For example, suppose the airline reservation system contains three terminal
modules which produce streams requests! , requests2, and requesis3. We can write
the program which computes the three output streams as follows:

module sy ste m (request 1 , requess 2 , rcquest3: stream of message;
a,,ailat,le: array (1. . limit] of integer) ;

return s rep lies! , r rpl i es 2 , repliea3: strcam of message;

bctrin
let rl — tag (r eq ues t ! , 1) ;
let r2 — tag( requrse2 , 2)
let r3 tag (re qurat 3 , 3) ;
let requ ests — mcrgc(rl , mcrge(r2,r3) ) :
let re~mlies — tran sa ct (rcquests ,atiailahle)
let repl ies! , replies2, rep lies3 — sort (replies)

enil.

In this program the messages in the three streams of input requests are first
ta gged with the strea m number. These three tagged streams are merged together
into a single stream which serves as the Input stream to transact. The output
stream from transact is sorted according to the tag values Into three streams of
replies -- one for each termina l module.

A data flow program for the inputloutput buffer system will not be given
here, because it does not demonstrate any new concepts.

Data flow languages seem very promising for expressing computations for
concurrent execution , since t he only restrictions on the concurrency are those
imposed by data dependencies. Although side-effects and identifier redefinition
are excluded , the combination of recursive procedures and data streams yields a
surprisingly ri ch language. Furthermore, the single, nondeterminate operator
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merge is sufficient to express numerous types of nondeterminate system behavior.
Not enough experience has been gained, however , to fully evaluate the
expressive power of the language. Suggestions for extensions have been made
(I), for exam ple, which allow communication links between modules to be created
dynamically. Just how necessary such a feature is, and how important ot her
features may be, are open questions.

Data flow languages permit programs to be written which are far more
modular than is possible with traditional languages. Each module of a program
can be described fully in terms of its input/output behavior. Due to the absence
of side-effects, sections of the program can interact only in limited and
well-defined wa ys. In fact , each instruction executes in its own local environment:
it computes a result based only on its operands. This high degree of modularity
leads to programs which more clearly describe what computations the system is to
perform. In addition, data flow languages allow the programmer to explicitly
limit the sources of nondeterminacy in the system. Nondeterminacy can occur
only where it is exp licitly allowed through the use of the merge operator.
Considering that unwanted nondeterminacy is a major source of errors In
concurrent systems, a means of controlling It is of great significance.

The implementation of data flow languages is currently at a rather
primitive state. Due to the high degree of concurrency and the asynchronous
nature of instruction execution, these languages may require totally new forms of
computer architecture. Several designs have been proposed [11,29), but numerous
problems remain to be solved before practical data flow machines can be realiaed .
Hence the state of the art for data flow language design Is well ahead of the state
of the art for architectures which support these languages.

6. Conclusion

The three major approaches to concurrent programming discussed here
differ greatly in their fundamental views of how a computer system operates.
With the global environment approach, one views a system as a number of
processes which execute “under one roor and communicate wit h one another by
altering the surrounding environment. With message-passing processes, one
views a system as a number of processes which execute under their own roofs
and send te legrams to one another. With data-driven program execution, the
system is viewed as a network of operators, eac h of which receives data values,
computes new data values, and sends t hese output values to the next operator in
the network. Furthermore, this network dynamically expands as recursive
procedures are invoked and contracts as they are completed. The three
approaches differ in the amount of concurrency which they can achieve, the
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clarit y of the programs, and t h e  eae  with which they can be implemented given
the curient state of computer system design.

No system composed of communkating, sequential processes can realize the
full degree of concurrency latent in high level programs However , a number of
processes can often proceed concurrentl y. With semaphore-based programs, the
number of act :vc , concurrent processes is limited only by the cleverness of the
programmer subject to the need to maintain a consistent global state. With
monitor-based programs, one must choose between completely protecting each
resource with a monitor and hence precluding concurrent accesses to this
resource, or a llowing processes to access a resource directly, thereby compromising
the modularit y provided by the monitor concept. With message-passIng
processes a resource can be directly accessed by only a single process. Hence,
unless the resource can be partitioned into a number of parts , each of which is
managed by a separate process , concurrenc y in the system Is restricted. In
contrast to programming languages based on sequential processes, data flow
languages and actor -based systems can express all forms of concurrency allowed
by the algorithm. alt hough no existing machine architectures can fully exploit
t heir benefits.

Evaluating how clear ly each approach can express the operations of a
system is a subje uive jucigement. However , such features as modularity, limited
sources of nondeterminac y, and high-level language constructs are clearly
desirab le goals. In terms of modularity, the approaches to concurrent
programming have been presented in order of Increasing modularity. First, a
sema phore-based language allows little modularity -- the processes can affect each
other in numerous and often subt le ways. Next, monitors provide more
modularit y by :-estr ic ing the ways in which each process can access global
resources. Languages based on message-passing processes carry the modularity
one step further by eliminating the global environment altogether. Finally, data
flow languages , by eliminating all side effects , achieve a degree of modularity in
w hich each program module can be viewed as defining a function from input
va lues to output values. As for limiting the sources of nondeterminacy, only
Kahn’s stream language and data flow languages provide means of stating
explicitly where nondeterminacy is allowed In the system. Operations on
semaphores, global variable accesses , monitor procedure calls, and
messa ge-passing. on the other hand , are all potential sources of nondeterm inacy.
When nondeterminacy is not wanted, the programmer must be careful to use
these operations in a way which will not allow nondeterminate behavior.

With the exception of monitors and serlalizers, high-level language
support for concurrent programming Is largely nonexistent. With both
semaphore-based systems and message-passing systems, the language constructs
presented express very elementary forms o process communication and 
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synchroniiat ion. The programmer must devise conventions for using these
constructs to achieve the desired behavior . Data flow languages would also
benefit from more sophisticated constructs. For example. a construct similar to a
monitor has been proposed for data flow languages [I) which eliminates the need
for the programmer to construct a tagged stream from several input streams and
then to sort the output stream into its constituent parts . Designing high level
programming tools which are sufficiently general and modular yet do not restrict
the concurrency exploitable in their implementation is one of the most difficult
challenges to the designer of future high-level languages.

Given the current state of computer design, one has little choice of which
programming approach to use if a practical Implementation is required. Both
approaches which assume a global environment fit most naturally on a
multiprogramming system consisting of processors sharing memory. Such systems
are common, and as a result a large proportion of the work in concurrent
programming has been directed tow ard this global environment approach.
Message-passing processes, on t he other hand, describe most naturally the
operation of a system of independent processors connected by communication
channels. Such systems are becoming increasingly common, due largely to a
desire to distribute the processors geograp hically, and a lso to the availability of
small , low-priced processors. Most programming of these systems is still done at
the machine language level. No machine-independent languages for
messa ge-passing processes have come into accepted use. Finally, languages which
express higher degrees of concurrency than can be achieved by communicating
sequential processes , such as actor-based and data flow languages, have not yet
been implemented to take advantage of this greater concurrency. Whereas the
other approaches could be Implemented by modifying existing machine designs.
t hese high concurrency languages appear to require totally new approaches to
computer design if the latent concurrency is to be realized. While the design of
languages for concurrent programming is an interesting f ield of stud y in its own
right, a language is of little use unless it can be effectively implemented. Hence,
the design of computer systems to support languages which express high degrees
of concurrency is also an important field of study.
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