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RADAR CLUTTER

i 1.0 INTRODUCTION

; The models of shipboard surveillance radar clutter described
in this appendix are intended to represent in a standardized way those
features of the environment which are Viown to affect radar performance
and, because of potential operational significauce, are subjects for
evaluation. Documentation of these models is motivated by a need to
assure that all those operating in roles of radar specifiers, designers,
or evaluators view the radar environment with a common perception in

the context of a single radar program and that they communicate mu-
tually with a common language., The models included reflect the best
data available to date, but precision and level of detail are delib-
erately tempered to be consistent with the state of solid understand-
ing of the external world as seen with radar, the natural variability

of that world, and the sensitivity of radar performance to the de-

talls and parameter values.xi__ﬂ_f_,____*wh. ..... —e

The environment features modeled here are summarized in
‘ table 1-1. With that list are shown also the dependent and independent

: variables in terms of which the model is expressed, and the domains
over which the models are usable. The domain values shown imply
usabllity over that range, but it is not implied in all cases that
the models fail outside those regions. Before model application
outside the given domain is attempted, a further review of the model
vis-a-vis the data base is advisable.

The models presented here are not requirements, That is,
in every case at least one driving independent variable or model par~
ameter has been left subject to choice by the user. In general, in~
dependent (input) gquantities associate with operaticnal descriptors
or quantifiers of the environment, which when specified, condition
system performance. The dependent (output) quantities are radar en~
gineering in type (cross sections, loss factors, etc.). Thus, these
models are merely transformers from an operational (requirements)
space to a radar engineering space.

The selection of values of parameters in the models con-
trols the interpretation nf the meaning of the output. 1In these models,
parameters have been chosen to represent most-probable, typical, or
median, as appropriate, with a range provided to reflect variability
of observations or uncertainty in estimates. These models are not

il Bt

o
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worst—-case in type. Thus, their use should incorporate some explora-
tion of system sensitivity to excursions about likely input (and par-
ameter) values: to discover significant mavginal limitations on per-
formance, to prevent overlooking of acceptable or unacceptable opera-
ting regions, and to provide a basis for system *rade~offs among op-
tions with different costs.

1-3

wran




THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL, MARYLAND

2.0 VOLUME SCATTERERS

The reflections from precipitation and chaff can con-
stitute the major source of clutter on many radars. The reflections
from a given radar cell appear noise-like on any given pulse, but
have some correlation from pulse to pulse. This section 1s devoted
to the statistics of these echoes.

The modeling or specification of this form of clutter
is critical since few radars will see targets (especially aircraft)
in the heaviest of storms, and there is as much difficulty in over-
specification of the precipitation rate as there is in underspecifi-
cation. The same holds true for chaff, and a specification of re-
flectivity has little meaning without specification of the size and
dynamics of the chaff cloud.

While the phenomena are quite different, rain and chaff
appear statistically similar to a radar. The short-term point ampli-
tude distributions are Rayleigh whether there are 10 rain drops or
1,000 dipoles in the radar volume, They both are excellent tracers
of the horizontal winds, and while the fall rate of rain is higher
(up to 9 m/sec for large drops, but perhaps less than 0.1 m/sec
for chaff), this only affects vertically pointing radars.

This chapter contains sections on the reflectivity of rain
having various rates (see table 2-1), the dvnamics of the atmosphere
which are applicable both to rain and chaff, the frequency with which
various rain rates are experienced, models for spatial distribution
of rain of both continuous quasi-uniform type and storms. The re-
flectdvity of various dipole and rope chaff types is given here. At
the end of the chapter are collected data on cross section of clouds
and birds,

2,1 Atmosphere Model

The ability of an MIT or pulse Doppler radar to suppress
returns from chaff is highly dependent on the mean frequency and
spectral width of the clutier, Since chaff dipoles are excellent
tracers of the wind field, these quantities are highly dependent
on the wind velocity, wind shear, and air turbulence effects. To
produce meaningful calculaticns of vradar performance in a chaff
environment requires the use of a realistic model of atmospheric
wind, shear, and turbulence effeuts. The model should be simple
enough to be easily applied, hut at the same time contain sufficient
statistical information tvo give the radar user confidence in the
results of calculations using the model. Tis atmospheric model

N
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Table 2-1A

Reflectivity of Volume Scatterers -~ Summary

1, Average Cross Section

Unit Cell Volume

‘where A

K

"

5]
VLR

radar wavelength

€ -1-4¢
e +2-je”

€ -¢
P ¢
Lok (Wey) P

(es-e )u.vrr

1+ (wr)
For Water: [2-5] For Ice:
= et
ep 4.9 Tr 0
e’ ¥ 3.4
T € Temp ~
[x|? = 0.2
1,877 sec |88 | 0° ¢
1.36-11 sec 84 { 10° ¢
1,017 sec | 80 ! 20° C

Ix|? ¥ 0,93

2, 2% krb

in mo® /m?

where r = rain rate in mm/hr,
(See Table 2-1B, 2-1C)
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e Table 2-1B
Values of Rain Backsgatter Parameters k and b
i TYPE/LOCATION ' SdURCﬁ & METHOD k b
—\i Summe »/Cktawa ) Marshall-Palmer [2-1] (1) 296 1.47
2 Summer/Ptrawa Marshall-Palmer [2-1] (2) 220 1.60
e 3 General-Widespread Marshall-Palmer [2-1] (3) 200 1.6
4 Washington, D. C. Laws and Parsons [2-281(2} 398 1,41
5 North Carolina Mueller & Sims [2-29] (4) 263 1.30
6 New Jersey Mueller & Sims [2-30] (4) 282 1.29
- 7 Virginia Crane [2-31] (4) 270 1.30
8 North Carolina [2-29] Crane [2-32] (4) 253 1.34
; 9 Convective Storms Miller [2-3] (2) 25 2,37
10 Thundershower Joss §,2-2) (2) 500 1.50
11 Summer/Ottawa [2-1]) Wexler & Atlas [2-33] (1) See Table 2~1C
12 Hail Douglas [1-3] 3.1x10* 1.30
Notes
1) Computed from exponential-function representation of drop-size

distribution and Mie scattering theory,
(2) Fit to (Zi’ ri) cbservations,
(3) Approximation to case #2, used as 'standard".

%) Computed from measured drop~size distribution and Mie scattering
theory.

. (5) These parameters are used in figure 2-1 to intercompare their
Pl effort on Z as a function of rain rate.
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Table 2-1C

Frequency and Rain-Rate Dependence of
Rain Backscatter Parameters, k and b [2~-33]

FREQUENCY (GHr 3 r (mm/hr) k b
3.0 ' 0-100 295 1,45
5.45 0-100 280 1.45
6.42 0-~10C 280 1.45
9.35 0-100 275 1.55

16.0 0-20 330 1.54
20~ 50 500 1.40

50 - 100 750 1.30

24,2 0-5 356 1.50
5-20 460 1.35

20 -100 820 1,15

34.9 0-5 A 350 1.32
5-20 450 1,15

20~ 100 780 0.95

48.4 0-5 240 1,10
5-20 345 0.90

20~-100 540 0.75

2-4
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Table 2-1D
Model Rain Reflectivities

BAND NOMINAL REFLECTIVITY (dBuf /m°)
FREQUENCY (GHz) 4 mm/hr 8 mm/hr 16 mm/hr

UHF 0.5 -114 -109 ~104
L 1.25 - 98 - 93 - 88
S 3.0 - 83 - 78 - 73
c 5.6 - 72 - 67 - 62
X 9.4 - 63 - 58 - 53
Ko 17 - 52 - 47 - 43
Ka 35 - %0 = 36 - 32
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should describe the important atmospheric effects as g function of
altitude and for varlous locations throughout the world,

It 1s convenilent to describe the Doppler spectra of re-
turns from rain and chaff by four mechanisms [2,4]:

1. Wind Shear -~ The change in wind speed with
altitude results in a dis%ribution of radial
velocities over the vertical extent of the beam.

2, Beam Broadening ~ The finite width of the radar
beam causes a spread of radial velocity components of
the wind when the radar is looking crosswind.

3, Turbulence - Fluctuating currents of the wind cause
a raddal velocity distribution centered at the mean
wind velocity.

4, Fall Velocity Distribution - A spread in fall
velocities of the reflectors causes a spread of
velocity components along the beam.

By agsuming that above mechanisms are independent, then
the variance of the velocity spectrum, o 2, can be represented by the
sum of the variances of each component,
+ g2

2 4 42 -
o, o (2-1)

2 2
.shear to beam turb. *o fall
For purposes of analysis, the spectrum shape may be taken
to be Gaussian, with the following comsiderations applying:

o Regardless of assumptions about shape, Gaussian
would be a good fit to observed data to a level at
least 20 dB below the peak.

o In any cases where spectral envelopes are suspected
to have tails, equivalent Gaussian width parameters
can be computed so that about the same cancellation
properties regult for a specified filter.

2.1.1 Wind Speed Profiles

While there are many profiles of the change in wind speed
versus altitude, it is necessary to meke some simplifying assu..ptions
and linearize the results to find the bounds on MIT performance.
Figure 2-2 gives wind speeds for various winter conditions in the
Eastern US. These are gomewhat more severe than worldwide models.

2-7
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It shows that mean horizontal velocities go from 7.5 m/sec to 27 m/sec
at altitudes where chaff is likely. This translates to Doppler fre-
quencies between + 270 Hz and + 1000 Hz at C~band.

Reference 2-5 represents wind measurements made at the
NASA Eastern Test Range, employing the FPS-16 Radar/Jimsphere method.
The report gives 112 vector wind velocity profiles spanning the
period November, 1964 to May, 1965, An example of a profile taken
on 10 February 1975 is shown in figure 2-3, which shows rapidly
changing wind speed versus altitude.

2.1.2 Wind Shear

Since the mean wind increases with altitude for viriually
all altitudes where chaff and precipitation echoes are possible, the
mean wind velocity at the top of a radar beam 1s generally higher
than that at the bottom, This phenomenon is called "wind shear"
and its effect is the dominant one in determining the Doppler dis-
tribution of chaff and precipitation echoes at ranges greater than
20 km,

The "slope" of the radial velocities with altitude is
somewhat greater than the increase in mean velocity with altitude at
any instant of time, The shear parameter, k, 1s usually expressed
in meters per second per kilometer of altitude change. A suggested
shear model based on an extensive search of the literature is shown
in table 2-6,

2.1.3 Atmospheric Turburlence

In addition to wind speed and wind shear effects, the
width of the chaff return spectrum is dependent on the random varia-
tion of air currents about the mean wind speed, commonly known as
alr turbulence.

Turbulence results from a variety of sources. In the
lower portion of the atmosphere, extending to about 1,000 feet
above the terrain, turbulence originates primarily from interaction
between terrain roughness and the wind, Outside the earth boundary
layer, turbulence has complex origins. Turbulence due tc convection,
usually identifiable with cleouds, occurs at altitudes to 5,000 -
10,000 feet. With a further increase in altitude the overall proba-
bility of turbulence decreases and the mechanism becomes more
clusely related to wind shear effects. Clear air turbulence, or tur-
bulence not in or in the vicinity of clouds, or precipitation, ori-
; ginates usually from the local shears of wind. As the jet stream
. is a source of large wind shears, clear air turbulence is most fre-
. quently found at high altitude in the vicinity of the jet stream.

wi e 2"9
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Values of turbulence from a variety of sources and typi-
cal of conditions generally encountered worldwide are summarized in
table 2-3.

2.1.4 Beam Broadening

e N e

The beam broadening effect is similar to the shear com-
ponent and results in a standard deviation of

- §

Opeam - 0.42 Vo 8o sin B

where 6, is the two-way, half-power azimuth beamwidth (radians), V

is the wind velocity, and B is the azimuth angle relative to the wind
direction, For most applications, the beam broadening component

- is quite small compared to turbulence and shear components.,

2,1.5 Fall-Rate Broadening

Data [2-7,2-8] on the dispersion of fall rates of chaff
lead to these model values:

Type Dispersion (Std. Dev)
Glass Fiber ~ 107 of fall rate
Aluninuem Foil v 50% of fall rate

Model fall rates are shown in figure 2-4 as a function of chaff type
and altitude, Multifilament rope is a loose parallel twisted com-
bination of some uncoated and some coated fibers (typically 10 coated
out of 20), A multifilament resilient dipole is a rigidized paral-
lel cluster of some uncoated and some coated fibers (typically

7 coated out of 20),

Fall rates of rain are much greater and vary from about
4 m/sec at a rain rate of 2 mm/hr to ~ 9 m/sec for heavy rains. At
all rain rates, the standard deviation of fall rate is about 1 m/sec,
with a tail on the low-rate side caused by small dropu. [2-4]

2,2 Point Frequency Distribution of Rain

Rainfall statistics accumulated ar.d analyzed for purposes
i of characterizing the reliability of microwave communication links
have been modeled in terms of the fraction of time that attenuation
exceeds a given level. This distribution is accurately expressed by
the log-normal distribution [2-9]. That is, if o is the attenuation

e

2-11
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Table 2-2

Average Wind Shear (m/sec/¥Xm) Vs

Altitude, Latitude, and Season

Altitude ﬁ::ual - Wintzr Summer
. (o] (¢}

(Km) Shear 50°N 40°N 39°N 50°N 40°N 30°N
0-2 5 5.5 7.5 | 6.0 5.25 4.5 5.5
2-7 4 5.0 7.0 4.5 4.75 4.0° 5.9
7-14 4 5.5 7.5 6.0 5.75 i 5.0 6.0

Typical
Variations
of Wind #3.75 | #.25. +4.25 | +4.0 43.0 +2.75
Shear Values
Table 2-3
Turbulence Vs Altitude
Typical
Altitude (Km) Average ¢ Variations
(m/sec) (m/sec)
0-1 1.2 +0.7
-7 0.6 0.3

2~12
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between two points, the quantity y = log;o ¢ is normally distributed,
with mean y_ and standard deviation o_, that are functions primarily
of frequency and location, and partly’of path length. This law for
the distribution of rain attenuation is directly related to an ob-
served distribution of rain rate which is also log normal, In that
case, the parameters are principally associated with location.

Rain rate distributions are modeled in terms of three
parameters, uy, Uy’ and Po, as follows:

1
P(B) dB =\72=ﬂ exp{-s2/2} dp

where B = ZEEX-"
y
y = logyp ¥,
r = rain rate and

uy, oy = mean, standard deviation of y .

The fraction of time that rain rate exceeds r is:

P(rate > r) =P 1 erfc{v_—s_—}

2
2 | ° -t

S e
\f_- X

T
P = Probability that it is raining at the point in question.

TRe above accurately fits observations of rain rate frequency to prob-
ability levels of 0.0001 [2-9].

where* erfe(x) =1 - erf(x) = dt.

1
* Note: E-erf \[li } is the familiar one-sided probability integral:
> )

B8 1 2
So \ﬁ"—— exp {- _2_} dt.

2-14




B8 mn e s e m e R g e s S

O

THE JOHNS ROPKINS UNIVERSITY

APPLIED PHYSICS LABORATORY
LAUREL, MARYLAND

' .~ egsential parameters for application of this model,
P,u, ¢ 0_, can be extracted from the large body of rain observa-
tIons®the . ha%e been svmmarized in various places [e.g., 2-10, 2-11].
Table 2-4 lists typical year-round values of these parameters for
various global locations and for the world as a whole. Typical point
distributions are skown in figures 2-5, 2-6 and 2-7,

2,3 Spatial Distribution of Rain

Two types of rain states represent end points of what in
nature is a continuum: quasi-uniform rain and storms. The former is
widespread over a scale of mesoscale magnitude, such that a radar,
all of its targets, and the space in between are immersed in rain !
having a single nominal descriptor. This presumption, however, need
not be so unreal or restrictive as to deny variation in rain density
from point t¢ point, Storms are characterized by cells of rain, gen-
erally relatlvely dense at their core, and surrounded by areas of
much lighter or no rain.

2.3.1 Quasi-Uniform Rain

This idealization of rain can be associated with the
condition that the variation of rain rate from point to point (or
time to time) over a region is smaller than the average over that
region. It can be seen from figure 2-8 that this condition was seen
in one two-year period about 60 percent of the time, but that the
average rain rate never exceeded 8 mm/hr under those conditions
[2-127. Moreover, standard deviations of 30 percent or less in rain
rate were seen only about 25 percent of the time and only for
average rain rate less than about 4 mm/hr. Ia the limit of small ;
fluctuation of rain, a Gaussian distribution about its median of :
the logarithm of rain rate is reasonable, with a typical standard .
deviation °y of vy = &n L of :

oy =+ 0.5+ 0.6 ¢nr__, 0.3 >r > 10 mm/hr
av - av =

where oy is in nepers (4.34 dB).

Note -- There is no table 2-5 and no figure 2-9.
2.3.2 Storms

There are three features of storms for which model data
are available: the horizontal distribution of rain rate in a storm
cell; the height of cells; and cell separation. In addition, much

data exist to predict ¢he frequency of occurrence of rain of given
intensities (see Section 2,2).
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Table 2-4
Parameters of Rain Frequency Distributions [2-11]

LOCATION by oy P
Whole world "0.53 0.88 0.06
Thai.land +0,15 0,65 0,049
South Viet Nam +0,20 0.66 0042
Singapore +0.44 0,61 0.035
Guam ‘0.13 0.63 0»&4
Atlantic ~ 40-60N -0,27 0.74 0,054
Atlantic ~ 60-~65N +0,17 0,31 . 0,N64
Dermark ~0,06 0.49 0,022
Turkey +0.36 0.26 0,011
Definitions:
r = rain rate in mm/hr Po = fraction of time r > 0
y = logior
lby = mean of ywhen £ > 0 Prob (rain rate>1x) =
O& = gstandard deviation of y
when r > 0 o 1 (y-p)°
P . f exp {- -—E'—J%'“} dy
0 v Vﬁ?ﬁ;— O&
Yy

2-16
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Code denctes these Atlantic

Ocean locatlons:

vt

=

I 60°-65° N 1 ritude
II 20°-30° N L.“itude
111 402-602 N Latitude
IV 30 -40" N Latitude

e

LR

107 \\

PROBABILITY OF EXCEEDING RAIN-INTENSITY- VALUE
I

LRI

I

1074 1 | .t 111 | i | I
i 10 100

}' . INSTANTANEOUS RAIN INTENSITY (mm/hr)

Figure 2-~5

i Probability That Rain Intensity Exceeds Specified Value
) for Atlantic Ocean Locations
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PEUBABILITY OF EXCEEDING RAIN-INTENSITY VALUE

107!

i

Code denotes tﬂese Pacific
Ocean locations:

l

I 60°-65° N Latitude
II 50°-600 N Latitude
IIL 200-30o N Latitude
- Iv 400~500 N Latitude
V. 307-40° N Latitude

1072

1073

/
/|

107 ! Lt 1 11 { it
i 10 100
INSTANTANEOUS RAIN INTENSITY (mm/kr)
Figure 2-6

Probability That Rain Intensity Exceeds Specified Value

for Pacific Ocean Locations
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PROBABILITY OF EXCEEDING RAIN~INTENSITY VALUE
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-
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t 1

1

T
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LB

|| Dashed curves demark upper and
lower quartiles of data contributing
to a world-wide estimate - after

.| vref [2-11].

i

10~ | LllllJlJ i 1oLl
0. | 10 100

RAIN INTENSITY (mm/hr)

Figure 2-7
World Average Probability That Rain Intensity at a Given Point

Will Exceed a Specified Value
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Storm cells are spatial regions of rain characterized
generally by greatest density at their center and monotonic fall-off
radially outward. Let A be the area included within a contour along
which r is the rain rate. Then

b ey o138
Cc

the rain rate at the center of the cell at
the same altitude as r, and

(__A____)l'/s = (__A___)m
17.5 nm? 60 km?

The shape of a contour with area A is approximately elliptical. _If

a1
n

where

vaach
"
il

¥
e

. the dimensions of the ellipse are a and b, a > b, such that A = — ab,
i then the most probable value of a/b = 1, and its median is

. 1.7 [2-14].

T For some cells, the rain rate in a cell decreases mono-

tonically with altitude. For others, the density may increase from
the surface to a certain altitude and fall-off above it. If r _ is
the surface center rain rate, and the center rain rate at altitde

h is r, (h), the fall-off with altitude can be typified by

- 2
T rt) = r e b h
L [} cS
) 7
* Clearly i his distribution apprcximates the case when the rain cell
has its base at the surface (2-15]. iue parameter b varies_depending
g on the type of storm, cver the range of 0.2 km 2 (0.018 kft 2) [2-11]

to . U26 km 2 (0.0033 kft 2) [2-15].

—

The cells of a storm are separated by distances that
vary over a range, but the distribution of separations is unimodal,
as seen in figure 2-10. This distribution 1s very close to Rayleigh,

2
p(y) dy =1y exp {- Lz}dy

2
P(¥<y) = 1 - exp {~ ZE}

N
in which y = Gldm, Gm = 28.3 km or 15.3 nm {2-15].

o] kg
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CUMULATIVE FREQUENCY (%)

(nm)
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100 HTrHIIWT‘
Mode~12 nm 5%
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DISTANCE BETWEEN CELLS (km)

Figure 2-10
Distribution of Distance Between Rain Cell Centers [2-15]
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2.4 Chaff Design Characteristics

The objective in chaff design is to obtain the largest
radar return and the slowest fall rate with the least weight of chaff
material., A number of exotic chaff techniques such as absorbers
and aerosols have been considered from time to time, but the half-
wave dipole has proven to be a very efficient scatterer and is the
most widely used chaff element. It will likely remain so for many
years.

-

L

The two most common materials for both US and Soviet
chaff are aluminum foil and aluminum-coated glass filaments. The
trend is to the coated glass which exhibits a larger cross section
per pound of material and falls at a slower rate than foil chaff.
The trend in glass filament chaff is to smaller diameters of fil-
aments to improve its characteristics even more. Presently 1 mil
diameter filaments are the most common for frequencies above
approximately 3 GHz. Below this frequency, larger diameter fila-
- ments are used to give the dipoles more rigidity. A resilient

chaff consisting of bonding together several glass filaments to
form a composite strand about 3 mils in diameter has also been
- used for lengths over 2 inches (below 3 GHz). Toil chaff having
a thickness of 0,45 mil is commonly used (1 mil ¥ 0,025 mm) .

M "'—"a i""'"';

2.4.1 Reflectivity Characteristics of Chaff Dipoles

The radar cross section of a single half-wavelength
dipole is maximum when the dipole is parallel to the incident

- electric field.

. For a high conductivity dipole element, the maximum

- cross section is given by,
o =0.86 A%, (2-1)
max

For a random orientation, the average cross section
per dipole is, approximately,

et

oy = 0.18 A%, (2-2)
In the absence of shadowing and clumping effects, the
cross section of a collection of chaff dipoles is linearly related

to the total number of dipoles Nt’ resulting in a tutal cross sectiorn
of,

e B
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= 2 -
. 0.18 A Nt (2-3)

In practice, the cross section predicted by the above
is rarely achieved. Effects which tend to reduce the cross section
actually obtained include:

1. Finite conductivity of the chaff material.

2, The radar frequency may not be precisely at the
vesonant frequency of the chaff.

3. The effertive number of dipoles may be considerably
less than the actual number as a result of clunping
and screening effects.

The combined effects of the finite conductivity of a
practical dipole and frequency are shown in figure 2-11. This curve
from [2-16] is based on :the variational procedure devised by C.T. Tai
and calculated numerically by Brown {2-17]. The results obtained by
this procedure are reported to be in close agrezment with experima:ntal
measurements. The peak cross section is given by approximately
0.14 A2 rather than .18 A2 as predicted by (2-3). The cross section
is also highly frequency sensitive with a 3 dB bandwidth of approxi-
mately 10 pexcent. The dipole exhibits a secondary peak of about
one~third of the maximum at a frequency where the dipole is one wave~
length long.

The response is also a function of the length/diameter
ratio, A = 2L/d. Thin dipoles (large A) tend to be more narrow band
than thick dipoles (small A).

The percentage of dipoles actually dispersed is a complex
phenomenon which depends on the type of chaff, the dispenser, location,
and the enviromment into which the chaff is dispensed. This percentage
is defined as a dispersal efficiency, E Field measurerents indicate
the dispersal efficiency is rather snali approximately 0,1-0.3 in the
first second or so after dispensing when the cloud is small and screen-
ing effects are severe [2-18], to a value of 0.6 or more several
minutes after dispensing.

Even though the frequency of the chaff may not coincide
exactly with the radar frequency, the radar may be required to handle
the worst case wherein the two are tuned to the same frequency. A
realistic expression for the maximum cross sectlon is then given by

o= 0,14 A2 Eg N . (2-4)
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A plot of the above in-terms of the tetal number of
dipoles effectively dispersed, Ed Nt, reqiaired for a 1 -m? cross
section is shown in figure 2212,

2.4.2 Cross Section per Unit Weight

Since the total chaff radar cross section is related
to the total number of dipoles through equation (2-4), one can also
relate the radar cross section to the weight of chaff material dis-
pensed. For aluminum-coated glass filament chaff, it is assumed
that 1 mil filaments are used for frequencies of 3 GHz and above
and 2 mil filaments below 3 GHz in order to provide greater rigidity
for the longer lengths. Similarly, 6 mil wide by 0.45 mil thick
foll is assumed above 3 GHz and 10 mil foil below.

For the above chaff dimensions, the cross section at
the resonant frequency per pound of material is given by the fol-
lowing. For glass chaff,

£ < 3 GHz o = 7700 E;/f (GHz) m?/1b - (2-5)

£ > 3 GHz o = 31,000 E,/f (GHz) m?/1b (2-6)
and for foil,

£ < 3 GHz o = 5000 E,/f (GHz) n?/1b (2-7)

f > 3 GHz o = 8300 E,/f (GHz) m?/1b (2-8)

where Ed is the dispersion efficiency.
Referring to figure 2-1, it is obvious that if coverage
over a band of frequencies 1s desired, a number of different length
chaff elements spaced at 10-15 percent intervals in frequency are
required., Generally, it is not necessary to rover a broad frequency
band, but only those relatively narrow portions of the spectrum
corresponding to the operational bands of known radars. A curve
which relates the dipole length to the desired resonant frequency
is shown in figure 2-13.

The cross section per unit weight when coverage of a
number of dilscrete frequencies is desired may be computed by ob-
serving that the weight of material required for a unit cross section
at a given frequency is the reciprocal of (2-5) - (2-8). If cover-
age at N frequencies above 3 GHz ls desired with glass chaff, the
resulting cross section per pound of total material is given by,
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Figure 2-13
Resonant Frequency of Half-Wavelength

Metalized Glass Dipoles
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£ 3 o

1 m2/1b (2-9)

g =

N
L £,/(31,000 E.)
4= 1 d

e I

In table 2-6 are shown the total cross sections of glass
filament and aluminum foil chaff in m%/1b where a dispersion efficiency
of 0.65, typical of large area dispersal, is assumed. In order to
cover a band of frequencies, it is assumed that a portion of the
chaff is cut to resonate at frequencies spaced every 15 percent re-
sulting in a fairly uniform cross section over the band. The cross
section ranges from a maximum of 6,700 m2/1b for a 10 percent band
at 3 GHz to 190 m?/1b for coverage of the entire 1-10 GHz band.

Values for coverage of other portions of the frequency spectrum are
- also glven,

It should be emphasized that chaff cross section specifi-

. cations should be examined with care to avoid an incorrect interpre~

. tation. The highest values of cross section per unit weight are

“ assoclated with narrow band (g 10%) coverage. Using different length
dipoles in order to broaden the frequency coverage reduces the cross
section per unit weight accordingly. The other highly variable param-
eter is the dispersion efficiency, or the fraction of the total number
of dipoles effectively dispersed. This parameter must be determined
from field measurements for a particular dispenser configuration and
can range from at least 0.1 to 0.8 depending on the conditions and
the time from belng dispensed. The values of E, used in this study

. are approximately 0.2 in the first second and 0.65 several minutes

, after being dispensed.

f 2.4.3 Attenuation Characteristics of Chaff

It is sometimes suggested that a chaff cloud can produce
sufficient attentuation of a radar signal to hide an aircraft flying
on the opposite side of the cloud. It turns out, however, that the
L density of chaff required to produce siguificant attenuation of the

N signal is extremely large; so large that its backscatter potential
is reduced significantly.

Kownacki [2-19] computes thaz two-way attenuation of a
uniform chaff cloud with depth D and a dipole density of N dipoles/
unit volume as,

& ~0 ND
] ', Atten, = e (2-10)
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where 3; is the average scattering cross section per dipole. The

" product ;SN is the volume reflectivity density I o in m2/unit volume.
Expressing.the above in dB per meter,

. 2-way Aten. (dB/m) = -4.34 (To) (2-11)

- where Lo is in the units of m?/m3. A heavy chaff threat may consist
of a chaff reflectivity density of about 3000 mzlnm3, corresponding
; to 475 x 10”2 m?/m3. This results in an attenuation of 2 x 10 6 dB/m.
Therefore, to attenuate a radar return by only 3 dB with a heavy chaff
i cloud of 3000 m?/nm® would require a chaff cloud thickness of 1500 km
- (or 800 nm) clearly indicating an impractical approach to screening
a target,

Laboratory chaff experiments confirm the fact that radar
signale undergo significant attenuation only when the chaff dipoles
are extremely dense, in the order of a wavelength or less apart on
the average [2-18]. Such a situation exists only in the short period
of time immediately after being dispensed. Significant attenuation
of target returns resulting from a chaff cloud, therefore, appears
to be virtually nonexistent for conventional chaff.

2.4.4 Rope Chaif

Rope chaff is a continuous filament of conducting material
whose length 1s many wavelengths. The material may be a solid metal
wire or foill strip, a metallized dielectric fiber, or a multifilament
lay of part metallized and part uncoated fibers. Backscattering from
such a long filament is characterized in terms of "scattering width"
or cross section per unit length of rope. The scattering width is
frequency dependent and varies with the size and type of filament,
as shown in figure 2-14. "10/20 Stringball Rope" is a loose multi-
filament lay of 10 metal-coated and 10 uncoated glass fibers, with
an overall diameter (1f compressed radially) of 3.5 mils [2-8],

Reflectivities of 100-m ropes oi three possible materials
are compared in table 2-7 for a frequency of 450 MHz. The cross
section-per-unit-weight figures shown are for chaff that is actually
dispersed, and they do not reflect dissemination, packaging, or
system weight efficiesncies. Scaling the figures to other frequency
bands should be according to the curves of figure 2-14, which have
a slope of £72/3 [2-8].

2.4.5 System Weight Efficiency
Aircraft payload weight allocated to chaff systems must

. be broken down into portions which dispense chaff packages and the
- chaff packaging itself. Thus, a system handling efficiency factor,
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AVERAGE SCATTERING WIDTH (cm2/cm)

10.0

‘1,00

0.10k

0,01

Figure 2-14
Equivalent Scattering Width of Metalized Glass Rope Chaff and Solid
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VS
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- \\ ]
L j ]
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~ | (1) 10/20 Stringball rope -
— | (2) 5 mil aluminum wire ‘:
B (3) 1 mil aluminum wire \]
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L1 Lot L toratl
10 100 1000 10,000
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Aluminum Wires [After Reference 2-8]
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apart from the dispersion efficiency factor, must be applied to
compute usable chaff weights in the air that result from a given air-
craft payload. Typical estimated system factors are listed in table
2-8 for cartridge monofilament, roll-packed continuous dispersal, and
mono-filament—-rope systems.*

2.4.6 Chaff Cloud Growth

After dissemination, a cloud of chaff dipoles will in-
crease in size under the influence of atmospheric turbulence, wind
shear and differences in fall rate. Although the qualitative effects
of these mechanisms are understood, their quantitative results are
as uncertain as the properties of a real atmosphere and of real chaff
are variable. Atmospheric turbulence produces local mixing of air
parcels so that chaff from regions of higher density is moved statis-
tically toward regions of lower density, Turbulent diffusion re-
sults in a growth law for a cloud dimension of

= 1/2
rc(t) ovkvt

for values of cloud radius r_, greater than about a hundred meters, in
which oy is the rms turbulence velocity and k, is a constant of the
order of 110 sec /2 for spherical clouds (see Section 2.1.3 for
typical values of oy) [2-34].

Wind shear acts to transport air (and chaff) at one al-
titude at a faster rate or in a different direction from air and chaff
at another altitude, thus developing an increased overall dimension
of the clowd in the direction of the vector shear. Shear growth is
linear iv #£1.e and is proportional to the shear vector magnitude
(the gradient of wind speed) and the cloud dimension in the direc-
tion of that gradient (generally height). Thus, a shear growth law
such as

=
du
‘ xc(t:) = zc '&-E t

might apply. Here x, and 2z, are the cloud dimensions in the hori-
zontgl along-wind-shear and the vertical directions, respectively,
and u is the vector wind velocity (see Section 2.1.2 for typical
values of du/dz).

Chaff dipoles fall under influence of gravity and air
drag at rates that are determined by their mass, their diameter, and

* Egstimates based in part on data in
[2-8, 20-23].
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e

shape-induced aerodynamic effects. This latter can produce a large
spread in fall rates, but when all fihers fall in the same aerodynamic
mode, a spread in fall rate of the orier of 10% (l- o) is created by }
tolerance variation in fiber diameter alone (mostly attributed to coating -
thickness variation). The corresponding tolerance effects for more typ- /
ical production chaff may be +30%[2-7, 2-35]. Figure 2-4 showed some j
fall rate data for homogeneous chaff of several typres. When chaff is |
disseminated in mixtures having a range of diameters or cuts of differ-
ent lengths, or when the packing or dissemination produced dipole dis-
tortion that induces different serodynamic fall .modes, then large varia-
tions in fall rate should be expected. For example, Chemring has been
reported ¢o have identified 14 dipole fall modes in vertical wind tunnel
obsrrvations [2-3G], and Puskar of AFAL has identified 6 major modes 2
[2-:8]., However, in spite of the large number of modes possible, it may

be the case elther that one or at most a few modes predominate or that

fall rates and average orientations may be similar for groups of modes,

go that a simpler description of chaff fall is possible statistically.

Puskar observed one batch of £0il dipoles, 90% of which fell in one mode,

a flat spin with a predominantly horizontal dipole ordentation. Vakin

and Shustov [2-37] suggest that the modes split into two main groups,

one of which falls slowly and 1s oriented predominantly horilzontal,

while the other falls faster and is more steeply inclined toward the vex-

tical, The difference in fall rate caused by mode differences seems to

be of the order of 2:1.

2.5 Other Airborne Scatterers

Clouds are characterized by generally low reflectivities be-
cause of thelr low water density compared to rain., Typical reflectivities
are 25 dB below that of light rain (see table 2-9)., An exception is the
Nimbo-Stratus form in which reflectivity resembles that of light rain,
but with a horizontal distribution of a storm model. The vertical dis-
tribution of that cloud differs from a continous quasi-uniform rain
model only in its lower boundary: about 2 km for the cloud and sea level
for the rain model [see also reference 2-24].

The larger birds have cross sectlons below those of most
Naval tactical targets, but within a few tens of miles of land, gulls
abound at some times of the day, and their backscatter will be well
above noise in some shipboard radars. Typical cross sections are de-
picted in figures 2-15 and 2-16.

2-36




e ——————— it il . v - - - R . BH

ue
.:“Mﬁmmgw& [sz-z]oouaogoy mouz eacq (2.0} pueg 3ybLag 4
‘eaojeub] uted ay/uw | L0} 002 = I«
: 0SL 00L 00%%7 (833331) 0069 384 proTy “uTY
0009 000% 0059 (922331) 0006 38H PROTD Nedg
1€ QozYy
9°ST GooY
. $°82 008€
S°v8 009€
. 0°661 00%€ ,
45°2°2 002c 1€°0 0081 8S°0 0529 Lo°0 0068
0°9¢€ 0SLe 1€’ 0091 11 088¢ L0°0 o%se ,
0°6 0sze 1€°0 0LET 9T°1T 0SS L0°0 0818 ,
6°¢ 0sLT £Y°0 0sTT 08°0 otzs 60°0 0z8L
' 7€ oset (] 006 se°0 0887 T1°0 09%¢L 837730243
IBIE3I29A
A@Nﬂ“ﬂﬁv AQHNUQEV Amuﬂuﬂﬂv AQHOUUEV 3o mﬂﬂﬁﬁuxm o~
*Z a%y z sy 2 33y z gy o13¥99ds T
= hd = o~
€= 92~ 9z oe- urex Iy /wa I
A0T9q QP UF Z
' apom
0°0S 05s°0 so°0 $0°0 k4
0°¢92 09°0 AN %5°9 (uog3epdea) %o
» . . - E
£°901 05°0 £5°0 0z°o Aﬂav z
Sy snjea3s-elly
(sn) (2s) 40 (1)
sn3ed3S~0quty snnunj-03e415 oy Sn{Mun)-o3ly sNAA L)

SPNOT) 10J SOT1SF3IBIG AIFAFIOO[IoU
6-¢ 9T4qeL

LAUREL, MARYLAND

THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY




THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
LAUREL, MARYLAND

m C.Il l- ~

M:vﬂ.

SUOT3ID9S s$S01) I1BpPEY UBSN PATH

ST~z @an3ty

(wo) HIONATIAVM

001 (o} o1 € T
L 1 1 L

pI3ewrlsy seaang 5

g [92-2] 321 woxg 110 £

#0a13edg (uoraezraereg [edT3I0p)

vV ‘0 ‘x s3jurog ®ieq 2

&

w

&

[ i
[ o

a1oray =
)

3
(35

N

<01
x
v
uoa81g - 001
1




THE JOHNS_HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL, MARYLAND

ool o bt oo b Lo o L Ll

E cn &
o o (=]
o]l

§
[N}
o

RADAR CROSS SECTIoN (dB/m?)
o
€D

o

]
o
mlu'1lu|ll|n;Im||1|uluuluullm|uu||mlln

—
o

ny
o

! lllllll= ot I‘“”'“”mm”mmmmmmmr'

'lllllhlllllll‘HIIIHHIHHIHHIIIIlllﬂTlnfqllIi|lllllllll|llll|lIllllill

001 .Gt 08 2 o4 6 8 1 .98 .999

CUMLLATIVE PROBABILITY

Fiqure 2-16
Derived Bird Mean Radar Cross Section Distribution [2-27]




THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL, MARYLAND

2.6

2-3

2-10

2-11

2-12

2-13

References, Chapter 2

J. S. Marshall, and W. Mck. Palmer, "The Distribution of
Raindrops with Size," J. Meterology, 1948.

J. Joss and A, Waldvogel, "A Method to Improve the Accuracy
of Radar-Measured Amounts of Precipitation,' Fourteenth Radar
Meteorology Conference, November 1970. ?1

I. Katz, et al., "Radar Derived Spatial Statistics of Summer
Rain; Vol. I: Experiment Description,' NASA Contractor Re- T
port CR-2592 (APL/JHU), September 1975. s

F. E. Nathanson, Radar Design Principles, McGraw-Hill Book -
Co., 1969. '

J. R. Scoggins and M. Susko, "FP3-16 Radar/Jimsphere Wind
Data Measured at Eastern Range,' NASA TMX-53290, George C.
Marshall Space Flight Center, Huntsville, AL, 19 July 1965.

P.R. Brooks and L.W. Brooks, "Survey of Weather Clutter -
Literature," Memo No, TSC-W2-41, Technology Service Corpo-
ration, Silver Spring, MD, August 1974.

J. E., Jiusto and W. J. Eadie, "Terminal Fall Velocity of
Radar Chaff," J. of Geophysics Research 68, May 1963. '

"Advanced Chaff Materials," Lundy Technical Center, Tech-
nical Note D12106, February 1973.

S. H. Lin, "Statistical Behavior of Rain Attenuation,"
BSTJ52, p. 557, April 1973.

S. H. Lin, "A Method for Calculating Rain Attenuation
Distributions on Microwave Pathg," BSTJS54, p. 1051,
July~August 1975,

H. H. Burroughs, "Rain Intensity-Time Distributionms,"
NOLC Report 729, 15 January 1967. i

P. M., Austin, "Some Statistics of the Small-Scale Distri-
bution of Precipitation,” Goddard Space Flight Center,
Contractor Report X-751-72-149 (Department of Meteorology,
MIT), July 1971.

(Unused.)

2-40




THé JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL, MARYLAND

2-14 J. S. Marshall and C. D. Holtz, "Rainshower Statistics from
' a Montreal Radar," McGill University, October 1969, AD 860 954.

2-15 T. G. Konrad and R. A. Kropfli, "Radar Derived Spatial Statis-
tics of Summer Rain; Vol., II: Data Reduction and Analysis,"
NASA Contractor Report CR-2592 (Applied Physics Laboratory,
JHU), September 1975,

2~-16 Bjorksten Laboratories, "Design of Chaff Units," Technical
Memorandum D1200-1, Lundy Technical Center, Pompano Beach,
Florida, July 1965.

2-17 Brown, B. M., ''Dipole Cross-Sections Calculated by Variational
Techniques," AF-TM-59, University of Texas Defense Research
Laboratory, April 1961.

2-18 Puskar, R. J., "Radar Reflector Studies," Proceedings, IFFF
1975 NAECON, pp. 177-183, May 1974,

L 2-19 Kownacki, S., "Screening (Shielding) Effect of a Chaff Cloud,"
IEEE Transactions on Aerospace and Electronic Systems, Volume
AES-3, pp. 731-734, July 1967.

2-20 "How Chaff Protects Aircraft," Microwave System News, October/
, November 1976.

2-21 "AN/ALE-41 Chaff Dispersion." MB Associates, Undated.

2-22 "Performance/Design and Qualification Requirements: QRC-530

Countermeasures, Chaff," Specification LC 20,005, Lundy
Technical Center, May 1971.

2-23 "Chaff Systems Directory," Lundy Technical Center, Technical
Memo. D12201, January 1973.

2-24 F. A. Berry, et al., Handbook of Meteorology, McGraw-Hill
Book Co., 1945.

! 2-25 R. V. Ignatova, V.A. Petrushevskii, and E, Sal'man, "Radar
Echo Characteristics of Clouds,” Tr. by American Meteoro-
logical Society, 1965.

2-26 T. G. Konrad, J. J. Hicks and E. B, Dobson, "Radar Character-
istics of Birds in Flight," Science 195, 19 January 1968.
N 2-27 G. E. Pollon, "Distribution of Radar Angels," IEEE Transactions,
- AES-8, November 1972,
2-41




THE JOHNS HOPKINS UHIVERSITY
APPLIED PHYSIGS LABORATORY

LAUREL, MARYLAND

2-28

2-29

2-30

2-31

2-32

2-33

2-34

2-35

2-36

2-37

2-38

. J. 0. Laws- and D, A, Parsons, '"The Relationship of Raindrop

Size to Intensity," Am. Geophys. Union Trans., Vol. 24,
p . 452_460, 1943 .

E. A. Mueller and A, L. Sims, "Raindréop Distributions at
Franklin, North Carolina,' Illinois State Water Survey
(Urbana) Technical Report TR-ECOM-02071-RR3, 1967.

E. A, Mueller and A, L. Sims, Raindrop Distributions at Is-
land Beach, New Jersey," Illinois State Water Survey (Urbana)
Technical Report TR-ECOM-02071-RR3, 1967,

R. K. Crane, "Virginia Precipitation Scatter Experiment-Data
Analysis," Goddard Space Flight Center Report X-750-73-55,
October 1973 (Rev.).

R. K. Crane; "Propagation Phenomena Affecting Satellite Com-
munication Systems Operating in the Centimetér and Millimeter
Wavelength Bands," P?roc. IEEE, Vol. 59, p. 173-188, 1971,

R. Wexler aud D. Atlas, "Radar Reflectivity and Attenuation
in Rain," J. Applied Meteorology, Vol. 2, p. 276-280, 1963.

G. Rése and F. E., Nathanson, "Chaff Model for U. S. Navy
Surveillance Radar Calculations," Naval Ship Engineering
Center Report, October 1974,

E. R. Coleman, "Chaff Meteorology." International Counter-
measures Handbook, p. 518-522, June 1576,

G. S. Sundaran, "Expendables in Electronic Warfare," Inter-
national Defense Review 9, p. 1045, December 1976.

S. A. Vakin and L. N. Shustov, Principles of Jamming and
Electronic Reconnaissance, Idz-vo, "Sovetskoye Radin,"

Moscow, 1968; FID Translation FTD~-MT-~24-115-69, AD-692-642.

C. C. Pinson, "Chaff," JTCG/AS Countermeasures Handbook for
Aircraft Survivability, JTCG/AS-76~CM-001,

2-42

R L |
. - B

——y

o P e i) g ok et n R

o e e et b

Py




THE JOKNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY

LAUREL, MARYLAND

3.0 AREA CLUTTER

3.1 Sea Backscatter

Sea Echoes (After Pidgeon & Nathanson [3-1 to 3-3])

;- The early users cf radar soon discovered that when transmitting
microwave signals in the presence of the sea, large signal returns were
received from the ocean surface. In many instances this sea return

P signal completely masked the target signal that the radar operation was

trying to detect. This discor2ry prompted scientific imvestigators to

commence a most extensive program of studying the effects of the ocean
as a rough surface on radar propagation. As sarly as the closing years
of World War II, many research centers such as the Radiation Laboratory
of the Massachusetts Tnstitute of Technology were investigating this
effect [3-4]. In the years to follow, the method of making measurements

b of radar scattering from the sea became more and more sophisticated.

5 Extensive programs involving the precise measurement of the physical
surface of the ocean by means of stereophotography and free floating
spar buoy wave gauges were coupled with elaborate research radars
especlally designed for the purpose of measuring time, frequency, and
spatial correlation characteristics of radar sea return [3-1].

After these many years, considerable understanding of the
microwave scattering properties of ssa has been obtained. This
i C understanding has become enough to reverse the trend of this research -
: f radar is now used as a research tool in the field of physical ocearo-
: rraphy to study ocean wave heights, lengths, periods, their distributioms,
| wave dynamics, and the state of the sea.

A

From information taken from Kinsman [3~-5] and Pierson [3-6]
relationships can be obtained relating significant wave height (average
| of the highest one~third of the waves) to average wave "periods,"

7 "lengths," and "velocities." A fully arisen sea is assumed.
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where W = wind speed in kts. and H_ is significant wave length, L is ocean
wave length, T 1S wave period and C is average wave "yelocity."
Dimensions of feet, seconds, and fect-per-second are used.

3.1.1 Description of the Sea Surface

The quantitative interpretation of radar scatter from ths sea
requires the use and appreciation of certain properties of ocean waves,
A brief review is undertaken here of the ccean~wave physics and
characteristics which we will need later; .also, common oceanographic
nomenclature pertaining to ocean waves is defined and explained. A
readeble but detailed treatment of all aspects of ocean wave. physics can
be found in the text by Kinsman {3-5]; a more elementary introduction to
water waves is the concise soft-cover booklet by Bascom {3-7].

! Sea State

: This term, as used here, refers to the state of the sea, or
roughness, as determined by the heights of the largest waves present.
Numbers have been assigned to sea states by the International Mariners
Codes, and these are related to wave heights. Sea state should not be
confused with Beaufort scale, which is a measure of wind force only.

Significant Wave Height

This term is a common maritime descriptor referring to the
average of the heights - from crest to trough - of the 1/3 highest
waves; it 1ls denoted H1/3.

RMS Wave (or Roughness) Height

This is a term describing root-mean-square height (above the
mean surface level) used in rough surface scatter theoriles; it is
denoted here by h. While there is no exact general relationship

between h and Hl 3» & common approximation frequéntly used for wind
waves is H1/3 = A.Oh .

Length

The length or spatial puriod of a single ocean wave is the
distance from one crest to another; it is denoted by L.
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— Period

- Unless denoted otherwise, this refers to the temporal period,
and is the length of time it takes two successive crests of a single
wave to pass one point, It is denoted by T.

Spatial Wavenumber

This is defined in terms of the length of an ocean wave as
K = 2n/L.

Temporal Wavenumber

This radian wavenumber is given in terms of the period by
w = 2n/T.

Fetch

The fetch is the horizontal distance over which a nearly
constant wind has been blowing. (It is also defined by its duration).

\ Duration

This term refers to the length of time during which a nearly
constant wind has been blowing.

Wind Yaves

This term refers to a system of ocean waves which is being, or
has very recently been, aroused by winds blowing locally above that
area of the ocean. Wind waves result in a random appearing ocean height
profile.

Fully Developed Seas

This is an equilibrium sea state condition reached after
sufficient duration and fetch at a given wind speed. The estimated
duration and fetch versus wind speed required to produce fully developed
seas is given in figure 3-1.

Swell

N When wind waves move out of the area in which they were
originally excited by the winds, or after winds have ceased to blow,
these waves change their shape and settle down to what is known as
"swell." Swell appears less random and more nearly sinusoidal, of
great length, and with great width along the crestlines. The usual

3-3
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period of swell is from six to sixteen seconds. Swell, while an
occasional phenomenon, can arise from storm areas thousands of miles
distant.

Deep-Water Waves

oot peeed ST BB we

When the water ia sufficiently deep that the effect of the
bottom on the propagation characteristics of the waves can be neglected,
they are cailed "deep-water" waves. Generally, if the depth is greater
than 1/2 the length of a given wave, the deep-water approximation is
valid. Except near beaches, ocean waves are deep-water waves, and we
o utilize this assumption throughout.

{

Gravity Waves

This term refers to waves in which the chief restoring force
‘e upon the perturbed water mass 1s gravity. Waves whose lengths, L, are
greater than 1.73 cm [3-8] are gravity waters.

Capillary Waters

This term refer( to waves in which the chief restoring force
acting on the perturbed water mass is surface tension. (Less than 1.73
cm in length).

Care must be taken in specifying the state of the sea by a sea
state scale, because many of these scales have been defined in the past,
and more than one scale is in use today which disagree in the wind
speeds and surface roughness regions which apply to a sea state scale
index number. Two of the current scales are compared in figure 3-2.
For a given index number, wind speeds can be different by as much as a
factor of 2, although wave heights correspond closely. The windspeed
difference is significant in radar models because sea return is
influenced strongly by wind generated capillary waves, as well as the
gross structure reflected by wave height. In the models documented
here, the sea state scale of Pierson, et al., has been used [3-6].

3.1.2 Cross Section of Sea Backscatter

d Sea Backscatter Models for Low Grazing Angles (0o - 20°)1

In determining sea or land backscatter, the term o_ is used to
represent the normalized mean (or median) omnidirectional backscatter
from a surface area illuminated by a pulse radar. To a first approxima-
tion this area (A) is R 65 (ct/2) for small grazing angles, narrow

‘From "Radar Design Principles," F. E. Nathanson, McGraw-Hill, 1969.
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azimuth beamwidths, and full antenna gain on the water. In this formula,
R = range from radar to center of cell, 62 = azimuth beamwidth (3 dB
two-way), and (ct/2) = pulse length in distance units for a two-way path
(12.34 usec = 1 nm), The conventional backscatter parameter, 0,

for radar can be approximated from 9, = do/dA. Then:

o~ R6y (c'c/Z)oo

for a beamwidth that is small compared to a radian, and for low grazing
angles.

Obviously, the above discussion did not take lobing and forward
scatter into account, These items are virtually always inseparably
included within the "models" for 0y« The term o, is also called the

"normalized reflectivity" and is generally given as a mean value of
cross section per unit area, in decibels. If g, = -30 dB, the average
"radar cross section" (o) is 30 dB below a 1 m“ target for every square
meter of the sea that is illuminated. Since the power density on this
surface 1s proportional to the sine of the incident angle, another
term (y) 1s often used for reflectivity, where o, = (y)(sin ¥), where
Y = ineident angle.

Tables 3-1 through 3-7 are models for the backscatter coefficient
0o+ These tables were compiled using experimental data from numerous
sources. They provide a complete and somewhat consistent set of numbers
for the radar designer and system planners and evaluators. No attempt
has been made to develop the theory of scattering from the sea surface
oxr explain the anomalies in certain data. On the other hand, the points
have bean derived from a more extensive set of experiments than was the
case previously. In assembling such models it has been found that only
a few extra data points make the tables converge rapidly. Separating
by frequency, polarization, depression angle, and sea state in the
tables seems to make the data more consistent. When further data are
available, it will also be useful to separate out data by wind and
wave direction. Until that time, the models refer to:

1. An average of the upwind, crosswind, and downwind values
where available,

2, Pulse lengths in the 0.5 to 5 psec region with echoes
having approximately Rayleigh distributions.

Data points not conforming to these assumptions have been
crudely adjusted to conform. An asterisk is shown where data are
questionable or where there is a severe conflict, leading to an expected
error of 5 dB or more.

AR
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Table 3-~1

Normalized Mean Sea Backscatter Coefficient .

for Grazing Angle of 0.1°

krd ]

Reflection Coefficient in’db Below 1 mz/m2
at Indicated Carrier Frequency
SEA UHF L S C X Ku Ka
STATE PQL. 0.5 GHz 1.25 3.0 5.6 9.3 17 35
v
0
H 90%* 87%
. v ! an (70) 65% (59) (51)
H 80 75% 71*% (62)  (55)
v 90% (85) 72% 64 56 (50)  (45)
2
H 95% 90# 75% 67*% 61* (52) (46)
v (73) (65) (57) 51 (45)  (41)
3
H 90% 82% 68 60% 53% (45)  (40)
’ v ) (67) (59) 53 (47) (42) (37)
H 72 (61) 55 (47) (41) (35)
A (62) (56) (49) 44 39 G4
5
H 65* 57 (49) 42% “(37)  (32)
!
v (59) (53) (47) (41) (36)  (32)
6
H (61) (54) (46) (39) (34) (30)
*5 dB error not unlikely Monostatic radar
Values in parentheses are interpolated or 0.5 to 10 Yysec pulse
extrapolated estimates,
After: Nathanson [3-3) Chapter 7 Revised 2-77
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Table 3-2

Normalized Mean Sea Backscatter Coefficilent oo

for Grazing Angle of 0.3°

Reflection Coefficient in db Below 1 mzim2
at Indicated Carrier Frequency
SEA UHF L ) o X Ku Ka
STATE POL. 0.5 GHz 1.25 3.0 5.6 9.3 17 35
v
0
H 83* 79 74%
v 62% 60 58
1
H 74 71 66*
v 80* 59* 55 52
2
H 66 60 56*
; v b5* 48 45
H 68* 58* 50 46
v 54* 43
4
! 50* 42 39*
v 75% 50* 39
5
H 47 4 39 39*
i v 37*
6
H 46 37*
*5 dB error not unlikely Monostatic radar
0.5 to 10 usec pulse
After: Nathanson {3-3] Chapter 7 Revised 2-77
3-9
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Table 3-3

Normalized Mean Sea Backscatter Cofficient, 9,

for Grazing Angle of 1.0°

Reflection Coefficient in db Below 1 me/m’
at Indicated Carrier Frequency .

SEA UHF L S c X Ku Ka
STATE POL. 0.5 GHz 1.25 3.0 5.6 9.3 17 35

v 68* <60* <60 56%
0

H 86* 80* 73 70 <60 52%

v 70% 65% 56 53 50 47%
1

H 8a* 73% 65 56 51 45 40*

v’ 63+ 58% 53 47 44 42 38*
2 ,

H 82 65* 55 48 46 4 38+

v 58% 54* 48 43 39 37 34
3

H 76* 60* 48 43 40 37 36

v 55% 45 42 39 37 34 32
4

H 52% 45 39 36 34

v 43 38 35 33 32 31
5

H 65* 50% 42 35 33 32

] 33 29% 32
6

H 4 30% 32

*5 dB error not unlikely

After: Nathanson {3-3) Chapter 7

3~10

Monostati radar
0.5 - 10 psec pulse

Revised 2-77

e

e

3




fed IEXT UEEN Ry mesy s

o~

wt

I e T e | _ﬁ‘"ﬂ

THE JOHNS HOPKINS UNIVERSTTY
APPLIED PHYSICS LABORATORY

LAUREL, MARYLAND

Table 3-4

Normalized Mean Sea Backscatter Cofficient, 9,

for Grazing Angle of 3.0°

Reflection Coefficient in db Below 1 mz/m2
at Indicated Carrier Frequency
SEA UHF L S c X Ku Ka
STATE PoL. 0.5 GHz 1.25 3.0 5.6 9.3 17 . 35

v 60* B6* 52* 48*
0

H 75% 72* 68% 63* 58* 53

v 60* 53* 52 49 45 43 41
1

H 70% 62% 59 54 48 45% 43*%

v 5% 53 49 45 4 39 37
2

H 66* 59 53 48 42 38 40

v 43* 43 43 40 38 36 34
3

H 61* 55% 46 42 39 35 37

v 38* 38 38 36 35 33 3
4

H 54% 48* 4 38 35 32* 34
; v 38 35 33 31 3* 30%

H 53* 46 37 24 32 30*

v 28 28
6

H 37 28 28

*5 dB error not unlikely

After: Nathanson [3-3] Chapter 7

3-11

Monostatic radar
0.5 to 10 usec puise

Revised 2-77




THE JOHNS HOPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
LAUREL, MARYLAND

Table 3-5
Normalized Mean Séa Backscatter Coefficient, o,

for Gfaziﬁg‘Angie,of 106

Reflection Coefficient in db Below 1 m2/m2
at Indicated Carrier Frequency
SEA UHF L s c X Ku  Ka
STATE POL. 0.5 GHz 1.25 3.0 5.6 9.3 17 35
v g 9% 45% agk
0 ,
H 60* 56*
. v 38 44 42 40 38
1
H 56* 53 51
) 35* 37 38 39 36 34 33
2
H 54* 53 51 48 43 37
v 34* 34 34 34 32 31 31
3
H 50 48 46 40 37 32 3
F‘f . v 32* 3 A% 32 29 28 29
) H 48* 45 40 36 34 29 29
; v 30 30 28 28 25 23 26%
H 46 43 38 36 30 26 27*
F’ v 30 29 28 27x 2% 18
g 6
H 44* 40* 37 35% 27* 24%
%5 dB error not unlikely Monostatic radar

0.5 to 10 ysec pulse

After: Nathanson [3~3] Chapter 7 Revised 2-77
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Table 3-6

Normalized Mean Seg Backscatter Coefficient, oo

for Grazing Angle of 30°

Reflection Coefficient in db Below 1 mz/m2
at Indicated Carrier Frequency
SEA UHF L S c X Ku Ka
STATE POL. 0.5 GHz 1.25 3.0 5.6 9.3 17 35
v 42% ‘
0
H BO*
v 38* 38* 40 40 36 36% 35%
1
H 46* 48
v 30* 3N* 32* 34 32 30* 30
2
H 42* 4 40 42 44% 34%
v 28 30 29 28 28 23*% 23*%
3
H 40* 39 38 37 34 27
. ) 28 28 27 25 24 21 22
H 38* 37 37 35 29 23
v 28 24* 23 22 18 17 20*
5
H 35 34* 32 30 24 20% 20*
Y 25% 23*% 22% 21* 17 13*
6
' H 33* 32 30* 29* 21* 18*

%5 dB error not unlikely

After: Nathanson [3-3] Chapter 7

3-13

Monostatic radar
0.5 to 10 usec pulse

Ravised 2-77
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Table 3-7

Normalized Mean Sea Backscatter Coefficient, oo

for Grazing Angle of 60°

Reflection Coefficient in db Below 1 mo/m°
at Indicated Carrier Frequency

SEA UHF L S c X Yu Ka
STATE POL. 0.5 GHz 1.25 3.0 5.6 9.8 17 35
v 32 33 33 35% 36% 28*
0
H 32 32 32 34 26*
v 23*% 22 24 28 24 20* 24*
1
H 22 24 25 26 26
v 20% 21 21 23 18 18* 19*
2
H 22 21 21 22 23
v 18% 18*% 19 16* 16 14 14*
3
H 21 20 20 20 21 14*
v 14* 15% 15% 14¥ 1 10
4
H 21* 16* 20*
5 v 18* 15% 15 15 13*% g * 4
H 21* 16* 17 17 14 10*
v 18* 16* 16* 14* 1* 10*
6
H 20* 18* 17*% 16* 12% 10%

%5 dB Error not unlikely

After: Nathanson {3-3) Chap 7

Monostatic radar

0.5 to 10 usec pulse

Revised 2-77
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1 The following ground rules have been observed and used for
1 extrapolation and interpolation:

1. For a given entry on the table, the vzturn from vertical
g; polarization will equal or exceed that from horizontal and
the deviation will increase at lower sea states, lower
depression angles, and lower transmit frequencies. This
{] does not appear to apply above 15 GHz.
1

2. The backscatter increases with depression angle from 0° to
200 as 6%, where n may be as high as 3 for low angles, low
sea states, and low frequencies. The value of n decreases
in the tables towards the lower right~hand corner (high
- frequencies and sea states), where it approaches zero,

4
w
.

The backscatter coefficient at low grazing angles always
increases with transmit frequency as f® for horizontal
polarization to at least 15 Gnz where m may be as high as

3 below 2 GHz for very low grazing angles (less -than 1°)
and seas below state 3. As the angle, sez state, or
transmit frequency exceeds these values, the exponent drops
toward 0.

==t perd

. 4, The backscatter increases with sea state by as much as 10
dB/sea state for low seas and low frequencies, but reduces
- to a smaller change at higher sea states and frequencies.
Earlier studies by NRL (1965-1970) indicated a "saturation"
at about sea state 4 for C and X band, but more recent
studies by NASA at K, band, Raytheon {for General Dynamics)
[1976] indicate significant increases in o, up to 30-40 ft
- wave heights.

5. Sea state 0 arbitrarily corresponds to a significant wave-
.. height less than 9.25 feet and winds less than 4 knots.

- 6. At small antenna depression angles the true grazing
(incidence) angle on the ocean is smaller because of the
curvature of the earth.

These generalizations werec made to complete the tables; the

N generalizations should not be used for depressions angles of greater
than 20 degrees.
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3.1.3 Short-Pulse Sea Return

When a radar cell defined by beamwidth and pulse length,
contains many scatterers of comparable size, the amplitvde distribution

of cross section 1s zpproximately Rayleigh, with cumulative distribution
function:

P(o>0t|3 )= (1-e '“t/BS

When ‘the Rayleigh distribution is seen, the scatterers are generally
distributed throughout the cell, and in the limit this leads to the
condition of spatially uniformly distributed scatterers. This leads to
a practice, in which this condition is invoked as necessary and suffi-
clent that a Rayleigh section distribution will be observed. The sea
surface does not fulfill this condition of uniformity, however,
especilally when viewed at low grazing angles, and the spatial structure
is exposed when "snap shots" of the clutter are taken with sufficient
resolution. Implicit in this statement is that the structure is
visible for small cell sizes and short observation times but is

washed out for large cell sizes or long observation times. The question
is how short/small or .sng/large.

The_effect of the gross surface structure is to present the
shori pulse ~ radar with three types (at least) of scatterers: patches
of rough water thrust upward into view and tilted toward the radar,
which presumably contain many incremental scatterers; patches not
visible to the radar in troughs or the back sides of crests ; and large
facets inclined steeply, with cross sections large compared to simple
roughened surface. Evidence for the existence of each is available in
signal observations. The upward raised scatterers are further
structured spatially such that their regular appearance can be predicted
approximately in the upwind/downwind (or -wave) directions. as indicated
by the parameters of surface wavelength tabulated in table 3-~1 and by
the example of sea surface height displacement auto-coveriance function
in figure 3-3. When a short pulse radar views the sea near grazing
incidence, the wave crests are resolved and seen as a progression of
isolated rapidly fluctuating moving scatterers, as seen in the sequence
of figure 3-4, The crests are especially visible on radar because they

are high and energy release (and small scale roughness) is maximum there.

The radar return from crasts generally fluctuates rapidly, presumably
caused by the internal motion of the rough surface and consequent
Doppler modulation. The return from regions between crests is much
weaker, and in figure 3-4, is baseline clipped because of the limited

1Short title for “small cell size in both range and angle and aon-
integrating from scan-to-scan."
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Figure 3-3

Auto Covariance Surface of the Sea [3-9]
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dynamic range. When seen with wide-dynamic-range high-power radars,
the trough regions also fluctuate rapidly. When the crests are
viewed upwind when the wind and wave vectors are parallel, occasicnal
Ricean or non-fluctuating echoes (over a period of a few tenths of a
second) are seen, presumably associated with a wave curl.

The influence 'of this structure and resulting modulation of
return is profound on the distribution function of cross section when
all these returns from different spatial cells are ensembled. The
dynamic range of return is much wider than Rayleigh, even though
component cell contributions appear Rayleigh over short time scales.
Three examples are shown in figures 3-5 through 3-7. They were recorded
under the conditions listed in table 3-8. The plots are on arithmetic
probability paper scaled so that normal distributions are straight
lines. None of the three is strictly log-normal and the three vary
considerably in character of their shapes. Slopes expressed as log-
normal standard deviations are 7.5 dB(H) and 6 dB(V), 7 dB(H) and
11 dB(V) for the three figures, respectively, across the Pp, = 10 to 1
percent region. Although comparison of data sets taken at ~different
times and locations and with different equipment 1is risky, the spread
illustrated here is typical for the parameters rhat apply. Standard
deviations of 6 to 8 dB are frequently seen, with the 1l dB example
about worst case. Horizontal polarization presents higher peak cross
section than vertical at high sea states and low grazing angles in
X-band, but at S-band the two should be about equal, with vertical
exceeding horizontal below that band., In downwind directions, vertical
will exceed horizontal by a few dB under the same conditions otherwise,
but upwind will generally be worst case for both polarizatioms.

Analyses of detection of targets in clutter requires models of
the decorrelation process of the clutter signals in addition to their
dietributions. The time autocovariance functions defined by

R2(1) = B{v (6)v,(t + 1)} - EXv (8)),

where E{} implies expectation value and v, is the clutter video voltage,
reflect components of the phygical model described earlier in the
following way. Referring to figure 3-8, the total variance of the
clutter is made up of two parts, a Rayleigh contribution and the non-
Rayleigh part. The Rayleigh variancel of (5.5 dB)2 adds to the non-
linear part, here shown as (5.8 dB)2 for the effect of the roughness/
tilt/shadowing modulation in widening the distribution. The Rayleigh
part decorrelates in milliseconds, with a slope representative of a
Doppler process, proportional to frequency. The non-Rayleigh part
decorrelates in 0.5 to 2 seconds and does not seem to be frequency

lA logarithmic video envelope transfer law has been assumed for this

illustration.
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sensitive [3-14]. The cyclic part, mostly seen only in up/down wind
directions, has a period equal to the dominant wave period. The
fast Doppler decorrelation time, Tgs is approximately

. . 190
4% W

where f is in GHz and wind speed W is in kt.

el G o RS e IR s v S o

The Doppler peak has been shown to respond to frequency
agility, such that samples from “he same cell on pulses separated by
about 1/t are found to be uncorrelated with respect to the fast
mechanism (3L dB? of variance reduction); however, the slower de~-
correlation mechanisms assoclated with gross surface structure re-

anae SR ]

- arrangement are unaffected [3-15]. Examples are shown in figure 3-9,
in which lagged cross correlatilon products are summed for adjacent
- logarithmic video pulse samples spaced 250 ns. The lower curve, with

the Doppler Rayleigh spike, is for a fixed frequency and tre upper is
ror a pulse~to-pulse jump of 10 MHz. The radar was vertically polarized
in X~band, and used pulse length and beamwidth of 0.25 usec and 1.6
degrees, respectively. The curves have been separated vertically tc
eliminate confusing cross-overs.

Unfortunately, the data so far acquired at short pulse lengths
and at low grazing angles typical of shipboard surface surveillance
radars are not sufficient to formulate a definitive parametric model.
No data have been acquired suitable for these purposes =2¢ any other
band than X, and even there the arount of data and degree of qualitative
control are inadequate to support a satisfactory model beyond the
qualitative picture presented; however, even with the poor qualitative
specification, analysis of processor performance.can be pursued under
an assumption that the distribution shape is log-normal with acceptable
results, provided that reasonable values for its standard deviation
are used [3-16].

3.1.4 Dogpler Shift and Fluctuation of Sea Return

Cohevent radar signals backscattered from the sea have been
analyzed in terms of Doppler modulation caused by motion of scatterers
[3-3, 3-7]., Parametric relations between the surface roughness or wind
speed and the spectral spreading have been develcped under the further
assumption of a Gaussilan-shaped spectrum and a similar shape of
scatterer speed distribution. Examples of the results of analyses and
fits to the data are given in the references and summarized in figure
3-10 for average velocity offset or drift and figure 3-11 for spectral
width. Although land clutter fluctuation spectra are now available
which definitely imply deviation from a Gaussian shape at low levels

ol el et
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CROSS VARIANCE (RELATIVE UNITS OF log?)

LAG (sec)

Figure 3-9
Decorrelation of Sea Return With Frequency Agility
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and give the reasons therefor, no comparable data are available for
sea return fluctuation; however, it is anticipated that scatterer
creation and annihilation or other dynamics would produce a similar
deviation from Gaussian for the sea-echoes at some level.

3.2 Lénd Backscatter

3.2.1 The Modeling Problem

It 1is sometimes convenient to consider two land clutter
characteristics separately; those characteristics that relate to
clutter processing details, and those that relate to clutter back-
scatter ccefficient characteristics. The former includes characteristics
that are intimately associated with the details of clutter signal
processing and include amplitude fluctuation statistics, spectrum, and
frequency agility. The latter includes features of the backscatter
coefficient o, such as grazing angle, terrain, polarjzation and
wavelength dependences, and spatial distribution.

For example, consider the question of clutter amplitude
fluctnation statistics for -a given value of 0., versus the (spatial)
distribution of o, itself, for a given terrain and wavelength. The
: former affects the radar system processing particulars such as CFAR
o ‘ (constant false alarin rate circuits), detection sensitivity, frequency
' diversity, and MTI, which are all under the contyol of the radar
designer, whereas the latter tends more to specify the distribution
of clutter magnitude external to the radar set. It has a secondary
! o effect on CFAR design and the placement of detection threshold.

A - PRSI G GUAS | el
SoT

The distinction is also apparent in terms of specification of
radar performance. It is normal to use false alarm rate and probability
of detection to specify performance. For a given target location and
/i known value of ¢, the (local) false alarm rate and probability of
‘ detectlon are determined by consideration of clutter fluctuation and
processing characteristics; yet these results depend critically on the
value of a,. Consequently, it makes the most sense to require some
minimum level of probability of detection, say 90 percent, that must
be achieved over, say 95 percent, of the radar coverage. This approach
allows one to separate, as much as possible, signal processing design
considerations from environmental considerations. This concept is
similar to Barton's "Interclutter Visibility."

A The overall probability of detection of a radar set may be
' computed by averaging over these two types of limitations; however, hou
this is done depends on the application. In a mortar-locating radar
where the target appears and disappears within a smell region, the two

ot B -
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are almost interchangeable, whereas in an air surveillance radar case,
where the tatget may traverse a large area, the overall computation is
more difficult.

With a value for the average signal-~-to-clutter ratio as a
parameter, thz detection and false alarm probabilities can be obtained
from the clutter and target fluctuation models, depending upon the
effective number of independent target/clutter samples integrated by the
radar video processing. It is often desirable to be able to make use of
several target and clutter fluctuation models. Unfortunately, the
computation of the statistics of clutter plus signal when the clutter
is, e. g., Ricean and the target is Chi-Square, is not posszible in
closed form. Furthermore, even with ccmputer solutions, the results
are dependent upon the desired false alarm rate.

Fortunately, there is a greatly simplified approach which
effectively isolates the interdependence of clutter and signal statistics.
In the cases of most interest, i.,e., high detection probability and low
false alarm probability. This approach establishes the threshold
setting based cn clutter statistics and the desired false alarm proba-
bility, and then computes detection probability on the basis of this
threshold (above the medn integrated clutter level) and signal
statistics alone. The result is seldom in error by more than .5 dB.
The resulting simplification in specifying performance characteristics
and the subsequent insight gaines 1s usually more than worth this
sacrifice in accuracy. Figures 3~12 aad 3-13 show a comparison between
the results obtained with this approach and the exact results for the
Rayleigh (exponential) clutter [3-16].

Clutter Fluctuation Models

Three typ-.s of distributions are taken to be adequate to model
vbserved fluctuation characteristics of ground and sea clutter. These
are the Weibull family (of which the Rayleigh is a member), Rice, and
log-normal distributions. The exponential statistic (Weibull with
exponent parameter = 1) results ir the case of many independent scatterers
within a radar resolution cell. Tnhé Rice distribution results in the
case of a single dominant nonfluctuating scatterer plus many smaller
scatterers within a radar resolution cell. The log-normal and other
Weibull distributions are not directly related to any known physical
phenomenon, but because of their long tail characteristic they are
useful in modeling "spiky" clutter. The log-normal distribution has
been shown to affort a fairly good description of scattering frcm

randomly oriented large simple shapes such as plates and cylinders
[3"18] .
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Comparison of Exact and Approximately Computed Detecction Probability -
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These distributions are given by:

coc-—l —(o/co)c

N
i
i
B!
i
I
|

p(¢9)do = e do, 0<c<1, ¢2>0: Weibull
. o, (Exponential when ¢ = 1)
2
-(g/o_+m)
-— 1 ° .
p(a)do = Eg-e IO(Zm\/o/oo)do, 0 > 0: Rice
On2
_ n (0/00)
2 2
p(0)do = —— e 25 do, 0= osoes /2; @ > 0: log-normal
o 2

' The exponentilal is a single parameter distribution and is invoked to
represent -uniformly distributed clutter. It is identical to the thermal
noise case so that thermal noise performance curves may be used. In
the Rice distribution, m? is the ratio of power in the fixed component
to that in the fluctuating component. The log-normal is also a two
parameter distribution; however, its parameters have no particular
physical significance. The mean backscatter coefficient 0o 1s given by

2/2
0o = 050 eS / » where 059 is the mediar value, and S is the standard
deviation of 2n(o/o°).

Figures 3-14 through 3-16 show the threshold setting, in
decibels above average integrated clutter level, needed to achieve
various false alarm probabilities for the exponential, Rice and log-
normal clutter distributions [3-19].

The parameter N in figures 3-14 and 3-16 is the effective
number of independent clutter samples integrated. The most common ways
in which independent samples result, are by use of frequency diversity
and by noncoherent integration for a length of time greater than the
reciprocal of the clutter spectral width. Frequency hops greater than
the IF bandwidth are usually sufficient to decorrelate clutter of the
exponential type which are the results of a uniformly distributed
scatterer mechanism. Log-normal type clutter, however, is likely the
result of an ensemble of point-like scatterers existing in only a
fraction of range cells (or only partially filling a cell), and con-
sequently even a frequency hop considerably greater than an IF band-
width fails to achieve decorrelation.

When the signal processing integration time 1s greater than
the clutter reciprocal bandwidth, additional effective decorrelated
samples are obtained. The relationship
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where N is the effective number of independent samples, T is the in-
tegration time, and 0y is the rms spread of a Gaussian spectral model
and can be 'used as a simplified but reasonable measure of this effect.
Ne cannot be greater than the number of pulses integrated.

For the normal exponential or Rayleigh clutter _assumption, a
threshold setting of 12.7 dB is required to achieve 10~ false alarm
probability. With log-normal clutter when p = 2, a false alarm rate
- almost two orders of magnitude greater will result.

The exponential (Rayleigh) and Rice distributions represent
land clutter only on a cell-by-cell basis. That is, if a cell contains
many random scatters of equal amplitudes, it satisfies Rayleigh
criteria., But another nearby cell which is also Rayleigh in type will
not likely have an average cross section equal to that of the f{rst, so
that the same Rayleigh distribution cannot represent both cells.
Similarly, two cells having a mix of non-fluctuating scatterer plus a
distributed multiscatter component will not likely be representable
by the same average values or ratio parameters m. Thus, these
distributions can be used for detection performance predictions about a
single cell characterized by a single value of average cross section
(and m, in the Rice case), and the appropriate threshold to achieve any
given value of PF will be different for any other cell. Application
of these distribuéions, therefore, implies that availability of a thres-
hold function of position that (adaptively) represents the surface
that gives a constant value of P independent of position,

FA’
If the statistics of many cells are aggregated, or equivalently
. if the same value of threshold is to be applied to every cell to control

P.,, the log-normal and/or Weibull forms must be used to predict per-
formance. Their use more accurately reflects the variation of the local
average cross section from cell to cell, which tends to dominate the
width of multicell distributions.

Adaptive Threshold CFAR

In order to regulate false alarm rates to the desired values of
clutter limited areas, it is necessary to adjust the threshold (at least)
in acccrdance with what the local mean clutter level is. In operator-
control. «d radars that is partially accomplished by adjustment of video
galn until the clutter in the area being examined is mostly eliminated;
however, in fast reaction or automatic systems, the (local) threshold
adjustment to prevent false clutter detections must be accomplished
automatically.
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Automatic threshold adjustment for target direction in clutter
include clutter mapping circuits, sliding window detectors, and limiters, - i
The basic idea is to cbtain several samples of the clutter level, either !
by several independent samples of clutter in the cell of interest or by " 3
sampling surrounding cells, or perhaps both. The effectiveness of cell !
(or’ time) averaging adaptive threshold CFAR for Rayleigh clutter in i
terms of a detectlion loss, i.e., the additional threshold increase re- :
quired to compensate for the use of only a limitsnd number of samples cu §
which to base the estimate clutter level, is shown on figure 3-17. Note ’
that on the order of at least 10 - 20 independent samples are required o
before the loss 1s held to a tolerable level. Because spatial decorrela- }
tion is fast for land forms (see table 3-9), cell averaging may not -~
result in satisfying levels of threshold refinement,

Adaptive threshold or CFAR processing is of great value in pre-
venting false alarms from Increasing dramatically with increasing clutter
level., Clutter mapping techniques are a sort of "all or nothing" version
of adaptive thresholding. Conversely, as clutter levels decrease, adap-
tive thresholding allows maximum target detection sensitivity to be
attained. Unfortunately, adaptive threshold design. and performance
characteristics are usually based on a homogeneous Rayleigh clutter
assumption, such as would be the case over heavy vegetation; however,
errors will result in the case of log-normal clutter. The curves cited
earlier provide a measure of this sensitivity loss or change in false
alarm rate. To date, adaptive threshold techniques that work efficiently
in diverse types of clutter have not been implemented in production.

Finn [3~20, 3021] has considered the case in which there is
mismatch between the actual and assumed spatial variation in clutter
level. Figure 3-18 shows results for the case in which cell averaging
is done including (unknowingly) arezs in which there is no clutter. If,
for example, there is a clutter-free shadow region comprising 25 percent
of the cell averaging area, the false alarm rate may rise by as much as
two orders of magnitude., Actually, this is still good considering the
nagnitude of this mismatch,

The major radar/environment characteristics of cuncern are
terrain type, grazing angle, wavelength, and polarization. Taken
together, there are approximately eight to ten possible terrain types,
three or four separate grazing angle zones, about six radar bands, and
two polarizations uot counting cross-polarization characteristics, for
a total of about 400 sets of conditions in which to specify just the
backscatter coefficient ¢o.., It is sometimes the case that in par-
ticularly sensitive applications, or for one of a kind fixed site
radars, one is interssted in examining the exact set of detailed con-
ditions and interactions which lead to backscatter coefficient behavior.
Nevertheless, in the vast majority uf cases the radar design is more
concerned with trends and an averaging of performance over a variety of
conditions. This allows & more simplified specification of ground
clutter characteristics,
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Table 3-9
Empirical Clutter Shadowing Decorrelation Distances

TERRAIN CORRELATION DISTANCE (m)
Plain Landforms 675
Low Hills 590
Low Mountains 670
High Hills 540
High Mountains 1030

[After References 3-22, 3-23, 3-24)
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. It is also of importance to note that the inclusion of a
statistical spread parameter G, which acknowledges the real life in-
consistency of o, even under the same terrain/grazing angle/wavelength/
polarization conditions, to a largec extent removes the importance of
accurately specifying, say, the wavelength dependence of ¢,. For
example, consider an application in which it is desired to have a radar
operate over 907 of the clutter regions at a site at which, say,

S = 8 dB, and it is desired to know the effect of the choice of, say,
S-band or L-band as an operating wavelength on the clutter backscatter
coefficient, If a o_ independent-of-wavelength model is used there is
no effect (except for possible changes in radar resolution) whereas if
a A" model is used (these are the two best substantiated possible
models) then the 90% coverage figure drops to 81% from L-band to S-band.
This difference may be significant, but it does not have the importance
that is sometimes associated with a 4 dB (L- to S-band change) in-
ability to meet "required" subclutter visibility performance.

3,2.2 Land Backscatter Statistics

It is difficult to give an adequate statistical distribution
of the backscatter characteristics of land for the following reasons:

1. The statistical ne*ure of the return from a given area
cannot be related vo the type of land as easily as the
relatively convenient use of sea state descriptions.
(Note that even sea state descriptions at any time are
ambiguous.)

2. The land backscatter amplitude distribution at low grazing
angles does not usually conform to the Rayleigh distribu~
tion because of the “shadowing" from hills, buildings,
trees, etc,

3. The moisture content of the soil, or snow cover, can
alter the backscatter coefficient.

4, The derivation of a mean or median value for ¢ differs
between land and airborne measurements. The fixed radar
sites essentially perform a time average of a given clutter
cell while an alrborne measurement performs a spatial
average.
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Figure 3-19 gives geveral cummulative distribution functions
of 0, from land-based radars. Two of the radars were operated at The
Johns Hopkins University Applied Physics Laboratory in Maryland for
the detection of low flying aircraft. Both of the profiies shown are
for an azimuth angle for which the clutter return extended for several
miles. The terrain consisted of rolling countryside with patches
of 30-foot high trees and a number of small houses. The approximate
peak values of the time fluctuation were plotted rather than the
temporal average. The third distribution is from a Swedish forest area
with a radar of similar parameters to the X band radar at APL. While
the maximum values of o, for these two aceas are similar, it can be
seen that the median values of the backscatter coefficient for the two
APL radars differ by about 11 dB for the same terrain. This is un-
doubtedly due to the shadowing effect, which almost completely
obscures close to 50 percent of the terrain (but not necessarily 50
percent of radar cells, becau:s of gap bridging by pulse or beamwidth).
Essentially, the comparison of the median values of these two ex~
periments would indicate a strong frequency dependence that other
experimenters have not verified. The Swedish data, from Linell, do not
have as marked a shadowing effect as do the APL data, probably because
the radar used by Linell was located atop a 100-foot water-works
tower; the APL radars are approximately 50 feet above the local terrain.
A fourth cumulative distribution is shown for a mountainous area.

Various general classifications of terrain are arranged in
tables 3~10 and 3~1l1 in order of increasing backscatter coefficient at
low depression angles. The values of o, (median) for each frequency
are the average of horizontal and vertical polarization unless other-
wise stated. The results can be considered seasonal averages since the
median return from vegetation and forests will vary by more than 9 dB,
depending on the amount of foliage. The terrain backscatter was about
€ dB lower than the lowest seasonal average when there was a 4-inch
snow cover at depression angles of about one degree.

The use of the term "og," is an initial attempt to define the
statistics of the backscatter coefficient for a pulse radar; o, refers
to the median value and og, refers to the value of the backscatter
caefficient that will not be exceeded in 847 of the range cells. The
difference between these values (S) has been found to be as high as
18 dB. As the depression angle of the radar increases, the shadowing
effect diminiches and the distribution standard deviation decreases.
The following statemenis are tentative, but their general trends are
indicative of low depression angles and homogeneous terrain:

1. The median backscatter coefficient increases somewhat with
frequency for most terrain types, but usually not faster
than linear (in power returned) with transmit frejuency.
The frequency effect on return from urban areas is quite

small.
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2. 'The median backscatter coefficient increases about
linearly with grazing angle from 1/2° to 109, In some
cases a reduced vValue is found at 39 - 50 (see figure
3;.‘20) .

N Mt SR R TN .“A‘
L, e e
M. M) ﬁu@% -

5. There are polarization differences on individual
measurements, 'but there is not a strong general effect.

Backscatter from Composite Terrain

Most terrain appears to surfdce radar to be a composite, made
up of a varilety of scatterer types: some open fields; wooded areas;
rough rocky patches; man-~isade artifacts; and shadowed regions. It is
the ensemble of these types that results in the observed wide d namic
range of land clutter distributions. Some examples of distributions of
cross section per unit area ensembled not only over heterogeneous
cells but also over different ranges (incidence angles) are shown in

£
BN

e figures 3-21 through 3-26. In the first threp of :these: figures the
S probability axis s scaled so that log-normal ‘functions would be
e straight lines; in the last -three, Welbull distributicns plot as

gstraight lines. It is seen that in some cases the daota deviate ap-
preciably from log-normal (or Welbull, as the case may be), so there
: is no clear choice of a distribution function, only trends to guide

v analyses. These trends imply standard deviations of the log~normal
fits to the region between median and 84 percent cumulative of about
12 dB (8 to 20 in various examples), and for Weibull fits in the same
region, an exponent parameter of about 0.35 (0.5 to 0.2) is found.

v

The dominant independent variables which control the widths of
distributions appear to be incidence angle and pulse length. The
effects of incidence angle are illustrated for two data: sets by figures
3-27 and 3-28, In the first, it is seen directly that as range to the
clutter cells increases, the dynamic range of the clutter increases and
saturates at a standard deviation (log-normal fit) of about 20 dB. In
the second example, which corresponds to the composite curve labeled
"Virginia Capes" in figure 3-21, it is seen thar the widening of
dynamic range of the cross section is caused by introduction at longer
ranges of a second population of scatterers with median cross section
about 30 dB below the higher level one, and in a way such that a
greater number of cells belong to that lower-level group as range
increases. This phenomenon is tentatively identified with shadowing,
and a semantics in which the two groups are named "visible" and
"shadowed" is defined.

The data set described in figures 3-~29 and 3-30 illustrates
the effect of pulse length on altering the fraction of cells that con-
tain substantial clutter (the "visible" fraction) and on the shape of
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Probability Distribution of Land Cross Section per Unit Area,
9, at X-Band, Vertical Polarization [3~25]
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Figure 3-22A

Backscatter Distributions for Mountainous Desert WSMR C-Band, Vertical
Bolarization, T =1, ¢ < 0.1° [3-26] i
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Ground Clutter Spatial Distributions

For Forest at Different Times of Year at X-Band [3~28]
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Data from
"Resort" Case
of [3-25]

Cross Sections per Unit area of Low Coastal Lands;

X-Band, Vertical Polarization, 0.25 u sec x 1,69 Cells
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composite distributions. In figure 3-31 it is seen that: the cross
section (distinct from cross section per unit area) of the larger
scatterers 1s about constant;. the shape of the distribution- across the
upper part (associlated with the visible set of célls)  is. conserved with
changes in pulse length; and the fractisn of cells not contsining
appreciahle -clutter {the shadowed set) increases with decreasing pulse
length.

4 A combined analysis of the data of references 3-3, 3-2% and
3-~29 results in the model for the "visible" fraction of land cljitter
cells as a function of both pulse length and incidence angle shidwn in
table 3-12; For that takle, a beam width of the orxder of 1.5 degrees
zoplies.

The large discrete scatterers, although statistically low in
number compared to the number of cells containing distributed clutter,
have rather large cross sections, and ‘they do not necessarily decrease
in average value with decreased cell size. The model of rgference 3-23
glves cross section values in the range Qf +20 to +60 dB m, those of
figure 3~21 are of the order of +30,dB m , and those of figure 3-31
are of the order 6f +40 to 450 dB m~, for example. Cross section- data
on a variety of discretes are shown in figure 3-32 and they are
degcribed in table 3-13. These data were acquired at 3 GHz using

horizontal polarization and a cell of dimensions 0.4 ps x 2° [3-30].

3.2,3  Spectrum of Land Clutter

The fluctuation spectrum of echoes from vegetated terrain arises
from the relative motion of the scatterers (foliage) as they move about
in the wind. As the wind speed increases, the motion increases and the
spectrum width is almost directly proportional to the transmitted
frequency, at least in the 3 to 30 GHz range of frequencies; figure
3-33 -displays the spectrum width under the assumption of a Gaussian
-shape as a function of wind speed as determined from the data of many
different sources - the .transmitted frequency varied from 3.3 .to 24
GHz. An estimated fit to the data is shown by the brsken line. The
polarizations used are unknown except for APL/Johns. Hopkins experiments
(vertical polarization)[3-3], and those of Fishbein, et al., (horizon-
tal)[3-31]. The standard deviation of the clutter spectra (0y) in
velocity units was determined by estimating the best f£it to the
Gaussian shape noting its standard deviation, arnd converting it -to
velocity units through the Doppler equéation (each point of the APL
data is an average of several measurements).

The thorough measurements by Kapitanov [3-32] revealed a

gpectrum composed of two parts. The region about the peak was Gaussian
in shape down to 10 - 15 dB belcw the peak level. Below that level
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Table 3-12

Fraction.of 'Radar Cells Containihg Clutter (Remainder is
Considered Shadowed) Nominal Beamwidth is 1.5°

GRAZING L - " PULSE LENGTH (usec)
ANGLE . - T ~ %
(deg) 042 ) 0.8 3.2
0.11 < 0.1 . 0.2 ' 0.4
0.2 0.2 0.4 0.7
0.5 : 0.5 0.8 0.9
1 0.8 1,0 1.0
'2 0’;9 1.0 1.0
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Table 3-13

Characteristics of Discreteé Observed from Site #3 [3-301

{ Target . )
; Figure’ Range Bearing Grazing Description Comment
i Showing RCS | (mm) Angle(®) Angle(®)
; 3A 4.86  29.75 3.15 | Hospital(?) Residential area at edge of busiuess
; Figure 23 N. Adams district; only large structure vilth
! . metallic superstructure.
i 3B 6.27 30.75 3,53 |Farm Bldg's Jutaide bﬁs@pess district approximately
X Figure 23 w/metal roof 200 feet from target 1A.
i shed(?) N: Adams
! ic 6.23 3L.5 3,57 |Rural Houge Outside biisiness district; in center
! Figure 23 - N. Adams of homes; aluminum sided house(?).
{ k)] 5.20 ' 48.5 4,03 |Mobile Home Outside business district; ajproximately
! Figure 23 Park, N. Adams 30 units in two columns of parailel
j units with long axis approximately .normal
? to line .of sight.
f 3E 7.93 84 2,13 | Abandoned Mountain meadow; three passenger vehicles
: Fijure 24 automobiles parallel parked approximately six feet
' apart and one parallel to front bumpers of
. ; . the other three offset about six ft.
| R 3.22 101 6.70 |Metal Roof ~  Qutside business district. Long shed-
! -Fiaike 24 barn, Adams like (=40') structure w/roof line
. approximately nozrmal to line of sight.
36 2,36 103 11.25 |Metal Sheds, Business gisCticc;Tthree all~-metal sheds
Figure 24 Adans w/room lines paralilel to line of sight.
. No separation between long walls.
34 2.39 106.5 10.55 | Building, Business district; no obvious sirgle
Figure 24 Adans building among a group of industrial
. buildings.
31 4,27 168.5 5.87 |[lMobile Home ural area southeast of Adams; units
Figure 25 . Park, Chesire occupy an area approximately 1000 ft. by
1000 fr; orientaticn of long axis of
, unics appox., parallel to line of sight,
: kA 3,86 84,25 4,40 |Side of Hill Bare rock face approximately 30 feet
g Figure 25 high.
; 3K 8.11 325.5 - Side of Hill Return from a steep-face of ‘zountain
, Figure 25 with vegetation; approximately normal
' : to line of sight. OGrazing angle
i i definition not appropriate.
H L 4,32 141 4.58 | Rural Building Rural area southeast of Adanme,
i Figure 25
% M 2,28 1¢4 11.43 |Dual Family 2-1/2 Story structure with aluminum
; Figure 25 Dwelling siding. .
“
©
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Figure 3-33
Spectrum Width for Land Clutter, Wooded Terrain (Fixed Antenna) [3-3]
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down to at least -40 dB the spectrum fell :«ff slower with frequency
difference, like Af~", Careiul comparisca of the cross-spectra and
co-spectra with foliage velocity distributions resulted in a strong
relationsh&p of the Gaussian shape with the Doppler motion modulation
and the f7 part with amplitude modulation created by scatterer aspect
angle chapges. The Gaussian widths of the USSR data, taken at ‘X-band
and shown in figure 3_34ﬁ agree with the composite data of figure 3-33,
and parameters of the £~ tail portion are summarized in table 3-14.

It 1s believed that the DC component ig composed of tree
trunks, large branches and the surrounding terrain itself, while the
AC component results from the leaves ard smaller branches. As the
wind increases, a greater proportion of the branches and trunks are
set into motion. Even the relatively simple single MTI canceller will
eliminate most of the DC component ad long as the transmitter is
stable and the dynamic range is not exceeded. The longer tails are
more diﬁ*icult co eliminate and there m2y be little improvement from
additional stages of MII. If cancellations of greater than 30 dB are
degired, the details of the- spactral shdpe :ghould be included in the
analysis,

|Polar ice-covered terrain and sea ice resemble land return.
Some points have larger returns than others, presumably because of
ridges or ‘tilted slabs of ice. The average cruss section per unit area
of artic ice is summarized in figure 3-35 from many data sets, including
some taken from aircraft and some from ships, all at X-band [3-33].
‘When the sea state is low, there is a shaxp demarcation between water
and ice, as one would expect gt a shore line, although at higher sea.
states, 0, values may become approximately equal. In figure 3-35,
returns on horizontal polarization tended to ile nearer the upper
boundary and on vertical polarization nearer the lower bourdary shown,
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Résults -of Meas. =ments of Spectrum

e T g R T TR TR T
- e [ CRNTN . .

v an s

Table- ~ N

of Radar Signdls .from Foresit

Wind - WIdeh of Width. of ‘
No. speed v, Spectrum Spectrum Power ex-
i - m/sec at 0,5 at 0.1 ponent
‘ Power Power
. Level, . Level
1 4 5.6 9 -4
2 4 6.6 11 -3.9
3 2 2.7 4 ~3.5
4 4 7.6 16 -3.8
5 3 3.3 4.5 -3.6
6 1 1.6 2.4 -3.2
7 1 2.1 3.2 -3.9
8 5 8.3 11.5 -3.8
9 i5 1S 17 -3.5
‘20 5 8 11 -4,2
11 2 3.4 5.6 -3.6
12 2 3.3 , 5 -4
13 i 0.8 1.2 -3.2
14 -1 0.5 0.9 -3.5
15 15 32 56 -3.9
16 18 32 -3,7
17 8 20 38 -4
18 12 23 42 -3.9
19 6 9.5 15 ~3.4
20 6 17 32 -3.6
21 4 10.5 20 - .3
22 5 13 23 -1.8
23 5 10 16 -4
24 3 4 5.6 -3.7
25 3 4.6 7 “3.4
26 6 i 17 ~3.8
27 6 13 21 -4
28 4 11.5 18 -4
29 8 16 30 -3.7
30" 6 12 19 ~4,2

—

A = 3,2 cm, vertical polurization, Kapitanov et. al. 1973 [3~32]
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4.0 PROPAGATION FACTORS

4,1 Sea-Reflection Multipath Effects

4.1.1  Pattern-Propagation Factor

The multipath -effect is accounted for by a factor F such that
‘the radar detection range R is related to the free-space range RE by:

R = ROF/LI/”‘ " (4-1)

The factor L is the atmospheric absorption loss factor, such that if
the total absorption in decibels for the two-way path iS‘LdB’ then

L = looclLdB (4"2)

(Note: Ld is here assumed positive, so that L > 1.) A suitable model
for absorpgion loss in the normal atmosphere is given by curves in
'references[4-i]and[}—2} Then the only non-free~space effect to be
accounted for by F is the multipath effect, which can produce either a
gain or a loss.

The following material outlines the treatment of the subject
in reference[}—ﬂi For modeling purposes, reference should be made to
the report and to reference[4~4).

A general expression for F is:

F = f(ei)l VI +xZ+ 2x cos (4-3)

X =.222§2££2§2_ (4-4)
£(01)

a=204y (4-5)

where the quantities are-defined as follews:

91 -~ elevaticn angle (at antenna) of the ray that goes direct
from antenna to target,

62 -~ etévation angle at the antenna of the reflected ray,

4-1
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(Definitions continued):

6 -~ path length difference of the direct and reflected rays.

A —- radar wavelength (in same units as §).

¢ -- phase angle of the reflection coefficient, i.e., the
phase change of the wave that occurs in the reflection
process,

o —— total phase difference of the direct and reflected rays

at the radar target.

(Note 4: The path difference and phase difference are here defined on
the basis of one-way propagation, i.e., antenna to target. 'The

pattern propagation factor as thus calculated is assumed to be the same
for the return path, target to antenna, If the transmitting antenna
and récelving antenna are separate, the pattern factors will be
different and two separate pattern propagation factors must then be
calculated, F¢ for the transmit path and F for the receive path, and
then eq., (4-1) becomes:

R =R VFF (4=7)

tr

4.1,2 Pattern-Factor Calculation

If the actual antenna pattern is known in either tabular or
functional form, £(6 ) and £(68,) are obtainable directly. More commonly,
the beamwidth and the tilt ang%e of the beam above the horizontal are
known and it can be assumed (as a reasonable approximation) that the
beam shape is

£(0) = (sin u)/u (4-8)
where

=
L}

k sin (e—et) radians
1.39.57/sin (eb/2)

and

where 6, is the half-power beamwidth, 6 is the elevation angle, and 6
is the Eilt angle.

If the beam is, in addition, "cosecanted" above the upper half-
power-beamwidth point, eq. (8) is used below that point, and above that
point the following formula is used:
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£(8) = (.7071) s8in (6 /2 + 8 )/sin ) (4-9)

(Note 5: In the "main beam:, £(8) is a positive number, but in
"sidelobes" it may be positive or negative, according to equation
(4~8). This behavior represents the reversal.of the phase angle of the
radiation in alternate sidelobes.)

4,1.3 Intrinsic Reflection Coefficient and Phase Angle

The magnitude p, and phase angle $ of the reflection coefficient
are obtained from the complex reflection coefficient T given by

-3¢ _ a siny - €, ~ cos?‘ v (4-10)

a simﬁ +Jec - cosz—.w—

where Yy 18 the grazing angle of the ray, ¢, is the complex dielectric
constant of the reflecting surface, and a = -€¢ for vertical polarization
and ¢ = 1 for horizontal polarization, The complex dielectric constant
for sea water is:

I'=p.e

€, = € - j60 Ac . (4-11)
where €1 is the ordinary dielectric constant, A is the waveléngth in
meters and 0 is the total conductivity in mhos/metex. Let €y = 60 Ag,
Saxton and Lane [4-7] give frequency-dependent representations of €
and €, ag follows, in terms of parameters which are only temperature
and salinity dependént:

€ - ¢€
8 P
€ =-—-——;——-+ ep (4-12)
I+x
20i
g, = (el - ep) X = (4-13)

where x = 2ufrt
f = wave frequency (here units of Hertz are appropriate),
T 4 a relaxation tZme,
€g = static (low-frequency) dielectric constant,

€ = dielectric constant due to electronic and nuclear polarization, and

di = jonic conductivity

The value for ¢, suggested is 4.9. Values for the parameters gg, T and
g4 are given in table 4-1 as functions of temperature. These values

4-4
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apply to salt water with a nominal concentration of 35 g/l salt solution
(0.6 N for sodium-chloride equivalent).

4.1.4 Grazing Angle of Reflection
Subjeet to the conditions h << a5, R << ag; Y small, where §

is the grazing angle of incidence at the sea reflection point, the
following algorithm applies [4-4]?

; d ®R cos b =R : (4-14)
i
! 2
? P “_2_5 [ae (h + 1) +(£21- )]1/2 (4-15)
} :
: . 2ad (h_-h)
| ¢ = st [t (4-16)
i P
! o wd (4-17)
! 1 %2 P8Ry -
d
Y = tan 1 ﬁf - 5%-] (4-18)
1 e

4.1.5 Roughness Factor

The following formula is a good approximation:

2
b, = exp [-2 <§1'“—A5‘E‘-—\2) ] (4-19)

where H is the standard deviation of the surface roughness, ¥ is (ae
in Section 4.1,4) the grazing angle of the ray, and A is the wave-
length., If B' is the “significant” crest-to-trough height (average of
highest 1/3) of sea waves,

H = 0.25 H' (4-20).
(Note 6: Eq. (19) assumes that the surface height variation is
Gaussianly random rather than sinusoidal, and the actual sea is neither
one; but the combination of eqs. (19) and (20) is a reasonable model.)
(Note 7: Experimental work by Beard and Katz has indicated that eq. (19)

gives values of pg that are too small .at the large values of H(sin y/2
[4-5], but for present purposes eq. (19) is reasonable.)

4=6
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4,1.6 Divergence Factor
The divergence factor is given. by [4-~4]:

2&1 (d—dl) -1/2

D=1 +'aéd sin ¢ (4-21)

4.1.7 Path Difference -

The one-way path difference between direct and reflected rays
between radar and ‘target is

2h ht d12 (d'dl)z
i I E Y | e =22)
e e t

4.i.8 Diffuse Reflection

Propagation paths exist via reflection from the rough sea
surface over a substantial area, because of the random local tilt of
the surface. The phases of wave components via the various incremental
paths are random, so that the compcnent is characterized as diffuse, As
the surface roughness increases, the total effective reflection
coefficient increases and saturates for projected roughness in wave-
lengths (H sin Y/)A) greater than about 0.1 (see figure 4-1). At its
highest average level the total diffuse power is about 13 dB below
that over a smooth-sea transmission path of the same distance.

The size of the region on the rough surface which contributes
to the diffuse component is much greater than the coherent Fresnel spot.
A part of the diffuse energy is reflected from very near the Fresnel
spot and the rest from a very much larger region. Figure 4-2 shows
contours of constant diffuse signal intensity for a. path with terminal
heights of 38 feet and length 5425 feet derived from the data of
referenc»[}—él Normalization is to the peak level coming frem the
specular spot, and the data were acquired with a 0.3° beamwidth antenna
at x~band. Note the difference in axis scales. Interpretation cf
these data in terms of reflection from sloped sea surface parcels is
consistent with the slope distribution under the conditions the data
were acquired (standard deviation of slope about 4.5°). Thus, the
fall-off transverse to the beam direction will be very rapid and a
diffuse region only a few tens °§ feet -wide can be expected (st.andard
deviation of wave slopes m tan {lateral displacement standard
deviation/antenna heights}); however, in the longitudinal direction,
diffuse reflection will be seen over an angular region at the antenna

4-7
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Figure 4~1

Diffusely Scattered Field MagniEude vs Projected Surface Roughness
“ Incoherent Power = 20°; Direct-Path Power D“;
p,.= Fresnel Reflection .Coefficient of Water \4-5]
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of the order of the wave slope distribution. Figures 4-3a and 4-3b
illustrate the geometries in the lateral and longitudinal directions,
respectively.

4.2 Atmospheric Absorption

Atmospheric absorption refers to the component of propagation
loss caused by molecular absorption, primarily atmospheric oxygen
and water vapor, under clear air conditions. The absorption rate is a
function .of radar frequency and of altitude, which includes effects of
atmospheric constituent densities, temperature and’ pressure, Loss in
the atmosphere produces  two radar aystem effects: targeét signals are
attenuated and the apparent temperature of the sky background against
which air targets are viewed is increased at near-grazing angles of
incidence. Flgure 4~4 displays the apparent sky temperature as a
function of frequency and for selected viewing angles. These calcula-
tions [4~1] are based on Van Vleck's molecular absorption theory
applied to the ICAO dry atmosphere with added water vapor. The combined
absorption loss rate due to oxygen and water vapor as & function of
altitude and for selectéd frequencles is shown in figure 4~5 for this
model. The surface values of the atmosphere model assume temperature
of 15°C, ugtal pressure of 1023 mb and absolute water vapor density
of 7.5 g/m”, This condition corresponds to relative humidity of 607 at
low altitudes and a partlal pressure of water vapor at ‘the surface of
10 mb. The height model for water vapor was patterned after
Sissenwine'’s data [4-27].

When radar and target are at different altitudes, variation of
attenuation rate along the path must be considered. Reference[4-l]
plots attenuation between radar and target as functions of rdnge at
selected frequencies and elevatiou angles. (The applicable target
altitudes at positions along those curves must be inferred from the
range and angle.) Reference[}-&Jalso provides the equations, algorithwms,
constants, and a computer progran for galculating attenuation for
arbitrary target élcvatipn anglés and :fanges belcw the lonosphere, and
for other humidity condi:tions.

4.3 Lenstffect Loss

This term refers to weakenidg of the radar transmitted wave
due to the "defocusing" effect of atmespheric refraction, as described
by T. A. Well [4-6]. Weil has made calculations of this loss for the
normal atmosphere.

The lens-effect loss and the absorption loss are directly
additive, in decibels, or as piwer-loss factors they are multiplicative.

4-10
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Thus, if the absorptions powér-loss factor is L, and the leng=effect
loss is Loy _'then the total 16&s: factor L in equation 1 is:

o4 Atténuation in Rain

Mitzowave: propagation path loss expressed ds a ratio L(AZ) of
ithe power:density at -Z + AZ to that at Z produced by attenvation by rain
(qnduexcluding any- other loss or spreading effects) 15 given by

-A*AZ

L.(AZ) = (4-23)
in which A* is the rain attenuation rate in nepers pér unit distancc.
More commonly, the rate is expressed in dB; and distance units of miles
or rm or kin afe used. Lét the symbol A denote hereafter a loss rate in
units; 0f dB/km one-way.

S et e cn s e St woh,

Microwave. attenuation rate in tain is a finction of frequency,
rain rate, polarizaxion and temparature. (at 1least), in decreasing order
of dependenéé; The wavelength dependence is a result primarily of the
coupling to drops which are small compared to a wave1ength. The rain
rate assoclates not only with the number of dreps peir unit volume but
; algso with the size and distribution of sizes. The drops in their fall
through the air are. distorted from spherical shape (are oblate with ‘the
ghort a¥ie vertical), so thar coupling to horizontally polarized electriv
figlds ie¢ stronger than to vertical components. Temperature dependence
atises because of iis effect on the dielectric properties of .water.

Modelers of rain attenuation universally use the relation

A=a re, (4-24)

in which 4 is the attenuation rate, one-way, in dB/km, and r is the
nominal rainfall rate, in mm/hr, to represent the results of both
computations anc¢ meusurements. The parameter 8 is generally treated as

a weak function of frequency, and sometimes of temperature and
onlarization as well. The coefficient a is a strorg function of frequency,
but ius dépendences on température and polarization are zlso weak.

¥ Recently Crane [4-8] and Lin [4~9] provided recommended values
of a and B at selected wave frequencies, and Lin also included nolariza-~
tion effects. Earlier estimates by Gunn and East [4-10] and Medhurst
[4-11] were at different frequencies, All of these reports based their
estimates on cémputations of attenuation rates using a scattering theory
fe.g., 4-10, 11 & 12] and weasured drop-size distributions observed to
occur’ at various rain rates. This method has been carefully validated

4=14
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o [4-13] in a controlled expériment which found good agreemént between
' measured attenuation and the attenuation célciilated- using the theory
¢ ue and the measured drop-size distributions under the same ‘conditions.
i Close agreement is obtainable only under controlled uniform-rain
o conditions and is not generally seen for natural rain. The walues of
: a and B given by the above references .are listed in tablé 4-2 and
e plotted in figures 4-6, 4-7 and 4-8.

1

Root [4-14] has modeléd .attenuation caused by atmosphecic
water over the frequency range of 1 to 300 GHz. ‘His formulas for &
and 8 fit to the results of his scattering theory as functions 6f
wavelength in cm are:

| RSN §

)

e

Gt §
"

0,4
0. 024 F0.25 A"2 (4-25)
¥ T @-n%+ 16
0.12 _ 3 0.:046

1; B = 0.5+ > - 5 + — TR
I A=D"+0.4 (=3.97+12 (0.2 -7 + 0.08 (4-26)

}E To this droplet absorption Root recommends adding an attenuation
component to account for the high humidity that can occur during rain,
as high as 300% at the surface and dropping to 100% at 3 km altitude

1 and above. Values.of a and’ 8 for these formulas without the

additional humidity effect are plotted in figures 4-6, 4-7 and 4-8.

‘ A model resulting from CCIR activity representing values of o
and 8 as functions of wave frequency [e.g., 4-16] is:

-4

| a=13(-2%-2(-2)x10 (4-27)

1/3;

BN e ol i 4 - i o S S ot v rianbie

B =[1.14 - 0.07 (£ - 2)""7j[1 + 0.085 (£ - 3.5) exp (~0.006f )] {4-28)
where f is the wave frequency in GHz. These formulas reportedly resulted
from a fit to a meayureément by Hathaway and Evans [4~16] at 11 GHz and

to the older computations of Ryde and Ryde [4~17]. The latter were

[ .
csm—

. redone by Gunn and East [4-10] using refined valuss for the permittivity
: of water. The CCIR nodel is also plotted in figures 4~4 through 4-6.
: I\ Note that it appears ‘to have poor asymptotic behavior at both low and

. high frequencies.

Z 4-15
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Table 4-2
Rain Attefivation Model Parameters, A S'ummén:fy.

¢

A = Attenuation rate, one-way, in dB/km

v = Rain rate, in mo/hr

8

B

A=aqar” is the model,

, Soutze 1 Crane '{ Lin ’ Medhurst ~ Gunn & East
: 4 14-8] (4-9] JLa=11 ofeamll=10] —
’ Drop Mueller & ' Lavs 1, ‘Laws
' Distribution Stms Composite & Parsons . & Parsons
{ Frequency (GHz)] « g8 o 8 a 8. a B
2,0 : .00013  ,906
Y 2.8 ,000459 . 954
3.0 .000282  ,974 '{ .00030 1.00
5.5 .00124 1,150 | .0022 1.17
1.5 ' .00459 1,06 .00323  1.294 .
: 9.4 0087 1419 , L0074 1.31
; 10 .00865 1.6 |
: 11.4 013V 1,22¢
. L0150 1,23
; 15 L0322 1,224
, 16 0374 1,10 .045 .14
! ,
§ 18 030V 1,11V
| ; L0541 1,14H
,;' 20 L0663 1.128
24 ' 42 1.05
30 {1 sV 1.04v 166 1.063
Q0 1.040
33 .22 1.00
35 .225 1,05 \
60 63 .854
. 67 129 .893
100° 1.094 .739
.() 3
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Figure 4~6

Rain Attenvation Rate Model Parameters
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RAIN ATTENUATION RATE (dB/km,. 1-way)
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0.01

Measured Brop Distributions with
Calculated Mie Scattering:

* 1 rw/hr
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o 8 mn/hr

Heasured Attenuation & Rain Rate:
X 4 mm/hr
A 8 mn/hr

Letters are initjals of sources
cited in table 4-2,
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Figure &-7
Rain Attenuation Rate Model Parameters

4~18

LTt Ao

B W

gy

E———
H <

[N —,
x 5




e

muﬁouwamumm ~{5poj 9354 UOT3IBNUS3I3y ULEy
g~y ©In81g

(zH9) AJN3NDIYA

u 001 08 09 G5 0y Of 0z ST oI 8 9 § ¥ ¢ Z.
H | - T | I T I T 1 ! I 9°0

*Z-% 9TqE3 UT POITO S92IN0S JO STETITUT 9IB SI93397] ;

4-19

g “IN3NOdX3 3LVY NIVY

. THE JOHNS HCPKINS UNIVERSITY
APPLIED PHYSICS LABORATORY
LAUREL, MARILAND




et o s et = e e e S o 4 e = T N Pt o g ot e . st . e e A e o

€ JOHNS HOPKINS UNIVERSTY
APPLIED PHYSICS LABORATORY

LAUREL, MARYLAND

The disagreement referred to above between attenuation
measurements and computed values using scattering theory plus
measured drop-§izé distributions: was examined thoroughly by Medhurst
[4-11]. He explored the effect of extreme forms of drop-size
distributions (for the same nominal rain rate) on the computed
attenuation rates and compared the results with measureménts of
attenuation. He concluded that attenuation rates had been reported
which were higher than theory predicts is possible, under the
assumption of uniform.rain at the nominal rate and free of any con-
straint on urop—size distribution. Crane's general assessment [4-18]
of the disagreement attributes it largely to a combination of inadequate
sampling of rain rate over propagation paths and a restrictive inter-
pretation of the rain-rate measurements that are made. His controlled
experiment [4~13] demonstrates that measurements can Be made with
adequate care to assure agreement. Root's contention that the air .is
super-saturated during rain could explain additional error in the
predictions on the low side.

The measurements displayed by Medhurst [4-11] have been
replotted to allow extraction of values of o and B, and these parameter
values arc listed in table 4~3. Also included there are values from
newer experiments, Attenuation rate values from eavh of these
measured data sete are plotted in figure 4-7 for nominal rain rates of
4 and 8 mm/hr. It is seen that mostly they lie well above the values
computed under assumed uniform rain using the scattering theory.

Even with understanding of the factors contributing to the
difference between measurement and computations for the same nominal
conditions, a dilemma still exists, represented by these two extreme
alternatives. Should one:

(a) Attribute the difference to non-uniform rain under
conditions of measurement such that the effective rain
rate 1s higher than the nominal value assigned based on
use of only a few rain gauges, and use model parameters
based on the validated theory; or

(b) Alter the model parameter values generally upward from
the theory to conform with the measurements?

Neither of these is wholly satisfactory. Alternative (a) could result
in confusion for systems people who specify rain rates as conditions for
some levels of system performance. Alternative (b) could confuse the
use of results of those specializing in the -physics of attenuation of
microwaves by rain.
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Table 4-3
s Parameters from Selected ‘Méasurements of Rain Attenuation.
Lk
; A= uta, A in dB/km one-~way
I o
requency - ate t a
f: Experimeter (GHz) Polarization (mm/lir) | dB/km -
i L Robe=tson & 9.4 Hor, © 3100 | 0.031 1.00
‘King [4-19] ! .
{ . Hathaway & T 114 Unk, 1-7 0.034 1.30
: Evans [4-16]
{ Anderson Et al. 24, Unk. 4-89 0.54 0.81
t : "[4=20)
Robertson & 27.5 I Vert. 2-100 1:0.50 1.00
L King (4-19] .
i ]
.y Funakava & 34.9 Unk 0.2-3 -l 044 | 072
: Kato [4-26]
, | N. P. Robinson(4-21]}  34.9 Cir. 1-10 0.26 1.00
; S. Godard [4-22] 34.9 Hor. & Vart. | 0.1-% 0.46 0.667
{ Emarson Electric 35.0 Unk. 2-12 " 0.66 .78
: [4-23)
|
! i Usikov, German & 36.8 Unk. 70 0.26 1,00
‘ i Vakser [4-24])
! {
; G.E. Mueller [4-25]). 48.4 Hor. 3-100 0.30 1.00
Pl
H )
i
y -
i
-
]
e
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Some help in selecting a model strategy is found by considering
the amount and kind of differences, as in table 4-4. The average of
attenuation measurements tends to lie above the average of scattering
theory results for thé same nominal rain rate. -Both of these major
contributing factors: would cause bias inxthat direction, the rate
distribution: (because of its skewness) and the molecular effects (because
of the truncation of drop-size distributions, or neglect altogether of
vapor). The difference is about a factor-of two increase in effective
rain rate over the nominal, which 1s equivalent to an increase An

attenuation rate of 2.5 near 10 GHz but only 2 near 35 GHz.

Variability of the measured attenuations for tue same reported
rain rates is easily attributed to the raln rate sampling procedures, to
natural drop-size distribuidion variation, and to differing. rain di-
electric constant and absolute humidity (at different temperatures).
Drop-size distribution variation ought to contribute 22% variation (rms/
in attenuaticn rate at a given rain rate [4~8] to an overall estimated
30% rms variation.

In consideration of the comments above it appears satisfactory
to define a model based on @ concensus of the scattering theory
computations with the understanding that its use must be qualified: by the
bias and variability factors. Formulas which £it the tread of .the
points: plotted in figures 4~4 through 4~6 for scattering theory
computations are given in equations 4-29 and 4-30 for o and 8,
respectively, for use In equation 4-24.

2,1/2
. k £2QHe%/E, _ (4-29)
(1+f2/f22)l/2(1+f2/f32)l/2(1+f3@é2)l/2
in which k = 3.1x 107
f = frequency in GHz, 2 < £ 2 100
f1 =3
fg = 35
£3 = 50
£, = 110.
B =1.30 + 0,0372 (1 - (1 + 2)1/2), (4-30)
 logy 4(£/10)
in which X = 0.0

Table 4~5 lists values of attenuation rate and the exponent B computed
from these formulas.
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Table 4-5

Model Values of Rain-Attenuatio ,Rate (dB/km)

"FREQ(GHz)

1,99526
2,51189
3,16228
3.98107
5.01187
6.30957
7.94327
9,99999
12,5893
15,8489
19.9526
25,1188
31.6227
39,8107
50.1186
63.0956
79.4326
99,9998

1

S .

.000147834
4000254065
000447512
.000808063
.00149479
.00280161
.0053179%
.01013
.019215
.0359855
.0658978
.116733
.197825
.317573
479554
.679084
.902507
1.13011

Equations 4-29 and 4-30

RAIN (mm/hx)
yA 8 EXPONENT
000515936 .000963844 .901608
.000965909 .00188335 .963344
.00185311 .0037709%4 1,02498
.00364366 .00773721 1.08643
.00732118 .0162188 1.14752
0149465 .0345228 1.20774
.0307106 .0738006 1.2649
0614167 .151226. 1.3
.110964 .266658 1.2649
.191982 443431 1.20774
323403 .716543 1,14752
526363 1.11772 1.08643
.819176 1.66696 1,02498
1.20735 2.35413 .963345
1.67363. 3.1266 901609
2,1754 3.893F5 .83980%
2.65357 4.55009 777962
3.04964 5.00869 .716086
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