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CONVERSION FACTORS , U. S. CUSTOMARY TO ~~ TRIC (SI)
UNITS OF MEASUREMENT

U. S. customary units of measu.rement used in this report can be con-

verted to metric (SI) units as follows:

Multiply — By To Obtain

degrees (ar~gle) 0.O17~45329 radians

inches 2.5I~ centimetres

kips (force) 1~~148.222 newtons

pounds (mass) per cubic foot 16.018146 kilograms per cubic metre
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RESPONSE OF LINEAR ELASTIC TRANSVERSE—ISOTROPIC MEDIA

TO BOREHOLE PRESSUP E~~~TER LOADINGS

CHAPTER 1

INTRODUCTION

1.1 BACKGROUND

To predict the ground shock from surface or aboveground nuclear

detonation, research on the use of two—dimensional finite difference

wave propagation codes that treat nonlinear hysteretic media is being

conducted. To use these codes, the constitutive properties (stress—

strain and strength) of the in situ earth media must be determined for

fast loading rates in the unconsolidated—undrained state. Conven-

tionally, this is done by obtaining undisturbed samples from the site

and testing them in the laboratory. Inevitably, the in situ properties

are altered to some extent by the sampling process. Hence, using

in situ field tests that give some indication of the in situ constitutive

properties is desirable.

The borehole pressuremeter (References 1—3), which measures the

increase in volume per unit length,1 ~V , of a borehole under an in-

creasing uniform internal pressure, P , is one of several tests that

can be used to infer information about the in situ constitutive prop-

erties.2 This device has been used in the constitutive property in-

vestigation for several high—explosives (HE) tests (References 14—7) used

as test cases to study the accuracy of and the necessary improvements in

the ground shock prediction procedure.

In homogeneous isotropic linear elastic materials, the shear modu—

lus G can be directly determined from the borehole pressuremeter test :

Symbols used in this report are listed and defined in the Notation
2 (Appendix A).As with any test, it has its own sources of error, the most prominent
of these being volume measurement errors leading to alteration of
the constitutive properties due to the drilling of the borehole.

5
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V P
= 

~v
o (1.1)

where V is the initial volume of a unit length of the borehole .

However , real earth materialr are often highly ar.is -tropic.  The inter-

pretation of data from laboratory and/or field test~ based on a mathe-

matical constitutive relation that d-~es not account for anisotropy may

lead to erroneous conclusions.

The most common departure from a state of isotrcs~y in an earth ma-

terial is layering or stratification during its derus-ition. This is the

case whether induced by natural causes, such as s~dimen~ary deposits, or

in the construction of fills where the earth materials are placed and
compacted in horizontal lifts. For these conditions, although marked

differences may be noted between the vertical and the horizontal direc-

tions, generally no direction preference will exist in the horizontal

planes. Such a material is said to be transversely isotropic
(References 8 and 9).

For the linear elastic transverse—isotropic material, five material

constants are needed to completely describe material behavior (Pefer—

ences 8 and 9). A technique for the  determination of some or all of

these five material constants in the field is of great irnpur~ ance to the

material properties investigator. Such a technique ~iReference 10) would

give an early deduction of those sites that are strongly anisotropic and

provide data for use in the fitting of a transverse—isotropic model

(Reference 7) for the materials. It appears that a series of pressure—

meter tests in boreholes inclined at several different angles to the

axis of symmetry of the material will yield this information. Hence,

there was a need to obtain an analytical solution for the inclined bore-

hole pressureineter problem. Only the special case of this problem for

a transverse—isotropic material in which the axis of the test (i.e., the

axis of a pressurized cylindrical cavity of infinite extent) is

perpendicular to the plane of isotropy has been solved analytically

(Reference 9).

6 
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1.2 OBJECTIVE

The objective of this investigation is to develop a general closed

form solution to the borehole pressuremeter problem where the axis of

the borehole is inclined to the plane of isotropy of an elastic

transverse—isotropic medium. Such a solution can be used to determine

stresses and displacements in the medium in terms of the transverse—

isotropic properties of the material. It is possible , therefor e, to de-

duce the transverse—isotropic properties of the materials in terms of

the volume change of the borehole.

1.3 SCOPE

The problem geometry, boundary conditions, and constitutive and

field equations are presented in Chapter 2. Chapter 3 contains the der—

ivation of the general solution of the problem and a sample problem .

Conclusions and recommendations are given in Chapter 14.

7 
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CHAPTER 2

PROBLEM GEOMETRY , BOUNDARY CONDIT:Ui~~, AND

CONSTITUTIVE AND FIELD EQUATIONS

2.1 GENERAL

Because the ~rcperties of the material are directionally dependent ,

it is more cc::veL nt to obtain the solution of the problem in a

Cartesian coord~n-~te  syct~-~rn first and then through a coordinate trans-

formation to deterr~~r.e the stresses and the displacements in a cylin—

drical coordinate system . Therefore, three coordinate systems are

needed. The first is a Cartesian coordinate x’y ’z’ in which x ’y ’

is parallel to the plane of isotropy (Figure 2.1) and for which the

constitutive equations for a linear elastic transverse—isotropic material

are well known (References 8 and 9). The second coordinate system is
also Cartesian , xyz , in which the solution of the borehole pressure—

meter problem is obtained (Figure 2.1). Finally, because the problem

is axisymmetric , it is convenient to transform the final results from

the xyz coordinate system to a cylindrical coordinate ~~~,r~~:tem , r0z
(Figure 2.lb).

2.2 PROBLEM GEOMETRY

The geometry of the problem is shown schematically in Figure 2.1.

Figure 2.la shows a three—dimensional view of the problem with the rela-
tive position of the Cartesian coordinate systems x ’y’z’ and xy s

Figure 2.lb shows a two-dimensional detailed view of the problem relative
to both the cylindrical coordinates r0z and the Cartesian coordinates

xyz . The axis of symmetry of the material and the axis of symmetry of
the cylindrical cavity are assumed to intersect at an angle , ~~‘ (Fig-

ure 2.la). Therefore, the intersection of the cylindrical cavity with

the plane of isotropy forms an ellipse A’BC’D in the x ’y ’ plane (Fig-

ures 2 .la and 2 .lb ) .  The intersection of the cylindrical cavity with the
rO— or xy—p lane is , of cour se , a cir cle ABCD (Figure 2.la). Further-

more, it is assumed that the radius of the cylindrical cavity is b and

8
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that its surface is under normal stress, P0 , which does not vary along

the cavity.

2.3 CONSTITUTIVE EQUATIONS

Let the x’y’ plane of an x’y’z’ coordinate system (Figure 2.la)

be the plane of isotropy of the material. The constitutive equations for

a linear elastic transverse—isotropic material (References 8 and 9)  are :

1 V
x E x  E y  E z

1 V ’
+~~~~~~~ , — j ~~~~ ,y E x  E y E z

V 9 1c = — --.- j’c + a \  + — j - 0 ,z E ~ x y) E z
(2.1)

z
= 2G ’

a
- y ’z
— 2G9

a , ,
- 

x y£
x t y t - 2G -

where

a , ,  a , = total normal stress components parallel to
x’— , y’— , and z’—axes, respectively

a , ,, a , ,, a , , = total shearing stress components in x’z’— ,X Z 
~ 

Z x y 
y’z’-, and x’y’—planes, respectively

C
~~ 9~~ 

Cy t~ C~~ = total normal strain components parallel to
x’— , y’— , and z’—axes, respectively

e c , = total shearing strain components in x ’z’— ,Y X 
~ y’z’— , and x’y’—planes, respectively

E = Young’s modulus in the plane of isotropy

= Young’s modulus in a plane normal to the
plane of isotropy

9
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V = Poisson’s ratio that characterizes the trans-
verse reduction in the plane of isotropy due
to stress in the same plane

V 9 Poisson ’s ratio that characterizes the trans-
verse reduction in the plane of isotropy due
to stress normal to it

C’ shear modulus for a plane normal to the plane
of isotropy

G v) = shear modulus for the plane of

isotropy

The elastic properties that appear in Equations 2.1 depend on the

direction of the axes of the chosen coordinate system. If the direction

of the axes varies, then the elastic properties vary. Only in the case
of an isotropic body the elasti ° properties are invariant in any orthog—

onal coordinate system . However, there are always urique relationships

of the elastic properties in one coordinate system to the elastic prop—

erties in another coordinate system. These rel~~ionships could be de-

rived through transformation formulas that transform one coordinate

system into another. Therefore, the elastic properties that appear in

Equations 2.1 for the coordinate system x’y’z’ could be transformed

into the elastic properties for the coordinate system xyz (Figure 2.1)

through transformation formulas.

2.14 TRANSFORMATION OF
TNE ELASTIC PROP~~TIES

Let ~~ be the elastic properties for the coordinate system ~~rz

and let C! . be the elastic properties for the coordinate system x’y ’z’

(Figure 2.la). The position of the coordinate system ~ ‘z with respect

to the coordinate system x’y ’z’ is defined by Table 2.1 and the follow-

ing relations:

x =

y = y’ cos ~ + z ’ sin ~p (2.2)

z = —y ’ sin 
~P 

+ z ’ cos ~P

10 
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The transformation formulas that relate C . to C! are given in
1 ii ij

Reference 9 and can be written as

= C’ q~~q~~ (2.3)

The values of q
~j are defined in Table 2.2 where the first index,

indicates the number of the row and the second index, j , shows the

number of the column. Thus, q. denotes the element belonging to the
.th th 

].j 
2i row and j column; for example, q11 = 6
1 , q143 =

q = 0 6 + 0 6 , and so forth. The values of 6 , n and 056 12 21 n n
(n = 1, 2, 3) are given in Table 2.1; the values of C!~ can be obtained

from Equations 2.1 and are given in Table 2.3; and the values of C~~
obtained from Equation 2.3 are given in Table 2.14.

Having determined the value of the elastic properties C~~ , the

general constitutive equation for a linear elastic transverse—isotropic

material in an xyz coordinate system may be written as:

1 Iv ’ . 2 V 2 \Cx x
_
~~~Ts~~ ~P + ~~~~COS ~P)ay

Iv ’ 2 v .2 \ /v ’ v \—
~~F~

05 ~l~ +~~~ sin ~#!)) a + ~~- - _ — ) s z f l 2~~ a

Iv ’ . 2 V 2 \ Ii 4 1 . 14
C
y

= _
~~~~F S lfl ~~+~~~ cos * ) ax + L ~~cos ~~+ F s i n  ~

( 2.4 )

+(
~~

- _ 

~~ 
cos2 

~i sin2 

~
] 

~y 
+ [_~~~- ( sin~ ~J + cos4 

~)

+ (
~
. + — h--) cos

2 
~ii sin

2 
4i] a + [(j . + 

~
-) cos~ ~i

/1 v ’ \  .2 1— ~~~~ + sin 
~ — 

~
j- cos ~bj sin 2~

NOTE: Equations 2.14 are continued on following page

1 Indices assume values 1,2. . .6. A repeated index is to be sui ed over
its range. Quantities are referred to rectangular Cartesian coordi-
nates x.i
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C = — (i-- cos2 q.~ + ~ sin
2 a + 

~ 
~~~

- (sin
1
~ ip + cos

4 
iJ)

/ l l  l \  2 . 2 1  r l . 4 1 14
+ + ~~~~- — cos ‘P sin + L~ 

sin ‘P + ~~
-- cos ‘P

/1  2v ’\  2 . 2 1 ni v ’\ . 2
+ ~~~-- - 

~~~~~~~~~~ 

cos ‘P sin ~ + L’~ 
+ sin ‘P

— (~r + 

~
--) ~O~2 ‘P + ~J-r- cos 2’P] sin 2’P 0yz

l i v ’ v \  . lril v ’ \  2
2. 4

(cont’ d)
-: 

— (.
~

._. + sin 2 
~p — .

~~~~~~
.- cos 2’P] sin 2’P

1 1/1 v ’\ .2 I l  ‘v ’\ 2

~~~~~~~~ ‘P ._7~~~_7~~()5 
‘P

+ ~~~-- cos 2’P] sin 2’P a + - a

1 2 1 . 2
£~~~~~~~7- cos ‘P+~~ SIn ‘P

1 . 2 1 2
Cxy 

= sin ‘P + cos ‘P

where

a , o , a = total normal stress components parallel to
X Y z x— , y— , and z—axes, respectively

a , c , a = total shearing stress components in xz- , yz— ,
and xy—planes, respectively

C , C , C = total normal strain components parallel to
y x— , y— , and z—axes, respectively

C , C , C = total shearing strain components in xz— , yz— , andxz yz xy xy—planes, respectively

2. 5  FIELD EQUATIONS

In the case of small displacements of a continuous body , the rela—

tionships between the components of strain and displacement s (Refer—

ence 9)  are:

12
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C , C ~~~~, Cx ax y ay z ~z

1 (aw au \ = 1 (av aW \ 
(— 

2 \3x + C
y~ 2 ‘~az 

+ 2.5

1 /au avCxy 2~~~y ax 
-

where u , v , and w are the displacement s in the x-, y-, and z-
directions, respectively.

In the problem under consideration (Figure 2.1), the stresses and
displacements are independent of z and become funct ions of x and y
alone. Therefore, Equations 2.5 can be written as:

C = au(x,y) 
~ = av(x~y) C = 0ax ‘ y ay ‘ z

= 
j . aw (x,y) 

C = 1 aw(x,y) (2 6)xz 2 3x ‘ yz 2 ax

C = ~~ ~au(x,y) + av(x,y)xy 2 L  ay ax

Equations 2 .6 leads to the compatibility equations that guarantee the
body is continuous.

The stress components in a continuous body in equilibrium under the
act ion of sur face and body forces sat isfy three differential equations
of equilibrium. In the case under considerat ion , these equations take
the following form:

aa aa
—~~. +  xy

= Oax ay

aa aa
+ = 0 (2.7)ax ay

aa aaxz 
+ 

yz = 0ax a1

13 
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2.6 REPRESENTATION OF
THE BOUNDAR Y CONDITION

Let X and Y be the x and y components , respectively , of a

distributed surface force per unit area; t~~ L boundary stress equations
(Figure 2.2) can be wri t ten  as (Refer ence 9) :

= cos (n,x) + o cos (ri ,y )  + o cos (n ,z)

a cos (n ,x) + a cos (n ,y) + a cos (n ,z)  (2.8)

o = °xz cos (n,x) + a cos (n,y) + a cos (n , z )

For the above equations, the following relationships exist :

cos (n ,x) =

dxcos (n,y) = — ~~
— ( 2.9)

cos (n,z) = 0

2.7 STRESSES AND DISPLACEMENTS IN
CYLINDRICAL COORDINATE SYSTEMS

The relations between the stresses and the displacements in the

Cartesian and cylindrical coordiante systems with th o same z—axis (Fig-

ure 2.1) are:

a = a  cos2 ® + o  sin2 O + 2 a  cos O sin Or x y

a = a sin2 5 + a cos2 0 — 2a cos 0 sin 00 x y xy

a = az z
~ (2.10)

a = (a — a cos 0 sin o + a ~~~~ o — sin2 o)rO ~~y x,i xy

a = a  cos 0 + a sin ®rz xz yz

a = - a  sin O + a  cos ®Oz xz yz

114
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and

u = U COS 0 + v sin 0r
(2.11)

v® — u s i n 0 + v c o s 0

where

0 = tan 1 
~ (2.12)

and u
r and v

0 are the radial and tangential displacements, respec-
tively. Therefore, if the stresses and the displacements in the xy-z
coordinate system are knoi~ni, the corresponding stresses and displace-
ments in the r0z coordinate system can easily be obtained.

15
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— Table 2.1. Direction cosines.

— x ’ y ’ z’

x c5
~~

= 1  0
1

0 -
‘

y 5
2 = 0  n2 cos ’P O2 sin ’P

Z 6
3 0 fl3~~~~~Sifl~~ 0

3
= cos ’P

Table 2.2.  Values of in the formulas of
transformations (Equation 2 .3 ) .

j
1 2 3 14 5 6

1 6~ ~~ 26
2
6
3 

26
3
6
1 

26
1
6
2

2 2r~~n3 2r~3~1 
2ii
1
ri2

3 0~ 0~ 0~ 20
203 

20
3
01 

20
102

p
1
0
1 ~2

0
2 n3®3 fl2®3 

+ fl
3

0
2 

p
1
0
3 

+ ~3
®1 

p
102 

+ p
2
0
1

®~6~ 0262 0
3
63 0263 + 0

3
6
2 01

6
3 

+ 0
3
61 0162 + 0261

6 61n1 62~~ 
6

3fl3 
6~n3 + 6

3~~2 
61fl3 + ó 3~1 6

~~2 
+
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Table 2.3. Value of C!~ from Equation 2.1.

j
1 2 3 14 5 6

1 -
~~~~ 

-~~~~~~~~ 0 0 0

2 -
~~~~ -~ r 0 0 0

‘V 9 v ’ 1

6 o 0 o o o
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Figure 2.2 Two—dimensional element from the boundary.
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CHAPTER 3

DERIVATION OF THE GENERAL SOLUTION OF THE PROBLEM

3.1 GENERAL

The problem of the determination of stresses and displacements

around an infinite cylindrical cavity can be formulated analytically by

use of the equations presented in Chapter 2. The solution will be

unique if it satisfies the equilibrium and compatibility equations and

the boundary conditions (Reference ii). This is done below by expressing

stresses and displacements as complex harmonic functions in a manner

similar to that developed by Lelthnitskii (Reference 9). Recalling

Equations 2.14,

C = C  a + C  a + C  ax lix l2y l3z l~~yz

C = C  a +~~ a + C  a + C  a
y 12x 22y 23z 24 yz

C = C  a + C  a + C  a 1 - C , az l3x 23y 33z 34 yz
(3.1)

2€ = C  a + C  a + C  a + C  ayz 114 x 2~4 y 34 z 414 yz

2€ = C  axz 55 xz

2C = C a
xy 66 xy

where the values of C1~ are given in Table 2.3. Since C = 0 (see

Equations 2.6), the third equation of 3.1 leads to

a — 
~~~~ (C13a + C

23
a + C

34a )  (3.2)

Substitution of Equation 3.2 into Equations 3.1, gives

21 
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~

C a U + a  a + a~~Gx lix l2y l~~yz

C = a 0 + a a + a
y 12x 22y 2~~yz

2C a a + a  a + a  a 3.3
yz 114x 24 y 44 yz

2C a axz 55 xz

2C = a  axy 6G xy

in which

C. C
a. c. - 

i3 ~~ (3. 14)
ij lj C33

Equations 3.3 can ‘be written in terms of the disrlacements as

au— =  a a + a a + a ~oax llx 2y l~~yz

= a1~a + a220 + a24a

a + a  a + a  a ( 3 . 5 )
ay l4x 214 y 44 yz

3w
— a  a3x 55 xz

3u 3v
— + — a  a
3y 3x 66 xy

3.2 STRESS FUNCTION

Equations 2.7 (the equilibrium equations) can be satisfied for a

homogeneous medium by the introduction of the following stress functions

(References 9, 12 , and 13):
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2
- ~ P(x,y)

x 2

2
- a P(x,y)

2
— 3 P(x,y) (3 6”0xy ” 3x3y . 1

a — aQ(x,y)
xz

_ 
3y

- aQ (x ,y)a -- .

The compatibility equations can be satisfied by substitution of

Equations 3.6 into Equations 3.5 and elimination of u , v , and w by

differentiation (Reference 13). Therefore, the following system of dif-

ferential equations that the stress functions must satisfy can be easily

obtained:

L4P(x,y) + L
3
Q(x,y) = 0 1

1~ 
(
~~r )

L
3

P(x ,y ) + L
2

Q(x ,y) = 0 
J

where L2 , L
3 
, and L

4 are differential operators of the second,

third, and fourth orders, respectively, that have the form:

= a44 + a55

3 3
L
3
= - a 24~~-~ 

_ a
14 2 (3 .8)

3x3y

L4 = a22 + (2812 + a66) 
ax2ay2 

+ a
~~
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For the components of stresses and displacement s around the cylin-
drical cavity to be continuous and single—valued functions of the
coordinates xyz , the stress functions P(x,y) and Q(x,y) must sat-
isfy Equations 3.7 and the boundary conditions.

The general differential equations in terms of P(x,y) and
Q(x,y) , separately , can be obtained by application of the operator 1

2
on the first equation of the system 3.7 and the operator L

3 on the sec-
ond equation and subtraction of the results. Thus:

(L4L2 
- L~) P(x,y ) = 0 (3 .9 )

Similarly,

(L4L2 
— L~) Q(x,y) = 0 (3.10)

Equations 3.9 and 3.10 are sixth order differential equations where the
operator of the sixth order L

4L2 
— L~ can be decomposed into si x

linear operators of the first order. Hence, Equations 3.9 and 3.10 can
be represented in the following forms:

D
6D5

D4D3
D2D1 P(x,y) = 0 ]

and (3.11)
D6D5D4D3D2D1 Q(x,y) = 0

in which

D
k 

= 
3y 

— 

~k 3x 
(k = 1,2.. .6) (3.12)

where 
~k 

represents the roots of the following algebraic equation that
corresponds to the differential Equations 3.9 and 3.10:

L4(~i) L2(~
) — L~(ji) = 0 (3.13)

to Equations 3.8, L2 (~~) , L
3
(~ ) , and L~ (u) can be written

24
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L2(~~) = a55~
2 

+ a44 
1

L3
(p )  = -a14~

2 
- a24 

(3.114)

L4(~~) = a11~
4 + (2a12 

+ a66) 
2 

+ a22 J

Three of the roots of Equation 3.13 are independent; the other three are

their complex conjugates (Reference 9) .
The integration of Equations 3.9 and 3.10, therefore, can be reduced

through Equations 3.11 to the integration of six equations of the first

order. The general integral is equal to functions of the arguments

= ~ + 
~k
1 

~
)

and (k = 1, 2, 3) ( 3 . 1 5 )

Zk 
= x + 1

~
’k1 J

and can be written as

P (x ,y) = 

~~~ 

+ Pk(zk)] 1
(3.16)

Q(x,y) = 
k~~ 

+ 
~~(zk)] j

where 
~k 

is the complex conjugate of , z,~ is the complex con-

jugate of , and Pk(zk) and Q
~(zk) 

are the complex conjugates of

Pk(zk) and Q
~lc(Zk) 

respectively.

Since the functions P(x,y) and Q(x,y) satisfy Equations 3.7 and

3.8 , the following relations between P(x,y) and Q(x,y) exist:

I t
~’k~ ~~ 

(zk)

~k(~1c) 
= - L2~ M~j  dZk 

+ ftkZk 
+ ‘bk (3.17)
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or

dP (z )
Qk(z k) = - 

L
3~~ k) dzk 

+ + Bk (3.18)

where a~ , bk , A1 , and Bk are arbitrary constants. Hence , the
stress functions P(x,y) and Q(x,y) (Equations 3.16) can be written
as:

P(x,y) = P1(z1) 
+ P
1(~j 

+ P2(z2) + P2(z2)

+ P3(z3) 
+ P3(z3) (3.19)

Q(x,y) A
1P~(z1) 

+ X
1P~(z1) 

+ A 2P~ (z9) + A
2
P~(z2)

+ ~~~ P~(z3) 
+ ~~~ P~ (z3) 

+ + b
k (3.20)

where

A
k 

= - 3~~k~ , (k 1, 2) 

1

A 3 = - _ _

(3.21 )
and

P9 -
~~~~~~~

—
k(zk) 

— 

dz
k

P’ ~ 
— ~~k(zk)

k(k) 
- 

dzk
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Therefore, the general solution to the borehole pressuremeter problem

can be completely determined by determining the functions P
k(zk) . But

before this can be done, the stresses and the displacements have to be
expressed as functions of P

k
(z
k) .

3.3 COI~~LEX REPRESENTATION OF
STRESSES AND DISPLACEMENTS

Since the stresses are functions of the second derivative of P(x,y)
(Equations 3.6), and the displacements are functions of the first deriv-
ative of P(x,y) (Equations 3.5), it is more convenient to introduce the
new functions of the complex variable Z

k

k(zk) 
= 

dPk(z,)~~ = P~ (z1) (k = 1, 2)

(3.22)

dP z
•3(Z 3) 

= dz = ~~
- P~(z~)

With the help of these functions, the expressions for the first and sec-

ond derivatives of P(x,y) and for the first derivatives of Q(x,y)
with respect to x and y may be written in the following way:

= 
~l(~l) 

+ 
~l(zl) 

+ 
~2(~2) 

+ 
~2(z2)

+ A
3~ 3(z 3) 

+ A
3~3(z 3) (3.23 )

32p(x)~~ = ~j(z1) 
+ ~j (z1J + 

~~(z2) 
+ 
~~(z2)

+ A
34~~(z3) 

+ A
3~~~(z 3) (3 . 2 4 )

aPk(zk) = ~~~~~~ = 
~k
Pk(zk) 

= 
~k~k(zk) 

(3.25)
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3P(x ,y) 
= u1~1(z1) 

+ ~1~1(z1) 
+ ~2+2(z2) 

+

+ u 3A 3~ 3(z3) + ~3
A
3~3(z3) 

(3.26)

= v~~~~(z1) + ~~~~ (z1) + 
~~~~ (z2) + 

~~~~ (z2)

+ iJ~ A 3& ,~(z3) + ~i~ A 3&~(z 3) (3.27 )

32P(x;Y) = + u1~j(z1) 
+ ~2~~ (z2) 

+ 
~2~~~(z2)

+ ~3
X
3~~(z3) 

+ ~3
A
3~~ (z3) (3.28 )

Q(x ,y) = A
1~1(z1) 

+ A
1$1(z1) 

+ A 24 2(z 2) +

+ ~3(z3) 
+ ~3(z3) 

(3.29)

aQ(x ,y) 
= x1~~ (z1) + A

1~~(z1) 
+ X 2~~ (z2) +

+ ~~ (z3) 
+ ~~ (z3) 

(3.30)

3Q(x,y) = ~1
A
1~j(z1) 

+ ~1
A
1~~ (z1) 

+ A
2~2~~(z2)+ A2~2~~(z2)

+ I•1
3$3(Z 3) 

+ 1~3
l~3(z 3) (3.31)

According to Equations 3.2 and 3.6, and on the basis of Eq.ua—
tions 3.23 through 3.31, the general expression for the components of
stresses can be obtained as:
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r-~ 
wLi i~~

’
~L ; T ~~~~~~~~~T j ,  

a = 2Real [~
s
~(~) + M~4~~ z2) 

+ ii~A 3~~(z3)] (3 .32)

a = 2Real [$j(zl) 
+ 
~~(~2) 

+ A
3~~(z3)] 

(3.33)

a = —2Real 
[~

i14~~(z1) 
+ + 1

3
X
34~~(z3)] 

(3.35)

a = 2Real 
[~

i
1
A
1~~(z1) 

+ ~2A 2~~~(z2) + ~3~~(z3)] 
(3.35 )

a = -~~eal [A 1~j(z1) 
+ A2~~ (z2) + ~~(z3)] (3.36 )

a
1 

= — 
~~~~~

— (c13a~ + C
23

a~ + C34a11)

The displacements u , v , and w can be obtained by the substitu—

tion of Equations 3.32 through 3.37 into Equations 3.5 and integration

of the resulting equations. Thus:

u = ~~ea1 ~~~ (a11~~ 
+ a

12 
— A

kalS) ~k(~k)

+ 2Real{[A3(a11~~ + a12) - a14] ~3(z3)} 
(3.38)

v = 2Real 
:~: 

(al2~k 
+ 
a22 

- 

Ak 
a
24) ~k(zk)

+ 2Real 
.{[

A 3 (ai2~3 
+ ) - ~

] ~~3 (Z
3 )}  

(3.39 )

~q =2Beal :~: (al4~
ik 

+ - ~~1 a44) ~k (zk)

+ 2Real 
{[A3(a

i4~3 
+ ) - a1~~

] 
~~3(Z

3)} 

(3.40)

The stresses and the displacements in cylindrical coordinate systems
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can be obtained by substitution of Equations 3.32 through 3.40 into

Equations 2.10 and 2.11.

It is clear from Equations 3.32 through 3.40 that •k(zk) is the

only function needed for the determination of stresses and displacements.

This function can be determined from the boundary conditions, as shown

in the next section.

3.4 DETERMINATION OF
THE STRESS FUNCTION

The relationships between the stresses along the boundary and

inside the region can be obtained by the combination of Equations 2.8

and Equations 3.32 through 3.37. Thus:

+ 
~1(11) 

+ ~2(z2) 
+ 42(z2) 

+ A
34~3(z3)

+ A
3~3(z3) 

= - YdS (3.41)

~~~ 
(z1) 

+ + ~2l 2(z 2) + ~2~ 2(z 2) 
+ ~3A 3~3(z 3)

+ ~3A 3~3(z 3) = f ~dS (3.42)

A141(z1) 
+ A14 1(z 1) + A

24~2(z2) 
+ A

2~2(z2) 
+ 43(13)

+ 43(z3) 
= C (3.43)

where S is an arc length along the boundary and C is an arbitrary

constant .

The arguments, Z
k , in the above functions can be written as (see

Equation 3.15):

Z
k 

= ~~~ (1 - iu1) 
exp(i®) + ~ (1 + i~1) 

exp(-i®) (k = 1,2,3) (3.4k )

- -~~~~~~~ -.-~~~~~~~~~~~~~~ ‘-- - -— -— — - -- - —- ~~-~~—~~~~~~~~ -~~-- - - - - — - - -



where r b at the boundary and i is a complex number (i.e.,

i = 0,1).

The function $k(zk
) in the above equations can be considered as

functions of the parameter 0 having period 2rr (References 9 and 13).

Hence, Equations 3.41 through 3.53 satisfy Dirichiet conditions and can

be expressed by the following two series:

-in®
Real 
[~1(z1) 

+ ~2(z2) 
+ A

3~ 3(z 3)] 
= Real

(
~~ ~ 

e 

) 

(3.45)

—in®
Real 
[~1~1(z1) 

+ 
~2~2(12) 

+ ~3
X
3$3(z3)] 

Rea1

(

~~~ 
~ 

e 
) 

(3.46)

Real [A 1c1 1(z1) 
+ A

242(z2) 
+ ~3(z3)] 

= Real (C) (3.47)

A comparison between Equations 3.41 through 3.43 and 3.45 through 3.47

leads to

S 0 in® —in®
j _ Y d S = b I _ Y d ® =~~~~~bn~~

_
~~+ b n

e
n )  (3.48)

S 0 in® —in®

f
xdS = bfX d o =~~~ ~

dn~~
—
~~
+ d

~~~~n ) (3.49)

The coefficients bn and d can be obtained by use of the properties

of the Fourier series (Reference 13) and the problem geometry defined in

Section 2.2, which yield the following values:

Pb 2 Pb
2
i

0 —
— ___

“l 2 d1 — —  2
(3.50)

b = d = 0 for n > 2n n —
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Substitution of Equations 3.50 into Equations 3.45 through 3.147 leads to:

I P b 2 
\

Real [+1(z 1) 
+ 
~2(12) 

+ A 3~ 3(z 3)] = Real k~— o ~iO) (3.51 )

I-P b2i .\
Real 
[~1~l(1l) 

+ ~2~2(z2) 
+ ~3

A
3~3(z3)] 

= Real 
~ 

(3.52)

Real [A 1~1(z1) 
+ A2~2(z2) 

+ ~3(z3)] 
0 (3.53 )

When Equations 3.51 through 3.53 are solved, this results:

P b 21 (P A
2A 

_
~~~)+ (i

_
A A ) i  1

= 
~r [~2 - 

Pl
+ A~ A

3(~1 - ~i 3) 
+ A

1
A
3(~3 - 

u2)J 
exp(-i0) (3.54 )

P b 2 1  
(~ 

_
P A X ) + (X A

~r - 

~
+ 
~~~~~~ - - ) ] exp(-iO) (3 .55)

Pb 2 (uA 
_
~ J A ) + (A  _ A ) i

~3(z3) 
= 

~~~~ 
- + A A (  - 

~~~~~~~ 

- 
exp(—i0) (3.56 )

The derivative of the functions can be easily obtained from the

above equations:

P0b
2 

~ 
(~3x2x 3 — 

~2) 
+ (1 — A

2
A
3) i

2r2 L~2 — 

~1 
+ A

2A3(i1 
- + A

1
A3(P3 

— 

~2)

~ 
(sIn 0 + i cos 0 

~3~57~~sin 0 — cos 0)
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Pb 2 [ (
~ — 

P3
A1A 3) 

+ (x 1A 3 - 
1) 1

2r2 Lu2 
- + A

2
A 3(1A1 

— i
3) 

+ A
1
A3(u3 

—

~~(s i n0 + ic o s0 \  (3.58)sin 0 - COS 0)

— 

P b 2 (u2A1 
- u1

A2) +(A2 
— A
1) I

$3(z 3)_ 
2r2 Lu2 - Pi 

+ A
2A 3(u1 

- u3) + A
1A3(u3 

— u2)

~~
f s i n 0 + i c o s 0 \  (~~ 5~ )\sin®— ~~3c o s® )

The distribution of stresses can be determined from Equations 2.10, 3.32

through 3.37 and 3.57 through 3.59, and the distribution of displacements

can be determined from Equations 2.11, 3.38 through 3.40, and. 3.514

through 3.56. The computer program BOREHOLE was developed to solve

numerically the above system of equations and to generate various plots

of stress and displacement distributions around the cylindrical cavity .

Examples of the distribution of stresses and displacements are given in

Figures 3.1 through 3.8.

The volume change of a unit length along the generator of the bore—

hole can be obtained from the radial displacement (Equation 3.38) at

r = b  , and 0 = 0  , and O it/2

or 

= 
~r[b + u(b,O)] [‘

~~~~

+ u(b, 

~
)] -

= 
u(b,O) + u(b, ~~ 

+ 
u(b,0) u(~ , ~

) 
(3 60)V b 

b
2

Equation 3.60 is a function of the five material properties as

well as the angle of inclination of the borehole , ~ (Figure 2.1).
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Therefore, the solution of Equation 3.60 for the material properties is

not straightforward and requires an iterative scheme and a large computer

program such as BOREHOLE. However, the solution is relatively simple if

four material properties as well as the volume change are known.
In the following section, spatial stress and displacement distribu-

tions for a sample problem are investigated. The material properties

used in this sample problem as well as the angle of inclination of the

borehole are tabulated below.

E F’ G ’ G r
0 p

ksi v v ’ ~~ j  3~~i degree inch k~ i

7.8 2.6 fl.3 0.2 1.5 3.0 30 1.5 1.0

3.5 SPATIAL STRESS
DISTRIBUTION FOR SAIV~ LE PROBL~~

Figure 3.1 shows a typical result of the radial and. tangential

stresses along the radius for 0 = 0 degrees1 (Figure 2.1) at ar~ angle

of inclination of 30 degrees. The solid line shows the radial stress

while the dashed line shows the tangential stress.

Figure 3.2 shows a radial stress contour in dimensionless form,

Or/P0 , at an angle of inclination of 30 degrees. It is clear from this

figure that the radial stress attenuates to a value of Or/Po = 0.25 at

r = 2r
0
The distribution of tangential stress along the boundary of the

borehole whose angle of inclination is 30 degrees is shown in Figure 3.3.

F~~~~ e 3.14 shows the distribution of radial and shear stresses along

the boun~iary of the borehole whose angle of inclination is 30 degrees.

It is interesting to note that the shear stress, 0
0 , along the

boundary of the borehole is not zero but would be if the material were

isotropic.

1 A table of factors for converting U. S. customary units of measurement
to metric (SI) units is presented on page 2.
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3.6 SPATIAL DISPLACEMEN T
DISTRIBUTION FOR SAIv~ LE PROBLEM

Figure 3.5 shows a typical result of the radial displacements along

the radius of the borehole for 0 = 0 and 90 degrees at an angle of in-

clination of 30 degrees. The solid line shows the radial displacement

for 0 = 90 degrees and the dashed line shows the radial displacement

for 0 = 0 degrees. Note that both the solid and the dashed lines would

coincide if the material is isotropic.

Figure 3.6 shows a radial displacement contour in dimensionless

form u/u (r ) , at an angle of inclination of 30 degrees where U

is the radial displacement at r and 0 , and u(r ) is the radial

displacement along the boundary of’ the borehole. it is clear from

Figures 3.5 and 3.6 that for this case approximately one hal f of the

borehole volume change is due to strains in the material within one

borehole—radius o~’ the sidewall. It is also clear that three fourths of

the borehole volume change is due to strains that occur at less than

three radii from the borehole sidewall. Since the radius of a borehole

pressuremeter test is typically 1.5 inches, only a very small volume of

in situ material close to the borehole can significantly influence the

test results.

The distribution of the radial and tangential displacements along

the boundary of the borehole whose angle of inclination is 30 degrees is

shown in Figure 3.7. As the figure shows, the borehole deforms to an

elliptical shape under load.

Figure 3.8 shows a tangential displacement contour in dimensionless

form v
0/v® (r) where v

0 is the tangential displacement at r and
0 , and v® (r) is the tangential displacement along the boundary of

the borehole.
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Figure 3.1 Distribution of radial and tangential stresses
along the radius for 0 = 0 degrees at an
angle of inclination of 30 degrees.
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Figure 3.2 Contour for radial stress at an angle
of inclination of 30 degrees.
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Figure 3.3 Distribution of tangential stress along the
boundary of the borehole whose angle of
inclination is 30 degrees.
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CHAPTER 4

CONCLUSIONS AND RECO~ffv~NDATIONS

The solution presented herein can be used in the analysis of bore—

h cle pressuremeter test data to provide an appropriate set of linear

elastic transverse—isotropic constitutive properties for a given medium

and to provide an index of a specific site’s degree of anisotropy . To

~ this, a series of pressuremeter tests in boreholes inclined at

~evera1 different angles to the material’s axis of symmetry have to be

conducted.

It is recommended that this solution be used at a very low st ’- e~::

evel or whenever the material of interest is assumed to be linear

elastic t ransverse—isotropic. For a highly nonlinear material, however ,
this  solution gives effect ive constitutive properties.
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APPENDIX A: NOTATION

a
~j 

Material properties matrix

Arbitrary constants
b Radius of the cylindrical cavity

C~~ Elastic properties for the coordinate system xyz

Cj,~ 
Elastic properties for the coordinate system x’y’z’

C Arbitrary constant
D
k 

Complex operator

B Young’s modulus in the plane of isotropy

E’ Young’s modulus in a plane normal to the plane of
isotropy

0 Shear modulus for the plane of isotropy
G’ Shear modulus for a plane normal to the plane of

isotropy

Differential operators of the second, third, and
fourth orders, respectively

L4L2 — L3 Differential operator of the sixth order

Pk (z k ) Complex stress function

P
k
(z
k) Complex conjugate of P

k
(z
k
)

P Applied load. on the boundary of the borehole

P(x ,y) Stress function —

Transformation matrix for this appears in
Equation 2.3

Q~ 
(z
k) Complex stress function

Q,~ (zj Complex conjugate of

Q(x ,y) Stress function

r0z Cylindrical coordinate system

S Arc length alorl€ the boundary
U
r Radial displacement

u(r ) Radial displacement along the boundary of the
borehole

u,v,w Displacements In the x— , y— , and z—d.irections,
respectively

Initial volume of a unit length of the borehole
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v0 Tangential displacement

r ) Tangent ia l  disp lacement a~ crw 4he boundary of the
0 borehole

xyz Cartesian coordinate ~~stem in which the solution
of the borehole pressuremeter problcm is solved

x ’y ’z’ Cartesian coordinate system in which x’y ’ is
parallel to the plane of isotropy

X The x component of a distributed surface force
per unit area

Y Th e y component of a distributed surface force
ocr unit  area

ZR Complex plan e

Complex conjugate of Z
R

~V Change ~n volume per unit length of a borehole

~~~~~~~ ‘
~~~~ 

Total normal strain components parallel to x— , y— ,
and z—axes , respectively

c , ,~~ ,,e , Total normal strain components parallel to x ’— , -
X Y Z y ’— , and z’—axes, respectively

£ ,~~ ,~~~ Total shearing strain components in xz— , yz— ,xz y z  xy
and xy—plar~es , respectively

c , ,,c ,, , e , , Total shearing strain components in x ’z’— , y’z’— ,x Z  J x y
and x y —p lanes, respectively

Uk 
Root of the algebraic equation that corresponds to
diff-~rentia1 Equations 3.9 and 3.10

v Poisson ’s ratio that characterizes the transverse -

reduction in the plane of isotropy due to stress
in the same plane

v ’ Poisson ’s ratio that characterizes the transverse
reduction in the plane of isotropy due to stress
normal to it

o Radial stressr
~~~~‘° ,c~ Total normal stress components parallel to the x— ,

y— , and z—axes , respectively

Total normal stress components parallel to the x ’— ,y Z 
y ’— , and z’—axes, respectively

°xz ’°yz ’°xy Total shearing stress components in xz — , yz — , and
xy—planes, respectively

Total shearing stress components in x ’z’— , y’z’— ,
and x’y’—planes, respectively

148



— ~~~~.--
- - -—- - - ~~~ --,~~.= 

-‘

.._
~.- 

_
~

00 
Tangential stress

Shear stress in Oz plane

~ Angle of inclination of the borehole
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