AD=A061 158

UNCLASSIFIED

CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAI=-=ETC F/6 5/2
SYSTEM DOCUMENTATION FOR COMPUTER=AIDED ENVIRONMENTAL LEGISLATI==ETC(U)
SEP 78 R L WELSH

CERL=SR=N=31 ; NL

"“.

o

o

construction
engineering

SPECIAL REPORT N-31

research
laboratory

September 1978

SYSTEM DOCUMENTATION FOR COMPUTER-AIDED
ENVIRONMENTAL LEGISLATIVE DATA SYSTEM

\\\\v

\

A
\

\\

\

R 5

/

‘\\‘q‘

/

Approved for public release: distribution unlimited

A\ /
E=nl.

The contents of this report are not to be used for advertising, publication, or

promotional purposes. Citation of trade names does not constitute an
official indorsement or approval of the use of such commercial products. ¢
The findings of this report are not to be construed as an official Department !
of the Army position, unless so designated by other authorized documents.

The program described in this report is furnished by the government and
is accepted and used by any recipient with the express understanding
that the United States Government makes no warranty, expressed or implied,
concerning the accuracy, completeness, reliabiiity, usability, or suit-
ability for any particular purpose of the information and data contained
in this program or furnished in connection therewith, and the United
States shall be under no liability whatsoever to any person by reason

of any use made thereof. This program belongs to the government. There-
fore, the recipient further agrees not to assert any proprietary rights
therein or to represent this program to anyone as other than a govern-
ment program.

DESTROY THIS REPORT WHEN IT IS NO LONGER NEEDED
DO NOT RETURN IT TO THE ORIGINATOR

- N

gl

&K

?
"
:

\;;jZf’fNVIRONMENTAL LEGISLATIVE DATA SYSTEM,

Syl !t f Sl ASIIE LA LIUN U IHI> PAGE (When Liata rntered)
READ INSTRUCTIONS

REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

| 2. GOVT ACCESSION NO.| 3. RECIPIENT'S CATALOG NUMBER

|
|
1
i
|
|

TSGETMe) Bt | e gy > 5. TYPE OF REPORY & PERIOD COVERED
SYSTEM_DOCUMENTATION FOR.COMPUTER-AIDED (\4 FINAL 4:t/

!
6. PERFORMING ORG. REPORT NUMBER

e ———-

7. AUTHOR(8) ...~

\ -~
RecL / Welsh
L -1}/ WO 1

8. CONTRACT OR GRANT NUMBER(e)

. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

0.5 ARMY ECERL : ST AREA & WORK_UNIT NUMBERS

P.0. Box 4005 (/C) an162720n896491} 002
Champaign, IL 61820 :

11. CONTROLLING QFFICE NAME AND ADDRESS

‘ @ﬁm

13. NUMBER OF PAGES

15. SECURITY CLASS. (of this report)

Unclassified

15a. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

Copies are obtainable from National Technical Information Service
Springfield, VA 22151

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
system documentation

CELDS
software

20. ABSTRACT (Coutinue en reverse side i neceesary and identify by block number)

‘-75>This report presents the total system documentation for the.Com—

puter-Aided Environmental Legislative Data System (CEgD§). A1l infor-
mation necessary for the maintenance, update, and modification of the

CELDS software is presented. ~¢ ¢ aifts AD ~ADGI 126,

DD . 5"y 1473 Eoimow oF 1 nov s s OBSOLETE UNCLASSIFIED AB

-~ - o B
: / b ? 7 / SECURITY CLASSIFICATION GF THIS PAGE (Wien Data Entered)

i b e P el it B

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

SECURITY CLASSIFICATION OF THIS PAGE(When Data Entered)

A
&

FOREWORD

This project was performed for the Directorate of Military Con-
struction, Office of the Chief of Engineers (OCE), under Project
4A762720A896, "Environmental Quality for Construction and Operation of
Military Facilities," Task 01, "Environmental Quality Management for
Military Facilities," Work Unit 002, "Development of Environmental Tech- i
nical Information System." Mr. V. Gottschalk was the OCE Technical .
Moni tor.

This research was made possible through the efforts of
Mr. James A. Gast to whom most of the software development is attri-
buted, the Library Research Center of the University of I11inois, and
the scientists and engineers of the U.S. Army Construction Engineering
Research Laboratory (CERL).

Administrative support and counsel were provided by Dr. R. K. Jain,
Chief of the CERL Environmental Division. COL J. E. Hays is Commander
and Director of CERL, and Dr. L. R. Shaffer is Technical Director.

CONTENTS
DD FORM 1473

-—

FOREWORD 3
l INTRODUCTION..'...............l...'ll.l'....‘l‘..‘...... 5
Back ground
Purpose

Outline of Report
Description of CELDS Hardware and Software
Mode of Technology Transfer

? DATA COLLECTION PROCEDURES...eeeeescavnes G g A e, 7
Identification
Collection
Update

3 DATA ENTRY PROCEBURES . civvesvsvasssisidasoss s nnasss 12

Scope of Data Records
Description of Data

L COMPUTER DPERATIONS .« ciiciinssivasssvnsbubesrsmsssvosons 19
Data Input
Data Base Creation

5 DOCUMENTATION OF CELDS PROGRAMS..eoececesesescacessncans 21
CELDS Algorithm
Detailed File Description
Documentation of Programs

6 SUMMARY AND RECOMMENDATION....eeeesoocesocnosenscnasnnss 28
APPENDIX A: Attribute Listing 29
APPENDIX B: Keyword Listing 45
APPENDIX C: Source Code and Subroutines 87
APPENDIX D: The Make_Search Subroutine 93
APPENDIX E: The Hier Subroutine 99
APPENDIX F: The Push File 105
APPENDIX G: The Retriever Subroutines 107
APPENDIX H: General Utility Subroutines 147
DISTRIBUTION

.

i

SYSTEM DOCUMENTATION FOR COMPUTER-AIDED
ENVIRONMENTAL LEGISLATIVE DATA SYSTEM

1 INTRODUCTION

; Background

The Computer-Aided Environmental Legislative Data System (CELDS)
was developed to respond to the Army's need for rapid, easy access to
environmental legislation relevant to a specific project or activity.
In 1972, CERL developed a pilot system which contained iegislation from
six states and the Federal government.’ Based on results of the pilot,
the system's content and operation were modified, and a prototype CELDS
containing data for 32 states was implemented in 1975. A user manual
was published in November 1975. ‘

While data were beingcollected for the remaining 18 states, CERL
studied the feasibility of implementing CELDS on a low-cost mini-
computer. Results of this study considerably enhanced CELDS, simplified
its updating, and significantly reduced its cost.

Purpose

The purpose of this report is to document the current version of
CELDS.

Qutline of Report

The CELDS documentation will include procedures for selecting and
updating legislation to be included in the system (Chapter 2), a des-
cription of the data records (Chapter 3), the formatting of legislation
into CELDS data records (including abstracting and indexing) (Chapter
4), and complete documentation of the software (Chapter 5).

1 R. D. Webster, R. L. Welsh, and R. K. Jain, Development of an
Environmental Technical Information System, Interim Report
E-52/ADA009668 (Construction Engineering Research Laboratory
o [CERL], March 1975).

R. L. Welsh, User Manual for the Computer-Aided Environmental
! Legislative Data System, Technical Report E-78/ADA019018 (CERL,
| November 1975). Superseded by AD-AOL/ /2y,

Description of CELDS Hardware and Software

CELDS uses a PDP11/50 minicomputer, stores data on one 88-megabyte
disk, and uses the UNIX operating system. ' A11 of the CELDS software is
written in “C", a high-level language supported by UNIX. The system ad-
ministrator should have access to and be familiar with the UNIX refer-
ence manual ® and the UNIX utilities manual."

Mode of Technology Transfer

The technology transfer will be accomplished in accordance with
techniques for computer-assisted systems as defined in appropriate Army
regulations. :

3 K. Thompson and D. M. Ritchie, UNIX Programmer's Manual,

4 6th ed. (Bell Telephone Laboratories, Inc., May 1975).
Documents for Use with the UNIX Time-Sharing System (Western
Electric Company, 1975).

2 DATA COLLECTION PROCEDURES

Identification

Legislation included in CELDS must contain objective criteria per-
taining to the environment. The following guidelines should be applied
to help identify relevant standards:

1. Laws and regulations containing quantifiable or objective stan-
dards should be entered (for example, those which numerically define the
maximum permissible amount of a substance which can be released to air
or water, or those which name protected species or list specific re-
quirements for the location of a landfill site). "Enabiing legis-
lation," which creates or authorizes a specific agency to promul gate and
administer regulations, is helpful for understanding the purpose of
those regulations, but merits few entries because it does not express
concrete, measurable standards. An exception is enabling legislation
which also establishes interim standards.

2. Legislation requiring permits or reports for an activity should
be entered.

3. Laws and regulations must be orginated and administered by a
nationwide or statewide agency, i.e., city and county ordinances, are
not included.

4. Only enacted 1aws or regulations are included.

5. Laws dealing only with violations of regulations and the penal-
ties for noncompliance are excluded.

Collection

Collection of legislative data is begun by searching administrative
codes and/or statutes available in a law library. Administrative codes
with complete up-to-date coverage will provide regulations from all
agencies and are the preferred source materials for CELDS data records.
When a code is available, the index should be searched for regulations
pertaining to the following areas:

Air pollution 1. Incineration
2. Industrial plants
3. Refineries
4. Ambient air quality standards
5. Air pollution standards

Drinking water quality standards

Endangered species 1. Endangered and protected species
2. Pests
Erosion 1. Sedimentation/erosion control
Land Use 1. Management of coastal wetlands
2. Fencing
3. Forest cutting
4. Dredging
5. Landfills
Noise 1. Motor vehicles
2. Aircraft
3. Exclude regulations designed to :
protect employees at work.
Pesticides and economic poisons 1. Restricted use materials
2. Disposal of wastes
3. Storage/disposal of containers
4. Control of pests
Radiation 1. Emission limitations
2. Exposure standards
3. Waste disposal procedures
Solid waste 1. Disposal of solid and hazardous
wastes
2. Landfills
3. Recycling
Transportation of explosives 1. Storage and transportation of
explosive and hazardous materials
Water pollution 1. Liquid industrial waste disposal

2. Protection of coastal waters
3. 0il1 spill cleanup
4, Standards for lakes and streams

Not all states have comprehensive administrative codes, nor do they
update them frequently. In these cases, the state statutes are searched
in the areas listed above. The statutes occasionally include some 1aws
which meet the CELDS criteria; however, they are primarily useful for
providing the “enabling legisiation" which gives the names of specific
agencies and the activities that each is empowered to regulate. The ap-
propriate agencies should then be contacted for copies of the regu-
lations they administer.

Agency addresses can be obtained from a variety of sources: state
blue books, telephone books, and the Direciory of Governmental Agencles
Safeguarding Consumer and Environment. S Agency correspondence is filed,
since it often provides corrected or more specific addresses, names of
persons to contact, and information about relevant or upcoming regu-
lations. If an agency indicates that certain types of regulations are
nonexistent, this fact should be noted and filed.

An alternate source of air quality, water quality, and solid waste
disposal agency addresses and regulations is the Environmental Re-
porter.® However, direct correspondence with agencies often produces
more current materials and more comprehensive coverage.

Update

Federal

Updating Federal data records that are already in CELDS involves
locating changes in, additions to, or deletions from the abstracted leg-
islation. Both substantive and insignificant changes to the scope of
CELDS should be considered. Because the effective date on a data record
indicates the last noted revision in the legislative contents, this date
must be changed to match that of the most recent revision, whether the
revision is significant to the data record contents or not. This is
done to avoid additional rechecking of a revision that has already been
noted. In addition, transfers of administrative agencies, revisions in
text, and changes in tables must be noted. Such changes may affect both
the bibliographic and legislative reference and the attribute and key-
word indexing.

To locate pertinent revisions, additions, or deletions in Federal
regulations, the following sources may be used:

1. An up-to-date master list of Code of Federal Regulations (CFR)
sections included in the Federal data records should be maintained.
This 1ist will direct the abstracter to CFR sections that are already
abstracted and to the accession number of the data record in which the
regulation appears.

2. The Federal Register (issued Monday through Friday) contains
material affecting existing Federal regulations and also contains newly
adopted regulations. Changes in regulations which are already included
in the data base may be found by comparing the master 1ist (mentioned

5 Directory of Governmmental Agencies Safeguarding Consumer and

Environment (1974),

6 p
7 Environment Reporter(Bureau of National Affairs).

9

above) with the "Cumulative List of CFR Parts Affected" which appears in
each issue. An "affected part" is a section which has been revised, de-
leted, or added. New regulations, which must also be examined for in-
clusions in CELDS, may be discovered (1) by checking the cumulative 1ist
for section numbers that do not appear on the CELDS master 1list but are
successive to numbers which do appear, and (2) by consulting the con-
tents listing of each issue.

3. Changes cited in the icderal Hegister occasionally refer to a
sentence or paragraph in a previously published regulation. The full
text of the regulation must then be found to determine what changes have
been made. This may involve searching through previous issues of the
Federal Register or finding the regulation in the Code of Federal Regu-
lations.

Since the Federal Register is a daily publication, updating CELDS
coverage of Federal regulations can be a continuous process, thus insur-
ing optimum currentness. However, updating Federal statutes is a less
continuous task because of the nature of the sources used. The primary
source is the united States Code Annotated (USCA). These volumes are
kept current through distribution of cumulative annual pocket parts and
monthly pamphiets that contain new laws and judicial constructions.

Each volume, pocket part, and pamphlet contains laws, executive orders,
proclamations, and an index to the publication's contents. Amendments
to statutes already in CELDS can be located in the cited sections of
current pocket parts or pamphlets. New laws may be found by using the
indexes. The United States Code (USC) is the official publication of
enacted laws, but is updated less frequently than the USCA and therefore
is not useful to this project.

States

Updating of state records follows the general procedures estab-
lished for Federal regulations. The original sources, such as adminis-
trative codes or state statutes, are compared to the existing abstracts
for changes in effective date, content, and administrative agency and
address.

The individual agencies are requested by letter to provide copies
of current regulations and asked to routinely send future changes and
additions. Included with the request is a self-addressed prepaid card
on which the agency can indicate whether or not regulations are being
sent and whether a mailing list is maintained. Agencies which do not
have mailing 1ists are contacted about new or revised regulations at 6-
month intervals by postcard. Agencies which do not respond to the ini-
tial letter within 3 months are contacted again. As regulations are
received from the agencies, the existing abstracts are revised, new laws
are abstracted, and all the information is entered into the data base.
Legislation pertaining to new CELDS subject areas is found in statutes

10

b

e SS—

and code books; names of possible relevant agencies to be contacted are
provided in state blue books or The National Directory of State Agen-

eres.

Checking code books and statute supplements against the legislative
reference 1ists reveals any amendments to the legisiation. The table of
contents of weekly Fnviromment Reporter supplements is checked for ap-
plicable regulations. Additions, changes, and deletions are checked
continuously by examining supplements as they become available, by
checking supplements to the Environment Reporter, and by contacting
state agencies periodicaily.

The National Directory of State Agencies (Information Resources
Press, 1974).

11

3 DATA ENTRY PROCEDURES

Scope of Data Records

A single agency regulation generally covers many subdivisions of a
particular interest area. For example, the Alabama Air Pollution Con-
trol Commission's Rules and Regulations booklet contains general sec-
tions on provisions for permmits, variances, compliance schedules, sam-
pling, records, and reporting. In addition, it contains specific
sections on air pollution emergencies, open burning and incineration,
and control of various emissions from many emission sources, such as
kraft pulp mills, general process industries, nitric acid manufacturing
plants, and motor vehicles.

The CELDS abstracter must rewrite this material in concise legal or
environmental standards statements for entry into the data base on indi-
vidual CELDS data records. Each data record should provide information
on a specific subdivision of required or prohibited actions, and should
be retrievable by a CELDS user.

Description of Data

Each CELDS record consists of 12 data fields:

1. Accession number

2. Title

3. Effective date

4. Legislative reference

5. Major envircnmental category
6. Geographical/political scope
7. Administrative agency

8. Bibliographic reference

9. Abstract

10. Table of standards

11. Environmental attributes

12. Keywords

Accession Number

An accession number assigned to each data record indicates the
order in which it has been collected and entered into the system. The
accession number is useful for referring to specific laws in the CELDS
retrievail program. If a data record is removed from the system because
it has been repealed or amended, its permanent accession number is not
reassigned to a new entry, but instead is added to a master list of de-
leted accession numbers. Accession numbers are entered as digits with-
out any punctuation.

12

P,

T’L't Le

Each data record receives a brief but comprehensive title that in-
dicates the abstract's content. This title helps the user determine the
relevance of the entry to his/her specific search. Therefore, it should
reflect the scope and emphasis of the abstract, and need not correspond
to the heading of the source material. For example, titles for regu-
lations on emission standards from a manufacturing process should in-
clude the name of the process and the type of emission, e.g., SULFUR
OXIDE EMISSIONS FROM KRAFT PULP MILLS. Each title is followed by a
period.

Effective Date

Most laws and regulations are printed with a date or series of
dates that indicate when the document or section was enacted, when its
contents became law, and when any subsequent revisions or amendments
were made. Similarly, the date assigned to a CELDS data record reflects
the currentness of the laws from which the abstract is taken, and is
generally the most recent date found in the source material. For exam-
ple, the Water Pollution Control Act of 1972 which was amended
December 28, 1973 and January 2, 1974, receives the date 1-2-74. How-
ever, there is one exception. When a law which has already been enacted
becomes effective significantly later than the enactment date, the
enactment date is used in the date field and the effective date is cited
in the abstract field. "Significantly later" is more than 6 months.

For example, a regulation enacted on November 12, 1974 which will become
effective on July 1, 1975 should have the date 11-12-74 assigned to
field 3; in the abstract (field 9), the following should be noted: EF-
FECTIVE 7-1-75, THE FOLLOWING STANDARDS MUST BE MET...).

Accuracy is important when assigning a date to each data record;
the CELDS user must know when a regulation or amendment took effect and
how current the legislation on a particular subject is. Moreover, this
information helps the abstracter keep the data base current, since the
legal sources can later be scanned for updating in terms of a predefined
cutoff date. When no date appears in the source material, the appropri-
ate government branch should be contacted. Dates are entered numer-
ically, without terminal punctuation, specifically in the order of
month-day-year. When a day is not given in the original, the entry is
numerical for month-year.

Legislative Reference

The legislative reference is the official source of a law or regu-
lation which tells the user where to locate the full text of an abstract
for legal citation purposes. Data record references do not follow
strict legal citation format; instead, they use the publication title

13

followed by a breakdown of as many subdivision numbers and titles as are
necessary to enable the user to locate the specific abstracted sections.

Uniformity of citation format is virtually impossible to maintain
throughout the records of a given state, or among several states,
because different government publishers and agencies tend to develop
their own systems of subdivision breakdown. However, for all references
to a single publication or to the publications of a single agency, cita-
tion format and punctuation should be consistent, conforming to the fol-
lowing general pattern: publication title; chapter number and title;
part number and title; subpart number and title; and complete section
number (or numbers). Titles are preceded by a colon and followed by a
semicolon; the final section number is preceded by a comma and followed
by a period. A typical example is:

California Administrative Code; Title 17: Public
Health; Part III: Air Resources; Subchapter I:
Air Basins and Air Quality Standards, Section 70101.

It is often necessary to scan the text of a regulation to determine how
it is set up and what terms it uses to refer to various subdivisions.
Use of the regulation's own terminology in the legislative reference
will prevent confusion to the user who consults the original text.

Major Environmental (ategory
Assigning major environmental categories is the first step in in-

dexing a data record. There are ten major environmental categories in
the CELDS system:

Air Quality Noise

Earth Science Sociology
Ecology Solid Waste
Health Science Transportation
Land Use Water Quality

Most data records are assigned to the one category that represents the
aspect of the environment most directly affected by the law or regu-
lation; however, regulations may be assigned to as many environmental
categories as are applicable. For example, regulations on the use of
pesticides and radicactive materials often get assigned to HEALTH SCI-
ENCE, AIR QUALITY, and WATER QUALITY.

Geographical/Political Scope

This field indicates a regulation's political origin and is always
a state name, the Federal government, or the District of Columbia. The
states are entered by their two-character postal abbreviations. The
Federal government is “US," the District of Columbia is "DC," and Puerto
Rico is "PR."

14

‘ | : | | ‘ — ——

Administrative Agency

This field contains the official name and address of the agency re-
sponsible for administering a specific law or regulation. If the source
of the data record is U.S. or state legislation rather than an agency reg-
ulation, the information recorded in this field should be the name and
address of the department or agency designated in that particular law to
oversee enfcrcement of its provisions. :

Bibliographic Reference

The bibliographic reference indicates the printed source in which a
law or regulation was located by the abstracter, and from which photo-
copies were taken for the CELDS manual files. It is preferable to take
data from the original legislative source, because it is more reliable
than unofficial reprints. In these cases, field 8 should read “SAME AS
LEGISLATIVE REFERENCE." If an agency has sent regulations that are not
available in statutes or codes, the bibliographic reference should read:
“AGENCY (or DEPARTMENT) PUBLIC INFORMATION PAMPHLET."

For the areas of air and water quality, solid waste, land use, and
noise, regulations received from an agency should be checked for accu-
racy and currentness against the contents of the Enviromment Reporter,
If rules and regulations in the Enviromment Reporter are identical and
up to date, they should be cited as the bibliographic reference instead
of the agency copies.

Use of the Enviromment Reporter is an exception to the rule stated
in the previous paragraph, because it is available commercially and
through libraries; it is therefore a more convenient source for checking
a text than agency reprints which are not readily available. Where the
Environment Reporter is cited, use the title, volume name, and section
number; the parts of the reference should be separated by commas; for
example, ENVIRONMENT REPORTER, STATE AIR LAWS, 361. Page numbers should
not be included because service is continuously updated and the pagi-
nation is therefore temporary. A1l bibliographic references end with a
period.

Abstract

The abstract is a concise, informative presentation of pertinent
details in a law or regulation. Its opening sentence should repeat or
rephrase the title (field 2). Abstracts must be written in a straight-
forward narrative style, eliminating verbiage and legal jargon; however,
coverage of technical specifications should be thorough and precise.
Most source documents include a section of terminology definitions.

Since it is assumed that CELDS users are familiar with standard sci-
entific terms and technical terms, these are not generally included in
the data base. If a regulation uses a term in an uncommon or specialized

15

context and a definition is required for clarification, it should be

incorporated into the abstract text. When a chart or table is used |
to present data, the abstract should describe its contents briefly !
(subject and scope) without detailing the specifics; these will appear |
in tabular format in field 10. |

Individual states regulate different areas of the environment in
varying depths and organize their coverage in different ways. The ab- |
stracter must determine which sections of a document are relevant to '
CELDS, and how to present those sections in an organized, concise, and]
retrievable form. Each data record should be a self-contained unit con- i
cerning one or more related aspects of a subject. If the source docu-
ment is well organized, CELDS coverage may simply follow the subdivision
levels in the regulation, with one data record for each division or
group of subdivisions. For a more complex or poorly organized document,
however, it may be necessary to reorganize the grouping of sections for
entry into data records. An air quality regulation may present rules
la-e for air contaminant emissions from existing sources of type A to E,
followed by rules 2a-e for emissions from new sources of type A to E.

If the 1imits specified for new and existing sources of type A are iden-
tical or vary in only some specifics, rules la and 2a should be combined
in a single data record. Similarly, radiation standards often list ex-
posure limits for "individuals" in one section and for "minors" several
sections later. It is not only logical to abstract these rules together
in a single data record, but also potentially misleading not to. A
CELDS user searching index terms for radiation regulations will find
terms differentiating between maximum permissible dose and concentration
levels, radioactive wastes, and radiation hazards, but no terms relating
to age limits. A user who retrieves a data record on exposure limits
for "individuals" may not be aware that he should search further for
similar rules on "minors"; therefore, the two rules should be in the
same data record. This is also true for regulations concerning "ol1d"
and "new" sources of air pollution and for many other sub-topics.

A section may sometimes need to be repeated in more than one data
record (for example, a statement of applicability or a definition of ex-
ceptions which applies to several data records). In all cases, com-
binations and repetitions of sections will be reflected in the legis-
lative reference (field 4). When reviewing a source document to
determine the breakdown for data records, the abstracter should remember
that sections may be combined only if the resulting data records can be
indexed distinctively for retrieval and will not require the user to
read through lengths of material to find a specific section of interest.

Basic requirements for permits, reports, and tests should be in-
cluded in the abstract, but without administrative details or test pro-
cedures. Abstracts may also include parenthetical or explanatory notes
by the abstracter when a source document contains an obvious error or is
confusing. References to other documents contained in the CELDS data

16

base should be avoided; however, when such references are necessary, a
citation is given to the appropriate CELDS accession number.

Table of Standards

This field is used when the best way to present the content of a
regulation or portion of a regulation is in tabular format (for example,
rules on maximum permissible levels of chemical substances in the air or
water). A table must use no more than 60 spaces across the page, and
must have a table number, descriptive title, and column headings which
include the relevant units of measure. Tables are numbered con-
secutively with each data record. If no table is necessary for a partic-
ular accession number, the word "NONE" is entered in this field.

Environmental Attributes

Environmental attributes (EA's) are index terms developed by CERL
which are arranged by areas under corresponding major environmental cat-
egories. (Appendix A provides the 1ist of acceptable attributes.) The
list is arranged hierarchically in three levels: (1) parametric terms
form the broadest level; (2) subparametric names list subdivisions of
parametric terms; and (3) at the most specific level, detailed attri-
butes 1ist individual chemical compounds, types of plants and animals,
and other environmental aspects. Terms from any level of the hierarchy
may be assigned to a data record, depending on the level of specificity
of the document being indexed. As many terms as necessary should be
used to describe the content of the data record adequately; however, no
EA term may be assigned unless the corresponding Major Environmental
Category (MEC) was entered in field 5. It should be noted that an at-
tribute may be expressed by several terms within one MEC. For example,
RADIOACTIVE and RADIOACTIVE EMISSIONS both appear in the EA 1ist under
the MEC AIR QUALITY. Similarly, different MEC's may use different terms
for related subjects. The EA's RADIATIONS and OTHER RADIATIONS appear
under the MEC HEALTH SCIENCE; the EA's RADIOACTIVE and RADIOQACTIVITY
appear under MEC WATER QUALITY. For a data record on emissions of ra-
dioactive wastes to air and water, all of these terms should be listed
in field 11. Particular attention should be paid to attributes listed
beneath the parametric name CONTROVERSIAL ATTRIBUTES, which appears at
the end of each major environmental category section of the EA list.
These are frequently variations of general terms and are of particular
interest to users.

When EA's are assigned, regulations that are similar from state to
state should be indexed consistently so that users searching the system
can easily make a transition between states or from the Federal govern-
ment to a state. EA's should be entered one to a line, without punc-
tuation, and should be uniform. If no EA pertains to a data record, the
word NONE is entered in this field.

17

W N T TR PTG (P 1) W e, e

Keywords

Because an appropriate attribute does not always exist for a par-
ticular data record, a thesaurus of keywords has been developed as a
supplementary index (Appendix B provides a listing of acceptable key-
words). It differs significantly from the 1ist of environmental attri-
butes because of the inclusion of process names (e.g., MANUFACTURING)
and procedural terms (e.g., PERMITS) in addition to names of the chem-
ical compounds and environmental variables affected by the processes;
this allows an added degree of document separation and content identi-
fication. This list is arranged hierarchically by major environmental
category.

To assign keywords to a CELDS document, the major environmental
categories under which the document belongs must be determined and the
keyword 1ist consulted for these specific categories. It should be
noted that the keyword thesaurus is dynamic, i.e., it may grow or be re-
vised. It is conceivable that new legislation regulating sectors of the
environment that were not considered previously may not fit into the ex-
isting structure of keywords (or major environmental categories); thus,
they cannot be accurately indexed with the existing terms, and creation
of new keywords may be necessary. When this happens, it is also neces-
sary to determine whether any of the past laws already in the data base
should have this keyword added to their indexing terms.

{4 COMPUTER OPERATIONS

bata_Input

When legislation has been collected and the data records estab-
lished according to the outlined procedures, the data is input by using
the text editor "ed." This program is part of the UNIX operating system
on the computer rather than the CELDS software. (For questions regard-
ing the use of "ed," the UNIX I'rogrammer’'s Muma! should be consulted.)
A file should be created and laws typed into this file in sequential
order by acc>ssion number. Each data field in the file should begin
with a "#," rollowed by a five-digit accession number and a three-digit
field nuioer. See the Detailed File Description section in Chapter 5
for a more in-depth discussion of this.

The accession number, field number, and stop code should each be
right-justified and zero-filled in the columns indicated. The stop code
is 00 if it is not the last 1ine of a field, 01 if it is the last line
of a field (but not the last line of the accession number), and 02 if it
is the last line of the accession number. For example, the last line of
field 7 for accession number 135 begins with a 10-digit code of
“0013500701."

When the size of the file approaches 65,000 characters, no more
data should be input into it; however, the last line of the file should
end with an accession number, i.e., data fields for a single accession
number should not be split across file boundaries. At this point, a re-
indexing program should be executed for this file by typing "repair
<filename>". "Repair" will check field numbers and print out errors;
flagged errors should be corrected with "ed." When a file checks out,
it should be moved to the/cerl/celds directory and its name changed to
“Taws .xxxx," where "xxxx" is the accession number of the first law in
the file. Data input can now be continued by creating another new file
and following the same procedures.

Data Base Creation

The "laws" files that are created as described above comprise the
CELDS data files and are read to create the inverted search files which
make rapid retrievals possible. The program which creates the search
files is "push". Thus, to create a new data base, it is necessary to
change the working directory to "/cerl/celds" and execute "push". How-
ever, since this is a relatively lengthy process, it is usually run in
the background mode, and the output is diverted to a file called
"push.out". This is accomplished by typing "push>push.out&". Note that
"push" does not modify any of the "laws" files but does read them to
create the search files. "Push" must be run to include new laws in the
data base or to change the search terms for any laws that have had

19

searchable fields modified. Merely editing the contents of a "laws"
file will change the output that is produced when a particular law is

printed; however, changing a "laws" file does not change the search
files until “push" is executed.

5 DOCUMENTATION OF CELDS PROGRAM

CELDS Algorithm

CELDS is set up with an inverted index. A group of search files in
the inverted index indicates each valid search term and a list of acces-
sion numbers which represent "hits" for those terms. Since the Tength
of this list of accession numbers varies, two files are involved; one
contains the search term and an address in the second file, and the
other contains the 1ist of accession numbers, beginning at the address
specified for that search term in the first file. These two files are
all that are needed to perform searches; when a search is requested,
these files are consulted and the appropriate 1ist of accession numbers
is returned to the calling program.

The only remaining important file is a table of contents file,
which contains an entry for every accession number in the system. The
entry indicates the proper file and the starting address for every
field. This file is consulted only when it is necessary to get actual
text from a “laws" file.

Thus, the procedure is to use only the inverted search files until
the desired law set is established. The table of contents file is then
used for each of the accession numbers in the list to locate the desired
data fields.

For a rapid identification of search terms, a "hashing" scheme is
used to convert textual search terms to a number. Search terms may con-
tain as many as 62 characters (although this is an arbitrary limit). A
term is hashed by breaking it into pairs and adding the pairs as int2qer
numbers. For example, "nitrogen dioxide" would be hashed as
"ni/tr/og/en d/io/xi/de"; the bit representations for each of the pairs
would be treated as if they were integers and added. This would give a
large number for the value of "nitrogen dioxide." To fit these values
into a table of fixed size, the value is divided by 4001 (this is cur-
rently being used as max_hash_num), and the remainder is used to desig-
nate the "slot" or "hash value" of this term. Since the remainder may
be any number from 1 to 4000, there are 4000 available slots in the hash
table. (Remainder "0" is not used.) However, max_has_num should be
picked so that the hash table is never more than approximately two-
thirds full; this will insure efficient operations. If a "collision"
occurs--that is, two different terms happen to hash to the same value--
the next empty slot is used for the second one. This is why the search
term itself is also a part of the "val" files (see pp 24,25). The hash number
is checked; then terms are compared character by character to guarantee
that the term sought and the term found are the same.

21

Detailed File Description

The files used in CELDS consist of "laws.toc" file, "isol" files,
“alpha" files, "val" files, and "list" files.
Leand Files

Laws files contain the data used in CELDS and are selected to be
less than 65,536 characters (i.e., 2'®) length. The file name is

"laws." concatenated with the accession number of the first law in the
file; e.g., “laws.131" would be a file beginning with accession number

131. The current laws files are:

laws.1 1aws .905 laws.1547 laws.2172 Taws 2612
laws .97 laws.931 laws.1573 laws.2185 laws.2616
Taws.131 laws.960 laws . 1596 laws .2199 1aws . 2632
laws.165 1aws . 986 laws.1616 laws.2222 1aws . 2645
Taws.195 laws.1020 laws.1632 laws.2238 1aws . 2650
laws .224 laws.1043 1aws.1650 Yaws . 2259 laws. 2663
laws .242 laws.1074 laws.1666 laws.2275 1aws . 2666
laws .257 laws . 1095 laws . 1680 Taws .2295 laws.2677
laws .282 laws.1120 laws .1700 laws.2306 laws . 2692
laws . 309 laws.1142 laws.1720 laws.2320 laws.2708
laws.341 laws.1165 laws.1743 laws.2332 laws.2716
laws .373 laws.1193 laws.1772 1aws .2352 laws.2731
laws .410 laws.1220 laws.1792 laws.2370 laws.2738
laws .443 laws.1245 laws .1809 Taws .2381 laws.2747
laws .481 laws.1268 Taws.1825 Jaws.2393 laws.2760
laws.516 laws.1294 laws.1843 laws.2413 laws.2770
laws . 545 laws.1314 Taws.1861 laws.2424 laws.2779
laws .579 Yaws.1327 laws.1884 laws .2445 1aws .2793
laws .612 laws.1339 1aws . 1896 laws .2452 laws.2799
laws .643 laws. 1360 laws.1916 laws . 2469 laws.2819
laws .679 laws.1376 laws .1937 1aws .2482 laws.2831
laws.701 laws.1398 laws.1938 laws .2495 laws.2845
laws.716 laws . 1422 laws.1954 laws . 2520 Taws . 2860
laws .737 1aws.1440 Taws.1967 laws.2536 laws .2883
1aws . 766 laws.1462 laws . 1986 laws .2553 1aws .2904
laws.792 laws.1479 Taws .2109 Taws . 2560 laws.2926
laws .823 laws.1499 laws.2122 laws.2573

laws .856 laws.1521 laws.2141 Taws . 2587

1aws .883 laws .2158 laws .2595

The laws are ordered sequentially within the files; therefore, to
find any particular accession number (1040, for example), check the list
of laws files. In the laws files listed above, there is a file named
“laws.1020" and the next one is "laws.1043." The file "laws.1020" will
contain accession numbers 1020 to 1042. Therefore, number 1040 must be |

22

in "laws.1020." This information is only necessary for editing, since
the CELDS retrieval program will automatically find the appropriate file
when CELDS is being used.

Within an accession number, the data fields are in sequential
order. Each field must be present and must be preceded by a line begin-
ning with "#," a five-digit accession number, and a three-digit field
number. For example, the beginning of field 2 in accession number 5
would be preceded by: #00005002

The following is a sample from the file "laws.2793":

#02793001
#02793002 2793
#02793003 transportation of radioactive material.
#02793004 2-10-75
rules and regulations for protection against radiation; part c:
#02793005 licensing of radioactive material; section c.100.
#02793006 transportation
#02793007
dept. of public health
#02793008 535 w. jefferson st., springfield il 62761
#02793009 same as legislative reference
radioactive material shall not be transported outside of the
authorized location of use unless the regulations found in the
following are complied with:
1) 49 cfr, parts 170-189
2) 14 cfr, part 103
3) 46 cfr, part 146
4) 19 cfr, parts 14 and 15
5) illinois vehicle code, chap. 95 1/2, section 12-704.1
these regulations relate to the packaging, marking, storing,
loading, and monitoring of radioactive material, and to the
reporting of accidents.
procedures for opening and closing packages of radioactive
material shall be established and made available to those receiving
the packages
#0273010
#02793011 none
#02793012 damage to vehicles-injuries to humans
radioactive substances
packaging
transportation

Laws. toe File

The index to the laws and fields in the "laws" files is kept in a
table of contents (toc) file known as the "laws.toc" file. The CELDS
retriever uses this file to determine the file that contains a given law

23

and what character numbers in the file the fields of that law incluae.
The “laws.toc" file contains 13 entries for each accession number. The
first entry is the number of the file containing the accession number.
For example, a particular law may be in the laws.31 file. For this law,
the first entry in "laws.toc" would contain the number 31. The remain-
ing 12 entries are the character numbers within that file which repres-
ent the start of each of the 12 additional data fields. Therefore, to
locate any law, multiply the accession by 13 and locate that record
number in the "laws.toc" file. The first word will indicate which "laws"
file to search for the accession number and the next 12 words will indi-
cate the start of each field within that file. The "laws.toc" file is
created by the “push" program and is updated or modified by the “repair"
program.

Isol Files

The "Isol" files, created by the "push" program, are: agy.isol,
mec.isol, gps.isol, att.isol, and top.isol. Each searchable field has
an "isol" file created which consists of the searchable fields from the
"laws" files--that is, the first line of the agency field, the gps field,
the mec field, the attribute field, and the keyword field. A sample
from “mec.isol" would look 1ike:

00005: air quality
00006: air quality
00039: air quality
00047: air quality
00047: health science
00047: solid waste
00048: air quality
00050: air quality
00051: air quality
00052: air quality
00054: water quality

Alpha Files

The "alpha" files are sorted versions of the "isol" files. They
are in alphabetical order by search term, and for the same search terms
they are in sequential order by accession number. For example, under
the key.isol file, "dredging" would be before "estuaries," and under
"dredging,"” the laws would be sequenced by accession number.

Val Files

The "val" file for a field contains all of its search terms and a
"hash" table for quick access to those terms. The first part of the
file is the hash table. .. contains max_hash_number + 10 "slots" or
words. "“Max_hash_number" is currently defined to be 4001. The 10

24

additional slots is merely to allow for the possibility of several dif-
ferent terms hashing to 4000. This number must be greater than the
number of searchable terms, since each term must occupy one slot. Each
slot contains either a zero, which indicates that no terms hashed to
this number, or the record number of the term that hashed to this valw .
Following the hash table are the records, each of which (one for every
term) is 64 characters long. The first 62 characters are the search
term itself; the remaining two characters (one word) are an integer
number that gives the position in the "1ist" file of the beginning of
the 1ist of accession numbers associated with this term. Therefore, to
locate the 1list of laws associated with a search term, determine the
hash number and look in that "slot" in the hash table. This will give
the record number in the val file. Calculate the character number with
which the record begins by multiplying the record number by 64 (the
number of characters per record) and adding the size in characters of
the hash tables (since this precedes the records in the val file).

The "val" files are created by the "make_search" program and are
used in the CELDS retriever to do searches.

List Files

The "1ist" files are lists of law numbers terminated by 19999 and
are of variable length. The law numbers are stored as integers, i.e.,
one word {two characters) per number. The entry contained in the "val"
file is the position of the start of a law list, i.e., its number in the
“list" file. To convert this to the starting character number of a law
list, multiply by two, since there are two characters per integer
number .

Documentation of Programs

Repair

“Repair" is the program which reads a "laws" file and prepares the
“Taws.toc" file. A variable keeps the current character number as the
file is read. When a new field is encountered, the appropriate address
is entered into the “laws.toc" file.

Some data validation is also performed by "repair." Accession num-
bers and field numbers are checked for sequential order. Lines contain-
ing errors are printed. If "repair" is executed without a "_" argument,
validation is the only task performed.

If "repair" is executed with a "_" argument (e.g., "repair -
laws.1"), "isol" files are produced (see Detailed File Description sec-
tion). As searchable fields are encountered in the input stream, they

are copied to an appropriate "isol" file (e.g., "key.isol" for key-

25

‘1U-IlmHH!!'!-!IHl!-.lIl.l-lI-llll-lll-llll-I-Hl-l'-..l.--'.-."

words). In standard operation "repair" is executed with a " " argument
only by the “push" program. Appendix C provides a documented copy of
the source code.

Make_Search

“Make_search" is the program which reads a sorted version of the
“1s01" files produced by "repair" and creates “val” and "1ist" files for
each searchable field. It requires an argument indicating which search-
able field is being prepared. For example, "make_search mec" will use
“mec.alpha" to produce the files "mec.1ist" and “mec.val." Appendix D
provides a documented copy of this source code.

Hier

"Hier" reads a static thesaurus file ("key.hier") and creates hier-
archical search files ("1ist" and "val"). Currently, this applies only
to the keyword field. Searches in the keyword field are presumed to be
hierarchical, i.e., a search for a broad term will also include all nar-
rower terms under it. The nonhierarchical file is referred to as “top"
(for topic), while the hierarchical file is "key" (e.g., “top.val,"
"key.val," etc.).

“Top.val" and "top.list" files are produced by "make_search top."
These two files are then used by "hier" to construct lists of laws for
the terms in the thesaurus file. Appendix E provides the documented
source.

Push

"Push" is the shell program (command file) which is executed to
create a new data base. It systematically executes "repair" for every
"laws" file, and then sorts the "isol" files produced into the "alpha"
files required by the "make_search" program. Next, it executes "make_
search" for each of the CELDS searchable fields. Finally, "hier" is ex-
ecuted to produce the hierarchical keyword file. |

“Push" is a shell file. The procedures it uses include "repair"
and "make_search." Appendix F provides a documented copy of this file.

CELDS

The "CELDS" program, sometimes referred to as the retriever, is the
main part of the CELDS system. It provides the user interface and per-
forms the requested searching and listing of information. A few con-
ventions involving global variables are used throughout the CELDS rou-
tines. An input line is read into a buffer called "request." Two
pointers into this buffer are maintained: (1) "old_request location"
points to the previous position in the line, and (2) request_location

26

points to the current position in the request line. The word that is
currently being processed in the request 1ine is stored in the array
"word" and is null-terminated. Every routine that uses a word gets the
next word and places it into the "word" array in preparation for the
next routine to be called. Thus, every routine expects that "word" is
already prepared for it; in turn, it fixes “"word" for the next routine.
If the line terminates, then a null is placed into word [0]. In all
cases, "get next word" is called to provide the next word from a line.
Appendix G provides the documented source code for the retriever rou-
tines.

T4 Fs) 3 ’ Vs
Library Routines

Besides the routines appearing in the appendices, several routines
of general utility to the CELDS programs are kept in a library. These
include routines of the type to do hashing, input/output, concatenation
of strings, etc. Appendix H provides these routines. One other file
also included in Appendix H is “search.i." This is an "include" file
(see ¢ Refercnce Manual®). 1t contains constants used by most of the
CELDS programs, such as hash table size, maximum number of laws, etc.
Each program that depends on these has an "include" statement which has
the effect of incorporating the "search.i" file into the source code.
Changing a parameter in the "search.i" file will therefore cause it to
be changed in all of the CELDS programs, thus eliminating errors due to
oversight.

8 Dennis M. Ritchie, ¢ Reference Manual (Bell Telephone Laborato-

ries).

27

O SUMMARY AND RECOMMENDATION

CELDS contains abstracts of environmental legislation for the Fed-
eral government and for all 50 states and Puerto Rico. This report has
provided complete documentation of CELDS, including background infor-
mation, description of data records, how the information is abstracted,
indexed, and updated, and listings of the software. The documentation
described in this report should be used for any future modification,
update, and maintenance of CELDS.

CELDS should be brought up in an operational environment and made
available to all elements of the Army to aid with environmental ques-
tions.

28

!
i
|
l
|
|

Appendix A - Attribute Listing

29

PARTICULATES
AGGREGATE

AIR OUALITY

ENV INFLUENCE FAC
MASS

STABTLITY
TEMPERATURE
MIXING DEPTH
WIND SPRED
WIND DIRECTION
HUMIDITY
PRECIPITATION

LAND MASS

ALBEDO
INSOLATION
TOPOGRAPHY

DUST AND FUMES
FLY ASH
SMOKE AND SOOT

INORG SOLIDS, MISTS

ALIRINUM AND COMPOUNDS
ARSENIC AND COMPOUNDS
ASBESTOS

BARIUNM AND COMPOUNDS
BERYLLIUM AND COMPOUNDS
BORON AND COMPOUNDS
CADMIUM AND COMPOUNDS
CALCIUM AND COMPOUNDS
CHROMIUM AND COMPOIINDS
COPPER AND COMPOUNDS
TRON AND COMPOUNDS

LEAD AND COMPOINDS
MANGANESE AND COMPOUNDS
MOLYBDENITM AND COMPOUNDS
NICKEL AND COMPOUNDS
SELENTUM AND COMPOUNDS
SILICON AND COMPOUNDS
STLVER AND COMPOUINDS
SODIUM AND COMPOUNDS
THALLIUM AND COMPOUNDS
TIN AND COMPOUNDS
TITANIUM AND COMPOUNDS
TUNGSTEN AND COMPOIINDS
VANADTUM AND COMPOUNDS
ZINC AND COMPOUNDS
ZIRCONIUM AND COMPOUNDS
RADTOACTIVE SUBSTANCES
FLUORINE AND COMPOUNDS
SULFUR AND COMPOUNDS

NRGANIC

CHLORTNE AND COMPOUNDS
BROMINE AND COMPOIUNDS
TODINE AND COMPOUNDS
PHOSPHOROUS AND COMPOUNDS
MERCURY AND COMPOUNDS
NITROGEN AND COMPOUNDS
MAGNESTUM AND COMPOUNDS
POTASSTUM AND COMPOUNDS
ANTIMONY AND COMPOUNDS
COMPOUNDS

SATURATED HYDROCARRONS
CYCLIC SATURATED HYDROCARBONS
INSATURATED HYDROCARBONS
AROMATIC HYDROCARBONS
ALCOHOLS

PHENOLS

ETHERS

AMINES |

ALDEHYDES

KETONES

ORGANTIC ACINS AND DERIVATIVES
ORGANTIC SULFUR

ORGANIC HALIDES

BIOLOGICAL

AFEROALLFERGENS

ALLERGENS (EXCLUDING AEROALLERGENS)
FUNGI

RACTERIA

VIRUSES

PARTICULATE RIOCIDNES

INSECTICIDES

MITICIDES AND MNEMATOCINDES
RODENTICINES AND FUNGICIDES
HERBICIDES =

GASES AND VAPORS
INORGANIC

ORGANTC

SULFUR AND €OMPOUNDS
NITROGEN AND COMPOUNDS
BROMINE AND COMPOUNDS
0ZONE .
CHLORINE AND COMPOUNDS
FLUORINE AND COMPOUNDS
RADTOACTIVE

SATURATED HYDROCARBONS

CYCLIC SATURATED HYDROCARBONS
UUNSATURATED HYDROCARBONS
AROMATIC HYDROCARBONS
ALCOHOLS

-

CNTRVSL

PHENOLS

ETHERS

AMINES

ALDEHYDES

KETONES

ORGANIC ACIDS AND DERIVATIVES

SULFUR

HALIDES

RADIQACTIVE

CARBON AND COMPOUNDS
GASEOUS BINCIDES

INSECTICINES

MITICIDES AND NEMATOCIDES

RODENTICINES AND FUNGICIDES

HERBICINES

PARTICULATE MATTER
SULFUR OXIDNES
HYDROCARBONS
PHOTOCHEMICAL OXIDANTS
CARBON MONOXIDNE

OXIDES OF NITROGEN
0ODORS

RADIOACTIVE EMISSIONS
AESTHETIC CONSIDERATIONS

4

EARTH SCIENCE

SITE ATT
TOPOGRAPHY
SLOPE
SURSTRATUM
HYDROLOGTIC REGIME
PRECTPITATTON
BEDROCK
PROCESS AT
SUBSTRATIM
SOIL COMPACTTON
SOTL HORTZOM MIXTING
SURSURFACE VIBRATTON
FEROSTON + TRANSPORT
VATER FEROSTOM
‘ TCE EROSTON
1 WIND EROSTON
GRAVITY, MASS VASTING

E CNTRVYSI,

} WATER EROSTON

r HYDROLOGIC REGIME
SUBSURFACE VIBRATTON
UIND EROSTON

I GRAVITY, MASS WASTING
LANDSCAPE AESTHETICS

33

ECOLOGY

ECOSYSTEM
KINDS OF ANIMALS
LARGE MAMMALS
SMALL MAMMALS
RIRDS
FISH
AMPHIRTANS
INSECTS
OTHER ANIMALS
ENDANGERED ANTMAL SPECIES
KINDS OF PLANTS
TREES
SHRUBS
HERBS
ALGAE
FUNGT
LICHENS
OTHER PLANT SPECIES
ENDANGERED PLANT SPECIES
SYSTEM STABILITY
FOOD WEBS
PRODUCTTVITY
SEASONAI. ASPECT
STRATIFICATION
SUCCESSTONAL STAGFE
WILDLIFE MANAGEMENT
HUNTING
SMALL GAME HUNTING
WATERFOUL HUNTING
RIG GAME HUNTING
FISHING
BOTTOM LIFE
WARM WATFR FISHING
COLD WATER FISHING
LARGE LAKE FISHINC
COASTAL WATER FISHING
SHELLFISH
DEEP SEA FISHING
PESTS
DISEASE VECTORS
NOXTOUS WEEDS
OTHER UNDESIRABLE SPECIES
CNTRVSL
IMPACTS ON CAME ANIMALS
ENCROACHMENT ON NATURAL HABITATS
THREATENED SPECIES

34

HEALTH SCTENCE

RINDLOGTICAL

POLLEN
VIRUS
RICKETTSIA
PROTOZOA
RACTERTA
FUNGT
VORMS
ARTHROPODS
RODENTS

CARPRON MONOXTIDE
SULFUR DINXIDE
NITROGEN AND NITROGEN OXTDES
PARTICULATE MATTER
LEAD

HERCURY

ACIDS

CADMIUM

ARSENTC

SELENTUM
PESTICINES AND RESIDUES
RARTIN

CHROMTIUM

COPPER

NICKEL

7Z1NC

DETERGENTS
HALOGENS

SULFUR

PHENOLS

CYANIDE

NMETHANE
CARCINOCENIC SUBSTANCES
AL MM

BERYLLTIUM

STLICON

THALLIUM

ASBESTOS

ALCOHOLS

ALDENYDES

KETONES

FETHERS

PSYCHOLOGTCAL

MII, + CIV ARMY PERSOMNFEL
JORK OVEREXPOSURE
INADEOVATE TRATNING

35

(3

SAFETY

CNTRVSL

DISLOCATTION ADJUSTMENTS
ARMY DISCIPLINE :
PERSONNEL POLICIES
PHYSTCAL OVEREXPOSURE
ECONOMIC HARDSHIPS

INDIV IN COMMUNITY NEAR INST
MILITARY SECRECY
VISUAL ENVIRONMENTAL CHANGES
COMMUNICATTIONS NETUORK INTERFERENCE

BOTH ARMY PERSONNEL + PRIVATE INDIV
TRAFFIC OVEREXPOSURE
TRAUMATIC EXPERIFENCES
POLLUTANT OVEREXPOSURE
HOUSTNG CONDITIONS
POPULATION CHANGE

TRANSPORTATION SAFETY
AIR
GROUND
WATER

RESIDENTIAL OR HOME AREA

COMMUNITY/MARKETING

WORK

RECREATION

RADTATTONS
RADTATION-TONTIZING
RADTATION-MICROWAVE
RADIATION-LASER
OTHER RADIATION

EXPOSURE TO CARCINOGENS/MUTAGENS
HARMFUL FOODS/WATER ADDITIVES
PSYCHOLOGICAL STRESSORS

DRUG + NARCOTICS ABUSFE
ENDANGERING COMMUNITY HEALTH
ENDANGERING COMMUNITY SAFETY

36

LAND USE

CONSUMPTTON
CONSUMPTION OF LAND
CONFLICT
" ACCESS TO MINERALS
INTERFERENCE OFF OF POST
INCOMPATIBILITY ON POST
CHANGE
INDUCED LAND-USE CHANGES
CNTRVSL
CONSUMPTION OF LAND
ACCESS TO MINERALS
INTERFERENCE OFF OF POST
INDUCED LAND=UISE CHANGES

PHYSTOLOGTICAL MAINTENANCE
SLEEP PERFORMANCE

TASK PERFORMANCE

AURAL COMMUNICATION

TELEVISION/RADIO COMMUNICATION
LAND USE INCOMPATIBILITY AND INTEGRITY

CNTRVSL
COMMUNITY ANNOYANCE
PROPERTY VALUE DEPRECIATION

SOCIOLOGY

HUMAN ECOLG
POPULATION
STZE
COMPOSITION
NET CHANGE
HUMAN ECOLG
RURAL AREAS
URBAN AREAS
SUBURBS
URBAN FRINGE
SOC STRUCT
SOCTAL CATEGORIES
ACE CATEGORIES
SEX CATECORIES
FANTLY STATUS CATECORTES
SOCIAL CLASSES
UPPER CLASS
MIDDLE CLASS
LOUER CLASS
ASSOCTATIONS
VOLUNTARY ASSOCTATTON
ORGANTIZATIONS
INSTITUTIONS
FAMILIES
EDUCATIONAL ORGANIZATIONS
RELIGIOUS ORGANIZATIONS
SOCTAL CONTROL,
LAY ENFORCEMENT
SOCIL. PROC
SOCIAL CONTROL
COURTS
POLITICAL PROCESS
WELFARE AND DEPENDENCY
PUBLIC OPINION
PUBLICS
OPINION LEADERS
OPINION PROCESS
MASS COMMUNICATIONS
PRINTED MEDIA
BROADCAST MEDTA

CNTRVSL
POPULATION
ECOLOGCY
EDUCATTONAL ORGANIZATIONS
SOCTIAL CONTROL
PUBLIC OPINION
MASS COMMUNICATION

10

AESTHETIC CHARACTER OF COMMUNITY

40

11

SOLID WASTE

COLLECTION
DISPOSAL
MANAGEMENT

"

TRANSPORTAT TON

ROAD TRANS
DISRUPTIONS IN HIGHWAY TRAFFIC FLOV
INDUCED MODIFICATION TO HTGHUAYS
POLLUTION FROM HIGHWAYS
DAMAGE TO HIGHWAYS
DAMAGE TO VEHICLES -INJURIES TO HUMANS

RATL TRANS
DISRUPTION TO RAILWAY TRAFFIC
INDUCED MODTIFICATION TO RATLWAYS
POLLUTION FROM RATLWAYS
DAMAGE TO RATLWAYS

AIR TRANS
DISRUPTION TO AIRFIELD TRAFFIC
INDUCED MODIFICATION TO AIRFIELDS
POLLUTION FROM AIRFIELDS
DAMAGE TO AIRFIELDS

WATER TRAN
DISRUPTION TO WATERWAY TRAFFIC
INDUCED MODTFICATION TO WATERVAYS
POLLUTION FROM UATERWAYS
DAMAGE TO VATERWAYS

CNTRVSL
DISRUPTIONS IN HIGHWAY TRAFFIC FLOVS
DAMAGE TO VEHICLES-INJURIES TO HUMANS
INDUCED MODTIFICATION TO HIGHWAYS
INDUCED MODIFICATION TO AIRFIELDS

42

PHYS ENVMT

WATER QUALITY

AQUIFER CHAR

AVAILABILITY OF GROUND WATER

WATER OQUALTTY PARAMS

TURBIDITY
TEMPERATURE
COLOR

SUSPENDED SOLIDS
CROSS SOLIDS
SETTLEABLE SOLIDS
FLOATING SOLIDS
VOLATILE SUSPENDED SOLIDS
TASTE AND ODOR
OTLS

DISSOLVED GASES

STREAM OR WATER BODY

CHEM ENVMT

DEPTH

VELOCITY

SOLAR RADIATION INTENSITY
WIND VELOCITY AND DIRECTION
DYNAMIC PRESSURE
ATMOSPHERIC REAFERATION
MORPHOMETRY AND FLOW PATTERN
SUBSTRATUM

DEPENDABLE YIELD

MAXIMUM DTSCHARGE

HINIMUM DISCHARGE

RATE OF CHANGE OF DISCHARGE

INORGANIC

IRON
MANCANESE
SODIUM
CALCTUM
MAGNESTUM
NITROGEN
PHOSPHORUS
ARSENIC
BARTUM
BORON
CADMIUM
CHROMTUM
COPPER
FLUORIDE
LEAD
MERCURY
NICKEL

43

14

ORGANIC

SELENTUM

SILVER

ZINC

ALKALINITY AND ACIDITY
HYDROGEN TION CONCENTRATION (PH)

OXIDATTON REDUCTION POTENTIAL (EH)

DISSOLVED CARBON DTOXIDE
TOTAL DISSOLVED SOLIDS
CHLORIDF,

SULFUR

DISSOLVED OXYGEN

SALINITY

OTHER INORGANCIC CHEMICALS

BOD

cop

PHENOLS

DETERGENTS

CARCINOGENIC SUBSTANCES

CARRON CHLOROFORM EXTRACT (CCE)
CYANIDE

METHANE

OTHER ORGANIC COMPOUNDS

BIOCIDES

PESTICINDES

RADIOACTIVE

RIOLOGICAL
PATHOGENTC

CNTRVSL

AQUATIC

RANDIOACTIVITY

PATHOGENTIC VIRUSES
PATHOGENIC BACTERTA
PATHOCENIC PROTOZOA

OTHER PATHOGENIC ORGANTSMS
LIFE

PLANKTON

BENTHOS

NEKTON

OTHER ORGANTSMS

COMMUNITY MAIMTENANCE

SYNTHETIC DETERGENTS
FLUORIDATION
WATER QUANTITY

MERCURY
OIL

THERMAL POLLUTION
OTHER POTENTTALLY CONTROVERSIAL ASPECTS
AQUIFER YIFLD

44

1

it N e v e e b

Appendix B - Keyword Listing

S 00 At o e 1 W 0 AR ok i

ACCIDENTS

SN UNINTENTIONAL RELEASES OF CONTAMINANTS INTO THE
AIR OR WATER, s
NT OIL SPILLS d
: ACIDS
; BT INORGANIC COMPOUNDS
! NT NITRIC ACID
SULFURIC ACID
RT HAZARDOUS MATERIALS

*

AGRICULTURAL POLLUTION

NT FEEDLOTS
GRAIN HANDLING 4

RT COTTON GINS
EROSTON
FERTILIZERS
HERBICIDES
PESTICIDES #
RENDERING :

AIR POLLUTION CONTROL
SN DEVICE OR PROCEDURE USED TO LIMIT THE RELEASE
OF CONTAMINANTS INTO THE AIR.

AIR POLLUTION EPISODES
SN STATUS DECLARED BY STATE OFFICIALS WHEN AIR
CONTAMINANTS REACH HIGH LEVELS; EMISSION REDUCTION
PLANS MUST THEN BE ADHERED TO.

AIR POLLUTION SOURCES
5 NT ASPHALT PLANTS
BOILERS
CEMENT PLANTS
COATINGS
COKE OVENS
COTTON GINS
FERROALLOYS
STEEL
FOUNDRIES
FURNACES
BLAST FURNACES
CUPOLAS

GRAIN HANDLING
HEAT EXCHANGERS
INCINERATORS
CONICAL BURNERS
INDIRECT SOURCES
AIRPORTS
ROADS

Draft

INDUSTRTAL COOLING
LANDFILLS

SANITARY LANDFILL
MANUFACTURTNG

CHEMICAL MANUFACTURING
NONFERROUS METALS

ARSENIC

BARIUM

BERYLLIUM

CADMTIUM

CHROMIUM

COPPER

LEAD

MANGANESE

MERCURY

NICKEL

SILVER

SODIUM

ZINC

OPEN BURNING

POWER SOURCES
INTERNAL COMBUSTION ENGINES
DIESEL ENGINES
GASOLINE ENGINES
NUCLEAR ENERGY

STEAM GENERATING

TURBINES
PULP MILLS
SEPARATION PROCESSES
SINTERING
SMELTERS
SPRAYING
STOCKPILES
VEHICLES
AIR QUALITY CLASSIFICATION

BT CLASSIFICATION

RT LAND CLASSIFICATION
WATER CLASSIFICATION

AIR QUALITY CONTROL REGIONS
USE AQCR, SPECIFIC

AIR QUALITY STANDARDS
RT EMISSION STANDARDS

AIRBORNE PARTICULATES

UF PARTY.CULATES
NT ASH
DUST

47

Draft

RT

AIRCRAFT
RT

AIRPORTS
BT

RT

ALCOHOLS
BT
RT

ALDEHYDES
BT
RT

FUMES
MISTS
SMOKE
OPACITY

VEHICLES
WATERCRAFT

AIR POLLUTION SOURCES
INDIRECT SOURCES
ROADS

ORGANIC COMPOUNDS
*

ORGANIC COMPOUNDS
*

ALKYL BENZENE SULFONATES

BT

RT

AMMONIA
BT
NT
RT

INORGANIC COMPOUNDS
SULFUR

SULFUR OXIDES

SULFURIC ACID

INORGANIC COMPOUNDS
AMMONIA NITROGEN

HAZARDOUS MATERIALS
*

AMMONTIA NITROGEN

BT

AMMUNITION
BT
RT

AQCR, SPECIFIC

SN

UF

INORGANIC COMPOUNDS
AMMONIA

EXPLOSIVES
*

A COLLECTIVE KEYWORD FOR SPECIFIC AQCR’S WHICH
HAVE BEEN TREATED INDIVIDUALLY IN THE REGULATIONS
AND DATA BASE; NAMES OF AQCR’S ARE NOT LISTED

IN THE THESAURUS.
AIR QUALITY CONTROL REGIONS

48

AQUATIC ANIMALS
BT
RT

AQUATIC LIFE
NT

RT

AQUATIC PLANTS
BT
RT

ARSENIC
BT

RT

ASBESTOS
BT

RT

ASH
BT
RT

ASPHALT PLANTS
BT
RT

ATLANTIC OCEAN
RT

AQUATIC LIFE
AQUATIC PLANTS
FISH

AQUATIC ANIMALS
AQUATIC PLANTS
FISH

FLORA

PROTECTED SPECIES
WILDLIFE

AQUATIC LIFE
AQUATIC ANIMALS
FISH

AIR POLLUTION SOURCES
NONFERROUS METALS
INORGANIC COMPOUNDS
NONFERROUS METALS
POINT SOURCES

NONFERROUS METALS
*

INORGANIC COMPOUNDS

SILICATES
POINT SOURCES
FELDSPARS

HAZARDOUS MATERIALS
*

AIRBORNE PARTICULATES
DUST
FUMES
MISTS
SMOKE

AIR POLLUTION SOURCES
*

COASTS
SALINE WATER

ol

Draft
WATERWAYS
WETLANDS
BACTERIA
NT FECAL COLIFORMS
RT HAZARDOUS MATFERIALS
BARIUM
BT AIR POLLUTION SOURCES
NONFERROUS METALS
INORGANIC COMPOUNDS
NONFERROUS METALS
POINT SOURCES
NONFERROUS METALS
RT *
BASINS

USE BAYS, SPECIFIC

BAYS, SPECIFIC

SN A COLLECTIVE KEYWORD FOR SPECIFIC BAYS WHICH HAVE
BEEN TREATED INDIVIDUALLY IN THE REGULATIONS
AND DATA BASE; NAMES OF BAYS ARE NOT LISTED
IN THE THESAURUS.

UF BASINS
HARBORS
RT SEAPORTS
BERYLLIUM
BT AIR POLLUTION SOURCES

NONFERROUS METALS
INORGANIC COMPOUNDS

NONFERROUS METALS
POINT SOURCES

NONFERROUS METALS
RT *

BIOCHEMICAL OXYGEN DEMAND
USE BOD

BIOLOGICAL WARFARE AGENTS
RT CHEMICAL WARFARE AGENTS
HAZARDOUS MATERIALS

BLACK POWDER

BT EXPLOSIVES
RT »
BLAST FURNACES
BT AIR POLLUTION SOURCES
50

= w e

et Oy ol aEme)
s

Draft

FURNACES
POINT SOURCES
FURNACES
RT CUPOLAS
BLASTING CAPS
BT EXPLOSIVES
RT *
BOD
UF BIOCHEMICAL OXYGEN DEMAND
RT (010))]
DISSOLVED OXYGEN
BOILERS
BT AIR POLLUTION SOURCES
POINT SOURCES
RT *
BORON
BT INORGANIC COMPOUNDS
RT *
CADMIUM
BT AIR POLLUTION SOURCES

NONFERROUS METALS
INORGANIC COMPOUNDS
NONFERROUS METALS
POINT SOURCES
NONFERROUS METALS
RT *

CANNON AMMUNITION

BT EXPLOSIVES
RT *
CARBON
BT ORGANIC COMPOQUNDS
NT CARBON MONOXIDE
ORGANIC CARBON
RT CCE
HYDROCARBONS
*

CARBON CHLOROFORM EXTRACT
USE CCE

CARBON MONOXIDE
BT ORGANIC COMPOUNDS

Draft

CARBON
RT ORGANTC CARBON
OXIDANTS
CCE
UF CARBON CHLOROFQRM EXTRACT
BT ORGANTIC COMPOUNDS
RT CARBON
*x
CEMENT PLANTS
BT AIR POLLUTION SOURCES
POINT SOURCES
RT &
CHANNELIZATION
SN ANY ACT WHICH AFFECTS THE BED OR ROUTE OF A BODY
OF WATER.
NT DREDGING
CHANNELS
RT WATERWAYS
CHEMICAL AMMUNITION
BT EXPLOSIVES
RT *
CHLITICAL MANUFAGTURING
SN TERM TO DENOTE POINT SOURCES WHICH MANUFACTURE
INORGANIC OR ORGANIC CHEMICALS
BT AIR POLLUTION SOURCES
MANUFACTURING
POINT SOURCES
RT INORGANIC COMPOUNDS

ORGANIC COMPOUNDS
]

CHEMICAL OXYGEN DEMAND
USE COD

CHEMICAL WARFARE AGENTS
RT BIOLOGICAL WARFARE AGENTS
HAZARDOUS MATERIALS

CHLORIDES :
NT VINYL CHLORIDES
RT HAZARDOUS MATERIALS

52

Draft

CHLORINE
BT
RT

CHROMTIUM
BT

RT

CITIES

USE URBAN AREAS
URBAN AREAS, SPECIFIC

CLASSIFICATION
SN

NT

COAL
BT
RT

COASTS
RT

COATINGS
SN

UF
BT

RT

INORGANIC COMPOUNDS
*

AIR POLLUTION SOURCES
NONFERROUS METALS
INORGANIC COMPOUNDS
NONFERROUS METALS
POINT SOURCES
NONFERROUS METALS

*

QUALITY AND/OR USE CLASSIFICATION FOR LAND OR
WATER; ADMINISTRATIVE REGIONS FOR ATR QUALITY.
AIR QUALITY CLASSIFICATION

LAND CLASSIFICATION

WATER QUALITY CLASSIFICATION

FUELS

COKE

LIQUID FUELS
PETROLEUM
WooD

ATLANTIC OCEAN
PACIFIC OCEAN
SALINE WATER
SEAPORTS

TIDAL WATER
WETLANDS

SUBSTANCES APPLIED TO SURFACES BY ELECTROPLATING
OR SPRAYING IN A MANNER PERMITTING RELEASE OF
POLLUTANTS; E.G., PAINTS OR METALS.
ELECTROPLATING

AIR POLLUTION SOURCES

POINT SOURCES

HAZARDOUS MATERIALS

SPRAY ING

*

Draft

cop
UF CHEMICAL OXYGEN DEMAND
RT BOD
DISSOLVED OXYGEN
COKE
BT FUELS
RT COAL
LIQUID FUELS
PETROLEUM
WOOD
COKE OVENS
BT AIR POLLUTION SOURCES
POINT SOURCES
RT *

COLIFORM BACTERIA
USE FECAL COLIFORMS

COLOR

CONDUCTIVITY

CONICAL BURNERS

BT AIR POLLUTION SOURCES
INCINERATORS
WASTE DISPOSAL
INCINERATORS
CONTAINERS
RT PACKAGING

STORAGE TANKS

COPPER
BT AIR POLLUTION SOURCES
NONFERROUS METALS
INORGANIC COMPOUNDS
NONFERROUS METALS
POINT SOURCES
NONFERROUS METALS

RT *
COTTON GINS

BT AIR POLLUTION SOURCES

RT ACRICULTURAL POLLUTION
*

54

COUNTIES, SPECIFIC
SN A COLLECTIVE KEYWORD FOR SPECIFIC COUNTIES WHICH
HAVE BEEN TREATED INDIVIDUALLY IN THE REGULATIONS
AND DATA BASE; NAMES OF COUNTIES ARE NOT LISTED
IN THE THESAURUS.

CRUDE OIL
USE PETROLEUM

CUPOLAS
BT AIR POLLUTION SOURCES
FURNACES
POINT SOURCES
FURNACES
RT BLAST FURNACES
CYANIDES
BT INORGANIC COMPOUNDS
RT HAZARDOUS MATERTALS
*
DEPOSITION
RT EROSION
SEDIMENTATION

SETTLEABLE SOLIDS

DESIGN CRITERIA

DETONATING DEVICES
BT EXPLOSIVES
RT *

DIESEL ENGINES
BT AIR POLLUTION SOURCES
POWER SOURCES
INTERNAL COMBUSTION ENGINES
POINT SOURCES
POWER SOURCES
INTERNAL COMBUSTION ENGINES

RT GASOLINE ENGINES
DISPERSANTS
UF EMULSIFIERS
RT OIL SPILLS
SOLVENTS

DISSOLVED OXYGEN
RT BOD
cop

55

Draft 11

DISSOLVED SOLIDS
RT SETTLEABLE SOLIDS
SUSPENDED SOLINS

DREDGING
BT CHANNELIZATION

b DRINKING WATER
USE POTABLF. WATER

DUMPING GROUNDS

SN SOLID WASTE DISPOSAL AREAS IN A BODY OF WATER.
BT WASTE DISPOSAL
RT GARBAGE COLLECTION

INCINERATORS

JUNKYARDS

LANDFILLS

OPEN BURNING
OPEN DUMPING
TRANSFER STATIONS
WASTE PROCESSING

DUST
BT ATIRBORNE PARTICULATES
RT ASH
FUMES
MISTS
SMOKE

ECONOMIC POISONS
USE HERBICIDES
PESTICIDES

EFFLUENT STANDARDS

RT WATER QUALITY STANDARDS
EFFLUENTS
NT INDUSTRIAL WASTES
PROCESS WASTE WATER
SEWAGE
RT MIXING ZONE

POINT SOURCES
THERMAL POLLUTION

ELECTROPLATING
USE COATINGS

EMISSION STANDAR'.S

56

Draft

RT AIR QUALITY STANDARD
EMISSIONS

NT EXHAUST EMISSIONS
EMULSIFIERS

USE DISPERSANTS

ENDANGERED SPECIES

BT PROTECTED SPECIES
RT THREATENED SPECLES
EROSTION
RT AGRICULTURAL POLLUTION
DEPOSITION
SEDIMENTATION
SETTLEABLE SOLIDS
ESTUARIES
BT TIDAL WATER
ETHYLENE
BT ORGANIC COMPOUNDS
RT *

EXHAUST EMISSIONS
BT EMISSIONS

EXHAUST SYSTEMS

SN TERM INCLUDES EXHAUST AND VENTILATING SYSTEMS.
EXPLOSIVE BOMBS

BT EXPLOSIVES

RT *

EXPLOSIVE GRENADES
BT EXPLOSIVES
RT *

EXPLOSIVE MINES
BT EXPLOSIVES
RT *

EXPLOSIVE POWER DEVICES
BT EXPLOSIVES
RT *

EXPLOSIVE PROJECTILES
BT EXPLOSIVES

57

12

e s el

Draft

RT

EXPLOSIVE TORPEDOES

BT
RT

EXPLOSIVES
NT

RT

FECAL COLIFORMS
UF
BT

FEEDLOTS
BT

RT

FELDSPARS
BT

EXPLOSIVES
*

AMMUNITION

BLACK POWDER

BLASTING CAPS

CANNON AMMUNITION
CHEMICAL AMMUNITION
DETONATING DEVICES
EXPLOSIVE BOMBS
EXPLOSIVE GRENADES
EXPLOSIVE MINES
EXPLOSIVE POWER DEVICES
EXPLOSIVE PROJECTILES
EXPLOSIVE TORPEDOES
GAS MINES

GAS PROJECTILES

HIGH EXPLOSIVES
ICNITERS

INCENDIARY PROJECTILES
INITIATING EXPLOSIVES
JET THRUST UNITS

LOW EXPLOSIVES
NONEXPLOSIVE AMMUNITION
PROPELLANT EXPLOSIVES
ROCKET AMMUNITION
ROCKET MOTORS

STARTER CARTRINDGES
HAZARDOUS MATERTALS
PACKAGING

STORAGE
TRANSPORTATION

COLIFORM BACTERIA
BACTERIA

ARGICULTURAL POLLUTION
POINT SOURCES

GRAIN HANDLING
*

INORGANIC COMPOUNDS

53

e s

i e e

. T i A AL A PN VSN W i

13

Draft

RT

FERROALLOYS
BT

NT
RT

FERTILIZERS
BT
RT

FIRES

RT

FISH
SN

UF

BT

RT
FLOATING DEBRIS

FLOOD CONTROL

FLORA
UF
RT
FLUORIDES
BT
RT

SILICATES
ASBESTOS

AIR POLLUTION SOURCES
POINT SOURCES

STEEL

IRON

SMELTERS
*

POINT SOURCES

AGRICULTURAL POLLUTION
*

OPEN BRURNING

TERM INCLUDES SHELLFISH; DISTINGUISHED FROM OTHER
AQUATIC ANIMALS MAINLY BY ECONOMIC IMPORTANCE.
SHELLFISH

AQUATIC LIFE

AQUATIC ANIMALS

AQUATIC PLANTS

PLANT LIFE
AQUATIC LIFE
PROTECTED SPECIES
WILDLIFE

INORGANIC COMPOUNDS
*

FOREST PRESERVATION

RT

FOUNDRIES
BT
RT

FUEL OIL

LAND PRESERVATION

AIR POLLUTION SOURCES
*

14

Draft

RT

FUELS
NT

FUMES
BT
RT

FURNACES
BT

NT

RT

BT
RT

GAS MINES
BT
RT

BT

RT

GASOLINE
BT

RT

GAS PROJECTILES

FUELS
LIQUID FUELS
GASOLINE
COAL
COKE
LIQUID FUELS
FUEL OIL
GASOLINE
WoOoD X

ATRBORNE PARTICULATES
ASH

DUST

MISTS

SMOKE

AIR POLLUTION SOURCES
POINT SOURCES
BLAST FURNACES

CUPOLAS
*

GARBACGE COLLECTION

WASTE DISPOSAL
DUMPING GROUNDS
INCINERATORS
JUNKYARDS
LANDFILLS

OPEN BURNING
OPEN DUMPING
TRANSFER STATIONS
WASTE PROCESSING

EXPLOSIVES
*

EXPLOSIVES
*

FUELS
LIQUID FUELS
FUEL OIL

60

15

Draft

GASOLINE ENGINES
BT

RT

GRAIN HANDLING

BT

RT

HARBORS

USE BAYS

HAZARDOUS MATERI
RT

HEAT EXCHANGERS
UF
BT
RT
HERBICIDES

AIR POLLUTION SOURCES
POWER SOURCES
INTERNAL COMBUSTION ENGINES
SOURCES
POINT SOURCES
POWER SOURCES
INTERNAL COMBUSTION ENGINES
DIESEL ENGINES

AGRICULTURAL POLLUTTION
AIR POLLUTION SOURCES
POINT SOURCES

FEEDLOTS
*

» SPECIFIC

ALS

ACIDS

AMMONIA

ASBESTOS

BACTERIA

BIOLOGICAL WARFARE AGENTS
CHEMICAL WARFARE AGENTS
CHLORIDES

COATINGS

CYANIDES

EXPLOSIVES

HERBICIDES

INDUSTRIAL WASTES
NONFERROUS METALS

OILS

PESTICIDES

RADIOACTIVE SUBSTANCES
SEWAGE

SLUDGE

SOLVENTS

TOXIC SUBSTANCES
VOLATILE SUBSTANCES

INDIRECT HEAT EXCHANGERS

AIR POLLUTION SOURCES
*

16

SRR i s 80 i

Draft

UF ECONOMIC POISONS
BT PESTS
RT AGRICULTURAL POLLUTION

HAZARDOUS MATERIALS
PEST CONTROL

PESTICIDES
HIGH EXPLOSIVES
BT EXPLOSIVES
RT *
HYDROCARBONS
BT ORGANIC COMPOUNDS
RT CARBON
HYDROGEN
*
HYDROGEN
BT INORGANIC COMPOUNDS
NT HYDROGEN FLUORIDE
HYDROGEN SULFIDE
RT HYDROCARBONS
PH

*

HYDROGEN FLUORIDE

BT INORGANIC COMPOUNDS
HYDROGEN
RT HYDROGEN SULFIDE

HYDROGEN ION CONCENTRATION
USE PH

HYDROGEN SULFIDE

BT INORGANIC COMPOUNDS
HYDROGEN
RT HYDROGEN FLUORIDE
ICNITERS
BT EXPLOSIVES
RT *

IMPOUNDMENTS OF WATER
UF RESERVOIRS

INCENDIARY PROJECTILES
BT EXPLOSIVES
RT *

62

17

kit it sl i

— T R T R TS

Draft

INCINERATORS
BT

NT
RT

AIR POLLUTION SOURCES
WASTE DISPOSAL
CONICAL BURNERS
DUMPING GROUNDS
GARBAGE COLLECTION
JUNKYARDS

LANDFILLS

OPEN BURNING

OPEN DUMPING

TRANSFER STATIONS

WASTE PROCESSING
*

INDIRECT HEAT EXCHANGERS
USE HEAT EXCHANGERS

INDIRCT SOURCES

SN

BT
NT

RT

A COLLECTIVE TERM FOR BUILDINGS, FACILITIES, AND
INSTALLATIONS, THE EXISTENCE OR USE OF WHICH LEADS

TO AIR POLLUTANT EMISSIONS; E.G., SHOPPING CENTERS,
AMUSEMENT AND RECREATION AREAS, PARKING LOTS, OFFICES.
AIR POLLUTION SOURCES

AIRPORTS

ROADS
*

INDUSTRIAL COOLING

BT
RT

AIR POLLUTION SOURCES
*

INDUSTRIAL WASTES

BT
NT
RT

INITIATING EXPLOSIVES

BT
RT

EFFLUENTS

PROCESS WASTE WATER
HAZARDOUS MATERIALS
SEWAGE

EXPLOSIVES
*

INORGANIC COMPOUNDS

NT

ACIDS
NITRIC ACID
SULFURIC ACID
AMMONIA
AMMONIA NITROGEN
BORON
CHLORINE

63

18

Draft

CYANIDES
FLUORIDES
HYDROGEN
HYDROGEN FLUORIDE
HYDROGEN SULFIDE
IRON
KAOLINITE
MICA
NITROGEN
NITRIC ACID
NITROGEN OXIDES
NITROGEN DIOXIDE
NONFERROUS METALS
ARSENIC
BARIUM
BERYLLIUM
CADMIUM
CHROMTIUM
COPPER
LEAD
MANGANESE
MERCURY
NICKEL
SILVER
SODIUM
ZINC
PHOSPHORUS
SELENIUM
SILICATES
ASBESTOS
FELDSPARS
SULFUR
ALKYL BENZENE SULFONATES
SULFUR OXIDES
SULFUR DIOXIDE
SULFURIC ACID
RT CHEMICAL MANUFACTURING

INSECTICIDES
USE PESTICIDES

INTERNAL COMBUSTION ENGINES
BT AIR POLLUTION SOURCES
POWER SOURCES
POINT SOURCES
POWER SOURCES

NT DIESEL ENGINES
GASOLINE ENGINES
RT NUCLEAR ENERGY

g 64

19

e b T - . - . » " —

Draft 20

STEAM GENERATING PLANTS

TURRINES
VEMICLES
IRON
BT INORGANIC COMPOUNDS
POINT SOURCES
RT FERROALLOYS
*
JET THRUST UNITS
BT EXPLOSIVES
RT *
JUNKYARDS
BT WASTE DISPOSAL
RT DUMPING GROUNDS
GARBAGE COLLECTION
INCINERATORS
LANDFILLS
OPEN BURNING
OPEN DUMPING
TRANSFER STATIONS
WASTE PROCESSING
KAOLINITE
BT INORGANIC COMPOUNDS
RT *

KEY LARGO CORAL REEF PRESERVE, FL
KWAJELEIN ATOLL

LAKES
NT LAKES, SPECIFIC
RT WATERWAYS

LAKES, SPECIFIC
SN A COLLECTIVE TERM FOR SPECIFIC LAKES WHICH HAVE
BEEN TREATED INDIVIDUALLY IN THE REGULATIONS AND
DATA BASE; NAMES OF LAKES ARE NOT LISTED IN
THE THESAURUS.
BT LAKES

LAND ACQUISITION
LAND CLASSIFICATION

BT CLASSIFICATION
RT AIR QUALITY CLASSIFICATION

65

Draft

WATER QUALITY CLASSTFICATION

LAND PRESERVATION

RT

LANDFILLS

LEAD

LIQUID FUELS

LONG ISLAND, NY

LOW EXPLOSIVES

LUMBER

SN

BT

NT
RT

BT

RT

BT

NT

RT

BT
RT

SN

FOREST PRESERVATION

SITES FOR DISPOSAL OF SOLID WASTES ON LAND BY
COVERING; SITES OR DISPOSAL PROCEDURES USED ARE
INADEQUATE FOR SANITARY DISPOSAL OF HAZARDOUS

OR PUTRESCIBLE WASTES.
ATR POLLUTION SOURCES
WASTE DISPOSAL
SANITARY LANDFILL
DUMPING GROUNDS
GARBAGE COLLECTION
INCINERATORS
JUNKYARDS

OPEN BURNING

OPEN DUMPING
TRANSFER STATIONS

WASTE PROCESSING
*

ATR POLLUTION SOURCES
NONFERROUS METALS
INORGANIC COMPQUNDS
NONFERROUS METALS
POINT SOURCES

NONFERROUS METALS
*

FUELS
FUEL OIL
GASOLINE
COAL
COKE
OILS
WooD

EXPLOSIVES
*

WOOD USED AS A SOURCE OF BUILDING MATFERIAL.

66

21

Draft

BT
RT

MANGANESE

MANUFACTURING

BT

RT

BT
NT
RT

POINT SOURCES
PULP MILLS

WOOoD
*

AIR POLLUTION SOURCES
NONFERROUS METALS
INORGANIC COMPOUNDS
NONFERROUS METALS
POINT SOURCES

NONFERROUS METALS
*

AIR POLLUTION SOURCES
CHEMICAL MANUFACTURING

POINT SOURCES
*

MAXIMUM PERMISSIBLE CONCENTRATION

MAXIMUM

MEASUREMENTS

MERCURY

METHYLENE BLUE

MICA

SN
BT
RT

TERM USED ONLY FOR RADIATION STANDARDS.
RADIATION STANDARDS.
MAXIMUM PERMISSIBLE DOSE

PERMISSIBLE DOSE

SN
BT
RT

SN

BT

RT

BT
RT

TERM USED ONLY FOR RADIATION STANDARDS.
RADTATION STANDARDS
MAXIMUM PERMISSIBLE CONCENTRATION

TERM FOR MEASUREMENTS OR MEASUREMENT METHODS
REQUIRED FOR A PARTICULAR POLLUTANT, EMISSION,
OR EFFLUENT,

AIR POLLUTION SOURCES
NONFERROUS METALS
INORGANIC COMPOUNDS
NONFERROUS METALS
POINT SOURCES

NONFERROUS METALS
*

ORGANIC COMPOUNDS
*

Draft

BT
RT

MIDWAY ISLANDS
MISTS

BT
RT

MIXING ZONE
SN

RT

MONITORING
NT

NICKEL
BT

RT
NITRATES
RT

NITRIC ACID
BT

RT

NITRITES
RT

NITROGEN
BT
NT

23

INORGANIC COMPOUNDS
*

ATRBORNE PARTICULATES
ASH)

DUST

FUMES

SMOKE

AN AREA OF WATER TO WHICH EFFLUENTS, INCLUDING HFAT,
MAY BE DISCHARGED FOR DISPERSAL.
EFFLUENTS

STACK MONITORING

AIR POLLUTION SQURCES
NONFERROUS METALS
INORGANIC COMPOUNDS
NONFERROUS METALS
POINT SOURCES

NONFERROUS METALS
*

NITRITES
NITROGEN

INORGANIC COMPQUNDS
ACIDS
NITROGEN

NITROGEN OXIDES

SULFURIC ACID

NITRATES
NITROGEN

INORGANIC COMPOUNDS
NITRIC ACID
NITROGEN OXIDES

NITROGEN DIOXIDE

68

Draft

RT NITRATES

NITRITES
*

NITROGEN DIOXIDE
BT INORGANIC COMPOUNDS
NITROGEN
NITROGEN OXIDES

NITROGEN OXIDES

BT INORGANIC COMPOUNDS
NITROGEN
NT NITROGEN DIOXIDE
RT NITRIC ACID
OXIDANTS
NOISE
NT NOISE CONTROL

NOISE LEVELS

NOISE CONTROL
BT NOISE
RT NOISE LEVELS

NOISE LEVELS
BT NOISE
RT NOISE CONTROL

NONEXPLOSIVE AMMUNITION
BT EXPLOSIVES
RT *

NONFERROUS METALS

BT AIR POLLUTION SOURCES
INORGANIC COMPOUNDS
POINT SOURCES

NT ARSENIC
BARIUM
BERYLLIUM
CADMIUM
CHROMIUM
COPPER
LEAD
MANGANESE
MERCURY
NICKEL
SILVER
SODIUM
ZINC

24

Yo

i

Draft

RT

NUCLFAR ENERGY
BT

RT

ODORS

OIL SPILLS

BT

RT

OIL STORAGE

BT

RT

OIL TRANSFER

BT

RT

0ILS
BT
NT

RT

HAZARDOUS MATERIALS
SMELTERS
*

AIR POLLUTION SOURCES

POWER SOURCES
POINT SOURCES

POWER SOURCES
INTERNAL COMBUSTION ENGINES
STEAM GENERATING PLANTS
TURBINES

ACCIDENTS

ORGANIC COMPOUNDS
OILS

DISPERSANTS

OIL STORAGE

OIL TRANSFER

SOLVENTS

ORGANIC COMPOUNDS
OILS

STORAGE

OIL SPILLS

OIL TRANSFER

ORGANIC COMPOUNDS
0ILS

OIL SPILLS

OIL STORAGE

ORGANIC COMPOUNDS
OIL SPILLS

OIL STORAGE

OIL TRANSFER
HAZARDOUS MATERIALS
LIQUID FUELS
PETROLEUM
REFINERIES

SALVAGE
*

70

25

Draft

OPACITY
RT

OPEN BURNING
BT

RT

OPEN DUMPING
BT
RT

ORGANIC CARBON
UF

BT

RT

ATRBORNE PARTICULATES

AIR POLLUTION SOURCES
WASTE DISPOSAL
DUMPING GROUNDS

FIRES

GARBAGE COLLECTION
INCINERATORS
JUNKYARDS

LANDFILLS

OPEN DUMPING
TRANSFER STATIONS

WASTE PROCESSING
*

WASTE DISPOSAL
DUMPING GROUNDS
GARBAGE COLLECTION
INCINERATORS
JUNKYARDS
LANDFILLS

OPEN BURNING
TRANSFER STATIONS
WASTE PROCESSING

TOC

TOTAL ORGANIC CARBON

ORGANIC COMPOUNDS
CARBON

CARBON MONOXIDE

ORGANIC COMPOUNDS

NT

ALCOHOLS
ALDEHYDES
CARBON
CARBON MONOXIDE
ORGANIC CARBON
CCE
ETHYLENE
HYDROCARBONS
METHYLENE BLUE
OILS
OIL SPILLS
OIL STORAGE
OIL TRANSFER

"

26

Draft

RT

OXIDANTS
RT

PACIFIC OCEAN
RT

PACKAGING
RT

PARTICULATES

PHENOLS
CHEMICAL MANUFACTURING

CARBON MONOXIDE
NITROGEN OXIDES
PHOTOCHEMICAL REACTIONS
SULFUR OXIDES

COASTS
SALINE WATER
WATERWAYS
WETLANDS

CONTAINERS

EXPLOSIVES
RADIOACTIVE SUBSTANCES
STORAGE TANKS

USE AIRBORNE PARTICULATES

PERMITS
SN

PEST CONTROL
BT
RT

PESTICIDES

UF

BT
RT

PESTS

NT

RT

PETROLEUM

LICENSES REQUIRED FOR THE CONSTRUCTION OR OERATION
OF A FACILITY OR THE PERFORMANCE OF SOME ACT.

PESTS
HERBICIDES
PESTICIDES

ECONOMIC POISONS
INSECTICIDES

PESTS

AGRICULTURAL POLLUTION
HAZARDOUS MATERIALS
HERBICIDES

PEST CONTROL

HERBICIDES
PEST CONTROL
PESTICIDES
WILDLIFE

72

27

Draft

UF
BT
RT

PH
UF
RT

PHENOLS
BT
RT

PHOSPHORUS
BT
RT

28

CRUDE OIL
POINT SOURCES
COAL

COKE

OILS
REFINERIES

SALVAGE
*

HYDROGEN ION CONCENTRATION
HYDROGEN

ORGANIC COMPOUNDS
*x

INORGANIC COMPOUNDS
*

PHOTOCHEMICAL REACTIONS

RT OXIDANTS
PLANT LIFE
USE FLORA

PLASTICS AND SYNTHETICS

UF
BT
NT
RT

POINT SOURCES
SN

NT

SYNTHETICS
POINT SOURCES

VINYL CHLORIDES
*

MANUFACTURING POINT SOURCE CATEGORY; PROCESSES
AND SUBSTANCES CAUSING WATER POLLUTION, FOR WHICH
THE FEDERAL GOVERNMENT HAS ESTABLISHED EFFLUENT
STANDARDS .
ASBESTOS
BOILERS
CEMENT PLANTS
CHEMICAL MANUFACTURING
COATINGS
COKE OVENS
FEEDLOTS
FERROALLOYS
STEEL
FERTILIZERS
FURNACES

Draft

RT

POTABLE WATER

UF

POWER SOURCES
BT

NT

RT

BLAST FURNACES
CUPOLAS
GRAIN HANDLING
TIRON
LUMBER
NONFERROUS METALS
ARSENIC
BARIUM
* BERYLLIUM
CADMIUM
CHROMTIUM
COPPER
LFAD
MANGANESE
MERCURY
NICKEL
SILVER
SODIUM
- ZINC
PETROLEUM
PLASTICS AND SYNTHETICS
VINYL CHLORIDES
POWER SOURCES

INTERNAL COMBUSTION ENGINES
DIESEL ENGINES
GASOLINE ENGINES

NUCLEAR ENERGY

STEAM GENERATING PLANTS

TURBINES
PULP MILLS
REFINERIES
RUBBER
SINTERING
EFFLUENTS
MANUFACTURING

DRINKING VWATER

AIR POLLUTION SOURCES

POINT SOURCES

INTERNAL COMBUSTION ENGINES
DIESEL ENGINES
GASOLINE ENGINES

NUCLEAR ENERGY

STEAM GENERATING PLANTS

TURBINES
*

m74.

29

R —

Draft 30

PROCESS WASTE WATER
BT EFFLUENTS
INDUSTRIAL WASTES

PROPELLANT EXPLOSIVES
BT EXPLOSIVES
RT *

PROTECTED SPECIES

NT ENDANGERED SPECIES
THREATENED SPECIES
RT AQUATIC LIFE
FLORA
WILDLIFE

PULP MILLS

BT AIR POLLUTION SOURCES
POINT SOURCES

RT LUMBER
WOOoD

*

RADIATION SOURCES

RADIATION STANDARDS
NT MAXIMUM PERMISSIBLE CONCENTRATION
MAXIMUM PERMISSIBLE DOSE

RADIOACTIVE SUBSTANCES
RT HAZARDOUS MATERIALS
PACKAGING
STORAGE
TRANSPORTATION
WASTE DISPOSAL

RECORD KEEPING

SN REQUIRED RECORDING AND FILING OF DATA FOR POSSIBLE
INSPECTION BY A SUPTRVISING AGENCY.
RT REPORTING REQUIREMENTS
REFINERIES
BT POINT SOURCES
RT OILS
PETROLEUM
*
REFUSE
UF SOLID WASTE
RT WASTE DISPOSAL

75

Draft 31
RENDERING
RT AGRICULTURAL POLLUTION
REPORTING REQUIREMENTS
SN REQUIREMENTS THAT REPORTS BE FILED WITH A
SUPERVISORY AGENCY, EITHER AS A PART OF NORMAL
OPERATIONS OR AFTER AN ACCIDENT,
RT RECORD KEEPING
RESERVOIRS
USE IMPOUNDMENTS OF WATER
RIVERS :
UF STREAMS
NT RIVERS, SPECIFIC
RT WATERWAYS
RIVERS, SPECIFIC
SN A COLLECTIVE KEYWORD FOR SPECIFIC RIVERS WHICH
HAVE BEEN TREATED INDIVIDUALLY IN THE REGULATIONS
AND DATA BASE; NAMES OF RIVERS ARE NOT LISTED
IN THE THESAURUS.
BT RIVERS
ROADS
BT AIR POLLUTION SOURCES
INDIRECT SOURCES
RT AIRPORTS
ROCKET AMMUNITION
BT EXPLOSIVES
RT *
ROCKET MOTORS
BT EXPLOSIVES
RT *
RUBBER
BT POINT SOURCES
RT *
SALINE WATER
RT ATLANTIC OCEAN
COASTS
PACIFIC OCEAN
TIDAL WATER
WETLANDS
SALTS
76
i s s

-

- ” i —— o —————————— b

SALVAGE

RT

OILS
PETROLEUM

SANITARY LANDFILL

SN

BT

SCUM

SEAPORTS
RT

SEDIMENTATION
RT

SEDIMENTS

SITES FOR NONPOLLUTING DISPOSAL OF SOLID WASTES
ON THE LAND, BY SPREADING WASTES IN LAYERS,
COMPACTING THEM TO THE SMALLEST PRACTICAL VOLUME,
AND COVERING THEM WITH SOIL DAILY.
AIR POLLUTION SOURCES

LANDFILLS
WASTE DISPOSAL

LANDFILLS

BAYS
COASTS

DEPOSITION
EROSION
SETTLEABLE SOLIDS

USE SETTLEABLE SOLIDS

SELENIUM
BT
RT

INORGANIC COMPOUNDS
*

SEPARATION PROCESSES

BT
RT

AIR POLLUTION SOURCES
*

SETTLEABLE SOLIDS

UF
RT

SEWAGE
BT
RT

SEDIMENTS
DEPOSITION
DISSOLVED SOLIDS
EROSION
SEDIMENTATION
SUSPENDED SOLIDS

EFFLUENTS

HAZARDOUS MATERIALS
INDUSTRIAL WASTES
SLUDGE

77

R TV TR T] TR T

Draft

SEWAGE DISPOSAL

NT

SEWER SYSTEMS

SEWER SYSTEMS
WATER TREATMENT WORKS

NETWORKS OF SEWER PIPES.

SN
BT SEWAGE DISPOSAL
ER WATER TREATMENT WORKS
SHELLFISH
USE FISH
SILICATES
BT INORGANIC COMPOUNDS
NT ASBESTOS
FELDSPARS
RT *
SILVER
BT AIR POLLUTION SOURCES
NONFERROUS METALS
INORGANIC COMPOUNDS
NONFERROUS METALS
POINT SOURCES
NONFERROUS METALS
RT *
SINTERING
BT AIR POLLUTION SOURCES
POINT SOURCES
RT *
SLUDGE
RT HAZARDOUS MATERIALS
SEWAGE
SMELTERS
BT AIR POLLUTION SOURCES
RT FERROALLOYS
NONFERROUS METALS
*
SMOKE
BT AIRBORNE PARTICULATES
RT ASH

DUST
FUMES
MISTS

Draft 34

!
|

SODIUM
BT AIR POLLUTION SOURCES
NONFERROUS METALS
INORCANIC COMPOUNDS
NONFERROUS METALS
POINT SOURCES
NONFERROUS METALS

SOLID WASTE
USE REFUSE
SOLVENTS
RT DISPERSANTS
HAZARDOUS MATERIALS
OIL SPILLS

SPRAYING
BT AIR POLLUTION SOURCES

RT COATINGS P
d ,

STACK MONITORING

SN CONTINUOUS MEASUREMENT OF STACK EMISSIONS.
BT MONITORING
RT STACK TESTS

STACK TESTS

SN OCCASIONAL MEASUREMENTS OF STACK EMISSIONS.
BT TESTS
RT STACK MONITORING

STARTER CARTRIDGES
BT EXPLOSIVES
RT *

STEAM GENERATING PLANTS
BT AIR POLLUTION SOURCES
POWER SOURCES
POINT SOURCES
POWER SOURCES
RT INTERNAL COMBUSTION ENGINES
NUCLEAR ENERGY
TURBINES

STEEL
BT AIR POLLUTION SOURCES
FERROALLOYS
POINT SOURCES
FERROALLOYS

79

Draft : 35
STOCKPILES
SN SUPPLIES OF MATFRIALS STORED IN THE OPEN, WHICH
COULD CAUSE FUGITIVE DUST.
BT AIR POLLUTION SOURCES
RT *
STORAGE i
NT OIL STORAGE
RT EXPLOSIVES

RADIOACTIVE SUBSTANCES

STORAGE TANKS

RT CONTAINERS
PACKAG ING
STREAMS
USE RIVERS
SULFATES
RT SULFUR
SULFITES
RT SULFUR
3
SULFUR]
BT INORGANIC COMPOUNDS
NT ALKYL BENZENE SULFONATES
SULFUR OXIDES
SULFUR DIOXIDE
SULFURIC ACID i
RT SULFATES 3
SULFITES
:
SULFUR DIOXIDE
BT INORGANIC COMPOUNDS ;
SULFUR '
SULFUR OXIDES
SULFUR OXIDES
BT INORGANIC COMPOUNDS
SULFUR
NT SULFUR DIOXIDE
RT ALKYL BENZENE SULFONATES
OXIDANTS

SULFURIC ACID

SULFURIC ACID

Draft

BT

RT

SUSPENDED SOLIDS

RT

SYNTHETICS

INORGANIC COMPOUNDS
ACIDS
SULFUR
ALKYL BENZENE SULFONATES
NITRIC ACID
SULFUR OXIDES

DISSOLVED SOLIDS
SETTLEABLE SOLIDS

USE PLASTICS AND SYNTHETICS

TASTE
TEMPERATURE
RT
TESTS
NT

THERMAL POLLUTION

STACK TESTS

THERMAL POLLUTION

RT

EFFLUENTS
TEMPERATURE

THREATENED SPECILES

BT
RT

TIDAL WATER
SN

NT
RT

TOC

PROTECTED SPECIES
ENDANGERED SPECIES

WATER AFFECTED BY THE TIDES; WATERS ARE OF VARYING
SALINITY.

ESTUARIES

COASTS

SALINE WATER

WETLANDS

USE ORGANIC CARBON

TOTAL ORGANIC CARBON
USE ORGANIC CARBON

TOXIC SUBSTANCES

SN

RT

TERM USED IF A SPECIFIC TOXIC SUBSTANCE IS NOT
LISTED IN THE ABSTRACT AND/OR THESAURUS.
HAZARDOUS MATERIALS

81

36

-

Draft

TRANSFER STATIONS

SN

BT
RT

TRANSPORTATION

RT

TURBIDITY

TURBINES
BT

RT

URBAN AREAS
UF
NT

SUPPLEMENTAL TRANSPORTATION FACILITIES USED TO
TRANSFER SOLID WASTES FROM SMALL VEHICLES TO
LARGER ONES.

WASTE DISPOSAL

DUMPING GROUNDS

GARBAGE COLLECTION

INCINERATORS

JUNKYARDS

LANDFILLS

OPEN BURNING

OPEN DUMPING

WASTE PROCESSING

EXPLOSIVES
RADIOACTIVE SUBSTANCES

AIR POLLUTION SOURCES

POWER SOURCES
POINT SOURCES

POWER SOURCES
INTERNAL COMBUSTION ENGINES
NUCLFAR ENERGY
STEAM GENERATING PLANTS

CITIES
URBAN AREAS, SPECIFIC

URBAN AREAS, SPECIFIC

SN

UF
BT

VARIANCE
SN

VEHICLES
BT
RT

A COLLECTIVE KEYWORD FOR SPECIFIC URBAN AREAS
WHICH HAVE BEEN TREATED INDIVIDUALLY IN THE
REGULATIONS AND DATA BASE; NAMES OF CITIES
ARE NOT LISTED IN THE THESAURUS.

CITIES

URBAN AREAS

LICENSE TO ENGAGE IN AN ACT CONTRARY TO THE RULE.

AIR POLLUTION SOURCES
ATRCRAFT

INTERNAL COMBUSTION ENGINES
WATERCRAFT

37

Draft

VINYL CHLORIDES
BT CHLORIDES
POINT SOURCES
PLASTICS AND SYNTHETICS

VOLATILE SUBSTANCES
R¢ HAZARDOUS SUBSTANCES

WAKE ISLAND

WASTE DISPOSAL
NT DUMPING GROUNDS
GARBAGE COLLECTION
INCINERATORS
CONICAL BURNERS
, JUNKYARDS
: LANDFILLS
SANITARY LANDFILL
OPEN BURNING
OPEN DUMPING
TRANSFER STATIONS
WASTE PROCESSING
: RT RADTOACTIVE SUBSTANCES
REFUSE

WASTE PROCESSING
SN REFUSE TREATMENT METHODS, INCLUDING SHREDDING,
BALING, RECYCLING, AND COMPOSTING.
E BT WASTE DISPOSAL
1 RT DUMPING GRQUNDS
GARBACE COLLECTION
INCINERATORS
JUNKYARDS
LANDFILLS
OPEN BURNING
OPEN DUMPING
TRANSFER STATIONS

WATER POLLUTION CONTROL
F SN DEVICE OR PROCEDURE USED TO LIMIT THE RELEASE OF
EFFLUENTS INTO THE WATER.

s WATER QUALITY CLASSIFICATION

BT CLASSIFICATION

RT AIR QUALITY CLASSIFICATION
LAND CLASSIFICATION

83

3R

Draft 39

WATER QUALITY STANDARDS

RT EFFLUENT STANDARDS
i WATER RIGHTS .
SN THE RIGHT TO DRAW WATER FROM A SOURCE, INCLUDING
GROUNDWATER SOURCES.
WATER TREATMENT WORKS
SN SEWAGE TREATMENT FACILITIES.
BT SEWAGE DISPOSAL ,
RT SEWER SYSTEMS ;
WATERCRAFT Z
RT AIRCRAFT |
VEHICLES 3
WATERWAYS 2
SN BODIES OF WATER USED FOR WATERCRAFT NAVIGATION.
RT ATLANTIC OCEAN
CHANNELS
LAKES
PACIFIC OCEAN
RIVERS
: |
WETLANDS q
RT ATLANTIC OCEAN
COASTS
PACIFIC OCEAN
SALINE WATER
TIDAL WATER
WILDLIFE ‘
RT AQUATIC LIFE ‘
FLORA |
PESTS ‘
PROTECTED SPECIES
WOOoD
BT FUELS
RT COAL
COKE
FOREST PRESERVATION
LIQUID FUELS
LUMBER
PULP MILLS
ZINC
BT AIR POLLUTION SOURCES
NONFERROUS METALS
84

Draft

INORGANIC COMPOUNDS
NONFERROUS METALS
POINT SOURCES
: NONFERROUS METALS
RT *

* CHECK THE BROADER TERMS FOR A LIST OF POTENTIALLY RELATED TERMS

40

Appendix C - Source Code and Subroutines

/*

laws files.

RPN

Arguments: -

3 Main variables:

prev_stop:
] prev_type:
q:

type_start:
*/

{

Repair updates the laws.toc file for CELDS, creates and/or adds
to the 1isol files, and performs minor error checking functions on the

<fnames>

REPATIR

if 180l files are to be created
for laws files to be repaired
(any number of laws files may be named)

acc: current accession number
agy: file descriptor of agy.isol file
argc: number of arguments with procedure was called
argnum: argument number of file undergoing repair
argstart: argument number of first file to undergo repair
argv array of pointers to arguments
att file descriptor of att.isol file
bf buffer for reading from laws file
card copy of line read from laws file
ch_this fil: running total of characters read from laws file
chars: number of chars read by current read |
data: file descriptor of file undergoing repair
gps: file descriptor of gps.isol file
installing: a flag set to 1 if toc file is to be modified,
otherwise set to 0.

iobuf: buffer used to read records from the laws files
isols: a flag set to 1| if isol files are to be

F produced, otherwise set to 0.

3 top: file descriptor of top.isol file

: mec: file descriptor of mec.isol file
p: pointer into read buffer (bf)
prev_acc: previous accession number

previous stop code
previous field number
pointer into copy of line read (card) f

stop: current stop code
toc: file descriptor of laws.toc file
type: current field number]

record to be written into laws.toc file

main(argc,argv) int argc; char *argv(];

/* Declaration of variables */

char bf[82], card[82), *ch_this fil, iobuf[530];

int acc, agy, argnum, argstart, att, chars, data, gps,
installing, isols, top, mec, prev_acc, prev_stop,
prev_type, stop, toc, type, type start[13];

register char *p, *q;

/* Check for proper calling of repair */
if (arge < 2) { printf("USAGE: repair <lawsfile>\n"); return;)}

toc = open{("laws.toc",1);

/* 1f toc file doesn’t exist, then turn installing off. This
means that repair is being used only for error-checking. */
if (toc < D) installing = 0;
else installing = 1;

/* Set isols flag */
isols = (*argv([l] == ‘=" ? 1:0);

if (isols)

{

mec = open('"mec.isol",l);

if (mec < 0)
/* create all of the isol files */
{
mec = creat("mec.isol",0666);
if (mec < 0) {perror("creating isol files"); return;}
gps = creat("gps.isol",0666);
agy = creat("agy.isol",0666);
att = creat("att.isol",0666);
top = creat("top.isol",0666);
}

else

/* Files already exist, append to end */
{
seek(mec,0,2);
gps = open('gps.isol",1);
seek(gps,0,2);
agy = open("agy.isol",1);
seek(agy,0,2);
att = open("att.isol",1);
seek(att,0,2);
top = open("top.isol",1);
seek(top,0,2);
}

}

/* Set argstart to argument number of first file */
argstart = (isols ? 2:1);

/* Now, loop for each file to be repaired (up to argc) */
for (argnum = argstart; argnum < argc; argnum++)
{
/* Open laws file to be repaired */
data = gopen(argv[argnum] ,&iobuf);
if (data < 0) {perror(“"repair"); return;)
printf("repairing %s\n",argv(argnum]);

39

/* Initialize parameters */
p = argv{argnum] + 53
type_start (0] = atoi(p);
prev_stop = 2;

prev_type = 12;

prev_acc = type start([0];
ch_this fil = 0;

/* Now, read and check data until entire file has been read */
do
{
/* Read 1 line from file into bf */
chars = ggets(bf,&iobuf);

/* Set pointers, p and q */
p = &bf[0];
q = &card[0];

/* Copy bf into card */
while (*q++ = *pt++);

/* Convert stop code, field number, and acc number to integer */
bf[10] = 0;
stop = atoi(&bf([8]);

bf (8] = 0;
type = atoi(&bf(5]);
bf[5] = 0;
acc = atoi(&bf[0]);
if (acc != prev_acc || chars <= ()
/* Then this is either a new law or an error */
{

if (acc < prev_acc && chars > 0) printf("bad acc :%Zs\n",card);
if (installing)
{
1seek(toc, (prev_acc * 26.,0));
write(toc,type_start,26);
}
}

/* Check for end of file */
if (chars <= () break;

if (type != prev_type)
/* Then this is a new field (and maybe a new law) */
. {
if (type != (prev_type + 1) && type != 1)
printf("bad type:%s\n'",card);
if (type == 1 && (prev_stop != 2 || prev type != 12))
printf("bad £1d1:%s\n",card);
if (stop == 2 && type != 12)

printf("bad stop:%s\n",card);

if (prev_stop < 1) printf("bad stop:%s\n",card);

if (type >= 1 && type <= 12) type_start[type] = ch_this fil;
else printf("bad type:%s\n",card);

}

if (isols)
/* Then add to isol files */
{
/* Replace nul at end of card with a newline */
card(chars - 1] = 012;

switch(type)
{
case 5: write(mec,card,chars); break;
case 6: write(gps,card,chars); break;
case 7: if (type != prev_type)

; write(agy,card,chars); break;..
case ll: write(att,card,chars); break;
case 12: write(top,card,chars); break;
default: break;

)y
}

/* Change this card to previous card */
prev_stop = stop;
prev_type = type;
prev_acc = acc;

/* Add characters read to running total */
ch_this fil =+ chars;

} while (chars > 0);

/* Close laws file */
close(data);

}

/* Close all open files */
if (installing) close(toc);
if (isols)
{
close(mec);
close(gps);
close(agy);
close(att);
close(top);
}

Appendix D - The Make Search Subroutine

#
/% MAKE_SFEARCH

Make_search takes an "alpha" file for a given field and creates
the search file for that field,

Arguments: mec, gps, agy, key, or att

Main variables:

alpha: file descriptor for alpha file ;
bf: buffer used for reading from alpha file 3
collisions: total number of hash collisions

eof: end-of-file indicator

first_hash: actual hash number for value

hash_num: hash number incremented to avoid collision

hash_table: array, 4011 long

s o counter

iobuf: structure used for reading from alpha file.

it is of the shape required by ggets.
the ggets routines are the only ones that
touch these variables.

laws: count of laws with the current value

list file: file descriptor for list file

loc_in laws list: start of current law list in list file
old_value: copy of last value read

p: pointer into bf

q: pointer into old_value

'H structure of shape val_record

val_file: file descriptor for val file

value_num:

*/

#include "search.i"

main(argc,argv) int arge; char *argv(};
{
/* Declaration of variables */
char bf(122], old value[64), *p, *q;
int alpha, collisions, eof, first_hash, hash_num,
hash_table[hash_size}, i, 1aw[2000], laws, list file,
loc_ in _laws 1ist, val_file, value_num;
struct iostru {
int gfildes;
char *gnextp;
char *gstop;
int geof;
char gdbuf[513);
} iobuf;
struct val_record v;

/* Check for proper calling of make_search */

94

if (arge != 2)
{
printf("USAGE: make_search <field_name>\n");
returnj.

}
printf(“making search file for field %s\n",argv[l));

concat(argv(l]),".alpha",bf);
/* Open appropriate alpha file */
alpha = gopen(bf,&iobuf);
if (alpha < 0) {perror("mksrch(oal)"); return;}

concat(argv(l],".val" ,bf);
/* Create appropriate val file */
val file = creat(bf,0666);
if (val _file < 0) {perror("mksrch(cva)"); return;}

concat(argv(l],".1list" ,bf);
/* Open appropriate list file */
list_file = creat(bf,0666);
if (list_file < 0) {perror("mksrch(cli)"); return;}

/* Zero out hash table and save room in val file */
for (1 = 0; i < hash_size; i++) hash_table[i] = 0;
write(val file,hash_table, hash size * 2);

/* Initialize counters */
value_num = 0;
collisions = 0;
loc_in_laws_list = 0;

/* Read first line from alpha into bf */
eof = ggets(bf,&iobuf);
if (eof <= 0) {perror("mksrch(ral)"); return;}

/* Now, repeat until end-of-file is reached */
while (eof > 0)
{
/* copy the value into old_value */
p = &bf[10];
q = old value;
while(*q++ = *p+t);

/* Zero out the unused part of val_record */
while (q < &old_value[63]) *q++ = 0;

/* Initialize laws counter */
laws = (;

/* Repeat as long as value remains the same */

95

i

while (eof > 0 && compar(&bf([10),0l1d_value) == 0)
{
/* Convert accession number to integer and put in laws */
bf([5) = 0;
law[laws++] = atoi(&bf{0));

/* Read the next record */
eof = ggets(bf,&iobuf);
}

/* Mark end of law list with 19999 */
law[laws++] = 19999;

/* Write list of laws into list file */
write(list_file,law, laws << 1);

/* Compute hash number */
hash_num = hash(old _value) % max_hash_num;
first_hash = hash num;

/* Add 1 as long as this hash_num already exists */
while(hash_table[hash_num] != 0)
{
collisions++;
hash_num++;

»

/* Print message for collisions */
if (first_bhash != hash _num)
printf("slide %d to %d\n",first hash,hash_num);.

/* Put value_num into slot in the hash table */
hash_tablefhash_num] = ++value_num;

/* Print insertion message */
printf("7%5d at %5d:%s\n",laws,hash_num,old _value);

/* Copy this value into val_record array */
p = old _value;
q = v.value;
while (p < &old_value(63]) *q++ = *p+t;

T

/* Set first_law to beginning of law list */
v.first_law = loq_iq_laws_list;

/* Write val_record into val file */
write(val file,&v,64);

/* Adjust loc_in_laws_list */
loc_in_laws_list =+ laws;

96

—

“ AD=A061 158

UNCLASSIFIED

CONSTRUCTION ENGINEERING RESEARCH LAB (ARMY) CHAMPAI--ETC F/G 5/2
SYSTEM DOCUMENTATION FOR COMPUTER=-AIDED ENVIRONMENTAL LEGISLATI=-=-ETC(U)
SEP 78 R L WELSH

CERL=SR=N-31

)

/* Go to beginning of file and write hash table */
seek(val_file, 0, 0);
write(val_file,hash_table,hash_size * 2);

/* Close all open files */
close(alpha);
close(list_file);
close(val_file);

/* Print out total statistics */
printf(" total collisions = %d\n",collisions);
printf(" unique values = %d\n",value_num);
printf(" last list word = %d\n",loc_in_laws_list);

97

P

e o - """"9‘*"-‘—W —

. i A e e
— - -

Appendix E - The Hier Subroutine

99

/% HIER

Hier put in the hierarchy of terms for CELDS. It reads the file
"key.hier" and constructs the hierarchical terms.
*/
#include "search.i"
/* Global variables */
int loc_in law_list, val_num;
int hash_table(hash size];
int data, list, nlist, nval, valj;
char 1obuf(600]:
struct val_record v;

main()
{
i /* Declaration of variables */
i int i, first, flag, new[max_laws], old[max_laws];
int *o, *n;
: char *p, *r, rvalue([63];
char *q;

debugging = 0;
/* Open files */
data = gopen('"/cerl/celds/key.hier",iobuf);
if(data<0){perror("open(key.hier)");return;}
list = open("/cerl/celds/top.1list",0);
if(list<0){perror("open(top.list");return;};
val = open("/cerl/celds/top.val",0);
if(val<=0){perror("open(top.val)");return;}
if (debugging) printf(''Files are open\n");

pore

/* Create new files */
nval = creat("/cerl/celds/key.val",0644);
if(nval <= Q){perror("credc(key,val)")jreturn;}
nlist = creat("/cerl/celds/key.list",0644);
if(nlist <= 0){perror("creat(key.list)");return;}
if(debugging)printf("Files are created\n");

/* Zero out hash table and write it */
for (i=0; i<hash_size; i++) hash_table[i] = 0;
write(nval,hash_table,hash_size*2);
val num = 0Q;
loc_in_law_list = 0;
old[0] = 0;

/* Now we’re all set to begin */
first = 13

while(ggets(rvalue,&iobuf))
{

100

r = rvalue;
if (*r == °=°)
{
terminate(old);
/* Zero out v.value */
for (i=0; i<62; i++) v.value(i] = 03

/* Fill "o0ld" array */
fil1(old,&rvalue(l]);

/* Fill v.value with this term */
p = &v.value;
r = &rvalue(l];
while(*p++ = *pri+);

first = 0;
}
else
{
flag = fill(new,&rvalue(0]);
if (flag > 0) or(old,new);
}
}

terminate(&old);
/* Put final write here */
close(val); close(list); close(nval); close(nlist);
nval = open("/cerl/celds/key.val",0644); *
write(nval,hash_table,hash_size*2);
close(nval);
}
/**/
terminate(old) int old([];
{
/* Declaration of variables */
int hash_num, i, #*p; |

/* Check for nul list */
if(old(0] == 0 || o1ld[0] == 19999) return;

/* Find slot in val_file */
hash_num = hash(v.value) % max_hash num;
if(debugging)printf(" %s hashes to 2d\n",v.value,hash_num);
while (hash_table(hash_num] != 0) hash_num++;

/* Put val_location into hash table */
hash_table[hash_num] = ++val_num;

/* Write val_record onto file */
v.first_law = loc_in law_list;
write(nval,&v,64);

/* Now do the 1list file */

101

p = old;

i=0;

while (*p++ < 19999) i++;

i++;

write(nlist,old,i*2);

loc_in_law_list =+ i;

printf("%5d inserted at %d for %Zs\n",1~1,hash_num,v.value);

return;
}
[%%/
int fill(laws,rvalue) int laws[]; char *rvalue;
{

int number;

/* Declaration of variables */
int bf(100}, hash _num, *r, seek location, wrong;
struct val_record x;

/* Calculate hash number */
hash_num = hash(rvalue) % max_hash_num;

/* Seek to proper slot in hash table -- each hash_num takes 2 bytes */
seek location = hash num * 2;
seek(val,seek_location,0);

/* Read from val file */
read(val,bf,200);

/* Point r to beginning of record read */
r = &bf[0];

/* Initialize wrong to be true */
wrong = 1;

while (*r)
/* 1f *r is zero, then this hash number contains a zero in the table */
{
/* Locate record with this hash number */
seek_location = ((*r * 64) + val table start);
seek(val,seek_location,0);
read(val,&x,64);

/* Compare fvalue with the value in the val file */
wrong = compar(x.value,rvalue);
if(debugging)printf('"compar %s to %s\n'",x.value,rvalue);

/* 1f wrong is zero, we found fvalue */
if (wrong == () break;

r++;
}

if (wrong != 0)
{

102

printf("WARNING: %s -- no laws found\n",rvalue);
return(-1);
}

/* Calculate location */
seek location = x.first_law * 2;
seek (list.seek_location.o);
read(list,laws,ma&_laws);

return;
}
[%%/
int or(old,new) int old([], new(];
{

int result[2*max_laws];
int chars;
register int *r, *s, *t;

r = old;
S = new;
t = &result(0] - 1;
do
{
if (*r < *g) *++t = *pr4+; else
{if (*r == *g) pr++;
*+4+t = *s++;}
} while (*t < 19999);

chars = (t - &result[0]) << 13

if (chars > lawset_size)
{
printf("lawset size exceeds %d laws\n",(max_laws -1));
printf(*only the first Zd laws will be used\n",(max_laws
t = &result(max_laws];
*t = 19999;
}

t = &result[0];

r = old;

while (*t < 19999) *r++ = *t++;

*r = *t;

return;

}

103

-1));

: Appendix F - The Push File

105

: PUSH

: Enter start date and time

date

: Remove all old 1isol files

m *.isol

: Repair all files -- being careful not to
/cerl/programs/celds/push_progs/obj/repair
/cerl/programs/celds/push_progs/obj/repair
/cerl/programs/celds/push_progs/obj/repair
/cerl/programs/celds/push_progs/obj/repair

: Sort isol files into alpha files and execute make_search

sort +0.10 +0.0 -0.5 mec.isol -o mec.alpha

/cerl/programs/celds/push_progs/obj/make_search mec

sort +0.10 +0.0 -0.5 gps.isol -o gps.alpha

/cerl/programs/celds/push_progs/obj/make_search gps

sort +0.10 +0.0 -0.5 agy.isol -o agy.alpha

/cerl/programs/celds/push_progs/obj/make_search agy

sort +0.10 +0.0 -0.5 att.isol -o att.alpha

/cerl/programs/celds/push_progs/obj/make_search att

sort +0.10 +0.0 -0.5 top.isol -o top.alpha

/cerl/programs/celds/push_programs/obj/make_search top

: Get rid of all alpha files

m *.,alpha
/cerl/programs/celds/push_progs/hier
: Include finish date and time

date

106

have arg list too long

- laws,.? laws.?? laws.[123456789]??
- laws,.1???

- laws,.2(01234]??

- laws,2[56789]??

3
Appendix G - The Retriever Subroutines
\
1
!
4
;
107

#
/* CELDS

Celds is the retrieval program for the celds system,
Arguments: - if celds is executed with a "-" argument,

then on termination, "etis -" is executed.
This is the case when celds is entered
from etis.

Global variables:
client: user id for the person using celds
debugging: flag set to 1 for debugging program.
this causes parameters to be printed.
field_is _searchable: array indicating which of fields 1 to 13
are searchable

fld_name: alphabetic identifier for field

old_req_location: pointer to previous position in
request array

punctuation: array indicating which ASCII are
recognized punctuation

reading commands:]l until user asks to leave celds, then 0

req_location: pointer to current position in request

request: the array containing the current line of
user input

requests: total number of celds commands

temp_file name: array of scratch file names

word: the array containing the current word, null term

Main variables:
b & counter
p: pointer into punctuation array

* /
#include "search,i"

main(argc,argv) int argc; char *argv[];

{
/* Declaration of variables */
char *p;
int 13 1

/* Set a trap for break */
signal(2,1);

/* Print hail message */
write(2,"\nWelcome to CELDS\n\n\n",20);
message();

/* Zero out punctuation array */
p = &punctuation(0];
for (L = 0; 1 < 128; i++) *p++ = O

108

/* Fill in only recognized punctuation */
punctuation([0] = 1;
punctuation[‘&” & 0177])
punctuation[’|” & 0177]
punctuation([®,” & 0177)
punctuation(“"’ & 0177)

&
&
&

punctuation[’(’ & 0177)
punctuation([”)’ & 0177]
punctuation[’ * & 0177)

et et ot et et s
s we we we we we we

/* Fill in field name abbreviations */

fld name[l) = "acc";
fid name(2] = "ttl";
fl1d_name (3] = "dat";
fld_name (4] = "ref";
fld_name (5] = "mec";
fld_namc[6) = "gps";
fld _name[7]) = "agy";
fld_name[8] = "bib";

fld_name(9] = "abs";
fld_name[10] = "tbl";
fld_name[11] = "att";
fld_name(12)
f1d_name[13]

/* Set flags for searchable fields */ 2
field is searchable[0] = 0; 1
field is searchable[l] I
field_is searchable(2] = 0;
field is searchablie(3] 03
field is searchable(4] 3
field is searchable(5]
field is searchable([6]
field is searchable(7]
field is searchable[8]
field is searchable(9] =
field is_searchable[10]
field_is searchable[l1]
field is searchable[l2]

I field is searchable([l3]

DD = O

’
b
’
0
1
1
1

we we we we

/* Initialize everything */
old_req_location = request;

£ req_location = request;

request[0] = 0;

word[0] = 0;

requests = (;

/* Turn debugging off */
debugging = 0;

109

/* Get user id and put it into client */
client = getuid() & 0377;

/* Fxecute this loop until user ends celds session */
do

/* Initialize temp_file name to "celds_tempa'" */

concat("celds_temp","a",temp_file name);

/* Set trap for quit */
signal(2,1);

/* Set reading_commands to true */
reading_commands = 1;

/* Get the next command */
command () ;

/* Increment number of requests */
requests++;
} while (reading_commands);

/* Remove all of the temp files */

concat("celds_temp","a" ,temp_file name);
while (temp_file name{10] < “k")

{

unlink(temp_file name);

temp file name[l10] =+ 1;

}
unlink("current_laws");
unlink(“previous_laws");

/* Print out summary statistics */
/* Print farewell %/
printf("Good bye from CELDS\n");

/* Check whether to execute etis */

if (compar(argv(l],"-") == 0) execl("/ceri/etis","etis","=",0);

}

110

#
ffinclude "search.i"
/* ABORTER

Aborter i1s the interrupt procedure that gets called when the
rubout, del, or break key is pressed. This procedure is only active

during list, print, and show verhs. At all other times, those keys are
ignored.

Global variables: (see list for expr.c)
reading_commands: aborter modifies "reading_commands"
L

int *abhorter(){
reading_commands = 2;
signal(2,aborter);
return;

}

111

#
#include "search.i"

/* AND !
And takes two lists of law numbers and logically "ands" :
the two into a third list, {.e. it saves law numbers that occur
in both 1lists, !
Arguments first file descriptor of file containing }
first 1ist of law numbers 3
second file descriptor of file containing
second list of law numbers
Returns fil file descriptor of file containing

And variables:
bfl:
bf2:
chars:
charsl:
chars2:
fil:
) ot
result:
S:
€2

*/

int and(first,second) int first,second;

{

the "anded" 1list

buffer for first list

buffer for second list

number characters written into result
number characters read into bfl
number ch=aracters read into bf2

file descriptor of resultant list
pointer to result

buffer for resultant list

pointer to bfl

pointer to bf2

/* Declaration of variables */
int bfl{max laws], bf2[max_laws), chars, charsl, chars2, fil,
result[max_laws];
register int *r,*s, *t;

/* Fill bfl and bf2 with law sets */
chars]l = read(first,bfl,lawset_size);
chars2 = read(second,bf2,lawset_size);

/* Guarantee that there is a 19999 at end (paranoia) */
bfl(charsl / 2] = 19999;
bf2(chars2 / 2] = 19999;

/* Set up pointers */
r = bfl;
s = bf2;
t = &result[0];

/* Since t gets pre-incremented the first one will be skipped */

*t = (;

112

__Mh‘.-'--_‘“‘__h______‘__a__‘_,_....ﬁ...nuu-u-usunnunniﬂﬂi‘

do {

if (*r < *g) r++;

else
{
1f (*r == *g) *y4t = *pds
s++;
}

} while (*t < 19999);

/* Calculate number of characters in result */
chars = (t - &result([0]) << 1;

/* Create file to write result into */
fil = creat(temp_file name,0666);
if (fil < 0) {perror("bool(c)"); return(fil);)}

/* Write result beginning with result[l]) since [0] is skipped */
write(fil,&result[l],chars);

/* Position fil at beginning of file (by closing, then opening) */
close(fil);
fil = open(temp_file name,0);

/* Increment temp_file name(l10] since we just made a file */
temp_file name[l10] =+ 1;

/* Close first and second files */
close(first);
close(second);

return(fil);
}

113

i i i P T e

A il o, e e

#
#include "search.i"
/% COMMAND

Command parses the command line to find the verb. Any word that
is not a verb 1s taken to be a request to create a new file
by that name.

Arguments none

Command variables:

eof: end of file indicator
laws: number of laws in list
new: file descriptor of new file
old: file descriptor of old file
time_vector: random number used for insuring uniqueness
of job numbers for batch print requests
*/
command ()
{

/* Declaration of variables */
char set_name(62];
int eof, laws, new, old, time_vector(2];

if (word[0] == 0)
/* Then no words are waiting */
{
eof = get next_word("What next?:");
if (eof == Q)
/* Then cntrl-d was typed */
{
reading_commands = 0;
return;
}
}

/* Echo command line if debugging is turned on */
if (debugging) printf("Command: ‘%s’\n",word);

/* Now, begin compares to find out what command this is */

if (compar(word,"find") == 0 || compar(word,"for") == 0 ||
compar(word,"get") == 0)
{

/* Then this is a new search command */
get_next_word('Search criterion?:");
old = expression();
if (old < 0) return;
laws = copy_list(old,"current_laws",1);
close(old);
printf("%5d laws found\n",laws);

114

Tere—— ; ' - - o v e — e ,,rdqu'

return;

}
/* ———= "and" command ---- */
if (compar(word,"and") == 0)

{
new = open("current_laws",0);
if (new < 0)
{
reject_this word("no laws selected");
return;
}

get_next_word("And what?:");

old = expression();

if (old < 0) {close(new); return;}

old = and(old,new);

laws = copy_list(old,"current_laws",1);
close(old);

printf("%5d laws remain\n",laws);
return;

}

/* —=== "or" command -=-- */
if (compar(word,"or") == Q)
{
new = open('"current_laws",0);
if (new < 0) {reject_this word('"no laws selected"); return;}
get_next_word("Or what?:");
old = expression();
if (old < 0) {close(new); return;}
old = or(old,new);
laws = copy_list(old,"current_laws",1);
close(old);
printf("%5d laws now selected\n'",laws);
return;

}

/* ———- "except" command ---- */
if (compar(word,"except") == Q)
:
: {
new = open('"current_laws",0);
if (new < 0) {reject_this_word("no laws selected"); return;}
[get_next_word("Except what?:");

old = expression(); |
if (old < 0) {close(new); return;} |
old = except(new,0ld);
laws = copy_list(old,"current_laws",1);
close(old);
printf("%5d laws remain\n'",laws);
return;

}

115 i

[* ==== "show" command ===- */
if (compar(word,"show") == 0) {show(); return;)

/* -=-=- "suggest'" command ---- */
if (compar(word,"suggest") == ()
{
printf("\nType comment (end with catrl-d):\n\n");
execute("mail welsh");
printf("\n");
get_next_word("");

return;
=)
[* ——- "remove" command ——-- */
if (compar(word,'"remove") == 0 || compar(word,"delete") == 0)
{

get_next_word("Set names to delete?:");
while(word(0])
{
/* open it only to see if it exists */
concat("_",word,set_name);
old = open(set_name,0);
if (old < 0)
{
printf("%s: no such set, unable to delete\n",word);
}
else
{
close(old);
unlink(set_name) ;
printf("%s: deleted\n",word);
}
get_next_word("");
if (compar(word,",") == 0) get_next_word("More set names?:");
if (compar(word,"and") == 0) get_next_word("More set names?:");

)

return;

}

/* ==—= "gave" command ---- */
if (compar(word,"save'") == ()

{ |
old = open("current_laws",0); ?
if (old < 0) ;
{ 1
reject_this word("no laws selected");
return;
}

get_next_word("New lawset name?:");
if (compar(word,"abort") == Q)

{

116

B———

reject_this word("lawset not saved");
return;
}
concat ("_",word,set_name);
laws = copy_list(old,set_name,0);
close(old);
printf("%5d laws saved\n",laws);
get_next_word("");
return;

}

/% —=== "make" command =--- */
if (compar(word,"make") == 0 || compar(word,'"set") == 0)
{
get_next_word("New lawset name?:");
if (compar(word,"abort") == ()
{
reject_this word("well if you insist");
return;
}
concat("_",word,set_name);
get_next_word('"Search criterion?:");
if (compar(word,"is") == 0) get_next_word("Search criterion?:");
if (compar(word,"from") == 0) get_next_word("Search criterion?:");
old = expression();
if (old < 0) return;
laws = copy_list(old,set_name,0);
close(old);
printf("%5d laws saved\n',laws);
old = open(set_name,0);
copy_list(old,"current_laws",1);
close(old);
return;

} E

e o

E [* ==== "1ist" command ---- */
if (compar(word,"1list") == Q)
¢ {
: lister(1,"");
return;

}

/* ==== "print" command ---- */
if (compar(word,"print") == 0)
{
/* Create the listing in the line printer daemon’s directory,
and give it a pseudo-random name (to avoid conflicts) */

time(time_vector);
concat("/usr/1lpd/celds",locv(0,time_vector(l]),set_name);
old = creat(set_name,0666);

if (old < 0) {perror("print"); return;)}
laws = lister(old,set_name);
close(old);

return;

}

/* === "debug" command ---- */
if (compar(word,'debug'") == Q)
{
debugging = 1 - debugging;
get_next_word("");
return;

}

/* «==- "what" command ---- */
if (compar(word,"what") == ()
{
get_next_word("Sets, does or is?:");
if (compar(word,“are“) == () gEt_next__word("say *the sets':n);

if (compar(word,'"the") == Q) get next word("Say ‘sets’:"}; :
if (compar(word,"sets") != 0) ‘
{
reject_this word("Only “sets” is available, sorry");
return;
}

execute("1ls _*");
get_next_word("");

return;
}

/* —=-—= "help" command —-—-- */

if (compar(word,"help") == 0) .
{

printf("verbs are:\n'"");

printf ("FIND,AND,OR, EXCEPT,SAVE,MAKE,O0PS,\n") ;

printf ("DELETE, SHOV,LIST,PRINT,WHAT,SUGGEST ,HELP,END\n") ;
get_next_word("More detail?:");

if (word[0] != “y’) { get_next_word(""); return; }

printf ("FIND begins a new search\n");

printf ("AND further limits the previous search\n"); f
printf ("OR extends a search\n"); |
printf("EXCEPT excludes selected laws\n");

printf ("SAVE stores the result of a search\n");

printf (""MAKE finds and saves\n'");

printf ("00PS reinstates previous lawset\n'");

printf("\n");
printf("DELETE removes a saved lawset\n");

printf(*SHOW shows the accession numbers of laws found\n");
printf("LIST summarizes laws on the terminal\n");
printf("PRINT summarizes laws on high~-speed printer\n");
print f (“"WHAT shows lawset names\n");

118

’q—-:———-—————-m-_ e -

printf ("SUGGEST to send a comment to the authors of CELDS\n");
print f("HELP shows this list\n");

printf ("END signs the user off the system\n");
get_next_word("");
return;
}
/* —=—= "end" command ---- */
if (compar(word,"end") == 0 || compar(word,"bye") == ()
{
reading_commands = 0;
return;
}

/* =—=- "abort" command ---- */

if (compar(word,"abort") == Q)
{
reject_this word("nothing to abort. all is cool.");
return;

¥

/* -——= "oops" command -=--- */
if (compar(word,"oops") == Q)
{
old = open("previous_laws",0);
if (old < 0) {reject_this word("Recovery not possible"); return;}
laws = copy_list(old,"current_laws",0);
printf("%5d laws recovered\n",laws);
close(old);
get_next_word("");

return;
| }
“ reject_this word("Oh worthy master, I fear I have\nfailed to
: } understand your intention
r

119

#
ffinclude "search.i"
/* E 0P TiE

Copy_list copies a list of laws from one file into another.
All new lawsets are created with a temporary name and are not copied
until the whole command has been read and checked for syntactic
correctness. Then copy_list is called to transfer the law list
into a permanent file.

Argument: mode if mode is 1, a copy of what is in the "new"
file (if existent) is put into "previous_laws"
before old is copied to new.

new name of new file (copied to)
old file descriptor of old file (copied from)
Returns: -1 for error conditions

the number of laws copied, for successful calls

Copy_list variables:

bf: buffer for reading files

chars: naumber of characters read from a file
nw: - file descriptor of the new file

;o pointer into bf

tmp: file descriptor of a temporary file

*/

int copy_list(old,new,mode) int old,mode; char #*new;
{
/* Declaration of variables */

int bf(max laws], chars, aw, *r, tmp;

if (mode == 1)
/* Then copy "new" to "previous_laws" */
{
tmp = open(new,0);
if (tmp >= 0)
{
/* Create "previous_laws" */
nw = creat("previous_laws", 0666);
if (nw < 0) {perror("prev_laws"); return(-1);}

/* Read from new and write to previous */
chars = read(tmp,bf,lawseg_size);
if (chars < 0) {perror("copy"); return(-1);}
write(nw,bf,chars);
close(tmp);
close(nw);

}

}

/* Create new file */

120

-

nw = creat(new,0666) ;
if (nw < 0) {perror("copy"); return(-1);}

/* Read old file */
chars = read(old,bf,lawset_size);
if (chars < 0) {perror("copy"); return(-1);)}

/* Count number of laws */......
bf{chars / 2] = 19999;
r = bf;
while (*r++ < 19999);

chars = (r - &bf[0]) * 2;
write(nw,bf,chars);
close(nw);

return(r - &bf[1));

}

121

T

#
f#include “search.i"
/* RERXE€EPT

Except takes two lists of law numbers and constructs a
list containing laws that are in the first list and not in the
second list.

Arguments first file descriptor of file containing
first 1ist of law numbers
second file descriptor of file containing

second list of law numbers

Returns fil file descriptor of file containing
the "ored" list

Or variabhles:

bfl: " buffer for first list

bf2: buffer for second list

chars: number characters written into result
charsl: number characters read into bfl
chars2: number characters read into bf2

fil: file descriptor of resultant list

r: pointer to result

result: buffer for resultant list

s: pointer to bfl

£ pointer to bf2

*/

int except(first,second) int first,second;
/* Declaration of variables */
{
int bfl[max_laws], bf2[max_laws], chars, charsl, chars2, fil,
result[2 * max_laws];
register int *r,*s,*t;

/* Fill bfl and bf2 with lawsets */
charsl = read(first,bfl,lawset_size);
chars2 = read(second,bf2,lawset_size);

/* Guarantee that there is a 19999 at end (paranoia) */
bfl[charsl / 2] = 19999;
bf2[chars2 / 2] = 19999;

/* Set up pointers */
r = bfl;
s = bf2;
t = &result(0];

/* Since t gets pre-incremented the first one will be skipped */
*tso;

122

while (*r < 19999)

{
1f (*r < *s) *4t = *pi+;
else

}
*++t = 19999;

/* Calculate number of characters in result */
chars = (t - &result[0]) << 1;

/* Create file to write result into */
fil = creat(temp_file name,0666);
if (fil < 0) {perror("bool(c)"); return(-1);}

/* Write result beginning with result[1] since [0] is skipped */

{
if (*r == *g) p++;

write(fil,&result[l],chars);

/* Position fil at beginning of file (by closing and opening) */
close(fil);

fil = open(temp_file name,0);

/* Increment temp_fil name[l10] since we just made a file */
temp file name[l0] =+ 1;

/* Close first and second files */

close(first);
close(second) ;

return(fil);
}

123

#
#include "search.i"
/% - EXPRESSTON

P
1
Expression is the routine for evaluating "ors". 7

It is evaluated last, after "ands" and "excepts'" are done.

Returns fil a file descriptor

Expression variables:
fil: file descriptor
second: file descriptor

* / [

int expression()

{

/* Declaration of variables */
E int fil, second;

/* Call term to check for 2? */
fil = temm();
if (fil < 0) return(fil);

while (compar(word,"or") == 0 || compar(word,"union") == Q |1
compar(word,"|") == ()

get next word("Or what?:");

second = tem();

if (second < 0) return(second);

fil = or(fil,second);

}
return(fil);
}

#

#include "search.i"
/* FACTOR

Factor is the routine used for doing "ands". It is the
highest order in the hierarcy, i.e. it gets done before "ors" or
"excepts" regardless of which is on the line first.

Returns fil file descriptor to an open file
containing the result

Factor variables:

fil: file descriptor
second: file descriptor
*/
int factor()
{
/* Declaration of variables #*/
int fil, second;

/* Call primary to get lawset */
fil = primary();
if (fil < 0) return(fil);

while (compar(word,"and") == 0 || compar(word,"intersect") == 0 ||
compar(word,"&") == 0)
3 {
get_next_word("And what?:");
second = primary();
if (second < 0) return(second);
fil = and(fil,second);
}
return(fil);
}

125

#
#include "search.i"
/* 62T _SEX
Get_set takes a fieldname and value for that field, and looks to
see if it is a legal value. Cet_set returns -1 for illegal value, »
or a file descriptor to an open file if the value is included in
that field.
The "1ist" file is positioned at the start of the lawlist
for that field value.

Arguments fieldname three character name of a field
fvalue a value to be looked up in that
field
Returns -1 for illegal values
fid to an open "list" file
Get_set variables:
bf: buffer used for reading
filename: name of file to be opened
hash_num: hash number for fvalue
list: file identifier for list file
p: pointer used to build filenames
re pointer to record read from hash table
seek location: 1location to seek to
v pointer to val record structure
val: file descriptor for "val" file for fieldname
wrong: flag = 1 if value is illegal (i.e., wrong)

*/

int get_set(field name, fvalue) char *field name, *fvalue;

{

/* Declaration of variables */
char filename([50], *p;
int bf[100], hash_num, 1ist, *r, seek_location, val, wrong;
struct val_record v;

/* Open the ".val" file for this field */
p = concat("/cerl/celds/",field_name,filename);
concat(".val","",p);
val = open(filename,0);
if (val < 0) {perror("getst"); return(val);}

/* Calculate hash number for this value */
hash_num = hash(fvalue) 7 max_hash_num;

if (debugging) printf("hashes to %d\n",hash_num);
/* Seek to proper slot in hash table -- each hash_num takes 2 bytes */

seek_location = hash_num * 2;
seek(val,seek_location,0);

126

SRR

#
#include "search.i"
/* FACTOR

Factor is the routine used for doing "ands". It is the
highest order in the hierarcy, i.e. it gets done before "ors" or
"excepts" regardless of which is on the line first.

Returns fil file descriptor to an open file
containing the resuilt

Factor variables:
fil: file descriptor
second: file descriptor

*f

int factor()

{

/* Declaration of variables */
int fil, second;

/* Call primary to get lawset */
fil = primary();
if (fil < 0) return(fil);

while (compar(word,"and") == 0 || compar(word,"intersect") == 0 ||
compar(word,"&") == 0)
{
get_next_word("And what?:");
second = primary();
if (second < Q) return(second);
fil = and(fil,second);
}
return(fil);
}

#
#include "search.i"

/* GET S ET

Get set takes a fieldname and value for that field, and looks to

see if it is a legal value. Get_set returns -1 for illegal value,
or a file descriptor to an open file 1f the value is included in
that field.

The "1list" file is positioned at the start of the lawlist
for that field value.

Arguments fieldname three character name of a field
fvalue a value to be looked up in that
field
Returns -1 for illegal values
fid to an open "list" file
Get_set variables:
bf: buffer used for reading
filename: name of file to be opened
hash_num: hash number for fvalue
list: file identifier for list file
p: pointer used to build filenames
r: pointer to record read from hash table
seek location: 1location to seek to
v: pointer to val record structure
val: file descriptor for "val" file for fieldname
wrong: flag = 1 if value is illegal (i.e., wrong)

*/

int get_set(field name, fvalue) char *field name, *fvalue;

{

/* Declaration of variables */
char filename([50], *p;
int b£{100], hash_num, 1list, *r, seek_location, val, wrong;
struct val_record v;

/* Open the ".val" file for this field */
p = concat("/cerl/celds/",field_name,filename);
concat(",val","",p);
val = open(filename,Q);
if (val < 0) {perror("getst"); return(val);}

/* Calculate hash number for this value */
hash_num = hash(fvalue) 7 max_hash_num;

if (debugging) printf("hashes to %d\n",hash num);

/* Seek to proper slot in hash table -- each hash_num takes 2 bytes */

seek_location = hash _num * 2;
seek(val,seek_location,0);

126

/* Read from val file */
read(val,bf,200);

/* Point r to beginning of record read */
r = &bf(0];

/* Initialize wrong to be true */
wrong = |3

while (*r)
/* 1f *r is zero, then this hash number contains a zero in the tabhle */
{
/* Locate record with this hash number */
seek_location = ((*r * 64) + val_table_start);
seek(val,seek_location,0);
read(val,&v,64);
if (debugging) printf("try %d:%s\n",*r,v.value);

/* Compare fvalue with the value in the val file */
wrong = compar(v.value,fvalue);

/* 1f wrong is zero, we found fvalue */
if (wrong == 0) break;

-+
}

/* Close the "val" file */
close(val);

if (wrong != 0)
/* Then fvalue was not found in the val file */
{
printf("searching field %s for %s\n",field_name,fvalue);
reject_this_word("not a legal value");
return(-1);

)

i /* Calculate location in "1list" file */
7 seek_location = v.first_law * 2;

/* Open ".list" file for this field */
concat(".list","",p);
list = open(filename,0);
if (list < 0) {perror("getst(oli)"); return(list);)

/* Position 1ist file at start of laws 1ist */
seek(list,seek_location,0);
if (debugging) printf("get_set opens Zd\n",list);

return(list);

)

127

#
#include "search.i"
/* GET_NEXT _WORD

Get_next_word is the scanner for CELDS. The argument 1is
a prompt to give in case the client has not yet supplied this word.
A special case is the nul prompt, which means the caller only wants
the next word if it has already been supplied.
Global variables that may be changed are:

word: array containing current word (nul terminated)
request: array containing current line of user input
req_location: a pointer into current position in request
old_req_location: previous req_location

Get_next_word recognizes punctuation and returns punctuation
marks as a word.

Arguments prompt pointer to a prompt
Returns: 0
1
2 if word is a punctuation mark

Get_next_word variables:

eof : flag indicating if user has typed an end-of-file
*H pointer to the "word" array
*/
int get next_word(prompt) char *prompt;
{
/* Declaration of variables */
char *w;
int eof;

/* Skip over any leading blanks */
while (*req_location++ == * °);
~-req_location;

if (*req_location == 0)
/* Then this is the end of the line */
{
do {
if (*prompt == Q)
/* This is the special case of a nul prompt */
{
word[0] = 0;
return(0);

}

/* Write out prompt */
printf("%s",prompt);

128

#

#include "search.i"

/*

Arguments:

Returns:

LISTER

Lister is the procedure called by the list and print verbs to
list the contents of selected laws; it only lists chosen fields.

-1
+1

Lister variables:

wf

bf:
chars:
chosen:
flag:

iobuf:
fieid:
laws:

list:

margin:

marg_string:

oldlawsfile:

p:
sel:
selected:
toc:
type_start:

output_file
out_name

file descriptor of output file
name of output_file

if name is non-zero, listing will
be sent to the line printer

for error conditions
otherwise

buffer for reading and writing

number of characters read

array indicating which fields to 1list

used to indicate when all of a field has
been listed. This is set to the last digit
of the field being listed.

buffer used only by the ggets routines
field number

file descriptor of the laws file from which
reading is taking place

file descriptor of current laws file,

the file containing the list of law numbers
pointer to "marg_string"

string which is printed as the margin for
each output 1line. Blanks for most lines but
field names for first lines of fields.
contains numerical portion of previous "laws."
file name (which is still open). This is
-1 if there is no open "laws." file.
pointer to bf

pointer to selected

array containing law numbers of laws to be printed

file descriptor of "laws.toc" file
array containing the '"laws.toc" record for the
current lav number

int lister(output_file,out_name) int output_file; char *out_name;

{

int *aborter();

/* Declaration of variables */

int chars, chosen[14], field, laws, list, oldlawsfile, *sel,
selected[max_laws], toc, type_start[13];

char bf[122), flag, iobuf(550], *margin, marg_string(10], *p;

129

T T P R T T T T Y YT

/%

if
/*

/*

[*

if
/*

Read response from the terminal */
eof = gets(request);

(eof == ()

Then user typed a cntrl-d */
{
word[0] = 0;
reading_commands = 0;
return(0) ;

}

Reset req_location */
req_location = &request[N];

Get rid of leading blanks */
while (*req_location++ == ° “);
--req_location;

(*req_location == 1)
Then this is a UNIX command */
{
req_location++;
execute(req_location);
/* Set to zero so we loop again */
*req_location = 0;

}

} while (*req_location == 0);

}

/* Reset old_req_location */
old_req_location = req_location;

/* Check for punctuation in word */

w = &word(0];

if (punctuation[*req_location & 0177])
/* Then there is recognized punctuation */

{

*wH+ = *req_location++;

*w = (;
return(2);

}

/* Word must be alphabetic, so copy to next blank or punctuation */

while (punctuation[*req_location & 0177] == 0)
*u++ = *req_locationt++;

/* Set word[0] to zero */

*wno;

return(l);

}

130

pe—

/* Initialization */
oldlawsfile = -1;
for (field = 1; field < 14; field++) chosen[field] = 0;

/* Open current laws file */
l1ist = open("current_laws",n);
if (list < 0) {reject_this word("no laws selected"); return(-1);)

/* Fill in selected array */

chars = read(list,selected,lawseQ_size);

close(list);

selected[chars / 2] = 19999;

if (selected[D] >= 19999)
{
reject_this word("no laws selected");
return(-1);

}

/* Call get next_word to find out which fields to list */
get_next_word("What field(s)?:");

while (word[0] != 0)
/* We still have more fields requested on this line of input */

{
if (compar(word,"all") == ()
{

for (field = 2; field < 11; field++) chosen([field] = 1;
get_next_word("");
break;
}
if (compar(word,"abort") == ()
{
reject_this word("1listing aborted");
return(-1);
}
field = xlate_field(word);
if (field < 0) {reject_this word("not a field name"); return(-1);}
/* Fill in the chosen array for requested fields, except
if keywords are requested, show topics */
if (field != 13) chosen[field] = 1;
else chosen[12] = 1;

get_next_word("");

/* Check for optional syntax */
if (compar(word,",") == 0) get_next_word("Next field?:");
if (compar(word,"and") == 0) get_next_word("Next field?:");

}
/* 1f this is a print batch it off */

if (*out_name) ,
/* Out_name will have a value of zero for the terminal */ 1

131

{
if (fork() != 0) return(l);
}

else
/* Set a trap for interrupt */
signal(2,aborter);

/* Open table of contents (toc) file */
toc = open("/cerl/celds/laws.toc",0);
if (toc < 0)
{ .
perror("lister(otoc)"); :
if (*out_name) exit();]
else return(-1);

}

sel = &selected[0];
while (*sel < 19999)
/* While there are still law numbers left */
{
/* Put two newlines at beginning of bf */
p = &b£[0);
*p+ = 012;
*p++ = 012;

/* Put "law" number, and another newline into bf */
p = concat("law ",locv(0,*sel),p);
*p++ = 012

write(output_file,bf,(p - &bf(0]));

/* Locate appropriate record in toc file */
1seek(toc,(*sel * 26.0));
chars = read(toc,type_start,26);
if (chars < 0)
{
perror("lister(riw)");
close(toc); :
if (oldiawsfile != ~1) close(laws);
break;
}
if (type_start[0] != oldlawsfile)
/* Then we need to open a new "laws.," file */
{
if (oldlawsfile != -1) close(laws);
concat("/cerl/celds/laws.",locv(0,type_start[0]),bf);
laws = gopen(bf,&iobuf);
if (laws < 0) {perror("lister"); close(toc); break;}
oldlawsfile = type start(0];
}

132

pr—

for (field = 1; field < 13; field++)
{
if (chosen(field])
/* Then field has been requested */
{
/* Construct margin */
margin = &marg_string[0];
concat(fld_name(field),":",margin);

gseek(&iobuf,type start(field]);
chars = ggets(bf,&iobuf);

flag = bf(7];

while (flag == bf(7] && chars > 0)

{

p = concat(margin,&bf[10]),bf);
margir = " the

*p++ = 0123

write(output_file,bf,(p -~ &bf(0]));
if (reading_commands != 1)
/* Then aborter was called */
{
close(toc);
close(laws);
printf("\n\n\nlisting aborted\n");
return(-1);
}
chars = ggets(bf,&iobuf);
}

sel++;

}

/* Write four newlines between laws */
p = &f[0];
*pH+ = 012
*p++ = 0123
*p++ = 0123
*p++ = 0125
write(output_file,bf,4);

/* Close files */
close(toc);
close(laws);

/* This code is only for the child process (print). Give the
listing to the lineprinter (lpr) and exit. */
if (*out_name)
/* Then this is the child */
{
close(output_file);

133

concat("lpr -r ",out_name,bf);
execute(bf);

' exit();
)

return(l);

}

#
#include "search.i"
/* 0 R

Or takes two lists of law numbers and logically "ors"
the two into a third list, i.e. it make a composite list of laws
occurring in either list.

Arguments first file descriptor of file containing

first 1ist of law numbers

second file descriptor of file containing

second list of law numbers

Returns fil file descriptor of file containing

the "ored" 1ist

Or variables:

bfl: buffer for first list

bf2: buffer for second list

chars: number characters written into result
charsl: number characters read into bfl
chars?2: number characters read into bf2

fil: file descriptor of resultant list

E? pointer to result

result: buffer for resultant list

ik pointer to bfl

£ pointer to bf2

%}

int or(first,second) int first,second;
/* Declaration of variables */
{
int bfl[max_laws], bf2[max_laws], chars, charsl, chars2,
result (2 * max_laws];
register int *r,*s,*t;

/* Fill bfl and bf2 with lawsets */
charsl = read(first,bfl,lawset_size);
chars2 = read(second,bf2,lawset_size);

/* Cuarantee that there is a 19999 at end (paranoia) */
bfl[charsl / 2] = 19999;
bf2[chars2 / 2] = 19999;

/* Set up pointers */
r = bfl;
s = bf2;
t = &result[0];

/* Since t gets pre-incremented the first one will be skipped */
*t = 0;

135

fildg

do {
if (*r < *g) *4+t = * i+
else
{
if (*r == *g) pr+tg
k44t = *s++;
}
} while (*t < 19999);

/* Calculate the number of characters in result */
chars = (t - &result{0}) << 1;

if (chars > lawset_size)
: /* Then our lawset is too big for the buffers in CELDS */
{
printf("lawset exceeds %d laws\n",(max_laws - 1));
printf("only the first %d laws will be used\n",(max_laws - 1));
t = &result[max_laws];
*t = 19999,
chars = lawset_size;

}

/* Create fil to write result into */
fil = creat(temp_file name,0666);
if (debugging) printf("or creating %s\n",temp_file name);
if (fil < 0) {perror("bool(c)"); return(-1);}

/* Write result beginning with result{l] since [0] is skipped */ 3
write(fil ,&result(l],chars);

/* Position fil at beginning of file (by closing and opening) */
close(fil);
fil = open(temp_file name,0);
if (debugging) printf("or %d with %d giving %d (%d laws)\n",
first,second,fil,(t - &result[l])));

/* Increment temp_file name since we just made a file */
temp_file_name(10] =+ 1;

/* Close first and second files */
close(first);
close(second);

return(fil);
)

136

#
ffinclude "search.i"

/*

PRIMARY

Primary finds the lowest order terms in expressions for
commands. This is the "value" of the field requested. Primary
returns -1 on various error conditions., Otherwise it creates a file
containing the set of laws with the specified value.

Returns fil

=1

Primary variables:
content:

delim:

fil:
fld:

fld num:
p:

q:

st:
value:

o

int primary()
{

file descriptor of an open file
containing the set of laws with the
current value

on error conditions

array used to put an accession number in to
write to a file

delimiter for values, either a nul or a
double quote mark depending on whether a
quote has been encountered

fil descriptor of current lawset

flag indicating whether a field is being searched
field number

pointer

pointer

indicates if a set name is being searched
array containing the current value

/*Declaration of variables */
int content(2], fil, fld, fld _num, st;
char delim, *p, *q, value(62];

/* Check for ordering by parenthesis */
if (compar(word," (") ==)

{

get_next_word("Search criterion:");
fil = expression();
if (compar(word,")") == 0)

{

get_next_word("");
return(fil);
}

reject_this word("right paren expected");
return(-1);

}

f1d = 0;

/* Remove optional text in command structure */

137

if (compar(word,"all") == ()
{
get_next word("Field name?:");
fid = 1
}.‘..".
i1f (compar(word,"laws") == ()
{
pet_next word("Field name?:");
fld = 1;
}
if (compar(word,"with") ==)
{
l get next word("Field name?:");
| fld = 13
}
if (compar(word,"where") ==0)
{
get next_word("Field name?:");
fid = 1;
}

/* Translate field name to a number */
fld num = xlate field(word);

if (fielq_iq_searchable[flq_pum])
/* Then this is a searchable field */
{
get_next_word("What value?:");
if (compar(word,"is") == () get_next word("What value?:");
if (*word == ")
/* Then there is a term in quotes */
{
/* Skip past quote mark */
old_req_location++;

/* Set delimiter to look for other quote */

delim = “"*;

request[121] = “"’;

else delim = 0;

/* Copy word into value until delim *x/
p = &valuel0];
q = old_req_location;
while (*q != delim) *p++ = *q++;

if (q > &request[120])
/* Then we never found the delimiter */

{

reject_this word("closing quote mark missing');

138

vl \ 2SR i

return(-1);

}

*p = 03 |
if (*q != 0) q++;
req_location = q;
old_req_location = q;
get_next_word("");
if (fld_num == 1)
/* Then search was for accession number */

{

/* Convert accession number to integer */

content (0] = atoi(value);

/* put in a test here to see if acc num is legal */
/* Create temp_file */

fil = creat(temp_file_ name,0666);

if (fil < 0) {perror("getacc"); return(fil);}

content([l] = 19999;
write(fil,content,4);
/* Position fil at beginning of file */
close(fil);
fil = open(temp_file name,0);

/* Increment temp_file name */
temp_file name[10]++;

return(fil);
}

if (compar(value,”"abort") == ()
{
reject_this word("search ahorted");
return(-1);

}

/* Get the set of laws for this field and value */
fil = get_set(fld_name(fld_num],value);

return(fil);
}

if (fld_num > 0)
{
reject_this word("field is not a searchable field");
return(-1);

}

if (compar(word,"abort") == 0)

{

139

reject_this word("search aborted");
return(-1);
}

if (f1d)
{
reject_this word("field name expected");
return(-1);

}
/* 1f we have reached this point, then it must be a setname * /
st = 0;

/* Remove optional text */
if (compar(word,"my" == 0))

{
get next word("Lawset name?:");
st = 1; i
}
if (compar(word,"set" == 0))
{
get_next word('Lawset name:");
st = 13
}

if (compar(word,"set") == 0) {get_next_word("Lawset name?:"); st = 1;)}

if (compar(word,"abort'") == ()
{
reject_this word("search aborted");
return(-1);

}
/* File will have an arbitray " " preceding the name */

concat("_",word,value);
fil = open(value,0);

if (f11 < 0)
/* Then this file does not exist */
if (st == ()
reject_this word("Neither a lawset name nor a field name") ;
else reject_this_word("no set by that name");

get _next_word("");

return(fil);
}

140

#
#finclude "search.i"
/* REJECT_THIS WORD

Reject_this _word is the CELDS error processing routine.

Arguments error_message pointer to message to be printed
Globals:
req_location: pointer to current position in request
word: array containing the current word

Reject_this word variables:
error_message: pointer to message to be printed

*/

int reject_this word(error_message) char *error_message;
{
printf("ERROR: %s - %s\n",word,error_message);
/* Reset global indicators */
*req_location = 0;
word[0] = 03

it
#include "search.i"
/* SHOW

Show writes the accession numbers of "current_laws" on
the terminal, ten to a line.

Returns: -1 for error conditions (no laws selected).
0 otherwi se

Show variables:

bf: buffer used for reading
chars: number of characters read |
fil: file descriptor of current laws
b Ut counter
*r: pointer to bf
*/
int show()
{

int *aborter ();
/* Declaration of variables */
int bf[max laws], chars, fil, i, *r;

/* Open current_laws file */
fil = open("current_laws",0);
if (fil < 0)
{
reject_this word("no laws selected");
return(-1);

l }

/* Read file into bf */
chars = read(fil,bf,lawset_size);

close(fil);
/* Every two bytes is an integer number. Put a 19999 at end. */
bf[chars / 2] = 19999;
if (bf[0) >= 19999)
{
reject_this word(''no laws selected");
return(-1);

)

r = &bf[0];
/* Set trap for interrupt signal */
signal(2,aborter);

while (*r < 19999)
/* Write out 1list, ten to a line */

{

142

for (1 = 0; 1 < 9; 1i++)
{
if (*r >= 19999) break;
printf("%25d ",*r++);

}

printf("\n");

/* Check to see if aborter was called (reading_commands = 2) */
if (reading_commands != 1) return(-1);

}

/* Prepare next "word" for celds */
get_next_word("");
/* Throw away optional words on "show" command */
if (compar(word,"the") == 0) get_next_word("");
if (compar(word,"laws") == 0) get next_word("");
return(0);

}

143

#
#include "“search.i"
/* TERM

Term is the routine for evaluating "excepts"., It comes
second in the hierarchy. "Ands" are evaluated first, “excepts"

second, and "ors" last,
Returns fil file descriptor of result file
Temm variables:
fil: file descriptor
second: file descriptor
*/
int term()
{

/* Declaration of variables */
int fil, second;

fil = factor();
if (fil < 0) return(fil);

while (compar(word,"except") == Q)
{
get_next_word("Except what?:%);
second = factor();
if (second <) return(second);
fil = except(fil,second);
%

return(fil);

}

144

r'" s oun e Ll o i TP : S s i s i i b , 4 —

ft
#include "search.i"
/* XLATE_FIELD

Xlate field translates a field_name to a fld_num, and returns
the fld num. If the field name is not the name of a legal field,
then -1 is returned.

For matching a field to a number, only the first three
characters of field name are used.

Arguments: field name name of field
Returns: -1 if not a legal field
fieldnum for recogrnized fields

Globals: (see globals for "expr.c")
Xlate_field variables:

fld_num: field number

p:

short_fname (4] : first 3 characters of field_name

*/

; int xlate_field(field name) char *field name;
{
/* Declaration of variables */

char *p, short_fname[4];

int fld_num;

/* Put first 3 characters of field name into short_fname */
p = &short_fname[0];
*p++ = *field name++;
*p++ = *field namet++;
*p++ = *field_name;
xp =0

for (f1d_num = 1; fld_nun < 14; fld_numt+)
if (compar(fld_pame[flq_pnm],short_fname) == () return(fld num);

return(-1);

| }

145

.

Appendix H - General Utility Subroutines

147

S s s Sk LR

/*

Compar compares

Arguments: sl
s2
Returns: 0
+

Compar variables:
greater:
p:
q:

*/

COMPAR
two strings and determines if they are the same.

pointer to string one
pointer to string two

if strings are the same
if string one is "bigger"
if string two is "bigger"

algebrajc difference of chars in sl - s?
pointer to sl
pointer to s2

int compar(sl,s2) char *sl,*s2;

{

/* Declaration of variahles */
register char *p,*q;
register int greater;

p = sl;
q = s2;
while ((greater

= *p - *q++) == (0 && *p++ 1= 0);

return (greater);

148

/% CONCAT

Concat concatenates two strings and returns the composite

string.
Arguments: first pointer to first string
second pointer to second string
result pointer to end of resulting string
Returns: pointer to end of result string
*/

char *concat(first, second, result) char *first, *second, *result;

{
/* Put first string into result string */
while (*result++ = *first++);

/* Back up over nul */
--result;

/* Put second string into result */
while (*result++ = *second++);

/* Back up over nul */
-=result;

return(result);

}

149

AR o P L i e 1

char *gnextp;
char *gstop;

int geof;
char gdbuf([513);
)

int ggets(bf,stru) char *bf; struct gstru *stru;

{

/* Declaration of variables */
int ch, chars, more_tec_read;
register char *p, *q;

/* Point q to the start of bf */
q = bf;

/* Continue this as long as no new-line has been found, other
than the artificial one at gdbuf([512) */
do {
/* Reset new-line flag */
more_tc_read = 0;

/* point p to next character to be read */
p = stru->gnextp;

/* copy next line into the callers buffer, bf */
while (*p != 012) *q++ = *pi+;

/* Now, adjust gnextp to point at next character to be read */
stru=->gnextp = p + |;

if (p >= stru->gstop)
/* Then we need to read into the next block */
{
/* Turn on no new-line indicator */
more_to_read = 1;

/* Check for end-of-file */
if (stru->geof) {bf(0] = 0; return(0);)}

/* Point gnextp to beginning of gdbuf */
stru=>gnextp = &stru->gdbuf(0];

/* Read next block from file to gdbuf */
ch = read(stru->gfildes,stru->gdbuf,512);

if (ch < 0)
/* Then we can’t read a block and haven’t yet
: encountered a new-line */
{

perror("ggets(read)");

150

ik dide,

/* GG ETS

The gopen, ggets, and gseek routines are an alternative way to
read ASCI1 files. They are designed primarily for sequential line-
oriented reading, with some seeks. The only seeks allowed are absolute
character number (ptrname = 0),

A core buffer (gdbuf) is filled by the popen routine with one
block of data from a file. When ggets is called, data is transferred
from pdbuf to the caller’s buffer (bf) until a new-line is encountered.
If no new-line is encountered by the end of the block, the next block
of data is read from the file into gdbuf and the transfer continues.

To use ggets with a file, the file must be opened with gopen
and seeks should be performed using gseek.

Globals: (for ggets, gopen, and gseek)
gstru: This is a structure which is used for reading lines
from a file. 1Its components are:

gdbuf -- a buffer holding one block of 2
data. g
geof - 0 until last block is read, 2
. 1 when gdbuf contains last block %
¢ gfildes -- file descriptor ;
gnextp -- a pointer to the next character :
to be read from gdbuf
gstop -- a pointer to the next critical

character, signaling when to
read a new block. After eof,
this points to the last
character of data.

Arguments: bf: a pointer to the caller’s buffer into which
the next line of data should be read
stru: a pointer to the structure (array) of shape
gstru which contains file descriptor, etc.

Returns: the number of characters read into bf

Ggets variables:
ch: number of characters read from file to gdbuf 3
chars: number of characters read into bf T
more_to_read: flag indicating if read continues into the
next block
p: a pointer into the core buffer, gdbuf
q: a pointer into the caller’s buffer, bf

Returns:

*/

struct gstru

{
int gfildes;

151

/* GOPEN

Gopen opens a file and reads the first block of data into a
core buffer, and sets up geof, gnextp, and gstop, The file is opened
for reading only.

Globals: see list for ggets
(gopen should only be used when using ggets,)

Arguments: fname name of the file to be opened
stru pointer to a structure of shape gstru
which will contain the core buffer and
parameters for this file

Returns: the file descriptor of the file opened

Gopen variables:
ch: number of characters read from file to gdbuf

=4

int gopen(fname,stru) char *fname; struct gstru *stru;
{
/* Declaration of variables */

int ch;

/* Open file, mode 0 */
stru->gfildes = open(fname,0);
if (stru->gfildes < 0)
{
perror('gopen') jeceecces
return(stru->gfildes);..

}

/* Read first block from file into gdbuf */
ch = read(stru->gfildes,&stru->gdbuf(0],512);
if (ch < n) {perror("gopen(read)"); return(ch);)}

/* Set up stop, nextp, and eof */
stru->gstop = &stru->gdbuf[512];
stru->gnextp = &stru->gdbuf(0];
stru=->geof = 0;

if (ch < 512)

/* Then this is the last (and only) block */
{
stru=>geof = 1;
stru->gstop = &stru->gdbuf(ch];
*stru->gstop = 012;
}

/* Put in the terminating new-line */

152

S——— S e et P A ey~

stru->geof = |;
*stru->gnextp = 012;
stru->gstop = stru=>pgnextp;
bf (0] = 0;

return(0);

}

if (ch < 512)

/* Then this must be the last block */
{
stru->geof = 1;
stru->gstop = &stru->gdbuf{ch];
*stru->gstop = 012;

}

{
|
|
|
|

/* make absolutely sure there is a newline to find */
stru->gdbuf[512]) = 012;

}

} while(more_to_read);

/* Put nul at end of bf */
*q++ = 03

/* Calculate characters transferred to bf */
chars = q - bf;

return(chars);

}

153

stru->gdbuf[512] = 012;

return(stru->gfildes);

}

154 |

/* CSEEK

Gseek seeks an absolute character number in a file opened
by gopen, fills gdbuf , and adjusts nextp, stop, and eof accordingly.

Globals: see list for ggets
(gseek should only be used when using ggets.)

Arguments: of fset character number desired
stru pointer to a structure of shape gstru
which will contain the core buffer and

parameters for this file

Returns: 1 if seek was successful
error code, otherwise

Gopen variables:

ch: number of characters read from file to gdbuf
*/
a
int gseek(stru,offset) struct gstru *stru; int offset;
{
/* Declaration of variables */
int ch;

/* Seek to offset */
ch = seek(stru->gfildes,offset,0);
if (ch < 0) {perror("gseek(seek)"); return(ch);}

/* Read block of data into gdbuf */
ch = read(stru->gfildes,&stru~->gdbuf[0],512);
if (ch < 0) {perror("gseek(read)"); return(ch);)}

/* Set up stop, nextp, and eof */
stru->gstop = &stru->gdbuf([512];
stru->gnextp = &stru->gdbuf(0];
stru->geof = (;

if (ch < 512)
/* Then this is the last block */
{
stru->geof = 1;
stru=>gstop = &stru->gdbuf(ch];
*stru->gstop = 012;
} .

/* Put in the terminating new-line */
stru->gdbuf(512] = 012;

return(1);

}

165

Hash encrypts a string into a single integer number,
Arguments: str pointer to string to be encrypted
Returns: encrypted integer number

Hash variables:
total: running total for additions in encryption

*/

int hash(str) char *str;

{

/* Declaration of variables */
register int total;

/* Initialize total */
total = 03

/* Add up words as integer numbers */
while (*str) total =+ *str++;

return(total);

}

156

L o S P A —

/* LSEEHZK

Lseek seeks an absolute character number in a file. The number
may be greater than 65535.

Arguments: fil - integer file descriptor
dcharnum=- double, character number sought
Returns: 1 if no block seek performed

if block seek performed

Lseek variables:
block: block number of desired character number
dcharnum: desired character number (double)
fil: file descriptor
plus: position of desired character number in its block
seeker: desired character number (long)

*/

int lseek(fil,dcharmum) int fil; double dcharnum; {
/* Declaration of variables */

int block, plus;

long seeker;

/* convert dcharnum to long */
seeker = dcharnum;

if (dcharnum < 65535.0)

/* Then we don’t need a block seek */
{
plus = seeker;
seek(fil,plus,0);
return(l);
}

elise

/* A block is sought first */
{
block = seeker / 512;
plus = seeker % 512;
seek(fil,block,3);
seek(fil,plus,l);
return(2);

¥

157

/% MOVE

Move moves a specified number of characters from one location
to another,

Arguments: count number of characters to be moved
from pointer to string to be moved
to pointer to receiving location

Variables:

1 counter

*/

int move(from,to,count) char *from, *to; int count;

{

/* Declaration of variables */

int 1;

for (1 = 0; i < count; i++) *to++ = *f rom++;
return;

}

i -

158 j

/*

access

piven
nunbers

SEARCH .1

Search.i i{s the include file of structures and defines used to
the search file x.val.

The value file contains the names of all of the values for a
field and a hash table for quick access to those names. The
of the laws that belong in a given set are found in a separate

file named x.118t (where x i{s the field name).

words.

The value file starts with the hash table for max_hash num + 10
The hash table contains 1 word per hash number, either 0 or the

value_number of a value that hashes here. If a slot is full, and the

value

is different from the value to be inserted, the hash_number is

simply incremented by one. This kind of hash table, while exceedingly

simple

to build, tends to get cluttered when it is over 60% full. For

this reason, max_hash num is chosen to be a large number.

Each set has a value number greater than 0. The next N records

(one per set) are 64 characters long. Each record contains 62
characters for the set name, and an integer telling where 1in the 1ist
file the laws list for that set starts.,

19999.
%/

ftdefine
ftdefine
#define
ffdefine
ffidefine

The 1ist file is simply 1lists of law numbers terminated by

hash_size 4011
lawset_size 3000
max_hash _num 4001
max_1laws 1501
val_table_start 7958

struct val_record

{
char value(62];
int first_law;
33

/* Declaration of global variables for the retriever */

char *fld_name[14], *old |_req_location, *req_location;

char field_1is_searchable(l4];

char punctuation[lZR], request[122]), temp_file name[12], word[62];
int client, debugging, reading_commands, requests;

159

AN 5 o A A 3 AN 2 A A I G i A b R A o i e 500 3 e i

CERL DISTRIBUTION

j Chief of Engineers

) ATTN: DAEN-MCZ-S

. ATTN: DAEN-ASI-L (2)
ATTN: DAEN-RDL

ATTN: DAEN-MCE-D
Dept of the Army
WASH DC 20314

Defense Documentation Center
ATTN: DDA (12)

Cameron Station

Alexandria, VA 22314

VA : available from National Technical Information
Service, 1978. 3

159 p. ; 27 cm. (Special report - Construction
\ Engineering Research Laboratory ; N-31)

| 1
; _Welsh, Rikki L , _

i x System documentation for Computer - aided Environ-

| mental Legislative Data System. - Champaign, IL : Con- ;
f struction Engineering Research Laboratory ; Springfield, |

1. Environmental law - data processing. I. Title. II.
Title : Computer - aided Environmental Legislative Data
System. I1I. Series : U.S. Construction Engineering
Research Laboratory. Special report ; N-31.

