/4 . A\
PN
‘ f.: =,“T‘ \P

ROCESSOR MULTIPLEXING IN
LAYERED QPERATING SYSTEM
R = »

2
L6
Lo [D:vid Patricm«d J e
Massachusetts Institute of Technology

Laboratory for Computer Science (formerly Project MAC)

Q ;
= Cambridge, MA 02139

P v e«

-

ORI e L S
GFL76=8-T4C Few’]
. cd €Y == X e

AEPA Ordé /

s ——————-
g

Approved for Public Relecse;
Distribution Unlimited,

Prepared for

DEPUTY FOR TECHNICAL OPERATIONS
ELECTRONIC SYSTEMS DIVISION
HANSCOM AIR FORCE BASE, MA 01731

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY
1400 WILSON BOULEVARD
ARLINGTON, VA 22209

DOC FILE COPY

%8 11 08 (

The views and conclusions contained in this document are those of the authors
and should not be interpreted as necessarily representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects Agency
or the U.S. Government. :

LEGAL NOTICE : ‘

When U.S. Government drawings, specifications or other data are used for any 1
purpose other than a definitely related government procurement operation, the 11
government thereby incurs no responsibility nor any obligation whatsoever; and |
the fact that the government may have formulated, fuinished, or in any way sup=
plied the said drawings, specifications, or other data is not to be regarded by
implication or otherwise as in any manner licensing the holder or any other person
or conveying any rights or permission to manufacture, use, or sell any patented
invention that may in any way be related thereto.

OTHER NOTICES

! Do not return this copy. Retain or destroy.

This technical report has been reviewed and is approved for publication.

-

WILLIAM R. PRICE, Captain, USAF 3
} Technology Applications Division Chief, Technology Applica¥ions Division

FOR THE COMMANIER

3
. i 1
. -
R
e |
o

STANLEY P. DERESKA, Colonel, USAF
Director, Computer Systems Engineering D3
| Deputy for Technical Operations
|
| VANES wk

e~

- L'y ot

TR SRR S R G

g ey gy 0 o il S o g

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE e s e
p.—nmn—wm ; 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER
ESD-TR-78-151 -
4. TITLE (and Subtitle) - 5. TYPE OF REPORT & PERIOD COVERED

PROCESSOR MULTIPLEXING IN A
LAYERED OPERATING SYSTEM

6. PERFORMING ORG. REPORT NUMBER

S MIT/LCS/TR=l6 |
7. AUTHOR(s) 8. CONTRACT OR GRANT NUMBER(s)

David Patrick Reed F19628-74-C-0193 "

ARPA Order No, 2641
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
Massachusetts Institute of Technol i mhbuies bl oo
Laboratory for Computer Science"iformerly Project MAC) CDRL Item 2023
Cambridge, MA 02139
1. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Deputy for Technical Operations June 1976
Efectronic Systems Division T3. NUMBER OF PAGES
Hanscom AFB, MA 0I173I 207

T4. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Otlice) 1S. SECURITY CLASS. (of this report)

Defense Advanced Research Projec ts Agency

1400 Wilson Boulevard UNCLASSIFIED
Arlington, VA 22209 ngggéégtlgucn:ouloowncnomc

R e T
16. DISTRIBUTION STATEMENT (of this Report)

Approved for Public Release; Dist ribution Unfimited.

17. DISTRIBUTION STATEMENT (of the abatract entered in Block 20, if different from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORODS (Continue on reverse aide if 'y and idi fy by block number)
Multics
Kernel
Virtual Processors
Multiplexed Processars

SRR AR SRR Y e

20. ABSTRACT (Continue on reverse side if necessary and Identity by block number)

This thesis presents a simple structured design for the imple-
mentation of processes in a kernel-structured operating system.
The design provides a minimal mechanism for the support of two
distinct classes of processes found in the computer system --
those which are part of the kernel operating system itself, and
those used to execute user-specified computations. The design
is intended to be used in the creation of a secure kernel for

Multics operating system,

DD ,5v"s 1473 Eoimion oF 1 NOV 68 18 oBsOLETE : ‘,
D e R a S—
SECURITY CLASSIFICATION OF THIS PAGE (When Data En

"o% 41 00

| e

- v —— ————_y g

MIT/LCS/TR-164

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

David Patrick Reed

June 1976

The research reported here was sponsored in part by Honeywell Information
Systems Inc., and in part by the Air Force Information Systems Technology
Applications Office (ISTAO), and by the Advanced Research Projects Agency
(ARPA) of the Department of Defense under ARPA order No. 2641 which was
monitored by ISTAO under contract No. F19628-74-C-0193.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

LABORATORY FOR COMPUTER SCIENCE
(formerly Project MAC)

CAMBRIDGE MASSACHUSETTS 02139

i i

U 2 T

ACKNOWLEDGMENTS

A very large number of persons and organizations deserve my thanks for
helping me complete this research. I am sure there are some who I will forget
* to mention, so let me apologizerip advance for any omissions. .

Professor Schroeder, my thesis supervisor, contributed a great deal of
time and effort to help me develop and clarify a large set of ideas. I am 3
especially grateful for the quick turnaround he has given the many drafts of
chapters I have given him in the last hectic weeks of thesis preparation.

Professor Saltzer and Dr. David Clark provided much inspiration along the
way, and helped crystallize a number of the ideas in the thesis.

Raj Kanodia, Bob Mabee, Doug Wells, and Bernie Greenberg helped by
providing a sounding board for my early ideas at innumerable luncheon
discussions.

1 Phil Janson and Doug Hunt have helped me understand the issues involved
1 in structuring an operating system. Phil’s work on abstract type structures
especially helped in the development of some of the central ideas in the
thesis.

~.Bob Frankston has taken the time to read several of the drafts of my
thesis; and has been very helpful in designing the implementation of some of
my ideas.

The CSR Volleyball Crew has helped me keep in shape mentally and
: physically through all the trials of thesis preparation.

The final two people I would like to thank are Lynn, my spouse, and
Colin, my newborn son. They both have put up with my non-stop pace during the
last days of the thesis. Without their love and understanding, I doubt if I
would have succeeded in finishing the thesis.

This research was performed in the Computer Systems Research Division of
the M.I.T. Laboratory for Computer Science. It was sponsored in part by
Honeywell Information Systems Inc., and in part by the Air Force Information
Systems Technology Applications Office (ISTAO), and by the Advanced Research
Projects Agency (ARPA) of the Department of Defense under ARPA order No. 2641,
which was monitored by ISTAO under contract No. F19628-74-C-0193.

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM *

by

David Patrick Reed

ABSTRACT

This thesis presents a simply structured design for the implementation of
processes in a kernel-structured operating system. The design provides a
minimal mechanism for the support of two distinct classes of processes found
in the computer system -- those which are part of the kernel operating system
itself, and those used to execute user-specified computations. The design is
broken down into two levels, one which implements a fixed number of virtual
processors, which are then used to run kernel processes, and are multiplexed
to provide processes for user computations. Eventcount primitives are
provided, in order to provide a simple unified interprocess control
communication mechanism. The design is intended to be used in the creation of
a secure kernel for the Multics operating system.

ACCFSSICN for

NTIS White Section [#4
no3 B.ff Section [J
NANNOUNCED m)
i1 ICATICN

nwv

DISTRSTA/AVALABILTY 00068
090 e w0 et SPEDIAL

TITLE: Assistant Professor of Electrical Engineering

THESIS SUPERVISOR: Michael D. Schroeder ﬁ

*This report is a minor revision of a thesis of the same title submitted to
the Department of Electrical Engineering and Computer Science on June 14, 1976
in partial fulfillment of the requirements for the degree of Master of
Science.

,‘ ABSTRACT
! TABLE OF

. 2. Model

2.5
2.6
2.7
2.8

3.7

TABLE OF CONTENTS

ACKNOWLEDGMENTS, oo (v eia diai ommannisialion sin o sl ccs ale s ibiata cin’a slaia s dia 6 o s isie s 0's.6 v 5 sios o iom

T 29SS LU LI TEL L0000 0000 e00000P00 0000000000000 0ERR0RRABOES

CONTENI‘S ® 0 00 0000000000000 00000000000000NeL0NLRRRNNRRRSRRNNRORILLS

EESTHORSEFGURES Hio S5y e o83l ais siaisaan sha o /o s alptaoi s nluio bibla sleluisioleliea oisbla s alote oke olsin Ao e

L EREEOAUCE IO 5d e d e aaia e siaiiienle soa e b e s N el Sareis

Brief Statement of Problem and ReSULtS ..ceceeseccscnsccvassannns
Bxample SySEell= s o8 e L e tate o alh s olh e & e BTate
ADFETACE PYDED T [ol s st sieiie s A hialeis.sioe daiate s aioreials albia sht e e e e s
Layeting of Abstract TYPes 'veviecssaonsesscnssiosssssesesssnsenss
RETBEAUNOEK (s o e s vidiois . voianinio s /sis sle ale sioioierois siniaia vid oo 0 aih ass o o n s ¢ i
Plansof Fhas ba =i o J00 . woa vs e d i cie sy xivia-siss s bie o010 m 0 wtertoiielols oo

Of PT0CeSS0or MrIbIDLeXIng oo cai/visnsesssvssisisinoinseessaonssnnssnsas

Hef In1tion of ProcesS0r icliclosnevcias sainssaisosansesasesnsessnessss
DL ENLCION 0f PrOCE8S ' sials sivivic s siv e siasinsioeniainiy dicais siales soeissions
Procedgor MultiplexXing) o ae i ¢ivetivs o viishassniosssesseseshoinese
Processor Multiplexing Model ... 6 ceasoiininessnss cinoneisessnesss

2.4.1 Centralized Control of Processor Multiplexingcccceee

2.4.2 Distributed Control of Processor Multiplexing ...ceeecceees

2.4.3 Comparison of Distributed and Centralized Control
Procengor Reconfiguration . .eanesscsssnsonisossossnsvesscsnssisns
Interprocess Control Communication ...eeeecececescceescsccsconosnse
The Virtual ProcesSsor Stopped State ..cceecccescsscccsscccscsanse

SUMMALY <« ovcoecivendinnesnvisiesrnmnes aeneeesesusitesboeesnivs esiosin s

3. Multiple Levels of Processor Multiplexing in a Layered Systemce..

The Cache Management Pattern of Type Extensioncc.cceceecececccs
Building Two Levels of Virtual ProCeSSOIS ...cceevscccscccscccces
Disentangling Virtual Memory from Processor Multiplexing
Use of Processes as Abstract Type Managers ..c..ceeececcececssscses
Twop Levels of Scheduling casiiecsssssnssesansnsssssnsessoatssosss
Problems of a Processor Hierarchyceeevecececoscccccccsncccss
3.6.1 Efficiency of Multiple Levels of Schedulingcceccevese
3.6.2 Protection of Low-level Type Managers from Level 2
3.6.3 Cross~level Interprocess Control Communicationcccceee
3.6.3.1 Level 2 Advance and Await Algorithms ...coecececees
3.6.3.2 Ihward SIENALIING (isivecvsocassnsnvassonessnssssss
3.6.3.3 Outward Signallingeceeceececccsrecncesscacnansns

smary ® S0 0P 0P 0000 IS0 LL0LEEsNEN0NRNRRENIRLRELRIRLIEOEBRBERES

NS

11
15
17

21
25

29

30
32
33

38
40

44
49

59
61

62
66
70
71
79
80
80
82
84
86

87
90

4. Level 1 Virtual Processor INterfaces ..ccececcccecsescccsscosssssnssssse Il

1 Level 1 Virtual Processor Interfacecoeeeecevcecccscseccessese 92
2 Limited Supply of Level 1 ProceSSOrs ..c.coeecescecsccesscccassce 94
3 Multiprogramming of Real Processors Among Level 1 Processors 95
4 Execution States of Level 1 ProceSSOrSeeececsccsscsccnssenss 96
S Scheduling Conkrals .l dissinbsaistisi oo srdnvuntcssdssivnsniose 99
6 Changing the Bindings of Level 1 ProceSSOrs ...c.cceceeccesasssse 100
7
8
9
1
1
1

Interprocess Control Communicationceeceeecceccccossasscsses 102
Special Eventcounts linikikicstvsnises ot aeianesniniiaesdosssnonsdsees 108
Fault INEELEACe i a s iisivesvasciausaimmessiassncssennsaansnoeoidld
O Procesg0r INECLEUPE s saio e s vesinsins sisainssnineinilsoaninsisssssvesessssbOr
1 Procegsor Reconfiguration c..«ciivelasincscaiosnessnsanensansssee 108
2 Parameter Passing To Level 1 Processor Operations 109

B e it by LS, 7) LA E 5 T ¢ e
Ty R IS L e o SR S s = TR

e o o

FOR I R R I e Sl I Ol S

5. Level 1 Processor Implementation ...cceeceeecocecescescossesscssasecnsss 113

AR SN s

g 5.1 Overall Structure of the Implementationeceececcessssescass 114
; 5.2 Bardvaye RECBEBRCEUNG . iy sinisisvannssnbioiss sionioassrssonvnsras LB
¥ 5.2.1 The Processor Control ProceSSOresceecececccssccscssess 119
- 5.2.2 General-Purpose ProCeSSOLScceccesccacssssssssssssssss 120
¥ L9) e BT e e S e e e I R e LR I ey MR e) .7
y 5.4 Operation of the Processor Control ProcesSOoreceeeeceesssess 130
i 5.5 CPP OPBTBLION icvcovrsavsunisnnssnensvsvseteinannsonssssnrensinn 439
i 5.6 Implementing Level 1 Processors on Traditional Hardware 146
g 5.7 Simulating the Processor Control ProCesSSOrceeceecccccsscesss 146
© 5.8 1/0 Devices That Send INterruptS c.ceeececescssscscsssasscasassss 149
i S BHIERY «oiiciiciiiviidescioninnivisvvorsenisiaissusnusviesenis 130
[4 6. Level 2 Processor Interface and Implementationcccceeveeeecesssess 151
{‘ Gl Lavel 2 PRoCenior TnEOrLacel . ivesiasviscosrsnsnees vanasisasos sna o2

6.1.1 Creation and Deletion of ProceSSOrS ...cccccecscssccacssss 153
G.le2 IPCC TACEELABEE oitviivansnnorilsnsvaesaeesssansimvisessve 199
i § 6:1.3 Proceasor INLErTupts ..icisisissrscsvnsscnosasasscnissvsesi 13V
E & . 6.2 Structure of the Second Level Processor Managerssceeeeesess 161
- 23 Lavel 2 DEEE BEAEE . st whinesbainhvisnenvusrvins s smevns 305
6.2.2 Processes of the Second Level Managerceoceecseccssss 167

6.2.3 Eventcount Implementationccceeeesecsssscsceccccnseses 171

6:i2:3. 1 MIVERGR cicesoviibivnonvrsvannesinns vusssessnsseass Ldd
052 3uT AWBEL sivojin b udinie v nns sekie e mamedevebieee san e LS
6.2.3.3 Set_processor_interruptcceececcsssccscececenss 175
6.2.3.4 Outward Signalling .ec.eeeveccecencscascescsacnnsss 175
eduling POlICY cececacevonnssessvovsossssssassnssssnssse 176

6.2.4 Sch

7. Using Level 1 Processors in the Operating SYStem .eeeeeveseeeoeononnnss

7.1 Permanently Bound Processes (A BRI T Ko SO 2P -t SR
7.2 1/0 Device Management R I R S S S R B e T S
7.3 Kernel Type Managers as Processes eVl aeTe sis Euinaigien s sls a0 R ks
1.4
7.5

+4 Explicit Recognition of Parallelism in the System Design
Resulting Structure S et tsceee ettt tastttetteasertetconnnnnns

8. Conclusions and Suggestions for Further Reaearchy co ninoti s luisnde b5

BIBLIOGRAPHY terissctacrsnssescuaeniaviivaasiesaaneseid st eesiE eyt e
Appendix A: Summary of Level 1 Interface vis:oiaibe s s Wb b 'nidnae s W b s e e e e sha
Appendix B: Summary of Level 2 Interface sisisis’s o nbaanieseneseesbeiatsusesdens

181

182
183
187
190
192

195
201

205
207

LIST OF FIGURES

Figure 1.1: Removing Mutual Dependenci€sSceoccecscecscsessssvscocassss 13

Figure 1.2: Type Extension Hierarchy for VM Objectsccivveiviunnes. 19

Figure 2.1: Multiplexing 2 Real ProOCESSOTS ..ececeeccecsecscscnsccncscaese 3b

Figure 2.2: Processor Multiplexing LOOD iseaceeonionossssisininessssanneessss 37

Figure 2.3: Processor Reconfiguration StateS ..ceeeeceeescescccsscancasecss 45

Figure 2.4: Processor Multiplexing Loop with Reconfiguration 46

Figure 2.5: Processor Multiplexing Loop with IPCCceeevevccccaasacaess 55

Figure 2.6: Processor Multiplexing Loop with Stopped Stateeeceeeeee. 58

Figure 3.1: Cache Mgmt. Pattern for Page ObJjeCt .cieeeesescccscccccaacsess 63

Figure 3.2: Cache Mgmt., Pattern for Virtual ProCeSSOr ...ececeecesccscesss 65

Figure 3.3: Two Level Processor Hierarchy ... s sisseccsssssnsesosscsnsooss O

Figure 3.4: Two Level Processor Multiplexing LOOP .ceeveeeececccscaccanaces 09

Figure 3.5: Permanently Bound Type Manager ProCeSSEeS ...eeeeveesseeceeeses 18

Figure 4.1: States of Level 1 ProCeSSOr ...sciccesscsecasosnnsssssecnsosse 97

Figure 4.2: Level 'L State Data 'vocosieisns coensas s sianessissssesssdsssesse 100

; Flgure 4.3 Eavel | Fault DATA [iaeiviaicvs sinieiorois siareisiniaissie s on sloisinieies siniaiionssss 106

' T Figure 5.1: Processor Communication in Level 1 Implementatione.. 115
> Figure 5.2: Priority Queue and Await Table ...ceeeeveeccesesscssocccacases 116
¢ 3 Figure 5.3: Hardware Communication PathS ...c.cececsccsncssossescassscasss 120
1 FPigure J 4 GPP Ioterndal MemMOTY .iivcvaaisdene oooeinisionsveeiss e sonssiainnsaspn 121
8 Figure 5.5: Level 1 Processor State Block .ecceecestececsccscsscsocccessss 124
3 Yigure 5.61 Basfe GPP CYCLE v iiosiv uvivn silos o slonisios siesivioiois sisrasie siatsieis sioinanior 120
5 1 Figure S5.7¢ PP Algorithm FLow GhArTE . iv.civeessdcessesaioneesiniesssnsssase 132
% _ Figure 5.8: GPP Responses to UNBIND and INVOKE-LEVEL] ...cecveucecennnaess 141
i 4 Figure 6.1: Processor Interrupt Modelceeeeeeeeccsnsscccssascnsess 158
% Figure 6.2: Processors and Data Bases of Level 2 .tuieeveeceecocssceanseenss 162
‘s Figure 6.3: Level 2 Processor Table ENtry ...eeeveecececcscscscscancccanss 164
i Figure 6.4: Awalt Table SELUCEUKE ccscsisvuvsnsnssssinssssssscnssssvssssve 106
Figure 6.5: Actions of the Binder/Scheduler and Unbinder camwawen 168

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

e

D A e

Lrie

Chapter One

Introduction

A major goal of current research on computer systems is ensuring the
correctness of operating system software. Although many complex operating
systems have been designed and built, the best that can be said of these
systems is that they seem to work correctly. It is not yet possible to prove,
or otherwise ensure, that a complex operating system such as Multics [19]
works correctly -- in fact, specifying what correct operation means in the
case of systems like Multics is very difficult. One important part of
specifying and proving the correct operation of a system like Multics is
simplifying its design to a point where its operation is easily understood. A
clear understanding of the basic operating system mechanisms and

implementation techniques is a prerequisite to achieving this simplification.

The research reported here is an attempt to understand the impact of
processor multiplexing on the design and operation of an operating system.
The processes created by processor multiplexing serve two purposes in the
design of an operating system. First, they are used to isolate user-specified
computations from each other in order to prevent unpredictable or undesirable
interactions. Second, they can be used as a tool for structuring the
algorithms of the operating system itself. A clear understanding of the

design and implementation of processor multiplexing mechanisms that support

- 9w Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

these purposes is a necessary part of the understanding needed to simplify and

structure the design and implementation of operating systems.

The research reported here is‘part of a project to design a security
kernel [28] for the Multics operating system. The security kernel of an
operating system is a part of the operating system that, if correct,
guarantees that the operating system as a whole enforces constraints on
information flow that prevent unauthorized release (to users) of information
stored in the system. 1In Multics, individual user computations are isolated
from each other as distinct processes executing on distinct virtual
prdﬁessors. This isolation is used as a tool for controlling the propagation
of information within the system; consequently, the processor multiplexing
mechanisms that implement the virtual processors must be part of the security
kernel of the system. By simplifying the mechanisms of processor

multiplexing, the security kernel is made simpler and easier to prove correct.

The security kernel also can be simplified by structuring it as a set of
loosely coupled processes. Consequently, a simple processor multiplexing
mechanism that enables the construction of the kernel as a set of processes

contributes to the goal of kernel simplification.

Chapter 1 - 10 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

1.1 Brief Statement of Problem and Results

In virtual memory operating systems such as Multics [19), TENEX (1), and
VM/370 [8], the management of processors and the management of virtual memory

cannot be considered separately. The processor multiplexing algorithm calls

upon virtual memory management functions to perform such operations as loading
into primary memory the environment description (1) of a process so that a

processor can execute the process. The virtual memory management algorithm

A SR g
§

R

uses various functions of processor management in order to obtain resources to

run, and to organize the mechanism processes use to wait for pages to arrive

from secondary storage. _ﬁ

The initial goal of the research described in this thesis was to

SN I AR TR et

disentangle this mutual dependency. The first step has been described by
Huber [10]. He has developed an implementation of part of the virtual memory
system of Multics that runs in special processes created by the operating ?
system. By slightly ~xtending his work, the virtual memory algorithms can be

built so that they need not use features such as interrupt masking and

busy-waiting, which interact strongly with the operation of processor

g management.

(1) In Multics, the environment description is the descriptor segment.

- 11 - Chapter 1

© 1 g G PO 8 L 4 g e %

T,

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

In order to completely disentangle virtual memory management from
processor management, however, the dependency of processor management on the
virtual memory must be removed. The major source of this dependency is the
need for processor management to load and unload per-process data bases that
must be in primary memory while the process is executing on a processor, but

are too large and too numerous to be permanently resident in primary memory.

To remove the mutual dependency between processor multiplexing and
virtual memory, processor multiplexing is done at two levels, in the design
proposed in this thesis. The first level of processor multiplexing does
short-term multiprogramming among a small set of processes. The per-process
data bases for these processes are in primary memory. This first level thus
simulates the existence of a small number of virtual processors that
subsequently will be called level 1 processors. Since at level 1 all
per-processor data bases are in primary memory, there is no need for level 1

to depend on the virtual memory management algorithms.

The second level multiplexes these level 1 processors to create level 2
virtual processors that are used to run user processes. Level 2 is
responsible for loading the per-process data bases into primary memory when a
process is loaded into the level 1 processor. Level 2 thus depends on the

virtual memory algorithms.

The virtual memory algorithms themselves are built out of special

processes, called kernel processes, that are permanently loaded into level 1

Chapter 1 - 12 -

o S

R AR

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processors. The second level of processor multiplexing does not multiplex
level 1 processors running kernel processes, so kernel processes are not
dependent on the second level of processor multiplexing. By Lhis strategy,
the dependencies between processor multiplexing and virtual memory management

have been changed from that shown in figure l.la, to that shown in figure

Processor
ultiplexing
(level 2)

Processor Virtual Virtual

Memory

ultiplexing Memory

Processor
ultiplexing
(level 1)

(a) (b)
Figure 1.1
Removing Mutual Dependencies
The two-level structure has other advantages. It allows elimination of
interrupt-driven code from the I/0 device management part of the system.
Instead of running I/0 device management at interrupt time, I/0 devices can be

managed by from high-priority kernel processes running on level 1 processors,

thus isolating and simplifying the control structure of such algorithms.

-3 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The interactions of processor reconfiguration with other functions of the
operating system have been limited also by this structure. Only the first
level of processor multiplexing need be cognizant of the number of physical
processors on the system. Additions and deletions of physical processors can
occur at any time, except when processors are in the middle of switching from

one level 1 processor to another.

Since the second level of processor multiplexing only deals with user
processes, it is possible to allow its scheduling policy to be modified by an
administrator of a particular system installation, without interfering with
the actions of kernel processes. Thus the operating system can be designed to
operate correctly, without having to constrain the scheduling policy for user

processes.

A final result of the research described in this thesis is a single
unified interprocess control communication mechanism suitable for use at all
levels of the operating system. This mechanism is an implementation of the
eventcount model proposed by Kanodia and Reed [12]. Since this mechanism
encompasses the capabilities of most known interprocess control communication
mechanisms, it is flexible enough for all operating system and user
interprocess control communication. In addition, the virtual memory is
adequate for storage and protection of eventcounts. The processor
multiplexing algorithms do not have to implement special objects for the

purpose of interprocess control communication.

Chapter 1 - 14 -

L oo cas et oy

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The proposed design is described in terms of abstract types. Janson [11]
has provided a structure for the virtual memory of Multics based on an
abstract type structure. This mode of description is quite natural for
discussion of the modularization of a computer system, and causes the
intermodule dependencies to stand out. I have extended his work a little bit,

to deal with the problems of multiplexing processors to produce new abstract

objects called virtual processors.

1.2 Example System

At times in this thesis, it will be useful to talk about an example
operating system. A very simple system, modeled after Multics, will suffice.
I will consider an operating system that provides a large number of user
processes that can operate in a shared virtual memory. The virtual memory is
composed of segments, built out of fixed-length pages. The data contained in
pages resides permanently in a set of records on disks. The data is accessed
by a demand paging algorithm that brings the contents of disk pages into
primary memory as desired. Several hardware processors provide processing
power for the system. In order to allow the processors to access the memory
using virtual addresses, each processor has a hardware address translation

mechanism, called a map. (1) The map is loaded with a set of (virtual

(1) The map consists of some hardware like the Multics address appending
hardware, and some data that is interpreted by the map hardware such as the

- 15 = Chapter 1

1 s e A A N R\ R D Vg A W 3 N S A

IR NEORELORVER L PR L

o8 VP

D e e

TV

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

address,primary memory address) pairs, so that if the map is presented with a
virtual address that is the first component of a pair, it will give back the

second component as the actual primary memory address to access. If a virtual
address is presented that is not in the map, the processor will stop executing
the current instruction, forcibly transferring control to a predefined address

called the fault handler.

Processor multiplexing in this system will be done at two levels, for the
reasons discussed earlier: The first level of processor multiplexing creates
a set of virtual processors that can be used either to run processes directly,
or to produce the next level of processors by a second level of processor
multiplexing. This second level implements the processors for user processes,

called user virtual processors.

1/0 is done from primary memory buffers accessible to both the general
purpose physical processors of the system, and to special purpose I/0
processors that actually perform I/0. I/0 processors communicate status
information back to the general purpose physical processors through special
buffer areas called mailboxes, and send interrupts in order to get their

attention.

Multics descriptor segment and page tables. The data can reside in primary
memory, and may be shared by several processors at once.

Chapter 1 - 16 =

|
|
|
|
1
|
|

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

1.3 Abstract Types

An abstract type is a class of objects in the system for which there is a
defined set of operations. The difference between an abstract type and the
classic notion of type is that the user of an abstract type need not know the
representation of the object, or the algorithms used to implement operations
defined on the type. Further, the only operations allowed to be performed on

the objects are specified by the definition of the type.

The concept of abstract type is quite attractive for the structuring of
large systems because the actual implementation of a type of object is hidden
from the algorithms that make use of the type. This results in the kind of
structuring prescribed by Parnas’s "information hiding principle" [21], for
decomposing a system into modules. Further, abstract types fit naturally into
the structure of an operating system since a major job of an operating system
is to multiplex a set of physical resources to produce a set of virtual ' -
resources that can be viewed as objects of abstract type. I will show that

this is exactly what happens in processor multiplexing.

An abstract type consists of a set of objects and a set of operations.
The set of operations defined on the objects of the abstract type is
implemented by algorithms collectively called the (abstract) type manager.

Only the type manager algorithms are allowed to manipulate the representation

- 17 = Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

of the objects. The type manager may be actually implemented as a set of
closed subroutines, or as a process (or set of processes) to which messages
may be sent, or as macros (open subroutines) which are expanded into the code
of programs using the abstract type. It is important to emphasize this point,
because I will show later that it is sometimes useful to implement type

managers using one or many of these techniques.

In the example system, there are several objects that can be viewed as
having abstract type. A disk block, for example, is an object that has two
defined operations -- read-block, which reads a block of data out of the disk
block returning a string of bits of fixed size, and write-block, which takes a
string of bits and moves it into the disk. A word in virtual memory is also
an abstract object. Two operations that can be carried out by instructions in
user processes are read-word, which obtains the contents of a word named by a
particular virtual memory address, and write-word, which takes a bit string

and stores it in the object specified by a particular virtual memory address.

Processors, both real and virtual, can be viewed as objects of abstract
type. Viewing processors as objects that can be controlled by operations on

the processor objects is basic to the structuring method I use in this thesis.

Chapter 1 - 18 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

l.@ Layering of Abstract Types

The abstract type idea clearly furnishes a useful way to view the virtual

objects seen at the external interface of an operating system, but for the

design of a large operating system the abstract type idea is equally important

in structuring the internal implementation of the system. Janson [11]

discusses how this structuring might be applied to a system like Multics. For

segment
type
manager

segment

page segment
page table type VTOCE
manager manager manager

disk
block
manager

Figure 1.2
Type Extension Hierarchy for VM Objects

example, see figure 1.2, which shows the hierarchy of objects out of which the

virtual memory of the example system is built. Each of the circles in the

figure shows a type manager, labeled by the type of object implemented. The

- 19 -

Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

arrows between the circles indicate that objects of the type at the tail of
the arrow are represented in terms of objects of the type at the head of the
arrow. (1) At the bottom, the physical storage objects of the system are
shown. Pages, fixed size blocks of virtual storage, are implemented from
these basic objects. Then out of pages and core blocks that hold map data,

segments are built.

This is an example of using type managers inside the system for the
structuring effect alone, since the lower level abstractions of the system are
not visible to the user of the system. The use of abstract types at these
levels, though invisible at the system interface, is still quite important
because of the information-hiding effect of the type interfaces. Because the
only module allowed to manipulate objects of a particular type is the type
manager, the effect of a particular algorithm in some type manager can be

localized.

It is relatively simple to understand each part of a system structured in
such a hierarchical manner. Each class of objects is implemented in terms of
a small set of other types of objects. In order to understand the
implementation of a particular class of objects, one need only consider the

behavior specified for objects of that class and the behavior specified for

(1) The representing object participates in this representation either as a
storage container for objects, a mapping function to translate the external
name of the abstract object into the names of objects in its representation,
or as an agent to perform the operations that implement the abstract
operations on the object.

Chapter 1 -20 -

e

AT

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

objects in the classes used in the representation. It is not necessary to
consider the implementation of objects used in the representation. Thus the

implementation of each abstract type may be considered separately.

In this thesis, processor multiplexing at two levels is described in
terms of abstract types and type managers. The abstract type structure of an
operating system is used to show the interdependencies between modules of the
operating system. The interdependencies between processor multiplexing and
the rest of the operating system are shown clearly in this model. The

problems resulting from these interdependencies can thus be discussed easily.

1.5 Related Work

There are several classes of related work. First of all, there is a
large body of literature on concurrent processes. Second, there is some
literature which talks about the implementation of concurrent processes by

processor multiplexing on various systems, including Multics. Third, there is

a growing body of literature on the use of abstract types to structure system
design, and some recent work applying these ideas to hierarchical design of
operating systems. ¥Finally, the use of processes within the kernel of an

operating system has a small body of associated literature.

It is not worthwhile to list here all possible references to literature

on concurrent processes as a model for parallel, asynchronous computations.

-21 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The work of several authors in the application of these models to operating
systems problems is directly relevant; other work on the modeling of parallel
computations is not specifically related to the work in this thesis. Dijkstra
[6] defined the notion of a sequential process, primarily as a mechanism for
dealing with simultaneous activities. Dennis [5] among others has described
the utility of the process concept in guaranteeing that independent
computations do not interfere with each other. Saltzer [25] has described how
processes can be used as a way of controlling the allocation of processor and

memory resources to users of a computer system.

Actual implementations of the process concept also abound, so again I
will only touch the high points. Saltzer [25] also outlines the basic
algorithms of processor multiplexing. Rappaport [23] describes an early
version of the Multics process implementation in his thesis, and discusses
many of the engineering tradeoffs involved in its'design. The Virtual Machine
concept implemented in IBM°s VM/370 (formerly CP/67) operating system [17] is

also a form of the process concept.

Work on abstract types and their use in structuring systems is
progressing rapidly. SIMULA [4] and CLU [13] are programming languages that
include abstract type definition as basic structuring tools. Liskov [14] is
currently investigating the structuring of programs using abstract types. The
Hydra operating system kernel [30] is designed to support abstract types that
can be used to build operating systems. Janson [11] has investigated the use

of abstract types in structuring the design of operating system kernels, and

Chapter 1 - 3D -

y } PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

described the cache management pattern of type extension that is extended to

processor multiplexing in this thesis.

The area of literature closest to the topics discussed in this thesis

} describes the use of processes to structure the kernel of an operating system.
Dijkstra’s THE system [7] was the first kernel in which the process concept
was introduced at a low level in the kernel. Unfortunately, there is little

; reference in the available literature on the THE system to show how processes
are actually used in the kernel. Unlike the design proposed here, the process
implementation is at a lower level in the THE system than the virtual memory.
Consequently, the per-process data must remain permanently loaded into primary
% memory, so the number of processes allowed is severely limited. Dijkstra
proposes the idea of structuring an operating system into modules in a

1 hierarchy based on frequency of use of the modules. In the design proposed

[here, the two levels of processor multiplexing satisfy this criterion.

Brinch-Hansen [3] has described an operating system for the RC4000
computer that uses processes communicating via messages to structure the

kernel. Sturgis [29], in describing the CAL TSS system, shows how processes

are used to structure the kernel of that system. Rowe, of the University of
California at Irvine, [24]) has described a distributed operating system where
processes are used as building blocks to make up the kernel, and where control
of the communication paths among the processes is used to provide reliability.
Huber [10] has described how processes might be used to simplify the structure

of part of the virtual memory implementation in Multics, and has made use of a

- 23 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

primitive version of the kernel processes designed in this thesis. Hoare [9]
has described the implementation of a virtual memory system as a set of

processes where each page is assigned a process -- while this is probably not
practical as a way of implementing a virtual memory interface, nonetheless it
suggests several potentially practical ways of implementing a virtual memory

system.

More recently, at SRI a structured design for the kernel of a complex
operating system was completed. In this design, described by Neumann et. al.
[20], processes are implemented at a low level, and then enhanced at a higher
level. This idea is quite similar to the design discussed in the present
thesis, but unfortunately the SRI design is only a specification and does not
incorporate any notion of a reasonable implementation -- or even what the
algorithms executed by the implementation might be. The SRI design is
concerned only with structuring of the system, not with the performance costs
or efficient implementation of their design. Bredt and Saxena [2] have
described the algorithms of a layered system similar to the SRI design where
two levels of virtual memory implementation are interleaved with two levels of
process implementation. As in the SRI design itself, a framework is provided
for a two-level process implementation, but incorporating such features as
multiple real processors, interprocess interrupts, and variable scheduling
policy is ignored. They do not discuss the problem described later in the
thesis as the outward signalling problem, which seems to be an inherent

problem in a layered operating system design. Another problem with their

Chapter 1

TR O

s e

BB T

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

paper is that they do not take into account the other uses to which processes
might be put in an operating system, such as 1/0 device multiplexing, and the
peculiar requirements imposed on the design of processes by those

applications.

1.6 Plan of Thesis

The material presented in the rest of the thesis falls naturally into
three parts. The first part, covered in chapters two and three, will discuss
the issues involved in the design of a process implementation at an overview
level. The second part, covered in chapters four, five, and six, discusses
the functionality of the proposed design and describes a particular
implementation for the Multics operating system. Finally, chapter seven
discusses the effect of the design in simplifying the rest of the operating
system, and chapter eight summarizes the thesis, suggesting areas of further

research.

Chapter two specifically covers the basic model of process implementation
used in the thesis -- that of multiplexing a relatively small number of
functional processing units (either actual hardware processors or software
virtual processors) among a larger number of processes. I define several
terms, including processor, virtual processor, and process. The model
developed in this chapter will be used as the basis for the model of processor

multiplexing at two levels, and to describe the design proposed in chapters

- 25 - Chapter 1

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

four, five and six. 1In addition to processor multiplexing, processor

reconfiguration and interprocess control communication are incorporated in the

model.

Chapter three develops the two level processor multiplexing structure. I
show how the implementation fits the cache management pattern of type
extension described by Janson [l1]. I also model the actions of the
implementation in terms of the model developed in chapter two. Three problems
that can result from this structure, having to do with efficiency and
interaction between the levels, are described and their solutions are shown to

be possible within the structure.

Chapter four begins the discussion of the actual design. It contains a

complete description of the interface presented by level 1 virtual processors.

Chapterbfive completes the discussion of level 1, by discussing
implementations that can achieve the level 1 interface efficiently on a
computer system 'such as Multics. A new hardware architecture is proposed to
simplify the control of processor multiplexing. Mechanisms for simulating
this architecture on a more conventional architecture are described, to show

that level 1 can be built on more conventional systems.

Chapter six describes the interface and implementation of level 2
processors. The functionality of level 2 processors differs from level 1;
these differences, such as administratively variable scheduling policy,
creation and deletion of level 2 processors, processor interrupts, and outward
signalling eventcounts are described.

Chapter 1 - 26 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Chapter seven shows how an operating system is built on the basis
provided by level 1 processors. The use of level 1 processors within the
operating system to provide resources to abstract type managers and to 1/0
device management is described. The advantages of using processes running on
dedicated level 1 processors inside the kernel of the operating system are

briefly described.

Chapter eight summarizes the work done, attempts to give an indication of
the difficulty of integrating an implementation into the present Multics
system, and the benefits deriveable therefrom. It also discusses how closely
the initial goals of the project were met, and the impact of the general
approach taken in this design on future development of kernel-based operating

systems.

- 27 - Chapter 1

T T T T P T B e G T B2 0 e 0 R AR T M T S e QOB e BB 1S5 e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

T TO Mt i 12 e N A T T TR PP AT T 1

Chapter Two

Model of Processor Multiplexing

In order to understand how two levels of processor multiplexing can work,
one must thoroughly understand what processor multiplexing does. 1In this
chapter, the concepts of process and processor are carefully defined. From
this basis, a model of processor multiplexing is developed, showing clearly
how real processors can be multiplexed to provide multiple virtual processors

for the execution of processes.

Along the way, reconfiguration of processors and interprocess control

communication are incorporated into the basic processor multiplexing model.

In the next chapter, the model of processor multiplexing is extended to
two levels of processor multiplexing. To enable the extension to be made, the
model developed here incorporates the idea of a stopped virtual processor

whose state can be manipulated.

-29 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.1 Definition of Processor

In this thesis, several kinds of processors are discussed. These
entities are all called processors because they share certain properties. To
make certain that my assumptions are understood, I take the trouble to define

processors here.

: The basic function of a processor is to perform a sequence of operations |

] on objects in its environment. The environment of a processor is a set of
} objects. For example, the environment of a physical processor is that portion
of memory that it can access through its address mapping hardware. Typically
the environment is specified by an object, such as the Multics descriptor
segment, that in turn names another object. I shall assume that the objects 1
that specify environments can be shared among several processors, thus giving

the processors identical accessing environments. (1)

A processor has internal memory, called its state, that it uses to pass ‘ »

information from one operation to the next. The processor determines the next
operation to perform by interpreting an instruction, found in the processor’s

environment by an instruction pointer that is part of the processor state.

| (1) This does not imply identical access permissions, however. The access
rights specified in the environment specification are interpreted relative to
the domain of execution (part of the processor state), as in the Multics
descriptor segment.

Chapter 2 - 30 -

g

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The environment specification used by the processor is named by a value in the
processor state. Also included in the processor state is the name of the

current protection domain in which the processor is executing.

Each operation performed may modify the contents of the processor’s
internal memory. 1In particular, it changes the instruction pointer to select

the next instruction to be interpreted.

As an object of abstract type, a processor may be part of the environment
of other processors. The operations that can be'performed on a processor
object are: loading a new state into the processor, extracting the current
state from the processor, causing the processor to run, and causing the

processor to stop.

A processor can be a physical object, such as the Honeywell 68/80 CPU
that is used to implement Multics. The processor registers comprise the state
of that processor. The environment of the processor includes all of the

primary memory that is accessible through the processor’s descriptor segment.

In this thesis, two other kinds of processors are described. These
processors are virtual processors -- meaning that they have no direct hardware
manifestation. Instead, they are simulations of processors, achieved by using
physical processors to interpret the instructions to be executed by the

virtual processor.

- 31 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.2 Definition of Process

The word process has been used in many senses in the literature of

computer science. Usually, it has been used to refer to one of two things --

il e M Ol Gt

a virtual processor as defined above, or what is called a process in this
thesis. I make a careful distinction in this thesis between the meanings of

the words process and processor to avoid confusion.

A process is the sequence of actions taken by some processor. In other
words, it is the past, present, and future "history" of the states of the
processor. Each processor, be it virtual or physical, has one associated
process for the duration of its existence. Thus, the process associated with
a physical processor is the sequence of operations that have been performed by
that processor since its creation and that will be performed up until its

destruction.

The act of logging in to a computer system can be viewed as creating a
processor for the user. The user can then cause this processor to perform
operations on his behalf. The history of these operations will be called the

user’s process. If there is but one physical processor in the computer

system, it will carry out the operations of all of the users’ processes. The
process associated with the physical processor is thus a merging of the

operation sequences that make up the users’ processes.

Chapter 2 -3 -

R

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Quite often, the words process and processor can be used interchangeably
-- this is the source of the confusion between the words. For example,
consider the modification of a particular file by a processor. This can also
be said to have happened as part of the process (in the process) being

executed by the processor.

The major difference between a process and a processor is that a process
is a sequence of actions while a processor is an actor. A processor is an
object in the computer system and subject to operations that may be executed
in the system, while a process is just a view of the actions taken by the

system that can be imposed in retrospect. A process results from the actions

of a processor.

2.3 Processor Multiplexing

The two levels of virtual processors in the design are created by a
technique called processor multiplexing. This technique originated in the
first multiprogramming computer systems as a way of achieving more efficient
use of scarce processor resources. Saltzer [25]) has modeled the mechanisms of
processor multiplexing in his Ph.D. thesis. I will recapitulate the basic

issues here.

Processor multiplexing is the simulation of a number of distinct virtual

processors by a smaller number of real processors. Each of the virtual

-33 - Chapter 2

iyt it ek Sy e et D <

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processors executes a sequence of operations in time. These sequences are

actually performed by the real processors. The many processes of the virtual
processors are actually merged together, creating the processes of the real

processors.

The result of any one of this merging is that the operations of any one
of the virtual processors are carried out in the same temporal sequence that
they would have been, had the virtual processor been real. Successive
operations of the same virtual processor may be separated by a gap of time
during which operations of another virtual processor are being executed by the
real processors. Successive operations of a virtual processor may also be

Real Processor 1 3 .
7

-

RP1

F

D -1

Virtual Processor 1 R

v

Virtual Processor 2) RP1

Virtual Processor 3

bl
s
JN

=
o
N~
e - - - -
=
o
—
b o o =
f
o
N

Virtual Processor 4 RP2

e T —

Real Processor 2

Figure 2.1
Multiplexing 2 Real Processors

executed by different real processors., Figure 2.1 shows how the operations of
4 virtual processors might be mapped into the operation sequence of 2 real

processors.

Chapter 2 - 34 -

SR R S

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

To define a term used frequently in this thesis, a virtual processor
being simulated by a set of multiplexed real processors is bound to one of the
real processprs whenever its process is being executed by a real processor.
Thus virtual processor number two is bound to real processor number one during
the first time interval in figure 2.1. More loosely, one can say that a
process is bound to a processor when that processor is carrying out actions
that are part of that process. A process is permanently bound to a processor
when that processor can only execute operations of that process (the process

is thus the process defined by the sequence of actions of the processor).

There are concrete aspects to this binding. When real processor A is
bound to virtual processor S, processor A’s internal memory contains S$°s
current state. Similarly, processor A accesses objects through S’s
environment. When S is not bound to a real processor, its state is stored in
a piece of memory from which it can be loaded later into an real processor’s

internal memory.

In addition to providing the operations of the real processors to the
virtual processors, processor multiplexing can create new functionality. The
virtual processors can execute an operation that causes execution of future
operations to be delayed until some future event happens. They also can
execute an operation that signals such an event. Such operations are called
interprocess control communication. The wait operation is not an operation
that requires real processor resources -- it is rather an operation that

inhibits use of real processor resources by the virtual processor.

- 35 - Chapter 2

——

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Processor multiplexing also requires a policy. Given a number of virtual
processors to which an real processor may be bound, at any one time the
processor can only execute one. The choice of the processor to choose is made
by some algorithm, called the processor multiplexing policy algorithm. This
policy algorithm receives as input the set of processors that can be run, and

chooses which one is to run and for how long.

2.4 Processor Multiplexing Model

In order to discuss two levels of processor multiplexing, one needs to
understand how processor multiplexing at one level is done. 1In this section,

I will provide a model of this behavior.

I assume that the real processors are capable of executing all of the
instructions that appear in virtual processors, except those that control
processor multiplexing and interprocess control communication. (1) In some
cases, there will be more than one real processor, although the number of
virtual processors will usually exceed the number of real processors given. I
also assume that a real processor can store the contents of its private state
memory, and load a new set of values into this private memory from main

memory. The effect of loading the private memory of the real processor is to

(1) In particular, the structure of the environment description in the real
and virtual processors will be the same, and the addressing mechanisms will be
the same. Since real processors can only directly address primary memory, the
same will be true of virtual processors.

Chapter 2 - 36 -

BTt L S

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

cause it to interpret a new sequence of instructions specified by the newly

loaded state.

Real processors and virtual processors go through the cycle detailed in

unbound
virtual
processors

idle
real processors

real processors
executing
virtual processors

Figure 2,2
Processor Multiplexing Loop

figure 2.2. From the point of view of a real processor, it is bound to (and
executes) a virtual processor until some time at which it is unbound. The box
labeled "unbind" represents the unbinding of a real processor from its
assigned virtual processor. Unbinding results in placing the virtual
processor state in memory in a pool of virtual processor states. The real
processor is then placed in a pool of available idle processors. The "bind"
operation in the figure then takes a real processor from the pool of idle real

processors and a runnable virtual processor from the pool of runnable virtual

- 37 - Chapter 2

g

b
b

T ——

e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processors (selected by the real processor multiplexing policy) and binds the

two together.

A real processor bound to a virtual processor enters the unbind operation
under several conditions. The policy algorithm may decide that another
virtual processor should be run by that real processor, or that the virtual
processor has exceeded its allotment of computing resources. The virtual
processor itself might desire to wait until some event is signalled by another
virtual processor. The virtual processor may be forcibly stopped or deleted
by another virtual processor. The real processor might be removed from the
system due to a crash or reconfiguration (to be discussed later in this

chapter).

In this model, no indication is given that specifies the actual agent
that causes the bind or unbind operations, or the agent that executes the
actual processor multiplexing policy algorithm. This is intentional, since in

the design I propose later in the thesis, the agent will vary from level to

level. However, I would like to discuss here the alternatives that are

possible.

2.4.1 Centralized Control. of Processor Multiplexing

One scheme for the control of processor multiplexing is based on the idea

of a central agent. This agent is responsible for the binding of virtual

Chapter 2 - 38 -

ARG L aa g i aieie SiEaaleon iossel . it

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processors to real processors. All binding of virtual processors to real
processors is caused by the action of the central agent, while unbinding of
real processors from virtual processors also may be controlled by the central
agent. Of course, the virtual processors themselves have influence over the
unbinding decision, since a virtual processor that chooses to wait or
otherwise gives up its need for a real processcr can cause real processors to
stop running that virtual processor. The central agent is, however, notified
if such an event occurs, so the central agent interacts on each binding and

unbinding of a real processor.

Typically the central agent is a computation carried out in the computer
system. Cases where the central agent is a human operator fit this model, but
are not of interest here. The central agent can be viewed as a process, since
it is a sequential computation that performs operations on the state of the
system. The agent cannot, »f course, be the process of a virtual processor,
since it must make decisions about virtual processors when they are not
running. TIf the agent unbound itself, then it could never make the decision
to rebind itself. For this reason, the central agent in this scheme of
processor multiplexing must be permanently executing on a dedicated real

processor. (1)

(1) This real processor does not have to be a general purpose processor such
as the ones being multiplexed. It is not multiplexed, and performs a fixed
function. Consequently it could be a hard-wired processor, or a
microprocessor executing a firmware algorithm. As is shown later in the
thesis, the effect of a dedicated processor can be obtained by cheating a
little bit.

-39 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Given this constraint, the central agent may implement any arbitrary
policy for scheduling the binding of virtual processors to real processors.
The implementation of such policies will usually require some kind of
communication channel between the real processors and the central agent. The
primary reason for such a communication channel is that the virtual processors
being scheduled by the agent need to be able to wait for other virtual
processors to do certain things. While the agent can reasonably bind a
waiting virtual processor to a real processor, such a decision is quite
wasteful, since the virtual processor will unbind itself immediately. This
would reduce the economic justification for doing processor multiplexing,

since real processor time would be wasted doing non-useful work.

2.4.2 Distributed Control of Processor Multiplexing

An alternative scheme for the control of processor multiplexing is one in
which the functions are accomplished by a distributed algorithm executed by
all real processors. In this scheme, the policy used to select a new virtual
processor for a real processor in the bind ope?ation is implemented on each
real processor, as is the policy used to control which real processors to
unbind. Through careful coordination, real processors unbind themselves when
they choose to, send recommendations to other real processors to unbind

themselves, and choose which virtual processor to next bind to.

Chapter 2 o -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Please note that in this scheme it is not the case that control of
processor multiplexing is done in the virtual processors being implemented.
If this were the case, the virtual processors could become unbound in the
middle of telling the real processor which virtual processor next to bind
itself to. Often an algorithm, such as that used by the current Multics, is
described as being so distributed among the virtual processors. In fact the
computations of such an algorithm are only executed when the real processor
cannot change its execution point to another stream of instructions (inhibited
mode), and so are done exactly as if they were unit operations in the real
processor. I assume that the special privileges needed to control processor
multiplexing in each processor are only accessible in a special domain found

in each real processor’s environment.

In the distributed control scheme, it is possible that each real
processor can implement a different policy in assigning itself to a new
virtual processor. Thus, the set of policies that can be implemented is
apparently richer. As noted above, there needs to be a communication channel
between the real processors and the policy-implementing algorithms. In the
distributed case, each real processor must be able to send information to all

other real processors.

In the distributed case, interlocking between different instances of
policy algorithms becomes necessary since real processors may come unbound, or
choose to bind themselves to virtual processors, simultaneously. This is just
one aspect of the general need for harmonious cooperation among the policy
algorithms executed by each real processor,

P Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.4.3 Comparison of Distributed and Centralized Control

Although no algorithm for control of processor multiplexing will match
one of these extremes precisely, it is instructive nonetheless to study the
advantages and disadvantages of the centralized and distributed control

schenes.

The main advantage of the centralized algorithm is unity. Since the
centralized scheme is executed as a process permanently bound to one real
processor, it can be described by a single program that makes one decision at
a time. Such a description has an obvious effect on the ease of understanding
the programs of the processor multiplexing policy, by making them simply
structured. Also, since in dynamic execution, one decision is made at a time,
it is fairly easy to model the state transition of bindings of virtual
processors being implemented, since there are no simultaneous transitiomns.
Thus the system can be treated as a synchronous system, at least as far as the
binding and unbinding of real processors to/from virtual processors is

concerned.

The main advantage of the distributed scheme is autonomy. As mentioned
earlier, each real processor can control its destiny relatively independently
of the other real processors. The policies implemented by different real

processors may vary. Also, the autonomy afforded by a distributed system can

Chapter 2 -4 -

\aLooad o S sedd iU scnanaii AU oo

A

&
=

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

increase the amount of parallel activity possible in determining policy. Thus
the fact that a real processor is busy finding another virtual processor to
execute need not prevent another real processor from doing the same. To the
extent that these activities can be carried on in parallel, and to the extent
that the real processors can execute in parallel, this can be an economic

advantage.

The advantages of each scheme are disadvantages of the other.' In the
centralized case, the lack of autonomy prohibits the parallelism afforded by
the distributed scheme. In the distributed case, the autonomy makes it
potentially very difficult to understand the interactions of the different

algorithms executed by different real processors.

It is possible, however, to incorporate parallelism into the centralized
scheme to achieve more rapid execution of the central agent. The parallelism
is achieved by implementing the central agent as a group of cooperating
parallel processes (implemented on dedicated real processors) that take
advantage of any inherent parallelism there is in the centralized policy
algorithm. The sequentiality of bindings and unbindings must be preserved in
this case, but the time required by the central agent to perform each action
can be reduced, thus reducing the economic cost due to real processors waiting

to be rescheduled by the central agent.

The distributed scheme, in general, seems to have the greater

disadvantage. I am predominantly interested in simplifying the structure of

- 43 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the processor multiplexing algorithms, rather than improving their
performance. Performance is an issue, of course, but the main goal of this
work is to understand the clearest and simplest structure that achieves the
desired effects, and then to propose ways of improving performance within that

structure if necessary.

2.5 Processor Reconfiguration

For many reasons, it is useful to allow real processors to be added to
and deleted from the computer system while it is running. For example, real
processors may be shared between two computer systems. In this example, one
real processor can be moved from one system to the other in order to balance
the computing resources on each system to the presented loads. Another
example would be the automatic deletion of a faulty real processor when the
malfunctioning is detected. The faulty processor then can be repaired and
added back to the computer system while the rest of the system has continued
to run. Processor reconfiguration is a required feature of any system that
hopes to become a computer utility that remains up without interruption all

day.

Schell [27] has developed a model of processor reconfiguration. In it
the two real processor states, bound (to a virtual processor) and unbound, are
each split into two states (see Figure 2.3), according to a second criterion.

This criterion is whether the real processor is available for multiplexing or

Chapter 2 - Wl -

TR T

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

bind
bound &
available
unbind
bound & unbind
navailablgd
Figure 2.3

Processor Reconfiguration States
not. In figure 2.3 it is seen that deconfiguration of a real processor
consists of marking it as unavailable, and then unbinding it. Adding the real

processor back consists of marking the real processor available, and binding

it to a virtual processor.

Processor reconfiguration fits nicely into the model of processor
multiplexing. A real processor can be deleted from the system by marking it
unavailable, then causing the real processor to execute unbind, which takes
special action on an unavailable real processor and places it in an
unavailable real processor pool. An unavailable real processor can be added
to the system by causing it to enter the processor multiplexing loop as if it
had just become unbound from a virtual processor, as an idle real processor.

Figure 2.4 shows the revised processor multiplexing loop.

- 45 - $ Chapter 2

i PRSI

SIS

et

< AT o i 2 R

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

unbound
virtual
processors

not deleted

idle
real processors
unavailable
real processorsg

real processors
executing
Yirtual processors

Figure 2.4
Processor Multiplexing Loop with Reconfiguration

At each processor reconfiguration, the policy algorithm must be made
aware of the new state of the reconfigured processor. For example, the policy
being implemented might be an assignment of static priorities to virtual
processors such that the highest priority virtual processors are guaranteed to
run when they are runnable. 1In this case, deconfiguration of a real processor
that is running a virtual processor of higher priority than some other virtual
processor that is assigned to a real processor will require reshuffling of the
processor assignments. The policy algorithm must thus be brought into action
whenever a real processor is deleted. Similarly, when a real processor is
added, the policy algorithm must specify what to do with the new processor.
The policy algorithm specifies this by controlling the choice made by the bind
operation.

Chapter 2 - 46 =

|
|
|

TP

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

A concept closely related to processor reconfiguration is the
initialization and shutdown of the computer system. Luniewski, in his
master’s thesis [15]), has discussed how to view most of the tasks of system

initialization as adding additional system resources to a minimal system. //

Processor multiplexing may be initialized by starting with no real
processors and a set of virtual processors to run. Obviously, this is a
system at rest, with no changes being made to objects in the system. One can
then add processing units, in exactly the same way that processors are added
in reconfiguration, binding them to virtual processors in the processor
multiplexing loop. (1) This reconfiguration proceeds until all the available
processing units are added to the computer system. The system continues to
execute the computations specified by the virtual processors of the system as
this reconfiguration proceeds. The only effect of adding real processors will

be to increase the effective speed of the system.

Processor multiplexing can be stopped and the system shut down by
deconfiguring all of the real processors from the system until there are no
real processors left bound to virtual processors. The system will then remain
at rest until the real processors are added again. All of the state of the
system will then reside in the descriptions of the virtual processors, and the

state of the deconfigured real processors will be irrelevant.

(1) With a centralized agent, there is no difficulty in adding the first real

processor (other than the agent, which is expected to always be part of the

system) because the central agent performs additions. In the distributed i
processor multiplexing case, though, adding the first real processor is)
slightly more tricky than adding the later ones. ;

- 47 Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

A system crash that is due to a software detected error is just another
deconfiguration of processors, as far as processor multiplexing is concerned.
(1) In a system crash, all real processors are deleted. This view of a
system crash is important, since it defines the fact that the state of the
system is completely represented in the virtual processor states, and no
relevant information is left in evanescent real processor registers. For this
reason, if the cause of the crash is repairable, the system state can be
restarted at the point of the crash. An example of this might be a brief
power-line failure, detection of a parity error in memory that can be

corrected from redundant information, or other possible system states.

An important facet of processor multiplexing is that the dependence of
the system on having a particular number or set of real processors can be
reduced to a minimum. There is no need for virtual processors to be aware of
reconfigurations of real processors, other than in terms of the total amount
of processing power that can be delivered to the set of running virtual

processors in a fixed period of time.

(1) Obviously, some system crashes cannot be viewed as deconfigurations of all
processors. Most crashes in the Multics system, however, take the form of
orderly shutdown of the system by software.

Chapter 2 - 48 =

™

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.6 Interprocess Control Communication

It is the responsibility of the computer system to provide mechanisms for
communication between cooperating processes. There are really two different
kinds of communication that processes must be able to achieve. There must be
a way for processes to exchange data in some way. This mode of communication
will be called interprocess message communication (IPMC) in this thesis.
There must also be a way for processes to wait for data prepared by other
processes, and for processes that prepare such data to signal that it is
available. This mode of communication is qualitatively different from
communication of data. Since the effect of such communication is purely to
reenable a waiting control point, it is called interprocess control
communication (IPCC). Together, IPMC and IPCC are called interprocess

communication (IPC).

In a computer system that allows sharing of virtual memory segments
between processes, there is no need for a special interprocess message
communication facility to be built into the processor multiplexing algorithm.
Shared virtual memory segments provide an extremely high bandwidth data
communication channel between the processes sharing the segments. The
protection facilities provided by the computer system for shared virtual

memory segments will suffice to handle interprocess message communication.

- 49 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Further, shared segments are sufficiently primitive that any protocol for
interprocess message communication can be built using them. For these
reasons, I assume that interprocess message communication will be handled

outside of the scope of this thesis.

Interprocess control communication, on the other hand, is intimately
related to the structure of the processor multiplexing mechanism. The ability
of a virtual processor to indicate that it does not need real processor
resources until a particular event happens is basic to the economic advantage
of processor multiplexing. If a dedicated real processor were actually
available for each virtual processor, busy-waiting (1) would be an adequate

interprocess control communication mechanism.

In order to keep processor multiplexing simple, it is desirable to have a
very simple interprocess control communication mechanism. Saltzer [25]) has
discussed the general problem in detail in his Ph.D. thesis. The essence of
the problem is to be able to communicate to a virtual processor that is
waiting for an event to happen one bit of information that indicates that the
event has happened. The information that the event waited for has happened is
stored as a single bit in the memory of the system, known as the
wakeup-waiting switch. The wakeup-waiting switch is initially off. When the
event occurs, the wakeup-waiting switch is set on. In order to wait for an

event, the virtual processor indicates to the processor multiplexing algorithm

(1) Busy-waiting is repeatedly testing the state of a shared memory word in a
loop.

Chapter 2 - 50 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

that it cannot run until the wakeup-waiting switch is turned on, and then

unbinds itself from the real processor executing it.

In Saltzer’s thesis, there is one wakeup-waiting switch per virtual
F processor, which represents the current event being waited for. Thus, the
virtual processor wakeup-waiting switch is multiplexed to represent many

different events as its process proceeds, with the requirement that when a

e b cir e i

virtual processor restarts after waiting, it must clear the wakeup-waiting

switch for the next wait.

This multiplexing of the meaning of the wakeup-waiting switch of a

virtual processor makes it more difficult to ensure that virtual processors

are awakened at the right time. If virtual processor A can wakeup virtual

processor B, there is no guarantee that the reason virtual processor B is
waiting is the reason virtual processor A wakes B up. Virtual processor A’s
wakeup will then be misinterpreted by B, or ignored by B. 1In the first case,

B will proceed under the false assumption that the event awaited happened,

while in the second case, B will lose the wakeup (1) even though it may be
meaningful to B at a later time. These problems can be serious for system
security, 1if the wakeups are intended for a protected system operation in B’s
virtual~processor, because a wait operation executed outside of the protected
part of the system can receive IPCC signals intended for the protected part.

; The arrival of an IPCC signal can carry privileged system information. An

3 .
(1) Th{g\}s the "lost wakeup" problem described by Saltzer.

- 51 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

unprotected receiver may either gain unauthorized access to privileged
information, or prevent it from reaching its proper destination. These
occurrences cannot be prevented because B is multiplexing the meaning of his
wakeup-waiting switch, and so must allow A to wake him up at all times, even

though B waits for A’s event only sometimes.

Another interprocess control communication mechanism is the semaphore.
This is quite similar to the mechanism described by Saltzer, except for the
fact that the semaphore is a wakeup-waiting switch that represents a class of
events independent of the events of interest to one virtual processor. It is
possible to give a semaphore a semantic meaning because new semaphores can be
created for each semantically different class of events. In order to
implement semaphores in the model, the processor multiplexing algorithm must
be informed of all V operations to semaphores, and must keep track of the set
of virtual processors that are waiting for each semaphore to indicate that the

event has occurred.

Unfortunately, semaphores have several disadvantages. First, they are
limited to cases where the occurrence of an event will allow a fixed number of
virtual processors to proceeld out of the waiting state. Second, because of
this limitation, the ability to proceed past a P operation on a semaphore
automatically becomes a kind of scarce resource that can be used as a

communication channel among processes that wait on the semaphore.

Chapter 2 - 52 -

e, T il

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3
4
!
|
|
|

This latter point is quite important in a secure system design. Although
communication of information is inherent in the IPCC mechanism between the ;f
virtual processor that causes an event and the virtual processors that await
k X the occurrence of that event, there is no inherent requirement that virtual
processors waiting for the same event to occur should have a communication

path among themselves.

! For these reasons, along with the need to deal with synchronization in

A A

distributed systems, Kanodia and Reed [12] have developed an IPCC mechanism
that is in some sense more general than either semaphores or block-wakeup, but é
is still very simple. I will briefly describe the mechanism here, and

indicate how it fits into the model of processor multiplexing.

An eventcount is an object in the system that represents a class of

events that will eventually occur. This class of events is ordered, so that

L R S 2 el

by the time event N occurs, all events numbered from 0 to N-1 will have
occurred. Consequently, the set of events that have occurred at any
particular time can be represented by the number of the last event to occur.

This number is known as the current value of the eventcount.

There are three operations which may be performed on eventcounts. One

may read an eventcount to obtain the current value. One may advance an
eventcount. This will increment the current value by one, and serves to
indicate that a new event in the class of events represented by the eventcount

has occurred. Finally, a virtual processor may await a particular event in

- 53 - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the class associated with the eventcount. This last operation requires that

the eventcount, and the number of the event be specified. Await will prevent

‘the virtual processor from proceeding until the current value of the

eventcount exceeds the number of the event.

The eventcount IPCC mechanism has the useful property that two virtual
processors waiting for events in the same class (thus recorded in the same
eventcount) do not have an inherent intercommunication path. The enabling of
one virtual processor to proceed does not automatically disable any other
virtual processors from proceeding, and allows broadcasting events to multiple
virtual processors -- a function not easily achieved using semaphores.
Consequently, this mechanism is more desirable for use in a secure system.
Further, the implementation of eventcounts is not inherently more difficult

than that of semaphores.

The eventcount mechanism fits into the processor multiplexing model quite
simply. The processor multiplexing loop is modified to have a pool of waiting
virtual processors, as well as a pool of ready-to-run virtual processors.
Figure 2.5 shows this modification. The name of the eventcount and the value
awaited must be stored with the virtual processor state. A special kind of
unbind operation will put the virtual processor in the waiting pool instead of
the ready-to-run pool if the awaited eventcount hasn’t yet been advanced to
the awaited value. The advance operation informs the processor multiplexing
algorithm of the new value of the advanced eventcount, causing any virtual

processors in the waiting pool waiting on this eventcount to be moved to the

Chapter 2 - 54 -

Y TR Ry T

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

waiting
virtual
processors

unbound
virtual
processors

runnable

delete idle
real processors

unavailable
eal processors

real processors
executing
yirtual processors

Figure 2.5
Processor Multiplexing Loop with IPCC

ready-to-run pool. In this implementation, the only storage required is the
ability to remember the names and values of eventcounts that are actually
being awaited by virtual processors. A way to search the waiting pool on each
advance operation for virtual processors waiting on the advanced eventcount is

required. (1)

(1) This search can be done in time proportional to the logarithm of the size
of the waiting pool, at least, if a balanced tree scheme, such as AVL trees is
used for searching. If hashing is used, one may be able to do better
(although frequent deletions usually reduce the efficiency of a hash table).

- 55 - Chapter 2

2B A AL ARl 9 O s .3 P A V7T

PR T

e s

g
(4
H
3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

An alternative implementation of eventcounts would include in them a list
of the virtual processors waiting for changes to the eventcount. Along with
the name of the waiting virtual processor would be the value waited for. The
await operation would then just add the current virtual processor to the list
associated with the eventcount awaited, and then unbind the process from its
real processor indicating that it should not be run. When the eventcount is
advanced, any virtual processors that are waiting for the new value are
removed from the list, and placed in the ready-to-run pool so that they may be

run.

This latter implementation can require more storage (a list pointer per
eventcount, whether a virtual processor awaits it or not). The first
implementation may have a certain cost due to searching the waiting pool on
each advance operation for virtual processors awaiting the advanced

eventcount.

The first model implementation has the nice property that if a segment

were used to store the eventcount, only the advance- operation would have to

modify that segment. Thus, if segments have individual permissions for
inspection of values and modification of values, the segment access control
may be used to guarantee the security of both the IPMC mechanisms of the
system (implemented in segments), and the IPCC mechanisms of the system.
Using this implementation thus makes the protection mechanisms of the system
more uniform and simple to understand. Stopping a virtual processor is also

made simpler, because the eventcount itself need not be modified.

Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

2.7 The Virtual Processor Stopped State

In order to multiplex virtual processors as discussed in the next
chapter, a mechanism is needed to change the state of a virtual processor,
just as there is a mechanism for changing the state of a real processor. In
the model as so far described, the state of a virtual processor is sometimes
kept in the waiting pool, sometimes in the ready-to-run pool, and sometimes in
some real processor. To simplify matters, I introduce a new state of a
virtual processor, called the stopped state. When a virtual processor is in
this state, its private state memory can be changed and examined by other
virtual processors. The stopped state is added by modifying the processor
multiplexing loop to include a pool of stopped virtual processors. Figure 2.6
shows the stopped modification. A virtual processor enters the stopped pool
when some virtual processor executes a stop operation specifying this
processor, or when the virtual processor stops itself because it has exceeded
a resource limit. A virtual processor can enter the stopped state directly
from the ready-to-run pool or the waiting pool, or it can be marked as
to-be-stopped and unbound from its real processor if it is running. The
unbind operation puts virtual processors in the stopped pool if they are so

marked.

- 57 - - Chapter 2

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

stopped

virtual
processors run
stop
waiting advance unbound
virtual

virtual
processor

processors

runnable

idle
deleted real processors
unavailable
real processors

real processors
executing
virtual processors

stopped

not deleted

Figure 2.6
Processor Multiplexing Loop with Stopped State

A virtual processor in the stopped state can be started again when

another virtual processor executes a start operation specifying the stopped
The start operation puts the virtual processor in the

virtual processor.

ready-to-run pool.
One special point should be made here about the await operation -- the

virtual processor private memory while a virtual processor is in the waiting
Thus stopping a

pool looks as if the await operation has not commenced.

-58 =

Chapter 2

E 5{ PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

‘ waiting virtual processor, and restarting it later, will cause the await to be
é ; re-executed. Since the await operation is a pure predicate, with no

E § side-effects, re-execution cannot cause any problems. Re-execution is chosen
in order to avoid having to show in the state of a virtual processor that is
in the stopped state which eventcounts are being awaited. The awaited

F E eventcounts are forgotten in the transition from waiting to stopped. For
consistency, the advance operation will cause re-~execution of the await

operation, also.

2.8 Summary

In this chapter, a number of terms are defined, and a model of processor
multiplexing is developed. This model will be extended in chapter 3 to a two
level processor multiplexing structure. Several important features are
incorporated in the model. The model applies to:

1. Systems having multiple real processors, with small private

memory for state, and a large shared memory with address mapping
hardware to restrict the environment.

2. Systems where processors can share access environmeats.
3. Systems that allow reconfiguration of physical processors.

4. Systems that allow either centralized or distributed control of
processor multiplexing.

5. Systems that allow the scheduling policy to be altered
independently of the the rest of the operating system.

6. Systems in which the states of virtual processors are altered by
a second level of processor multiplexing.

- 59 - Chapter 2

e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

i o ek O

e o o "
B

Chapter Three

Multiple Levels of Processor Multiplexing in a Layered System

In this chapter I explore what it means to do processor multiplexing at

two levels, creating two kinds of virtual processors. To start, processor

multiplexing is described in terms of a common pattern of type extension,

cache management, that applies to operating systems structured according to

abstract types. This pattern, and the model developed in chapter two, are

then extended to handle two levels of processor multiplexing.

Having thus described the structure of the interfaces and implementations

of each level of processor multiplexing, I then show how this structure helps

simplify the structure of the operating system. I discuss how the mutual

dependency between virtual memory implementation and virtual processor

implementation is eliminated. I also indicate how the level 1 processors can

be used to execute "kernel processes" that provide processing power to

abstract type managers that are part of the kernel of the operating system.

To close the chapter, I discuss three problems that arise from the two
level structure and appropriate methods to solve them in the context of a real

computer system. The first problem is that inefficiency can be caused by

multiple levels of scheduling algorithms. The second problem is that

processor multiplexing can interfere with intermediate states of abstract type

managers, violating the hierarchic dependency structure. The third problem is

e

Chapter 3

i 5 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

that a mechanism for coordinating the activities of different levels of

virtual processors is needed.

3.1 The Cache Management Pattern of Type Extension

Frequently the basic task performed by a higher level type manager in
implementing its type out of lower level types is cache management. Janson
[11] has described the basic issues of cache management in a virtual memory
system based on abstract types. The cache management pattern is ubiquitous in

his design.

The cache management pattern involves creating a new abstract type that

1s represented in terms of two existing types, the cache type and the encached

type. The new type created is quite similar to the cache type in
functionality. There are usually a limited supply of objects of cache type,
so they are multiplexed among the objects of the new type. The encached type
generally serves the function of providing a relatively large amount of

storage for holding the state of objects of the new type.

For example, see figure 3.1, showing the type-managers for blocks of
primary memory (coreblock), records on secondary storage (diskblock), and
pages of virtual memory. Here, the major function of the page type manager is
to manage the coreblocks available to it as a cache for the information in

diskblocks. The only operations on diskblocks are read-block, which

Chapter 3 - 62 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

A

i ARE D 1

read-word
write-word

read-word
write-word

read-block
write-block

: Figure 3.1
- Cache Mgmt. Pattern for Page Object

reads the contents of a whole diskblock, and write-block, which replaces the
contents of a whole diskblock. The coreblock has more fine-grained
operations which allow selective reading and writing of words of the

coreblock.

ﬁ : Since the page manager implements fine-grained read and write operations
on the page, the mosé'effective way to achieve these is to implement the page

as a coreblock. On the other hand, there are more pages than coreblocks, so

they must be permanently stored in diskblocks. The fine-grained operations

can be achieved by copying the information of a page into a coreblock, where

the operation is performed. At some later time, the information in the

coreblock can be copied back to disk,

Processor multiplexing can be viewed as just such a cache management
algorithm. Given a group of real processors and a set of memory blocks that
can hold processor states, a new abstract type can be implemented, called a

virtual processor. Real processors are viewed here as objects implemented by

- 63 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

a real processor type manager. The operations permitted on a processor
consist of loading a state into it (binding) and running it, and stopping it
and storing its state (unbinding). The virtual processor type manager
provides four operations, bind, run, stop and unbind, that are similar in

effect to the two real processor control operations. The virtual processor

has the bind and run operations, and the stop and unbind operations, decoupled
for simplicity. The stop and run operations affect the use of real processors
in implementing the virtual processors, while the bind and unbind operations

affect the processor states in storage only.

Another difference between virtual processors and real processors,
however, is that virtual processors interpret the instructions encountered
during the run operation somewhat differently. For example, there is an
instruction recognized by the virtual processor to mean await some eventcount.
No corresponding instruction exists in the real processor -- await is
implemented by a sequence of instructions on the real processor that has the
properties of an instruction to the virtual processor (once started, it is

completed, and no intermediate states can be observed by virtual processofé).

The virtual processor type manager has a very simple task -- it just
treats the real processor type objects as caches for processor-states. Figure
3.2 shows this structure. The virtual processor manager’s bind operation is
performed by writing the state of the virtual processor in a memory block
called a processor-state. The virtual processor manager unbind operation is

performed by reading the value in a processor-state object. (It is an error

Chapter 3 - 64 -

v

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

bind
virtual unbind
processor run

stop

real
processor

bind & run
stop & unbind

processor
state

read-state
write-state

Figure 3.2
Cache Mgmt. Pattern for Virtual Processcor

if unbind is attempted when the virtual processor is not stopped.) The stop
operation ensures that the virtual processor state is not being interpreted by
a real processor. The run operation enables the contents of a processor-state

to be bound to a real processor and run, using the real processor bind-and-run

operation.

The processor-state objects are very limited in the set of operations
that may be perform>d on them. Only read and write operations are performed
by the virtual processor manager. On the other hand, the virtual processor
manager uses the real processor to execute the state, once the state is bound
to a real processor. This situation emphasizes strongly the different roles
played by the cache and encached types in a type defined by a cache manager.
In the storage system example previously described, both the coreblock and
diskblock are quite similar -~ both are passive storage containers, with read
and write operations defining their basic capabilities. The virtual processor

type manager provides, as its primary function, an interpreter for an

- 65 - Chapter 3

b TN SR e Sl

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

instruction stream specified by loading the state of a virtual processor with
a particular set of values. This functionality is obtained by using real
processors to perform the instructions required by the virtual processors.

The processor-state objects do not participate in this function; instead they
serve only to hold the states loaded into virtual processors while the real
processors are occupied with computations on behalf of other virtual
processors. Thus the cache type objects are used to perform the primary
function, and are quite similar in capability to the type implemented by the

cache manager, while the encached type objects serve only as storage.

3.2 Building Two Levels of Virtual Processors

As shown in the previous section, processor multiplexing may be seen as
providing a new abstract type of processor, by managing the real processor
type of objects as a cache for processor states, which are stored in
processor-state objects while not actually being manipulated by a processor
object. The set of virtual processors produced by processor multiplexing in
this way also can be multiplexed to produce yet another new abstract type of
processor. (1) The solid arrows in figure 3.3 show how the resulting type
hierarchy would look, for two levels of processor multiplexing. The basic

algorithm performed by each level in this hierarchy is similar, with the only

(1) These can in turn be multiplexed, and the pattern can be carried out

repeatedly, yielding a hierarchy of abstract types all of which perform a
processor function.

Chapter 3 - 66 =

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 2
processor

level 2
processor
state

level 1
processor

level 1
processor
state

real
processor

Figure 3.3
Two Level Processor Hierarchy

difference being the type of objects that play the role of cache objects and

encached objects.

The model of processor multiplexing developed in the last chapter can be
extended to show how the two levels of processor multiplexing fit together.
Just as the bind-and-run and stop-and-unbind operaticas used in the first
level of processor multiplexing change the internal memory of real processors,

so the second level of processor multiplexing uses bind and unbind operations

- 67 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

to change the states of level 1 processors. This manipulation is done on
level 1 processors that are in the stopped state. The level 1 unbind
operation used in level 2 extracts the contents of the internal state memory
of a level 1 processor, leaving that processor idle. The level 1 bind
operation used in level 2 puts a new state in an idle level 1 processor. In
figure 3.4, the two levels of processor multiplexing are exact duplications of
the model. The create and delete operations of the level 2 interface are

analogous to the bind-and-run and the stop-and-unbind operations of level 1.

Although this hierarchy is very elegant, it is not clear whether or not
it is useful. As I remarked in an earlier chapter, there is no reason to use
processor multiplexing if there are sufficient real processors with the right

capabilities. Consequeantly each level of processor multiplexing in the

hierarchy must be motivated by a lack of sufficient quantity of processors at

e

the lower level, or by a lack of capability of the lower level processors. In
this thesis, I propose a design that uses two levels of processor multiplexing
to create a processor hierarchy of three levels: real processors, level 1
(virtual) processors, and level 2 (virtual) processors. There are several
good reasons for this choice, as opposed to the single level of processor
multiplexing usually found in operating systems. The reasons are:

1. It disentangles the interdependence between the implementation of
virtual memory objects and virtual processor objects.

2, The utility of structuring the operating system, particularly
type managers, as a set of cooperating processes.

3. The distinction between short- and long-term scheduling policy.

Chapter 3 - 68 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 2 __ _ create
interface

delete _ _

ready &
waiting
level 2

slevel 1—

level 1
processors run

2 advance
level 1

processors

processors

runnable

RENES_ SN SR A S| SR e S e e s e e

idle
teal processors
unavailable

real processors

processor
interface

real processors
executing
level 1 processors

Figure 3.4
Two Level Processor Multiplexing Loop

- 69 - Chapter 3

T Y T YTy

e oy

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

I will discuss each of these in turn.

3.3 Disentangling Virtual Memory from Processor Multiplexing

As T noted earlier in the example of using abstract types to structure
the storage system of an operating system, there is a hierarchy of types in
the implementation of the storage system. The processor-state objects of a
virtual processor abstract type manager could be implemented directly in terms
of any one of these storage objects. Since processor multiplexing requires
fairly frequent accessing of processor-state objects, these objects should
have fast access. There should also be enough of the chosen memory objects to
hold all of the processor states corresponding to the many user processes of
the system. The virtual memory objects, e.g. pages or segments, provided by

the system are clearly the objects of choice for this purpose.

On the other hand, the virtual memory management algorithms benefit
greatly from being implemented as processes. (1) Since processes require
processors, the virtual memory processes require either a set of dedicated
real processors, or a set of dedicated virtual processors. Dedicating several
real processors to the virtual memory manager is excessively expensive with
today’s hardware, so we are encouraged to use virtual processors implemented

by processor multiplexing to achieve the virtual memory management functions.

(1) See Huber [10].

Chapter 3 - 170 -

o A e v e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Using virtual memory to implement virtual processors and vice versa leads
to a system with cyclic dependencies. This can be overcome by splitting the
implementation of virtual processors into two stages, where the first
implements virtual processors whose processor-states are represented using
primary memory objects, and the second stage multiplexes the first stage
virtual processors and uses virtual memory objects to hold the
processor-states. The virtual memory management processes can then be
implemented on first stage virtual processors. This structure has been shown
before in figure 3.3. The dotted line indicates the dependency of the page
type manager on the level 1 processor type manager, which provides processors

to execute page manager algorithms.

3.4 Use of Processes as Abstract Type Managers

Although the common view of an abstract type manager is as a collection
of closed subroutines that manipulate a data base, this view is not
necessarily the best way to view the implementation of abstract types in a
situation where operations can proceed in parallel. With parallel operations,
there must be interlocking of some sort between the different operations on
objects of the type. This interlocking is not apparent from an implementation

of the operations as pure closed subroutines.

-71 - Chapter 3

S o g

Gy

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

[e=g

Let us consider an example in the context of the example system. There
is an abstract type manager whose job it is to multiplex a connection to a
message-switched communications system such as the ARPANET [16]. The abstract
objects created by the type manager are connections on which operations such
as create-connection, destroy-connection, send-message, and receive~-message
may be performed. The type manager must take the responsibility for
sequentializing simultaneous requests on the same connection object. A
destroy-connection cannot be allowed to proceed simultaneously with
send-message, for example. Since these operations will actually be decomposed
into a sequence of operations on lower level objects, such as the buffers, I/0
channels, etc., there is a possibility of incorrect operation if the steps of

two operations on the same object are interleaved.

One way to prevent such interleaving and achieve sequentiality is to
associate a lock with each object, requiring that the lock be set by each
operation before any modifications to the object are attempted, and that the
lock be reset after the operation is complete. Equivalently, a process can be
associated with each object to perform all of the operations on the object by
accepting requests for operations that are placed in a queue. The important
thing here is that two operations on an object are never performed overlapping
in time. This tactic is not sufficient, however, if operations on one object
can interfere with operations on other objects. An ever-present example of
this kind found in operating systems is the need to manage a small set of

resources that are multiplexed among different objects of a particular

Chapter 3

AP AR

s

g

AR T Y

T

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

abstract type. In the example system, assume that a fixed amount of memory
resources is available to the connection type manager for use as I/0 buffers.
When a send-message is executed, a buffer must be allocated to hold the
message while it is being accessed by the I/0 device. Other send-message
operations on different connections may be attempted simultaneously, resulting
in possible interference between buffer allocation operations. In general,
operations on different objects implemented by a type manager that multiplexes
some lower level resource may need to be sequentialized. For this reason,
viewing objects as individual sequential processes is not very useful in

solving all of the problems of objects in the presence of parallelism.

Another possible view is looking at the operations performed on all
objects in the class implemented by a type-manager as a sequential process, so
that no two operations on objects in the class can be performed in parallel.
This view actually can be realized in an implementation of an abstract type
manager by building the manager as a process, with requests for operations
being sent to it through a queue. (1) 1In the example above, the connection
manager would be implemented as a process that performed the actual I/0
operations and buffer management. The obvious disadvantage of this view is
that it sequentializes operations on different objects even when this

constraint is unnecessary. (2)

(1) Or alternatively, by using a single lock to protect all operations of the
type manager.

(2) Unnecessary sequentialization can be especially bad if an operation on a
particular object can take arbitrarily long to complete, or may never
complete. In operating systems, however, operations are usually short, and
must complete.

-173 - Chapter 3

Pam—

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The sequentiality can be reduced, while retaining the ability to
sequentialize operations on different objects, by building the type manager as
a collection of cooperating processes. There will be a single process which
accepts requests for operations and then causes the other processes in the
type manager to carry out the operations in as parallel a fashion as possible
under the constraint of correct operation. This view can be applied to the
operation of the page abstract type manager as has been done by Huber [10].

In his implementation, there is one process (represented by the page table
lock) which accepts requests in a sequential order. It then causes other
processes to carry out operations required by the requests in a parallel

fashion.

As noted above, it is possible to implement the sequential processes
required to construct such an abstract type manager in two ways. A server
process can always be simulated by code that is executed in each requesting
process under a lock. As long as the locking convention is obeyed, there is
no interference between operations performed under the lock due to parallel
execution. Alternatively, the server process can actually be implemented on a

dedicated processor of its own.

Use of a lock to create a process can reduce the clarity of the code and
create problems that are not found in the process executing on a dedicated
processor. An operation that takes place in the requesting process is not
easy to protect from the peculiarities of the requesting process environment.

For example, the requesting process may not have sufficient scheduling

Chapter 3 - 78 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

priority to complete the operation quickly, resulting in delay to other
processes waiting to perform successive operations. The meaning of the
instructions and addresses in each requesting process may vary, so that the
operation must be specially coded to successfully operate in environments
where the handling of overflow faults may vary, for example. In additionm,
each operation must be examined to ensure its termination, for non-termination
of one operation can causc all other operations being carried out under the
lock not to terminate. If the operations are distributed through the system,
it is much more difficult to bring all operations together to inspect them for
termination. It is also less likely that a programmer implementing the
abstract type will be able to oversee all the operations to ensure

termination.

These arguments suggest it is often much simpler to construct abstract

type managers as processes that execute on their own processors.

In order to use processes for implementing abstract type managers, it is
necessary to have enough processors to implement all of the processes.
Sufficent processors can be produced by multiplexing. At each level in the
operating system type hierarchy, there must be sufficient processors available
for each type manager implemented at that level. The issues’ of using
processes in implementing the storage system generalize to the case of other
type managers in the system. There must be a low-level type of processor to
implement processes for low level type managers. Higher level type managers
will benefit from the additional quantity and capabilities of higher level

processors.

-75 = Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Many abstract type managers should be implemented on lower-level
processor abstractions in order to guarantee more complete control over the
hardware. In the example system, the connection type manager may need to be
scheduled rapidly when a message arrives, in order to get that message to the
receiving process promptly if necessary. If such a process were implemented
on too high a level, it would be delayed in its response by the cost of
several levels of scheduling by different processor multiplexing algorithms.

Consequently, it should be implemented on a relatively low level processor.

In a system with two levels of processor multiplexing, most of the
abstract type managers for system objects will be built out of the first level

of virtual processors for this reason.

The type manager processes inside the operating system must always be
capable of servicing requests, if it is required that the system not deny
service to users. For this reason, it should be impossible for the type
manager processes to be put into a state that will ignore requests for service
forever. Thus, the abstract type manager process must always have a
processor. Further, such abstract type manager processors must always have

priority for physical processor resources over all user computations.

Consider the example system. If the processors on which the page
abstract type manager is implemented had lower priority than user
computations, user processes that did not require service by the page manager

could effectively deny service to user processes that did require service by

Chapter 3 - 76 -

i

i S e i

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the page manager. By saturating the real physical processor resources, user
computations could prevent the page manager from running for arbitrary periods

of time.

Abstract type inanagers implemented on virtual processors provided by the
first level of processor multiplexing should not be affected by the second
level of processcr multiplexing that implements user virtual processors.
There are two reasons for this. First, the second level of processor
multiplexing, which depends on abstract type managers implemented on virtual
processors, cannot be allowed to manipulate the virtual processors of those
type managers. This would lead to a cyclic dependency where the type manager
process depended on the second level processor multiplexing algorithm that
depends on the type manager. Second, the type managers of the operating
system must be guaranteed service ahead of the user computations scheduled by

the second level processor manager.

A mechanism whereby a process executing on a virtual processor can attach
itself firmly to its virtual processor is required, so that it cannot be
removed from the virtual processor by the second level processor multiplexing
manager. In addition, virtual processors executing abstract type managers
inside the operating system must have priority for computational resources

over the virtual processors executing user computations.

Looking back to figure 3.3, let me emphasize these points. The level 1

processors implemented by the level 1 processor type manager are used in two

-177 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

ways. Some of them are multiplexed by the level 2 processor type manager to
make level 2 processors. Some others are used to used in implementing the
system type managers, such as the page type manager, the connection type
manager, and the level 2 processor manager itself, to perform various
management functions, isolating and sequentializing the system type manager
operations. These latter level 1 processors are permanently bound to the
processes of the page manager. They also have scheduling priority over those

level 1 processors used to implement level 2 processors. The resulting

level 2 processors

level 1 processors |
|

8

;

'—-
|
I
|
|
|
|
|
|
|
!
L--——-— o come
f
b\ o
/
\
-/f 32

4 \
)]
| kernel processes | PR

[|

| page oS _ ’I
manager |
permanently | processl
bound | |
level 1 | I
processors | /0 !
process:
| {
|]

Figure 3.5

Permanently Bound Type Manager Processes

structure is shown in figure 3.5.

Chapter 3 - 78 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3.5 Two Levels of Scheduling

There is a natural hierarchy in scheduling policy that is found in many
operating systems. In Multics, for example, there is a short-term
multiprogramming policy that multiplexes processors among a small number of
user computations. The goal of this algorithm is to achieve maximum use of
the processors, and thus maximum throughput in the short-term. Multics also
incorporates a long-term scheduling policy that controls the set of user
computations that participate in short-term multiprogramming. The goal of the

long term policy is to achieve control of the responsiveness of the system.

The scheduling hierarchy is easily incorporated into the two level
virtual processor hierarchy. The first level of processor multiplexing
provides level 1 processors that have a built-in short-term scheduling policy
that is designed to maximize throughput. The second level then provides level
2 processors that have an administratively variable scheduling policy that is

designed to control the responsiveness of the system for each class of users.

-79 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3.6 Problems of a Processor Hierarchy

Having mentioned the advantages of a processor hierarchy, I will now
describe the potential disadvantages of the hierarchy. There are three such
problems. They are inefficiency due to multiple levels of processor
multiplexing, potential interference by the level 2 scheduler in the internal
workings of a type manager at a lower level, and the need for IPCC be:ween

processes implemented at different levels in the hierarchy.

3.6.1 Efficiency of Multiple Levels of Scheduling

Having two levels of scheduling going on at one time can be very costly
in terms of scheduling overhead. For example, if the frequency of scheduling
decisions at the second level were the same as the frequency of scheduling
decisions at the first level, and each scheduling decision had a fixed
overhead cost in processor time, then the total amount of processor time .
wasted in scheduling decisions would be twice that of a single level

scheduler.

Extra scheduler overhead is not a problem with the two level scheduler,

Wowewsr. The reason is that the scheduling policy implemented at the second

‘ewe! makes long-term decisions. Thus the second level decisions are made far

RN S S

o AT « £ T - Y e

B s

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

less frequently than the short-term multiprogramming decisions made at the
first level. Consequently, the overhead of scheduling at the second level
will be insignificant compared to the overhead of the scheduling decisions at
the first level, assuming that decisions at the second level cost the same or
less than decisions at the first level. Furthermore, most of the work done by
each level would have to be done in a single level, anyway. Extra overhead
only arises if the second level duplicates the effort of the first, so that
the same work is done twice, or if the interface through which the second
level controls the first is more costly than that which can be achieved in a
single level design. The short- versus long-term distinction eliminates
duplication of effort. The interface overhead problem is mitigated by the low
frequency of interactions between the first and second levels relative to the

frequency of interaction between the first level and the real processor level.

Although the second level of scheduling &oes increase the time overhead
of processor multiplexing slightly, another cost is actually reduced by
introducing the second level. This cost is the cost of memory to hold
processor states. At the first level, primary memory must be used. (1) At
the second level, cheaper virtual storage can be used instead of primary

memory.

(1) The major use of primary memory in the level 1 implementation is to hold

environment descriptions. Only level 1 processors that are in use (i.e., not
stopped) need have their environment descriptions in primary memory. Level 2
is responsible for ensuring that the environment descriptions are in primary

memory.

- 81 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3.6.2 Protection of Low-level Type Managers from Level 2

Consider the operations of the page type manager, whose position in the
system type hierarchy is shown in figure 3.3. Operations provided by the page ?
manager are used by both the level 2 processor implementation and the level 2
processors that execute user computations, since both use pages for holding
their data bases. Some of the operations on pages manipulated by level 2
processors can be implemented as subroutines or in-line code (1) that can be
executed by level 2 processors while bound to level 1 processors. If the
designer of the system is not careful, it may be possible for a level 2
processor to become unbound from its level 1 processor in the middle of

executing the sequence of instructions that implement a page operation.

Having started executing an operation of a level below the level 2
processor implementation, the process must be allowed to finish that operation
before it can be unbound from the level 1 processor. If it were prevented
from finishing, two problems might occur. First, the level 2 processor

manager could modify the private memory (e.g., the instruction pointer) of the

(1) The expansion into subroutines or in-line code of the type manager
operations should, of course, be transparent to the user of the system -- he
should not know that type manager operations are actually sequences of
lower-level instructions. Presumably, the user will be prevented from
actually writing code to manipulate the type manager data bases by a run-time
or compile-time protection mechanism.

Chapter 3 - 82 -

e e T e O A e e o AR o Tt e s 2

3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 2 processor, and then rebind the level 2 processor to a level 1
processor. This modification would interfere with the subsequent correct
operation of the type manager. Second, the level 2 processor manager could
prevent the operation from ever completing, thus leaving the data bases of the
manager in a possibly inconsistent state (e.g., it might have a lock set in
it). Both of these problems violate the hierarchic structure of the system,
since they can cause type managers at lower levels to depend on the level 2

processor manager for correctness.

Allowing the level 2 processor manager to unbind a level 2 processor in
the middle of a lower level operation can lead to deadlock of the level 2
processor manager, as well. The deadlock can arise because the data bases
being manipulated by the interrupted abstract operation are used in the

implementation of the level 2 processor manager. For example, the interrupted

- page manager operation may have set a lock on some part of its internal data

bases to prevent parallel manipulation of those data bases by other processes.
The level 2 processor manager, when it handles the unbinding of the level 2
processor that is stopped, may call upon the page manager to obtain
information about the level 2 processor for rescheduling. The request of the
level 2 processor manager will be forced to wait until the level 2 process
being rescheduled finishes the current operation, since the lock is set by the
level 2 process. The process cannot finish its operation until it is

rescheduled, therefore there is deadlock.

- 83 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

To prevent violations of the type hierarchy and deadlocks, operations of
type managers at lower levels than the level 2 processor manager should appear
to be indivisible to the level 2 processor manager. The level 2 processor
manager will only be able to unbind a process from the level 1 processor

before or after, but not during an abstract type operation.

In the design, this indivisibility is achieved by having abstract type
managers inform the level 1 processor manager when they start and finish
indivisible operations. Between the start and finish of indivisible
operations, the level 1 processor manager will not allow the level 1 processor
to enter the stopped state. Since level 2 can only inspect and alter the

states of stopped level 1 processors, the desired indivisibility is achieved.

A very simple method for deciding when an operation should be indivisible
at level 1 arises from the hierarchy. All operations of type managers below
the level 2 interface in the type hierarchy should be indivisible. 1If a type
manager is below level 2, level 2 uses it and depends on its correctness. It
is a violation of the abstract type model for level 2 to be able to interfere

with the operations of types that it depends on,

3.6.3 Cross-level Interprocess Control Communication

Each level of processor provides its own mechanism for communicating

between computations running on those processors. It will occasionally be

Chapter 3 - 84 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

necessary to design the system so that a computation expressed in terms of
level 1 processor operations (such as the page type manager) can signal a

computation expressed in terms of level 2 processor operations, or vice versa.

Consider the example system of figure 3.3. If the page manager were
implemented as a process permanently bound to a level 1 processor, then level
2 processors requesting the services of the page manager would have to signal
the page manager somehow, and be signalled back when the request is finished.
The level 1 page manager processor cannot use the IPCC primitives implemented
in the level 2 processor type manager, because the level 2 processor manager
depends on the page manager for various services, such as implementing its
tables and moving the envircnment descriptions of level 2 processors in and
out of primary memory. A cyclic dependency would result if the page manager
processor attempted to use the level 2 processor IPCC primitives. On the
r other hand, the level 2 processor requesting service must be able to await at

level 2 if the level 2 scheduler is to retain control cver the resource usage

by level 1 processors. In this case, then, a level 2 advance by the level 2
requesting processor needs to awaken the page manager processor that awaits at

level 1 (an inward signal), and later a level 1 advance by the page manager

processor needs to awaken the requesting level 2 processor that awaits at

level 2 (an outward signal).

What is required in general is a way to perform an advance operation at
one level that causes await operations in progress at the other level to

proceed, just as if the advance were done at that level. I now present the

- 85 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

algorithm for level 2 advance and await, and then discuss how inward and

outward signalling are implemented.

3.6.3.1 Level 2 Advance and Await Algorithms

The algorithm for await at level 2, in terms of level 1 await, is:

1. mark current level 2 processor as awaiting the named events.
2. do a level 1 processor await on the same eventcounts. (1)

The algorithm for level 2 advance is:

1. do a level 1 advance on the specified eventcount. '
2. mark as not waiting, any level 2 processors whose eventcounts included ?

‘ the one advanced. This will cause them to become assigned to level 1

{ processors (if they are not already so bound), where they will

' discover that the current await immediately proceeds.

It is absolutely necessary to have the computation re-execute the await
instruction at level 1 whenever a level 2 processor that was awaiting at level

1 is reassigned to a new level 1 processor by the level 2 processor abstract

type manager. Re-executing the await guarantees that step 2 of the advance

algorithm works properly.

(1) In chapter six, I will show that the level 1 await here need not be on the
same eventcounts. I have simplified the algorithm here because the added
complexity discussed in chapter six is irrelevant to the outward signalling
mechanism.

Chapter 3 - 86 ~

; PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM
|

g 3.6.3.2 Inward Signalling

&

% Inward signalling, an advance at level 2 starting processors that are

3 awaiting at level 1, works correctly in the 1eve1'2 advance algorithm above.
* %’ Level 2 eventcounts are implemented in terms of level 1 eventcounts, so that
7 ; an advance at level 2 is performed by an advance at level 1 plus some

bookkeeping to handle processors awaiting at level 2.

3.6.3.3 OQutward Signalling

Outward signalling, an advance at level 1 starting a processor that is
awaiting at level 2, is more difficult than inward signalling. While an await
at level 2 is performed by invoking await at level 1, it is possible for the

processor awaiting at level 1 to become unbound from its level 1 processor, so

that it is now waiting only at level 2.

Unbinding from level 1 is possible for await operations that need not be

a part of a level 2 atomic operation. For example, when a level 2 processor

is waiting for a page to be brought into primary memory it can be unbound from

level 1 since the correct operation of the system does not depend on the level

2 processor to actually reference the page after it is brought in.

- 87 - Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Unbinding a level 2 processor while it is awaiting at level 1 is
desirable for an economic reason. The real processors of the system may not
be used to full capacity if level 1 processors are all awaiting events. Since
there will be relatively few level 1 processors (since level 1 processors take
up large amounts of expensive primary memory), if it is possible to unbind
waiting level 2 processors, it is economically advantageous to do so. Short

waits are not as much of a problem as long waits.

Basically, the difficulty of outward signalling is that the level 1
processor advance primitive cannot know all of the processors awaiting at
level 2 that are to be awakened when an eventcount is advanced. If the full
economic advantage of unbinding level 2 processors awaiting level 1 advances
is to be obtained, the level 2 processor manager should not rebind a waiting
level 2 processor to level 1 before it will be able to proceed through the
await. Thus, the level 2 processor manager must be aware of advances to
eventcounts that are done at level 1 with the inteation of signalling

processors at level 2.

Detection is not easy, since all eventcounts are potential channels for
outward signalling. The task may be restricted since in any particular system
only a few eventcounts will be used for outward signalling. In the example
system, there will be a fixed set of eventcounts that are signalled by each
kernel type manager -- the page manager will have a small set of events that
it signals, and so will each other type manager in the operating system. By

structuring the system so that the level 2 processor manager knows this set,

Chapter 3 - 88 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

and can efficiently search it for modified eventcounts, we can solve the

outward signalling problem.

The level 2 await primitive recognizes eventcounts that can be outward
signalled because they are all stored in the same segment. This is a simple
way to design the system so that the level 2 manager need not be changed every
time the set of eventcounts signalled outward by lower level type managers is
changed. Eventcounts in this segment will be treated specially by the level 2
processor await primitive -- the level 2 processor manager will periodically

poll the value of these eventcounts to see if they have changed.

How frequently the level 2 processor manager checks will determine the
responsiveness of the user processes to outward signalled events. The
checking can be triggered by a real-time clock ticking at a certain rate
(chosen for the desired responsiveness). Alternatively, the checking can be
done every time an eventcount in the outward signalling eventcount segment is
advanced in order to ensure maximum responsiveness. This latter strategy
requires a small amount of help from the level 1 processor manager, in the
form of a special eventcount that is advanced by level 1 every time any
outward signalling eventcount is advanced by the level | advance operation.
The level 2 processor manager (which is permanently bound to a level 1

processor) can then await this special eventcount.

- 89 - : Chapter 3

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

3.7 Summary

In this chapter, I have shown how two levels of processor multiplexing
can work together. The model developed in this chapter, and the solutions to
the three problems discussed, will be used in chapters five and six as a basis
for a detailed design of a system where two level processor multiplexing is

used.

Chapter 3 - 90 -

S

S ST AT T

Chapter Four

Level 1 Virtual Processor Interfaces

In this chapter, we begin discussion of a proposed operating system

design that incorporates two levels of processor multiplexing,

as in our

model. Here we discuss the interface of level 1 virtual processors.

The description of level 1 is divided into two chapters.

describes and motivates the interface of the level 1 processor.

This chapter

Incorporated

into this interface are many features that are important in a real system such

as Multics. Examples from the Multics system are used to motivate the design.

Chapter five describes an implementation of the level 1 virtual

manager.

“'Pi e

processor

Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

4.1 Level 1 Virtual Processor Interface

Level 1 processors are quite similar to real physical processors. They
execuce instructions in basically the same way, have similar internal states,
and have the same address mapping to address primary memory. There are some

differences from hardware processors, though. They can execute several new

operations that are implemented by the level 1 processor manager. Their rate
of execution is controlled by the level 1 processor manager. They cannot be

added to or deleted from the system. We describe here those differences.

The operations that the level 1 processor can perform that cannot be
performed by real processors serve four different purposes. Some of the
h operations allow level 1 processors to do interprocess control communication.
Some of the operations allow level 1 processors to control the bindings of

level 2 processors to other level 1 processors. These operations are

structured so that the level 2 processor manager may be built as a central

agent out of several dedicated level 1 processors. Some of the operations are

concerned with virtualizing the hardware facilities of real processors, such
as fault handling. Finally, there are operations to change the hardware

resources being used by level 1, to allow for reconfiguration.

Chapter 4 -92 -

e R R
i b T ST S B

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

To facilitate description, operations of the level 1 processor are
described as if they were subroutine calls. The names of each operation will
consist of the prefix "VP1$" to indicate that it is an operation of the level
1 virtual processor manager. The data input and output from the operation are

specified by parameters to the call. Parameters that represent input values

 aaaana

appear normally, output parameters are underscored. In the actual
implementation, these operations all act as if they are non-decomposable
machine instructions. It is not possible to stop a level 1 processor during
the execution of one of these operations. Also, the level 1 operations must
not be interrupted in the middle by a fault. Consequently, each level 1
operation ensures that all of its parameters are in primary memory and

accessible to the level 1 processor before performing the required operatioms.

If the parameters are not in primary memory, a fault will be reflected to the
level 1 processor. The level 1 processor can then handle the fault, and
restart the operation from the beginning. Accessing of parameters is

discussed more fully later in the chapter.

There are certain operations that are used only by the second level
processor multiplexor. These operations are specially protected, so that only
the level 1 processors that are used to implement the level 2 processor
manager may execute them. Protected operations will be marked in the text by
an asterisk following the parameter list when their calling sequence is

described.

- 93 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

In any case, the level 1 operations are all internal to the kernel of the
operating system, and can be used only by programs written as part of the

kernel of the operating system.

4.2 Limited Supply of Level 1 Processors

The level 1 processor manager creates virtual processors that perform
computations for higher levels in the system. There is a fixed, small number
of level 1 processors in the system. The limitation on the number of
processors arises because level 1 processors are implemented at the lowest
level of the system. The level 1 processor states and environments are stored
in primary memory. Since primary memory is expensive and of limited supply,
the number of distinct level 1 processors that can be implemented is limited.
The actual number of level 1 processors created in an implementation will
depend on the available memory, and the need for level 1 processors at higher
levels of the system. For a Multics configuration such as the one installed
at M.I.T., with two processors and 384K words of primary memory, I estimate

that about fifteen or twenty level 1 processors will be sufficient. This
estimate is based on two facts. The number of processes actually
participating in multiprogramming at any one time in the M.I.T. Multics never
exceeds six. Six level 1 processors can thus be allocated to the second level
processor multiplexor to implement user processes. The remaining nine to
fourteen are allocated to executing kernel processes that manage various

kernel resources such as virtual memory, multiplexed 1/0 devices, etc.

Chapter 4 - 94 -

Lk e e L g b

01

D R A

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

4.3 Multiprogramming of Real Processors Among Level 1 Processors

Unlike physical processors, level 1 processors do not execute

instructions at a constant rate (due to the fact that they are implemented by

processor multiplexing). 1In order to provide kernel processes with quick

response to events, level 1 processors have fixed priorities for computing

resources. Kernel processes that need fast response, such as I/0 device

service procesées, will be bound to high priority level 1 processors. User

processes will always be bound to level 1 processors of the lowest priority.

The simplest way to discuss the effect of priorities is to describe the

effect of the priority mechanism on the assignment of real processors to level

1 processors. Real processors will always be assigned to the highest priority

runnable (1) level 1 processors. If two level 1 processors have equal

priority values, the one that has been computing the longest will have

priority. This implies that scheduling of processors of equal priority will

be approximately FIFO. It has been the experience in Multics that FIFO

scheduling during short-term multiprogramming was the most effective means of
achieving good throughput and avoiding thrashing. This choice of policy

implements that experience.

(1) By runnable, we mean non-waiting and non-stopped.

- 95 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

4.4 Execution States of Level 1 Processors

From outside the level 1 processor implementation, a level 1 processor is
either executing (running or waiting) or stopped. Without observing the side
effects of execution, such as changes to shared memory, it is not possible to
tell whether an executing level 1 processor is actually executing on a real
processor or not. As we have shown in chapters two and three, the stopped
state of a level 1 processor exists to allow changing the binding of the

processor safely.

The level 2 processor manager must change the execution state of level 1
processors in order to multiplex them. Since the level 2 processor manager
will be constructed out of level 1 processors, the level 1 processor manager
must provide operations that allow one level 1 processor to change the
execution state of another. There are two such operations.

VP1l$run (llproc) *
changes the state of the level 1 processor named llproc from stopped to
executing. If llproc is already executing, the operation has no effect.

VP1$stop (llproc) *

causes the level 1 processor named llproc to stop as soon as possible. If the

level 1 processor is already stopped, the operation has no effect.

Chapter 4

g e P

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The binding of a level 1 processor may only be changed when it is in the

stopped state. A level 1 processor only enters the stopped state in between

atomic operations. So that operations on system objects can be implemented on

level 1 processors as atomic operations, a facility is provided that allows a

sequence of instructions to be treated as an atomic operation. Executing the

operation
VPl$begin_atomic_operation ()
indicates that an atomic operation is to be begun. Once
VP1$begiq_atomiq_operation is executed, the level 1 processor cannot enter the
stopped state. The operation
VP1$end_atomic_operation ()
ends the current atomic operation. Atomic operations may be nested in time;

the level 1 processor can only be stopped after the final call on

end atomic_
operation

end atomic
operation

N

executing
stop pend-

begin_atomic__

begin_atom
operation

operation

end_atomic _
operation

stop,run stop, run

end atomic_

executing

executing
begin atomic

nstoppable begin atomic unstoppable
operation operation ‘K@"

Figure 4.1
States of Level 1 Processor

- 97 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

VPl$end_atomic_operation. Figure 4.1 shows how the actual execution state

changes in response to state changing operations.

The operations VPl$begin_atomic_operation and VPl$end_atomic_operation
are similar to a facility already existing in the Multics operating system.
The Multics mechanism Zur assuring that virtual processors executing system
code do not get pre-empted in the middle of a system operation is to mask the
physical processor from getting timer runouts or pre-empt interrupts while
executing in the supervisor domain. The Multics mechanism is flawed, however,
because some code executed in the system domain is not part of any kernel
abstract operation. A particular example is the copying of argument values
into the kernel domain from the user domain. The copying is done by code
executing in the kernel domain, but accessing user data structures. It is

possible to put the processor into a loop while executing an (indivisible)

operation in the kernel, by modifying the user data as it is copied.

Using the proposed primitives, the indivisible operation would begin only
after copying the arguments. These primitives allow much more fine-grained

control of the parts of the system that implement indivisible operations.

Chapter 4 - 98 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

4.5 Scheduling Controls

The level 2 manager will be implemented on level 1 processors. In order
to control the amount of real processor time used by the level 1 processors it
multiplexes, the level 2 processor manager must be able to stop level 1
processors after they use up a short-term allocation of processor time. This
function must be provided by level 1, since level 1 controls the allocation of
real processor resources to level 1 processors. Level 1 thus associates with
each level 1 processor the accumulated processor time used since VPl$run was
called, and a limit on this usage called the quantum. When a level 1
processor exceeds its quantum of processor time, the level | processor manager
effectively calls VPl$stop on that processor, causing it to stop after the

current atomic operation is completed.

Since level 1 processors exceed their quanta independently of the
execution of the level 2 processor manager, the level 2 implementation needs
some help to know when level 1 processors stop, and which level 2 processors
have stopped. Each time a level 1 processor stops, a special eventcount
managed by level 1, called the stop eventcount, is advanced. The level 2
processor manager can then await this eventcount to discover when level 1
processors stop. To let the level 2 processor find the stopped level 1

processors easily, the level 1 processor manager maintains a queue of stopped

-99 - Chapter &4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 1 processors. When a level 1 processor stops, it enters the queue. A
level 1 processor operation,

VP1$next_stopped (llproc) *
returns the name of the next stopped level 1 processor in the queue, deleting
it from the queue. The level 2 processor manager can use this operation to

find all of the stopped processors.

4.6 Changing the Bindings of Level 1 Processors

The second level processor manager needs to be able to change the
bindings of level 1 processors it multiplexes. To provide this functionm,
there are two operations that allow the internal state of stopped level 1

processors to be extracted and loaded. The state description used in these

CRs

DSEGP

IP

FIP

L__QTMR |

Figure 4.2
Level 1 State Data '

interfaces is shown in figure 4.2. The state consists of the values of the
co-putational registers (CRs), the address of an environment specification

(DSEGP), the current value of the instruction pointer in the environment (IP),

Chapter 4 - 100 -

———

N T PR N IS R e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the address in the enviromment to which the IP will be set when a fault occurs
(FIP), and the amount of resources remaining until the level 1 processor is

automatically stopped for exceeding its quantum (QTMR).

The operation

VP1$bind (llproc, state, error) *
sets the state of level 1 processor llproc from its state argument. The
operation succeeds, and error is set to false if llproc is stopped, otherwise,
the operation fails and error is set to true. A level 1 processor may be
unbound by the operation

VP1$unbind (llproc, state, error) *
that returns the new state of the level 1 processor in the variable state. If
llproc is stopped, error is set to false and the operation succeeds, else

error is set to true, and no data is copied into state.

- 101 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

4.7 Interprocess Control Communication

The level 1 processor manager provides operations to perform interprocess
control communication using eventcounts. At this level, eventcounts are
implemented simply as primary memory words. In order to allow these
eventcounts to be shared among several virtual processors, each of which has a
different local name for it in its environment, we need a global name for each
memory word. It is possible to use the absolute primary memory address for
this purpose. Using the primary memory address would not allow these
eventcounts to be managed by the virtual memory manager, though, because the
virtual memory manager can move the eventcount from one address to another, or
to disk. To allow the virtual memory manager to move the pages containing
eventcounts in and out of primary memory freely, the environment description
for each level 1 processor contains an additional value for each page of
primary memory. This value is the unique name of the page in the virtual
memory as a whole. Given the name of a page within the environment of a level
1 processor, the level 1 implementation can determine both its current primary
memory address (if in primary memory) and its unique name. Level 1 can use
this unique name to name eventcounts in the page, no matter how they move

about in primary and secondary memcry.

- 102 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The level 1 processor manager implements the two operations,

VPl$await (ecl, valuel, ec2, value2, ec3, value3)
and

VP1$advance (ec).
VPl$await actually allows up to three eventcounts to be awaited
simultaneously. It thus takes from 1 to 3 pairs of arguments (3 pairs are
shown in the calling sequence). The ec arguments are passed by reference,
using pointers in the environment of the caller. The level 1 implementation
performs the translation to unique system-wide name. The operation VPl$await
only returns to the caller after one of the eventcounts ecl, ec2, or ec3,

exceeds the corresponding value specified as valuel, value2, or value3. A

level 1 processor could simulate the effect of waiting on multiple eventcounts
by spawning three separate level 1 processors to wait on each eventcount
separately, then waiting for one of them to advance a shared eventcount.
Spawning processors this way is cumbersome, so it is useful to allow multiple
eventcounts to be awaited simultaneously. The number of eventcounts that can
be awaited is limited to three because the level 1 processor implementation

f‘ can use only a fixed amount of storage to remember the eventcounts being

awaited. Three is not a magic number, but seems sufficient for all purposes I

3 ‘é have investigated.

Outward signalling eventcounts are supported specially by the VPl$advance
operation. Whenever an outward signalling eventcount is advanced, a special

eventcount called the outward signals eventcount is also advanced implicitly.

Chapter 4

=

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Outward signalling eventcounts are recognized by the advance operation because
they are all implemented in the same virtual memory segment. Thus, by simply

checking the unique name of the eventcount, outward signalling eventcounts can

be recognized.

4.8 Special Eventcounts

We have already described two special eventcounts that are advanced by
the level 1 processor manager itself: the stopped and outward_signals
eventcounts. There are two other kinds of special eventcounts that are

provided by the level 1 processor interface.

In order to have processes that synchronize themselves in real time, we
provide a special eventcount that is advanced proportionally to real time.
The clock eventcount is advanced once every delta microseconds, where delta is
a reasonably large value, like 50,000. This allows reasonably fine-grainad
scheduling of processes that have to deal with real time events, such as

timeouts on communications channels, etc.

In order to provide for processes that control I/0 devices, we need some
mechanism for I/0 devices to signal processes about interesting events, such
as completion of an operation, errors, etc. Messages from 1/0 devices are
stored in special regions of memory called mailboxes, but a mechanism for

scheduling processes when interesting events happen is still needed. A very

Chapter 4 - 104 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

natural mechanism is to associate with each device mailbox an eventcouut that
is advanced by the I/0 device (with the help of the level 1 processor manager)
each time a message is put in the mailbox. A device control process can then
simply wait on the eventcount until this advance occurs, then inspect the

message.

4.9 Fault Interface

i g Certain hardware operations signal errors by causing faults. On typical
hardware processors, a fault is handled by saving the instruction pointer at
the time of the fault and transferring to a special address. In creating
level 1 processors, we virtualize fault handling to allow each level 1
processor to specify its own private fault handlers. As part of the state of
cach level 1 processor, there is a pointer called the fault transfer pointer.
é Upon encountering a hardware fault, the level 1 processor will save the
processor state at the time of the fault, and transfer control to the fault
transfer pointer. An operation provided by the level 1 pfocéssor manager is
r used to obtain the ;iocessor state at the time of the last fault. This

operation is:

VP1$get fault_data (processor state)

It gets the processor state of the most recent fault. The processor state
returned by this operation is shown in figure 4.3. The data of the processor

state contains the values of the computational registers at the time of the

fault (CRs), the instruction pointer at the time of the fault (IP), and the

- 105 - Chapter 4

e i
it e s e e o O A R

PROCESSOR MULTIPLEXING IN A LAYERED GPERATING SYSTEM

CRs

IP

FCODE

Figure 4.3
Level 1 Fault Data .

type of fault (FCODE). The other data of the level 1 processor state, such as
DSEGP, QTMR, and FIP, are not kept for faults because the data is constant in

the level 1 processor.

Faulting instructions may be restarted by restoring the processor state
data using a level 1 processor operation:

VP1$restorq_processor_§tate (processop_;tate)

If a level 1 processor takes a second fault before extracting the fault
data of the first, the level 1 processor manager will crash the system by

deconfiguring all of the real processors, so that the problem can be debugged.

In order to allow extending existing processor instructions in type
managers above level 1 by providing special fault handlers to increase the

effective functionality of instructions, there must be a way for the fault

handler to appear to be part of the same atomic operation that caused the
fault. For this reason, taking a fault in a level 1 processor implicitly
causes a VPl$begin atomic_operation to be executed. So that it is possible to

protect the whole sequence, from faulting instruction to restart of the fault,

Chapter 4 - 106 -

e =, S e AT Sy S A s

e s anmee———IE '

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the VPl$restore processor_state operation implicitly executes a
VP1$end_atomic_operation. The fault handler need not, of course, remain

unstoppable throughout its execution. It can execute VPl$end atomic_operation

in the middle of its execution, as long as it executes

VP1$begin atomic_operation before restoring the state. Such an action must be
performed if the fault taken is to be reflected to a program at a level above
the second level processor implementation. The fault handler that is
specified by FIP in the level 1 processor state must be a program in the

kernel of the system below the level 2 processor manager.

Bt i il

4.10 Processor Interrupt

In Multics, there is a mechanism whereby one virtual processor can cause
} another to take a special fault, called a "process interrupt". This mechanism 3
is used to implement the function of interrupting a computation by hitting the

attention key, for example. In order to implement this in level 2, we need a

mechanism whereby the level 2 procesor manager can cause a level 1 processor 2

to take a special fault, called the "processor interrupt". We don’t wish this

interrupt to happen during an atomic operation, or in a kernel process.
f Consequently, we introduce a mechanism that allows this fault to be set only
% . in a stopped virtual processor. The primitive
? VP1$set_processor_interrupt (llproc, error) *

will cause llproc to take a special fault when the level 1 processor is next

- 107 - Chapter 4

e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

run. If llproc is not stopped, the operation does not proceed and the error

argument is set true, otherwise error is set to false.

To cause a level 1 processor interrupt to occur in a level 1 processor
that is not stopped, it must first be stopped, then the processor interrupt
must be set, and then the processor must be run. This is a somewhat clumsy
interface, since VP1l$stop does not take effect immediately. Since the
VP1$set_processor_interrupt operation is used only in the level 2 manager, the
clumsiness is not a real serious problem. I have chosen this particular
interface because it simplifies the design of the level 1 implementation, even

though it makes level 2 somewhat more complex.

4.11 Processor Reconfiguration

Level 1 has to deal with reconfiguration of physical processors. It
provides three operations for this purpose. The operation
VP1l$add_cpu (cpu_id)
adds the physical processor named cpu_id to the system. The operation
VP1$del cpu (cpu_id)
deletes the physical processor named cpu_id from the system. The operation
VPl$crash_system ()
eliminates all physical processors from the level 1 multiplexor, and forces
one of the processors to execute a special debugging program. The other

processors are made to stand by idle.

Chapter 4 - 108 -

PR

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The reconfiguration primitives are accessible to all parts of the system
kernel. Outside the system kernel, these operations are not directly usable,
in order to prevent user-written programs from denying service to other

programs.

4.12 Parameter Passing To Level 1 Processor Operations

All data operated on by level 1 processor operations must be in primary
memory. If an object is not in primary memory, the real processor will
generate a missing-page or missing segment fault, indicating that the
instruction cannot be performed. The software operations of the level 1
processor behave exactly the same. The data provided as parameters to the
level 1 processor implementation must be in primary memory. If the data is
not in primary memory, the level 1 processor implementation réflects this

condition as a software-generated missing page or missing segment fault.

Two other alternatives to generating software '"faults" could have been
used in the level 1 interface. First, the level 1 manager could crash the
system if its parameters were not found in primary memory. With this
alternative the level I" processor invoking the operation would be required to
insure that its parameters were in primary memory. For frequently executed
level 1 operations, having to wire-down parameters to primary memory by
calling the wire-down primitives of virtual memory can be quite expensive.

The second alternative would be to reflect an error to the level 1 processor

- 109 - Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

in some manner other than a fault. Reflecting the error requires some way to
transfer information back to the level 1 processor that an error has occurred.
The fault mechanism is such a way, inventing another mechanism serves no

useful purpose.

The implementation of the level 1 primitives must be able to access the
parameters. Since the level 1 processor itself accesses data in memory
through a map, the level 1 processor implementation must be able to interpret
the map to find the parameters. The map can be modified asynchronously by the
processors of the virtual memory manager, so there must be some way to insure
that such modifications do not interfere with the correct operation of the

level 1 processor manager.

The level 1 processor operations operate logically by first determining
whether the parameters are in primary memory. If not, a fault is reflected to
the appropriate fault handler, which presumably will handle the fault by
moving the parameters into primary memory. The test will be repeated until
the parameters are all in primary memory. (1) Then, the parameters are
accessed to perform the required operation. The data cannot be moved from

primary memory during this accessing. There must be a special mechanism for

(1) Note that the method of accessing parameters used by the level 1
implementation does not generate an upward dependency on the virtual memory
mechanism. The specification of the level 1 interface is that it reflects an
error and does not do the operation if its parameters are not in primary
memory. No matter what the virtual memory manager does, it cannot cause a
level 1 operation to fail to meet its specification either by doing the
operation or reflecting an error status.

Chapter 4 - 110 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

handling the asynchronous modification of the map during an operation of a

level 1 processor.

It is instructive to investigate the similar problem found in the
physical processor instructions. The physical processor operates by
converting the addresses found in instructions through the map into real
’ addresses, then accessing the real addresses directly during the instructionm.

! The modification to the map is thus not reflected immediately in the

processor’s accessing, but must wait until the processor stops using the

—

converted address. The processor converts all addresses to real addresses
before actually accessing the data operated on by the instruction.

Discovering a fault is thus done before the instruction has taken irreversible

steps, so the instruction can be restarted from the beginning.

There is, however, a problem in the physical processor accessing of
memory. The main reason for changing the map is that a page or segment is
moved from primary to secondary memory or vice versa, When the page is moved
to secondary memory, it must be guaranteed that no processor has outstanding
references to it. This guarantee is provided by marking all maps that refer
to the page so that a fault will be generated when the page is referenced.
However, fcr a short period of time the physical processor may have a
translated real address that refers to the page. The moving of a page from
primary to secondary memory proceeds as follows: first, flag all maps
referring to the page, then, wait until all physical processors stop using the

translated real addresses they were using at the time the flags were set in

- 111 = Chapter 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the maps. These two steps together guarantee that the page can be moved

safely.

k For the software parts of the level 1 processor manager, similar
é mechanism must be provided. The software parts will first translate the
addresses of parameters using the map into the address space of the level 1

b manager. The level 1 manager address space cannot be modified by higher

levels in the system. Any faults in accessing parameters are discovered and
reflected during the translation, so that after translation is complete the
parameters are guaranteed to be accessible. Then, the level 1 manager will]
use the translated addresses to reference primary memory. Before the page
manager can move anything in primary memory, it must first flag the map, then
wait until any translated addresses being used in level 1 operations are done
with. The level 1 processor must have a special mechanism to achieve this
waiting. This mechanism is a level 1 instruction,
VPl$propagate map_change (),
that causes the invoking level 1 processor to stop executing further

instructions until all other processors having translated copies of addresses

finish their current level 1 processor operation. (1)

(1) In many real processors, translated primary memory addresses are held

between operations in an associative memory built into the processor. In this :
case, finishing the current level 1 processor operation is insufficient to

guarantee that no translated addresses are being held by the processor.

Consequently, the operation VPl$propagate map_change also has to cause all

associative memories on all processors to be cleared.

Chapter 4 - 112 -

el

Chapter Five

Level 1 Processor Implementation

(The reader who is not interested in the details of an implementation of
level 1 processors may choose to skip this chapter, without much loss of

continuity.)

In this chapter, two implementations of level 1 processors on a
multiprocessor, shared primary memory computer s}stem are described. The two
implementations are actually closely related. The first version of the
implementation relies on a slightly non-traditional hardware that uses a
specialized processor as a central agent to control the multiplexing of the
other processors of the system. Within this architecture, the implementation
of level 1 processors is quite simple to describe. The second implementation
shows how, with extra complexity and a small loss of efficiency, the
specialized processor can be simulated on general-purpose processors such as

those of Multics.

The first implementation is not intended just as a basis for developing
the second, however. Adding a microprocessor to the architecture of a system
such as the Honeywell Level 68 to implement level 1 processor multiplexing
would not be at all difficult or expensive. The changes that must be made to
the general purpose processors to implement the binding and unbinding
functions in hardware amount to simplifications of structure; they would,
however, be relatively expensive to retrofit into current processors.

- 113 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The proposed hardware architecture is relatively simple to incorporate
into newly designed multiprocessor systems. Incorporating the ideas about
architecture described here should be worthwhile in terms of simplifying the

design of multiprogramming operating systems.

5.1 Overall Structure of the Implementation

The level 1 processor implementation follows the model of processor
multiplexing presented in chapter two, using a central agent to control
processor multiplexing. The central agent is implemented on a dedicated

] processor called the Processor Control Processor. It controls the

general-purpose processors (GPPs) of the system by controlling their binding
to level 1 processors. Within the implementation, level l processors are
represented by level 1 processor states stored in primary memory. The central

agent is also responsible for implementing the IPCC mechanisms, coordination

of level 1 processors with 2vents in I/0 processors, and reconfiguration of

the GPPs, since IPCC, I/0 events, and recoufiguration may indirectly require

reassignment of GPPs to a different set of level 1 processors.

Figure 5.1 shows the pattern of communication among the processors in the :
system. Level 1 processors are executed on the GPPs. The PCP communicates
with each GPP to control its assignments to level 1 processors. The
operations described in chapter four that allow level 1 processors to affect

é other level 1 processors are all implemented in the PCP. When a level 1

Chapter 5 - 114 -

PR

SN RS R

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

of

requests

Figure 5.1
Processor Communication in Level 1 Implementation

processor executes one of these operations, its GPP actually communicates a

request to the PCP, which performs the operation.

The PCP actually handles one request from a GPP at a time. Successive
requests are queued. In order to keep the GPPs as busy as possible, once a
GPP has queued a request, it can proceed to execute, without waiting for the
request to be processed by the PCP. In the case of operations like VPl$run,
VP1§$stop, and VPl$advance, the GPP proceeds to execute the level 1 processor

that executed the operation. Other operations, like VPl$await, require that

the GPP not continue executing the level 1 processor executing the operation.

To prevent the GPP from being excessively idle during periods when a
burst of requests are sent to the PCP, the function of choosing the next level
1l processor to run on a GPP is distributed among the GPPs. There is a shared
priority queue that all GPPs can access containing all runnable level 1

processors in priority order. Figure 5.2 shows this queue. When a GPP

115 - Chapter 5

IR achi L S

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

priority
queue

request
queue

- ——— —

- G - S Ay em— e—

Figure 5.2
Priority Queue and Await Table

determines that it cannot continue running its current level 1 processor, it
will take the highest priority runnable level 1 processor from this queue, and

run it.

The PCP controls the bindings of level 1 processors to GPPs indirectly.
The queue of runnable level 1 processors is altered by the PCP to reflect any
changes in the runnability of the level 1 processors. After such a change has
been made, the GPPs must be reassigned. The PCP accomplishes the reassignment
by determining the GPPs that are improperly assigned, and forcing them to
unbind themselves from the current level 1 processor, and reassign themselves

based on the newly altered queue of runnable level 1 processors.

Chapter 5 - 116 -

Saaaienac

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Also distributed in each GPP is the handling of the quantum for each
level 1 processor. Each GPP keeps track of the time it spends executing each
level 1 processor, so that when the level 1 processor quantum is exceeded, the

GPP informs the PCP and reassigns itself to a runnable level 1 processor.

Interprocess Control Communication is centralized in the PCP. The PCP
maintains a table, called the await table (see figure 5.2), that keeps track
of the level 1 processors that are awaiting along with the eventcount names
and values awaited. An advance operation proceeds by having the GPP executing
the advance increment the value of the eventcount, then transmit to the PCP
the name of the eventcount and its new value. The PCP then processes this
information by finding all of the level 1 processors that should be awakened,
and awakening them. The special eventcounts (stopped, clock, I/0 eventcounts,
outward_signals) are not advanced by GPPs, but are handled within the PCP.

The clock and I/0 processor eventcounts are handled by periodic polling of
their values in the PCP. The stopped and outward_signals eventcounts are

advanced by the PCP, and reflected to the level 1 processors.

- 117 = Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.2 Hardware Architecture

Although the hardware architecture is slightly different than that of a
traditional multiprocessor computer system, I have tried to make the number of
differences as few as possible. The GPPs of the system look very much like
the physical processors of traditional computer systems. Most of the
implementation of level 1 processor manager is in software. I have chosen a
minimal set of hardware facilities needed to implement the level 1 processor
manager. These facilities are:
1. A mechanism that allows the PCP to interrupt the GPPs.
2. Shared primary memory to be used for communication of data
between PCP and GPPs.

3. A special mode of execution in the GPP used to allow the
implementation of the GPP part of level 1 operations in software
on the GPPs.

4. A special instruction that translates addresses within the level
1 processor environment into a version that is unaffected by
changes made to the environmeant specification.

5. A special instruction that allows the GPP to change its binding
to a new level 1 processor.

These features are discussed in detail below.

Chapter 5 - 118 -

s i

ORI A P AT s

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.2.1 The Processor Control Processor

The processor control processor (PCP) is a highly specialized processor
that controls the multiplexing of the general-purpose processors of the
system. It need not be a high-speed processor, nor must it have any of the
facilities needed for handling general purpose computations, such as
interrupts, faults, powerful instruction set, large memory, etc. It is

probably best implemented as a microprocessor.

The PCP communicates with the general-purpose processors of the system
through the system’s primary memory. The PCP can read and write primary

memory, although it need not store either its program, or most of its data in

primary memory.

The PCP can also send a special signal, called UNBIND, on lines that
connect the PCP to each individual general-purpose processor. Figure 5.3
shows the communication paths of the system. The UNBIND signal is used by the
PCP to cause a processor to stop doing what it is doing, and find a new level

1 processor to run.

The UNBIND signal is the only interrupt-like operation in the system.
There are no interrupt signals for the PCP, since it operates by repeatedly

polling the primary memory cells of interest to it. The I/0 processors will

- 119 - Chapter 5

:
E]
:;L
:
i

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

1/0
Processor

Bt

read
write

| PRIMARY MEMORY

Figure 5.3
Hardware Communication Paths

communicate with level 1 processors purely through memory. If an I/0
processor needs to send a signal to a particular level 1 processor, it will
increment a memory location treated by the PCP as a special eventcount, and
the eventcount will be observed by the PCP and reflected to the level 1

% processor. Each GPP is able to send a control signal to each I/0 processor to
start it executing, by advancing an eventcount (actually a counter, since it

F is not handled by the normal eventcount mechanisms) that is polled by the I/0

processor while the I/0 processor is stopped.

5.2.2 General-Purpose Processors

The general purpose processors (GPPs) of the system are much like the

general purpose processors of Multics, the IBM System/370, etc. They all

access primary memory through address translation hardware that is controlled

Chapter 5 - 120 -

= ,*ﬂﬁ,"i‘
O e e L R e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

by a data base in primary memory called a descriptor segment. Each GPP has a
set of internal registers, some of which are used to perform computational
operations of the level 1 processor, and some of which are used in the level 1

processor multiplexing implementation. The structure of the internal memory

CRs

DSEGP

1P

FIP

QTMR

L1PSP

unbind flag

master/slave flag

Figure 5.4
GPP Internal Memory

of a GPP is indicated in figure 5.4. Most items are familiar from chapter

four. The bracketed items are explained shortly.

The GPP operates in one of two modes, master mode and slave rode. In
slave mode, the GPP is running a level | processor. Its instruction pointer,
computational registers, descriptor segment pointer, and fault handler pointer
are all used in slave mode. The slave mode instructions allow the processor
to access memory through the descriptor segment, perform operaticns on its

computational registers, transfer, and so forth. One additional slave mode

- 121 - Chapter 5

WTIIETEERN. & S S RPN TR T~ R

A AR SR

el

i A i e it B e Dbt s

i PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

| operation, INVOKE-LEVELl, allows the GPP to enter master mode for the purpose

of communicating with the PCP.

Master mode in the GPP exists so that the level 1 processor operations

that need to communicate with the PCP can do so. In master mode, the GPP has

TR P YY)

access to the data bases in primary memory that are shared with the PCP.
Master mode would be unnecessary if all of the level 1 processor management
operations were built into the GPP hardware, but I have attempted in this
design to make the minimal hardware changes necessary for a clean design of

the level 1 implementation. Consequently, the operations that allow the level

i 1 processors to communicate with the PCP will be software operations run in

master mode. ‘

Master mode executes in a distinct addressing mode from the level 1
processor environment accessed in slave mode. The separate environment
protects the code executing in master mode from errors in the level 1
processor environment. Since the level 1 processor environment is controlled
at a level higher than the level 1 implementation, level 1 cannot depend on

the correctness of the environment in any level 1 processor without causing a

cyclic dependency.

In the master mode environment, it must still be possible for the GPP to
access parameters to level 1 operations that are stored in the level 1
environment, The simplest choice is to have the master mode environment able

to access absolute core addresses directly. An alternative would be to have

Chapter 5 - 122 - |

A T S b S

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

master mode use a different map, but the difficulty of converting addresses in
terms of the level 1 processor map to the equivalent addresses in a distinct
master mode map make this alternative unattractive. When in master mode,
addresses in code executed by the GPP are interpreted as absolute core

addresses.

The special functionality of the GPP must now be discussed. The level 1
processor state pointer in the GPP is a pointer (actually an absolute core
address) to the level 1 processor state in primary memory that corresponds to
the level | processor currently bound to the GPP. The GPP uses this pointer
to store the state of the level 1 processor when the GPP enters master mode.
This pointer is also used to store the fault data when a level 1 processor

takes a fault.

The format of a level 1 processor state block in memory is shown in
figure 5.5. The level 1 processor state block contains information that is
available at the level 1 interface, and some that is not. The current state,
containing computational register values (CRs), a instruction pointer (IP), a
fault handler pointer (FIP), a quantum timer register value (QTMR), and an
environment descriptor pointer (DSEGP), corresponds to the state information
presented at the level 1 interface by the bind and unbind operatioms. It also
corresponds to the state of a GPP. This is the state that is loaded into a
GPP when the GPP is bound to the level 1 processor. The fault data,
containing computational registers (CRs), instruction pointer, and fault code

(FCODE), is kept here so that the VP1$get_fault_state operation can access it.

- 123 - Chapter 5

¥
PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM
‘ CRs
DSEGP
level 1
IP processor
state
3 FIP
QTMR
:
CRs
level 1
IP processor
fault
FCODE state
FHH .
thread ?
execution state internal
level 1
1 atomic operation data
depth
% processor assignment
stop pending
priority :
1 Figure 5.5
Level 1 Processor State Block

The GPP sets the fault state when a fault occurs, and also sets the flag that
indicates that a fault has happened (FHH). If the FHH flag is already on when
a fault occurs, the GPP unbinds itself as if the level 1 processor had
executed VPl$crash_system. The rest of the data in the state block is not

interpreted by the hardware and will be described in detail later.

Chapter 5 - 124 - {

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

In master mode, there are two special instructions that cannot be used in
slave mode. The first, ACCESS, allows the GPP in master mode to interpret an
address relative to a specifed descriptor segment. This instruction will be
used to allow the GPP to translate data addresses from the address space of a
level 1 processor into the master mod (that is, absolute core addresses).
address space. If the ACCESS instruction eancounters a missing-page or
missing-segment fault, it will set a condition code indicating the fault that
occurred, and proceed to the next instruction. The ACCESS instruction loads a
register of the GPP with the address in the master mode address space that
corresponds to the specified address in the specified descriptor segment. It
also loads into another register the system-wide unique address, from the map,

of the word.

" The other special master mode instruction is LOADSTATE. The LOADSTATE
instruction allows the GPP to load a particular level 1 processor state from
an address in the GPPs master mode environment into the GPP’s registers. The
master mode flag is then turned off, and the GPP begins executing the level 1
processor. The level 1 processor state pointer of the GPP is loaded with the
address of the level 1 processor state block named in the LOADSTATE

instruction.

Two other special registers are present in the GPP. The quantum timer
register is a register loaded from the level 1 processor state that contains a
value that is decremented once every microsecond. When the register reaches

zero, it stops decrementing.

- 125 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The unbind flag is set by the PCP UNBIND signal. The unbind flag is
checked after executing each instruction when the GPP is in slave mode. A set
flag causes the GPP to unbind itself from the level 1 processor it is
currently executing. The GPP also unbinds itself from the current level 1

processor when the INVOKE-LEVELl1 operation is executed. The basic cycle of

i the GPP is shown in figure 5.6.
instruction := IP~->word
opcode := instruction.opcode
;.. . AU
1 < branch on opcode)
I 7. [T 1 P |
INVOKE-LEVEL1 LOADSTATE (normal instructions)
| 1
3
LIPSP := instruction.addq [771P t=IP + 1]
CRs, IP, QTR, FIP, DSEGP
:= LIPSP =>
CRs, IP, QTR, FIP, DSEGP [execute instruction]
clear master mode flag
A yes
CRs.req-type
#% := crash system
e
: L1PSP -> CRs, IP, QTR L1PSP -> fault CRs, L1PSP -> CRs, IP, QTR
:= CRs, IP, QTR fault IP := CRs, IP := CRs, IP, QTR
fault FCODE := <faulty JL
A
clear unbind, set IP := FIP clear unbind, set
master mode. master mode.
IP := INVOKER IP := UNBINDER j
(see figure 5.8) JL (see figure 5.8)
Figure 5.6
Basic GPP Cycle
Chapter 5 - 126 - ;
4
- A

T NI

T T

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.3 Data Bases

There are four data bases used in the level 1 processor implementation.
They are the level 1 processor state table (LIPST), the PCP request queue
(PCPRQ), the await table (AT), and the GPP control table (GCT). The first two
data bases are accessed both by GPPs and the PCP, so there is a locking
mechanism required for each; the AT, however, is private to the PCP, so no
locking is required. The GPP data items are each only written in by one

processor so there is no need for a lock.

The level 1 processor state table consists of an array of level 1
processor state blocks. The format of a level 1 processor state block has
been shown in figure 5.5. Each level 1 processor state block stores all of
the state information about a level 1 processor, along with certain
information used to schedule the assignments of physical processors to level 1
processors. All of the non-stopped level 1 processors are threaded into a
list in order of decreasing priority. The stopped level 1 processors are
either unthreaded, or threaded into a list called the next-stopped queue used
to implement the VPl$next stopped operation. Each level 1 processor state
block has stored in it the state of execution of the level 1 processor; it may
either be running, runnable, awaiting, stopping (a transient state on the way

to stopped),’ or stopped.

- 127 - Chapter 5

i ol ot

|
|

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The information not yet described in the level 1 processor state block is
used as follows (see figure 5.5). The thread value is used to thread the
block onto the priority queue or the next_stopped queue. The execution state
{ is stored in the execution_state value. If the level 1 processor is running
on a GPP, the name of the GPP is stored in the state block. The atomic
operation depth contains the number of times a VPlsbegiq_ptom_pperation has
been executed without a matching VPl$end_atomic_operation. The stop_pending
flag is used to remember that the level 1 processor must be stopped after its
atomic_operation depth reaches zero. The priority is permanently associated

with a level 1 processor, and is used to find the right place to thread the

level 1 processor into the priority queue.

The data in the level 1 processor state table is protected by a lock

: called the LIPST }ock. The data in the LIPST will not change while the LI1PST
lock is set, with.éne exception. A level 1 processor state block that is l
i marked in the running state can undergo certain modifications at any time.
The stored registers, instruction counter, quantum timer register, fault
information, and PCP request type fields may be modified by the GPP running

the level 1 processor at any time while the level 1 processor state block is

marked as running; none of the remaining data may be modified except by

locking the LIPST lock.

The PCP request queue is a FIFO queue used to send messages to the PCP,
It is a fixed size block of storage, probably best managed as a ring buffer.

A lock called the PCP request lock prevents more than one GPP from placing

Chapter 5 - 128 -

T

G I R TR iy

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

messages in the queue at the same time. Its size should be chosen to minimize
the amount of time spent waiting for the PCP to free up enough space for the
next message, which waiting is done by busy-waiting in the GPP. The queue

must be at least as large as the largest message placed in it.

The await table is kept internally to the PCP and keeps track of the
mappings from eventcounts awaited by level 1 processors to the level 1
processors awaiting, and vice versa. Its format is unimportant to the current
discussion, as long as it is possible to convert an eventcount name and
current value into a list of the level 1 processors to awaken, and it is
possible to delete the entries from the table that correspond to a particular
level 1 processor. A simple form of the table might be a list of
three-tuples: eventcount name, awaited value, and level 1 processor name.
However, there are much more effective ways of obtaining the desired

functionality than such a list.

The GPP control table contains entries for each GPP. There are two data
items in each entry. The first is a flag that indicates whether the GPP is
available for use by level 1 or not, for reconfiguration. It is modified only
by the PCP. The second entry is a counter incremented each time the GPP
finishes executing an unbind operation, either due to an UNBIND signal from
the PCP, or due to timer runout or INVOKE-LEVEL! in the GPP. It is used in
the implementation of VPl$propagate map_change; this use is described later

with the implementation of VPl$propagate_map_change.

- 129 - Chapter 5

i SRS oo o e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.4 Operation of the Processor Control Processor

The PCP has three functions to perform. First, it must manage the
bindingé of GPPs to level 1 processors. Second, it must do the work of the
requests in the PCP request queue, calling for the PCP to run and stop level 1
processors, add and delete GPPs, enter level 1 processors into the await
table, and awaken the level 1 processors awaiting a particular advance.

Third, it must implement the special eventcounts -- the outward_signals
eventcount, the stopped eventcount, the clock eventcount, and the eventcounts

associated with I/0 processors.

The PCP does all of these things by periodically polling the relevant
data bases, and then performing the necessary actions. Basically, éhe PCP
executes in a loop, first checking the PCP request queue for requests and
doing the ones found in the queue, then checking the special eventcounts
against the entries in the await table to see if any level 1 processors should
be awakened, then checking the level 1 processor assignment table to make sure
that all GPPs are properly assigned and issuing the appropriate UNBINL signals

to correct any discrepancies.

There are nine kinds of requests that are sent from GPPs to the PCP
through the PCP request queue. Here the data associated with the requests and

the processing done by the PCP are described. A flow chart of the operational

Chapter 5 - 130 -

T e S

cycle of the PCP appears in figure 5.7.

Y AR R W TS

s

- 131 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Chapter 5 £

O

Y

PCP LOOP

no

Eet next request from
CPRQ. req-type :=

request.type

—e

branch on req-type

Y

{N add cg;
del”cpu

T
crash_system

1 i e
run_level 1 processor stop level 1 processor

set

set ‘
GPC.available| [cPC.availabl

o

on/off for off for all
GPP GPPs
of request
= ¥
send UNBIND Lend UNBIND
to GPP of to all
request GPPs

deferred_sTop m
L set $_T_Ps ' set LIPST lock

lock

VP1 o
request
stopped?

yes

Pl of request’
lexecution state
:= runnable

A

—

branch on execu-
tion state of VPIl
of request

runnable awalting| running

rethread VPl
into priority

queue by priority

stopped
exec. exec. set
state state stop
i = := en-
stopped stoppe ing
Y and send
|
Y.
increment
stopped special
eventcount

Eﬁfead into stoppeﬂ
queue

¥ <

e

[clear L1PST lock |

Figure
PCP Algorithm

5.7

- 132 -

Flow Chart

A

i Y.

Y

add EC names

special clock EC :=

read time()/delta
s

for all special ECs,
do post await as

above.

set LlPS% lock ‘;Tj

T T 1 i
d r ap change
post_await post_advance propagate map_(g L‘W!"—"%ﬁﬁﬁ_o'rﬂ
L GPPs available

values & VPl send UNBIND
awaiting to to all GPPs save r := top orf priority
AT from Q queue |
request alist = a siifass)
entries in AT
that are for
EC in request yes
with values <=
value in reques
3[[clear LIPST lock
L, set L1PST lock i]
state = running
r runnable?
change state of
all VPl s in alist
to_runnable
delete all AT entries count := count - 1
for VP1°s in_alist
clear LIPST lock
if EC in request is
outward signalling, clear LIPST
increment loc
outward_signals } "
send UNBIND|[{ptr := next(queue)
to all GPPs
assigned l
gelow ptr
n queue.
. —— w

send UNBIND to

- 133 -

| _jall available GPPs
assigned to idle

states

!.-'!-..5...uQu-nuuuFH!!H'MMF!FF“*”"”“"'“’““"“ —

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The add_cpu, del_cpu, and crash_system requests are sent by GPPs
executing level 1 processors that call on the operations VPl$add_cpu,
VP1§del cpu, and VPl$crash_system. The add_cpu and del cpu requests also have
an associated data item, the name of a GPP. The PCP processes these requests
by setting the availability flag of the particular GPP to available for
i a&d;gpu, and unavailable for del cpu, then sending an UNBIND to the GPP. The
ctash_éysgem request is executed by marking all GPPs unavailable, and

E broadcasting UNBIND signals to all GPPs.

The propagate_map_change request is used as part of the implementation of
the VPl1$propagate_map_change operation. The associated data is the name of
the processor originating the request. The PCP handles this request by

issuing an UNBIND signal to all real processors, except the processor

originating the request. The rest of the work of the VPl$propagate map_change
operation is done in the GPP originating the request. This will be discussed

later.

The run_level 1| processor and stop_level 1l processor requests are sent by
GPPs executing level 1 processors that call on the operations VP1Srun and

VP1$stop. The associated data with these requests is the name of a level 1

processor. The PCP processes these requests by locking the LIPST lock,
altering the state of the level 1 processor to runnable or stopped,]

respectively, and rethreading the level 1 processor into the processor

Chapter 5 - 134 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

IR

priority list or the next-stopped list. (1) If the level 1 processor is being
stopped, it also must have all associated entries removed from the PCP await

table, so that the space can be reused. (2) The LIPST lock is then unlocked.

: 9 The processing of the stop level l processor request is not actually

% 3 quite this simple. If the level 1 processor is either running or is in the
middle of an atomic operation (its atomic operation depth is non-zero), the

1 level 1 processor cannot be stopped immediately. In this case, instead of
changing its state to stopped, a flag will be set in the level 1 processor
state block to indicate that a stop is pending. If the level 1 processor is

. running, it will be sent an UNBIND signal to ensure its speedy stopping. The
1 pending stopped flag is interpreted by the GPP at the time of an unbind, and

L will cause the GPP to put the level 1 processor in the special stopping state,

and then send a deferred_stop message in the PCP request queue.

The deferred stop message is sent to the PCP under three conditions. 1In
an unbind operation on the GPP, if the pending stop flag is found on in the
current level 1 processor state block, and the level 1 processor atomic
operation depth is zero, then a deferred_stop is sent to the PCP. If the

quantum timer runs out, and the atomic operation depth is zero, then a

(1) Whenever the next-stopped list has a new level 1 processor added to it,
the PCP increments the special stopped eventcount, The increment is observed
later by the PCP when checking the special eventcounts, and reflected then to
the awaiting level 1 processors.

(2) Please recall that executing VPl$run on a stopped level 1 processor will

cause the VPl$await instruction to be re-executed, so that the information in
the PCP await table will be regenerated at that time.

- 135 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

deferred_stop is sent to the PCP. 1If the level 1 processor executes a
VPl$end_atomic_operation instruction that decrements the atomic operation
depth to zero, and the stop pending flag is on, or the quantum timer has run

out, a deferred stop is sent to the PCP.

The level 1 processor sending the deferred_stop message is put into the
special stopping state by the GPP. The data contained in a deferred_stop
message is the name of the level 1 processor being stopped. The PCP processes
a deferred_stop message in the same way it processes a stop_level 1 processor
request, except that it need not check to see if the level 1 processor is

stoppable.

The post_advance PCP request is sent by the GPP executing an advance
operation to cause the level 1 processors awaiting the advance to be awakened.
The actual incrementing of the eventcount is done by the GPP; the PCP need
only search its await table for the level 1 processors to awaken, and perform
the awakening. The data sent with the post_advance request is the system-wide
unique address of the eventcount and the value of the eventcount after
incrementation. The PCP performs this request by finding all entries in the
await table that have the same system-wide unique address with awaited values
less than or equal to the value sent in the post_advance request. It then
locks the LIPST lock, finding all of the level 1 processors that are named in
the above-mentioned await-table entries. The state of each of these level 1
processors is changed from awaiting to runnable. When the level 1 processor
is next run, it will re-execute and find that one of the eventcounts has been

advanced, so it will proceed.

Chapter 5 - 136 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

.

The PCP also checks each post_advance request to see if the advance was
on an outward signalled eventcount. If so, it increments the special
outward_signals eventcount (the posting of the outward_signals eventcount

occurs later).

The last PCP request is post_await. It is sent by a GPP to the PCP after
checking the eventcounts awaited in a VPl$await operation, if none of the
eventcounts is greater than or equal to the values awaited. The data sent to
the PCP are the name of the level 1 processor awaiting, and pairs of
system-wide unique addresses of eventcounts and awaited values. (1) The PCP

responds to these requests by adding entries to the PCP await queue for each

of the eventcounts.

After processing the PCP request queue, the PCP handles the special
eventcounts. The system’s calendar clock is read by the PCP and it decides
whether to increment the clock eventcount. The PCP then reads each special
eventcount, getting its current value. It then acts as if it received a
post_advance for each special eventcount, searching the await table for
awaiting level 1 processors, and awakening them. The PCP can always directly
access the special eventcounts. There are only a few such eventcounts. They

are the stopped eventcount, the clock eventcount, the outward signals

(1) Please note that the limit on the number of eventcounts in a VPl$await
operation is associated both with the maximum size message that is sent
through the PCP request queue, and with the maximum number of entries that can
be placed in the PCP await table. The more eventcounts that a level 1
processor can await, the larger these tables.

- 137 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

eventcount, and the I/0 device eventcounts. These eventcounts are handled
specially in the PCP because the agents that increment the eventcounts do not

use the PCP request queue, and so do not use post_advance requests to reflect

E the incrementing to level 1 processors.

1 The final step of the PCP is to update the assignments of GPPs to reflect
the changes in the level 1 processor states and bindings. This step is done
by locking the LIPST lock, and inspecting the assignments of GPPs reflected in
g the level 1 processor states. The PCP then issues UNBIND signals to a set of
GPPs so that the GPPs will reassign themselves to the correct set of level 1

processors, based on the priority ordering of the level 1 processors.

The algorithm used to choose the GPPs to unbind is very simple. The PCP

knows how many GPPs are on the system. By starting at the top of the priority

queue in the level 1 processor state table, and counting running and runnable
level 1 processors as the queue is traversed until as many are found as there
are GPPs, the PCP can find the set of level 1 processors that should be

running. If any GPPs are running lower priority level 1 processors, they

should be preempted by sending an UNBIND signal. The PCP thus traverses the §‘

rest of the priority queue, sending UNBIND signals to GPPs running any lower

priority level 1 processors.

Chapter 5 - 138 -

!'-ll--.'-F-!"'-'F'HHFFHF—l!--l!llﬂﬂ-ﬂﬂllﬂluullrﬂummu . " o —

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.5 GPP operation

1 The way that level 1 processor operations are implemented on GPPs is by
using the INVOKE-LEVELl instruction. The INVOKE-LEVEL1 instruction causes the
GPP to enter master mode, and to transfer to the unbind handler. A flag is
set in the level 1 processor state by the INVOKE-LEVELl instruction to
indicate that a INVOKE-LEVEL]1 has been executed. The type of level 1

processor operation to be performed is transmitted in a register, and the

addresses of any data, such as eventcounts, etc., required by the operation

are transmitted through registers.

To simplify the discussion of the unbind operation, we must first discuss
the handling of exceptions, such as missing page exceptions, in accessing the
data associated with a particular operation. The data will be accessed by
first using the ACCESS master mode instruction to convert the address of the
data in the address space of the level 1 processor into an address that is
reachable in the master mode address space. If the ACCESS instruction
encounters a missing-page exception, it reflects this in the condition code,
rather than faulting. If a missing page condition occurs, the code in the
unbind sequence will abort the current operation, and update the level 1
processor state to simulate a missing-page fault, moving the current copies of

the computational registers to the fault data, along with the instruction

- 139 - Chapter 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

counter, and setting the fault code to indicate the type of fault encountered.
The current instruction counter of the level 1 processor will then be set to

% the fault handler address. The GPP will then proceed with finding a level 1

L processor to execute.

e e it

If no fault is detected by the ACCESS instruction, then the GPP can
perform the rest of the operation correctly. Having determined the address of

data in the master mode environment, the GPP can then proceed to access these

i objects, without fear of encountering faults.

The unbinder that executes in master mode in all GPPs is described in the

e

flowchart in figure 5.8.

Chapter 5 - 140 -

Figure 5.8
GPP Resgonses to UNBIND and
NVOKE-LEVEL1

\UNBINDER/

et L1PST lock]

\INVORER7

Fe -tgpe:- curVP’s request registef}

JACCESS all parameters for request
getting master mode addresses & UIDs

no excepgion

req-type :=
glcrash system

curVP1’s fault CRs:=CRs
Fault IP:=IP, fault FCOD
:= page fault, IP:=FIP

i |

stop Rending
or QTR=Q) and

atomic depth=0
and FHU not
set?

false

curVPl’s execution
state := runnable

curVP1’s execution
state := stopping

i E—2
clear LIPST lock
set PCPRQ lock

add to EtFRQ'

Heferred stop, cﬁrVPl

clear §CPR lock

set LIPST lock

EALLY AWAITING
(from page 142)

GPC.available

no

yes

find highest griority
runnable VPl in
priority queue

\

none

urVPI:ih{J%est

riorit

found

—Y
[curVPl:-GPP idle staE-]

s execution

clear LIPST lock

[curGPP’s GPC.counter

curVP1™s
proc. int.
pending and
atomic degﬁh-o
and not

yes —
curVPl’s fault CRs := CRs
fault IP := IP

fault FCODE := processor interrupt
IP := FIP

v A

LOADSTATE(curVP1)

- 141 -

%1 ose
YIANIANN

1+ d1

P

An

_ BUTITEME =:
uojIndexe s, [JAIND

23e3

§193UN02°)gds

u»ucsou.owu

=: 201d]] 8ae

3e 3

RUT D202
10

u ut

iy | o

398

woa3 £doo
\wumwuoua W

9and ‘odueyd
h@we 23e8edoad

|:08d04 o3 ppe

BB
1Sd11 398

X120
1SdI1 3°s

UTJUdWIIDUT Se yons)

elep J1neyj
‘yadap Otwo3le
8utjuawaaoap 10

d1Sd TdAAnd uo
uofjeaado waojaad

UMTAM\\

=13JUT 108830

muwumluouhmuwuﬁmuSwQu

BJEp jIney 398

1

ik

EEL
ARIT O

_T s

3 SQIN D3
‘3Teme 3800

b¥ddd o3 ppe
)

anyea 3ie
‘adf3-baa
:0¥d0d 03 pp

and 3 @@n j
‘@oueApe 31s

:0¥dod 03 pp

_ _®8ueyo 3 -oad 398 uoj3Ieiado OFJWOIE pud :nulwwv ‘nd> ppe
dew 23eSedoad paddo3s 3xau purqun ‘pulq uorjeaado ojwo3e uisaq oum‘.cau : wu=w>vm
s A T 1

39

Iyene

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The basic flow of the unbinder is quite simple. If the unbind is due to an
INVOKE-LEVEL]l instruction, the request is handled. Then, the L1PST lock is
locked, and the level 1 processor is checked to see if it should be stopped.
If it should be stopped, the level 1 processor is placed in the stopping state
and a request is sent to the PCP. If not, it is marked as runnable. The GPP
then searches the priority queue for the highest priority runnable level 1
processor. It is marked as running, the L1PST lock is unlocked, and the GPP
uses the LOADSTATE instruction to run the level 1 processor, having set up a

simulated fault if a processor interrupt is to be sent to the level 1

processor.

The only exception to this basic flow is the handling of the PCP request
associated with the VPl$await instruction. In order to ensure that an advance
operation does not happen and get inserted into the PCP request queue between
the time the eventcounts are tested and the time the post_await message is
entered in the PCP request queue, the eventcounts are tested while the PCP
request queue lock is locked. The GPP then decides whether to enter the
post _await message into the PCP request queue or not, and unlocks the PCP
request queue. (1) If the post_await message is entered, the level 1
processor is marked as awaiting, otherwise, the instruction counter is

advanced passed the INVOKE-LEVEL1 instruction, and the unbind proceeds as

before.

(1) The problem I am solving here is the same critical race Saltzer [25)
describes, which in his case necessitates a wakeup-waiting switch that is
tested under a lock. The eventcounts themselves serve the same purpose as the
wakeup-waiting switch in this implementation.

- 143 - Chapter 5

G S AR A N 5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The advance operation is very simple. It simply increments the memory
word of the eventcount, and transmits the new value, and system-wide unique
address (obtained in the ACCESS instruction) through the PCP request queue, in

a post_advance request.

The propagate_map_change operation is fairly subtle in its operation.
The implementation works by causing all GPPs other than the current one to
unbind themselves, then waiting until they complete their next unbind
operation. To know when each GPP finishes its next unbind operation, there is
a table of counters, one for each GPP on the system. Each time a GPP
completes an unbind operation, it increments its counter. The
propagate_map change operation is done in three steps. First, the GPP reads
the current values of the counters associated with each other GPP. Second, it
sends a propagate_map_change PCP request. Third, it busy-waits until each
other GPP’s counter is greater than the value of the counter obtained in the
first step. By the time the third step is completed, all GPPs will have
completed at least one unbind operation after the VPl$propagate map_change
operation started. Consequently, there will be no copies of absolute
addresses obtained from the maps retained in the processors that were

generated before the VPl$propagate map_change started.

The add_cpu, del_cpu, crash_system, run, and stop operations all consist
of transmitting PCP requests of the associated type, with the arguments to the

operations as data.

Chapter 5 - 144 -

¥

SNV ORI

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Several of the operations, however, are handled without the PCP’s help.

The VPl$get fault_data operation is done by copying the data from the level 1

processor state block. VPl$restore fault_data copies its argument into the

current state in the fault state block. VPl$begin atomic_operation increments

the atomic operation depth in the level 1 processor state, and
VP1Send_atomic_operation decrements that value. After doing the work of any
of these operations, the GPP proceeds to finish the unbinding operation

normally, finding the next level 1 processor to execute.

The VP1$bind, VPl$unbind, and VP1$set processor_interrupt operations
operate similarly. They all require that the level 1 processor they operate
on be stopped. Consequently, they lock the LIPST lock, then test to see if
the level 1 processor to be operated on is stopped. If so, the operation is
performed. If not, an error status is stored in the status code of the

operations. The LIPST lock is then unlocked.

The final operation to be discussed is the VPl$next_stopped operationm.
This operation just locks the LIPST lock, gets the next level 1 processor on
the next-stopped queue, and stores its name in the return value. The LI1PST

lock is then unlocked.

With the exception of the await operation when it decides to send a
post_await request, the instruction counter is always incremented by 1 after

handling a INVOKE-LEVEL1 instruction, before finishing the unbind. This

causes the instruction counter to skip over the INVOKE-LEVEL] instruction just

executed.

- 145 - Chapter 5

B s A A s 35 AT G Pkl SIS Ll a5 15000

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

5.6 Implementing Level 1 Processors on Traditional Hardware

If it is not possible to have a dedicated processor to run the PCP, it is
still possible to adapt this design to work. This adaptation is done by
simulating the PCP on the general purpose processors that are available.
Similarly, mapping the interrupts sent by I/0 devices into increments on
special eventcounts is not difficult. Both these ideas are discussed in the
rest of the chapter, to show that the design can be easily adapted to
architectures similar to the Honeywell 68/80 system that currently supports

the Multics system.

5.7 Simulating the Processor Control Processor

The necessary qualities of the PCP for implementing the level 1 processor
design given in this chapter are that it must have its own environment and
state, and that it always must be ready when there are tasks for it to do. It

must also be able to send an UNBIND signal to any other processor.

While these characteristics are true of a dedicated hardware processor,
it is also possible tu obtain them by other schemes. The scheme used here
will be to recognize that the PCP need not always be executing. When it is

not executing, its state can be represented in primary memory. The same

Chapter 5 - 146 -

idatine i

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

techniques that r ke processor multiplexing possible will enable simulating

the PCP on a multiprocessor architecture.

The PCP’s state (computational registers, descriptor segment pointer)
will be stored in primary memory in a block called the PCP state block. In
addition, the PCP state block will contain a lock.called the PCP lock, and a

flag, called the PCP-has-work flag.

Basically, we simulate the PCP by attempting to have the currently
executing physical processor load the PCP state and run the PCP whenever the
PCP is given more work to do, such as, for example, when a new request is
entered into the PCP request queue. Some other processor may be executing in
the PCP, however, so the PCP lock is used to prevent two processors from
simultaneously entering the PCP. In order to enable any processor to run the
PCP, each processor must be able to send UNBIND signals to all other
processors. Further, when running the PCP, there must be some mechanism that
prevents UNBIND signals sent to the current processor from taking effect until

the processor stops executing the PCP.

The detailed algorithm executed every time something is entered into the
PCP request queue is as follows. The PCP-has-work flag is set. The processor
attempts to set the PCP lock. 1If the lock is already set, the processor
continues with what it was doing; presumably it is executing some version of
the unbind operation shown in the previous design, so it continues to unbind

itself. 1If the processor succeeds in setting the lock, it then clears the

- 147 - Chapter 5

T T L

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

PCP-has-work flag, and loads the state from the PCP state block. When the PCP
processes all of the work currently queued for it, it gives up the processor
by storing its state in the PCP state block, unlocking the PCP lock, and then
checking the PCP-has-work flag. If the PCP-has-work flag is on, some other
processor has given more work to the PCP since the current processor started
running the PCP. Consequently, the current processor tries to run the PCP,

and gives up only if it finds the PCP lock already set. (1)

In order for this simulation to work, it is necessary to run the PCP in
this way whenever it must do some processing. As we have seen there are three
kinds of processing that the PCP does. They are handling the PCP request
queue, noticing changes in special eventcounts and handling the clock, and
making sure that the assignments of processors to level 1 processors is
correct with respect to priority assignments. Handling the PCP request queue
is simple in the simulation. We just change the algorithm for sending PCP

requests to always try to run the PCP after placing a request.

Handling special eventcounts is not so simple. We would like the PCP to
run relatively quickly after a special eventcount is incremented. There are
three kinds of special eventcounts. The stopped eventcount is simple to
handle, since it is incremented only by the PCP itself, so the PCP is always
running after incrementing the stopped eventcount. The clock eventcount is

less simple. 1If there is a way to set an alarmclock in the system that will

(1) The PCP-has-work flag is really a wakeup-waiting switch for the PCP, if
you imagine giving up the processor by the PCP as a block.

Chapter 5 - 148 -

O e

5

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

send an UNBIND signal to some processor periodically, then the GPP can always
check the current clock value at the start of the UNBIND handler to see if the
PCP should be run. This solution can also handle the checking of the other
special eventcounts incremented by 1/0 devices, since the alarmclock can be
set to go off with a frequency that gives an optimal rate of polling of the

special eventcounts. The major cost of simulating the PCP on the other

processors of the system arises from the need to unbind processors more

frequently to handle the clock.

5.8 1/0 Devices That Send Interrupts

Traditionally, I/0 devices send interrupts to the system to signal the
completion of I/0 operations. Up to this point, we have been assuming that
1/0 devices signalled the completion of I/0 operations, or other events
requiring immediate attention of a level 1 processor, by incrementing memory
words that the PCP then handled as eventcounts. The PCP then reflected these

changes as advances, detecting them by periodic polling.

If the more traditional method of having the I/0 devices send interrupt 1
signals ko the GPPs is used, the incrementing of eventcounts can be simuléted l
by having the interrupt handlers of the system do nothing but increment the
appropriate memory words. The PCP will periodically poll these memory words,
and reflect changes to them by awakening level 1 processors that await changes

to those words.

- 149 - Chapter 5

¥
b
®
?{.

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Responsiveness is a question here. If the polling frequency of the PCP

is controlled by a clock, as above, in order to get very fast response to I/0
device signals, the polling frequency must be very high. This has a cost, in
that most times the clock forces the PCP to run, there will be nothing for it
to do. Consequently, the best choice is to run the clock so that it
interrupts the processors only as frequently as necessary to cause the clock
eventcount to work. The interrupt handlers, in addition to incrementing the
eventcount associated with the device causing the interrupt, will attempt to
run the PCP. This choice guarantees that when the PCP is rum, it has

something to do.

5.9 Summary

In this chapter I have shown how to implement level 1 processors using a
structure based on a central agent. The first implementation is developed

using a dedicated processor for the central agent. Then, for an
implementation more suitable for traditional multiprocessor architectures, I

showed how the dedicated processor can be simulated without a dedicated

processor on the general-purpose processors of the system.

The simplicity of the implementation in either case derives primarily
from the centralized structure. It is clear in this structure how the

assignments of level 1 processors to GPPs is controlled.

Chapter 5 - 150 -

e e i S b N I S e

Wk Nué&a;‘; ,@‘ﬁ‘

|
|

kst g N b

Chapter Six

Level 2 Processor Interface and Implementation

The second level virtual processors are used to run user computations in

the computer system. In this chapter, the interface and implementation of

level 2 processors are described. The level 2 interface is quite similar to

the level 1 interface, with a smaller number of operations.

There are three major differences between level 1 and level 2, however.

SIS T T AT S

First, since level 2 primitives are visible at the perimeter of the security

kernel, protection mechanisms are very important to prevent unauthorized
interference between level 2 processors. The level 2 interface is designed so

1 that privileged information is not accessible at the interface. The

authorization to use particular level 2 operations is provided by the ordinary
F access control mechanisms used to protect stored information.

Second, the level 2 implementation is partitioned into two parts: a

fixed mechanism for multiplexing level 1 processors, and a policy mechanism

that controls the rate of resource usage by the level 2 processors. The
policy mechanism is designed to be modifiable by an administrator at an

individual computer installation without the need to re-verify the security of

data in the system.

- 151 = Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Third, the IPCC mechanism provided at level 2 is more flexible than that
of level 1. The await operation can await a larger number of eventcounts. A
process interrupt facility is provided that is really just a special case of
the await operation. The await operation also takes care of outward
signalling eventcounts. The IPCC mechanisms are completely protected by the
access control mechanisms that apply to segments containing eventcounts;
there is no need for a special protection mechanism to prevent unauthorized

interprocess control communication.

In this chapter, the interfaces to level 2 are discussed first. The
overall structure of the implementation then is discussed, and the isolation

of scheduling policy from mechanism is explained.

6.1 Level 2 Processor Interfaces

At level 2 there are two sets of operations that allow control of level 2
processors. The creation and deletion operations manage the set of level 2
processors that are in existence at any time. The IPCC operations allow
communication between level 2 processors. These two sets are the only
operations that are provided at the level 2 interface for the control of level

2 processors.

Some internal interfaces are important because they form the interface

between the scheduling policy and the scheduling mechanism in the level 2

Chapter 6 - 152 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

implementation. These interfaces are discussed later in the description of

the implementation.

6.1.1 Creation and Deletion of Processors

Unlike the first level processor manager, which implements a fixed set of
processors, the second level processor manager allows for creation and
deletion of second level processors. This facility makes the assignment of
processors to user computations much simpler -- whenever a user wants to start
some process (as when he logs in to the computer system) he can just have a

new processor created on which to run that process.

Initiation of a process running on a level 2 processor requires
fabricating an environment for the processor to execute in, creating a level 2
processor to perform the process, and starting the level 2 processor running
at a particular point in the environment. 1In this thesis, I assume that the
environment is created and maintained outside the level 2 processor
implementation, by an environment type manager. Authorization to initiate a
process in a particular environment, with a particular initial execution
point, is handled at a higher level in the system. Montgomery (18] has
discussed a mechanism for protection of process initiation. His mechanism

should be used in conjunction with my design.

- 153 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The process initiation operation starts by first verifying the right of
the level 2 processor invoking the kernel process initiation operation to
create a process that starts with the particular initial execution point in
the specified environment. This verification is done within Montgomery’s
model. Then, it creates an environment description (such as a Multics
descriptor segment) for the specified environment, by calling on the
environment description manager. Inside the security kernel, it then passes
the environment description and initial execution point to the level 2
operation that creates the level 2 processor and starts it running at the

initial execution point.

The level 2 operation that creates and starts a level 2 processor running
in a particular environment with a particular execution point is the operation

VP2$create_processor (envptr, startptr, schedclass, procname)
This operation takes a name of an environment (envptr), a point within the
environment to start executing (startptr), and a scheduling class
(schedclass). It creates a level 2 processor that is named procname, and
starts it running at the initial execution point. The schedclass parameter is
information passed to the scheduling policy mechanism of the level 2 processor

manager to control the rate of resource usage of the created processor.

Protection of level 2 processors from destruction is also at a higher
level in the security kernel of the system than level 2. The level 2
operation used to destroy a level 2 processor is

VP2$destroy_processor (procname, envptr).

Chapter 6 - 154 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

This operation destroys the level 2 processor named procname. The level 2
processor is not destroyed until it becomes stopped at level 1, so that any
kernel operations in progress will complete. VP2$destroy processor does not
return until the processor named procname is destroyed. The environment of
the processor is not destroyed by this operation. The environment ptr
(envptr) is returned so that the higher level process termination operation

can destroy the environment.

6.1.2 IPCC Interfaces

IPCC among level 2 processors, like IPCC among level 1 processors, is
done using eventcounts. Eventcounts are implemented as words in virtual
memory segments. Protection of eventcounts is accomplished by using the
virtual memory protection mechanisms. An advance operation requires that the
level 2 processor executing the advance have both read- and write-permission

to the eventcount, while an await operation requires only read-permission.

Since segment protection is used to prevent unauthorized release of and
interference with (modification of) information sent through the interprocess
control communication mechanism, ensuring various security policies is
simplified. To confine a level 2 processor from transmitting information to
unauthorized receivers through both eventcounts and segments, one only has to
restrict the set of segments it has write-permission to. If the set of

segments it can write cannot be read by unauthorized receivers, then the

- 155 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

confinement is assured. IPCC using eventcounts does not introduce a new

information channel from the confined processor, since sending information via

eventcount IPCC requires advancing eventcounts, and thus modifying segments.

Similarly, a level 2 processor can be protected from unauthorized
interference with its IPCC, by preventing unauthorized level 2 processors from

having modify-permission to eventcounts that it awaits.

The await operation at level 2 has new functionality over the level 1
await operation. First of all, it allows waiting on outward-signalling
eventcounts. Thus, the eventcounts that can be awaited by level 2 await
operations are those that are advanced at level 2, and those that are in the
set of specially handled outward-signalling eventcounts (advanced at level 1).
Second, the number of eventcounts that can be simultaneously awaited is not
restricted to a small number in level 2. A level 2 processor can await a
large number of eventcounts simultaneously. The difference in the number of
eventcounts that can be awaited reflects the cost of storage used in the level

1 and level 2 implementations.

The operations on eventcounts at level 2 are:
VP2$await (ecl, valuel, ec2, value2, ...)
and
VP2$advance (ec).
VP2$await waits until ecn is greater than or equ;l to valuen, for some pair of

arguments n. VP2$advance advances the eventcount specified. VP2$await

Chapter 6 - 156 -

Db b L e

R

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

requires read permission on all of its parameters. VP2$advance requires both

read- and write-permission.

6.1.3 Processor Interrupts

A common feature of many operating systems is to allow a process is to
receive a pseudo-interrupt when certain external things happen. For example,
a user of Multics can, by hitting the attention key on his terminal, interrupt
the program he is currently running. The handler for this interrupt reads
commands from the terminal, allowing the user to inspect the state of the
program, modify its environment, and debug the program. The user can thus
stop a runaway program, which might be executing in an infinite loop, and

debug it.

One way to model this processor interrupt mechanism would be to associate
two level 2 processors with the user’s computation. See figure 6.l1. One of
the level 2 processors, called the slave processor, runs the user’s program,
while another, called the control processor, waits for the attention key to be
struck. The attention key being struck advances an eventcount associated with
the attention key. The control processor then proceeds past the await, and
causes the slave processor to stop (assume, hypothetically, that a level 2
processor stop operation exists). Then the control processor can read
commands from the teletype and execute them, to debug the stopped slave

processor. The slave processor can then be restarted (using a hypothetical

- 157 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

user slave
program processor

loop: '
await(attn...) control
stop(slave) FE processor

attention
key

run(slave)
goto loop

Figure 6.1
Processor Interrupt Model

level 2 run primitive), and the control process can go back to waiting for the

attention key to be struck.

Directly implementing this model of processor interrupts is quite costly,
since at any one time half of the level 2 processors are either awaiting an
attention key to be struck, or stopped. Further, some mechanism would be
needed to insure that the control processor is bound to a level 1 processor
whenever its slave processor is. Otherwise, when the control processor needs
to run, to stop the slave processor quickly, it can be held up if there is not
a free level 1 processor to run the control processor. However, this model is

useful in inventing a simple processor interrupt facility at level 2.

Instead of stopping one processor and starting another to read commands,
the processor interrupt facility simply forces a fault to occur in the slave

processor. The fault handler in the processor, upon determining that the

Chapter 6 - 158 -

ik

PRI =t 5 14

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

fault was a processor interrupt, will transfer to a processor interrupt
handler. This processor interrupt handler can be thought of as a potential
control processor that is awaiting some condition to occur. When the
condition occurs the control processor is created, the slave processor is
stopped, and the processor interrupt handler is executed in the control

processor.

The conditions under which the processor interrupt handler will be
entered are specified as if the processor interrupt handler were actually
executing an await operation on a set of eventcounts. Thus, there is an
operation that a level 2 processor can perform, called

VP2$set_processo;_}ntertupt (ecl, valuel, ec2, value2, ...)

The effect of this operation is as if a 1covel 2 processor were created in the
same environment, that begins by executing a VP2$await operation on the
eventcount-value pairs specified, and after the await returns, calls the
processor interrupt handler. (1) When the handler returns, the stopped level
2 processor will be restarted at the point where it was stopped by the
interrupt. While the interrupt handler is executing, the stopped level 2

processor cannot run.

(1) The processor interrupt is initially received by the fault handler set up
in the level 1 processor. 1 assume that this fault handler determines the
fault type and reflects it to a set of higher level fault handlers. The fault
handler for each type of fault can be changed through an interface that
controls the level 1 fault handler called the fault manager. The program to
be called upon a processor interrupt is specified through the fault manager
interface.

- 159 - Chapter 6

e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Once the handler is entered, the interrupt conditions are reset, so there
are no interrupts during the time the handler is deciding what to do to handle
the interrupt. The handler reenables interrupts by calling
VP2$set_processor_interrupt again. At any particular point in time, either no
handler is set, or one has been set. Attempting to use
VP2$set_processor_interrupt to set up two handlers that are invoked under
different conditions causes the new handler to completely supersede the old

one.

In order to interrupt a process, then, one need merely advance one of the
eventcounts specified in the call to VP2$set processor_interrupt. Having the
level 2 processor itself specify the conditions under which it is to be
interrupted allows protection by the access control on eventcounts against
malicious attempts to send interrupts. Further, programs running on the
processor can be quite flexible in choosing the set of conditions that cause
processor interrupts. The clock eventcount, I/0 eventcounts, or any level 2

eventcount can be made to cause an interrupt.

Chapter 6 - 160 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

6.2 Structure of the Second Level Processor Manager

The level 2 processor implementation is based on a relatively centralized
processor multiplexing algorithm. The multiplexing of level 1 processors
among level 2 processors is done by two dedicated level 1 processors, called
the unbinder and the binder/scheduler. A third dedicated level 1 processor
handles outward signalling of eventcounts. Not all of the work is done by the
dedicated level 1 processors, however. The creation and deletion operations
are distributed in the processors that do the initiation and termination of
processes. The IPCC operations are distributed among the level 2 processors,

to some extent.

There are four data bases shared among the parts of the level 2 processor
implementation. They are the level 2 processor table, which contains the
state of each level 2 processor, the level 2 await table, which keeps track of
all of the eventcounts being awaited by level 2 processors, the level 2
reschedule queue, which is a list of level 2 processors that are candidates
for rescheduling, and the free level 1 processor list, that contains a list of

level 1 processors that can be bound to level 2 processors.

The processors and data bases of the level 2 implementation are shown in
figure 6.2. The binder/scheduler processor executes in two domains. In the

binder domain, the mechanisms for binding level 2 processors to level 1

- 161 - Chapter 6

amneniaIOane | F‘
!
4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 1 processors
multiplexed by level 2

interrupt
set

free level 1 processors

outward
signallenq

binder/
scheduler

rescheduling

level 2
processors
executing
at

Figure 6.2
Processors and Data Bases of Level 2

processors are found. The scheduler domain is a less privileged domain that
implements the particular scheduling policy for the level 2 processors. The
scheduler domain can call on a small set of primitives to control the actions
of the binder domain. These primitives are discussed later in this chapter.
They are designed so that the scheduling pclicy may be written without

compromising the security of the system.

Chapter 6 - 162 -

g
&
:
#
:

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

6.2.1 Level 2 Data Bases

Before describing the actions of the level 1 processors that make up the
level 2 implementation, I describe in more detail the four level 2 data bases.
All of these data bases are protected by a single lock, called the level 2
processor lock. Waiting for the level 2 processor lock to be unlocked is done
by awaiting the level 2 lock eventcount that is advanced (using VPl$advance)
each time the lock is unlocked. To ensure that the level 2 operations
operating under the level 2 processor lock do not deadlock, level 2 processors

accessing these data bases must do so while unstoppable at level 1.

The level 2 processor table is a table containing one entry for each
level 2 processor that exists. 1Its function is similar to the function of the

level 1 processor state table. The data of the level 2 processor table is

stored in a virtual memory segment.

Figure 6.3 illustrates the format of a level 2 processor table entry.
Each entry of the level 2 processor table contains a state description of the
level 2 processor in a format suitable for calling the VP1$bind operation.
Some of the data in this description is in a different form, however. The
pointer to the environment description is not a primary memory address at this
level, but a name that can be presented to the environment description manager

operation that places the environment description in primary memory. 1In

- 163 - Chapter 6

ARSI o 2o b (R S

o MK S -0

cabiivai S

RIPRR S e S oo e e

=

TR WU -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

CRs

IP

FIP

environment
descriptor

quantum
allocated

execution
state

delete
pending

interrupt
pending

pre-empt
- pending

awaited EC —
list

interrupt EC
list -

private EC

resched. queue
thread

resource usage
statistics

Figure 6.3

level 1
state

another
level 2

processor
table entry

Level 2 Processor Table Entry

addition to the state description, there is a value that represents the

execution state of the level 2 processor -- running on a level 1 processor,

Chapter 6

| S S ..‘_._n

T PPN T

S T R R i s

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

runnable, awaiting some eventcounts (and not bound to a level 1 processor), or
queued for rescheduling. Also in each entry are three flags that control the
action taken by the unbinder -- delete pending, processor interrupt pending,
and pre-empt pending. The level 2 processor table also has two pointers to
lists in the await table, one for awaited eventcounts, and one for processor
interrupt eventcounts. A private eventcount is stored in each processor
table entry to be used in the await operation described shortly. Associated
with each entry is a set of resource usage statistics maintained for use by

the scheduling policy in making decisions.

The await table is primarily a mapping from eventcount names to level 2
processors awaiting those eventcounts. Given an eventcount name, and a value,
one can inspect the await table and find all level 2 processors that should be
awakened when the eventcount is advanced to the specified value. A suitable
representation for the await table is shown in figure 6.4. The await table
consists of an eventcount map that converts an eventcount name into a list of
await table entries. Each entry on the list contains a value awaited.

Entries on the list are sorted in increasing order of value awaited, so that
the set of entries less than or equal to the current value of the eventcount
can be found efficiently. Each entry also contains a pointer to a level 2
processor table entry that indicates the processor that is interested in this
particular value of the eventcount. A flag in the entry indicates whether the
entry corresponds to an eventcount being awaited by the level 2 processor, or

to an eventcount used in VP2§$set_processor_interrupt. Finally, all of the

- 165 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

table indexed
by eventcount n?me

| !
i | list sorted by increasing value

eventcount value value

name

interesting interrupt/ interrupt/ f
value list ~ await syeis

outward sig- | next value ™ next value 4=’

nalling thread
h \ level 2 level 2 o

| L~
| : processor processor -
!
|
: ' next entry next entry e
for processor for processor
level 2
processor
table
entry another
value
entry

Figure 6.4
Await Table Structure
entries for a particular processor are threaded into two lists, one for
awaited eventcounts, and one for processor interrupt eventcounts. All of the
outward signalling eventcounts are also listed together in a special list,

used by the level 2 processor that handles outward signals. The await table

is stored in a virtual memory segment.

The rescheduling queue is a list of level 2 processors that are
candidates for rescheduling. The level 2 processor table entries each have a

thread pointer that allows level 2 processors to be threaded onto this list.

Chapter 6 - 166 -

R g

e e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Associated with the rescheduling queue is an eventcount that is advanced each

time a level 2 processor is added to the queue.

The free level 1l processor list is just a list of the level 1 processors
that are free for the binder to bind level 2 processors to. Level 1
processors are added to the list each time level 2 processors are unbound from
them. Binding a level 2 processor to a level 1 processor is done by selecting
one of the free level 1 processors on the list, and binding to that level 1

processor. An eventcount is associated with the free level 1 processor queue.

It is advanced each time a level 1 processor is placed in the free queue.

One other data base is used in the implementation, but is completely
private to the scheduler domain of the binder/scheduler processor. It is

called the scheduler queue, and is discussed in the description of the

scheduler.

6.2.2 Processes of the Second Level Manager

The three processes that are part of the level 2 manager run on dedicated
level 1 processors. Each of these processes performs one particular class of
operations, waiting for a particular event to happen, then interacting with
the level 1 implementation and the level 2 data bases to perform its function.

They are implemented on distinct processors for two reasons -- their operation

is only loosely coupled, so it would add complexity to try to specify the

- 167 - Chapter 6

o

i e RN . PRI S

RRCRS IRy

s M ST

A A S R AN AR i

§
3
i
:

B
[]

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

order of their operations, and the tasks performed by each of these processors

can proceed in parallel to a reasonable degree.

The binder/scheduler and the unbinder processors implement the bind and

unbind operations of the model of processor multiplexing described in chapter

multiplexed level 1
processors running
level 2 processors

ree level 1
Drocessors

schedule

interrupt

binder/
scheduler

awaiting deleted

scheduling level 2 level 2
queues processor processor
using level 2 using
VP2$create_ processors VP2$delete_
processor processo

Figure 6.5
Actions of Binder/Scheduler and Unbinder

two. Figure 6.5 illustrates the actions of the binder/scheduler and the
unbinder. When a level 2 processor is stopped at level 1, due to exceeding
its quantum or an explicit VPl$stop operation, the unbinder processor awakens

and determines what to do with the level 2 processor. It uses the

Chapter 6 - 168 -

e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

VP1l$next_stopped operation to get the name of the level 1 processor, and
translates this into the name of the level 2 processor that is stopped. If
the level 2 processor table entry for the stopped processor indicates that a
delete is pending, the unbinder performs the deletion. If a processor
interrupt is pending, and rescheduling has not been explicitly requested by
the scheduler, the unbinder uses VP1$sec_yrocessoq_intetrupt and VP1S$run to
cause the processor interrupt to happen. Otherwise, the level 2 processor is
unbound from the level 1 processor, and placed in the rescheduling queue if it
is not waiting, and marked as queued for rescheduling. If the level 2

processor is waiting, it is marked as awaiting.

The rescheduling queue is the means by which the binder/scheduler is
informed of processors to be rescheduled for level 1 processors. The
binder/scheduler is driven by two conditions -- the availability of free level
1 processors noted in the free level 1 processor list, and the arrival of new
level 2 processors to be rescheduled. These conditions are signalled by
advances of eventcounts associated with each queue. It takes each new level 2
processor that arrives in the rescheduling queue, and enters this processor
into an internal data base called the scheduling queue. As level 1 processors
become free, the binder/scheduler chooses the best candidates from the

scheduling queue, and binds them to the free level 1 processors.

The binder/scheduler can also enforce scheduling policies that require
pre-emption of level 2 processors from level 1 processors before their quantum

is exceeded. Pre-emption of level 2 processors bound to level 1 processors is

- 169 - Chapter €

SR M i 4

A T AL M R D

A A S M S B 5 B M P A

e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

achieved by marking the level 2 processor table entry as having a rescheduling
requested, then using VP1$stop to stop the level 1 processor. When the level
1 processor stops, the level 2 processor will be placed in the rescheduling

queue by the unbinder.

The binder/scheduler does not see level 2 processors that are awaiting
eventcounts. As part of doing the corresponding advance, the level 2
processor is queued for rescheduling, from which queue the binder/scheduler
can extract it. If the binder/scheduler pre-empts a level 2 processor that is
awaiting, it will be unbound from the level 1 processor it is running on, but
will not be placed in the rescheduling queue until the corresponding

eventcount is advanced.

The third processor of the level 2 processor manager is the outward
signaller. The outward signaller’s job is to periodically poll the outward
signalling eventcounts that are being awaited by level 2 processors. It uses
the list of outward signalling eventcounts in the await table to find out the
names of all the outward signalling eventcounts being awaited. It uses the
outward_signals eventcount to control the frequency of its polling, as I noted
in chapter three. When the polling of outward signalling eventcounts
indicates that a level 2 processor should be awakened, the outward signaller
awakens the level 2 processor, just as if the outward signaller had

incremented the eventcount itself.

Chapter 6 - 170 -

T 2 By oz T T

Rt A L ot

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

6.2.3 Eventcount Implementation

6.2.3.1 Advance

The level 2 advance operation increments the eventcount by calling on the
level 1 advance operation. By using level 1 advance, level 2 solves the
inward signalling problem. Any level 1 processor that is waiting on the
advanced eventcount is awakened by level 1. After using level 1 advance, the
level 2 advance operation determines the level 2 processors that must be
awakened (if awaiting) or sent a processor interrupt (if the advanced

eventcount is part of the processor’s processor interrupt condition).

Finding the level 2 processors affected by an advance and performing the
required awakening and setting interrupts is done by an operation that is
internal to the level 2 implementation, called WAKEN. The WAKEN operation
takes the name of the eventcount and its current value as input. WAKEN then
uses the await table to find all level 2 processors that are to be awakened
and interrupted. The WAKEN primitive is also used by the outward signaller

processor to reflect all of the outward signalled eventcounts.

- 171 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The level 2 await operation actually waits by using the level 1 await
operation. Since level 2 can await a large number of eventcounts
simultaneously, some method must be used to reduce the number of eventcounts
awaited at level 1. The reduction is accomplished by associating with each
level 2 processor a private eventcount that is advanced by the level 2 WAKEN
operation to actually awaken the associated level 2 processor. The level 2
await operation actually waits at level 1 by awaiting a change to the private

eventcount of the waiting level 2 processor.

The WAKEN primitive actually awakens a level 2 processor in three steps.
First, all of the await table entries on the awaited eventcount list for the
level 2 processor are deleted from the await table. Further advances on the
private eventcount are prevented, since no await table entry for the processor
will be found. Second, it advances the private eventcount. If the level 2
processor is bound to level 1, this will cause it to run. Third, if the level
2 processor is not bound to a level 1 processor, its state is changed to
queued for rescheduling, and it is threaded onto the rescheduling queue so

that the binder/scheduler sees it.

The WAKEN operation also causes processor interrupts to happen. Await
table entries that are to cause processor interrupts are specially flagged.
The WAKEN operation causes the interrupt to occur in three steps. First, the
list of await table entries associated with the level 2 processor interrupt is
deleted from the await table. This prevents further interrupts from being

set. Second, the level 2 processor table entry is flagged as having a pending

Chapter 6 -172 -

%
|

calh. ol o et e R e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processor interrupt. Third, if the level 2 processor is currently bound to a
level 1 processor, the level 1 processor is stopped, using VP1$stop, and
otherwise, the level 2 processor is marked as queued for rescheduling and is
placed on the rescheduling queue. If the processor is running at level 1,
when it stops the processor interrupt will be set by the unbinder processor.
Otherwise, when the binder/scheduler binds the processor to level 1, it will

use VPl$se;_processoq_1nterrupt to set the interrupt.

6.2.3.2 Await

The level 2 await operation works by locking the level 2 processor state
lock, then checking the eventcounts and obtaining their system-wide unique
names. If any of the eventcounts is greater than or equal to the
corresponding value, the processor state table is unlocked, and the await
operation returns. (1) Entries are made in the await table for each
eventcount-value pair, and the current value of the level 2 processor’s
private eventcount is obtained. Then the state table lock is unlocked, and
the level 2 processor executes a VPl$await on the private eventcount, for the

next higher value of the eventcount.

(1) 1f a fault (other than a fault handled transparently below level 2, such
as a missing page fault) occurs while accessing any eventcount (such as no
access to read the eventcount), the state table lock is unlocked and the fault
is reflected. When the fault is restarted, the lock will be relocked, and the
await operation starts from the beginning again.

- 173 - Chapter 6

| PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

A processor interrupt can occur during the await operation at level 1.
It is desirable to allow processor interrupts to occur during level 2 awaits,
so that a user can interrupt his program if by mistake an await is executed
i that never will finish. The interrupt handler can await also. Because the
| interrupt handler shares the same awaited eventcount list and private
eventcount at level 2, there must be some way that the interrupt handler can

be allowed to use level 2 await, while ensuring that when the interrupted

await is restarted it works correctly.

To solve the problem of the interrupted await, I modify the basic level 2
advance and await algorithms slightly. Essentially, the effect of my
modification is that restarting an interrupted await causes the await to be

re-executed from the beginning.

The WAKEN primitive, in interrupting a level 2 processor that is awaiting

(it has an associated await list) does two extra things. First, the await

table entries for all eventcounts on the interrupted processor’s awated event

list are deleted from the await table. Second, the private eventcount of the

A Al o Kl

interrupted processor is advanced. Advancing the private eventcount ensures

that the level 1 await operation in the level 2 await will return.

The level 2 await operation must check the eventcount and value
parameters a second time after the level 1 await returns, because the level 1
await can return for one of two reasons now. One reason, of course, is that

the level 2 await is over -- in this case, one of the eventcounts will be

Chapter 6 - 174 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

greater than or equal to the awaited value, and the level 2 await operation

will return to its caller. The other reason is that the await was interrupted
by a processor interrupt. If none of the eventcounts is greater than or equal
to the awaited value, the await must be restarted by re-entering the events in
the await table, getting the private eventcount value, and awating the private

eventcount at level 1.

6.2.3.3 Set_processor_interrupt

The VP2$set_processor_interrupt operation works similarly to await. The
state table is locked, and each eventcount is checked and its system-wide name
is obtained. If any eventcount exceeds its corresponding value, the state
table lock is unlocked, and the processor interrupt pending flag is set. The
level 2 processor then executes a VPl1$stop operation on itself. (1) If every
eventcount is less than the corresponding value, then the processor state

table lock is unlocked and the set_processor_interrupt operation returns.

6.2.3.4 Outward Signalling

As noted briefly above, the outward signaller handles outward signalling

eventcounts. Whenever a level 2 processor awaits or sets an interrupt

(1) Rather than simulating the fault, the mechanism in the unbinder is used to
cause the processor interrupt for simplicity.

- 175 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

condition that involves an outward signalling eventcount, that eventcount is
threaded onto a special list in the await table, called the outward signalling
list. The outward signaller periodically takes this list of eventcounts and
obtains the values of all outward signalling eventcounts on the list. Then,
it uses the WAKEN interface to cause the level 2 processors interested in the

outward signalling eventcounts to wake up or be interrupted.

6.2.4 Scheduling Policy

In a real computer system installation, there are many requirements on
the the allocation of resources to individual user computations over time that
cannot be predicted in advance by the system builder. Consequently, the
system builder would like to provide for some flexibility in the resource

allocation policies he builds into the system.

For this reason, the second le—-el processor manager would like to provide
an interface by which the administrator can control its resource allocation
policies. The most general mechanism is to allow the administrator to write

the program that makes the scheduling decisions for the second level processor

manager. In the second level processor manager, this mechanism is provided

for in a clean manner.

St e & - 176 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

We would like the policy mechanism to be modified by the system
administrator only in such ways that are safe. It would be unreasonable if by
introducing a slight bug in the resource allocation policy, the system’s data
integrity and security could be compromised. Consequently, it is necessary to
encapsulate the administrator’s policy control program in an environment of

the leest privilege necessary to do the tasks required.

Obviously, the resource allocation policy mechanism can, if malicious or
incorrect, deny resources to computations that can legitimately proceed. By
allowing the administrator to write such a program, then, we place the

capability for denial of service in his hands.

Through denial of service, or slowdown of service, of course, the
resource allocation policy has a subtle channel of communication with all of
the processes it controls. This can lead to unauthorized release of
information. However, to use these subtle channels requires much more than a
simple mistake on the administrator’s part. So assuming the administrator is
not malicious, we can provide a degree of protection against unauthorized

release of information through this path.

The mechanism provided is implemented as a domain in the binder/scheduler
processor, called the scheduler domain. Encapsulated in the scheduler domain,
which only has access rights to call certain level 2 processor management
primitives will be the scheduling policy algorithm. The scheduling policy

algorithm will await an event of interest, such as the availability of a free

- 177 - Chapter 6

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

level 1 processor or the arrival of a new level 2 processor in the
res_heduling queue. The policy algorithm will then incorporate the new
knowledge into its policy and make scheduling decisions that it will
accomplish by calling on an interface that causes selected level 2 processors

to be bound to free level 1 processors.

There are three basic primitives available to the resource allocation
policy process. The first one, schedule, allows the process to name a level 2
processor to be bound to a free level 1 processor and to specify a quantum of
resources. The level 2 processor will be assigned to a level 1 processor if
there is a free one, and the quantum for the level 1 processor will be set
from the specified value. The second primitive, next-rescheduling, extracts
the next level 2 processor from the rescheduling queue. It returns the name
of the level 2 processor, and a summary of its resource usage information on
which a scheduling decision can be based. The third primitive, pre-empt,
allows the scheduling policy to pre-empt a level 2 processor already bound to
a level 1 processor. The pre-empt primitive marks the level 2 processor as
having a pending pre-emption, and if the level 1 processor is bound to level 1
it uses VPl$stop to stop it from running. The unbinder processor notices this
flag, and puts such a processor in the rescheduling queue. The flag is reset

when the processor is placed in the rescheduling queue.

Very simple checking ensures that the policy algorithm does not make
incorrect use of the level 1 and level 2 processor resources. The schedule

primitive makes sure that a level 2 processor of the specified name exists and

Chapter 6 - 178 -

e e e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

is not currently assigned to a level 1 processor. It ensures that the
important data bases associated with the level 2 processor environment
description (e.g., descriptor segment) are in core to make sure that the level

2 processor addresses memory correctly. It also ensures that the process is

oy ——

runnable and not waiting for some eventcount implemented at level 2.
Similarly, the unbinding of a level 2 processor and deallocation of in-core
resources, etc. is carried out outside of the domain of the scheduling policy

algorithm, in the unbinder processor.

With the 3 operations that the scheduler domain uses to control
scheduling, it can implement almost any policy, without the possibility of a
bug in the policy algorithm interfering with the operations of the level 2
processors being controlled by the policy (except by denying service). This
is accomplished primarily by storing the sensitive data about processes being
scheduled outside the domain of the scheduler. The sensitive data contained
in the level 2 processor state, etc. cannot be read or modified by the

schedule, next-reschedule, and pre-empt primitives.

It should be noted that the resource allocation policy process runs in a
level 1 processor, rather than a level 2 processor. This is necessary, in

order to prevent the resource allocation policy from having to schedule

YN e R i

itself.

- 179 - Chapter 6

3 PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM
.
]
]
‘ |
1 {
|

- 180 -

Chapter Seven

Using Level 1 Processors in the Operating System

The level 1 processors provided by the level 1 processor manager are very
useful tools for structuring the kernel of an operating system. They can be
used wherever a scarce resource is multiplexed among a group of users of the
system to control the multiplexing. Level 1 processors can be used to manage
multiplexed I/0 devices, the virtual memory, and even scarce resources being

managed by the abstract type managers of the kernel.

The isolation of environment and control point that level 1 processors
provide can be very useful in ensuring that parts of the system execute with
the lcast privileges necessary to accomplish the task. Putting I/0 device
management in level 1 processors rather than interrupt handlers that execute
in any level 1 processor environment is an example where using level 1

processors can reduce the privileges needed by parts of the kernel.

Using concurrently executing level 1 processors to implement uncoupled or
loosely coupled algorithms also simplifies specification v the kernel. There
is no need to specify a particular order of operations where that order is
irrelevant to the tasks of distinct modules. Overspecification of the system

can lead to extra complexity, possible deadlocks, and more difficult proof.

+ - 181 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Finally, using level 1 processors to perform a particular task in the
kernel assures that there is always an agent capable of performing a task when
it needs to be done. For example, a virtual processor dedicated to handling
missing page faults generated in I/0 processors will allow the I/0O processors
to deal with virtual rather than real memory, and thus simplify the task of

interfacing user computations to I/0 devices.

7.1 Permanently Bound Processes

Processes that implement parts of the kernel algorithms are best
implemented as computations that run on dedicated level 1 processors. There
are a fixed, relatively small number of such processes. These processes
manage shared resources, and can cause bottlenecks in the system resulting in
denial of service to users if they are not scheduled properly. Most such
processes provide functions that must be correct in order for the second level
of processor multiplexing to work. For these reasons, the processes used in
the kernel of an operating system with two levels of processor multiplexing

will permanently bound to level 1 processors.

Chapter 7 - 182 -

SIS ROICONEN RS PETeS- WY SACTST

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

7.2 1/0 Device Management

In traditional operating systems such as Multics, the operations of
asynchronously running I/0 channels are controlled by interrupt handlers.
Such interrupt handlers are invoked on the real processor, and execute in the
environment of whatever process was executing on the processor at the time.
This has two bad effects from the point of view of containing the effect of
bugs in the system. First of all, the interrupt handler, which may be quite
lengthy, has access to manipulate anything in the environment of the
interrupted process. If the interrupt handler has a bug, it may inadvertently
read or modify data that is not relevant to the reason for the interrupt. The
interrupt handler thus has more privilege than needed for its task, and
violates the principle of least privilege [26]. Just as the interrupt handler
has access to the data of the process, it also has control of the execution
point, and may arbitrarily delay the interrupted process, although the process

may perfectly reasonably execute on another processor.

The other problem is that the existence of interrupt handlers forces
complex structures in the non-interrupt code of the system. First of all, all
processes must execute in environments that have sufficient access privileges
for all of the interrupt handlers of the system. This is the other side of

the violation of the principle of least privilege mentioned above. All

- 183 - Chapter 7

T

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

processes thus possess privileges to access a large number of shared data
bases that they normally would have no need to access. This large amount of
shared data is potentially a shared information channel between processes, at
least, and may contain information, such as typed passwords in I/0 buffers

that can contribute to sabotage of the system if misused.

The parasitic nature of interrupt handler control points also forces
processes to use unnatural control structures. Since the interrupt handler
has no state of its own, it cannot wait for another process to complete its
action. Waiting could cause a deadlock if the process waited for is the one
that the interrupt handler is executing in. For this reason, all processes
that interact with data shared with interrupt handlers must never lock such
shared data unless provision is made to make sure the interrupt handler does
not interrupt the process doing the locking. This requirement makes handling

of I/0 require unreasonably complex algorithms.

For these reasons, it is quite'useful to associate kernel processes with
each 1/0 device. A device’s kernel processor can await the eventcount
advanced by the device to determine when the device needs service. Only the
kernel process associated with a device need have privileges to manipulate
that device’s buffers, mailboxes, or other device specific control data. This
reduces the privileges available to ordinary processes running user
computations. Further, the kernel device process need only have privileges to
resources that are needed to do the job of handling the device. The kernel

device process need not access any user data; its interface to the user can be

Chapter 7 - 184 -

R ik i i aailiia

Saco

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

through a single shared queue object. Thus both the ordinary process, and the
computations associated with handling a device have reduced privileges if the

1/0 device management is implemented in a process.

The control structure of the device manager and user can also be much
simplified. The simplification results from the fact that the communication
is now symmetric; both the user and the device manager are running on
different processors, and each can communicate with and wait for the other in
the same way. No process is held up from executing because it handled the
interrupt even though there are free processors. Further, independent device
manager processes can be executing simultaneously, whereas in the interrupt
scheme, this is hard to achieve without increasing the complexity of the
interrupt structure of the system. Using level 1 processors for device
management can succeed in smoothing the load of device management over all

processing units available to the system.

The performance implications of running I/0 management algorithms in
level 1 processors are likely to be good. The difference between running a
computation at interrupt level in a real processor, and scheduling a level 1
processor that has a higher priority than some currently executing level 1
processor, is that in the interrupt scheme, the state of the running process
is stored and reloaded once per interrupt. In the process oriented scheme, in
order to get the device manager to run, the process state must be stored, and
the device manager’s state loaded; when the device manger reaches a waiting

point, its state will be stored, and the old process’s state reloaded. Thus

Chapter 7

i Ao R DO

AR S Ao 6

s

At e

]

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

there will be twice as much saving and loading of states in the process

schenme.

If this were the only effect, there would obviously be a performance
degradation. However, there are other effects that very likely will balance
or overcome this defect. First of all, the device manager process now has a
state that the interrupt handler had to encode in some way in its associated
data bases. This state specifies what the handler is to do next, so it is not
necessary to program the device manager to interpretively determine the
meaning of the most recent I/0 signal. If taken advantage of, the state
information can replace the information used by the device manager to keep
track of what it is doing. Another improvement is that complicated, expensive
locking and masking algorithms need not be used in the process scheme for
communication between the device manager and the user computation. Such
algorithms require both computation time, and memory resources in the kernel.

Consequently removing the need for such algorithms can improve performance.

In sum, then, if the cost of saving and restoring a process state is
comparable to the cost of maintaining the state of the I/0 connection between
interrupts, then there probably will be a net performance gain resulting from

removing complexity from kernel algorithms.

Chapter 7 ' - 186 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

7.3 Kernel Type Managers as Processes

There are a similar set of problems associated with the implementation of
kernel type managers as subroutines callable by user processes. We have

discussed these in chapter three, but I will mention them briefly again.

First of all, without a domain mechanism that allows the user computation
and kernel to be mutually protected, a kernel type manager executing in a
user’s process will have access to all of the user’s data. It thus operates
with more privilege than necessary. If the type managers of the kernel are
all protected from the user but there is no domain mechanism within the
kernel, the kernel domain in any user processor must have access to all data
needed by kernel type managers available to that process. While it is
possible with domains to restrict the accessibility of such data, and to
restrict the access rights of abstract type managers to user data, having the
kernel type managers execute in each user process still requires that each
user’s address space contain all of the domains in the kernel. If the address
space is maintained in a per-process object such as a descriptor segment in
Multics, then many copies of the same data will exist and must be kept up to

date.

- 187 - Chapter 7

e AL e B el e YT T 7 7 AP 5850 = B A 7 (10 i

e i o S AL

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

By structuring the abstract type managers in separate processes, each
abstract type manager need only have in its environment those objects with
which the manager must transact. This both simplifies the structure of each
abstract type manager’s environment, and eliminates the need for a separate

domain construct, with its additional complexity of implementation.

Implementing the kernel type managers in separate processes can lead to
simplification of the part of the kernel that manages the environment
descriptions of processes. When kernel type managers are implemented in a
distinct domain of a process that executes user algorithms, the operations
that the user code uses to manipulate its environment description must ensure
that the manipulations done do not interfere with the part of the environment
used by the kernel type managers. Thus the kernel algorithms depend on the
environment manager, so the environment manager must be at a very low level in
the kernel. By separating out the kernel type managers into separate
p:ocesses, they may be executed in fixed environments that are not manipulated
by the environment manager. The environment manager can then be implemented

at a nigher level in the kernel.

Implementing an kernel type manager in a separate process also protects
the execution point of the kernel type manager from the resource controls on
the user processes. In chapter 3, we have discussed how this can help
guarantee that the kernel type manager never stops executing in the middle of
an operation. The proportion of the time during which an ordinary user

process cannot be interrupted can thus be reduced.

Chapter 7 - 188 -

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

A reason that we have not yet discussed for putting kernel type managers
in separate processes is to provide the facilities of the type manager to
computations executing on dissimilar processors. Suppose we have several
kinds of specialized processors on the system for various functions such as
handling special I/0 channels, or performing specialized computations such as
Fast Fourier transforms or associative searches. A simple way to pass data to
such processors is through shared data objects in the virtual memory. To have
a very specialized processor perform the virtual memory operations itself upon
encountering a missing page or missing segment fault is probably impossible or
unnecessarily complex. The part of the kernel type manager that actually
handles a missing page can be easily invoked by such a specialized processor
if the page fault handling is implemented in an independent, dedicated virtual
processor. If it is normally done by code in each ordinary process, then some
special case mechanism must be used to handle page faults in a specialized
processor, with the result that the special case mechanism may not interface
correctly to the normal mechanism. Having two mechanisms to perform the same

action is probably always a bad idea in designing a system.

- 189 - Chapter 7

.

g 5 I R T O B e i L s S L e

B A8 S0

v e -r TIOR , T — T = d = - > -
ol 3 BB z
AN o TR RN %) e ’
5

i PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

7.4 Explicit Recognition of Parallelism in the System Design

In an operating system like Multics, there are many operations that are
& carried out in the security kernel of the system that do not require a
particular order of execution. An example of this is the page replacement
algorithm in the virtual memory. The page replacement algorithm operates by
choosing candidate pages in primary memory to move from primary to secondary
memory. The pages are then removed from primary memory. The removal of pages
; from memory must anticipate the demand for space in primary memory for new

1 pages, because removal of pages that have been modified while stored in
primary memory requires an operation to write the data in the page to
secondary memory. This operation can proceed in parallel with the use of
other pages in memory. In order to efficiently free up pages in primary

4 memory, a process that is only loosely coupled to the executing user
computations must constantly keep ahead of the user computations, writing out

the data in pages that look like good candidates for removal.

£ If there is not an independent kernel process that does this lookahead,
the page fault handler in each user computation must periodically do some

lookahead, so that writing of pages is ahead of reading of pages into memory

most of the time. Choosing the right point in time to do this lookahead

(before reading the page in, or after?) and the right frequency of executing

Chapter 7 - 19 -

S 8 |

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

the lookahead algorithm (every page fault or every third one?) as well as the
right amount of lookahead to do each time the lookahead algorithm is entered
(depends on the queuing facilities available for writes, the average frequency
of reads, and other factors) can be quite complex. The complexity of these

choices arises from the artificial constraint that the page removal algorithm

must be in lock-step synchronization with the handling of page faults,

e
e e

contrasted with the basic requirement that the page removal algorithm must run

ahead of the page fault handling for efficiency. Most of this complexity has

been removed in a design proposed by Huber [10], by putting the page removal
algorithm in its own processor. The page removal algorithm then can be

relatively autonomous in its choice of how far to look ahead and how fast.

There are many algorithms in operating systems that are only loosely
coupled with user-requested operations. In Multics, such algorithms include
managing the paging pool (as in the example), managing the in-core copies of
page maps, moving data coming into the system on I/0 devices and stored in
primary memory buffers into secondary memory, and updating the accounting
records stored in the virtual memory from accounting variables stored in the
primary memory by kernel type managers below the virtual memory level of the

kernel.

- 191 - Chapter 7

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

7.5 Resulting Structure

The result of carrying out the structuring specified in this section will
be to create an operating system in which the kernel is made up of a set of
processes, each associated with a particular physical resource or shared
abstract resource. These processes will all be implemented on dedicated level
1 processors, where the environment of the virtual processor is configured to
exactly conform to the environment needed by the process. For example, the
disk manager process will have an environment that includes only the
wired-down disk accessing code and data bases, and a wired-down message queue
with which it communicates to the virtual memory systems that control the
reading and writing of disk pages. The manager of the page data type will
have access to the disk queue, and wired-down page tables that it manages. It
will be controlled by a queue of requests provided by user processes that take
page faults, or by the segment manager, which may need to create or delete

pages.

A non-exhaustive list of algorithms of the Multics system that would
benefit from being implemented on a dedicated level 1 processor follows.

1. Device management (currently done by interrupt handlers). One
level 1 processor for each I/0 channel.

2. Page removal algorithm. (Designed by Huber [10])

3. Page fault handler. Havig this processor would allow I/0 devices
to access virtual memory as described earlier.

4. Environment descriptor manager. In the environment of the
environment descriptor manager, each environment descriptor could

Chapter 7 - 192 -

A T

o i

ne

BRI T Y AR T IR AN

s LU Pl b i

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

be known as a data segment. Thus manipulation of environments of
all user processes, needed to handle revocation of access to and
simultaneous sharing of environments is only done by one process.
System debugger. In Multics, the state of a crashed system is
inspected by a stand-alone program that is loaded on a crash into
the memory. An alternative would be to design it as a level 1
processor that awaits an eventcount that is advanced by a crash.
Since level 1 is fairly simple, and is the bottom level of the
system, it should rarely be the case that a system crash causes
the implementation of level 1 to fail. The system debugger can
then be designed in an environment where parallelism works.

Page table removal algorithm. For the same reasons that I
pointed out for the page removal algorithm, removal from primary
memory of page tables for segments is simplified by decoupling it
from operations explicitly called by user algorithms.

Salvaging of directories. Currently two separate mechanisms
handle salvaging the data in directories if the data is
discovered to be inconsistent. One mechanism is a stand-alone
program run by the system debugger while the system is crashed.
The other is a part of the kernel that is invoked when a direcory
manager operation discovers that the directory being manipulated
is inconsistent. These mechanisms could be merged into a program
that runs on a dedicated level 1 processor that awaits requests
to salvage directories. Like the system debugger, this program
could still run, even if most of the higher level programs have
stopped due to software failure.

Consistency checker. A processor could periodically check the
consistency of important system data bases, in the hope of
catching trouble before other software encounters it. For
example, a process could check to see that two distinct pages
were not assigned to the same disk block.

- 193 - Chapter 7

e T T e S e

A SR TR Y i s e o 5 A e

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

N A R NGNS DRI

T AR e ere T B AR SR Y et T SIS R T s 1

MA—————

L Rk 0 B AN R A RSN A 2NN SRR S VTN

Chapter Eight

Conclusions and Suggestions for Further Research

To sum up the research described in the thesis, I first would like to put
in capsule form the major insights I have found in the progress of the

research. Then, I present a number of topics that I have not had the

o e WA P ST AR SR

opportunity to investigate fully, but which definitely deserve further

ppaes

investigation.

The technique used to disentangle the virtual memory - virtual processor
é mutual dependency was to break up the virtual processor implementation into
two levels, the first of which provided no new memory accessing capability and
could be used to provide processing power to the algorithms that implemented
the virtual memory. This technique is a special case of a method Parnas has
recently called "sandwiching" (22], that in general allows elimination of
] “ mutual dependencies between two modules, A and B, by splitting A into two
; pleces so that the functionality B depends on is in the lower level of A,
while of the two pieces, only the higher level of A depends on the

functionality provided by B.

In developing a design for the two levels of the virtual processor

implementation, I have avoided introducing new mutual dependencies between

either of the levels of virtual processors and the virtual memory. In the
case of the virtual memory - virtual processor mutual dependency, then, the

sandwiching technique has been successful in practice, as well as in theory.

- 195 - Chapter 8

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The use of abstract type managers as a metaphor for describing the two
level virtual processor hierarchy has given an unexpected dividend in showing
that the cache management pattern of type extension first developed by Janson
(11] can be used to describe the structure of processor multiplexing
algorithms as well as the virtual memory implementation. The cache management
pattern is a basic pattern in the design of operating systems because
operating systems create abstract types as tools to manage scarce resources.
As far as I know, the use of types as tools to manage scarce resources is not
yet well understood. However, the cache management pattern seems to play a
quite important role in using abstract types to describe the implementation of

operating systems.

In the design of both levels, a certain degree of simplicity arises from
centralizing the mechanism that does the actual multiplexing of processors in
one or more dedicated processors. As I have shown in the latter part of
chapter five, it is fairly easy to take a design that uses a centralized
control and convert it into a design that has distributed control. The
inverse transformation is not easy, however. An algorithm initially designed
to be distributed on the processors being multiplexed, such as that presented
by Bredt and Saxena [2], tends not to be as clear because the legitimate
orderings of actions taken by the distributed algorithm is not directly

represented in the algorithms.

Chapter 8

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

The use of eventcounts for IPCC in the design has had two effects.
First, protection of information transmitted by the IPCC mechanism is
guaranteed by the virtual memory protection mechanism. This eliminates the
need for a special access control mechanism on IPCC that would make the
implementation of the IPCC mechanism more complex. Second, because
eventcounts are simply words in the virtual memory, the same semantics apply
to the IPCC mechanisms provided at both levels of virtual processor
implementation. Further, because the storage for eventcounts is provided by
the memory, the same eventcount can be used by processors implemented at
different levels, allowing inward and outward signalling. Providing
semaphores as the basic IPCC mechanism seems to preclude outward signalling.
In Bredt and Saxena’s design (2], which provides semaphores, it is required
that a level 2 processor that takes a page fault remain bound to the level 1
processor until the page fault is satisfied. 1In my design, a level 2
processor that takes a page fault can wait for the page fault to be satisfied

using level 2 await, and be unbound in the interim.

An important part of the design of the second level was providing an
administratively variable policy mechanism that could be varied arbitrarily
without compromising the correct operation of the kernel of the operating
system. While the mechanism proposed does not prevent denial of ;etvice to
users, the policy algorithm is run in an environment containing only the
privileges needed to make scheduling decisions. The actual integrity of the

virtual processors being scheduled and the data that they operate on cannot be

- 197 - Chapter 8

O A L TR A AT A A e

S

St s WA SR IR A

P

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

compromised by the scheduling policy mechanism. 1In part, the policy mechanism
was easy to include in the design because the processes used to perform kernel
functions are protected from the policy mechanism by being permanently bound

to level 1 processors.

The design developed in the thesis has, serendipitously, allowed the
kernel to be constructed as a set of cooperating parallel processes. Just as
decomposing the kernel into a set of modules that can be independently
understood and verified is aided by using abstract types, decomposing the
kernel into a set of loosely coupled or uncoupled parallel processes is a tool
that allows designing and verifying small pieces of the system independently,

because only the essential ordering constraints are specified in the design.

Further Research Topics

In this thesis, I have proposed a fairly detailed design for two levels
of processor multiplexing, and a much less detailed sketch of how the rest of
the system could be structured around the two levels. A very important step
in proving my results is the actual implementation of the two level processor
multiplexing design. Further, there is certainly much to be done in actually
structuring the design of an operating system such as Multics in terms of
dedicated virtual processors. Huber [10] has taken the first step in this
direction by designing and implementing a version of Multics page control that
runs in several dedicated Multics processes. However, using the level 1

processors of my design to replace the interrupt handlers used to manage 1/0

Chapter 8 - 198 -

I T YT TR Y

A

o ot

M

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

devices in systems like Multics promises to provide a great deal of
simplification. Some of the other suggestions for using processors made in

chapter seven seem to have promise also.

An important reason for actually implementing the two level design is to
verify that the two level design does not reduce the performance of the
system. I have given a brief argument in chapter three to show that
performance is not necessarily reduced, but only an actual implementation that

has good performance can actually prove that performance is not a problem.

In chapter five, I proposed a non-traditional computer architecture that
uses a dedicated microprocessor to control the short-term multiprogramming of
a multi-processor system. Actually constructing such hardware can simplify
both the hardware and software structure of a computer system, by eliminating
the need for complex interprocessor control mechanisms, such as interrupts.

In chapter five, the actions taken by the general purpose processors was
implemented by software. It seems to me that a hardware implementation of the
algorithms in the general purpose processor that implement level 1 functions
would greatly simplify and improve the performance of the system. Such an
implementation seems quite feasible for a microprogrammed general purpose

processor.

A final topic that requires more study is the relationship between type
managers and interpreters. The interpreter for each type manager in the

system is the real processor. The algorithms for all type managers are

- 199 - Chapter 8

T

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

expressed in terms of instructions that are executed on the real processor.

At the abstract level, though, each type manager can be viewed as an
interpreter for the operations on the type. Viewing the type managers as
algorithms to be executed on real processors is essential for developing a
design that is actually implementable on a small number of real processors.
Processor multiplexing can be viewed as a mechanism for ensuring that the real
processor resources get distributed to all type managers that need such
resources. On the other hand, viewing each type manager as an interpreter of
its own operations seems to be much simpler. The relationship between these

two views in the design and implementation of systems deserves more study.

Chapter 8 - 200 -

e T

e S

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

BIBLIOGRAPHY

{1) Bobrow, D., et al., "TENEX - A Paged Time Sharing System for the PDP-10,"

CACM 15, 3 (March 1972), pp. 135-143.

(2] Bredt, T., and Saxena, A., "A Structured Specification of a Hierarchical
Operating System," Proceedings of the International Conference on
Reliable Software, Los Angeles, April 1975.

(3] Brinch-Hansen, P., "The Nucleus of a Multiprogramming System," CACM 13, 4
(April 1970), pp.238-41.

(4] Dahl, 0.J., Myrhaug, B. and Nygaard, K., The Simula/67 Common Base
Language, Publication S-22, Norwegian Computing Center, Oslo, 1970.

[5] Dennis, J., "Concurrency in Software Systems," Computation Structures
Group Memo 65-1, M.I.T. Project MAC, June 1972.

(6] Dijkstra, E.W., "Cooperating Sequential Processes," in Programming
Languages (F. Genuys, ed.) Academic Press 1968, pp.43-112.

[7] Dijkstra, E.W., "The Structure of the “THE’ Multiprogramming System,'" CACM
11, 5 (May 1968), pp.341-46.

(8] Field, M.S., '"Multi-Access Systems -- The Virtual Machine Approach,"
Cambridge Scientific Center Report 320-2033, IBM Corporation,
Cambridge, Mass. (September 1968).

[9) Hoare, A., "A Structured Paging System," Computer Journal 16, 3 (August
1973), 209-15.

[10] Huber, A., "A Multiprocess Design of a Paging System," S.M. Thesis,
M.I.T. Department of Electrical Engineering and Computer Science,
May 1976 (to be published as an M.I.T. Laboratory for Computer
Science Technical Report)

(11] Janson, P., "Using Type Extension to Organize Virtual Memory
Mechanisms,", Ph.D. thesis in preparation, M.I.T. Department of
Electrical Engineering and Computer Science (expected completion,
August 1976).

(12] Kanodia, R., and Reed, D.P., "Eventcounts: A Model for Process
Synchronization," in preparation.

[13] Liskov, B., "An Introduction to CLU," Computation Structures Group Memo
136, M.1.T. Laboratory for Computer Science, February 1976 (to be

- 201 - Chapter 8

5 et . ey (e gy (b v ¥ i W%

N e e At o AT AN, e 00 DTN
" . " . ”

” add vnwj

B donll g . 4

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

[14]

[15])

[16]

(17}

(18]

[19]

[20]

[21]

[22]

(23]

(24])

[25]

published in the ALGOL Bulletin).

Liskov, B., and Zilles, S., "Programming with Abstract Data Types,"
Proceedings of the ACM SIGPLAN Conference on Very High Level
Languages, SIGPLAN Notices 9 (April 1974), pp. 50-59.

Luniewski, A.L., "A Certifiable System Initialization Mechanism," S.M
Thesis in progress, M.I.T. Laboratory for Computer Science.

McKenzie, A. "Host/Host Protocol for the ARPA Network," ARPA Network
Current Network Protocols, Network Information Center, Augmentation
Research Center, Stanford Research Institute, Menlo Park, Ca. (NIC
8246, Jan. 1972).

Meyer, R. and Seawright, L., "A Virtual Machine Time-sharing System," IBM
Systems Journal 9, 3, pp. 199-218 (1970).

Montgomery, W. A., "A Secure and Flexible Model for Secure Process
Initiation in a Computer Utility," S.M. and E.E. thesis, M.I.T.
Department of Electrical Engineering and Computer Science (May
1976); to be published as an M.I.T. Laboratory for Computer Science
Technical Report.

Saltzer, J.H., "Introduction to Multics," M.I.T. Project MAC Technical
Report TR-123, 1974,

Neumann, P.G., et al., “A Provably Secure Operating System,”" Final Report
of SRI Project 2581, Stanford Research Institute, Menlo Park, CA.,
1975.

Parnas, D., "On the Criteria to be Used in Decomposing Systems into
Modules," CACM 15, 12, December 1972, pp.1053-8.

Parnas, D. "Some Hypotheses About the ‘Uses’ Hierarchy for Operating
Systems," Fachbereich Informatik, Technische Hochschule Darmstadt,
Forschungsbericht BS 76/1.

Rappaport, R., "Implementing Multi-Process Primitives in a Multiplexed
Computer System," S.M. Thesis, M.I.T.; M.I.T. Project MAC Technical
Report TR-55.

Rowe, L.A., "The Distributed Computing Operating System," University of
California at Irvine Department of Information and Computer Science,
Technical Report 66.

Saltzer, J.H., "Traffic Coantrol in a Multiplexed Computer System," Sc.D.
Thesis, M.1.T., M.1I.T. Project MAC Technical Report TR-30.

Chapter 8 - 202 -

et iliae

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

[26] saltzer, J.H., and Schroeder, M.D., "The Protection of Information in
Computer Systems," Proc. IEEE 63, 9, pp. 1278-1308 (Sept. 1975).

[27] Schell, R., "Dynamic Reconfiguration in a Modular Computer System," Ph.D.
2 = thesis, M.I.T., M.I.T. Project MAC Technical Report TR-86.

(28] Schroeder, M.D., "Engineering a Security Kernel for Multics," Proc. ACM 5

I ; Symposium on Operating Systems Principles, ACM Operating Systems
; i Review 9, 5 pp.25-32 (November 1975).

(29] Sturgis, H.E., "A Postmortem for an Timesharing System," Ph.D. thesis,

i 5 University of California at Berkeley (1973), Xerox PARC Technical
: : Report TR 74-1.

(30] Wulf, W., et al., "HYDRA: The Kernel for a Multiprocessor Operating
System", CACM 17, 6 (June 1974), pp. 337-345.

- 203 - Chapter 8

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Appendix A

Level 1 Processor Interface Summary

R A T R S N

SRR

o

Operations (underscoring indicates output arguments)

e £

Used by level 2 implementation for control of multiplexing:

AT

i . VP1$bind (llproc, state, error)

| : VP1$unbind (llproc, state, error)
VP1lS$run (llproc)

VP1$stop (llproc)

VP1$next stopped (llproc)
VP1$set_proc_interrupt (llproc)

Used by all level 1 processors:

VPl$await (ecl, valuel, ec2, value2, ec3, value3)
VP1$advance (ec)

VP1$begin_atomic_operation ()
VP1$end_atomic_operation ()

E VP1Sget_fault_data (processor state)

;P VPl§restore_processor_state (processor_state)

Used for managing lower level hardware:

VPl$propagate_map_change ()
VPlsadd_gpu (cpq_ﬁd)
VPl$deL_cpu (cpq_id)
VPl$crash_system ()

; Special Eventcounts

Used in level 2:

stopped
outward signals

Used in all level 1 processors:

clock
1/0 processor event eventcounts

Sans P = % 5 R A AR TR s fepi s
- A S AT A AN RO 0y K 10 TN S UV N o D S e i

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

b R A T T TN

PROCESSOR MULTIPLEXING IN A LAYERED OPERATING SYSTEM

Appendix B

Level 2 Processor Interface Summary

Operations (underscoring indicates output arguments)

VP2$create_Processor (envptr, startptr, schedclass, procname)
VP2$destroy processor (procname, envptr)

VP2$await (ecl, valuel, ec2, value2, ...)

VP2$advance (ec)

VP2$set_processor_;nterrupt (ecl, valuel, ec2, value2, ...)

Internal Interfaces for Scheduler Domain of Binder/Scheduler
schedule (levey_;_processor, quantum)
next-rescheduling (level 2 processor, nomore)
pre-empt (levey_z_processor)

Eventcounts

reschedulings -- number of reschedulings that have happened.
free -- number of freed level 1 processors.

