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SUMMARY

The vertical gust response and its alleviation for hingeless helicopter

rotor blades in cruising flight is studied theoretically and experimentally.

An evaluation is performed of the effectiveness of torsional stiffness varia-

tion in conjunction with chordwise center-of-gravity shift in alleviating

the blade flapping response to decrease the root bending moment.

The theoretical analysis utilizes the equations of motion of hingeless

rotor blades exposed to vertical gusts in forward flight for the flapping,

lagging, and elastic and rigid pitch degrees of freedom. The equations

include the effect of steady—state deflections in the trim conditions and

various hingeless rotor configurations such as precone, droop and torque

offset as well as chordwise center—of—gravity shift and aerodynamic center

offset.

The experimental program involves the wind tunnel tests of a five-foot

diameter rotor subject to a sinusoidal waveform gust. Testing involves

variation of the blade chordwise center-of-gravity location, the blade

torsional stiffness, rotor advance ratio, and vertical gust frequency.
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SECTION 1

INTRODUCTION

1.1 General

Over the last decade the hingeless rotor has attained acceptance as an

attractive concept for rotorcraft, and considerable research, development , and

testing - has been conducted. The main advantages of this system are improved

flying qualities, and design simplicity of the rotor and rotor hub. The improved

flight characteristics are achieved by transmission of the large blade moments

to the aircraf t because of the cantilevered boundary condition at the blade

root of the hingeless rotor , while the conventional articulated rotor has re-

duced control power and damping due to the flapping hinge pin which eliminated

the large bending moment. Higher control power and angular motion damping

are thus obtained in the hingeless rotor flying qualities and the maneuver-

ability are greatly improved. Another advantage is the simplicity of the rotor

and the hub, which leads to lower manufacturing cost, greater weight and space

savings , and simplified maintenance.

However, rotor blade aeroelastic stability and response become more sensi-

tive to the various hingeless rotor configurations because of structural coupling

S 
between bending (flapwise and chordwise) and torsion of the long slender canti—

lever blade. Also, hingeless—rotor helicopters without feedback systems or with-

out large horizontal tails have weak longitudinal dynamic stability with respect

to attitude in the upper speed range and are sensitive to atmospheric turbulence.

Therefore, the study of the response of the hingeless rotor to atmospheric

turbulence is necessary in evaluating the blade fatigue characteristics and the

riding comfort of the vehicle, and in the development of gust alleviation sys-

tems. This study will aid in attaining better hingeless rotor flying qualities.

However, like the fixed—wing aircraft for which extensive literature on analysis

and testing of turbulence response exists, very little information is available

on the response of rotorcraft to turbulence.

In view of such deficiencies mentioned above, it is necessary to perform

1
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further theoretical analysis to establish an analytical method for determining

hingeless ro tor blade response to atmospheric turbulence in forward flight

and to develop a gust-alleviation system. In this report , blade chordwise mass

balance wil l  be chosen as a principal ingredient to the gust alleviation sys-

tem because this will provide a very simple blade—integrated feedback system

equivalent to controlling blade pitch.

1.2 Brief Survey of Past Work

A good review and physical descriptions of the various dynamic and aero-

elastic problems associated with hingeless rotorcraf t have been given by

Hohenemser in Ref. 1. Therefore, references pertinent only to the present

problem will be cited below.

It may be said that the linear equations developed by Houbolt and Brooks

in Ref. 2 were the first comprehensive equations applicable to rotating elas-

tic cantilevered beams with twist. These free-vibration equations have been

further developed by Hodges and Dowell in Ref. 3 to include nonlinear terms

expressing large steady-state deflections.

In the early analyses of hingeless rotor instability, Young (Ref. 4) in-

• vestigated the role of nonlinear coupling terms in flap—lag instability.

Subsequent investigation was done by Hohenemser and Heaton (Ref. 5), using a

numerical integration scheme to analyze flap—lag instability in hover and for-

ward f l ight. A linear stability analysis of the hingeless blade in hover was

conducted by Oriniston and Hodges (Ref. 6). They introduced structural flap-

lag coupling to supplement the spring-restrained , centrally-hinged , rigid blade

model which most predecessors used. The perturbation method in multiple time

scales w~s applied to the nonlinear flap-lag instability problem of the spring-

restrained, centrally-hinged , rigid blade by Tong (Refs. 7 and 8). The next

logical step was to study the flap—lag instability of elastic cantilever blades.

Friedmann and Tong (Refs. 9 and 10) studied flap-lag instability in hover and

forward flight using the perturbation method in multiple time scales and a

numerical integration method. Friedxnann extended his work in Refs. 11 and 12.

Peters (Ref. 13) studied the flap-lag instability in forward flight and showed

the validity of the linearized perturbation equations for p < 0.5.

2
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Concurrent with these flap-lag instability analyses, flap-lag-torsion

equations of the hingeless rotor blade were developed and investigated.

Miller and Ellis (Ref. 14) developed the flap-lag-pitch equations and showed

the results of the effect of distributed torsion and finite steady—state de-

flections.

Friedmann and Tong (Ref. 10) investigated the elastic flap—lag-pitch

equations. For the torsion degree of freedom, the rigid pitch due to control

link flexibility was chosen. Friedmann extended the analysis to incorporate

elastic torsion motion (Ref. 15).

Hodge and Ormiston applied their flap-lag-torsion equations to the uni-

form cantilever beam in hover; they extended their work in Ref. 16. In Ref. 17

they incorporated rigid pitch motion due to control link flexibility .

Extensive investigations were conducted on the hingeless helicopter

Ba-lOS using the rigid offset-hinged blade mathematical model (Ref s.l8 through

24). They described various important design considerations for the hingeless

rotor and showed analytical results in good agreement with experimental

data. They also showed the significance of structural coupling such as pitch-

lag coupling. Hansford and Simons (Ref. 25) also mentioned the important role

of bending-torsion coupling.

- . Unfor tunately , very little literature is available on the response of the
helicopter to atmospheric turbulence as mentioned before. Among those, Refs.

26, 27 , 28, and 29 analyzed the random blades response to random inputs, using

various methods of computing the random response of a time—varying linear sys-

tern . Gaonker and Hohenemser (Ref. 30) also showed the adequacy of the assump-

tion that the turbulence velocity is uniform over the entire rotor disk if the

ratio of the turbulence scale length to the rotor radius is larger than 4.0.

Arcidiacono et al. (Ref. 31) conducted an analytical study of articu-

lated helicopter response to various gust profiles such as sine-squared and

ramp gusts. They confirmed that the, current gust alleviation factors speci-

fied in MIL-S-8698 (ARG) are too conservative. However , they pointed out that

the gust loadings can be an important consideration from a ride-comfort stand-

point.

3
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For the tilt-rotor aircraft, extensive analyses of the gust response

in cruising flight were conducted by Johnson (Ref. 32) and Yasue (Ref. 33).

In Ref. 32, Johnson summarized the comparison of theory with the results of

full-scale tests of two proprotors in terms of critical damping ratios and

frequencies of modes. The agreement between the theory and the experiment was

good. He extended his theory (Ref. 34) to include various rotor configurations

such as precone and droop as well as the transition flight regime between hover-

ing and cruising f l ight. Concurrent with the extension of the theory , Frick

and Johnson (Ref. 35) applied modern control theory to develop a gust allevia-

tion system for the tilt—rotor . Wind tunnel experiments were conducted at

M.I.T., using a one-ninth-scale tilt-rotor model subjected to vertical and longi-

tudinal sinusoidal gusts as well as collective and cyclic pitch control inputs

(Ref. 36). The experimental results showed good agreement with the theoretical

analysis of Ref. 33. Further investigations were performed to develop a gust

alleviation device for the gimballed tilt-rotor (Ref. 37), and subsequently,

wind tunnel testing was conducted to verify the theory predictions (Ref. 38).

Finally, the chordwise blade mass balance system is briefly reviewed .

Miller (Ref. 39) suggested chordwise blade mass balance to improve the heli-

copter flying quality. Hirsh et al. (Ref. 39) applied chordwise mass balance

to the articulated rotor helicopter XH—17 and reduced the vibration stresses

from 35 to 45 percent. Miller and Ellis (Ref. 14) analyzed the effectiveness

of chordwise mass balance to reduce the vibratory root shear of the articulated

helicopter. According to Refs. 19 and 23, a 2.5% forward shift of the center-

of-gravity of the BO—1O5 b~ade reduced the rotor angle-of-attach instability

time-to—double amplitude from 7 to 22 seconds. In conjunction with the improve-

ment of the stability characteristics , a favorable gust response reduction was

also obtained , as shown in Ref s. 23 and 24. A 5% center—of—gravity forward

shift reduced the flapping response by about 40% in trimmed flight at 100 knots,

compared with no chordwise mass balance. Thus, blade center-of-gravity forward

of the aerodynamic center will reduce both the angle—of-attack instability and

the gust sensitivity.
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1.3 The Purpose and Scope of the Research -

The purpose of this work is to investigate the effectiveness of chord—

wise center—of—gravity shift in conjunction of blade torsional stiffness

variation in alleviating the blade flapping response of the hingeless rotor

blade theoretically and experimentally.

As the first step of the theoretical analysis, free vibration equations

for the flap-lag-torsion-rigid pitch motion of the rotating nonuniform beam
will be developed including precone, droop, torque offset, offsets between
the elastic axis and cross-sectional center of gravity , built-in twist, and

collective pitch. The rigid-pitch motion is due to control linkage flexibil-

ity. Based on these equations, the natural frequencies and corresponding

normal coupled mode shapes of a rotating nonuniform rotor blade will be
obtained using the subspace iteration method of the finite-element method.

By the use of Galerkin ’s Method , the equations of motion for the blade with

aerodynamic forces will be converted to modal equations. The equations will

include the effect of steady—state deflections and the quasi-steady assumption

will be employed for the aerodynamic forces. The coefficients of the equations

are periodic in time in forward flight, so the harmonic balance approxi-

mation method (Ref. 40) will be used to avoid the complexity of periodic co-

efficients. These modal equations with constant coefficients will be the

basis for a study of the hingeless rotor response to the vertical gust in

cruising flight.

Eigenvalue analysis will be used to examine the rotor system stability
with the blade mass balance , because the hingeless rotor system stability is

very sensitive to the rotor configuration. To measure the effectiveness of

blade chordwise mass balance to reduce blade gust response , the frequency
response of the blade motion to vertical gusts will be analyzed.

The experimental program involves the design, construction, and testing

of a five—foot diameter rotor . The rotor design is such that the torsional

stiffness of the blade as well as the blade chordwise center-of—gravity loca-

tion can be varied during the various phases of the test. The rotor is

exposed to a sinusoidal waveform vertical gust and the flap, lag and torsion

response of the rotor is measured. The construction and validation tests are

5 
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performed first on a three-bladed rotor employing “st iff  torsion” blade. The
tests continue on a rotor utilizing two counterweights and a single blade. In
this configuration , a chordwise center—of—gravity shift is applied to the
single blade in conjunction with variable blade torsional stiffness.

The experimental results are compared with the theoretical predictions.
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SECTION 2 -

THEORETICAL ANALYSIS

2.1 The Equations of Motion for the Rotating Blade

2.1.1 Rotor Configuration

The hingeless rotor configuration considered in this report is described

here. A cantilever rotor blade is attached to a rigid hub which incorporates

built-in precone , the inclination of the pitch change bearing with respect to

the plane of rotation (Fig. 1). Torque offset between the blade pitch axis

and the center of rotation to minimize the steady—state blade stresses is in-

cluded. Another angular offset considered here is droop, the inclination of
the blade outhoard of the pitch change bearing. Although built-in sweep is

not treated here, the blade coning motion about the blade pitch bearing pro-

duces sweep at certain collective pitch settings.

The blade outboard of the pitch change bearing can be rotated about the

feathering axis by moving the control linkage. Therefore, the control linkage

flexibility will allow rigid—body pitching motion of the blade (called rigid

pitch in this report). Blade flexibility will permit flap bending, lead-lag

bending, and elastic torsion motions. The present analysis treats these de-

flections of a twisted blade with nonuniforinities of mass, bending stiffness,
and torsional rigidity distribution. Furthermore, the blade cross—sectional

center of gravity, tension axis, and aerodynamic center offsets from the
elastic axis are considered because these are important factors for the study

of the mass-balanced—blade gust response.

The above configurations may di ffer for cer tain hingeless rotor designs .

For example, the Westland WG-l3 rotor design (Ref. 25), positioned the pitch

change bearing outhoard o~f the hub. In addition, a flapwise flexible element

inboard and a matched stiffness element outboard of the pitch change bearing

are incorporated to eliminate blade bending—torsion coupling. For this con-

figuration , certain modifications are necessary in the present analysis.

2.1.2 Coordinate Systems and Inertia Loadings

The coordinate system x, y, and z (Fig. 2) is rotating with a constant

7
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rotor angular velocity ~ about the z axis which is the axis of rotation. The

x , y plane is a hub plane wi th the projection of the undeformed blade elastic

axis with zero collective pitch lying on the y axis. The second coordinate

system x’, y ’, and z ’ is defined wi th the y ’ axis lying on the blade feathering

ax is and the x ’ axis parallel to the x axis. The third coordinate system , x”,

y” , and z” is fixed to the blade root arid as such locates the origin at the

intersection of the blade elastic axis and blade root chordline. The y” axis

coincides with the undeformed blade axis , the x ” axis with the chordline, and

the z” axis perpendicular to the x ” , y” plane.

The transformation between these three coordinate systems is described

as follows: the x, y, z coordinate system is translated to the negative x di-

rection at the torque offset distance e (positive forward). Then this trans-

formed system is rotated about the x axis at the precone angle 8 (positive

upward). Thus, the y ’ axis is determined , which coincides with the feathering

axis. The x ’ axis is parallel to the x axis and the z ’ axis is also inclined

at the angle of the precone from the z axis. The origin of the system is next

translated along the new y axis at the distance of the rigid shank r (a portion

of the hub). The system is rotated about the new x t axis at the droop angle

(positive upward), then the y’ axis lies on the y ” axis. This intermediate

system is again rotated about the y” axis at the pitch angle °m (positive nose-

up), which includes the collective pitch 0 , perturbation control pitch input

and the rigid pitch 0
R’ 

This scheme makes the x’ , y ’ , z’ axes lie on the

x” ,y” ,z” axes (Fig. 2).

The deformations described by the displacements of the elastic axis
parallel to the x” and z” axes are v and w , respectively (Fig. 3). The radial

displacement u parallel to the y ” axis is included in this report. The in-

plane displacement v is positive backward with respect to rotation. The out-

of-plane displacement w is positive upward. It should be noted that v and w

are displacements, respectively , parallel and perpendicular to the blade root

chordline which is inclined at the collective pitch angle.

The x and z axes are the principal axes of the blade cross section forp p
the shear center and y is the tangent to the deformed elastic axis. The

8
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inclindation between the x” , z” axes and the x , z axes defines the bui l t—inp p
angle of twist 0~~ and elastic torsion ~~, which are both positive nose up

(Fig. 3). The relation between the x” , y ” and z” axes and x , y ,  and z axes
are defined by the rotation about x” , z” axes at the deflection slope angles
v ’ and w ’ , and rotated about the y ” axis at the angle of twist and torsion

angle.

Next, the position vector to the arbitrary point of the blade cross

section is defined . This point on the cross section expressed in the principal

coordinates is as follows:

(1)v;( = 0

This vector is transformed by the transformation matrix [TI to the undeformed

elastic axis system.

Q 0 tr ’ 0 c.ao~~ 0 ~~~~~~
-‘-

~~O

{ 
T] -~~~‘ -

~~~~
‘

o ~~~~~ o O  o~~~~~G
(2)

cooê 1,).’ ~~~i.ê

I - A&O -
~ JJ

’
CC~~ O

_4 .~e ~~~
- ‘
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where

e = ~~~TW +4 ’

r 
= — ~

_53•• (3)
ar , 

-

The bui l t—in angle of twist is expressed by O~~~; ~ is the elastic torsion

deflection; and v and w are chordwise and vertical deflections, respectively.

The radial coordinate from the pitch change bearing along the -uñdeformed

elastic axis is taken as r.

The distance from the origin of the x ’ , y ” , z” coordinate system to the

origin of the principal axes of the blade cross section is defined by

(4)

where u is the radial displacement given by :

u = — 
~~ 

+ d~ (5)

It should be noted that the radial displacement includes only the geometrical

shortening effect due to bending deflections. The displacement due to the

tensile forces is neglected in this analysis.

The x” , y” and z” systems are transformed by the transformation matrices

[T
0
] and[T

ôJ which are related to the collective pitch °m 
and the droop

respectively :

- 

~~~ ew, 0 ,~~~~~~~~~ 
e,~ 0 0

[Te] 0 
[ rg]= ~ 

(6)

- ,~~~~4te~~~~ 0 c..o~’ 0 S0 a
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where

= 00 4e~ +e~ 
(7)

The rigid shank position which will be added to the radial position is

written as

r o l
YJ~~~~~ Y3~~ (8)

L a ]
The entire system will be rotated at the precone angle , for which the

transformation matrix [r
8

] is

0 0

o —~~~

Finally, the translation due to the torque offset e is expressed by

0
= [-
~

] (10)

The position vector, r
B

I taken from the origin of the x ,y, z system

to the point on the blade cross section may be written

= r . + ~ ~ [T~ ~~~

- -
~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ + ~~ ~~~ + -

~~~~~~~~~ -~~~~~~~

+ 
~~~~~~ ~~~~~~~~(G~~~~

-
~~~G) + zp ~~~~~~~~~~ O,~~~ +O)
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+

~~~~~~~~~~~~~~~~~~~~~~
— ~? -(e~-~-0) - ‘tr ’~~ oO

+ Zpf  
_ &  c~QG ‘~~~~ ji r~~o (O~,~+ê)+ tY ’fr4.*4-O

-
~~ W~ c.ov G~

r~~ cao e,.~ + ~~(~~#r) -~~~ .e.1.
~~~~~~

+ z~ c.c e,., -4- o)

(11)

The acceleration a of the fixed coordinate system when the blade

is rotating at angular velocity ~1 about the z axis is:.. S

~~~=~~~~~+ 2 ~~ 1X Y ~~~~~f lX (f lX4 )

~~~~~~ ~~~~~~~~ ~~~~~~~~~
+ (.

~~R
+2

~)i~
—
~~p 

(e.~+O) -~ zp cc~(e~+e)3
-2 1 (-~~~ e~~ LkJ~ C~ oOM) _

~~
’D 13-

-F

4
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.4. ~~~~~~~~~~~~~ 1oL.~.(e1,1+0)}

~ e R o e ’ ~~’~~ 
—Qfli&

~~~~~~~~~~~~~~~ 
-

~~~~~~~~

+ ~r’~..te) ~~~~~~~ ~J-’~~~O)

+ 2.0 k~ ~~~~~~~~ 
-

~
- 

~ ,~~~~
. e .., + (~~~~

-f p) { -~~~~~~ ~~~~~~

F 
=

~~~~~~~~~~~~~~~~~~~~~ -j~ _ J ’C~~e * 4 ~~.0

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ -~~~-~L~e

+~s e+E ~,tz~ G-~ ~~~~~~~~~

— ~~
p(

~~ +q) e~ -fe)

~~p(~R1-4) ~~e~-~G)
- 

~~~~ _~~
j- 
—~. e,.~ 

-

~~~~~~‘°~~~ - �~~~~~~~~~~~~~~~ O~-

(12)
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Although double underlined terms are nonlinear terms , they are retained to

describe steady-state deflection effects on the blade pitch motion.

The acceleration in the undeforrued elastic axis coordinate (x ” , y ” ,

z” coordinate system) is obtained by the transformation.

= [-r~] [ii] [To] a

~- + D eR + e 2 n u+2gRur

+~nq~. * o ~’~-

~~~~~~~~~~~~~~~~~~~ i-eo

+ + ~~~~~~~+ ~p[- C~q+~~) ~~~ + 2a CU~3O .,~ (~~ ‘~~o0

- i.r’ ’ G )  -~~~~ c~co~~~ aro(e.1 ~-?-e)]

+ Z~~[(oR +~~ )~~,~e +2f lc .~~ O,,~ (’Cr’,~~~O

a ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+~~~~~~~~~~~~~~~~ C~~1~~~~~~~~ ) + 2~~e~~~~ e~
-

(T f { (~~~~~~~#r) ~~~~~~~~~~

- ~~~~~~ ~~
) cp~ + ~~~

+ 
~~~~~ 

[ - i}’
~~~ e # ~~~~~L1. e -

+
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ 4G) _ Sti

’
c +id

’

,aL*i.G~~~~
]

~~.e- ~~~~~~~~~~~~~~
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-~

~~~~~ 
_ 2

~~~(~~~ +~~~~~~~~~~~ -2~~~~
- 

-

4

-(~~~+~~)co~ o -2 f l( - ’~-”-OM c~cê

-F ~j- ~~~~~~ n.- . 0) - ~~~ ~~~~~~~~~~ (e,,~+ ~)]
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ ~ 
I 

~~~~ G) - ~~~~ ~~~ e,,~~ ~~ (e~ ÷~
)]

(13)

-+1 . .The distributed inertia forces 
~EA 

due to the acceleration in the x ” , y ” ,

z ” coordinate system are

- j°S aE4 c(Zp dz~

-F w~ ~~~o E~ + ‘*t kS ~~ 
- 2~~. 1). t

+2i.vt
~~R tJ~

~~

~ t - ( -~6)~~ e +~~~~~~~~ G~~(i~ ’c~~ O
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- 

~~~~~~~~~~~~~ 
+

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
o 3 ~t c—co(~~~~

-
~e) +

‘c o4 Rr~~~~4~~~}]
~~‘

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
,.j-~~ ~~~~~ 

4 ~r~~e~) ~~
.5 

-
~

- 2fl { - 
~~~~~~~~~~~~~~~~ c~~ ê + ~~~~~
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(14)
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where m is the mass per unit length , x
1 

is the center of gravity of the

cross section (positive a f t  of the elastic axis), p~ is the mass density of

the blade , and A is the cross-sectional area of the blade . It is assumed that

the cross section is symmetrical about the x axis when the sectional inte-

grals are carried out. The position vector 
~~~~~

, the distance from the deformed

elastic axis to the point on the blade cross section , may be written in the

x” , y” , z ” coordinate system as

—
~ r i — p
~~= [TJ r~

~~~~~~~~~~~~~~~~~

(15)

The inertial moments q per unit length in the x ” , y ” , z ” coordinate

system are given by

~?~
- ~~~~~~~~~~~~~~~~~~~~~~~~~

- ~~
y-g~~~e ~

~ fW~2.~ cf [ -~x +r) p c~~(e~~ t5- o)+gD CCc3e~

+ ~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~ i~~~~~~~~~~~ 0 ~~~~~~~~~~~~~
— _c~ (rc 4 c~~O 0

(16)
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where 1
0 
is the moment of inertia of the cross section per unit length and

I ,I are also defined aszp ,cp

L p8 c-4 -# Z )  d~~ d ,

Z~ 
d~~dz~ (17)

p p 
- 

-

Thus far , inertial loadings are derived about the undeformed elastic
axis. Next, the inertial loading about the feathering axis will be obtained.

The position vector rFA~ 
the distance from the feathering axis to the

point on the blade cross section, is given in the x’,y ’,z’ coordinate systems
by 

~~~~~~j

T 

+ {
~ 

+ [T~ [Y~ ~~~~~~

(18)

where

0

(19)p.-
0
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Hence ,

~~~~~~~~~~~~~~~~~~~~~ + ~~~~~~~~ ~~
- 

~~~~~ (o~~~e) + z~

~~~~~ A~.4~.eM

= ~~ (- ~~~ 
e + ~~~~ 

‘

~~~
.- 

~
) - ~ 

( 
~~~ 

I 

~~~~~~~~~ +
— ‘

~~~~~(t
k3S- _ 

~~~~~~~~~~~~~~

- ~~~
-
. 

~~~~~ ~~ - ~~ ~~~~~~~~~
- (e~ # a)

* ~~

(20)

The accelerations a
FA 

in the x ’,y ’,z’ coordinate systems may be written

from Eq. 12 as

(21)

The inertial moment q about the x ’ ,y ’ and z ’ axes is defined by

= - 

~~~~~ 
x~~~~) ~~~~~ (2 2)

Only the component of q~~ about the feathering axis is needed , as given by

~~ 
- r0 ( 

~~~~~ 

-
~~ 

— .p~l. ~~~~~ 
.;

‘xII. ~Ij- A4-.~.@ -
~
- ‘

~~~~ *2. Wt~~x. r& ,o~-s~G

~ ~~~~S~(~-~#r)
— e6 c~c, e ~ + ~~ ~~ 

( ~~ ~ + e)
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- ~~~~~~ (a~~1.~+ G ) }
+ fl~ ~~ { f~ 

(v  ~ :~ e - e. CA~~ e,_ + r’ ~~ ~~~~

~~~~~~~~~~

- ~~ r uj- + ~~~~~. ~~~~~
- tr 4 ~~~. ~~ tr c~~o C 2.G ,

~
)

-4 ‘w~ fl.~ U~ ~~~ (2Q ~
) + -~~ 

ew~ ~~~~ ~~~~~~~~~ 
( 2  &~)

(23 )

2.1.3 Equilibrium Equations of the Beam

Considering a differential length dx of the deformed beam (Fig. 5), the

equilibrium equations will be establ ished in the x ’ ,y ’ and z ’ coordinate sys-

tems (undeformed elastic ax i s ) .

The moment equations are

_ _

+ %~~=~o 
(2 4)

+ - = 0

Similarly, the force equations are

-— o

7iV~ (25)

-
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where M and M are structural bending moments and M the torsional moment.x z y
V and V are shear forces and T is the tension force. External forces and

moments of inertial and aerodynamic origin are described by 
~~

and q .  Substituting Eq. 25 into Eq. 24 after differentiation of Eq. 25 by

r yields

22M 
+ -

~~~
-

~~
-

~~ 
- .~~~_ 

~~~~~~~ ~~~ 
- = oar ~~~ a r)  ~

_ _ _  _ _  ~~~~~~~~ ( ~~~~~~~~~ \* ~y~j  ~~v)  + ~~ 
-

~ (~ M~ ~ r 
- + q 

~~~~~~~~~ + q~ ~~~~~~~ + ~ 0 
(26)

\ ~~~y- ~~y- 
+ 

~~~
- 

~~r) 
bZ 0Z ~ Y

T = \  pav ~-if

Moments in Eq. 26 will be transformed to moments M , M , and M in the de-x y z
formed elastic axis coordinate system with the transformation matrix [T’]

obtained from Eq. 2 with 0 equalling zero:

M~
u

M
s
.. {-

~
-‘] M~ [T

’] = ~~~~~ 
_

~~~~~~~ (27)

•
0 ~J

’ 
I

For the force compohents T , 
~~~~~~ 

etc. ,  the same transformation law holds ;

therefore, an identical transformation may be used with sufficient accuracy.

Applying the transformation law in Eq. 27 to Eq. 26 yields
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~~~
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- -1- 
~~ ~~~T by- ) ~ ~~.

~-A~~ 
-

~~~~~~~~~ * M~~ + 4 + 0

T=~ p~ S~cp.- ~

(28)

These are the usual simple beam theory equations. It should be noted
that the underlined terms in Eq. 28 are elastic torsion-bending structural
coupling terms introduced by Mil’ et al. (Ref. 41). Similar terms when
the motions are rigid pitch—flap were identified by Miller and Ellis in
Ref. 14.

2.1.4 Moment and Displacement Relations

Based on the work in Ref. 2 , the moment—displacement relation is given
in the principal axes coordinate system (x ,y , and z axes) by

EI~ (nj-” ,e~~.G + ~u-”~~~ e)

~~ r =  
~~~~~~~~~~~~~~~~~ (29)

= 

~ Tc (- W’ c~ 3~~-j. ~Ar”~4.4-~
.-0) + e.~,T

where M and M are bending moments and M is the torsional moment. Flap-xp zp yp
wise and lagwise bending stiffnesses are El

F and El ,  torsional rigidity is
GJ, tension force is T , e

N 
is the neutral axis location, positive aft of the

22
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elastic axis of the blade , respectively, and k~ is defined as follows:

= 
A i~A 

~~~~~~~~ 

-
~~ 

~~~~~~~) 
dX~ d~~ (30)

The blade cross—sectional area is expressed a.. A.

These moments are transformed to the undeformed elastic axis coordinate

system (x ” , y”, and z” coordinates) by the transformation matrix [T]:

~~~
Mz) ~ Mzp

(E1~~ c~~e + ET~.4~.s4.ie) kT”

* )~ (Ei~ — Et() ~-~e ~~~~~~~

+ 
(~~2~~~~ ~~~~~~~~~~~~~~~~~~~

— 
i ) c~ + 4~~~ T ~~~~~~~~~~

— 

- 
~~~~~T (~ 

/ 
0 ~~~~~ ~~~~~~~~~ 0)

- ,oL1.~P-~ + ~Ic~ ~~~ ~
J- ’I

— [~~i~-~ r~) C..(D0 ~~~~~~~~~~~~~~~~~~ 
I~J~”

+

(31)
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2.1.5 Partial Dif ferential Eq~ations of Motion

By substituting Eqs. 14, 16 and 31 into Eq. 26, the partial dif-

ferential equations of motion can be obtained in terms of v , w, 4 ,  and 0R • An

additional equation for the rigid pitch will be derived later in this sub-

section. It should be noted that in the bending equations, only first-order

terms are retained while in the torsion and rigid—pitch equations up to second-

order terms are retained. Generally , the third—order terms are discarded ex-

cept when these third-order terms have direct effect upon the torsion and

rigid—pitch motions. In other words, these are diagonal terms of the coeffici—

ents of the torsion and rigid—pitch equations if these equations were ex-

pressed in matrix form. Small angle assumptions should also be used as fol-

lows :
c~6 °0 ~ CC~ 0~ (~~R +0C-)~~~~~~-00

L~~~ O~~ = 
~~~~~~~~~~~~~~~~~ 

-+ (GR+Oj Ca~~Go 
(32 )

and

0 = C6~ 0T~~J A~-

/~4-+’-0T~ 
-

~
- 

~~~~~~~~ OTW

where ~~~~, and 0 are the collective pitch , the rigid-pitch motion and the

control pitch input , respectively. The built—in angle of twist 0~~ and the

collective pitch angles can be large. Thus , the equations may be written as
follows:
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~~~~~~~~~~~~~~~~~~~~~~~~ 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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V equation:

[(ElF ~~~~~~~~~~~~~~~~~~~~ 
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~~~~
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-j . [2 ~ ~~~~ (ir- cAc ~~~ +

~~~~~~~~~~~~~~~~~~~~~~ - (Tn ’)
+ 4v~ ‘U + VTh~~ OR + 2~’t cic~~ + S~~~~~~~~~~~~~~~~~ ) ~~~~~

~~~~~~~~~ ~~~~~~~~ + tkJOR C uJ0,~e~o&6

+ r~~~o~

+ ~~~~~~~~~~ ,
~~~~~~~~ 0. c.~~~ ~~, -~~ e. G~ ~~~~~~~~~ G~~

—

+ 2 ~~ n e (
~~

- ‘
~~~ ~~ 

— ~j- ‘
~~~~~~~ . o-~~~~)

+ ~~~~ { eR ~L.~ (2e, + + ~~ eo~~Q~j c~~ê0 j
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+
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(35)
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~ equation:

I (~ j  + ~~ T) 
~~

‘ 

~

‘ 
- (e~T~~~e~) 

~~~~

‘ - (e~T~~ ~~~w)  ~~~~~
“

+ (~~
i
~ 

- 

~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

~~~~~ ~~~~ a ~~~lI ~~~~~~

+ ~~~~~~~~~~~ ~~~~~~~ ~
+ ~t~~i (j -  ~~~~~~ + ~~ c~~~ ~~~~ —&~ ~~~~~~~~~~~~~~~~~~

+ ~~~~~~(~~#r) ~~~~~~~~~~~~~~~~
- 

ü ( r  + r) ~~
- 

~~ 
�~~~~~~5 G ~ c~oO~~~~~~~~~~~+G~~~)

- ‘
~~~~~~ fl ~ (~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ C~ R+ ~~)Cd~ ca+~~W)

= -M~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

* ‘~~~- ~~ ~~~~~ (~~ 0T~~) (-e~ + vi~ ~~~~~~~~~~ 

~
)

~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
2~~ )

- (36)
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where and are aerodynamic forces corresponding to deflections w and v

(positive the same directions as deflections) and is an aerodynamic moment

about the elastic axis (positive nose up).

The quantity T in Eqs. 34, 35, and 36 is obtained from Eq. 28 and
may be expressed as

T ~ -

In rigid—pitch motion , the structural stiffness is given by the control

linkage flexibility, represented by a spring element K0. The aerodynamic

moment for the rigid pitch motion is expressed by M0 (positive nose up). The

equation may be expressed as

— C ~~~ A ) d~~~~~ + keOR — Me (38)

Substituting Eq. 24 into Eq. 37 yields

~ ç [ + + ~~~~ r~~~ ~ R -

+ ~

— 
— c~ 3- ,~~~~~~~ ~~~~~ 

— ~-‘t ~~ ~~
- 

~~~~ ~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- (~~~ - T~~~~ 
~~~~~ ~~~~ (~ Q~ +2QTW )

- .ci~ ~~ ~ ÷ r) ~~~~~~ c~~ 0~~

- ‘) ~( C 
- c~ o (2~~ )

- e0 ~~ (~~ # c~) ~~
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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O (2.Qb + 0-.r w~~~
+ -4 ~~~~~~~~~~~~~~~~~~~~~~ -~-

M04 -  ~~~~~~~~~~~~~~~~~~~~

~~~~~~~~~~~~~~~~~~~~~~ -

* ~~ci?- e0 ’x~ ~~~~~~~ ~~
-
~
)

(39)

The final equations (Eqs. 34 , 35 , 36, 37 , and 39) are the basic equa tions
of the nonuniform rotating beam and are nonlinear partial differential equa-

tions with nonconservative (aerodynamic and mechanical damping) forces.
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2.2 Natural Frequencies and Associated Mode Shapes

2.2.1 Introduction

In this section the finite-element—method formulation to obtain the

natural frequencies and associated mode shapes is described briefly. The forinu-

lation itself is rather straightforward : the coupled motions can be expressed

in terms of the natural frequencies and associated mode shapes. It is expected

that coupled natural frequencies and mode shapes will give much faster conver-

gence than uncoupled standard mode shapes for a nonrotating uniform cantilever

beam will do. The faster convergence will be pronounced when the motion be-

comes strongly coupled between flapping and torsion due to blade chordwise

mass balance or between rigid-pitch motion and elastic torsion due to control

linkage flexibility.

Although it has been recognized that the finite—element method is a gen-

eralized Ritz method (Ref. 42), the finite-element method is much more versa-

tile because in the Ritz method the assumed displacement modes are extended to

the entire structure; thus, for the structure with several different boundary

geometries, it will be difficult to choose appropriate admissible displacement

modes. In addition to this, when an accurate solution is required , a large

number of assumed modes must be used and considerable algebraic manipulation

must be performed in the Ritz method. In the case of the finite-element method ,

the same assumed displacement function,which is usually simple,can be used for

each individual element, and boundary conditions of several different types can

be applied simultaneously without difficulty .

To obtain the natural frequencies, the second—order differential equa-

tions without aerodynamic forces are solved which consist of the symmetric

mass and stiffness matrices and the antisymmetric gyroscopic matrix due to

coriolis forces . This problem is an eigenvalue problem; however , mode shapes

must be expressed by complex numbers expressing the phase lag between motions.

This creates further complexities in the complex number algebraic manipulation

for a Galerkin method application. Also, since the coriolis force effect is

L _ _ ~~~~~~~~~~~~_ . _ .~~~~~~i ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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not strong enough to make a difference in convergence between cases, it is

included in the natural frequency and mode—shape calculation , excluded in

the natural frequency calculation, and then included later in the Galerkin
method application step. Therefore, in the present analysis the natural fre-

quencies and mode shapes are obtained from the eigenvalue problem wi th only
the mass and stiffness matrices , which will produce real mode shapes and
natural frequencies.

2.2.2 Variational Functional

For the first step , the variational functional 71 will be derived from

Eqs. 34, 35, 36, 37, and 39. Nonlinear terms and steady-state loading terms

are excluded as well as velocity—dependent terms resulting from Coriolis

forces. The potential energy and kinetic energy expressions related to the

linear terms are retained:

+ (~~~v~~~ 
-

~~~~~~ 0r~)iir~~ -(~~~~~~~~~~~~~~~~
L4

~~~07~~~~) i~~~~4

- 

~ Er~ 4~~~0TW )(tA3~)

~ 
(
~~i~ ~~~~~

ê-
~
-
~~ -I- E1~ ~~~~~~~

+ (El-F EI~~ ~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ( 143-” tr ”)  + ..~ J~~ -
~~T (u-~’)

1

- 4 t o - ~~G0)~~ z -~~~(i.~fl~~c~~~Oa) ~~
- # 4 (~~

J- 4 T-4,4~)(~~’)
2

+ - l~~) c3 c~o(2e04 2~~~ )

+4 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

fl ~~ (r-F v-’) ~~~~~~~~~~~~~~~~~

31

_ _  --- -



— 

-‘- { 4(i~~— 12.p) .~~f 
csc~(2Qo 4

_ 4~wi . f l<  
~

p v(r~#r)~~ D c~~~~ + e 0 D d cwC~~~~~0

4 ~2 c~~(2Q ) -i. e0 z (Q. +~~r w)

~~ 
A.4:..~- . C.~Q.+ ~~rw) > j  

~~~

+ ~‘tZ~ c~~~~.(-G0 4- eTW) ca-o Q~ ( ‘ti- q~)

4 
~~~~~~~ ~~~~~~~~~~~~~~ +0T4 .~~~~~Q0 ( i*j ~4)

- c~o Q. -f ~~~ ~~~~ 
(
~~~ * ~~~~~~~~~~~~~~~ 

tJ~~~

~~~ ‘~-°~ — 
~~~~ C~~~~~~

-t- e~~~) J ~s-0~

+ r ~44.44. ~~

- .Q
~~ ‘e0 C.ø~O 

~~~ ~~
)

* (i~~ ~~~~~~~~~~~~~~~ ~~~~~~ (~~~ #2~~~)

(40)

32

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-



—--- -- -.-- . - - - .— , ,5---,-”-- .---5- —-—w ~~~ 
5- -5-——----—---. ---- --.---- --—- 

~1

2 . 2 . 3  Finite-Element Formulation

In the finite-element formulation, the variational functional may be

expressed as the summation of the functionals of the subdivided finite number

of discrete elements.

N
‘IT ~~~~~~~ (41)

‘~i= I

where n means the nth element and N is the total number of elements . The

displacements (u} are represented over the nth element by interpolation

functions [f] and by generalized nodal displacements Cq } which are dis-

— placements and sometimes derivatives of the displacements of the nth ele—

ment. Thus , in the matrix form

En ~~~ ( 42)

where

L (A ..~ 
LJ i.7 4 0

L ~~~~ ~3; ~~~~~~ ~
J-’ ‘LJ~~~1 ‘U~’~

(43)
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In the present analysis the beam element is used , and w
n 

and w ’ are the

vertical displacement and its derivative at the node between (n - l)th ele-

ment and nth element. The quantities, w and w ’ are those between then+l n+l
nth and (n+l)th  elements (Fig. 6). The matrix f is written as

~~ 0 0 o o o a a ~ o

o 0 0 0 
~~~~~~ H~~ H~ I-4~ o o a a o

tf ]  = 
C’) C~\ (I)o a 0 0 ~ o 0 o ~-.4~ HI~F-162. HI~. 0

o 0 O ~~~~~ a ~~ o a 0 0 0  ‘1.

(44)

where the Rermitian interpolation functions are defined as

= - 3(3)~+ t

= -2 (3)~ -~
. 

~~~ 
( . )

~~

= 

~ { 
(
~r — (45) —

-S { ç~~)
3 

~~~~~~ —

The element size is expressed by £ , and x is the coordinate within the
element. Two nodes of the element are located at x = 0 and x = 9 .

The derivatives can be obtained from Eq. 42. For example ,

~~~~~~~. + 
~~~~4I ~~~~~~~~~~~~~~~~~~~~ + (46)
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Thus , various derivatives can be obtained by differentiat ing interpolation

functions. These displacements and derivatives (Eqs. 42 and 44) may be

substituted into the functional in Eq. 40 and the integration should be

carried out elementwise.

4 [~~
}
~ ~ ~~~ 

{ 
~1 - 

~Y [~~1 t
where Em ] and [k ] are element mass and stiffness matrices.

n n

The element mass matrix is a consistent mass matrix and may be written

as

- 

a11t~~’~ ~~~~ ~~~~~~~~~~~~ 
a~~[~~ ]

= cL [‘w~1 a~ i
(48)

d~~~ 4~%!] 
~~~~~~~[‘~~

i
~ ’1

symmetrical
c Li i

and

i~~6 22Q 54 —i3 Q
4e 13~ -3et [ H ] Q ~ (49)

~~ -22~
symmetrical 4e- .

The coefficients are —

cL 
~ = ‘wi. 

/ = — 
~~~~~~~ ~~TW / 

— ce-a

/ ~~~~~~ ~~~~~~~~~~ -O-i-~, d~ = ~x. 0 

(50)

10 
, d34 I~~ 

- ‘wt Z~r~ S
= 10 + ~~~~~~~~~~~ 

— 

~~~~~~ 
—

~~~~~~~~
‘.‘

r : radial distance from the pitch bearing to the midpoint of the element.
n
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The element stiffness matrix is divided into three portions as

[
~

] = [C] .÷ [
~~~] + [&~J 5u

The stiffness related to the curvature is

~1r4 ~] s~~[4~] [a] Eo]

s~~[4~ 3 [aJ [o] 
(52)

- [a] [a]symmetrical

0

and

t2  ~ -12 ~ =

4Q~ —
~~~~~ 2€~ Sl~= CEt _ EL)C~ eTh,4.~.~Tw
12 - 

S~~ E~~~ ~~~~~~~~~~~~~~~~ + Etcz i?~~~~~~
symmetrical

(53)

The stiffness due to centrifugal forces and torsional rigidity is

t,,[4~J [ol [a] [a]

[(] t22[4~~~ ] 

~° [0] 
(54)

t3~.[4] [ a ]
symmetrical

0
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3~ 3-e -
~~~~ ~ ,, = -T~

4C -3Q -~~~~~~ .& ~ J 3O~ ) 
~~~~~~~3g — SQ

symmetrical -d
(55)

The stiffness due to centrifugal forces and mass unbalance is

o~,1[4’t~J a11[i’t’] a~~[~+~’] ~~

= 

O~~~~~t4 ’1~’] a~~ [’~’~j  C.~4 [6’tj  (56)

~.3~~t
o).t] a [ ’ ~’t”]

symmetrical
- c4~~~~~~.

and 
-

a,1 ~t �1 AL~~-.2 
= — ~~~ ~~ ~~~~~~~~~ c.e-o

~I3

= a~ { 
~ ~ ~~~ ~~ 

p—) ~~~~~~~~~~~ ~ 

-
~~ ~~~ ~~~~~~ 

-

-

~

-

U 
~~~ 

c~o~~~ ,
~
,t ~~~ ,~~~~~~~ 

(a 0 + QTW) c~~
= - C ~ ~ ~~

) 
~~~~~~~~~~~ 4 Y~~~

’
~ c.do(2~~ .) 4 eb A~~-O.

a33 = (~~ -i,~~
,) .c)~ ~~~ 4~~~~~)

4 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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— i~~) sT~ c4~~( 2Q~..+ 2 ~~ -F ~-wt Z~ ~~ ~~~~~~~~ ~~~~~~~~

- t+i~~-~ fl ~ 
e0c~~~(o~.*O.~-~) — ~~~ ,s.i.~~(Go4 Oiw)

cL4 = (r ~ _I~?)Qz .~~(2e0 +29~W)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ Q Y ~~~~~~~(ze6)

~~~~ ~~~~~~~~ 
(~~~~~~ e~~~)j ( 57)

Substituting Eq. 47 irito Eq. 41 and assembling the element mass and
stiffness matrices appropriately for compatibility of the interelemerit nodal
displacements, the global mass and sti f fness matrices are obtained and the
expression for it can be written as

= - (58)

where {q} is the global nodal displacements , and [Ml and [KJ are, respectively ,

global mass and stiffness matrices. These may be written as

[ R}  {
~J {~}J~ [:r] [~~~ -

[M] = [ ] T [
~~ [ ]  - -- - -  [ ] ]  ~~

[K] [J] ’[ [&] [4~] 
- [&~]] [~

j -]

Matrix J is a transformation matrix to relate the element nodal displacements
{q }  of the element to a column of global displacements ~q}.
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The application of Hamilton ’s principle to Eq. 58 will  yield the equa-

tions of motion,

~ [~] f ~ 
= ~oJ (60)

2.2.4 Boundary Conditions

Various boundary conditions can be chosen depending upon the rotor con—

figuration and can be applied easily in the finite—element method to specify

conditions of the displacements of the first node.

Hingeless Rotor:

= = tr =. ‘u~
’ - :1D, o (61)

Gimballed Rotor (Teetering Rotor):

= ~ = = 0 (62)

Articulated Rotor:

= = 4, = o (63)

If control linkage flexibility exists, the spring and constant K
0 

should

be included in the element stiffness matrix of the first element. If the con-

trol linkage is rigid enough, the rigid pitch degree of freedom should be re-

moved before the eigenvalue calculation.

2.2.5 Subspace Iteration Method

The eigenvalue problem expressed in Eq. 60 can be solved by any eigen-

value technique. In the present analysis, the subspace iteration method (Refs.

43 and 44) is selected to achieve a fast rate of convergence of a large degree—

of—freedom system (if ten elements are used to describe the rotor blade, the

total degrees—of—freedom will be 67) .

The subspace iteration method will be described briefly. Assuming s

modes are needed , the total degrees—of-freedom as t (Cq} in Eq. 60 is a

~ 
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t x 1 matrix), and denoting Eu] as the t x s matrix containing the s vectors,

the following procedure will be applied :

a. Assume an arbitrary [ u ]  as a starting matrix

b. Calculate the reduced mass and stiffness matrices as

= [u~~~ [M~~ [UQ]
wt ~~ fir S

and

= [L~] LK] ~~UO]
3xt ~~~ V)’5

c. Solve the small eigenvalue problem

[K R ][A ]  -

where [A] is a sxs eigenvector matrix and ED] is a

diagonal matrix which includes eigenvalues. This

small eigenvalue problem can be achieved by using
the Jacobi Method.

d. Calculate [
~~~

] as [
~~~

] [
~~~

] [
~~]

t )t5 txs SirS

e. Calculate [L.& ] as [u i] = [K]
1 
[M] [Z40]

f. Replace [u0] with [u,] and go to step b.

The criteria of terminating the iteration is set to achieve the specified

accuracy as

( ‘)...t~ —

())  
— < E (64)

where (X L ,  (X) i
+i are ith and (i+l)th iteration eigenvalue and £ is a speci-

fied accuracy.
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2.3 Aerodynamic Loading

-

, 
2.3.1 Introduction

- The aerodynamic forces and moments of the rotor blade are derived based

on the two-dimensional quasi-steady aerodynamics in Ref. 45. The major assump-

tions in the present aerodynamic analysis are:

- 
(1) the inflow is uniform over the rotor disc plane, and

-. 
(2) the vertical gust is assumed to be one-dimensional in cruising

- direction,

(3) reverse flow and blade stall are neglected: thus, the analysis
is good to an advance ratio of about 0.4.

-
- Also, the rotor unsteady wake effects are neglected . The virtual mass

aerodynamic forces and moments are neglected; the terms of order d R  in the

aerodynamic lift expressions are neglected; the firstorder velocity terms in
- the aerodynamic loading are retained; terms of order (d R)

3 in the aerodynamic
- feathering moments are also neglected; the collective pitch 0

0 
and the built-in

angle of twist 0~~ are , hereafter, restricted to small angles which enable the
use of the small angle assumptions of helicopter aerodynamics.

- 2.3.2 Relative Velocity of the Blade

The position vector r
B 
to the point on the blade elastic axis in the x,y,

z coordinate systems after applying the small angle assumption as O < <  1 and

0 << 1 to Eq. 11 is expressed as

-e 0 -~-~~.r

(65)
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The velocity due to deformations may be wri tten in the x ,y , z coordinate

systems as

= fl(_e.+~ ) +

5 — Ô ( - - e0 + - ~i-) 
(66)

where

0

.c1+ f3
~
,t3 (67)

and 0 includes the angula velocity due to the rigid pitch motion and the

cyclic pitch control, while the blade elastic torsion has no effect on the

velocity at the blade elastic axis because it is assumed that the elastic

torsion deformation occurs after the vertical and chordwise bending deforma-

tion shown in Fig. 3.

The velocity seen on the projection of the blade elastic axis to the x—y

plane is
-

~~~ -~~ 
-

~~ 
—

~~~

~~E A L ~~~V~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(68)

The trim velocity may be expressed in the x ,y, z coordina te system (the

hub plane) as
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~AS1R ie~4)

Rc ~~~ i

- - (69)

where ji , A , and are the rotor advance ratio, inflow ratio and the rotor
shaft tilt angle (positive rotor disc tilt forward), respectively, and de-
fined as follows:

V c ~~0(~

(70)

V~~~~~~~
4

~~~

The cruising velocity is V , and the induced flow velocity is v~ . The resultant

velocity IT may be written as

+ -

C (71)-~~ lR -
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This resultant velocity is resolved to obtain the relative velocity

components of the deformed elastic axis coordinate systems (x’’’ , y ’’’ , z’ ’ ’
coordinate systems shown in Fig. 3) as

4 =

- Up

-r

= [T] [Tb] [T~] U

fl(~0+r~ + ~QR -

= 

~~~ -~~~
(
~~~~~

) - R ( ~~~~~+~ )
+t& c~~ ~~~~~~~~~~~ ~~

- ~~~~~~~~~~ ~~~~~~~~~~~

(72)

where U
T~ 

U
R

r and U are blade tangential, radial , and perpendicular veloci-

ties with respect to the deformed elastic axis.

The bending motions are expressed in terms of steady equilibrium

quantities and small unsteady perturbation quantities

‘U— = -I- ~~

The same symbols are used for the total bending motions and perturba-

tion motions; however, there will be no confusion.
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Equilibrium velocities related to the trim condition are obtained as

follows :

( U.,.
-

~~ I
U. )

= 
~~nr~ cd~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# R t L~~~~~~~~ + V v -fr)’u~
(73)

where v and w are bending deflections at the equilibrium condition shown
previously, and time derivatives v and w are not necessarily zero because
in the present analysis no trim operation is considered which involves time—

dependent equilibrium position-related harmonic terms; i.e., sin~ and cos~ .

The perturbations of the velocity components including the vertical

gust are :

I ~~~~

-~ r - ~&flR t~c~eo(P -~~~~~r + v ~~~~)

+

= - O~~r -)~ flR ur’-~- 1~~~flT~~ ~~~~ 

- 

- US - p. fl ~ (71) + -u- ÷ ~
where w

G 
is the vertical gust at a given location, positive upward.
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2.3.3 Section Aerodynamic Forces

The section l i ft  and drag are (Fig . 8)

L PU~ c. o~o(
(75)

0 =~~~~ IJ~ c c ~&
where

o c = e - 4 ~ (76)

- 

~~~~~ 
tJp ~~13pTi. —

and a is the l i f t  curve slope and C
d the profile drag coefficient. The

force components 
~~~ 

parallel to U , and r’,~’ parallel to UT 
are

Pz =Lc.~~4~ - D~~-~41 +~~~~~~~~ (~~ ) +4 XA ) (~~&)

= cUU -~~~PcCa0 tJU~ 
- -

4 p a 
~~~~~ 

u,. (3 ~ 4 Xp~ (~~~ )

p
~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

= 4pcLc 1J iJ~
cx 4-&P~~~~L~

jUT

#4 pa (
~~~~ Ur (3+4~~A ’ (~

g
~ )

(77)

where X
A 
is the nondimensionalized distance of the blade chord between the

elastic axis and the aerodynamic center (positive aft of the elastic axis).

It should be noted that the aerodynamic force in the blade radial direction is

neglected and the lift due to the blade pitching angular velocity is included

to retain the damping terms of the torsion and rigid pitch motion shown in a

later section.
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The transformation [T
0
] in Eq. 6 may be used to resolve the blade forces

P and P into P and P parallel to the z” and x axes (the directions of thez x W V
bending) of the undeformed blade coordinate system.

.Ew = Pz +
( 78)

pV = -Pz e~._ +

The blade section velocities and angle of attack are expanded into

equilibrium terms and perturbation terms as follows:

u,= Lt.~. ± g U ~
.

Up =  Lk~~~ 4~~~~ U~

U = l.A -4-

- 
(79)

where u
Tr ~~~ tSu

Tr and 6u are defined in Eq. 73 and 74, and

(.2 =

= ~~~~~ ~ ~~c ~ 

(80)

Then, the aerodynamic forces are resolved into equilibrium terms related to

trim operation, and perturbation terms due to perturbed motions of the system.
Substituting Eq. 79 into Eq. 78 with Eq. 77 yields

= + (
~~ )~~u~ 

-

~ ~~ + (4~) (~~T~ + - (
~~

)
~ 
(

~~~ 1~~(P)

2-v = (PV ) b+(~~~) &LT +(~~~~) +(.~
2

~’) s ~a 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

(81)
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where

(2w) .4~ 
p ac O~ * 2 k & ‘~~ 

..~~~~~~~~
.

-~~~~~~~~~~~~ _ ) / A ,AL~~ L - ( t - F

(~ P w )  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~o
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(~ Pv)~~~~ p ( ~~~~~[ .  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ ~~~~~~~~~~~~~~~~ ±~~~~~~ 4 c~~~~~ 44 ~~~~~~~~~~~~ ~~~~~~~~4~~~~~~~~~~~~~~~(2~~~~) 
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—~~~~~~i-4p~~ 2~~~~~~~-~~~~~~(Zc~~~2~~~

(
~~L =

~~~~~~~~~~~~
) +~~~)(~~~~ ) [

~ ~~
(82)

It should be noted that the double underlined terms are due to deforma-

tions at the equilibrium condition . The nondimensional radial coordinate x 
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and angle O
S 

are given by

(83)

~~~~~~ = Q
~~

-
~
-O Tw

2.3.4 Aerodynamic Moments

The section aerodynamic moment (positive nose up) may be written as

MA ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
-4PC k I JC~~~~CM O (84)

where C and C are section aerodynamic moment coefficient and section aer-o—m m
0

dynamic moment slope , respectively. C
M 

is a func tion of x
A
:

2C~ =~~ +~~~~~~A #  
~
(A (85) -

Expanding as before in equilibrium and perturbation terms yields

MA = (M~J0 ~~~~~~~~~~~~ *(.~±A ) ~~

+ (-
~j~) (~e +~~) -+ (.

~~~~ 
ç~~~ ~~~~~~ 86

where

(~~i~~)~~ -

~~~ 
Pa (.ciPY Me~ -i- -~~ + ~~
-

~~~ ~~~~~~~~~~~~~~~ + ~~~~ ~~ 
(~÷

(
~~ )~ = ~~~~~~~~ci~~) [ AM(~~-F f r A~-st (

~ _ i
~~)

_~~~~~~÷~ r~)]

= 4 pac.~(QR)[4,.1 C~~~~)
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2 ’U—.j]

(
~~~) = - 4paC~(~~R~ [cH( ~+P4~~

(Tt r~]

(87)

and

A M = 2 . .

(88)
~~~~p~~~~~

=

Aerodynamic moments M
0 for the rigid—pitch motion consist of two

portions: one due to the section aerodynamic moment derived previously and

the other due to lif t and drag which make moments abou t the blade feathering
axis:

— 
- M~ MA e ~ (89)

where

~ Ae
(90)

M~ A 
~~ ( P~ v~ -~P~rjdr

and from Eq. 20 r and r are obtained in the x ’ , y’ and z ’ coordinate
systems.
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Expanding MF A to equilibrium quantities and small unsteady perturba-

tion quantities yields

McA f~ ~~~ ~~~~~~~~ 
- (P~)0 ~~~~

+ c [(~~~~)b ~~~~ -

+ ~~~ 
~ 
(-
~~)~ 

S u,- + (
~~;3~ ~~ + (

~~~
‘)

~ 
(~e + ~4)

* (-
~~) (~~~ 

-F
~~~~+)j .

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~

(92)

Steady equilibrium terms and perturbation terms are already defined in
Eqs. 82 and 74.

2 .3 .5  Gust Velocity Gradient Due to the One—Dimensional Gust

As shown in Fig. 9, the one-dimensional sinusoidal gust in the cruising

direction has a velocity gradient. The gust magnitude at the nondimensional

spanwise location x of the blade of azimuth angle ~ = ~2t is expressed as:

52

_ _ _ _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~- - - ~~ - ‘- .--~~~~ -~~~~~~ ----— -5-- - -~~~



- -  - - - -5.--—-’- - - - -- --5---—- - --5- 

~1

(93)

whnre W
GT 

is a gust amplitude and w the gust frequency, phase lag of the

gust between that location and the center of the rotor . The phase lag

is described by the gust wave length X
c~ 
and the location of the given point

as: 
= ~7r [-

~ ~;: ~~ ]
(94) -

= - ~~~(~~~ )~~~~c~~o (At)

Substituting Eq. 94 into Eq. 93 and expanding the trigonometric function

yields :

+ Higher Order Terms (95)

In order to obtain the analytical excitation function, the approximate

Eq. 95 is used instead of Eq. 93. The first term shows the uniform part

of the gust and the second the gust velocity gradient due to the one-

dimensional sinusoidal vertical gust.

53

_ _ _  —--- .-— - --—~~ - - - - -~~~~~~~-----—--- -—-- -~~~~~ _. .



~
- - - -- - -- -,-

~
---_ 5- - - - - — ‘--~~~ -~~~~~~~

2.4 Rotor Trim and Steady-State Deflections

2.4.1 Introduction

In this subsection, an approximate method to obtain the rotor trim con-

dition and steady-state blade deflections will be described. These are re-

quired to evaluate the aerodynamic coefficients and structural couplings of

the perturbation equations. There are two rotor trim conditions: one is

powered trim. This simulates the actual helicopter trim and requires force

equilibrium in vertical and horizontal directions as well as moment equilibri-

um in pitch and roll. The other is moment trim. This simulates wind tunnel

testing of the rotor where moment equilibr ium in pitch and roll is required

and the thrust and drag are reacted by the wind tunnel model support.

In the present analysis , both moment trim and out-of-trim operation

are considered with respect to the wind tunnel experiments. In out—of—trim

operation, the blade motion is periodic. In this case , the blade torsion and

rigid pitch motions are neglected when the steady-state trim condition is

obtained.

2 . 4 . 2  Equations of Motion for the Steady Equilibrium Condition

Discarding terms related to the elastic torsion 4 and rigid pitch

motion 0
R’ 

and second—order terms, two sets of equations are obtained from

Eqs. 3 and 4 as follows:

w Equation
0

- 
~~~~~~~~~~~~~~~~~~~~~ ~~~~ -

~~~ 
[(El~~ ~~~~~~~~~~~~~~~~ ~CEI ETt)c~~~~~~~~~ e~ 4u~ \

’

(96)

- - - .
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v Equation

~~- ~~~ 

~~ 
+ t~~ 4 4 ‘~st Q ‘~~~~~~

- (T ~~~ )
‘ - ~ç1Z ~~~~~ - 

~~~~~~~~

~ [(~~r~ ~~~~~ + E~~ c~o~~~rw) tr~’ ÷ ~~~~~~~~~~~ ~~~e~ } ~~“] “

4 2 ~ fl~ —

(97)

Galerkin ’s Method is applied to Eqs. 96 and 97 to obtain the modal

equations of motion for the steady-equilibrium condition, using the two coupled

rotating bending mode shapes obtained in Subsection 2.2. The dimensional

bending is expressed in terms of a series of generalized coordinates and

dimensionless mode shapes which have unit displacement at the blade tip:

2 —

‘R 
~~ 

(98)

After substituting Eq. 98 into Eqs. 96 and 97, the application of

Galerkin ’s method with coupled mode shapes is as follows:

(R Left—hand side of Eq. 96 in terms of
generalized coordinates and mode shapes

~ {w~ v~~ 
- - -

J Left-hand side of Eq. 97 in terms of
generalized coordinates and mode shapes

Right-hand side of Eq. 96 in terms of
generalized coordinates and mode shapes

= ~..1AJkV &~ 
Right-hand side of Eq. 97 in terms of
generalized coordinates and mode shapes

(99)
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It should be noted that aerodynamic forces P~ and P~, in Eqs . 96 and

97 are evaluated from Eqs. 74 and 82 discarding terms related to torsion

4’ and rigid-pitch motion and double underlined terms which express the

steady-state equilibrium deflection effect on aerodynamic forces; they will

be included in the perturbation equations later.

A f ter some algebraic manipulation, the equations of motion for the
steady-state equilibrium will be obtained in terms of generalized coordinates

as follows :

+ (~ 
S~~~~~ + M~~ )~~1 -t- (~~s~~ ~~

- M~~~~ ) ~~~

* = ~~~~~~ 4 M~ +

+ (
~ ~~~~ 

+ M ~ (~ ~~~~~ 
+ H

+ 4~ 
M 

~~~~~
. + 

~~~~ 
+ 

.

(100)

where q1and q
2 
are generalized coordinates corresponding to the lowest fre—

quency flapping and lagging motion , and (
00

) and (~~) are nondimensional time
derivatives d

2
/dWt)

2 
and d/d (~2t). Iq

1 
and 1q

2 
are generalized masses and

5q
141

, sq
1
q
2
, Sq

2
,q
1 

and Sq
2
q
2 
are related to Coriolis forces. Rotating—

blade natural frequencies are expressed by and w
2/~

2. Mq
1
q
1
, Mq

1
q
2
,

Mq
2
q
1 
and Mq

2
q
2 

are aerodynamic dampings , and MC F q  and MC F q  are

loading due to centrifugal forces. Mq
1 

and Mq
2 

are aerodynamic loading, and

M and M are coefficients of blade pitch control. These coefficients
q

2
0

are defined in Appendix A.
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Generalized coordinates and q
2 may be wri t ten as

~~ Ct) =
(101)

(t) = �~ + -~~°~~~~ 
-

~
- 

~~~~~

where it is assumed that the flap motion is predominant in q
1

(t) motion and
the lag motion is predominant in q

2
(t) motion. 

~~~~~
‘ 

~~~~~~~~~ 

8ls ’ ~o Clc~ 
and

are constant and express the ampli tudes of the collective and cyclic motions
in the steady equilibrium condition. Trim pitch is

(102)

where 0 , 0 , and 0 are constant.o lc is

Substituting Eq. 101 and the time derivatives of Eq. 101 and also

Eq. 102 into Eq. 100 and applying the harmonic balance method yields the

following linear simultaneous equations for the out-of-trim operation.
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(103)

where coefficients used above are defined in Appendix A.

For the moment trim operation, to achieve the state of zero pitching and

rolling moments, the following condition is necessary :
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_ (104)

which requires trim cyclic pitch. Therefore, the equations for the moment
trim operation are

0 ~-4 M#~ 0 0 ~_ t _ _ 4 _ L_ _ _
~~~

_ _
I I 

—

t~/~
C. 0 ‘ M ~~~i 0 I~~~I —

~~~~ 
M~ I I I I + ~

I T T T ~~~~~~
””

— M ~~ — (~~~~I 
0

~~~~~~~~~~~~~~~~~~~~~~I I I 5 1

~~~~~~~~~~~~ ~
~~~~~~~~ 

+
~~~~~~~t ~~~~

- 

~c~e T ~0 ~ ,#4 M~0I — M ~~~~~ iJ 
-

(105)

where the coefficients used above are defined in Appendix A.

2 . 4 . 3  Thrust Coefficient

The thrust coefficient CT is defined as

c -  T1~ 
- _ _ _ _ _ _ _ _ _ _

2 ( a ) ~~~ p~
2

(106)
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where T is thrust and N is the number of blades. Assuming 
~ 

and
substituting Eqs. 74 and 82 into Eq. 96 yields

+ 2 ~ ~ 
( I + ~

) W~°~ ~~

* 2 -
~
- i.
~
. (~ 

-
~
. .) c’~%T~ ~~ S~~

+

J (107)

where

a— = _ _ _

X~~~ = ç  (e~ ~~~ ~‘c

ç ~~~~~~~~~~~~~~~~~~~~~ 
=

and V . and W . are mode shapes , and i takes the values 1 or 2.1. 3.

2 .4 .4  Procedure for the Trim Condition

The trim condition is obtained using the iteration method. The pro-

cedur e is described as follows:

(1) Advance ratio 1J and shaft tilt angle ct are given for
the wind tunnel experiment condition.

(2) Set an arbitrary value for the thrust coefficient
C
T 

as an initial value

(3) Evaluate the inflow ratio A from Eq. 106 below with

given p,  a and C
T.
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CT
~ ~.4 ta*Lt~~ 

-SI. (108)
2 Jp .~ + ?~

This is a fourth-order polynominal in A .

An appropriate root should be chosen from

the resulting real and complex roots .

(4) Using the inflow ratio A obtained in the

previous step , aerodynamic coefficients

in Appendix A are evaluated and the equilibri-

um equation of Eq. 103 for the no-trim opera-

tion or of Eq. 105 for the moment trim

operation are solved.

(5) Substituting the amplitudes of 8lc and
zero 0 into Eq. 107 in the case of out-ls — — —
of—trim operation (~ , 0 and zero Blc is lc
should be substituted for the moment trim

operation ) yields a new thrust coefficient.

(6) Check the accuracy of the new thrust coef-

ficient, compared to the old thrust coef-
ficient. If it is not within the accuracy

specified, proceed to the next step.
I

(7) Replace the old thrust coefficient with

the new one and go to step ( 3) for the
iteration.
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2.5 Modal Equations of Motion

In this section the nonlinear periodic—coefficient equations of motion,

Eqs. 34, 35, 36, and 39 with aerodynamic loadings Eqs. 81, 86, and 89

are linearized for small perturbation motions about the steady-state

equilibrium operating condition. Galerkin ’s method is applied to these equa-

tions and modal equations are obtained in terms of generalized coordinates.
The equations thus obtained are periodic-coefficient equations. To avoid dif-

ficulties in solving the periodic-coefficient equations, the equations are

transformed into the nonrotating coordinate frame using the Fourier series ex-

pansion , where most of the periodic coefficients are transformed into con-

stant coefficients. Stability calculations and frequency response analysis

for vertical gusts are performed, based upon the constant-coefficient equa-

tions.

2.5.1 The Perturbation Equations of Motion

Bending motions in terms of steady equilibrium quantities and perturba-

tion motions in Eq. 73 are substituted into Eqs. 34, 35, 36, and 39, and the

equilibrium equations are subtracted. Discarding all nonlinear products of

perturbation quantities yields

w Equation

~~~i. t3- — - ‘i~ ( x-~ -4- u)  
~~R ~ fl~~~ O~~

+ 1(O~~~~~~~~~)i~-’ 
~~~~~~~~~~~~~~~~~~~ p+&)i~

— 2 b4t �1~~O~~~ f ~rd r _ ( 
t~~)Q~~ 4 [(Er~~~~~i~~

.
~~~ )kY ”

4 (E~~~~
-

~~~~1~~~)~~~~~~~ u”]” —
~~~~~~~~

‘)‘ + ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~ L”~~~~~ + ~~~~~~~~~~~~~~~~~~~~~~~~~~

(t)D

~~~~~~ 

~~~~ ~~ ~ ~~~~ 
(
~ (lO9a )
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I~~~~~~~~~~~~~~~~~~ (110)
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It should be noted that the single underlined terms are terms which
are not included in Eq . 40, used to derive the natural frequencies and mode

shapes, even though the omitted terms are linear. However, they are retained

in the modal analysis. Most of these terms are velocity dependent terms re-

sulting from Coriolis forces. Other terms, for example (e
NT 4 ’

)” and

~mx
1
c?
2
(r + r)4’}’ in Eq. lO9a where the former expresses the centrifugal

force effect, due to the cross—section neutral axis offset, and the latter is

the centrifugal force effect, due to the cross—section center—of—gravity

off set, are excluded in Eq. 40 because these terms make the stiffness matrix
nonsymmetrical as do the Coriolis force terms.

The double underlined terms are attributed to nonlinear terms in Eqs.

34, 35, 36, and 39, and include steady—state equilibrium deflection

effects producing structural couplings. The roles of these terms are de-

scribed briefly. The term m v O
R 

in Eq. lO9a for the w-equation is due to an

additional center-of—gravity offset resulting from the steady—state chordwise

deflection. The term -2mc�w’v is the Cor iolis force effect from the additional

precone due to steady-state flapping. The rotation about the feathering axis,

due to the rigid pitch, yields the Coriolis force —2mv O
R
. The terms

_ 2mS~(wl!
R 
v dr) and _2m~2(wHf

R 
v dr) are supplemental to the constant tension

force expression in Eq. ilo~ while the original expression is E~q. 37~ The

term :_mc
~
2
v
O
o
R 

expresses the centrifugal force effect due to the center—of-

gravity offset from the steady-state chordwise deflection. For the rest ot

the equations , short explanations will be given if they are dif ferent from

above.

In Eq. 109b (the v equation) the term 2~~ f
r
(V.~~l + ~ ‘v’ + w ’~~’ + ~i’w ’)dr

0~~~0 0 0 - 0
results from the Coriolis force effect due to —2mc2u in Eq. 35, which includes

the geometrical radial shortening effect from vertical and chordwise bending

deflections.

In Eq. 19c (the 4’ equation), the terms (EI~ - El 
~~~~~~~~~ 

- V
o

} W”

‘ w”1 v ”J shows the bending-torsion coupling identified by M u ’

- rP .  ‘. 31). The bending moment expressions are used to describe the

- . 
~ .- . i~- rodynam~ c- loadings which cause torsional moments about the de—

~~~~ T •  shoul-1 be noted that there is no structural bending-
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torsion coupling in the matched—stiffness rotor blade where El equals El -F c
For the rigid—pitch equation of Eq. lO9d, this coupling is directly described

in terms of the inertia and aerodynamic loadings and the steady-state blade

deflections.

2.5.2 Modal Equations in Rotating Coordinate Systems

The steady-state equilibrium deflections and perturbation deflections

may be written

~~~~~~k
(t) ~~~~~ ~~~.(t ) (111)

u J  ‘-“ v~J
OR

Galerkin ’s method may be applied to Eq. 109 as described in Subsection

2.4.2 using the natural frequencies and coupled mode shapes in Eq. 111 as

obtained in Subsection 2.2. Terms without underlines in the left-hand side

of Eq. 109 are converted into generalized masses and natural frequencies, and

terms with underlines describe cross—couplings between modes.

The modal equation for the ith mode, using N modes,is given by

+ ~ 3~ + + T~
cJ~ I

+3~c~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ ~~~ ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~

+ ~ t ~:L ~ + g~ ~g .  + 

~ ~~~k ~~~ + ~~~

+ E4~~~~ 

~~
} 

~~~~~~~~~~ ~~
. + ~~~~~~p

+ j 4~~ 9~ + A ~~~~~ c~~ C2 ~6)j
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+ ~~ ~~~~~ +

+ 

~~ ~~~~~~~~~~~~ 
C4O(~’ + ~~~~~ 4~~~ t C~Qq)

+ 

~~~~~~~~~~~ A~~~~~~~ ’4~~] (112)

where ~~ = ~, 2., - . - - p.-J and =

This is the modal equation of the individual blade where the observer is

sitting on the blade and rotating about the rotor shaft with the rotating

angular velocity Q. Therefore, the coefficients of equations are periodic

in terms of the blade azimuth angle in cruising flight.

It should be noted that Eq. 112 is applicable to the out—of-trim con-

dition in which rotor shaft tilt is prescribed - However, no cyclic pitch is

applied to suppress the first harmonic cyclic flapping motion and eliminate

rotor hub moments. Only the vertical gust is considered as a forcing function
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in the right-hand side of Eq. 112. Steady-state cyclic pitch effect on the

moment trim condition and pitch control as a forcing function are considered
in Appendix C because they require a different treatment.

The various coefficients in the present equations are shown in detail

in Appendix B. However, they will now be briefly described . The generalized

coordinates for the steady-state equilibrium deflections and the perturbation

deflections are expressed by and q., respectively . The generalized mass

corresponding to the ith mode shape is I.. 1. is the structural damping of

the ith mode in terms of the critical damping ratio. Coriolis force effects

are expressed by S..~~, and (w./~ ) is the nondimensionalized rotating blade

natural frequency at rotational speed S~. C
jjq 

coefficients include single
underlined terms in Eq. 109 and E , E - ~~~~~~~ S , E . , E . .~ , and

kijqq kijqq kijqq kl3qq kijqq
E
kij~ q 

consist of double underlined terms in Eq. 109 which describe the

steady-state equilibrium deflection effects due to the perturbation blade

motion. A .. . and A .~ are aerodynamic damping terms, and A ..~~, A~~ , and
2C ijq ijq ijq ijq

Aijq l are aerodynamic stiffness terms. Superscripts iS and 2C of coefficients

show that these coefficients are coefficients of sin~t and cos2~ t, respec-

tively. The quantities A...—- , A ~~~~~~~~~~~~~~~~~~~ A
~ijqq kijqq ~ijqq icijqq, kijqq- kijqq

and ~2C _ are aerodynamic coefficients related toxljqq kijqq kijqq Jci.3qq 
2Csteady—state equilibrium deflections. The quantities G . and G . are aero-

dynamic coefficients due to the vertical gust where is the nondimen-

sionalized gust velocity , w
G
/(QR) at the center of the rotor. The quantities

Gki .-S
~ 
, G~~— , G~~— , G~~— , Gki~~ 

are aerodynamic coefficients due to the

vertical gust and steady—state equilibrium deflections.

2.5.3 Modal Equations in Nonrotating Coordinate Systems

Equation 112 can be solved in closed form only when the flight condition

is hovering, in which all periodic coefficients vanish. In cruising flight,

it is difficult to obtain closed form solutions because of the periodic coef-

ficients. Therefore, numerical integration techniques are usually employed.

However, it is inconvenient to evaluate the characteristics of such systems.
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In the present analysis, the harmonic balance approximation method

(the nonrotating coordinate transformation) is chosen to evaluate the systems

because this method has been shown to be reasonably accurate at advance ratios
up to 0.5 (Ref. 40). This range is sufficient for the present purpose , since

Eq. 111. holds good to an advance ratio of about 0.4 or 0.5 based on the

assumption that the reverse flow is neglected in Subsection 2.4.

In the three-bladed rotor which is chosen as the rotor model in this

analysis , the perturbation blade motion q.(t) of the jth mode in the rotating
coordinate system may be written in terms of nonrotating coordinates by a
coordinate transformation of the Fourier type.

= 4 ~~ t) c.~~ (~~t) + 
~J~

Ct) ~~~~~~~~~~ (113)

For the steady-state equilibrium deflections , the transformation of

Eq. 101 is used. If the jth mode corresponds to the flapping mode, q~~(t),

q. (t), and q. (t) represent blade coning motion , longitudinal flapping

motion B
1 

and lateral flapping motion B
1
, respectively. It should be noted

that in Eq. 101 B , 0 , 0 , , , and C are constant. However, in0 ic is o ic is
o 1C lS

Eq. 113 q., q. , and q. are functions of time.

Substituting Eqs. 101 and 113 into Eq. 112 and using a harmonic balance

method results in a set of ordinary differential equations with constant
coefficients that can be expressed as

[M] ~~} + [c]{~} [K]M = [
~

} ~ (114)

where if N mode shapes are used ~Y} will be

{ YJ 
~~~~~~~~~~~ 

~~ O~~~~lc~
g

I$ (115)

and [ s t ] ,  [C], and [K] are generalized mass, generalized damping and generalized

stiffness matrices with (3N) by (3N) dimensions , respectively. [F] is a

generalized force row matrix with (3N) dimensions. [MI, [C] force row matrix

with (3M) dimensions. [M], [C] and [K] consist of submatrices (nt .1~ [C . .]
‘-:3 1~)

and [k.] , respectively ,which are the 3x3 matrices, and [F] of the 3xl [f .J
matrix.
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The composition of the matrices are

~ 

1

CII

- 

[M] - - -  .[~~~ --  - [
~
] [f ~~ (116)

- 
S

and similarly [C] and [K] matrices are composed as [M] matrix.

[rn ..], [C~~.]~ [k ..] and [f] may be written

~~~~ 

° ° ~~

= 0 L 0 

~~~ E& , E~~1~~ 0

0 0 I~ - -- 1~ ’
0 EA ~ (ll7a)

2T~~(~~) a 0 
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[C~ j .~~~~~J
0 -2t~ 2I~3~(~ )
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IC. : 
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o 0

+ 
0 S
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where 5 . .  is the Kronecker delta and is vET.
iJ

6.4 Mathematical Methods for Determining System Characteristics

In this subsection , the methods used to determine the system character-

istics are briefly described. These methods are the eigenvalue analysis and

the frequency response analysis for the vertical gust input. The eigenvalue

analysis is performed before the frequency response analysis to confirm the

system stability.

The eigenvalue problem is constructed according to Meirovitch (Ref. 45).

The set of 3N second-order ordinary differential equations in Eq. 114 can be

converted into an equivalent set of 6N first—order ordinary differential

equations:
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(x} 4AJ frJ~ [B]~~~
where

( 1 Ii r 1 — [ )
~
‘ 
[C) —

; i’~’i=~- ~ (4 1 to)

r —‘ (119)
tt ir~~ t~~

[B] =
[0]

F Hence, the general eigenvalue problem is defined as

~ } = [A] {X} 
(120)

where rA] is a 6Nx6N nonsymmetrical matrix. This real general matrix eigen—

value problem is solved by the QR algorithm described in Ref. 46 and eigen-

values and associated eigenvectors are obtained .

The frequency response problem is formulated next. Substituting the

unit sinusoidal vertical gust input = e~~~
t into Eq. 114 and assuming the

system response with the same frequency of the input to obtain the particular

solutions of Eq. 114 yield the complex simultaneous equations

rHJ (~} = (121)

where [HI is a ( 3 N ) x ( 3 N )  complex square matrix:

tHI = [ i]((~))
2 

~~~J(~~÷[i~c] (122) 
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Using the Gauss-Jordan reduction , the complex solution of {
~ } can be 

—

obtained , and the absolute value and the argument of the complex number
gives the amplitude and phase angle of the response .
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SECTION 3

EXPERIMENTAL PROGRAM

3.1 General Description of Model

An overall view of the model rotor and mount is given in Fig. 10. The

model rotor consists of three blades with an offset flapping hinge at 0.l76R

spanwise location. This flapping hinge configuration was adopted to obtain

the desired flap, lag and torsion natural frequencies with the flexure system
explained in detail in a later subsection. The rotor diameter is approxi-

mately 5 feet and the blade chord is 2 inches. The blades have 8 degree

linear geometrical twist. The model rotor is an approximate Froude-scaled

dynamic model of a typical soft-inplane hingeless rotor. The model rotor

solidity is 0.0704, which is roughly equal to the solidity of most existing

full-scale rotors in operation today. However, the Lock number is 2.27,

which is very low comparing to full size rotors. Additionally , because of

the orientation of the gust generator the rotor disc is located vertically
in order to use the lateral gust as the vertical gust in the helicopter
sense. Blade characteristics used in the experiment are listed in Table 1

and Fig. 11. Detailed descriptions of the design considerations and the

resulting model may be found in Ref. 48.

3.2 Rotor Blades

In the present experiment existing rotor blades are used, which have a

MACA 0012 airfoil section and 8-degree linear spanwise geometrical twist.

To achieve the desired rotating natural frequencies of the blade lag

and torsional motions the flexure is placed between the blade and hub as

shown in Fig. 12. The offset flap hinge at 0.l76R spanwise station produces

the equivalent hub moment to that of the hingeless rotor. The chordwise

bending and torsional stiffness of the flexure determines the rotating lag

and torsional natural frequencies and the spanwise location of the hinge

gives the appropriate flapping frequency . The cross-sectional dimensions

(width and height) of the flexure, which was made of 17—7 PH stainless steel,

were chosen to obtain the desired stiffness. In order to evaluate the
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rotating blade natural frequencies from the given stiffness of the flexure
and blade, the computer program based on the analysis of the previous section

was used.

The physical properties of the model rotor such as mass distribution,
stiffness and so forth were measured and are shown in Table 1 and Fig. 11.

Lead—lag dampers are uesed to overcome the lag resonance encountered

in the preliminary experimental stage. The gravity force excited the one—

per—revolution lag motion when the rotor rotational speed was at the lag

natural frequency since the rotor was mounted vertically, and the structural
and aerodynamic lag damping of the blade was very small. It was found that

the lag structural damping was 0.2% of critical without the lead—lag damper,

and with the damper it increased to 7.0% of critical.

3.3 Model Hub and Support

The rotor blade is rigidly attached to the rigid rotor hub with no pre— -

cone or droop. The blade collective pitch can be changed at the hub location,

however , no cyclic pitch control is incorporated.

The rotor hub is rigidly mounted to the rotor shaft which runs across

the tunnel horizontally as shown in Fig. 10. This is because the rotor disc

was located vertically to obtain the vertical gust effect from the existing
gust generator at the M.I.T. Wright Brothers Wind Tunnel. The rotor shaft

is mounted 3 feet above the tunnel floor to place the rotor in the center of

the 7 x 10 foot elliptic cross-section of the wind tunnel. The rotor shaft

is supported by two trunnions which are connected to the wind tunnel balance

system. Rotor shaft tilting is also possible to simulate the helicopter

forward flight cruising configuration. The shaft can be tilted up to 30

degrees forward.

The rotor is driven by a hydraulic motor mounted outside the tunnel
and ~ flow control valve in the hydraulic system is used to vary the rota-
tional speed between zero and approximately 1200 rpm.

3.4 Instrumentation

Each blade flexure was instrumented with strain gages in order to detect

lag and torsion motion. The lag bending strain gage was located at 0.l28R
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spanwise station (1.1 inch from the cantilevered flexure root which is 2.4

inches long) and the torsion gage was at 0.l5R spanwise location (1.7 inches

from the cantilevered flexure root).

In order to detect the flapping motion a small .007-inch-thick leaf

spring was placed between the blade and the flapping pin at the hinge loca-

tion. The flapping hinge pin, fixed to the flexure, is extended slightly and

slotted to provide a built-in mount for the root end of the cantilevered leaf

spring. The outboard end of the leaf spring has a sliding fit in a blade-

mounted fitting. The leaf spring provides a negligible elastic restraint to

the blade flapping motion. This leaf spring was also instrumented with strain

gages for the measur ing of blade flapping motion in terms of leaf spring
bending strain. The instrumentation for flap, lag and torsion motion can be
seen in Fig. 12.

In addition to the blade deflection signals, the rotor RPM and blade

azimuth angle signal are available on one of the slip rings. Once each revolu-

tion the circuit on the slip ring is closed and provides the signal for the

RPM frequency counter , while in the recorded time history the location where

the circuit is closed gives the blade azimuth angle. The rotation of the

shaft of the gust generator was measured as the gust frequency. The gust

magnitude was measured separately from the rotor gust response. A hot wire

was placed at the rotor hub location and the gust frequencies were set to
the same frequencies as those where the rotor gust response was to be measured.

Thus , the gust magnitude signal was recorded .

3.5 Rotor Blade with Chordwise Center-of-Gravity Shift Configuration

The purpose of the wind tunnel tests is to validate the theory developed

in the previous sec tion concerning the reduction of blade bending motion due
to a vertical gust utilizing blade chordwise mass unbalance as a passive

control measure. One means of accomplishing the testing of the blades with

different center-of-gravity locations would be to design and build rotor

blades which actually had different center—of-gravity locations. This method,

however, would have proved too costly and time consuming . Therefore, it was

decided that through the addition of a variable weight, placed at the blade

tip, the designed center—of-gravity shift would be accomplished.
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The scheme used to apply the tip weight to the model blade is shown in

Fig. 13. A stainless steel sleeve/tube is attached to the blade tip. A

tungsten slug, weighing 40 grains, is slipped inside the tube. By securing the

slug at any location in the tube, an appropriate shift of the chordwise center-

of-gravity either fore and aft was achieved.

The slug location allows for effective chordwise C.G. variation (C.G.

location averaged in the spanwise direction) ranging from 35% chord from the
leading edge (most aft position) to 18% chord (most forward position).

In order that no more than one blade of the model be subjected to the

modification for shifting the chordwise C.G. mentioned above, two dummy blades

were used in addition to the actual blade having variable chordwise C.G., as

shown in Fig. 13.

3.6 Experimental Procedure

Having finished the rotor static balance prior to the wind tunnel test,

the rotor blade track check was performed with the rotor spinning at 400 RPM.

Rotor blades were set to 0 degree at 75% radius. The rotor stability check

and the structural integrity check of the model rotor were also conducted.

The blade pitch angle was increased to 4 degrees and finally to 8 degrees.

The rotor rotational speed was then increased to 955 RPM without tunnel velo-

city. The blade pitch angle 8 degrees and the rotor rotational speed 955 RPM

are the configuration for the actual test.

In the next step the rotor shaft angle was changed from 0 degree to 10

degrees. The tunnel velocity was increased to 30 MPH and then to 60 MPH,

which corresponded to an advance ratio (11) of 0.192 and 0.384 respectively.

Having again confirmed the rotor stability, the sinusoidal vertical gust was

applied to the rotor to measure the frequency response of the rotor to the

vertical gust. The preliminary testing showed that the rotor response was

difficult to distinguish from noise at a gust frequency greater than 500 CPM

because of the strong gust dissipation at these higher frequencies. However,

the low frequency gust responses are of most interest. Thus, the wind tunnel

test was conducted at the gust frequency 500 CPM and below.

The sequence of the testing in which data were taken will be described

next. The summarized table of test conditions is shown below.
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WIND TUNNE L EXPERIMENT CONDITION S

TUNNEL 0 MPH 30 MPH 60 MPH
VELOCITY (u=0 , HOVER) (j i=0. 192) (p=0.384)

THREE-BLADED ROTOR 0,100 , 200 0, 100 , 200 ,
WITH STIFF BLADE NO GUST 300 , 400 , 500 300 ,400 , 500
TORSION AND CPM GUST CPM GUST
WITHOUT TIP WEIGHT FREQUENCY FREQUENCY
_______ ________ ____________ _____________ 

APPLIED APPLIED

18% C 0,100 ,150, 200 0, 100, 150, 200
e.G. from NO GUST 250,300,400, 250,300, 400, 500
L.E. 500,CPM GUST CPM GUST

SINGLE FREQUENCY FREQUENCY

“STIFF - 
APPLIED APPLIED

BLADED 
25% c

TORSION” C.G. “ “
ROTOR from L.E.

BLADE

WITH 35% c
C.G. from “ “

TIP L.E.

WEIGHT 18% C

C.G. f rom “ •‘
L.E.

“ SOFT
25% c

TORSION ” C.G. U

from L.E.
BLADE

35% c
C .G. ~‘ ‘~ “

from L.E.

NOTE: ~) 955 RPM , 0 8 deg, a
s 

(SHAFT ANGLE ) = 10 deg.

The first test was conducted on the three-bladed rotor shown in Fig. 10.

The shaft forward tilt angle was 10 degrees and the collective pitch was set to

8 degrees at 75% radius location. The rotor rotational speed was 955 RPM (100

rad/sec). First, the hovering condition was achieved when the wind tunnel had

no velocity . In this configuration no vertical gust can be applied. The next

step involved increasing the wind tunnel velocity to 30 MPH. At this point

no gusts were applied in order to define the steady-state rotor motion. Then

the vertical gust was applied to the rotor and the responses of the rotor were
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measured at gust frequencies of 100, 200, 300, 400, and 500 CPM. Having com-

pleted the 30 MPH sequence of the tests, the tunnel velocity was increased to

60 MPH and the same test sequence was followed as for 30 MPH.

The next portion of the test was with the single-bladed rotor with the

tip weight shown in Fig. 13. The tungsten slug was positioned in the sleeve

of the blade tip to place the chordwise center-of-gravity at 25% chord from

the blade leading edge. It should be noted this C.G. location is the averaged

one over the span. In this case the “stiff torsion” blade was used (the

torsional natural frequency is 5.12/rev). The rotor had 8 degrees of collec-

tive pitch, the rotational speed was 955 RPM and the shaft tilt angle was 10

degrees. The same test sequence was followed as that of the three—bladed

rotor , to measure the frequency response of the rotor to vertical gusts at

advance ratios 0.192 and 0.384.

The tungsten slug was moved forward to place the chordwise C.G. location

at 18% chord from the leading edge, and the gust frequency responses were

measured. The slug was then moved backwards to obtain the chordwise C.G.

location 35% chord from the leading edge, and the frequency responses were

again measured. In the above cases the “stif f  torsion” blade were used. The

rotor blade remained stable in any C.G. location.

The final part of the test used the “soft torsion ” blade (the torsional

natural frequency is 2.38/rev with 25% chord chordwise C.G. location from the

leading edge) with variable C.G. location. The wind tunnel velocity was set to

30 MPH and 60 MPH. The chordwise C.G. location was varied 18%, 25% and 35%

chord from the leading edge at both tunnel velocities, and the vertical gust

was applied to the rotor.
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SECTION 4

RESULTS AND DISCUSSIONS

4.1 Introduction

Using the theory derived in a previous section, the blade chordwise
center—of-gravity shift as a gust alleviation method is evaluated and the

theory is compared with the experimental results. Rotor blade characteristics

employed in this analysis are based on the wind tunnel model described in the

previous section and detailed characteristics are listed in Table 1 and Fig.

11. In addition to the chordwise center—of—gravity shift as a principal

parameter , the parameters examined in this analysis include cruising fl ight

at advance ratios of 0.192 and 0.384, and blade torsional stiffness.

4.2 Natural Frequencies and Mode Shapes

Based on the mass and stiffness distribution of the wind tunnel model

blade as shown in Fig. 11, rotating blade natural frequencies and associated

mode shapes are obtained from the theory developed in the previous section.

Mode shapes of the blade with “stiff” torsional stiffness and C.G. at 25%

chord from the leading edge are shown in Fig. 14. Since existing stiff blades

were used in the experiment, bending in the flexure at the root determined

the appropriate natural frequencies.

Non—rotating natural frequencies for lag and torsion were determined

experimentally with cantilevered hub restraint and compare’~ to the calculated

values. These are listed below. The non-rotating flap frequency was zero

due to the blade flap hinge. Rotating blade natural frequencies were not

obtained in the experiment.
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WIND TUNNE L MODEL BLADE

NON-ROTATING NATURAL FREQUENCIES (Hz )

LAG FREQUENCY TORSIONAL FREQUENC Y

EXPERIMENT THEORY EXPERIMENT THEORY

• THREE-BLADED 9.1 9.15 109 113

STIFF
SINGLE— TORSION 7.5 7.7 83 81.9
BLADED 

-

W1TH 25% c S FFROM 
TORSION 6.6 6.9 38 39.4

4.3 Trim Conditions and Steady—State Deflections

The no-trim steady-state condition for the three-bladed wind tunnel

model rotor described in Table 1 is shown in Fig. 15. Experimental steady-

state deflections for flapping and lagging are also shown.

The theoretical thrust coefficient has a maximum point around ~i = 0.1

and then decreases. This is due to the inflow ratio decrease around ji = 0.1,

which results in an effective angle of attack increase. Large collective

lagging deflection was produced by the centrifugal forces, on the lead—lag

damper. The damper was not scaled in the size and weight. Therefore,

relatively large centrifugal forces were exerted to the damper which was

located off the blade elastic axis. Thus, the large collective lagging

deflection does not simulate the actual collective lagging deflection.
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4.4 Frequency Response to the Vertical Gust

4.4.1 Experimental Data Reduction

The output of the strain gage signals for the blade flap, ‘.ag and

torsional motions were recorded on magnetic tape using a Hewlett Packard 4

channel model 3960 tape recorder. These recorded data were fed to an analog—
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to-digital converter (Digital Equipment Corp. computer PDP-ll/40) and 512

digital data points were sampled with a 6 msec sampling rate. This corres-

ponds to 10.5 data points per rotor revolution. After sampling, data were
digitally analyzed by Fast Fourier Transform (Ref. 49) with the same machine

to obtain the frequency spectrum of the signal.

Sample analog data from the flap and torsion strain gages are shown in

Fig. 17. The configuration is the three-bladed rotor with tunnel velocity

30 MPH and vertical gust frequency 200 CPM. From this analog data the fre-

quency spectrum shown in Fig. 18 is obtained by the method mentioned above.

The blade motion response to vertical gusts can be expressed in terms of the

three frequency modulated motions 
~~, 

(~)—w) and (~l+~ ) ,  where ~) is the rotational 1
speed of the rotor and w is the gust frequency. With reference to the blade

f lap frequency spectrum of Fig. 18, the first peak from the left is the

response to the gust frequency u, called the collective flapping response.
• (A)

The peak at the nondimensional frequency = 0.791 corresponds to the (~ -w)

cyclic flapping response. The big peak at = 1.0 has ~2 frequency and comes

from the steady state blade flapping motion due to forward flight. From the

present linear theory 1~2 steady-state cyclic flapping motion is not affected

by the vertical gust, and this is confirmed by the experimental results.

The peak to the right of the ~2 frequency response is the (c2+w) cyclic

flapping response. The low frequency gust response is of interest in

this study and the amplitude of higher frequency responses such as (2~—w) and

(2~+w) are relatively small. Therefore, the gust responses up to U)+w) fre-

quency are considered.

The experimental results are compared to the theory in terms of the

peak values of the blade motion frequency spectrum at frequencies w, U2—w)
and (c2+w) . For important responses such as blade flapping motion the fre-

quency spectrum analysis was conducted several times on differert portions

of the magnetic tape on which analog signals from strain gages had been

recorded for three minutes. This is a kind of averaging process because the

total tin 9 required for sampling is 3.07 seconds out of 3 minutes data.

During the experiment the gust magnitude and the rotor rotation speed are

fluctuating. Therefore, the rotor (~2+w) response amplitudes showed large
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variation when the summed frequency of the gust frequency and the rotor

rotational speed is close to the blade flap natural frequency, as shown in

Fig. 20.

It is obvious from the theoretical analysis in Section 2 how to obtain

the three frequency-modulated responses w, (~2-w) and (c2+~ ) .  However, it

would be helpful to explain the method briefly here. Using the rigid mode

for flap motion, the simplified blade flapping equation with vertical gust

excitation may be written:

+ -

~ ~~~ 
4- ~~~~~~~~~ 

(nt)f ~~ + (
~~~~~)2 

~ f~-~- (fit)

+i ~4 ~~ n.t)J 
~ =4 S ~~i4d~

(123)

where

x = nondimensional radial coordinate

y = Lock number

= Advance ratio

= Rotating flapping natural frequency

= Rotor rotational speed
t = Time

w
G 

= Vertical gust velocity nondimensionalized by blade tip sç~eed (QR)
at the radial coordinate x

and if the vertical gust w
G 

is the one-dimensional sinusoidal gust in the

flight direction it is expressed as

73~, ~~~~t) - (
~)~ ~~ ~~~wt) ~~~(~%t) (124)

The f irst  term in Eq. 124 represents the uniform component of the gust

velocity over the rotor disc, and the second term represents the gust

velocity gradient due to nonuniformity over the rotor disc . The symbol W
G

expresses the nond imensional gust amplitude at the rotor shaft location.

Substituting Eq. 124 into the right—hand side of Eq. 123 yields:
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[Left-hand side of Eq. 123]

~~~/~~4.L)t + ~~~~~~~~~~~~~~~~
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—

2 
~ 

— c(fl o.~i + Higher Order Terms (125)

Therefore, due to the vertical gust with frequency w, the flapping motions

w, (c2-w) and (Q+w) will be excited.

It should be noted that all gust responses in Figs. 20 through 23 are

not normalized by the gust magnitude. The gust magnitude can be found in

Fig . 19.

4.4.2 Three-Bladed Rotor Gust Response

The three—bladed rotor case provided basic information regarding the

overall response of the rotor model to a vertical gust and also validated

that there were no major differences between the throe—bladed rotor and the

single-bladed rotor in terms of the vertical gust frequency response. The

three-bladed rotor gust response of the experiment is shown in Fig. 20 for

the case of 30 MPH (u = 0.192) and 60 MPH (p = 0.384).

The (~2+~) cyclic flapping response has a peak at a nondimensionalized

frequency of (~
) = 0.2 in Fig. 20 (a) and (b) since the exciting frequency

(~ +w) becomes 1.2/rev and the frequency (~2+u~) becomes close to the blade

flapping natural frequency, which is 1.13/rev in a vacuum, and becomes

1.2/rev in air due to the aerodynamic stiffness caused by pitch-flap coupling

due to steady-state flap and lag deflection.

The theoretical predictions of the ~ collective flapping response at

both 30 MPH (p = 0.192) and 60 MPH (p = 0.384) are higher than the experi-

mental results. The collective motions are excited by the uniform component

of the vertical gust and in the theoretical prediction this component is

assumed to be the same over the rotor disc as the magnitude at the center of

the rotor. However, in the wind tunnel the vertical sinusoidal gust is not

constant in the Y-direction shown in Fig. 9. At a distance of 2 feet from

the center in the Y—direction the gust magnitude falls off to 50% of that of
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at the center. This gust profile reduces the blade w flapping response.

However, in this analysis further mathematical modeling of the wind tunnel

vertical gust profile has not been conducted. This effect is not significant

for the single-bladed rotor blade with tip weight because of the low Lock

number.

The ffl- ~ ) cyclic lag response in Fig. 20(a) and (b) are higher around

(~ ) = 0.2 because the exciting frequency (~~~- )  is 0.8/rev and close to the

lag natural frequency.

The (~ +~ ) cyclic torsion motion is coupled with the (~ -4-w) cyclic flap

motion through pitch-flap coupling due to the steady-state flap and lag

deflection.

The effect of the inclusion of the gust velocity gradient due to the

gust nonuniformity is shown in Fig. 21. Flap response levels are compared

with and without the gust velocity gradient. It should be noted that the

gust velocity gradient has a significant effect on the cyclic flapping

motion even if the ratio of the wave length to the rotor radius is 11.1 in

which the advance ratio is 0.192 and the gust frequency w/c2 is 0.1.

4.4.3 Single-Bladed Rotor Gust Response with Chordwise Center-of-

Gravity Shif t

While the initial wind tunnel tests dealt with the gust response of the

three-bladed rotor, the most important portion of the experiment involved

the single-bladed rotor configuration with chordwise center-of-gravity shift.

An objective of the test program was to evaluate the effectiveness of tor-

sional stiffness variation in conjunction with chordwise center—of—gravity

shifts in alleviating the gust response of a hingeless rotor. The compari-

son of the theoretical rotor responses with the experimental responses from

the wind tunnel test will be discussed.

4.4.3.1 30 MPH (p = 0.192) Configuration

The gust responses for flap and torsion motions of the “s t i f f”  and
“sof t” torsion blade in 30 MPH are shown in Fig. 22.

The flap motion response with “stiff torsion” blade are shown in

Fig. 22 (a). The (Q+w) cyclic flapping response has a peak at the frequency
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0.15/rev. This is because the W+u) cyclic flap motion is close to the blade
rotating natural frequency as explained in Subsection 4 . 4.2 . As expected,

the flap response differences resulting from the chordwise center—of—gravity

shif t are very small , because the torsional motion produced by the C.G. shift
was small due to the blade stiff torsional characteristics. In addition to

the blade stiff trosiona]. characteristics, the Lock number for this single—

bladed rotor is very low at a value of 0.951. This is roughly one-tenth

that of a full-scale helicopter and therefore the aerodynamic forces on this
blade are one-tenth as effective in comparison with the aerodynamic forces

on the full—scale helicopter . Therefore, the small angle of attack change
due to the torsional motion did not produce effective aerodynamic forces to
suppress or excite the flap motion.

The torsional motion corresponding to the flap response in Fig. 22 (a)

is shown in Fig. 22 (b). Since only small variations are obtained in the

theoretical predictions , the theoretical results of only the 25% chord center-

of-gravity location from the leading edge are shown in Fig. 22 (a) and 22 (b).

When the “soft torsion” blade is utilized, larger flap response level

differences due to chordwise C.G. shift at 30 MPH can be observed in Fig. 22

(c). For the (c2+w) cyclic and w collective flap response it is clear that

the experimental response of 18% chord C.G. location is lowest, that of 25%

is in the middle and that of 35% is the highest. This tendency is the same

as that of the theoretical prediction shown in Fig. 22 (c). However, pre-

dicted response levels for a given C.G. location are higher than the experi-

mental results of corresponding C.G. location in the (Q+c~) cyclic and w

collective flapping responses. It is difficult to describe the vibration

response reduction quantatively from these experimental results. Correspond-

ing to the flap response with “soft torsion” blade at 30 MPH, are the torsional

responses shown in Fig. 22 (d), and good agreement is obtained between the

theoretical prediction and experimental observation.

Lag motion responses of 30 MPH configuration are shown in Fig. 22 (e)

and (f); they are very small.
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4.4.3.2 60 MPH (p = 0.384) Configuration 4
The gust responses at 60 MPH are shown in Fig . 23. As with t~~ 30 MPH

configuration, chordwise center—of—gravity shifts for the “stiff torsion”

blade did not produce distinctive flapping response reductions. Therefore,

the theoretically predicted 25% chordwise center—of—gravity responses for

the “stif f ”  blade are plotted to use as a compar ison with the experimental

results. overall agreement between theoretical predictions and experimental

results is good. The torsional responses of the “stiff torsion ” blade of

60 MPH is shown in Fig. 23 (b).

The flap responses with “sof t torsion ” blade in 60 MPH are shown in

Fig. 23 (c). While there is good agreement regarding the tendencies for

the (Q+u), u , (Q-w) flapping responses, the experimental magnitudes are

slightly higher than those predicted, particularly the (~2+u ) and w flap

responses of 25 and 35% chordwise center-of-gravity cases. For the (Q+w)

cyclic flap response at the frequency w/~ = 0.105 the C.G. shift from 35%

from the leading edge to 25% chord did increase the response level slightly

in the experiment and no reduction can be seen in the theoretical prediction.

At the same frequency the (~2+w) cyclic flap response is reduced by 25%

experimentally after shifting the C.G. forward from 25% c to 18% c chordwise

station, when the response level of 25% c C.G. location is taken as 100%.

In the theoretical prediction this reduction is 20%. From the theory,

response reduction of the (Q+w ) cyclic flap response can be expected below

the frequency w/~2 
= 0.105 shown in Fig. 23 (c). This is an important point.

A von Karman gust power spectral density in Ref . 26 and 35 is given by:

(P ~ D) - 

0 L

— 
-~~~ (126)

~~~~~~

where w is the frequency; L the gust characteristic length ; 
~~ 

the rms value

of the gust velocity ; and V is the aircraft speed. Here L is approximately

5000 ft for high altitude and from 400 to 500 ft for low altitude of the

full—scale aircraft. This power spectral density scaled down to the present
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wind tunnel rotor model is shown in Fig. 24 where the L used is 40 ft, V is

60 MPH and the model scaling factor is one—tenth. As is shown in Fig. 24

the gust power spectrum has a peak at the frequency = 0.01 and above

= 0.01 it decays very rapidly. Therefore, the frequency response below a

frequency w/~ of 0.1 is important.

Above the frequency = 0.157 the (Q+w ) cyclic flap response reduction

can be observed clearly in shifting from the 35% C.G. to 25% C.G., however,
there is slight reduction from 25% c C.G. to 18% c C.G. in the experimental

results. Experimental reductions of the w collective flapping response is

shown in Fig. 23 (c).

Torsional responses are shown in Fig. 23 (d) and good agreement between

the theoretical predictions and the experimental results is obtained.

Lag responses are shown in Fig. 23 (e) and (f). The theory predicts

a lag resonance at the lag natural frequency and in the experiment it was not

seen. It is not clear why this discrepancy exists. It, however, seems this

is a limitation due to experimental accurady because the lag response level

is very low.

4.4.4 Summary of the Vertical Gust Response Analysis

When the rotor gust response is considered , the gust velocity gradient

due to the gust nonuniformity over the rotor disc has an important role in

the blade cyclic motion responses unless the gust frequency is extremely low

and the gust uniformity assumption is reasonable.

The frequency response of blade motion to a vertical gust with frequency

u. is described in terms of three frequency-modulated motions at u , (~-w) and

(Q+w), where ~ is the rotational speed. The responses (~2-w) and (~)+w) are

related to the blade cyclic motions. Therefore, even if the gust frequency

w is low, the response close to 1/rev will be excited as (~ +w) and (c2— A),

responses.

As is expected , the “soft torsion” blade is more effective in conjunc-

tion with the forward chordwise center-of-gravity shift in alleviating the

gust response of a hingeless rotor than the “stiff torsion” blade.

With the “sof t torsion” blade the (~ +w) flap response is reduced by

30% in 30 MPH and 25% in 60 MPH at the frequency = 0.105 when the chordwise
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center—of-gravity is shifted from 25% chord from the leading edge to 18%

chord from the leading edge. This reduction is based on the experimental

results, where the response level of 25% c C.G. location is regarded as 100%.

Theoretical reduction is much smaller at the frequency = 0.105 than that of

the experiments, but the theoretical prediction also show the tendency to

reduce the (~2+t*)) cyclic flapping below the frequency = 0.1. Referring to

the von Karman gust power spectral density in Fig. 24, which is scaled down

to the present wind tunnel model and has a strong gust excitation below the

• frequency ~ = 0.1, the forward chordwise center-of-gravity shift in conjunc-

tion with the “soft torsion” blade will be a good gust alleviation system

• for the blade (~2+w) cyclic flap vibration. Response reduction of the w

collective flap motion due to the chordwise C.G. shift was observed experi-

mentally except at the frequency = 0.105.

It should be noted that greater effectiveness of the chordwise center-

of—gravity shift would be expected in the full scale rotor since the present

wind tunnel model rotor has very low Lock number (see Appendix D).

It should be mentioned that rotor rotational speed fluctuations were

not considered in the analysis. However, these were found experimentally

to be less than plus or minus three percent.
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SECTION 5

CONCLUSIONS AND COMME NT S

5.1 Conclusions

This study has been devoted to the development of a theoretical model of

hingeless rotor response to a vertical gust, and to the theoretical and experi—

• mental evaluation of the effect of shift of blade chordwise center-of-gravity

as a gust alleviation method, particularly to reduce the blade flap motion.

Based upon the theoretical and experimental results in this study, the

following conclusions may be stated.

(a) Chordwise center-of-gravity shift is an effective and simple method

• to alleviate hingeless rotor gust response. In the wind tunnel

model blade with Lock number 0.951 and gust frequency 0.105/rev

at p = 0.394, it is experimentally confirmed that the (Q+w ) cyclic

flap response is reduced by 25% when the chordwise center—of—gravity

is shifted by 7% chord toward the leading edge from 25% chord and

the “sof t torsion ” blade is employed, if the response level of 25%

chord center-of-gravity location is regarded as 100%. The theoreti-

cal reduction is 20% at this gust frequency. Theoretical prediction

also shows the tendency to reduce (~2+w) cyclic flapping below the

frequency w/Q = 0.1 and the response due to atmospheric turbulence

will be reduced by chordwise center-of-gravity shift toward the

leading edge. Above the gust frequency w/c2 = 0.2 at advance ratio of

0.394 it is shown experimentally and theoretically that (Q+w ) cyclic

flapping is reduced by forward chordwise center-of-gravity shift.

It will therefore reduce the response due to the discrete gust

which has higher frequency content than random turbulence.

The reduction of A collective flapping by the chordwise center-

of-gravity shift is also confirmed experimentally and theoretically .

(Q—w) cyclic flapping response is a very low level and is not

significant.

The full size blade with higher Lock number of order 10 shows
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even larger reductions of flapping response because of greater

aerodynamic effectiveness. (See Appendix D.)

(b) The “sof t torsion” blade is more effective in conjunction with the

forward chordwise center-of-gravity shift in alleviating the gust

response than the “stiff torsion” blade.

(c) The agreement between the experimental gust response of the hinge—

less rotor and the theoretical predictions is good , particularly

in the important parameters of flapping and torsion.

(d) The frequency response of blade motion to a vertical gust with gust
• frequency W is described in terms of three frequency—modulated

• motions at the frequencies ~~ , (~)-w) and (~2+A)), where S� is the rotor

rotational speed. The responses at the frequency (n-u ) and (~+w)

are related to the blade cyclic motions and will be excited even if

the gust frequency w is low.

(e) The gust velocity gradient due to the gust nonuniformity over the

rotor disc has a significant effect on the blade cyclic motion

responses unless the wave length of the gust is extremely large

with respect to the rotor diameter.

5.2 Suggestions for Future Research

Recommendations for the future work before applying the chordwise center—

of-gravity shif~- to the full size rotor will be related to two aspects: the

theoretical analysis and the wind tunnel experiments.

In the theoretical analysis, the effectiveness of the chordwise center—

of-gravity to the full-scale rotor with Lock number 10 should be studied
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fur ther , and it should be confirmed that the center-of—gravity shif t  does not

produce any adver3e effect.

In the wind tunnel tests, the response of the rotor with center-of-

gravity shift should be tested in the very low gust frequency range below

= 0.1. For this purpose a new device to produce the low frequency turbu-

lence and a more refined signal processing system for the gust input signal

and the response output signal will be necessary to distinguish signal and

noise.

The present wind tunnel rotor model might be improved by the addition of

cyclic pitch control. This could be accomplished fairly easily by incorporat-

ing a swash-plate into the model design, and the necessary feathering bearings
for this motion in the rotor hub.
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TABLE 1

DESCRIPTION OF THE ROTOR BLADE

USED IN THE WIND TUNNEL TEST

SINGLE-BLADED
ROTOR WITH TIP
WEIGHT AND 25%

THREE-BLADED CHORD C.G. LOCATION
• ROTOR FROM LEADING EDGE

Number of blades 3 1

Radius, R 2.26 ft 2.26 ft

Chord, C 2 i n  2 in

Lock number, y (basic configuration) 2.27 0.954

Solidity, a 0.0704 0.0235

Collective pitch, 0 8 deg 8 deg

Shaft tilt angle in crusing flight 10 deg forward 10 deg. forward

Lift—curve slope, a 5.7 5.7

Drag coefficient, Cd 0.012 0.012

Rotational speed, ~) 100 rad/sec 100 rad/sec

Built-in blade angle of twist, O
~~~~~ 

8 deg (linear) 6 deg (linear)

Elastic axis 25% chord 25% chord

Aerodynamic center 25% chord - 25% chord

Precone , 
~ 

0 deg 0 deg

Droop, 
~D 

0 deg 0 deg

Torque offset, e 0 in 0 in

Control linkage flexibility rigid rigid

Basic Natural Frequencies

Lag 0.823/rev 0.57/rev

Flap 1.13/rev 1.13/rev

Torsion 6.85/rev 5.21/rev (stiff)

2.38/rev (soft)
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1 + 8/3 [ 1.339(wL/vfl 2
= 

11/6
{1 + [1.339 (~L/v) J 2}

WHERE , L= 40 FT., V= 60 MPH. , 12= 955. RPM
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APPENDIX A

EXPRESSIONS ASSOCIATED WITH STEADY-

STATE EQUATIONS

Coefficients used in Eqs. 5.5, 5.8 and 5.10 are defined as follows:

Inertial coefficients

ç ~~~~~
- g

~j ~~~~
+2 ~~~~

= 

~

• 
- (

~) -
~~~~~~~ 

ç ‘~‘~vLa~.# 
~~ 

- 

~~~
(A.1)
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APPENDIX B

EXPRESSIONS ASSOCIATED WITH MODAL EQUATIONS

Coefficients used in Eq. 6.4 are defined as follows:

Inertial Coefficients
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Steady-State Deflection Coefficients

+
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In addition, the gust velocity gradient terms are expressed by
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It sh uld be noted that the radial coordinate x in Eq. B. 7 sh uld be
integrated in the integraixi of the expressions ~~~ G~~

C arxl so forth .
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APPENDIX C

OUTLINE OF EQUATIONS OF MOTION WHEN CYCLIC

PITCH CONTROL IS APPLIED

When cyclic pitch control is applied to the rotor blade, this pitch

control consists of the trim cyclic pitch, and perturbation pitch control for
the evaluation as the gust alleviation system.

The trim pitch 0 is defined in Eq. 5.7, and if it is applied in moment
trim operation, the term O

s 
in Eq. 4.18 should include this effect. Therefore ,

in Eq. 4.19 will be rewritten as

~~~~~~ +OIc~~~~~~~~ +e 1~~~-’-I’ G r~ (C.1)

and the coefficients in Appendix B should be slightly modified.

As for the perturbation pitch control , a few considerations are required.
If the rigid pitch motion is included and the control linkage is flexible,
rigid pitch motion as one degree of freedom is described as

~~~~~~~~~ 
-~-Ke Qç~~~~<~~% (C.2)

where is the perturbation pitch control. Therefore, if the control linkage
is flexible, the excitation input for the perturbation pitch control is only

the pitch control expression in the rigid pitch equation: for example, in

Eq. 6.ld , KeOR should be replaced by K9(OR 
- 0c~ 

Aerodynamic loadings due

to perturbation pitch control are expressed by aerodynamic loadings due to

rigid pitch motion in Eqs. 6.1 a, b, c, and d. The final modal equations of

motion may be written, modif ying Eq. 6.6

EM] ~Y} +[c]N} [K] ~~ [
~
] 

~~ 
[p] ~e~

} 
(C.3)

where
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[p]
t: ~~

1. 1. i]  (C. 4)

If one wishes the equations for the rigid control linkag e, the rigid
pitch motions for the inertial loading in Eqs. 6.1 a, b, and c should be
dropped and aerodynamic loadings due to the rigid pitch motion in these
equations should be retained to express the aerodynamic loadings due to

perturbation pitch control.
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APPENDIX D

GUST RESPONSE OF THE FULL-SIZE ROTOR

The preliminary results of the gust response of the hingeless rotor

with Lock number of 10 are shown in Fig. D.1. The structural characteristics

of the rotor blade are the same as those of the single-bladed rotor with tip

mass used in the wind tunnel. The “sof t torsion ” blade, = 2.38/rev, is

employed. Blade density is reduced to obtain a typical full-size blade Lock
number. The chordwise center—of—gravity is varied over 18%, 25% and 35%

chord from the blade leading edge. For the 35% chord C.G. location the

classical flap—torsion flutter occurred. Therefore, the results are not

shown here. The gust magnitude in Fig. 19 is used.

It is shown in Fig. D.l(a) that the center-of-gravity shift is a very

effective method to reduce the flapping response due to the greater aero—

dynamic forces. It is interesting that the peak at 0.2/rev in the (12+~~~)

f lap response disappeared because of the large aerodynamic damping in the

flapping motion. The w flap response is higher than the cyclic flapping

responses since the gust effectiveness has increased through the Lock number.

In the (12-w) flap response the response of the 25% chord C.G. is less than

that of the 18% chord C.G. at the gust frequency 0.4 because the phase of

the torsional motion is not such as to reduce the flapping motion.
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APPENDIX E

ADEQUACY OF HARMONIC BALANCE METHOD

In this appendix the adequacy of the harmonic balance method used in
this rep ort is examined . The one-degree-of-freedom flap equation is employed
for this purpose. This equation is obtained from Eq. 123 as follows:

+ ~~ ~~~ )~ ~ + { (~~ ~ ~~~ (�~t) + E~4 - 
-

(E.1)

- f (.~
) ~~ C40 (~.it) ,~L~(nt) c~~ (Qt)

To compare with the results of the harmonic balance method, the
numerical integration (the predictor-corrector method) is adopted to solve

the differential equation of E.l. The initial conditions are ~=0 and 8=0 at

t=0. The results show the transient motion decay and the forced oscillations

due to the gust.

After applying the harmonic balance method to Eq. E.l, the expressions

may be writt en:

1 b 0 0] I N  
~~~~~~~~~ (~~ 3~

1 
° O~~~~~ j~ ~ Io 4 2

L ~ 0 L4 -2 ÷ t~~

i
t. 

,J~~ (
~) -‘ j 2.) ~~~~~~L: ~~~~L~ ) ~~~~~~

r o

= 
0 :~ (

~~
) - 

4 .fr(~
) ~L (E .2)
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These equations are solved by the same predictor—corrector method with

the initial conditions 8o ic~~is
=0 and 8o 8lc 8ls

=0 at t=0. Obtaining the

responses of 
~~~~

‘ 81c 
and 815 at time t , the flap response 8 is calculated

as follows .

~ ( t )  f30(t) 4 ~ ,~(t)
c.
~
1O(flt) 4 3,5(t~)AA.L (fl.l~) 

(E.3 ) 
-

•

It should be noted that in Eq. E.l the periodic coefficients higher

than one per revolution such as sin(2f~t) and cos(3Qt) are included. However,

in Eq. E.2 they are neglected.

The results are shown in Fig. E.l to E.4. In Fig. E.l the gust response t 
-

with nondimensional gust frequency 0.2/rev are shown. Lock numbers were

chosen as 10 and 0.954. The latter corresponds to the value which was used

in the present experiment. The flapping frequency is 1.127/rev in both

cases. The results from the numerical integration and the harmonic balance
method revealed very small difference.

In Fig. E.2 the flapping natural frequency is fictitiously set to 3/rev
to see the adequacy of the expansion of the harmonic balance method written
in Eq. E.3 which neglects harmonics higher than 1/rev . The results show

good agreement between the numerical integration and the harmonic balance

method when the gust frequency is of the order of 0.2/rev.

The only discrepancy can be seen in Fig. E.3 between the numerical
integration and the harmonic balance method when the gust frequency is

chosen as 3/rev which is much higher than normal. The 3/rev gust magnified

the motion in the results for the numerical integration method through the

3/rev harmonics which are retained in this method . In the harmonic balance

method these terms are discarded . Thus , the response of the harmonic

balance method is smaller than that of the numerical integration method

for this case.
The final figure E.4 shows the results when the flapping natural

f requency of 3/rev and the gust frequency of 3/rev are chosen . In this

case the stiffness terms become dominant due to the high natural frequency

and the aerodynamic terms of 3/rev become less effective. Therefore , the
results show very little difference between the numerical integration and

the harmonic balance method.
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It is concluded that the harmonic balance method used in this stud y is

adequate for the present rotor configuration. However , there are two

restrictions when the harmonic balance method is applied to general rotor

dynamics. The first is that the exciting gust frequency should not be near

the same frequency as those harmonics which are neglected in the method .

The second restriction is that the eigenvalues of the system should be far

from 0.5/rev, 1.5/rev and so on, for certain values of Lock number and

advance ratio (see Ref. E. 1) .  Higher natural frequencies such as 3/rev cause

little difference in the response obtained by the numerical integration and

the harmonic balance methods because of the increased stiffness.
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APPENDIX F

CORRELATION OF HUB SHEARS WITH BLADE FLAPPING RESPONSE

In this report the blade flapping response was chosen as a measure of

the effectiveness of the gust alleviation system. Therefore, the appropriate-

ness of the flapping response as a measure is examined by evaluating the

vertical shear force at the blade root, and also the blade root bending

moment.

The vertical shear force at the root is obtained by integrating the

aerodynamic and inertial forces on the blade:

- 
(F.l)

using the force summation method, the vibratory shear force is expressed as

S ~f1(~~)cuT+ ~~~~~~~~~~~~~~~~~~ +(~~)(f~~~rj~~~dr 
F.2

To evaluate the coefficients of Eq. F.2 the expressions in Appendix B

are used, and subscript i is taken as unity. Mode shapes for i=l are speci-

fied as W .=W =1.0 and V .=V ~~~~~~~~~ ~~~~~~~~~ =0 for convenience in calculating the1 1  1 1 1 1 1 1
shear force. Subscripts j are repeated from 1 to 4, which includes first

mode lagging, first mode flapping , second mode flapping, and first mode

torsion.

The harmonic balance method was applied to Eq. F.2 to eliminate the

periodic coefficients, and the shear force is expressed in terms of U), (~1—co)

and (Q+w) vibratory shear forces.

The results shown in Fig. F.1 are the calculated shear forces due to

gusts of the single—bladed model rotor with the “soft torsion” blade at

advance ratio 0.394 with chordwise center—of-gravity shift. Note that the

shear force components at frequencies W, (Q—w), and U2+w) are reduced by

shifting the chordwise center-of-gravity forward. The flapping responses

corresponding to these shear forces are shown in Fig. 22(c) and it is
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obvious that the flapping may be taken as a measure of the effectiveness of the
gust alleviation system in reducing hub shears. In the present wind tunnel

model, the hub moment is expressed in terms of the product of the vertical

shear force and the flap hinge offset. Therefore, the hub moment is propor-

tional to the shear force and further evaluation of the hub moment is not

required.

The second mode flapping response is shown in Fig. F.2. It is

negligible compared to the first mode flapping response when the gust

frequencies are as ~ow as in the present case. It should be noted that

the shear force calculation in Fig. F.l included both the first and second

mode flapping motions.

As an example of the effect of higher harmonic loading, the hub shears

due to airloads at frequencies up to 5/rev, are presented in Fig. F.3 for a

hovering rotor of Lock number 10. As an expression of the shear force the

nondimensiona]. form S/[pA(QR)
2
] is used where S is the shear force, p the

air density, and A is disk area. Below the gust frequency of 1/rev the

center—of—gravity shift forward works very well as a gust alleviation system.

The peak around 4/rev is due to the second mode flapping response, and again

the center—of—gravity shift reduces tI-ie response and there seems no adverse

effect from the center-of-gravity shift.

It can be concluded that the first mode flapping motion may be chosen

as an indicator of the effectiveness of the gust alleviation system.

It should be noted that careful choice of blade mass balance spanwise

location and blade torsional frequency are necessary to avoid possible

amplification of hub shears due to higher harmonic airloads, as discussed

in Reference F.l.

Reference.
F.1 Miller, R.H. .~nd Ellis, C.W., “Helicopter Blade Vibration and

Flutter” , Journal of the American Helicopter Society, Vol. 1,

No. 3, July 1956, pp. 19—38.
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NONDIMENSIONAL GUST FREQUENCY

FIG. F.l VERTICAL SHEAR FORCE RESPONSE OF THE SINGLE-BLADED ROTOR TO

THE VERTICAL GUST IN ADVANCE RATIO 0.384: “ SOFT TORSION”

BLADE (—fl-) 2.38/REV WITH CHORDWISE C.G. SHIFT
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FIG. F.2 FIRST AND SECOND FLAP MODE VERTICAL GUST RESPONSE OF THE
“SOFT TORSION” BLADE WITH 18% C C.G. IN ADVANCE RATIO 0.384:
FLAP RESPONSES ARE EXPRESSED IN TERMS OF TIP DEFLECTION
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FIG. F. 3 HUB SHEAR FORCE OF THE ROTOR OF LOCK NUMBER 10 AND WITH
CENTER-OF-GRAVITY SHIFT IN HOVER

165

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - - - -~~~~~~~~~~~~~— -~~~~~~~~~--~~~~~~~~~~~ - . - - ~~~- -.-


