REPORT NO. CGID-73-77-VOL-6 COST_EFFECTIVENESS_STUDY OF WASTEWATER MANAGEMENT SYSTEMS FOR ∞ 2 SELECTED U.S. COAST GUARD VESSELS , -Volume I. Results of Cost and Effectiveness Analyses and Selection of Optimum Candidate Systems 61 Sidney/Orbach AD A O BRADFORD NATIONAL CORPORATION 1700 Broadway New York, N.Y. 10019 DOT-CG-52184A Apri FINAL REL Document is svailable to the U.S. public through the Mational Technical Information Service, Springfield, Virginia 22161 Vol 2 - 4000 962 - A GER Ve +6 B 10 (15) Und 2 151 A062 = -8 Arbin 991 A061 123 FILE COPY 1-61 111 PREPARED FOR Achi Pil US DEPARTMENT OF TRANSPORTATION ANG 1 14 UNITED STATES COAST GUARD Å ... OFFICE OF RESEARCH AND DEVELOPMENT 300 WASHINGTON , D.C. 20590 410 928 IL OL OL

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report do not necessarily reflect the official view or policy of the U.3. Coast Guard and do not constitute a standard, specification, or regulation.

NOTICE

Technical Report Documentation Page

C	G-D-73-77	~					
4. Ti	tle and Subtitle	·	······································		5. Re	pert Date	
C	OST EFFECTIVEN	ESS STUDY OF W	ASTEWATER MAN	IAGEMENT	Ar	xil 1977	
SI	YSTEMS FOR SEL	ECTED U. S. CO.	AST GUARD VESSE	LS	6. P	orforming Organize	tion Code
V	olume I - Resul	is of Cost and Effe	ectiveness Analyses	and Selection			
	of Op	timum Candidate	Systems Asla	5952	. P.	rforming Organizat	tion Report No.
/. Au	ther's)				1		
Si	idney Orbach				· ·	t	
9. Pe	rforming Organizatio	on Name and Address	\$		10. 17	erk Unit Ne. (TRA	NS)
E	BRADFORD NATI	ONAL CORPORAT	ION				
1	1700 Broadway		•		11. C	entrect or Grent N	•.
1	New York, New Y	ork 10019				DOT-CG-52180-	-A
10 0				<u></u>	13. T	ype of Report and	Period Covered
14. 50	pensoring Agency N	me and Address			6		
τ	U. S. Departmen	t of Transportation	n ,		1	INAL REPORT	
τ	U. S. Coast Guar	Office of Resear	rch and Developme	nt	h.		
١	Washington, D. C	. 20590			14. 54	Hensering Agency (Code
16 -						-201-1/1704	
16. AI	bairect			. 1			
14. AI	A generaliz combinations, as	ed methodology fo well as optimum (or quantifying the l candidate selection	ife-cycle cost and procedures for cho	i effective osing the	veness of candid e most cost-effe	ate system/vem ctive system. ha
16. A1 c b s	A generaliz combinations, as been developed an In order to to systems (WMS) co Guard cutters were	ed methodology for well as optimum of documented. sest this analysis n ncepts in configur e developed. The	or quantifying the l candidate selection nethodology in a re- rations suitable for a 18 WMS concepts	ife-cycle cost and procedures for cho- calistic environment handling black and were synthesized as	t effective to sing the t, 18 car gray was s hybrid	veness of candid e most cost-effe adidate wastewa stewaters on boa combinations of	late system/vess ective system, ha ater management ard six U. S. Co f commercially
I. AI	A generaliz combinations, as been developed at In order to to systems (WMS) co Guard cutters were available MSDs, to Mission prof stics which affect Detailed lift were developed. An installat develop required in Each viable analysis. An optin The results of these	ed methodology for well as optimum of documented. test this analysis m necepts in configure developed. The hamely, Jered, G. file data for each twMS design and e-cycle cost and of Generic MSD cost ion analysis was p nstallation relate candidate system num candidate system num candidate system	or quantifying the l candidate selection methodology in a re- rations suitable for l e 18 WMS concepts ATX, Chrysler, Gr vessel were collect operation. effectiveness mode t and effectiveness be:formed to establised cost and effectiveness cost and cost and	ife-cycle cost and procedures for cho- calistic environment handling black and were synthesized as umman, and a CHI red and analyzed to is suitable for analy data were generate sh viable candidate eness data. in was then subjected as a function of ho ith conclusions and	i effectiv losing the solution of the gray was a hybrid f (Collect o determined vzing car d. e system/ ed to a li olding the recomm	veness of candid e most cost-effe adidate wastewa stewaters on boa combinations of cition, Holding a ine the mission p adidate WMS as vessel combina fe-cycle cost an me objective wa nendations.	late system/vessi active system, ha atter management and six U. S. Coo f commercially and Transfer) syst profile character a function of ve tions and to nd an effectivent vas determined.
14. A1 c b s c a i i u d a 17. Ka At	A generaliz combinations, as been developed an In order to to systems (WMS) co Guard cutters were available MSDs, to Mission prof stics which affect Devailed lif were developed. An installat levelop required in Each viable analysis. An optin The results of these words tunbute M	ed methodology for well as optimum of documented. eest this analysis in incepts in configure developed. The namely, Jered, G. file data for each wMS design and e-cycle cost and of Generic MSD cost ion analysis was p ion analysis was p ion analysis was p installation relate candidate system num candidate system num candidate system ion analyses are pre-	or quantifying the l candidate selection nethodology in a re- rations suitable for l e 18 WMS concepts ATX, Chrysler, Gr vessel were collect operation. effectiveness mode t and effectiveness sectormed to establi- ed cost and effective v/vessel combination stem for each vesse essented, together w	ife-cycle cost and procedures for cho- alistic environment handling black and were synthesized as umman, and a CHI red and analyzed to is suitable for analy data were generated sh viable candidate eness data. In was then subjected as a function of he ith conclusions and	i effectiv osing the t, 18 can gray was s hybrid f (Collec determi /zing can d. e system/ ed to a li olding the recomm	veness of candid e most cost-effe ndidate wastewa stewaters on boa combinations of ction, Holding a ine the mission p ndidate WMS as vessel combina fe-cycle cost an me objective w nendations.	late system/vesse active system, ha ater management ard six U. S. Co. f commercially and Transfer) syst profile character a function of ve a function of ve tions and to and an effectivener vas determined.
16. A1 c b s c a i i w d d a 17. K t At Eff Mi Mi	A generaliz combinations, as peen developed an In order to to systems (WMS) co Guard cutters were available MSDs, in Mission profi stics which affect Detailed lift were developed. A An installat develop required in Each viable analysis. An optin The results of these substances were ission Profiles easure of	ed methodology for well as optimum of documented. eest this analysis m necepts in configure e developed. The hamely, Jered, G. file data for each twMS design and e-cycle cost and of Generic MSD cost ion analysis was p nstallation relate candidate system num candidate system num candidate system fisting analyses are pre- field to the system num candidate system num candidate system num candidate system fisting analyses are pre- field to the system management System	or quantifying the l candidate selection nethodology in a re- rations suitable for l e 18 WMS concepts ATX, Chrysler, Gr vessel were collect operation. effectiveness mode t and effectiveness be:formed to establi- ed cost and effective to establi- ed cost and effective vessel combination tern for each vesse essented, together w Pollution Abatement Installation Analysis	ife-cycle cost and procedures for cho- alistic environment handling black and were synthesized as umman, and a CHI red and analyzed to is suitable for analy data were generated sh viable candidate eness data. In was then subjected as a function of he ith conclusions and ith conclusions and ith conclusions and Springfield, V	d effectiv osing the solution of the solution of the content of the system/ ed to a lif olding the recomm recomm recomm recomm	veness of candid e most cost-effe adidate wastewa stewaters on boa combinations of ction, Holding a ine the mission p adidate WMS as vessel combina fe-cycle cost an me objective waster the dations.	late system/vesse extive system, ha ater management and six U. S. Co. f commercially and Transfer) syst profile character a function of ve tions and to and an effectivene vas determined.
16. A1 c b c a i i u d d a a 17. Ka At Ef Mi Mi E	A generaliz combinations, as ocen developed an In order to to systems (WMS) co Guard cutters were available MSDs, in Mission profistics which affect Detailed lift were developed. An installat develop required in Each viable analysis. An optin The results of these seasure of Effectiveness U	ed methodology for well as optimum of documented. test this analysis m necepts in configure e developed. The hamely, Jered, G. file data for each twMS design and e-cycle cost and of Generic MSD cost ion analysis was p nstallation relate candidate system num candidate system num candidate system num candidate system for analyses are pre- se analyses are pre- field.	or quantifying the l candidate selection methodology in a re- rations suitable for l e 18 WMS concepts ATX, Chrysler, Gr vessel were collect operation. effectiveness mode t and effectiveness be:formed to establi- ed cost and effectiveness be:formed to establi- be:formed to establi- be:formed to establi- be:formed to establi- ed cost and effectiveness be:formed to establi- to establi- ed cost and effectiveness be:formed to establi- ed cost and effectiveness be:formed to establi- ed cost and effectiveness be:formed to establi- ed cost and effectiveness b	ife-cycle cost and procedures for cho- calistic environment handling black and were synthesized as umman, and a CHI red and analyzed to is suitable for analy data were generate sh viable candidate eness data. Is a function of he ith conclusions and 18. Distribution State Document is a the National for Springfield, V	d effectivosing the sosing the sosing the sosing the solution of the content of the system d. est to a li olding the recomm ement available Technic: Virginia	veness of candid e most cost-effe adidate wastewa stewaters on boa combinations of cition, Holding a ine the mission p adidate WMS as vessel combina fe-cycle cost an me objective w hendations.	late system/vesse extive system, ha ater management and six U. S. Co. f commercially and Transfer) syst profile character a function of ve tions and to and an effectivener vas determined.
16. A1 c b s c a ii ii w d d a 17. Ka Ef f 17. Ka 17. Ka 19. Se	A generaliz combinations, as ocen developed at In order to to systems (WMS) co Guard cutters were available MSDs, it Mission profistics which affect Detailed lift were developed. An installat develop required it Each viable analysis. An optir The results of these ission Profiles easure of Effectiveness U provity Clessif. (of the	ed methodology fi well as optimum of documented. test this analysis m necepts in configur e developed. The hamely, Jered, G. file data for each twMS design and e-cycle cost and of Generic MSD cost ion analysis was p nstallation relate candidate system num candidate system num candidate system num candidate system file data for each wanagement System tilization Factors	or quantifying the l candidate selection methodology in a re- rations suitable for l e 18 WMS concepts ATX, Chrysler, Gr vessel were collect operation. effectiveness mode t and effectiveness be:formed to establi- ed cost and effectiveness be:formed to establi- be:formed to establi- ed cost and effectiveness be:formed to establi- be:formed to establi- to establi- to establi- to establi- to establi- to establi- to establi- formed to establi- to est	ife-cycle cost and procedures for cho- calistic environment handling black and were synthesized as umman, and a CHI red and analyzed to is suitable for analy data were generated sh viable candidate eness data. Is a function of he ith conclusions and ith conclusions and ith conclusions and ithe National for Springfield, W	d effectivosing the osing the solution of the solution of the content of the system/ ed to a li olding the recomm ement available Technic: Virginia	veness of candid e most cost-effe adidate wastewa stewaters on boa combinations of cition, Holding a ine the mission p adidate WMS as vessel combina fe-cycle cost an me objective wa nendations.	late system/vesse excive system, ha ater management and six U. S. Co. f commercially and Transfer) syst profile character a function of ve tions and to nd an effectivener vas determined.
14. Al c b s c a i i u d d a i i u d d a i i u t E f i Mi E f 19. S o U	A generaliz combinations, as peen developed at In order to to systems (WMS) co Guard cutters were available MSDs, it Mission profistics which affect Detailed life were developed. An installat develop required it Each viable analysis. An optin The results of the ission Profiles easure of Effectiveness U proviny Classif. (of the Inclassified	ed methodology fi well as optimum of documented. eest this analysis m necepts in configur e developed. The namely, Jered, G. file data for each wMS design and e-cycle cost and of Generic MSD cost ion analysis was p nstallation relate candidate system num candidate system num candidate system num candidate system file data for each wanagement System tilization Factors	or quantifying the l candidate selection methodology in a re- tations suitable for l e 18 WMS concepts ATX, Chrysler, Gr vessel were collect operation. effectiveness mode t and effectiveness beformed to establi- ed cost and effectiveness beformed to establi- beformed to establi- to establ	ife-cycle cost and procedures for cho- calistic environment handling black and were synthesized as umman, and a CHI red and analyzed to is suitable for analy data were generated sh viable candidate eness data. In was then subjected as a function of he ith conclusions and 18. Distribution Store Document is the National Springfield, W	d effectiv losing the solution of the solution of the content of the system/ the the system/ the content of the recomm solution of the recomm solution of the recomm	veness of candid e most cost-effe adidate wastewa stewaters on boa combinations of cition, Holding a ine the mission p adidate WMS as (vessel combina fe-cycle cost an me objective w andations, e to the U. S. pr al Information S 22161 21. No. of Poges 305	late system/vesse extive system, ha ater management and six U, S, Co. f commercially and Transfer) syst profile character a function of ve tions and to nd an effectivene vas determined.

۰.

1 . .

.

COST EFFECTIVENESS STUDY OF

WASTEWATER MANAGEMENT SYSTEMS FOR

SELECTED U.S. COAST GUARD VESSELS

Volume I - Results of Cost and Effectivenes.; Analyses

and Selection of Optimum Candidate Systems

Sidney Orbach

BRADFORD NATIONAL CORPORATION 1700 Broadway New York, N.Y. 10019

April 1977

FINAL REPORT

For

U.S. Dept. of Transportation U.S. Coast Guard Office of Research and Development Washington, D.C. 20590

Contract No. DOT-CG-52180-A

ACKNOWLEDGEMENTS

This study was conducted under the technical direction of Mr. Thomas S. Scarano of the Office of Research and Development, U.S. Coast Guard. His suggestions for the goals of the study profoundly influenced its course and resulted in a generalization of both the cost effectiveness analysis methodology as well as its application to the candidate system/vessel combinations.

Mr. Scarano and Lt. Ed Magsig of the Office of Engineering, together with Mr. James A. White, of the Office of Research and Development, provided valuable assistance in the formulation of the assumptions and guidelines governing this study and actively participated in the development of the effectiveness model used as the basis for quantifying effectiveness. Mr. Scarano developed the weights for the measures of effectiveness and for the associated factors and subfactors.

The installation analysis was performed in consultation with George G. Sharp, Inc., 100 Church Street, New York, N.Y. 10007.

The cooperation of the following MSD equipment manufacturers in providing requested product literature, technical data and cost information is greatly appreciated: Chrysler, GATX, Grumman, Jered, and Thiokol.

The cooperation of the officers of U.S. Coast Guard Cutters [GALLATIN (WHEC - 721), VIGOROUS (WHEC - 627), FIREBUSH (WLB - 393), WHITE SAGE (WLM - 544), POINT HERRON (WPB - 82318), PAMLICO (WLIC - 800), CLAMP (WLIC - 75306), and SHADBUSH (WLI - 74287)] in providing the requested vessel data and in making available the ship logs and assisting in the interpretation of the log entries to develop the necessary data for the mission profile analysis is greatly appreciated.

iii

PREFACE

The relationship among the volumes of the report is depicted below. This relationship does not convey all the information contained within each volume.

iv

SUMMARY OF WMS LIFF-CYCLE COST AND EFFECTIVENESS ANALYSES

۔ او	 5 0	") TO	reness NG	(c)	/ RELA- TIVE (%)	6 1	22	ç,	20	•	A	ę	4	¥	8	8		4	\$	8	2	•		
Sheet 1	RATIO		EFFECTIV RATU	MAN	(18K/	Ŧ	1. 245	2, 104	380			2.023	T	2.317	5.020	3.964	1		2.278	4.118	3, 706			1
			12-1	EL SN	VLSSE VLSSE	67.107	188.872	319. R2R	149.096			308.328		352.303	763, 163	602.672			346.290	626. 08 -	563. 364			
			e	L'ALL	1.2.2	87	ħ	88	11			2 P		64	57	58	!	1	R	65	67			
			CIE COST		(3K/Man)	0.384 -	0. 895	1.431	0.756			1.461	·	1.483	2.862	2.300			1.640	2.677	2.483			
	E S		AL LIFE CY		Relative (%) (2)	8	16	50	26		:	51		8	8	8			23	34 .	87			
11	TIMAT		tor Lor	CORE	8K	58.383	135, 998	217.443	114.804			221.996		225.474	435.003	349, 527			249.329	406.995	377.454			
TOR (%)	5 T ⁽¹⁾ E S	I LURES	and the a	Local Rocurs	f Total	11.123	fi6. 106 49	94.303	19.824			2.0.5		127.264	2.15. 707 /	151.287			148.219 - 59	234.185	172.234			
VTION FAC	CD 31:	4G EXPEND	SUN UCC	Creek Creek	1	3.669 6	14.381	17.039	6, 100 5			14.492		41.0.17	80.160	4.212			27. f T2 11	46. 500 · 12	30.664			
S UTILIZ/	FECYO	RECURNI	200 US	Core Sig		2.636	21.764	38. 557	4.289			801.7		51.547 -	107.542	54. 078 15			94, 540 38	149.884	91.072 26			
ΜM	MS LI		SA DI	W. C. P. P. C. P. P. C.	×	2.876	1.957	2.654	848.4			3.724		12.725	12.762	21.776			22.176	20.996	31.227			
	3		853	89		36.1	26.004	35. 153 /	818.9			16.612		21. 355	35.239	31.221			4.031	16.805	13.291			
1		XED COST	uone	Looj	k of Total	41.2.14	69.882	123.180	34.980			179.060		98.219	199.300	198.240			101.110	172.770	205.220			
ze 152	/	FI FI	20.00	mos		41.260	20.370 31	71.220	39. 980			69.00		48.310	75. 300	91.340			41.710	78.120	41.726			
Crew SI		13:55	Crew Color			• •	27.512	51.960	55.000			110.300		49.900	123.400	150.900			53.400	04.650	163.500			
ļ				(y) ;	CAL -	19	8	13	11			11	\square	21	21	1	ŀ		30	g	11			Π
			JAS		18	100	100	8	01	V/N	V N	ŝ	V/Z	ŝ	100	8	V/2	V/N	001	100	10	V/N		VN.
TIN (378')	TYPE		VTNENT/DISPO	Walskens	GRAY.	Turk	Holding Tank	Holding	Heiding Tank	w Thru	Gum Flor	Thru + 111d Th Holding Tank	w Thru	Hoking	lielding	Holding Tank	Grun How Thra + H'd Te	Grum Flow Thru + Incla.	Holding Tank	Holding Tank	liciding Tank	Gram Flow	Grum Flow	Thru + Incin.
sel_CALLA			LINE / LINE		BLACK	lolding 1	Jirysler	Thryster In-In-	irun Flow	Grumman Flor	to let ng	Tank Srum Flow Thru + Incin.	Grumma Flo	lotting	ncinerator	A FX vaporator	tolding ank	incinerator	lolding ank	ncinerator	ATX vaporator	Iniding		DCINCTAINT
Ves:	1	1 1 2	C. LEVA	ASBNS STREET	Local Solution	Gravity 1 Collect 1	Oil C	(Chryster)	Gravity G Collect	(Grumuan)	Gravity II	Collect. 1 Gravity 6 Collect. 1	(Grumman)	Vacuum 1	(Jered)	<u>, </u>	<u></u>		N/T Permo	Collert	<u>10 m</u>	<u>; = </u> }	• <u>1 </u>	
				1	IV N	<u>+</u>							-	<u></u>					1				-	

v

591151Y would Dours time of 88.0 Based on the maximum holding time of 91.5 hours. The next smaller holding (1) Based on:

. WMS utilization factor determined from vessel mission profile study.

An effective discount rate of 10%.
An assumed WMS useful life of 10 years.
(2) Relative cost (%) based on highest WMS cost for the vessel.
(3) Relative ratio (%) of cost to effectiveness rating based on highest value of such WMS ratios for the vessel.
N/A - Not a viable candidate for this vessel.

SUMMARY OF WMS LIFE-CYCLE COST AND EFFECTIVENESS ANALYSIS

5

.

2 of 6		TPO OF TO TO TIVENESS TIVENESS TIVENESS	RELA-	· · · · · · · · · · · · · · · · · · ·	=									58	100					8	75	g			
Sheet					1. 120								Ī	3.468	6.670					3. 455	5.024	4.201			
۰.		553N-3A	NESS!	18.701	67, 186		İ					;		208.072	400.195				┝╺┹╼	153.895	301.431	234.030			
		10) F	84	69					!	!		Ī	- 19	55					<u>;</u>]	8	65	TI	ĺ	
		SVCIE COS	Con/M	0.262	0. 773						-			2.115	3.668					1.898	3.266	2.896			
	TES	JTAL LIFE	Relativ		21									53	100						89	79			
(%) 5.6	STIMA	Control TC	sk (15.700	4rc. 358									126.924	220.107					713.882	195, 200	173. 901			
ACTOR	s T (1) E	Level Citeres Ce	of Total	5.509	49. 640 50									81.504	26.17				70. 702	8	N	79.261			-,
ZATION	CO 31:	C C EXTRING		2.203	248 248 2									8.525	B. 086				4.014	1 1 1 1 1 1		683			
AS UTILE	E CYO	RECURAL RECURAL		1221	1.639									14 C43 2	57.040 26				1.796	300	28	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
Ŵ	M S I. I I	Bulliers		1.458	908-1			T						1.214	1.232				1.318	10		6.847			
	3	40 X X X X X X X X X X X X X X X X X X X	•	0.645	8. 756									1.122	3.819 6				1. 512 1	101 1	,	1.287	┥		- Poldiac
		Forst COSTS	of Total	0.200	2.716							* =		5. 420 - 1 36	3.960 43				1	670 38	1	. 640			=
8		FUX	8	3	8 8 8					-+-				10 13	1 0				3	21	Ē	<mark>%</mark> /	$\left\{ \begin{array}{c} 1\\ 1 \end{array} \right\}$		- 4
w Size		YCOME ROW	¥	-0 -0 -0	2.57					-				2 3 16.2	23.5			$\frac{1}{1}$	13.65	26	1	28 1 1 8			- 4
Cre		CAPACITY	3	\$	9.486					-				23.150	70.400				29.530	70, 780		83. 080 • • • •			0 Pro
		is y	AD NIC					Ц						1	-				•	•	د ا			Π	
210')		POSAL		\$	8	N	N			×/2	V/V		s /2	98; 	<u>8</u>	V/N	N/N	Ň	1	3	<u>۽ ا</u>	100	V/N	× Z	atime
COROUS (TYP	ATNENT/DE SUBSYSTEM	CRAY	Tank	liolding Tank	Holding Tank	Holding	v Thru	ank	Grum Flow Thru + Hid T	Holding Tank	r Thru		Holding Tank	Holding Tank	Holding Tank	Grum Ptow	Grum Flow	liolding	Fank folding	rank	folding Fank	Srum Flow	rum Flow	num holdin
sel VI(TTRE	BLACK	k k	yster Id Tank	yster cin.	n Flow	umman Plos	+ Holding T	a j	n Plow + facin,	umman Flow	+ Incinerator	æ	erator	X prator	22	erator	80			rator 1	1 1 1	trator 6	he maxim
is ay		SNY LL IN SENS	3818,	Tani Tani	€Ŧ		eren Then	0		Hold		15		Por L	Incin	Evapo	Hold	Incin	Holds			Evapo	Tank	Incine	d on t
		:0112037 :01: 5	₹ ₹	Collect	Oil Rectroul.	(Chrysler)	Gravity Collect	(блилта		Collect,	Gravity Collect.	(Grumma		Vacuum Collect,	(Jeru)				M/T	Collect.	(GATX)	<u> </u>		-	Base
		~	公		~	•	4	Ś		50	-		<u></u>	6	2	Ξ	2	13				<u>о</u>	-	œ	1

vi

Ι

,

(1) Based on:

 WMS utilization factor determined from vessel mission profile study.
 WMS utilization factor determined from vessel mission profile study.
 An effective discount rate of 10%.
 An assumed WMS useful life of 10 years.
 (2) Relative cost (%) based on highest WMS cost for the vessel.
 (3) Relative ratio (%) of cost to effectiveness rating based on highest velue of such WMS ratios for the vessel.
 N/A - Not a viable candidate for this vessel.

•

BUMMARY OF WMS LIFE-CYCLE COST AND EFFECTIVENESS ANALYSES

		Vessel	FIREBUSH ()	(100		Crew	8120	2			Ā	MS UTI	LZATIO	IN FACTO	JR (%) IC	1.1				Sheet	3 of 6
		1			\uparrow	13		FLXED C	O6T5	X		E C Y (3 3 7 3	0 5 T ⁽¹⁾	ESTIM	A T E S					
	CLO:	F M315X5805	LEATMENT/DISP SUSSYSTEM	08AL	To a	NAND - CARA	CORTA ROAD	Sellettos	8833 IS	a nen	an Deba	Land a series	ALL CARGE	ADUTUES	8119	TOTAL LIFE	CTCLE COL	ц()) Ц	12		(I) TO VENESS
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BACK BLACK	GRAY		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		×	8	202	*6]}	1	EN (0 2	6	1 2 / KG	200				12 12 12 12 12 12 12 12 12 12 12 12 12 1	MAN	(6)
<u> -</u>	Gravity	Hoking	Holding		\mathbb{T}		16. AM	4 of Tot	1					6 of Total	*	Relativ	T) (DEC/MA		A VESSE		-KELA-
	OI	Chrysler	Tank	3	•		Ŋ	2	10, 12	; / _=	<u>s/</u>		1.384		22.01	•	0.440				
4	Recircut,	+ Hid Tank	1 art	8	•		8	₹/ 5.7 [2	<u>1</u> 1 1 1 1 1 1	ر <u>ا،</u> پر		38.	Lin A	25. 782				2	31.0		•
	(minghere)	- Incin.	Holding	100	ង	34.601	20.03	165.33	38. E	N.			1.780	60.264	41. 828	a	0° 841	5	66. 659	1, 333	51
*	Gravity	Grum Flow	Holding	1	1	21.500 2	16.760	20 4		10	ł			10 10	7 105.495	3	3, 110	69	152.891	3. 058	3
	(Grumma	Gumman Ph	Tank Ov Thru	3	:	\$5.000	1			<u>\</u>		\setminus	\mathbb{N}		2 69.62	34	1.193	8	78. 476	1.570	
_		+ Holding	Tank	8	8	6			× /	; \ 		8	3.950	210.11		; 				Ì	
	Collect,	Tank	Grun Flow Thru + HM Tk	8	100	55,000	21.500	78.500	1.28	الأ		er.	3.950	11.677		8	1.763	e	113.006	5.280	3
	Gravity	Grun Plow	Holding			55.000	25.640	80:640	11/1						9 94.367	8	1.885	2	120.855	1.417	36
-	(Grumma)	Grumman Flo	Tank W Thus	8	3			V	\ 	{\ \ ∓	。 、 、		ROZ		104.940	\$	3.099	Ę	143.766	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5
		+ Incinerat	8	100	10	19 19	03:-01	2 28.350	12.916		• 	n n	2.681	35.059						<u> </u>	T
*	Collect	i folding Tank	Holding Tank	10	51	34.350	19.710	1000	10.587				7.851	20.445			867.2	5	231. 2	8 8	9
30	(Jerod)	Inclinerator	Holding	5	1	65.600 21	39.76	00.340	16.369	1		134		10	86.505	8	1.830	2	150, 789	1.016	Ħ
1		CATX	Holding		3	81.050 33	11.660	10/10		-			\ [≏]	10	200.935	g	4.019	5	352. 518	.050	75
;;		Evaporator Holding	Tank Grun Plov		3	9 9 19 19 19					: \ \ \	, n , 1	13		154.074	3	3.061	8	265.645	61E.3	38
-	1	Tank	Thru + Hid Th	8	3					5 2 2 2	2° 2°	615 13 23	, 8 9 1	62.397	163.557	59	3.271	8	92.066		8
	WT	Holding		8	8	200			8 	2°,1 1,55	7 9 23	177 31	1. 366 13	80.661	244, 331	908	4 .887	8	69.867	2	
	Pump Collect	Tank	Tank	8	- <u>+</u> -			3		9. SE	81 8	28	10	3 6.812 53	68.812	8	1.378	15	91.856		
	(CATX)	GATX	Tank Holdine	ş	8	8				~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		309 26	15	66. 952 51	169, 362	39	3, 388	8	40.091	8	
1		Evaporator Holding	Tank Grum Flow	8	8				3		39.6	181	.652	44.831	117.261	•	3.346	2	67.501 3.		
		Tank	Thru + Hold Th	8	8	3	200 - 10 200 br>200 - 10 200 - 10	8		1.8	;; •	16 0	1. 028	180.780 34	135, 709	3	8.714	3	90. 572 S	106	3
	+ Based	on the maxin	Thra + Incia.	8	8	3				8 	3.4.	12 20	154 10	59.661 28	211.911	5	4.238	3		8	2
_	(1) Based (1)	inc. Shitleretize						next am	iller holc	ling tin	e of S	I.O hou	now su	d sutisfy	V approxd	matoly 93	X of all 1	polding	time a	quireme	

vli

•

φ.

WMS utilization factor determined from vessel mission profile study.
An effective discount rate of 10%.
An carumed WMS useful life of 10 vears.
(2) Relative cost (%) hased on highest WMS cost for the vessel.
(3) Relative ratio (%) of cost to effectiveness rating based on highest value of such WMS ratios for the vessel.

د برز ŀ SUMMARY OF WMS LIFE-CYCLE COST AND EFFECTIVENESS ANALYSES

Í

9 Jo	ti ti	1) TO		6	/ REI.A-	8	Ŧ	\$	\$	8	42	z	F	. g	8	Ş	8	8	8	8	3	8	8	Tents.
Sheet	ATK WATH		RATE	MAN	(18K/ Mau)	3.537	7. III	9.424	7.749	6.136	6.802	19.11	11.476	5.269	13.156	7.586	9.973	16.118	6.282	13.745	8.816	10.585	16.038	levinber
			12	New Con	(IK) (45, 975	92, 438	122.516	100.737	78.767	88.422	806.911	149.162	68.753	171.027	98. f22	129.652	209.537	81.65	178.682	114.606	137.602	208.491	ng time
1			e		2	80	3	61	3	4	z	3	65	3	s	8	8	51	2	5	8	53	3	lblod
			ICLE COST		Con/Man)	2.829	4, 551	5. 749	5.269	4, 418	4.897	8.481	7.459	3, 385	7.236	4. 552	5.585	0.381	4.460	8.384	5.818	6.668	9.302	X of all
	ES		AL LIFE CI		Relative (%) (2)	8	48	62	8	ç	8	18	8	8	7	\$	3	8	¥	8	83	71	8	nately 98
() 31	TIMAT		80 TOT	8	*	36, 780	59, 160	74. 735	68, 501	51.422	63.664	110.249	96.968	44.002	94.065	59, 173	72.605	106.959	57.975	108.996	75.640	86.689	120. 925	approxd a
CTOR 19	T (1) E'S	ures /	LE LE LE	Lot Rec	Tolal	. 160	1,228	1 11 38	621 23	.612	. 864	516. 1	878	<u></u>	2 2 2 2 3 3 3 3 3	100.0		7.489 36	818	0.06	110	81.5	3.335	d satisfy
TION FAC	ECOS	EXPENDIT		Werk Werk	Jo 🖌	870 5 7	021 0	861 8	100	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	533 / 13	202		691 21	2 2	308 308	1.00	554 10 10	101 101	284 9	10	84	942 942	urs would
UTILIZA	CYCL	ECURRING		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		505 5.	206 14 5.	513 5.	36	326	926		6 6 6 7 6 7 6		870		361	12 10.	2 22	912 9.	21 5.	21 6.	.461 10.	228.0 hoi
W MS	S LIFE	ŀ	Surine State	A A A A A A A A A A A A A A A A A A A			8	10.10	12	1	10	60 60 60 60	9 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8	37 1 1 1 1			() () () () () () () () () () () () () (10 8 8	11 29	11 - 16	81 8	94 20	time of 2
	W M			and and	¥	41 1.4	16 1.8	86 1.0	8 8 8 8 8	1.1 8 8	1.2	8.1	88	239 °		61 ³	25 2.2		8 	6. 5 6	10 %	52 52	35 1 4.6	holding
		TS	AD XIJ	1960) 1960)		10	6.		1 1 L		12								~ \ ~ \ ~ ~			/ ²		aller
		IXED COS	uon el	10-507	% of Total	29.620	34.932	46.294	88.	43.620	\ 8 3°/	85.330		089 198	48. 870	33.080	40.260	69.470	8.	59.950	4 230	20.490	39 39 11	next an
ize 13			ומנוסט	mba.		128 520	25.290 24	30.590	24.280	15.220	31.200	29.230	18.030	19.830	21.370	15.830	12.760		20.490	22.940	11.770	1989-11	13.080	rs. The
Crew S		130,00	33 4	- (y)		100	9.642	15.704	28.600	28.600	28.600	¥.100 ¥	S6. 100	× +	2%, 530	17.250	21.500	55.000	9.510	37.010	26.760	31.510	64.510	10.0 hou
			5	1.00	LAN CAL	22	19	3	64	8	1	3 3	5 8			5 5	18	8	*9	5	3	8	8	e of S
			JAC.		18	8	1 3	8	8	8		3 3	3 8			3 · 8	100	1 8	8 N	8	l S	l §	<u>§</u>	ng tin
LICO (160	TYPE		TMENT/DISt	WEXSTEM	CRAY	Holding Tank	Holding	Holding	Holding	Thru	Gruin Flow	Thru + Hid T holding	Thru	Holding	Tank Holding	Tank Holding	Grum Plow	Grum Flow	Holding	loiding	Holding	Grum Flow Thru + Hold	Grum Flow Thru + Incin.	mum holdi
ael PAM			TREA	5	BLACK	ding t	ysicr td Tank	ysier	- Flow	iumman Free	4 Holding 13	nk m Płow	n: + Incin. inumnan Flow	+ Incinerator ding	ak nerator		ding	herator	dine	nerator	TX T	ding .	acre tor	the mext
Vess		157	W31S. Walin	(Seng	AL BLACK	Hol	ōŦ	5			Hol	14 19 19		Hol		CV	Hol		Hol	1	EA.		1	186d OF
			1		SN SW	Collect	01	(Chrysh	Gravity	Collect (Grumir	Gravity	Collect Gravity	Collect (Grimn	VACUUM	Collect (lered)			>	M/T	Collect	Y 1 / 1			• B
						1-	~	•	+	<u>د،</u>			·		<u> </u>	<u> </u>	12	13	2	15	16	1	8	l

•

WMS utilization factor determined from vessel mission profile study.
An effective discount rate of 10%.
An assumed WMS ursful life of 10 years.
(2) Relative cost (%) based on highest WMS cost for the vessel.
(3) Relative ratio (%) of cout to effectiveness rating based on highest value of such WMS ratios for the vessel.
N/A - Not a viable candidate for this vessel.

SUMMARY OF WMS LIFE-CYCLE COST AND EFFECTIVENESS ANALYSES

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	of 6	,		2 22	E	VE CKI		1		r r	E	2		8	2		2	12	9	0					Í
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	heet 5		INTRO IN	CONTUNE TECTIVES RATING	MAN				8		9	2	 9	1 2			•	0			° •		-	1 10	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	S			m (m		A CONTRACTOR	1	31 3.2	92	62 3. 63	94 °C	9 	30.7	5.88	30 3.29		5.18	6 . 3	10.23		1.50	8		1 11. 37	
$ \begin{array}{ $			Ì	2	00000		<u>ส</u>	5	89.2	76.2	67.2	7.9	10.5	123.64	8.8	169. 69	104.91	132. 15	214.85	76, 28	157. 49	109.65	147.59	238. 78	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				бT (1)		And Con	*	3	3	2	22	92	8	3	3	8	8	8	5	i 2	8	8	8	3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				YCLE CO		Cont/	ě.	2.216	2.76	2.687	2.433	2.004	4. 583	4.061	2.112	4.285	3, 060	3, 523	\$.217	2.S	4 .656	3,446	4,158	6. 140	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		E S		יר רוצב כ יר רוצב כ		Relative (3)	15	36	45	3	¥	9	75		2	70	8	5	8	=	¥	8	1	.8	
Vestel Will UTILIZATION PACTOR (33)1. Core Rise 21 Will UTILIZATION PACTOR (33)1. Core Rise 21 Vill Stript Will UTILIZATION PACTOR (31)1. 151 F1 1 <t< td=""><td>1</td><td>МАТ</td><td></td><td></td><td></td><td></td><td></td><td>8</td><td> 9</td><td></td><td></td><td><u> </u></td><td>2</td><td>2</td><td></td><td>ç</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	1	МАТ						8	 9			<u> </u>	2	2		ç									
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	X) 11.	ESTI		Buju	Ser CE	18	0 18.9	4 5.5	8	*	51,10	3.1	8.2	85.28	*	89.99	64.25	73.99	109.56	53.40	91.77	72.37	91.50	128.94	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	TOR	13	TURES	CURVEC .	INO J	Total	5.784	4.191	- 296 - 296 - 296	214	213	1.72.1	201.2	7.185	296. 296. 29	.410	81.0	38	276 %	09	4	. 585 *	90 00	3	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	N FAC	COS	EXPENDI	100	Crew.	10 %	°_0	12	1	3	<u> </u>	- 9	20			<u></u> =	8 29	8 1	2 2 4	<u></u>	4		<u> </u>	•	:
Vessel WHITE SACE (133) Crew Size P to the correst state of t	IZATIO	YCLE	RRING	SA.D.S	P 2 C		₽: - +	10°.	5 	F \	9 7		2 - -		5.69	9.79	2 2		8 10.55	10 10 10 10 10 10 10	9.28	\$ \$		<u>6</u> 20 8	
Vessel WHTF SACE (133) Cew Size Number Size Numer Size Number Size <t< td=""><td>S UTIL</td><td>FEC</td><td>RECU</td><td>S LIGUE</td><td>5 25/ C</td><td></td><td>0 123</td><td>30/12</td><td>8.695</td><td>5.1.B</td><td>¥6.1</td><td>21.2</td><td>3.121</td><td>2.941</td><td>1.226</td><td>19.21</td><td>7.472</td><td>8.277</td><td>9.014</td><td>18.096</td><td>26.200</td><td>18.760</td><td>19.146</td><td>19.884</td><td></td></t<>	S UTIL	FEC	RECU	S LIGUE	5 25/ C		0 123	30/12	8.695	5.1.B	¥6.1	21.2	3.121	2.941	1.226	19.21	7.472	8.277	9.014	18.096	26.200	18.760	19.146	19.884	
Vessel WHTF SACE (133) Crew Size 21 7	WM	1 7 5 1		17.55 84 5	4° 2'		478	800 4	180	4	181	181	362	222	1:86	5 2	69	145	946 5	810 8	15	90	9		
Vessel WHITE SACE (133) Crew Size 21 2 <td< td=""><td></td><td>M M</td><td></td><td></td><td>Safe V</td><td>¥</td><td></td><td>21.</td><td><u></u></td><td>2 2</td><td>~ \ - -</td><td><u>~i \</u></td><td><u> </u></td><td><u></u> </td><td>4</td><td><u>}</u></td><td></td><td>·; \ 9</td><td>¥ \ \®</td><td>4 \ ~</td><td>5. \ \ \</td><td>) 9 9</td><td><u>, v</u></td><td></td><td>Adda and</td></td<>		M M			Safe V	¥		21.	<u></u>	2 2	~ \ - -	<u>~i \</u>	<u> </u>	<u></u> 	4	<u>}</u>		·; \ 9	¥ \ \®	4 \ ~	5. \ \ \) 9 9	<u>, v</u>		Adda and
Vessel WHITE SACE (133) Crew Size 2 2 C 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			TS	Paris	20 Cr.		¥. \	8 966	10.99	4.213	903	4.240	5.917	2°83	9.280	8.116		7.232	8.756	4.165	5.536	4.608	32	615.3	II AL LA
Vessel WHTF SACE (133) Crew Size 21 Vessel WHTF SACE (133) Crew Size 21 Vessel T Y P E SussistM Size 25 Vessel BusissTM Size 25 SussistM Vessel Convision Low 100 Conv Size 25 Scout Finition Low 100 Low 100 Size 25 Scout Finition Low 100 Low 100 Size 25 Scout Convision Low 110 Low 100 Size 25 Scout Convision Low 110 Low 25 Lin 200 Size 25 Scout Convision Low 110 Low 100 Size 25 Lin 200 Size 25 Scout Convision Low 110 Low 100 Size 20 Lin 200 Lin 200<	.		ED CO	uonan		of Total	3.190	2.342	1.404	4.500	0.390	2.960	8.080		0.380	2.550	8.220	5.750	2.200	1.500	.800	3. 790	5.630 / 61	.800	
Vessel WHITE SACE (133') Crew Size 7 7 7 7 6 6 7 6 6 7 7 7 7 7 7 7 6 6 7 <td< td=""><td>21</td><td></td><td>FIX</td><td></td><td>TUIT</td><td>150</td><td>100</td><td></td><td>300 29</td><td>00 21 22</td><td>25</td><td>60 4 28</td><td>24</td><td>8</td><td>202</td><td>2 8</td><td>20 2</td><td>14 4</td><td>9 2 2 2</td><td>90 22 22</td><td>90 16</td><td>00</td><td>10 5:</td><td>40 81</td><td>The ne</td></td<>	21		FIX		TUIT	150	100		300 29	00 21 22	25	60 4 28	24	8	202	2 8	20 2	14 4	9 2 2 2	90 22 22	90 16	00	10 5:	40 81	The ne
Vessel WHITE SAGE (133') Creation χ^{2}_{A} $\chi^{$	v Size			n's uon	78.5V	¥	<u></u>		25 16.8	40	54 12.8	50 15.4	23.0	- - - -		40 16.3	12.2	48 10.6	213.6	11.9 11.9	15.7	6.01	49 10.9	29.	0.114
Vessel WHITE SAGE (133') Vessel WHITE SAGE (130') Vessel WHITE SAGE	Cre	1	22- 2N	CAPA			<u>+</u> /	8. 24. 24.	14.604	83 15 15	21.500	21.500	55.000	200 25	7.650	76.250	26.000	35.159	62.650	9.510	37.010	27.860	44.660	2.160	ב ע ע
Vessel WHTE SAGE (133 Vessel WHTE VEATMENT/DEPOSAL Subsystem Official Tank Tank Canter Lank Tank 100 Cavity Houling Cam Flow Cavity Houling Cam Flow Cavity Houling Cam Flow Collect, Tank 100 Vessel WHTE VEATMENT/DEPOSAL Cavity Houling Cam Flow Vessel WHTE VEATMENT/DEPOSAL Cavity Houling Cam Flow Vessel VEATMENT/DEPOSAL Cavity Houling Cam Flow Vessel VEATMENT/DEPOSAL Cavity Houling Cam Flow Vessel Vessel VEATMENT/DEPOSAL Cavity Houling Cam Flow Vessel Vessel VEATMENT/DEPOSAL Cavity Houling Cam Flow Vessel VEATMENT Tank Vessel Tank Vessel VEATMENT VEATMENT/DEPOSAL Vessel Tank Vessel VEATMENT VEATMENT VEATMENT Vessel Tank Vessel VEATMENT VEATMEN					* (2) ×	5 / C2	100	8	100	100	001	100	100	100	100	8	100	100	100	100	001	100	100	8	a of 6
Vessel WHTE SAGE Vessel WHTE SAGE Vessel WHTE SAGE T T P T uk Caraty Cara	(133.)	3		POSAL		, ,	ě	ğ	ĕ	ž	õ	8	- 100	6	8	8	8	8	8	100	100	00	ru 100	<u>8</u>	na tim
Vessel WHI Vessel Vessel Vessel WHI Vessel WHI Vessel Vessel Vessel WHI Vessel	E SAGE	ч У	- 19P	MENT/DIS BSYSTFM		GRAY	ading A	kding ink	lding nk	lding nk	P4	nu + Hid T	lding R	2	5 2 2 2 2 2 2	geip y	ding A	m Flow u + Hid T	m Flow u + Incin.	ding k	сі - 26	ding k	m Flow u + Hold 7	m Flow u + Incin.	a holdt
Vessel Vessel	WHIT			TREAT	3	`\	÷ ∓ ≚ 	Ĕ ₽ :	2 F	Tk 15	n Flow T ng Tank	<u>45</u>	9 7 1	I Flow T	19 18	≗ ≓	₹ ₹	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	ĒĒ	19 17	101 Tar	Hol	ĒĒ	<u>5</u> <u>-</u>	nm % a
1 1 6 7.3 7.5 7.6 1 1 1 1 1 1 1 2 0.1 1 1 1 1 3 0.1 1 1 1 1 4 7.5 1 1 1 1 3 0.1 1 1 1 1 4 0.1 1 1 1 1 5 0.1 1 1 1 1 6 0.1 1 1 1 1 10 1 1 1 1 1 11 0.1 1 1 1 1 12 0.1 1 1 1 1 13 0.1 1 1 1 1 13 0.1 1 1 1 1 14 1 1 1 1 1 14 1 1 1 1 1 13 0.1 1 1 1 1 14 1 1 1 1 1 15 0.1 1 1 1 1	ssel			44.	\square	BLACK	siding ink	iryster Hild Tank	irysler Incin,	um Flow In + Hid	Gumma + Holdi	aling A	um Flow ru + Incl	Grummar + Incin	lding nk	Incrator	1'X iporator	5 di 8 di	Inerator	ding ik	nerator	TX porator	k ding	nerator	the m
A Market Content of Co	, Ve:		5	NO NO	(4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	2018) AL	<u>5 4 ≚</u> !	<u>하 - 5</u>	छ । इ	5 F	(ueu	H H	5 <u>F</u>) (uru	≗Ē	Inc	52	2 1	Ē	면법	The l	GA Fval		Inci	Sed on
				1.5.	10 10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	200	Collector	Recirci	(Chryst	Gravity Collect	(Gruni	Gravity Collect	Gravity Collect	Grumn	Vacuun Collect	(Jercd)			-	Punip	Collect (GATX)			→	101
						~y[[-	10		*	v)	9	~	œ	6	2	1	12	13	14	15	16	17	13	

of all holding time requirements. R Based on:
 WMS utilization factor determined from vessel mission profile. tudy.
 WMS utilization factor determined from vessel mission profile. tudy.
 An effective discount rate of 10%.
 An assumed WMS useful life of 10 years.
 Relative cost (%) based on highest WMS cost for the vessel.
 (3) delative ratio (%) of cost to effectiveness rating based on highest value of such WMS ratios for the vessel.

SUMMARY OF WMS LIFE- CYCLE COST AND EFFECTIVENESS ANALYSES

x

METRIC CONVERSION FACTORS

	l		.9	.5 4	r 1	ł				7	ł	ĩ					¥	#					1) ez	ĸ	¥	17	- 1	2				*					_
Measures	To Field		Inches	inches		m:les				Soutere unches	sprek avenbs	aquare miles	acres				OUNCES.	spunds	short tons				fluid ounces	prots	guards	gelions	Cubic Neet					Fahranhast	temper eture		; ã	160 200	
ens from Motric	Naitisly by	LERGIN	0.04	4.0	2:				AREA	91 Q	17	0.4	2.5				0.036	2.2	11		VOLUME		0.03	2.1	1.06	0.26	×.	2		RATURE (exact)		B/5 (then	add 32)		946	01 00	
Appraximate Conversi	When You Ruew		milli veters.	centimeters	meters					antina cantinatara	square meters	squere kilometers	hectares (10,000 m ²)				arana.	ki loorama	tonnes (1000 kg)		-		milliliters	liters	liters	liters	cubic meters			TEMPE		Celsius	temperature		2	• • •	
	Symbol		ų	5	E	- 5	l			75	~e	~5	2		•			, a	۰.				Ē	-	-	-'	È	E				°c			-	;	
3 33	Z 12	07		61 		8T		21 	91		ST		•1		£1		23 		. 1	1	1 1	6		•		4		9		S		•					دی ¹
9	, 	'!' '		I'['	'I'	' ' 7	'1	' 'I	' '		!" •	'}'	.1,	' '		' ' 5	l' '	i'	' 1'	' •	. .,		' ' '	'	' ' 3	j'I	"	'	٩ŀ	' ' 1	['1	' ' 	* *		'l' 1	'I'	inches
	Symbol				5	5	E.	Ş			cm2	Ē	, È	5	ż				g.	•			Ē	Ē	Ē	-			- "	: "			Ļ	2			ol. 286,
Measures	Te Find				Centimeters	centimeters	meters	k) lotheters			sruare centimeters	square meters	square maters	Square kilometers				grams.	ki lograma				milliliters	multiliters .	milliliters	liters	liters	Store Store	litters	cubic meters			Calaina	temonrature			ables, see NBS Misc. Pub
ersions to Mutric	Muttiply by		LENGTH		.2.5	õ	6.0	a. I	AREA		6.5	0.09	8.0	2.6	•	ISS (weight)	8	87	0.45		VOLUME		ŝ	15	30	0.24	0.47	66.0 9 E	a.c	9.76		KALUHE (exact)	0/9 (star	subtracting	32)		sions and more detailed the Catalog No. CI3,10:286.
Approximate Conv	When Yew Know				inches	feet	yarda	miles			square inches	square feet	square yards	square miles	90190	TW.		ounces	spouds	(2000 lb)			terspoons	tablespoons	fluid ounces	cups	pints	quarts	gandas	cubic yards		IEMPE	5 ahranhait	termostature			exactly). Fur other exact conver- s and Measures, Price \$2,25, SD
	Symbol				Ē	£	Þ.	Ē			7 <u>-</u>	H ²	48 ⁴	1				10	e					Than	fl oz	v	£.	Ĕ	5.7	vd ³			3,	_			• 1 in ± 2.54 (e Units of Weights
																	У	ri																			

-

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
PREFACE	iv
SUMMARY OF LIFE CYCLE COST AND EFFECTIVENESS ANALYSES	v
METRIC CONVERSION FACTORS	xi
INTRODUCTION	1
BACKGROUND	1
Complex Problems and Simplistic Approaches Why Cost Effectiveness? Interfacing With the Real World Tecting the Approach	2 3 6 7
OBJECTIVES	9
Development of a Cost-Effectiveness Analysis Methodology Application of Methodology	9 9
SCOPE	11
Development and Application of the Effectiveness Assessment Methodology Development and Application of the Life-Cycle	12
Cost Model MSDs, Candidate Systems and Vessels Considered Vessel Mission Profile Study MSD Analysis WMS Engineering Analysis WMS Installation Analysis General Applicability of the Approach Limitations of Results and Approach	13 14 16 16 18 18 19 20
ASSUMPTIONS	23
Vessel Mission Profile Characteristics Candidate System Development Life-Cycle Cost Estimates	23 24 27
APPROACH	30
Who Determines What Effectiveness Is and How? Life-Cycle Cost Cost Versus Effectiveness - A Priori and A Posteriori The Objectives of Quantification Scales for Relation Importance, Degree of Acceptability and Effectiveness	30 36 38 40

TABLE OF CONTENTS (CONT'D)

. .

	Page
ANALYSIS OF VESSELS	44
VESSELS CONSIDERED	44
MISSION PROFILE CHARACTERISTICS	. 44
Vessel Holding Time Requirements	48
DEVELOPMENT OF CANDIDATE SYSTEMS	[.] 50
MSDs CONSIDERED	50
Jered Sewage Disposal System	50 51 54 56 60
WMS CONCEPTS	63
CANDIDATE WMS CONFIGURATIONS AS A FUNCTION OF VESSEL	66
VIABLE CANDIDATE SYSTEM/VESSEL COMBINATIONS	69
Preliminary Installation Analysis Shipchecks to Determine Viable System/Vessel Combinations	69 69
WMS Equipment Requirements	71
LIFE-CYCLE COST ANALYSIS	79
THE LIFE-CYCLE COST MODEL	79
FIXED COSTS	83
Acquisition Costs Installation Costs	83 83
RECURRING EXPENDITURES	88
Operating and Maintenance Costs Based on Continuous Operation Operating and Maintenance Costs Based on	88
Present Value of Operating and Maintenance Costs	97
SENSITIVITY ANALYSIS OF LIFE-CYCLE COSTS	101

TABLE OF CONTENTS (CONT'D)

	Page
EFFECTIVENESS ANALYSIS	103
THE EFFECTIVENESS ANALYSIS METHODOLOGY	103
THE EFFECTIVENESS MODEL	110
Measures of Effectiveness and Associated Weights	110
M/E Factors/Subfactors and Associated Weights Effectiveness Rating Functions (ERFs)	110 122
EFFECTIVENESS ATTRIBUTE DATA	122
MSD Related Effectiveness Attribute Data	123
Data	126
	125
EFFECTIVENESS RATINGS OF VIABLE CANDIDATE SYSTEM VESSEL COMBINATIONS	126
OPTIMUM CANDIDATE SELECTION	134
LIFE-CYCLE COST VS EFFECTIVENESS	134
OPTIMUM CANDIDATE SELECTION CRITERIA	146
Outliers	146 148 150
DISCUSSION	155
GOALS, POLICIES, GUIDELINES, AND ASSUMPTIONS	155
Vessel Holding Time Requirements	155 157
ANALYSIS OF RESULTS	159
Optimum Systems Comparison of WMS Concepts	160 162
Ranges for Cost and Effectiveness	167 177
EFFECTIVENESS ASSESSMENTS	178
Subjective Judgement, Repeatability and Validity	
of Results	179
Effectiveness Assessment Methodology Properties, Interpretation and Use of	181
Effectiveness Ratings	183

xiv

TABLE OF CONTENTS (CONT'D)

		Page
CON	CLUSIONS	191
	Management of Gray Water Optimum Systems Incinerators, Evaporators and Holding Tanks Vacuum Collection Versus Pump Collection Vessel Mission Profile Characteristics The Cost-Effectiveness Analysis Methodology	191 191 192 192 192 193
RECO	MMENDATIONS	196
	Candidate Systems Objectives, Policies, and Programs The Cost-Effectiveness Analysis Methodology	196 196 198
DEFI	NITIONS AND ABBREVIATIONS	199
BIBLI	IOGRAPHY	204
APPE	NDIX A	
	SCHEMATIC DIAGRAMS OF WMS CONCEPTS	A-1
APPE	NDIX B	
	ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS BASED ON CONTINUOUS OPERATION	B-1
APPE	NDIX C	
	ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON CONTINUOUS OPERATION	C-1
APPE	NDIX D	
	ESTIMATED WMS OVERHAUL COSTS	D-1
APPE	INDIX E	
	ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION	E- 1
APPE	INDIX F	
	ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION	F-1
APPE	ENDIX G	
	PRESENT VALUE OF ESTIMATED LIFE-CYCLE WMS OPERATING AND MAINTENANCE COSTS	G-1
APPE	ENDIX H	
	SENSITIVITY ANALYSIS OF LIFE-CYCLE COST	H-1

xv

LIST OF ILLUSTRATIONS

	1	
Figure N	<u>io.</u>	Page
1.	Summary of Approach for Candidate System Development and Analysis	31
2.	Data Form for Recording Mission Profile Data	46
3.	Jered Large Boat Sewage Disposal System	52
4.	Jered Small Boat Waste Collection System	53
5.	GATX Evaporative Toilet System	55
6.	Chrysler "Aqua-Sans" Recirculating Oil System	- 57
7.	Grumman Flow Through System	59
8.	Collection. Holding, Transfer (CHT) System	62
9.	WMS Concepts for Shipboard Black and Gray Wastewaters.	64
10.	Summary of WMS Installation Requirements	65
11.	Waste Generation Rates Assumed	68
12.	Physical System/Equipment Configuration Hierarchy	80
13.	Life-Cycle Cost Model for Candidate System/Vessel Combinations	81
14.	WMS Installation Cost Estimates	86
15.	Data Sheet for MSD Operation	89
16.	Data Sheet for MSD Preventive Maintenance	90
17.	Data Sheet for MSD Corrective Maintenance	91
18.	Data Sheet for MSD Overhaul ·····	92
19.	Summary of the Procedure for Quantifying Effectiveness of Candidate Systems/Vessel Combinations	107
20.	Form Used for Documenting Effectiveness Rating Functions and Associated Attribute Data and Ratings	124
21.	Sample Data Form Used for Documenting MSD Effectiveness Attribute Data	125
22.	Sample Form Used for Documenting WMS Installation Effectiveness Attribute Data	127
23.	Life-Cycle Cost Versus Effectiveness Rating for Viable Candidate Systems	138
24.	Per Capita Life-Cycle Cost Versus Effectiveness Rating for Viable Candidate Systems	144

 $\mathbf{x}\mathbf{v}\mathbf{i}$

LIST OF ILLUSTRATIONS (CONT'D)

Figure No.		
25.	Relative Ranking of Viable Candidate Systems on Each Vessel Based on the Ratio of Life-Cycle Cost (C) to Effectiveness Rating (R _E)	152
26.	Relative Ranking of Viable Candidate Systems on All Vessels Based on the Ratio of Per Capita Life-Cycle Cost (C) to Effectiveness Rating (R _F)	153

xvii

LIST OF TABLES

ŧ

4.1.1		
<u>Table</u>	<u>No</u> .	Page
1.	Vessels Included in Mission Profile Study	45
2.	Summary of Mission Profile Characteristics	47
3.	Relation Between Maximum and All Other Holding Times	49
4.	Summary of Wastewater Management System Concepts	67
5.	Summary of Preliminary Installation Analysis Results	70
6.	Summary of Vessel Shipcheck Results	72
7.	WMS Equipment Requirements	73
8.	Summary of MSD Acquisition and Initial Spares Costs	84
9.	WMS Acquisition Cost As A Function of Vessel	85
10.	Summary of WMS Installation Costs	87
11.	Present Value Factors Based on a 10% Effective Discount Rate	100
12.	Measures of Effectiveness and Associated Weights	111
13.	Effectiveness Ratings of Viable Candidate System/Vessel Combinations	128
14.	Candidate Systems Which Provide Full Holding Capacity	158
15.	Optimum Candidate Systems As a Function of Holding Time Objectives	161
16.	Comparison of WMS Concepts	164
17. A-1	Ranges for Cost and Effectiveness Results	168 A-2
B-1	Estimated Annual WMS Operating Characteristics and Costs Based on Continuous Operation	B-2
C-1	Estimated Annual WMS Maintenance Characteristics and Costs Based on Continuous Operation	C-2
D-1	Estimated WMS Overhaul Costs	D-2
E-1	Estimated Annual WMS Operating Characteristics and Costs Based on Projected WMS Utilization	E- 2

xviii

LIST OF TABLES (CONT'D)

Table No.		
F-1	Estimates Annual WMS Maintenance Characteristics and Costs Based on Projected WMS Utilization	F-2
G-1	Present Value of Estimated Life-Cycle WMS Operating and Maintenance Costs	G-2
H-1	Summary of Formulas for Sensitivity Analysis	H-9
H-2	Results of Sensitivity Analysis	H- 10

 \mathcal{O}

INTRODUCTION

BACKGROUND

Few people have not been exposed to terminology such as: systems analysis, life-cycle cost, system effectiveness, measures of effectiveness, models, cost benefit, input, output, data, etc. Although these words are in daily usage, they often have different meanings for different people. Their use evokes a wide range of varied reactions.

At one extreme is the viewpoint that such analyses are modern types of witchcraft, or numerology, practiced by a priestly cast. Results and conclusions obtained are suspect and these procedures are viewed as a means of spoiling (or soiling) or obscuring otherwise valid engineering analyses.

At the other extreme is the viewpoint that any solution to a problem which does not employ such techniques (or at least is liberally sprinkled with such terminology) is not "modern" or authoritative. A third type of reaction may be that of individuals who are familiar with the underlying concepts associated with such termi logy but are unsure whether or not they have any relevance to the problem at hand. To paraphrase a popular comment about the weather, one may wonder whether these techniques, (granted that they are popular and everyone talks about them) can do anything about the necessary decisions with which one is faced.

This study does not purport to address all of the above issues but only those which are relevant to the general problem of comparing competing candidates and choosing an optimum wastewater management system for selected U.S. Coast Guard cutters. The following discussion is related to some of the issues which led to this study.

Complex Problems and Simplistic Approaches

The aforementioned terminology is symptomatic of the complex society we live in and the concomitant and increasing complexity of the systems we use to support it. The two extreme viewpoints are also symptomatic of the various analytic techniques which are used, and sometimes abused, in an effort to cope with this complexity. They are, in effect, reactions to two types of extremes. One extreme is the use of oversophisticated analytic techniques for relatively simple problems which do not warrant such powerful machinery. The other extreme is the attempt to use simplistic approaches to solve complex problems. Ideally, the analytic technique should match the problem. Just as overkill is undersirable, so is it important to recognize that generally there are no simple solutions or shortcuts to complicated problems.

What are simplistic approaches? Briefly stated, simplistic approaches are those which do not address all the relevant considerations and, at the same time, ignore the interrelationships between them. Such an approach focuses on a few issues to the exclusion of the others, without attempting to assess the effects of such exclusions. But considerations which are ignored do not go away or disappear. They sometimes have an unpleasant way of returning.

Characteristic of simplistic approaches is the search for and discovery of a "formula" which requires the substitution of a few easily determined parameters associated with the systems. Among the simplistic approaches must also be included those which, in effect, attempt to provide answers without fully exploring what the questions are, i.e., without relating to the specifics of the candidate systems and their associated context. Such an approach purports to provide solutions and conclusions without requiring as an input (in addition to data) the structure and a configuration of the candidate

2 -

systems, i.e., how the subsystems/equipments interrelate to accomplish the intended function. This type of approach should be carefully reviewed for the ability to provide meaningful results.*

Simplistic approaches are popular because they promise to solve complex problems the easy way. Although this is never stated explicitly, simplistic approaches carry with them the implied assumption (or belief) that they automate, or at least greatly simplify, the decision-making process. Thus, they provide a false sense of security.

What then is a "sophisticated" approach which is suitable for complex problems? Some characteristics of such an approach are the ability to take into account all the relevant considerations, thus allowing a full examination of all issues which are of interest to the decision maker; it accommodates the dependencies which are inherent in the problem; and it is based on the use of relevant, valid and accurate data. However, this is not any more specific than the suggestion that the design of a bridge should be based on Newton's laws of motion. It is for this reason that a specific analysis methodology with clearly defined procedural steps is required.

Why Cost Effectiveness?

Cost effectiveness has to do with the strategy one uses to acquire a system, a service, or process when more than one legitimate competing candidate exists. To a large extent, cost effectiveness concepts and associated analytic techniques owe their origins to agencies of the Department of Defense.

These concepts are a reaction to the fallacy of attempting to acquire a complex military system simply on the basis of initial cost (i.e., acquisition cost) and performance (i.e., performance at the time of purchase).

^{*}It is noted that the use of this type of simplistic approach is often responsible for imparting a bad reputation to an entire field of analysis - and deserves the label of witchcraft or numerology.

Although such a simple buying strategy may be adequate for products which are used or consumed at the time of purchase or soon thereafter (certain foods, services, etc., in which the purchase price and the initial quality are the prime considerations), there is more to acquiring a complex system. The element of time becomes an important issue and it has implications for both cost and performance (as well as for numerous other considerations). Complex systems break down and their performance degrades with time. Repairs cost money, they make the system unavailable, etc. Complicating the situation is the fact that many of these events are random; hence, one cannot plan for them in advance on the basis of deterministic procedures.

In practice, it has been found that the real cost of a complex system, such as a weapon system, often exceeds the initial acquisition cost by one or several orders of magnitude. In addition, the performance, as well as other characteristics, often changes considerably as the system ages. These realities gave rise to concepts of cost effectiveness, namely that all costs incurred should be tracked over time and accounted for, and that the the degradation in performance as a function of time should be fully addressed, including all the implications which follow from this.

Although the aim of cost effectiveness analysis is laudable, its practice has not always been up to par with its principles and ideals. Rarely are all relevant considerations taken into account in a direct, explicit, systematic, and comprehensive manner. The attempt to take into account the dependencies of both cost and effectiveness on the time element has resulted in an interest and intensive activity in the field of reliability. Thus, "effectiveness analysis" (or "effectiveness assurance") became synonomous with "reliability/maintainability/availability analysis".

This study was undertaken in an effort to develop and apply a systematic and well defined cost effectiveness analysis methodology which would be

suitable for candidate wastewater management systems. In general, any choice of a candidate is made on the basis of information about the candidates and the use of subjective judgements by the decicion maker. However, information about complex systems includes a wide range of different considerations and issues. The objectives of this cost effectiveness analysis methodology is the development of procedural steps for methodically accommodating and integrating all considerations of interest, including technical data and such intangibles as objectives, constraints, guidelines, assumptions, and the subjective judgements of the decision maker.

This approach is based on viewing all considerations of interest as falling into two categories, namely economic and non-economic. The economic considerations are all those which affect life-cycle cost and are taken to be the penalty aspect of a candidate. The remaining considerations of interest represent effectiveness and are associated with the overall quality of a candidate (performance, safety, habitability, etc.). However, a given system consideration may have an effect on both categories. As an example, the number of man-hours required for operation and maintenance affects the penalty aspect (i.e., the cost of labor) as well as overall quality (i.e., the extent of the burden on the crew). The overall problem of choosing an optimum candidate is thus viewed as a two-dimensional problem requiring a trade-off between life-cycle cost (penalty) and effectiveness (overall quality).* Notions of "worth" are used in the context of such a trade-off. However, unlike other approaches, this approach does not attempt to use notions of worth to make a direct conversion of effectiveness into cost or vice versa.

*This approach is valid for non-revenue producing systems. For revenue producing candidate systems, a third and vital issue (namely its revenue producing or income potential) must be taken into account and the problem is then studied in three dimensions.

Interfacing With the Real World

What was definitely not wanted (in accordance with the objectives and intent of this study) is a theoretical analyses approach, applied to a hypothetical problem, using assumed data, and the development of results and conclusions intended for an imaginary decision-maker. Instead, the goal was the development and application of a viable methodology which can address the real world. Such a requirement has a number of implications.

No elaborate arguments are required to convey the idea that meaningful and valid results and conclusions cannot be obtained unless relevant and accurate data are made available. Since the cost-effectiveness analysis methodology per-se does not generate the required data, or for that matter the candidate systems to be analyzed, such information has to be obtained as an input to this methodology. In the overall scheme of things this type of information is obtained via other supporting analyses which are coordinated with the cost-effectiveness analysis procedure. However, a viable methodology must address a number of other issues in addition to the question of data. It must be capable of interfacing not only with real systems but with real people as well.

First and foremost, the methodology must interface with the decision maker who must have a clear understanding of the principles of the approach as well as the procedural steps and feel comfortable with them. Furthermore, the approach must be capable of being integrated into the decision-makers routines and his overall scheme of operation. Expecting a radical departure in normal operating procedure is unrealistic.

Another type of interface is that between the decision-maker and specialists in other disciplines. This interface is especially important in a large scale project or study effort in which the necessary data for

quantifying both cost and effectiveness may require inputs from experts in several different disciplines. One cannot realistically expect to address oneself to individuals in other disciplines and ask for an effectiveness analysis or even for effectiveness attribute data. Attempting to do this may, at best, result in a blank stare and at worst, in a hostile reaction. Instead, what must be done is to formulate specific questions in terms which are meaningful within these disciplines. This can be accomplished by formalizing the process, at least to the extent that it can be carefully documented. Questions must be specific and they must be clearly stated. Thus, one might say that this approach abhors vagueness and ambiguity.

Testing the Approach

The candidate wastewater management systems and vessels included in this study provided ample opportunities for testing and validating the entire range of aspects associated with this approach. These systems also provided additional problems which may not be present in other types of candidates, hence the ability of the approach to cope with these systems represents a demonstration of its validity, versatility, and practicality.

The additional problems resulted from the requirement to handle two separate waste streams (namely, black as well as gray wastewaters) and the fact that these systems are synthesized as hybrid combinations of the subsystems/equipments of different MSDs. This presented special problems for both the cost and the effectiveness analyses. Specifically, all data had to be developed and documented on an MSD subsystem/equipment basis rather than on an overall MSD basis as it is ordinarily presented. Furthermore, each candidate system had to be viewed as consisting of three subsystems (often containing common subsystems/equipments) and both the cost as well as the effectiveness related data on an overall WMS level had to be synthesized from its constituent MSD subsystem/equipment data. Procedures for doing this had to be developed. A further complication was the requirement to include candidate system/ vessel combinations (based on the use of holding tanks) which do not provide full holding capacity for black and/or gray wastewaters. This requirement necessitated special procedures and extra precautions in the presentation and interpretation of results and conclusions.

The ability of the cost effectiveness analysis methodology to interface with supporting analyses used to develop the necessary input data was demonstrated via the MSD analysis and the WMS installation analysis. The effectiveness model served as a medium of communication for guiding these analyses. All aspects relating to the procedural steps of the methodology as well as the data development have been carefully documented. An attempt has been made to maintain a clear distinction between the model, its associated input data, its outputs, and the governing assumptions. Where a conflict arose, preference was given to the modeling and procedural aspects over data accuracies, since the latter are more readily corrected than the former. This aspect of the application served to verify the feasibility of managing the details of the entire approach, including the data handling "mechanics" in a realistic environment.

The practicality of the interface with the decision maker was validated through extensive participation by Coast Guard technical personnel in the development of the effectiveness model.

A final test of the approach concerns another interface with the decisionmaker. Many numbers have been developed in the course of this study. This report abounds with tables, charts and figures presenting information and results at different levels of detail. Although much of the effort associated with this study was consumed in the development of these numbers, they do not represent the ultimate objective of the study. The full purpose of the analysis would not be served if these numbers could not ultimately be reinterpreted by the decision-maker in terms of candidate system properties, trends, inferences, and decisions.

OBJECTIVES

The overall objective of this study is twofold.

Development of a Cost-Effectiveness Analysis Methodology

The first objective is the development of a conceptual basis as well as a practical approach for quantifying the life-cycle cost and effectiveness of candidate system/vessel combinations and using these for selecting an optimum system for each vessel.

The approach for quantifying effectiveness should be capable of addressing all considerations of interest and be consistent with the data which are available or can be obtained with reasonable effort. It should also be capable of accommodating all specifics of the problem and its context, including such intangibles as objectives, requirements, constraints, policies, guidelines, assumptions, and subjective judgements of the decision maker.

The approach for quantifying life-cycle cost should address all cost elements and all variables which affect the life-cycle cost of wastewater management systems. The approach should take into account all dependencies between the variables and parameters of life-cycle cost and it should be consistent with the data which are either available or can be obtained with reasonable effort.

Application of Methodology

The second objective is the development and analysis of candidate wastewater management systems (WMS) for six U.S. Coast Guard cutters () The objective of these systems is to manage both the black and gray wastewaters aboard the selected vessels. The candidate systems are to be developed as hybrid combinations of subsystems from commercially available marine sanitary devices (MSDs) using engineering judgement to select those which have a good chance of meeting performance requirements.

The objective of the application includes generation of all data necessary for the development of the candidate systems, the life-cycle cost estimates and the effectiveness assessment. A specific objective and guideline in this connection is that, to the extent possible, data used should be realistic and obtained directly from the source, rather than projected or derived indirectly. Following are specific requirements in keeping with this objective:

- . Visits to inspect the MSDs included in this study on operational vessels.
- Scaling of MSDs included in this study, for use in the development of the candidate WMS, should be considered only to the extent that the various capacities and model types are either commercially available or engineering data for them are available from the manufacturer.
 - Hybrid systems should be considered only to the extent that successful operation can be expected without significant equipment modifications.
 - The development of candidate systems for each vessel (as well as the subsequent analysis) should be based on vessel operational requirements as determined from actual vessel mission profiles obtained from the ship logs of each vessel.

The installation analysis to determine feasibility of installation as well as the subsequent analysis to develop installation cost estimates, drawings, and installation dependent effectiveness attribute data are to be based on actual vessel shipcheck inspections and are to be performed in consultation with naval architects and marine engineers.

SCOPE

This study consists of efforts directed at the fulfillment of two main objectives, namely, the development of a generalized methodology for analyzing alternative systems in order to select an optimum (i.e., most cost effective) candidate; and the testing and validation of the entire approach through its application to a real-world problem. The original scope of the developmental effort was limited to the approach for quantifying life-cycle cost and effectiveness and procedures for using these numbers to select an optimum candidate system as a function of platform (i.e., vessel). However, in the course of developing the necessary data for the candidate systems as part of the verification of the approach, additional supporting analyses were introduced and generalized. These include the following:

- The vessel mission profile analysis.
- . The MSD analysis.
- . The WMS engineering analysis.
- . The WMS installation analysis.

The development and incorporation of these analyses as part of this study resulted from conformance to the basic intent of developing an approach which is capable of interfacing with the real world and can realistically cope with the problem of developing and using the data required as an input. What resulted is more than merely a conceptual framework for a cost-effectiveness analysis approach with a sample application.

The approaches for quantifying life-cycle cost and effectiveness, and these supporting analyses complement each other. The approach for quantifying cost and effectiveness provides structure and orientation to these analyses (which would have to be performed anyway in order to generate realistic inputs) so that they become well directed, rather than disorganized, efforts. On the other hand, these supporting analyses serve two important functions. First, they provide the required inputs for the cost-effectiveness analysis. Second, these supporting analyses act to halt the demand for

types and forms of data which cannot be realistically expected within the confines of a given study. Thus, the result is a generalized and systematic methodology for solving problems, at least those in the context of comparing competing candiates and selecting an optimum.

The scope of each specific effort is described briefly in the following paragraphs. The applicability and limitations of both the results and the methodology are also discussed. The results of this study appear in this volume as well as in the others. The relationships and dependencies between the information in the various volumes of this report are indicated in the diagram presented in the Preface to the report.

Development and Application of the Effectiveness Assessment Methodology

The effort under this portion of the study includes the following:

- Development and documentation of a generalized effectiveness modeling and assessment methodology (see Volume II).
- Development and documentation of a generalized computer program for quantifying the effectiveness of candidate system/vessel combinations (see Volume II).
 - Development of an effectiveness model suitable for analyzing candidate wastewater management systems (WMS) for selected U.S. Coast Guard vessels. The candidate systems are intended for managing the black (cutput from commodes, urinals and garbage grinder) and gray (galley and turbid, i.e., output from sinks, showers, laundry, deck, drains) wastewaters aboard the vessels (see Volume II).
 - Development and documentation of the effectiveness attribute data required as input to the effectiveness model (see Volumes III and V).
 - Exercise the effectiveness model by substituting the data and developing quantitative effectiveness assessments for all viable candidate system/vessel combinations (see Volume II).

The emphasis in the effectiveness modeling area was on the development of the procedural aspects of the approach, leading to a general and well defined methodology with clearly identifiable steps. Guidelines for executing each step have been developed and are documented.

An important aspect of the development of the effectiveness model for wastewater management systems was the verification of the feasibility and practicality of decision-maker participation in its development, which is a specific requirement of the approach.

Development and Application of the Life-Cycle Cost Model

The effort under this portion of the study included the following:

- Development and documentation of a life-cycle cost model for candidate wastewater management system concepts as a function of vessel on which they are implemented (presented in this volume).
- Development and documentation of cost-related data required as input to the life-cycle cost model (see Volumes III and V).
- Exercise the life-cycle cost model by substituting the data and developing life-cycle cost estimates (including intermediate results) for all viable system/vessel combinations (presented in this volume).
- Perform a sensitivity analysis on the life-cycle cost estimates (presented in this volume).

The emphasis in the development of the life-cycle cost model was on including all cost elements and cost related parameters as well as addressing all the dependencies among them.

Automation of the life-cycle cost model was not within the scope of this study.

MSDs, Candidate Systems and Vessels Considered

The MSDs to be included in this study were specified by the U.S. Coast Guard. The selection of specific MSDs was based on two considerations. First, inclusions of representatives of the different MSD concepts currently in use or under evaluation, namely, reduced volume vacuum and pumped collection; recirculation; flow through; and CHT (collection, holding and transfer). Second, inclusion of a representative from each of the above concepts which has the most extensive history of actual use and/or development and testing. In order to accommodate the need for systems of various capacities for which the cited MSDs are not particularly appropriate, other selected sizes and types of equipment from the same manufacturers were included, even though the development or testing was not as extensive as for the MSDs originally selected.

The following five MSDs were considered for this study:

- JERED reduced volume vacuum flush collection/incineration, Model V85003 as installed on the USS Kraus (DD 848). For reduced capacity requirements, JERED's Small Boat Sewage Collection System was considered.
- GATX reduced volume flush pumped transfer collection/evaporation, as installed on the Navy service craft MONOB (YAG-61). For reduced capacity requirements, smaller evaporators which are catalog items from the evaporator supplier, but which have not yet had the GATX modifications designed for them, were considered.

. Chrysler recirculating oil full volume flush collection/incineration, Aqua-Sans Models A, A/B and plus waste Holding Tank and Incinerator for Model C.

Grumman flow through/incineration, modified version of prototype installed on USCGC Red Beech (WLM-686). The major modification

is the substitution of a Thiokol Corporation incinerator subsystem in place of the Grumman incinerator. Other modifications are described in Volume V.

Collection, Holding and Transfer (CHT) system. The CHT System is not proprietary to any one manufacturer, and is generally customfitted in each installation.

The systems considered for this study are the 18 WMS concepts in configurations suitable for each of the six vessels included in this study (see Volume IV). Of these, data were developed and results obtained only for those system/vessel combinations which were judged to be viable candidates on the basis of the installation analysis (see Volume III).

The six vessels to be included in this study were specified by the Coast Guard and are as indicated below.

VESSEL	CLASS	туре	CREW SIZE	Home Port
GALLATIN (378')	WHEC-721 Hamilton (378') Class	High Endurance Cutter	152	Governor's Island, New York
VIGOROUS (210')	WMEC-627 Resolute (210') B Class	Medium Endurance Cutter	60	New London, Conn.
FIREBUSH (130')	WLB-393 Basswood (180') C Class	Buoy Tendor (Seagoing)	50	Governor's Island, New York
PAMLICO (160') New Contruction Based on Data from	WLIC - 800	Buoy and Construction Tender (Inland)	13	New Construction (Intended for Operation in Depot Corpus, Texas)
SHADBUSH (74')	WLI-74287 Clematis (74') Class	Buoy Tender (Inland)	9	New Orleans, La. (Transferred to Galveston, Texas)
CLAMP (75')	WLIC-75306 Clamp (75') Class	Construction Tender (Inland)	Ş	Galveston, Texas (Transferred to New Orleans, La.)
WHITE SAGE (133')	WLM-544 White Summac (133') Class	Buoy Tender (Coastal)	21	Woods Hole. Mass.
POINT HERRON (82)	WPB-82318 Point (82') C Class	Patrol Boat (Small)	8.	Bay Shore, New York (Fire Island)
Vessel Mission Profile Study

The vessel mission profile analysis is one of the supporting analyses for the application. This effort was directed at the development of those vessel mission profile characteristics necessary for the development of the candidate system configurations as a function of vessel, and for estimating life-cycle cost. This resulted in a generalized procedure for collecting and analyzing vessel mission profile data. The results of this effort are presented in Volume VI.

MSD Analysis

The MSD analysis is one of the supporting analyses for the application. The effort was directed at developing a full characterization of the five Marine Sanitary Devices (MSDs) which were hybridized to form the subsystems of the 18 candidate Wastewater Management System (WMS) configurations included in this study. The purpose of this characterization is to develop the various types of generic MSD data necessary for the following phases of this study:

- Development of the 18 candidate WMS concepts and the corresponding configurations suitable for each vessel included in this study, as well as the associated installation requirements.
- . Quantification of the effectiveness of each viable candidate system/vessel combination.
- . Development of life-cycle cost estimates for each viable candidate system/vessel combination.

The specific types of MSD data developed, on a subsystem level, include the following:

MSD description, including the following:

. Principle of operation

.. Method of implementing principle of operation

- . Physical characteristics including:
 - Weights
 - Volumes
 - Dimensions (including maximum height)
 - Pipe connection specifications
- .. Vessel resource hook up requirements (e.g., fuel, electric power, fresh water, compressed air, cooling water, ventilation, and ambient air).

MSD related effectiveness attribute data, including the following types of information:

.. Installation characteristics

.. Performance characteristics

- . Operability characteristics
- .. Personnel safety characteristics
- .. Habitability characteristics
- .. Reliability characteristics
- .. Maintainability characteristics

MSD costs, including the following:

- .. Acquisition (including initial spare parts)
- .. Operation and maintenance, including the following:
 - Consumables
 - Repair parts
 - Labor (number of men, man-hours, skills, frequency of tasks)
 - Vessel resources (fuel, electric power, fresh water, compressed air, etc.)

This effort resulted in a generalized procedure for developing and documenting data on a subsystem level tailored to the requirements of both the life-cycle cost and the effectiveness models. The results of this effort are presented in Volume V.

WMS Engineering Analysis

The WMS engineering analysis is one of the supporting analyses for the application. This effort was directed at the development of both system concepts, as well as specific configurations suitable for implementing these system concepts on each of the vessels included in this study. This effort resulted in a systematic procedure for developing candidate systems, taking into account the parameters which determine system configuration and component sizing, as well as the relevant guidelines and assumptions. The results of this effort are presented in Volume IV.

WMS Installation Analysis

The WMS installation analysis is one of the supporting analyses for the application. This effort was directed at developing the following information:

- Development of pertinent vessel information necessary for the cost and effectiveness analyses, including the following:
 - .. Existing physical conditions aboard the vessel, especially in compartments where wastewater management system equipments may be installed.
 - .. Existing wastewater management equipments/systems aboard the vessel (holding tanks, garbage grinders, sewage treatment systems, etc.).
 - . Location of black and gray wastewater sources aboard the vessel.
 - .. Vessel resource capacities and estimated usage rates (prior to system installation).

Selection of the viable candidate systems as determined on the basis of the feasibility of installation, using the governing installation guidelines and assumptions.

- Determination of the black/gray wastewater (or sludge) holding tank capacities which can be fitted.
- Development of installation cost estimates for each viable candidate system.
- Development of drawings showing the proposed arrangement of the wastewater management system equipments for each viable candidate as well as the arrangement of the black and gray wastewater sources on board the vessel.
- Development of installation related effectiveness attribute data.
- This effort resulted in a systematic procedure for developing and documenting installation related data tailored to the requirements of both the life-cycle cost and effectiveness models. The results of this effort are presented in Volume III.

General Applicability of the Approach

Both the concepts and the procedural steps of the life-cycle cost and effectiveness modeling and quantification methodology developed as part of this study are general and have wide applicability.

Specifically, this methodology is applicable to any type of problem which can be cast in the context of choosing an optimum (i.e., most costeffective) candidate from a number of available legitimate alternatives. These alternative candidates do not necessarily have to be systems. Thus, the candidates may be alternative choices of processes or (e.g., chemical), alternative approaches to solving a problem, etc.

The computer program for quantifying effectiveness was not written for any one specific effectiveness model. Instead, the effectiveness model (and its associated data) is part of the input. As a result, this computer program is capable of handling any type of problem as soon as the necessary inputs have been developed.

Limitations of Results and Approach

Some of the limitations of both the results of this study as well as the ∞ st-effectiveness analysis methodology are presented below.

a. <u>Results of Study</u>

Both the effectiveness ratings and the life-cycle cost estimates presented here are applicable to the specific systems and vessels included in this study. Furthermore, these results reflect the assumptions, objectives, requirements and constraints which are part of the context of this study. Hence, caution is advised in attempting to use these results directly for systems and/or vessels others than those specifically analyzed or in a different context.

All cost estimates, as well as inferences, comparisons and conclusions regarding life-cycle costs and/or optimum (i.e., most cost-effective) candidate system selection are based on the individual vessels included in this study. Economies (and other differences) which may result from implementation of these systems on a fleet-wide basis have not been considered.

The effectiveness ratings are subject to the following considerations. The effectiveness attributes used as the basis for the ratings are a mixture of objectively determined system/vessel characteristics as well as subjectively determined qualitative system/vessel characteristics based on the analysis of the marine sanitary devices (MSDs) and the candidate WMS systems which we hybridized from these MSD subsystem (see data in Volumes III and V).

In addition, the elements of the effectiveness model, especially the weight assignment and the effectiveness rating functions are based on subjective judgements. As a result, if one agrees with these judgements as well as the data used, then one may also accept the validity of the results. On the other hand, if one has reservations about the accuracy of the data and/or strongly disagrees with the subjective judgements inherent in the effectiveness model, then one may question the validity of the results. In such cases, one can substitute different data and/or subjective judgements, assumptions, etc., and obtain a new set of results (at least in principle,

even if one may not actually wish to dc this). In either case, the data, the subjective judgements, the assumptions, etc., used are all documented and are accessible. Another relevant point to keep in mind is that the effectiveness ratings are not to be used in an absolute sense but rather as a means of comparing candidate systems for the purpose of discerning differences among the alternatives available. In this connection, it is noted that since the same effectiveness model is used to assess the candidate systems and the same generic MSD subsystem/equipment data is used for all system/ vessel combinations, all candidates are treated equally. Hence, bias (to be distinguished from subjective judgement) in the results is avoided.

The life cycle cost estimates should be interpreted in the light of the relevant assumption used. These cost estimates are more meaningful in a comparative sense than in an absolute sense. Some of the data (especially equipment failure notes) represent estimates. There are differences in the amount of testing, operational experience, and the availability of documentation for the MSDs included in this study. As a result, not only are there differences in the reliability of the data, but those MSD's for which the documentation is less detailed may unfairly have been made to appear better than they actually are by including a disproportionately small number of operating and maintenance activities. As with the effectiveness ratings, if one disagrees with some of the data and/or the assumptions used, these can be replaced and new results obtained (although this may be a tedious effort). An effort has been made to keep a clear separation between the model, the relevant assumptions, and the data used. This facilitates pinpointing those areas with which one does not agree.

Two final cautions are advised in using and interpreting the results. Ost, before final acceptance of any candidate system for a given vessel, the discussion relating to its installation (presented in Volume III) should be reviewed. Second, an effectiveness rating or a cost estimate does not necessarily represent an assessment of a given MSD but rather of a given WMS configuration which uses a given MSD or a portion thereof, sometimes in combination with other MSD subsystems. A specific limitation in connection with the life-cycle cost model concerns the effort required to manually execute the necessary computations. This puts a severe restriction on the number of repetitions of such computations to reflect changes in data, assumptions, systems, etc. Automation of the life-cycle cost model would remove this objection.

General limitations in connection with this cost effectiveness analysis methodology can best be discussed in the context of what it does not do and should not be expected to do.

It does not develop candidate systems. These have to be developed prior to application of the cost effectiveness analysis methodology. The WMS engineering analysis served this purpose in this study. The installation analysis was used to determine viability of candidate system/vessel combinations.

It does not generate the necessary data. Instead, it requires such data as an input. In fact, the validity of the final results are directly dependent on the quality of such data. However, the cost effectiveness analysis methodology can interface with supporting analyses used to develop this required data to give direction to these analyses and to accept the results as an input. In this study, the MSD analysis, the WMS installation analysis and the WMS lif -cycle cost analysis represent such supporting analyses which developed the necessary data.

It does not serve as a substitute for a decision maker, reduce the number of decisions required, or produced meaningful results without the participation of a cognizant and knowledgeable decision-maker. The need for a decision-maker is emphasized by his involvement throughout the entire process, from the development of the effectiveness model to the interpretation of the results. However, this methodology provides a systematic procedure for quantifying life-cycle cost and effectiveness and for using the results of this quantification to make inferences, and arrive at conclusions and courses of action. In this connection, it should be remembered that the cost-effectiveness analysis methodology is merely a too!, and a tool implies a user - in this case the decision-maker.

ASSUMPTIONS

The assumptions and guidelines applicable to each one of the various analyses performed as part of this study are presented in the other volumes of this report. Some of them are briefly summarized below.

Vessel Mission Profile Characteristics

The assumptions relating to vessel mission profile data collection and analysis are presented in greater detail in Volume IV of this report. Those assumptions which affect WMS design and operation are as follows:

Restricted Waters

Restricted waters are defined as the coastal waters within three (3) miles of any shoreline of the continental United States, as well as all inland waters (e.g., lakes, rivers, bays, streams, estuaries, etc.)

Waste Receiving Facilities

Wastewater receiving facilities are assumed to be available at the vessel's home port and at a yard only. Waste off-loading facilities are assumed to be unavailable for the vessel at all other non-home ports regardless of type, i.e., Coast Guard, Navy, municipal, etc.

WMS Operation Within and Beyond Restricted Waters

All results are computed on the basis of the following assumptions with respect to WMS operation:

.. Operation of WMS subsystems which are necessary to avoid discharge of wastewaters (i.e., the primary mode) is initiated as soon as the vessel enters restricted waters or leaves its home port and continues until the vessel either leaves restricted waters or arrives at its own home port or at a yard. WMS operation in the primary mode continues if the vessel is at any non-home port except a yard.

- As soon as the vessel arrives at its own home port or at a yard, it is connected to a pierside waste receiving facility and WMS subsystem operation is changed to the pierside discharge mode.
- . WMS operation in the overboard discharge mode is initiated as soon as the vessel leaves restricted waters and continues until it reenters restricted waters.
- .. Any effects that an installed WMS may have on vessel mission profiles have not been considered. Examples of such effects include remaining longer beyond restricted waters to empty a holding tank, transiting out of restricted waters in order to empty a full holding tank, transiting out of restricted waters more frequently (therefore, affecting the number of mode changeovers) due to the installation of a holding tank which does not provide full capacity, etc.

Vessel Holding Time Requirements

For purposes of this study, the holding time goal for a given vessel is based on the largest holding time recorded for that vessel, regardless of its frequency or magnitude in relation to the other holding times in the data obtained, i.e., even if the maximum holding time occurred only once and is considerably higher than all other holding times.

Candidate System Development

The assumptions and guidelines relating to the development of the candidate WMS concepts and their associated WMS equipment configurations as a function of vessel and the guidelines for determining viable system/vessel combinations are presented in Volume IV of this report. Those relating

to the installation analysis of these candidates are presented in Volume III. Some of these assumptions and guidelines are:

Wastes to be Managed

The candidate systems are intended for managing black and gray wastewaters on board the six U.S. Coast Guard cutters selected for this study. These wastewaters are defined as follows:

- .. Black water includes sewage, i.e., the output from commodes and urinals, and garbage grinder slurry.*
- .. Gray water includes: galley wastewater from sinks and kettles (excluding garbage grinder output); turbid water from lavatories, showers, and laundry; drainage from air conditioners, drinking fountains and interior deck drains (including those in head spaces).

WMS Concept Preferences

It is assumed that there is no a priori preference of WMS concept with respect to no-discharge versus flow through, as long as existing emission standards are met.

WMS Acceptability Criteria

The determination of the viability of a candidate WMS configuration on a given vessel is based on the feasibility of installation within specified guidelines for compartment availability. The WMS acceptability and installation criteria are:

.. All specified sizes and required number o^r duplicate WMS equipment, except for holding tanks, must be accommodated, based on the established vessel space utilization guidelines.

 ^{*} U.S. Coast Guard legal opinion considers garbage grinder output as sewage.

- . Inability to accommodate the required black and/or gray water holding tank size, based on the vessel space availability guidelines below, shall not be deemed sufficient reason for rejecting a candidate WMS configuration. The maximum black and/or gray water holding tank size which can be accommodated shall be specified, using the guidelines for black/gray water holding capacity apportionment and the minimum gray water holding tank requirements.
- . Where limited holding tank capacity exists, black water storage capacity shall have priority. Remaining storage capacity shall be used for gray water, ensuring that the minimum gray water requirements are met.

A minimum gray water handling capability must be provided for each vessel. In a system where gray water is dumped as and when received, and the manifold is below the waterline, an overboard discharge pump is required with a feed tank. If the manifold is above the waterline, neither pump nor feed tank is required since overboard discharge can be achieved by gravity. In either case, provisions have to be made for transferring the gray water to the pier connection (which may be accomplished via a black water holding tank).

Holding Tank Aeration

Black water holding tanks must be aerated at a rate of 16.3 SCFM per 1,000 gallons of liquid. Gray water tanks are not aerated. Aeration rates are based on requirements for a full tank. The same aeration rate is assumed regardless of the type of black water held, i.e., full volume flush, reduced volume flush (from Jered or GATX collection subsystem), or sludge (from Chrysler or Grumman treatment subsystem).

Hybrid Systems

The following assumptions have been made with respect to WMS concepts hybridized by combining subsystems/equipments from different MSDs:

- .. The effects on cost, effectiveness, and installation of any interface equipment or prime equipment modifications which may be required have been neglected.
- .. It is assumed that data (relating to the cost and/or effectiveness analyses) developed on an MSD subsystem/equipment basis are valid even when such data were derived from operational information or observations of the entire MSD and not just the given subsystem/equipment. This does not apply to acquisition costs, which were obtained from MSD manufacturers on a subsystem/equipment basis.
- .. It is assumed that overall WMS data (relating to the cost and/or effectiveness analyses) synthesized from MSD subsystem/equipment data are valid, i.e., any changes to such data due to possible interface problems or dependencies have been neglected.

Life-Cycle Cost Estimates

The assumptions and guidelines relating to the development of MSD acquisition, operating and maintenance costs are presented in Volume V of this report and those relating to WMS installation costs are presented in Volume III. Some of these assumptions and guidelines, as well as additional ones affecting the WMS life cycle cost estimates are as follows:

Labor Rates

The cost of labor for WMS operation and maintenance on board U.S. Coast Guard cutters is based on hourly labor rates derived from the annual billet costs for U.S. Coast Guard military and civilian personnel. Hourly labor rates were obtained by dividing the annual billet costs by the number of working hours per year, assumed for the purposes of this study to be 2,080 hours (i.e., a 40 hour work week). The hourly labor rates thus obtained, as a function of pay grade are given below.

	Electrician	s Mate (EM)	Machinery Technician (MK)				
Pay Grade	Annual (\$)	Hourly Rate (\$/hour)	Annual** (\$)	Hourly Rate (\$/hour)			
E-2	11, 332	5.45	13,038	6.27			
E-3	12,396	5.96	14,235	6.84			
E-4	13,522	6.50	15,425	7.42			
E-5	15,023	7.22	16,911	8.13			
E-6	20,240	9.73	23,215	11.16			

LABO	R	RA	TES	*
------	---	----	-----	---

* Hourly rate base on annual billet costs and assumed 2080 hours per year

** Source of annual billet costs - USCG Military and Civilian Manpower Billet and Life Cycle Costing, July 1975.

Cost of Vessel Resources

For purposes of this study the cost of vessel resources is assumed to be as follows:

... 39¢/gallon of fuel oil

... 3¢/kwh of electric power

- . 70¢/1,000 gallons of fresh water, if taken from shore supply
- .. \$20/1,000 gallons (2¢/gallon) of fresh water, if generated on board vessel by an evaporator

- 1.83¢/1,000 gallons for the cost of electric power to pump flushing fluid
- .. [6.1227 (14.7 + p)^{0.1419} -8.9898] [V] is the annual cost of compressed air in cents, where p is pressure in psig and V is the flow in standard cubic feet per day.

Preventive Maintenance

It is assumed that preventive maintenance of WMS subsystems/ equipments is unaffected by vessel mission profiles, i.e., scheduled maintenance activities will not be adjusted to reflect differences in WMS utilization factors.

Overhaul Intervals

In lieu of available information on overhaul requirements from manufacturers on all MSD subsystems/equipments included in this study, a two (2) year overhaul interval was assumed for all WMS equipment for purposes of estimating life-cycle overhaul costs.

System Economic Life

The useful life of each candidate WMS was assumed to be ten (10) years, i.e., life-cycle costs were computed on the basis of adding the fixed costs (capital investment) to the present value of the recurring expenditures (operating and maintenance costs) computed for a 10 year interval.

Effective Discount Rate

An effective discount rate (to include the effects of interest and inflation rates) of 10% was used in deriving present value factors for estimating the present value of WMS life-cycle operating and maintenance costs.

APPROACH

A summary of the overall approach used for developing and analyzing the candidate system/vessel combinations is presented in Figure 1. A description of the various steps in this figure is presented in the body of this report, together with the results obtained after executing each step. Further details of the procedural aspects of the approach are presented in the other volumes of this report. The diagram which appears in the "Preface" complements Figure 1 by indicating the flow of information between the various analyses which are part of this study, and which are presented in this as well as in the other volumes of the report.

The discussion below is presented as a means of clarifying some of the issues pertaining to the concepts principles, philosophy and to a lesser extent, some of the procedural aspects of the approach.

Who Determines What Effectiveness Is and How?

This approach for assessing effectiveness can be characterized as being decision-maker intensive.* The essence of the approach is the notion that an effective system is one that fulfills intended objectives satisfactorily -in the decision-maker's opinion. Some of the implications of this are:

- Nobody can tell the decision-maker what effectiveness is. Instead, he must make this determination on the basis of the specific problem and its context.
- There is no such thing as a universal formula or model for effectiveness which is suitable for all different types of candidate systems.

* This is to be interpreted qualitatively rather than a quantitatively, i.e., most of the effort consists of developing the necessary data rather than involvement by the decision-maker.

The model for effectiveness must be adapted and tailored to the candidate systems as well as the context of the problem, and not the other way around.

The only thing which is universal about effectiveness is its concept as the overall quality of a candidate. What can be generalized is not a specific model for effectiveness but rather the steps for developing such a model, how to use it for quantifying effectiveness, and how to interpret the results for the purpose of arriving at decisions. This generalization takes the form of defining a basic structure and specific elements of an effectiveness model.

Effectiveness is always directly related to the objectives, requirements, constraints of the problem and the subjective judgements of the decision-maker, in addition to the data for the candidates.

The decision-maker's involvement in the process of assessing the effectiveness of candidates consists of the following:

. Stipulation of specific standards (i.e., criteria) for judging the candidates.

.. Indication of the relative importance of these criteria.

.. Specification of the degree of preference for judging candidate characteristics in relation to the established standards.

. Interpretation of the quantitative results.

These ideas relating to effectiveness and its quantification are summarized on the following page.

It is noted that what has been suggested for quantifying effectiveness is a methodology as opposed to a model. The difference is that in a methodology, the effectiveness model for a specific set of problems becomes an input, together with its associated data.

The above is in sharp contrast to approaches for quantifying effectiveness which are based on a fixed and preformulated expression for effectiveness (or for cost-effectiveness). Such an approach defines effectiveness in terms of the product of several specific variables (usually performance, availability, and either "utility" or "worth"). This may appear as a simple solution to the problem of quantifying effectiveness since it may seem that all that needs to be done is to determine the values of these variables for the candidate systems and then the answers to all questions will become available. However, this is not quite the case. An attempt to use this method brings up a number of both conceptual and procedural problems.

Since this approach requires that the candidate systems be fitted to the model, rather than the other way around, one immediately faces the problem of how to accomplish this. For instance, one must decide how to examine the systems in question and from that examination derive a single number which is an objective measure of system performance. The difficulty in doing this becomes apparent when one considers the multiplicity of considerations which enter into the overall assessment of system performance.

Another major problem with such an approach is the question of what to do with all the other considerations which are pertinent to the systems of interest but which do not appear in the formulation of effectiveness (e.g., safety and habitability problems, burden on crew). Thus, attempting to use such an approach will inevitably mean omitting large chunks of considerations and will result in a decision arrived at on the basis of a small fraction of the original set of issues which are of interest to the decisionmaker.

There is often the belief (or hope) that such an approach for quantifying effectiveness is "objective" (or at least more objective than the approach used in this study). The argument (or belief) for this is that the approach is based on an explicit formula into which are substituted quantitative and "technical" data. Hence, since only this type of information is used in the quantification of effectiveness, the results and conclusions must therefore be (so it is believed) "objective" and perhaps even "scientific".

What such reasoning fails to recognize is that as soon as one confines oneself to a fixed expression for effectiveness (or for cost effectiveness) in terms of several specific variables only, one has immediately made a very subjective decision. One has decided that the entire realm of effectiveness (or cost effectiveness) is encompassed by the few specific variables, i.e., that these variables adequately account for all considerations of interest. Furthermore, such a decision is irrevokable, i.e., one has lost control of the ability to modify ones subjective judgements and examine the effects of such changes.

One may wonder about the origin of such approaches for quantifying effectiveness and under what circumstances they may be adequate. Such approaches are popular in the weapon system mission analysis community in which practically the entire context of the problem is that of determining the probability of mission success. For such purposes, effectiveness is formulated for a specific purpose, namely to serve as a figure of merit or indicator for measuring how well a weapon system can hit a target. In such a formulation, the miss distance is a good indicator of performance.

Thus, a fixed expression for effectiveness may be adequate for systems in which performance is the overriding criterion and furthen, e, performance can be adequately characterized by a single parameter. Applications of such approaches to candidate systems in other types of contexts may very well constitute a fallacy resulting from an invalid attempt at a transfer of technology.

Life-Cycle Cost

Estimation of life-cycle cost can be aptly characterized as a complex problem disguised as a simple concept. That is, most of the problems associated with the quantification of this cost are conceptually simple but procedurally difficult.

This is not to say that life-cycle cost is devoid of conceptual problems. One such problem relates to the question of who pays for what? A specific example of this is the issue of the costs associated with the labor required to operate and maintain a system, such as a WMS, installed on board a vessel. It is sometimes argued that since such labor comes from the crew already on board the vessel (assuming that the introduction of the system will not require an increase in the manning complement), its cost should not be charged to the system as an element of the overall life-cycle cost. A similar argument might be advanced with respect to the cost of vessel resources used by the system. Such reasoning is especially appealing when the costs involved come from another department's budget. One fallacy in such views is that if, for instance, the argument about the cost of labor is pursued to its ultimate conclusion, i.e., it is applied in turn to every individual piece of equipment, the result might be a vessel without a crew.

The approach used in this study for estimating life-cycle cost is based on including all items and parameters which affect cost. Regardless of specific budgetary subdivisions and allocations, all costs must eventually be accounted for.

Although the notion of cost is certainly a familiar one and it is even easy to agree with the basic idea of life-cycle cost, namely that all, not only some of the costs, ought to be included, the execution of this objective is by no means simple. The reason for this is twofold. First, the large

amount of data which must be dealt with in order to include all cost elements. Second, the numerous dependencies which are inherent in these data elements.

Some of the system/vessel parameters on which life-cycle cost depends may not immediately be obvious as being associated with cost, since they are often considered in other contexts. Thus, performance requirements for a vessel as determined from mission profile data (i.e., the holding time requirements) affect both acquisition and installation costs. System reliability (actually the lack of it) has economic (as well as other) implications and system maintainability affects life-cycle costs.

Other types of dependencies which must be addressed relate to differences in cost for the equipment operating on board different vessels. Examples of this include the different costs for fresh water depending on its source (i.e., whether taken from shore and stored or whether generated on board the vessel by an evaporator), the dependence of vessel resource usage rates on crew size and mission profiles, etc. Superimposed on this are additional dependencies on assumptions or estimates which affect lifecycle cost, such as how long the system will last, interest and inflation rates in the future, etc.

In the approach adapted for estimating life-cycle cost, the key to addressing these dependencies successfully is to break up life-cycle cost into constituent elements. This, in effect, results in a life-cycle cost model which takes the form of a hierarchy. The various dependencies are addressed by introducing them at strategic points in this hierarchy (see "The Life-Cycle Cost Model" further in this report).

In contrast with the effectiveness model, the life-cycle cost model is considerably more universal. That is, the same types of cost categories are applicable to a large range of different system types. What varies from system to system is the specific data associated with the life-cycle cost

model and perhaps some of the dependencies. The advantages of this is that it makes this model amenable to automation and thus alleviates the computational burden associated with developing cost estimates.

Cost Versus Effectiveness - A Priori and A Posteriori

This cost effectiveness analysis approach starts with the premise that there is no a priori relationship between cost (penalty) and effectiveness (quality). The validity of this is generally confirmed by evidence from nost types of market places. Such a relationship is provided a posteriori by application of the cost effectiveness analysis methodology.

This is to be contrasted with approaches (in other contexts) which attempt to estimate system cost on the basis of one or more system characteristics. Such approaches are based on the assumption (or belief) that there is an a priori relationship between cost and quality. Such relationships are generally derived by regression analysis techniques applied to historical data for system cost and the value of one or more system characteristics. The cost of any other system is then obtained by substituting the value of the desired characteristic(s) into this relationship. When such approaches are used to estimate the cost of new types of systems, i.e., based on designs different from those used to derive the relationship, then what is being engaged in (perhaps without conscious realization) is technological forecasting.

Some cost effectiveness analysis approaches are based on eventual elimination of a cost versus effectiveness relationship by converting effectiveness into cost so that the final number or figure of merit used is all cost (the purely economic approach). Such a procedure may be appropriate for problems in which the context is one of achieving a specific objective and the overriding consideration is the reduction of cost.

The approach used in this study does not attempt to convert effectiveness into cost or vice versa. Although one of the optimum candidate selection criteria is based on the ratio of cost to effectiveness rating, which results in a number having the units of cost, this is done only for the purpose of ranking the candidates rather than as an attempt to obtain an actual cost equivalent for an effectiveness rating. In the approach used, the problem is formulated in two dimensions in the context of effectiveness (quality) vs. cost (penalty). To put it another way, one can answer the question: what is the most economic approach under different consequences. The question of how and to what extent to trade-off consequences (quality) for economy (or cost penalty) is left to be resolved by the decision-maker.

Another issue concerning the relationship between cost and effectiveness is related to the question of which system aspects belong in the cost category and which ones belong in the effectiveness category. This approach is based on the principle that all candidate system aspects which affect life-cycle cost must be included in the cost estimate and all candidate system aspects which have an impact on effectiveness must be included in the effectiveness assessment, whether or not there is any commonality. In fact, ideally the two analyses(cost and effectiveness) should be performed by different groups of individuals who do not communicate with each other in order to avoid bias in the results. Thus, this principle implies that certain candidate system features will exert an influence on both cost and effective ness. As an example of this, the number of man-hours required for operation and maintenance has economic implications (i.e., the cost of labor) as well as an impact on overall system quality or effectiveness (i.e., the extent to which it burdens the crew).

The Objectives of Quantification

There are two main and related reasons for quantifying cost and effectiveness. Although the reason for quantifying cost is obvious, the reasons for quantifying effectiveness may not be apparent.

One motivation for attempting to quantify effectiveness relates to the different types of information which must be dealt with in an effectiveness assessment. Some of this information is inherently qualitative and converting such information to numbers reduces the different types of information to a common basis. Qualitative information may, in turn, be objective (e.g., the system has or does not have a given feature, it can or cannot do a given thing) or subjective (e.g., levels of difficulty to perform a given task, odor levels).

The second reason for quantification is directly related to the first one. Once all the types of information have been converted to numbers, it becomes much easier to use and combine the information for the purpose of identifying trends and making inferences. Specifically, it is much easier to manipulate numbers than it is to manipulate such things as system features and characteristics, goals, assumptions, requirements, and subjective judgements. Thus, the resulting effectiveness and cost numbers become the indicators or representatives of system attributes. Often, important system properties, trends, conclusions, etc., not otherwise apparent, can be discerned by manipulating these numbers*.

^{*} This is analogous to the introduction of the notion of a random variable in probability theory. The basic concepts of probability theory are stated in terms of events (outcomes of an periment) which are not necessarily quantitative in nature (e.g., heap or tails when a coin is flipped, the color or suit or identification of a card drawn from a deck). The introduction of the notion of a random variable serves to quantify non-numerical events. This, in turn,facilitates analysis on the resulting numbers. Such analyses sometime lead to the discovery of important properties which can then be reinterpreted in terms of the original events.

The cost effectiveness analysis methodology developed and used in this study relies heavily on the use of cost and effectiveness numbers. The purpose of these numbers is to provide the decision-maker with as much visibility as possible of the candidate system properties in relation to the overall context of the problem, so that the important implications become apparent.

In order to facilitate such visibility, this methodology makes available results for both cost estimates as well as effectiveness ratings at several levels of detail. This enhances the decision-maker's ability to interpret the numbers in terms of system features and characteristics.

Although the quantification of life-cycle cost and effectiveness is one of the major aims of this methodology, caution is advised against putting undue emphasis on these numbers. An overemphasis of these numbers, to the exclusion of other considerations, or their use out of context, carries with it the danger of mistaking or substituting form for substance.

It must be remembered that the ultimate objective of the analysis is not to generate these numbers. They are merely a stepping stone toward the higher objective of gaining a better insight into the candidate systems, making inferences and drawing conclusions, so that the best course of action can be identified.* Thus, it is important for a decision-maker using this cost effectiveness analysis methodology to develop a skill in interpreting these numbers in terms of the original goals and requirements associated with the problem.

* This is analogous to the modulation of a signal to facilitate its transmission over great distances. The ultimate aim of the effort is not to transmit the signal but rather to facilitate communication.

Scales for Relative Importance, Degree of Acceptability and Effectiveness

The effectiveness model requires two types of quantitative inputs from the decision - maker and it provides one type of quantitative output.

One of these inputs is the importance of each criterion in relation to the others at the same level in the criteria hierarchy. This relative importance is expressed as a quantitative weight in terms of a percentage in the range from 0 to 100%, such that the sum of the weights is 100% for all criteria at the same level of subordination (i.e., M/E weights, factor weights, or subfactor weights). On this scale a weight of 0% assigned to a criterion means no importance at all, i.e., the given criterion is in fact ignored. On the other hand, a weight of 100% assigned to a given criterion means overriding importance to the exclusion of all the others, i.e., all the other criteria at the same level of subordination in the effectiveness model will be ignored, and hence will not exert any influence on the overall assessment of the candidates.

The other quantitative input to the effectiveness model is the degree of preference for the various quantitative and qualitative attributes of the candidates being evaluated by the lowest level criteria in the effectiveness model (i.e., the elementary factors/subfactors). These preference assignments are made via the effectiveness rating functions (ERFs) which relate the qualitative or quantitative candidate characteristic or feature to an effectiveness rating as a percentage on a scale of 0 to 100% which represents the degree of acceptability of various possible attribute values or choices. On this scale, a rating of 0% means completely unacceptable, i.e., worthless. A rating of 100% means complete satisfaction of the given criterion, i.e, the candidate attribute is ideal.

Candidate effectiveness assessments are the outputs from the effectiveness model which are expressed quantitatively as effectiveness ratings. Effectiveness ratings are expressed as a percentage on a scale of 0 to 100%. An effectiveness rating of 0% means that the candidate does not satisfy any of the established criteria. An effectiveness rating of 100% means an ideal candidate, i.e., it fully satisfies all of the established criteria.

These quantitative scales associated with the effectiveness assessment methodology are all in terms of percentages. For purposes of the mathematical operations in connection with the quantification of effectiveness, the numerical values for the relative importance (weights), the degrees of preference (elementary factors/subfactor ratings), and the overall effectiveness ratings should be expressed as a fraction in the range from 0 to 1.0 rather than as a percentage. This conversion is done by the computer program for quantifying effectiveness.

For purposes of communicating with the decision-maker, a percentage scale was adapted in this study since it is more user-oriented. Most people are used to thinking in terms of percentages and hence can visualize a percentage and relate to it better than to a fraction.

It is noted that the above three quantitative scales are continuous rather than discrete. Another continuous scale used in connection with this cost effectiveness analysis approach is the ranking of candidates on the basis of the ratio of cost to effectiveness rating (see "Optimum Candidate Selection Criteria" further in this volume). If these rankings are normalized by dividing each by the maximum value, then the resulting relative rankings are percentages in the range of 0 to 100%. The above are in contrast with approaches in which the inputs and/or the outputs are discrete rankings.*

*For a discussion on the difference between a ranking and a rating see "Simplified ERFs Based on Ranking" in the section on the development of ERFs in Volume II.

ANALYSIS OF VESSELS

VESSELS CONSIDERED

The six vessels selected by the U.S. Coast Guard for inclusion in this study are listed in Table 1. Mission Profile data for the new construction vessel was simulated with data from the SHADBUSH (74') and CLAMP (75') which have similar missions. These vessels were analyzed on the basis of the following:

- Study of various vessel plans and drawings.
- . Visits to vessels to obtain mission profile data (see Volume VI).
- Shipcheck inspections of the vessels for the following purposes (see Volume III):

. Observe physical conditions aboard the vessel.

- .. Determine deviations from plans.
- .. Ascertain locations of black and gray wastewater sources.
- .. Determine the feasibility of installing each candidate system.
- .. Obtain information required for developing WMS equipment drawings, installation cost estimates and installation related effectiveness attribute data.

MISSION PROFILE CHARACTERISTICS

Vessel mission data was recorded on the form shown in Figure 2. The results of a statistical analysis of these data are shown in Table 2. Vessel mission profile characteristics which are of particular interest in the development of the candidate systems and the life cycle cost estimates are the following:

The holding time requirements (assumed to correspond to the maximum holding time), which will determine WMS equipment requirements and sizing.

Table 1

VESSELS INCLUDED IN MISSION PROFILE STUDY

-									
FILE DATA	Source of Data	Ship's Log	Ship's Log Summary Log Summary Log		ita from CLAMP 31/75	Summary Log	Summary Log	Ship's Log	Summary Log
MISSION PROF Time Interval	Time Interval Studied	<u>12 Months</u> 7/1/74 - 6, 0/75	<u>12 Months</u> 8/1/74 - 7/31/75	<u>12 Months</u> 8/1/74 - 7/31/75	Represented by di SHADBUSH and (7 Mont 6/1/14-10/	<u>18 Months</u> 6/1/74 - 8/21/75	<mark>2 Months</mark> 8/22/75 - 10/31/75	<u>8 Months</u> 8/1/74 - 7/31/75	15 Months 5/1/73 - 7/31/74
	HOME PORT	Governor's Ialand, New York	New London, Conn.	Govemor's Island, New York	New Construction (Intended for Operation in Depot Corpus, Texas)	New Orleans, La. (Transferred to Galveston, Taxas)	Galveston, Taxas (Transferred to New Orleans, La.)	Woods Hole, Mass.	Bay Shore, New York (Fire Island)
Maau	SIZE	152	8	50	13	 	 	21	8
	TYPE	High Endurance Cutter	Medium Endurance Cutter	Buoy Tendor (Seagoing)	Buoy and Construction Tender (Inland)		Construction Tender (inland)	Buoy Tender (Coastal)	Patrol Boat (Small)
	CLASS	WHEC-721 Hamilton (378') Class	WMEC-627 Resolute (210') B Class	WLB-393 Bastwood (180') C Class	wlic	WLI-74287 WLI-74287 Clematis (74') Class		WLM-544 White Summac (133') Class	WPB-82318 Point (82") C Class
	VESSEL	GALLATIN (378')	VIGOROUS (210')	FIREBUSH (180')	PAMLICO (160') New Contruction Based on Data from	SHADBUSH (74')	CLAMP (75')	WHITE SAGE (133')	POINT HERRON (82')

DETAILED VESSEL MISSION PROFILE DATA

Vessel____

Sheet of	timated)	TIME INTERVALS BEYOND RESTRICTED WATERS (Hourg)		(Hours)	•	/		rn of a sortie					stion of a sortie				 	
	ARACTERISTICS (E	JUDING TIME	HOLDING TIME INTERVALS (Hourt)	OTHERS	•		*	L Initiati					/ Comple	-				
	SORTIE C	H		Хүм			•	•••	••••	•••	•••	•••	•••	•••		 		
	•		түре												·			
		NUMBER	3-MILE CROSSINGS															2
	HOURS	HOURS UNDER- WAY WITHIN 3-MILE LIMIT																Figure
		TOTAL HOURS UNDER- WAY																
	HOURS	N	NON- HOME PORT															
		NIN NI	HOME															
		-Home	am ind	20							 			•			 	
	KINGS	Non	Lavii	¤ ¥	 										 		 	
	bod	Homo	lavn parture	De Vu	 					 .	┣—			· 			 	
		DATE	Month Ycar															

DATA FORM FOR RECORDING MISSION PROFILE LATA

÷ Animation of **Table 2**

/y - Mean - Standard Devletion FREQUENCY **11.13** 40.00 24.67 13.33 20.00 N= 26. 4 = 55.7, e = 162.0 N- 15, U-156.0, 0-110.0 \$7.06 1.9 e=16.5 53.45 29.31 15.52 1.72 H - Escerio Bian • 4 = 0.7 TIME REVOND REFLECTED WATEN 5 = 4.6 Weichted average of 384 and 216 hours over 15-month period. Weichted difference et 120 hours added to Col. 1. Artivels or departmes. Includes yard dockings. Used for selimiting the number of WNG pierside to evertoged Ober e **ي**ئ N-54, L-6.3, N- 11, u - 3.0, 32. (Hre.) 8-108 190-208 288-308 398-438 Į 0-100 100-200 200-300 1.5-3.0 N- 34, e-25 25-56 50-75 75-100 0-1.5 8- 10 5- 10 10- 15 15-23 99) 7 1. N 89.3 . 22.5 26.4 94.0 353. • • -27.0 30.0 **6.531.3** No. S n. ... N Swork • • • 2366.0 302.1 TIME WITHIN 4-3 MILE LIMIT AND/OR IN NON-HOME PORT (Excluding Yarda) 2351.6 \$1.7 107.5 e - Stenderd Devlation FAEQUENCY E 12 8 2 1 - 10000 110 2.5 2.5 2.5 2.5 80.32 6.45 N=56, µ = 17.4, = -24.5 3.23 · = 32.7 N=135, U=9.2, # =24.4 33.26 9.74 3.12 аł SUMMARY OF MISSION PROFILE CHARACTERISTICS 59.12 N=64, u = 10.0, a= 32.4 73.23 11.11 2.22 . = 9.5 N-45, L-77.9, e =86.9 HOLDING TIME 3 N-113, u-1.8, 2 ž 112 g N-31, y-1 2 2 2 (180.) \$0-75 75-87.8 0-50 50-100 100-150 150-172 0-75 75-150 150-225 225-278 0+ 100 100-200 200-300 300-456 0-25 25-50 9-15 15-10 30-45 45-66 0-25 25-50 50-75 75-**39** AND TRANK 93.70 8.'E 172.0 277.9 88.40 97.40 2015 2471.1 28.2 456 2718.1 31.0 501 65.5 94.50 9.0 96.80 973.5 11.0 5.6 14.1 972.9 11.1 : 2471.1 28.2 TIME WITHIN 1-MILE LIMIT 486.2 8.7621 38 3 162.0 ... ła -66.7 91.0 101 0 19.7 8 8 2.0 .. 9.0 7.9 : 2486.7/28.4 * MOH 1.16 6.3672 (e) 205.0 152.2 10.7 692.2 70.5 Combined data from SIIADBUSH and CLAMP (12-month average based on 17 months of data) Estimated data for PAMLICO (10% increase in underwey time). ANKUAL TIME UNDERWAY 2 2 3 # 2 • • 29.3 ł 2504.0 28.6 11.3 2.5 .. 2486.7 28.4 1.11 [6.2672 TIME BPENT IN YAUD NOH ANNUAL 2571.0 7.0.1 1252.0 350.0 ⁹⁷** ANNUAL NUMBER OF (6) DOCKINGS 892.011.0 2 2.5 5.5 · noH 0 • 268.0 (SYA) 216.0 80.0 8 (S) 2 40 M • 0 3 2 : -No time apent beyond restricted weters. Refurblehment (SYA - Scheduled Yard Aveilebility) • • NON-×4 ANNUAL TIME SPENT IN PORTS : 12-month average based on 15 months of data 22 ioi to y 202 161-12-month everage based on # months of data. ī :9 3 768.6 8.8 ÷ 1.1 3.2 .. * no_{fi} • • HOME 114.0 177.2 280.7 31.5 ings to a • • 52.0 1930.0 56.3 72.6 35.4 3.17 6.6720 024.7 68.9 * non 1556.5 6362.0 7519.4 7830.4 VEBBEL ê Ξ POINT HENDON (821) Ξ 3 WEITE BAGE (1111) GALLATIN (3781) VIGONOUS (2101) rincàugh (180') lew Constr. AMLICO (.091 2882 • 3

discharge mode changeover dycles. 9

In either direction. Used for estimating the number of WMS primery to overboard mode changeover cycles.

Lower 95% confidence iterit on the maximum holding time. Used for WMS utilization factor.

ê 9

4

- The percentage of the total annual time spent within restricted waters (which corresponds to the WMS utilization factor).
- The number of annual crossings of the 3-mile limit and the number of home port (or yard) dockings (which determine the number of WMS mode changeover cycles from primary to overboard mode and pierside to primary mode).

Vessel Holding Time Requirements

The holding time requirement for a vessel is an important mission profile characteristic used to establish WMS equipment configurations and the choice of a given holding time may determine the feasibility of installing a given candidate WMS configuration. By Coast Guard direction, the holding time goal for each vessel was fixed as the maximum holding time recorded for that vessel, without regard to the frequency of occurrence in relation to the other holding times during the interval for which data were collected. Table 3 shows the relationship between the maximum holding time for each vessel, the next smaller holding time and the percentage of all holding times which are equal to, or less than, the next smaller holding time. It is noted from Table 3 that for some vessels, the maximum holding time is several orders of magnitude larger than the next smaller holding time. The implication of this is that a holding time goal based on satisfying P% rather than 100% of all holding times, would result, for some vessels, in drastic reductions in wastewater management equipment requirements and sizing. Possibly this may also result in a reversal of the decision that some system/vessel combinations are not viable candidates based on installation considerations.

However, the implication of a decision to use a holding time goal for a vessel based on satisfying P% of all holding time requirements, is that emission standards will be violated by (100-P) % of the vessel missions. Alternatively, vessel operations may have to be modified in order to avoid violating emission standards.

Table 3

والمتحدين والمتحدين والمحافظ والمتحد والمحافظ		والمراجع والمتحد المراجع والمتحد والمحادث والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والمحاد والم	ومشارفتين المفتدة برجي فيونتكي ومكتبا الديرية التقريبات					
		ALL OTHER HOLDING TIMES						
VESSEL	MAXIMUM HOLDING TIME (Hours)	Next Smaller Holding Time (Hours)	% of All Holding Times Excluding the Maximum					
GALLATIN (378')	97.5	88.0	98.21					
VIGOROUS (210')	172.0	72.0	96.77					
FIREBUSH (180')	277.9	54.0	99.2 6					
PAMLICO (160')* New Construction	456.0**	228.0	97.78					
WHITE SAGE (133')	65.5	62.0	96.88					
POINT HERRON (82')	99.0	21.5	99.12					

RELATION BETWEEN MAXIMUM AND ALL OTHER HOLDING TIMES

* Based on data from SHADBUSH (74') and CLAMP(75')

** Maximum holding time used for WMS design purposes is 501 hours, an increase of 10% to reflect anticipated longer holding time requirements as a result of more available space for stocking supplies.

DEVELOPMENT OF CANDIDATE SYSTEMS

MSDs CONSIDERED

The five Marine Sanitary Devices (MSDs) to be used as the building blocks for the WMS concepts were specified by the Coast Guard. In accordance with the C.G. guidelines, scaled versions of each MSD were considered only if they are commercially available, or operational and physical characteristics are available from the manufacturer. An analysis and data for pertinent characteristics of each MSD are presented in Volume V of this report. A brief description of the principles of operation and a functional block diagram of each MSD considered in this study are presented below.

Jered Sewage Disposal System

The Jered MSD is based on the use of vacuum collection of human wastes from proprietary, reduced flush commodes. Wastes from standard urinals are also collected by the vacuum drains by means of a special interface valve. The collected sewage is incinerated in a vortex incinerator. It is the only MSD considered in this study that provides motive power for transport of sewage at the central collection site.

The primary Jered MSD under consideration is the model V85003 that was installed as a test system on the USSKRAUS. The system has the capacity to handle a maximum of 200 men on a 24-hour basis. In order to examine a vacuum collection system that is practical for significantly fewer users, the Jered Smail Boat Collection System was included in this study. The small boat system is essentially a collection and holding system; it does not include an incinerator. Available information on this system is much less extensive than for the 200-man system. The small boat system is available in different capacities. In the description below, prospective minor modifications are discussed which would be expected if the system is to be adapted for use with a small incineration subsystem, possibly by another manufacturer. Currently, Jered has only one size incinerator.

The 200-man MSD is an automatic system but requires an operator for periodic ash removal from the incinerator. However, the system is quite complex and requires a fair amount of operator and preventive maintenance actions.

A functional block diagram of the Jered Large Boat Sewage Disposal System is presented in Figure 3. A functional block diagram of the Jered Small Boat Waste Collection System appears in Figure 4.

GATX Evaporative Toilet System (ETS)

The GATX Evaporative Toilet System (ETS) is a "no discharge" system that is characterized by four basic features. It utilizes:

- . Reduced volume flush commodes and urinals (also called controlled volume flush (CVF) water closets and urinals).
- . Transport of wastes by macerator/transfer (M/T) pumps.
- . Evaporation of the water content of the concentrated sewage.
- Holding of residual sludge in evaporator for subsequent disposal,
 either to pier connection or overboard.

Because the flush fluid requirement is small (about 1.5 gallons per capita per day (gpcd) rather than 8.5 gpcd), this system is practical with fresh water as well as sea water flushing. The penalties involved with the use of fresh water flushing are offset in part by the reduced corrosion and lower residual volumes in the evaporator. Thus, the evaporator can be smaller or be used for longer periods of time without unloading.

The MSD is fully automatic except for periodic servicing of the evaporator, involving pumping out the sludge, and rinsing and refilling the evaporator with the initial charge of fresh water.

The collection subsystem is required to be operational at all times to provide toilet facilities for the crew. Since the sewage transport pumps are decentralized, only one M/T pump and the urinals and commodes that drain

to it need be kept operational, if minimal facilities are required. While at pierside or beyond restricted waters, the M/T pump discharge can be diverted to the pier connection or overboard in a simple MSD system. Where multiple evaporators necessitate an intermediate feed tank, diversion of raw sewage off the vessel is effected by a transfer pump, taking the wastes from the feed tank. functional block diagram of the GATX Evaporative Toilet System appears in Figure 5.

Chrysler "Aqua-Sans" Recirculating Oil System

The Chrysler "Aqua-Sans" is a "no discharge" MSD that differs from most systems in its use of a refined oil to flush wastes from commodes and urinals instead of water. Since the oil is immiscible with, and less dense than, the wastes, gravity separation is effective in disengaging the oil from the wastes to be destroyed. The oil is recirculated as a flush fluid for both urinals and commodes. It is purified by filtration and adsorption and chemically disinfected. The wastes are vaporized and burned in an incinerator.

The equipment is available in predesigned, functional modules of varying sizes or capacities. The modules are:

- . Separation tank
- Pressurization and Fluid Maintenance package, which is separated into two modules in the larger size.
- . Sludge holding tank, used in larger systems
- . Incinerator.

The collection (and recirculation) subsystem, comprised of the Separation Tank and Pressurization and Fluid Maintenance (P & FM) package, is operational at all times, regardless of vessel location (i.e., in or beyond restricted waters or at pierside), in order to provide toilet facilities for the crew. For servicing, or during an emergency, the fluid maintenance portion of the P&FM package can be shut down and remain inoperative until odor becomes too objectionable. While at pierside or beyond restricted

waters, collected wastes can be pumped to a pier connection or overboard from the sludge holding tank, permitting the incinerator to be nonoperational In a small system that does not have a sludge holding tank, an ejection tank can be added for just this purpose.

The Chrysler MSD is essentially automatic, requiring supervision of equipment operational status plus the following periodic efforts during normal operating conditions:

- . Ash removal from the incinerator
- . Addition of chlorine disinfectant tablets
- . Replacement of filters (prefilter, charcoal and clay)
- . Replacement of filter bag(s) in separator tank
- . Addition of make up flush medium (oil)
- . Complete replacement of system flush fluid.

A functional block diagram of the Chrysler "Aqua-Sans" Oil Recirculation System is presented in Figure 6.

Grumman Flow Through System

The Grumman MSD is a flow-through system, the only MSD of this type considered for this study. Sewage is treated in a two-stage process consisting of physical separation of liquids and solids by centrifugal force, followed by ozonation treatment. The effluent water is continually discharged overboard. The contaminants removed from the waste stream are dehydrated and burned in an incinerator. The MSD utilizes the standard, existing, full volume flush commodes and urinals, draining by gravity, but it can be adapted for use with reduced flush commodes and urinals.

The Grumman MSD was developed under a U.S. Coast Guard contract, but the version considered for this study eliminates two major items found to be of marginal value: the Hydrasieve and the disk centrifuge. This version also substitutes a Thiokol incinerator, due to operational difficulties with the Grumman unit.

It is an automatic system; although complex, it normally requires operator attention mainly for ash removal and filling of the fuel oil day tank. The only expendable that it uses other than fuel oil is ozone, which is made from air (drawn from the atmosphere) by one of the component equipments.

The Grumman MSD, as developed, is unique among the (commercial) MSD's considered for this study in another respect: it receives and treats combined black and gray water. (Although a CHT can also handle black and gray water, it is not a prepackaged commercially available MSD but instead is custom fitted to the vessel.) However, in applying this MSD to a cost-effectiveness analysis, other combinations of input streams are examined: full flush black water only, gray water only and gray water input with reduced flush black water going directly to the incinerator. In all cases, there is a continual discharge overboard of treated water during operation.

When the vessel is at pierside or beyond the restricted zone, the treatment subsystem can be shut off and bypassed. Wastes can be pumped off the vessel from the influent surge tank located at the end of the collection subsystem. The surge tank is normally used for smoothing out peak flows, since the treatment subsystem only accepts a continuous one gallon per minute input.

Only one size of Grumman MSD is available, designed for up to 20 men when receiving combined black and gray wastewaters, using full flush commodes and urinals. For larger capacities, multiple MSD's are required. With some combinations of waste stream inputs on larger vessels, more incinerators may be required than the number of decontamination/disinfection sections. The extra incinerators can be located adjoining or remote from the MSD.

A functional block diagram of the Grumman Flow Through System is presented in Figure 7.

Collection, Holding, Transfer (CHT) System

A Collection, Holding, Transfer (CHT) System provides storage volume to receive and hold wastewaters, deferring discharge from the vessel until an appropriate time. It is a "no discharge" system. It is the succlest of the MSD's considered for this study from a processing point of view. Various arrangements of wastewaters and storage tanks are possible and have been considered by others for different applications. These are:

One tank to hold:

- ... Black* water only, gray* water not retained
- ... Black water, with gray water while in port
- .. Black water, with gray water while transiting between open seas and port

Two tanks: One tank for black water and one tank for gray water as follows:

- .. Separate and distinct pump-out facilities
- .. Common pump-out facilities
- .. Serial pump-out, i.e., gray water is pumped into black water tank, from which both wastewaters are discharged.

CHT systems are usually thought of in connection with standard flush volumes of sea water. Supply limitations on board vessels preclude the use of fresh water with standard flush commodes and urinals. However, a CHT tank can be used with fresh or sea water flush medium in a system containing

Black water is synonymous with sewage and soil wastes. It is comprised of human wastes, flush water and, if collected separately, wastewater from a garbage grinder (Coast Guard policy). Gray water is comprised of wastewater from lavatories, sinks, showers, laundry, galley, scullery and inside deck drains.

reduced volume flush commodes and urinals. One reduced volume flush system, using vacuum transport (Jered), requires a separate vacuum tank for collection, in addition to the vented holding tank. Alternately, the CHT tank can be designed as a vacuum tank which may be practical where the total retention volume is small.

A functional block diagram of a Collection, Holding, and Transfer (CHT) System is presented in Figure 8.

WMS CONCEPTS

WMS concepts for managing shipboard black and gray wastewaters were developed as hybrid combinations of the subsystems of each MSD included in this study. In general, each MSD was viewed as consisting of two subsystems, namely a Collection/Transport subsystem for black wastewater and a Treatment/Disposal subsystem for either black wastewater or for black and/or gray wastewater(i.e., Grumman and CHT). MSDs whose treatment disposal subsystems included waste treatment equipment and a sludge incinerator, were further subdivided for purposes of forming the hybrid WMS concepts. Of all possible concepts which result from various combinations of these MSD subsystems/equipments, only certain ones were selected for this study. Eliminations were based on the following considerations:

- Hybrid WMS concepts whose successful operation was doubtful on the basis of engineering judgments or operational data.
- Hybrid WMS concepts which were considered to require redesign, elaborate interface equipment, and/or extensive testing for successful operation.
- Hybrid WMS concepts which were considered to be unreasonable on the basis of the overall operational objectives or preliminary economic and/or installation considerations.

Examples of WMS concepts eliminated on the bases cited above, include oil recirculation in conjunction with reduced volume flush due to uncertain successful operation; a holding tank for the full volume flush black water in conjunction with Grumman flow through treatment including a sludge incinerator (the latter on the basis of being contrary to the primary objective, that of giving preference to the management of black water).

The resulting 18 WMS concepts included in this study are shown in Figure 9. Schematic diagrams of these WMS concepts are presented in Appendix A. A summary of the installation requirements for each WMS concept is presented in Figure 10.

r–			T		-					_				_		Т			_	-			9.4	4											_				4			t
			(Hotel)	Grey finity		•										DIACK	Vocum enfler	in WCF	Surage & gar.	bes erjader er	Thieton	GUAY		Inon every	Sludge to both	(Jetotel)					<u></u>	INCK		The series	antiput to hote	(Thiokal) via		Calley Andrew	Inoni surge la	Sludge to Incin. (Thiokol)	18	
		teres -	INCINEMIOR D	Black & Cray	ILACK & GAY	prinder output.	Calley/Turbid to	aly name		liudge to	Incluerator	(Thiokol)			α	X																							•			
d turbid droin li		H C	WILL BLUDG	TIACK DALY	IACK	parbage grinder	output to Grum-	man via lalivani		Incinerator	(Imatal)	GNY	Galley/Turbelto Holdine Task		7																											
oted to calley as		I R O U G	JANK D	Gray Daly	BLACK	garbage grinder	output to Hold-	Ing Tank	GIAY	Grummen via	influent eurge	*	Sludge tefelther	sewage) Holding		BLACK	Vacuum collec-	In VCT	Severe transfer	to Holding Tank	or held in large		Garbage grinder output to VCT or	Lirectly to Hold-	ing Tank by	A	Galloy/Turbid to	Grummen via in- livent surge tank	Siudge to (sepa-	ate er sewage)	12	ILACK	M/T rump col-	bre egenet	parbage grinder	Tank	GMY Calley/hubble to	Grumma via In-	lluent surge tank St-rine to frens.	rete ar semage)		
drains are come	ley watemater	0 W T	UDGE HOLDIN	Plack & Gray	BLACKEGMY	grinder output.	Gallay/Turbid	to Gramma via	tank	Sludge to	Holding Tank	-	•		Ľ																											
Ded .	iperable from sal	1		Black Only	BLACK	garbage grinder	output to Grum-	man via Influent	Studen to Vold	ing Tank	GNAY	Galley/Turbid	to separate Holdine Tank		V	-																										ure 9
	e operationally se		CULATION	With Incinerator	BLACK	recirculation	aystem for	Beweg	Sattled savege	grinder output	to Incinerator	(Chrysler) CEAV	Galley/Turbid to	Holding Tank	Ċ	2							-	-					•													Fla
utput) and	rs i le ⁱ ansumed to b	с С	OIL RECIRC	With Hold Tank	1 VICK	recirculation	system for	sewage	Settled sewage 6 Witchese scinder	output to Sludge	lioiding Tank	GNY	Galley/Turbid to	Tank	ſ								_																		•	
garbage grinder o	turbid westewate (black weter) and		EVAPORATOR													BLACK	Vacuum collec-	in VCT	Sewaca and	garbage grinder	output to GATX	L've por ator	GRAY Calley Ambid to	Holding Tank						•	=	BUACK	lection of	epaner	garbage grinder	output to GATX	GRAY	Galley/Turbid to Holding Tank			2	
ck (sewage and a	ge, gelley, and heldored sewage	- 0	INCINERATOR													DLACK	Vacuum Colleo-	In VCT	Sewage and	garbaga grinder	output to Incla.		GRAY Gallay Aurbid to	Holding Tank							0	NLACK	lection of	sewage Sewage and	garbage prinder	(jered or Thickel	GRAY	Galley/Turbid to Holding Tank			۲ ک	X
of shipboard bla and turbid) we	in lines for sawa vier output is con	Z	INDLDING	THIN S	BLACK Sewage and	gerbege grinder	output to llaid-		GIAY Galley/Jurbid	to separate	Jiolding Tank		,			BLACK	Vacuum collec.	In VCT	Sewage transfer	to Holding Tack	or held in large		vitout to VCT or	directly to Hold	oravity by	GRAY Salley/Turbid to	soperate Hold-	anat Du			0	N/T Pune col-	lection of	- CAMER	Sawage and	output to Hold-	Ing Tank	Gener Anthia	ta seperate	Holding Tenk	7	
. Managamani gray foall	. Separate dra . Carbage grin	Chapter	Bowege (Bk 6	Collection				GRAVITY			DAAINAGE								AACUUM			COLLECTION		ĺ										MACEMION/		PUMP	COLLECTION	,	(CATX)			
		_	•			ł	เรก	N		:C: חא	10	00		FI									NC	лт	C3	пс	001	HSU	ELI	ME	סדת	D۸ (CII:	one	Œ	1]

J

ļ

1

WMS CONCEPTS FOR SHIPBOARD BLACK AND GRAY WASTEWATERS

SUMMARY OF WMS INSTALLATION REQUIREMENTS

ų.

Figure 10

CO = Catalytic Oxidizer O₃ = Ozone Reactor Incln. = Incinerator

To weather deck = Surge Tank = Black Water = Sludge

< @ U vs

18

BHT = Black water holding tank GHT = Gray water holding tank SHT = Sludge holding tank VCT = Vocume collection tank MSD = Marine sanitary device

ž Ż

Incinerator

A & Incin.

Yes

A 6 03

внт 6 о₃

2 4 2

ŝ

Incinerator

A & Incin.

Dispensed (Electrical) Connection to Every Commode, Urinal and N/T pump

ž ŝ Ñ ž

Yes

<

c σ

Pressure Sewer 1-1/4" Line,

Push Button Operated Solenoid Valve

Special Operated with M/T Pump (GATX)

2 15

13 13

3

65

16

1

Ŷ No

A & CO

Ŷ

Ŷ

BHT

B & G

A & CO

BHT

3 ŝ ŝ Ŷ

Incluerator

Incinerator

žes

Yes

VCT & O3

VCT/BHT/03

86.5

HH

H

8

VESSEL RESOURCES REOUINED Electricity Compressed Ambient Air for Water

Electricity

Puel Off

Incinerator Stack

Vent Line(s)*

liolding Tank

Plush Medium

Se' ler Lines

R E S Urinal Valves

I X T U Urinals

Commorles

WMS No.

ŝ ŝ

Inclaation Incinerator

A & Incla. A & Incln.

Yes Xea

Yes Yes

A & 0₃ A & O₃

Ċ

BHT & O₃

8 6 S

ŝ

£ ŝ

Incinerator

Incinerator

žes

Yes

ş

σ σ

Sawer 1-1/2 6 2* lines

Special Vacuum Operated (jered)

2

Standard (Extisting) Valves Plus Utrinal Discharge Valves

Ŷ Ŷ

ŝ Ŷ

VCT & CO

EHR

Ñ

Ŷ

VCT & BHT

860

Fresh Water

Vacuum

.

ŝ ļ

A & SHF

No Ŷ

BHT

A & SHT

ŝ Ŷ ŝ

Incinerator

Incinerator

χes

Yes ŝ Ŷ No

MSD

σ

Recirc. Oll Rectro. Oll

Ŷ Ŷ

MSD & SHT

5 ¢ G

BHT

8 & G

Sea Water

Standard Gravity Drains (Existing)

Standard (Existing)

(Existing)

Standard (Extsting)

-

~ 1 Ň

A/SHT/03 A/SHT/03

S & G

Water

Sea

3

SHT

BHT

Centralized

No Ň

Ŷ

For purposes of determining and interpreting the various analyses of this study, it is convenient to think of each WMS concept as consisting of three subsystems, namely: a black water Collection/Transport subsystem, a black water Treatment/Disposal subsystem, and a gray water Treatment/Disposal subsystem. A summary of the 18 WMS concepts in accordance with such a subsystem breakdown is shown in Table 4. Also indicated is the manner in which each WMS subsystem has been synthesized from the available MSD subsystems/equipments. It is noted that in some WMS concepts (5 and 8) the black and gray wastewater Treatment/Disposal subsystems are combined into one, and in others (13 and 18), these two subsystems share the same equipment, namely, an incinerator. As an aid in interpreting the results of this study, the breakdown of each WMS concept in terms of its subsystems, appears on the left side of some tables in this report.

CANDIDATE WMS CONFIGURATIONS AS A FUNCTION OF VESSEL

Specific MSD equipment configurations necessary in order to implement each WMS concept on each vessel were determined on the basis of the following considerations:

- . Waste generation rates (for black and gray wastewaters).
- . Holding time requirements for each vessel .

The manning complement for each vessel (crew size).

The waste generation rates used in this study for the purpose of designing the WMS configurations as well as for estimating WMS operating costs are shown in Orure 11. The holding time goal and the crew size for each vessel are shown in Tables 1, 2 and 3. The details of this analysis as well as the resulting candidate WMS equipment configurations for each vessel are presented in Volume IV of this report.

Table 4 SUMMARY OF WASTEWATER MANAGEMENT SYSTEM CONCEPTS (For Handling Shipboard Black and Gray Wastewaters)

	[.o'/	TYPE		
	<td>ns/ Treatmen</td> <td>nt/Disposal</td> <td>$\lambda = 2$</td>	ns/ Treatmen	nt/Disposal	$\lambda = 2$
	Subsys	Sub:	system	ABBREVIATED NAME
(\mathbf{k})	(Black)	Black	Gray	· · · · · · · · · · · · · · · · · · ·
1	Gravity	Holding	Holding	
-	Collect.	Tank	Tank	GRV COL/B(HLI)/G(HLI)
	011	Chrysler	Holding	
·Z	Recircul.	+ Hld Tnk	Tank	RECIRC/ B(CHER+HEI)/ G(HEI)
	(Chrysler)	Chrysler	Holding	PECIPC /P(CHIP+INC) /C(HIT)
3		+Incin.	Tank.	KLOKOV B(OHER+INO)V G(HEI)
	Gravity	Grum Flow	Holding	CPV COL/B(CPM+HIT)/C(HIT)
	Collect.	Thru+HldTk	Tank	
	(Grumman)	Grumman 1	Flow Thru	CBU COT //PLC/CPM(HIM)
2		+ Holdin	g Tank	GRV COL// BTG(GRMTHLI)
	Gravity	Holding	Grum Flow	
0	Collect.	Tank	Thru+HldTnk	
		Grum Flow	Holding	CDU COT /E (CD MUTNIC) /C MITT)
7	Gravity	Thru+Incin	Tank	GRV COL/B(GRM+INC)/G(HLI)
	Collect.	Grumman F	low Thru	CENT COT //PIC/CENTING)
8	(Grumman)	+ Incine	ator	GRV COL// B+G(GRIVI+INC)
	Vacuum	Holding	Holding	
3	Collect.	Tank ⁽²⁾	Tank	VAC COL/B(ALI)/G(ALI)
	(Jered)	Tuellerentier	Holding	VAC COL/B(INC)/C(HIT)
10		Incinerator	Tank	
 .,		GATX	Holding	VAC COL (P(FUAD) (C(HIT)
111		Evap.	Tank	VAS COL/ B(EVAF)/ G(IIEI)
· .,		Holding	Grum Flow	
112		Tank ⁽³⁾	Thru+Hld Tnk	VAC COL BUILIN G(GRM+HEI)
h :		Indinarator	Grum Flow	VAC COL/G(GRM)/B+GS(INC)
Ľ	″∥	Incinerator	Thru+Incin.	
5	M/T	Holding	Holding	PMP COL/B(HLT)/G(HLT)
	Pump	Tank	Tank	
11	Collect.	Incinerator	Holding	PMP COL/B(INC)/G(HLT)
	(GATX)	mornerator	Tank	
		GATX	Holding	PMP COL/B(EVAP)/G(HLT)
11		Evap.	Tank	
1.		Holding	Grum Flow	PMP COL/B(HLT)/G(GRM+HLT)
		Tank	Thru+Hld Tnk	· · · · · · · · · · · · · · · · · · ·
11	B	Incinerator	Grum Flow	PMP COL/G(GRM)/B+GS(INC)
[-'	ĨI ¥		Thru + Incin.	

(1) Used to identify system in output of computer program for quantifying effectiveness.

(2) Two subchoices available for WMS No. 9 as follows:

. 9a _ Concentrated black water transferred from VCT to holding tank.

. 9b - Concentrated black water held in VCT.

(3) Two subchoices available for WMS No. 12 as follows:

. 12a - Concentrated black water transferred from VCT to holding tank.

. 12b - Concentrated black water held in VCT.

Type/S	ource	gpcd	Derivation/Reference
Commodes and Urinals	Standard fixtures	9	Ships Waste Management Study, NSRDC/A Rept 28-999, Nov. 1973 average of officers and crew at sea (9.13 gpcd), weighted by numbers of officers and crew
	Chrysler	0.46	Bioastronautics Data Book NASA SP-3006 Urine value - 2nd edition Fecal value - 1st edition
	GATX and JERED	1.875	5 urinal flushes/day @ 1 pint/flush 2 commode flushes/day @ 3 pint/flush plus human waste (Chrysler value)
Galley		8	USCG. Polab Program Phase II presentation. Weighted waste gener- ation rates for officers and crew from NSRDC/A Report cited above yields a value of 7.5 gpcd.
Turbid		22	Average of NSRDC/A Report and USCG presentation values (19.5 and 25, respectively)
Garbage Gri	ind er	1.5	USCG presentation value
Sludge gene rate in Grun	ration nman WMS	1/12 of influent	Grumman: 5 gal/hr sludge from 60 gal/hr input

<u>Note:</u> Waste generation rates were assumed in lieu of actual data from the vessels under study or similar ones. The values in terms of gallons per capita per day (gpcd) are indicated above.

Figure 11

WASTE GENERATION RATES ASSUMED

VIABLE CANDIDATE SYSTEM/VESSEL COMBINATIONS

The WMS configurations for each system concept as a function of vessel were developed without regard to the feasibility of installation. Installation considerations were brought to bear in order to establish viable candidate system/vessel combinations. This installation analysis was performed in two steps.

Preliminary Installation Analysis

The preliminary installation analysis was performed on the basis of the vessel compartment arrangement drawings, the known physical dimensions of the candidate WMS equipments and previously established installation guidelines. As an aid in determining the feasibility of installation, vessel compartments which were potential locations for WMS equipment were drawn to scale and paper cutouts of the various WMS equipments, also drawn to scale, were made. These were manipulated in order to test various arrangements of the WMS equipments within the vessel compartments. A summary of the results of this preliminary installation analysis or "paper shipcheck" are shown in Table 5. The details of the preliminary installation analysis are given in the appendices of Volume III of the report.

Shipchecks to Determine Viable System Vessel Combinations

Following the preliminary installation analysis, physical shipcheck inspections were made on each vessel included in this study (except for the PAMLICO new construction vessel which was not available for inspection at the time of the analysis). The purpose of this shipcheck inspection, in addition to obtaining other relevant vessel information, was to confirm and modify the results of the preliminary installation analysis and make a final determination as to the feasibility of installing each candidate WMS configuration on each vessel. For the PAMLICO, this determination was made on the basis of the "As Built" drawings obtained from the Coast Guard.

SUMMARY OF PRELIMINARY INSTALLATION ANALYSIS RESULTS Table 5

	1.0/	TYPE			SYSTEM A	CCEPTABUITY	FOR INSTALLAT	10N (-)		_
	12 ColVira	ns/ Treatmo	nt/Disposal			1010000		3049 3410.11		•
1	Subeys	dus /	system	CALLATIN	VIGUKUUS	LIKEBUAN	LAMILICO	ADILE SAUE	NUMBER DEMUN	
N	(Black)	Black	Cray	(378')	(210')	(180.)	(160)	(133.)	(.79)	
17	Gravity	Holding	Holding						Wee	
•	Collect.	Tank	Tank	Yes	Yes	Yes	Yes	Yes	res	
· ?	110	Chrysler	Holding	Vae	Vac	Ves	Yes	Yes	Ŋ	
	Rectroul.	+ HId Tnk	Tank	103	ICO	100	277	274		
~~	(Chrysiar)	Chrysler + Incin	Holding	Yes	No	Yes	Yes	Yes	No	_
Ļ	Gravity	GrimPlow	Holding						1	_
4	Collect.	l'hru+HldTk	Tank	Yes	No	Yes	Yes	Yes	Yes	
	(Grumman)	Grumman	Flow Thru	NO	NO	Vec	VAS	Ves	Yes	
<u>_</u>		+ Holdin	g Tank	INC	DN1		3	-		
-	Gravity Collect.	llolding Tank	Grum Flow Thru+HldTnk	Yes	No	Yes	Yes	Yes	Yes	
Ľ	Crautte	Grum Flow	IIolding						V	
-	Colloct	Thru+Incin	Tank	Yes	No	Yes	Yes	Yes	Yes	
	(Grumman)	Grumman I	flow Thru	NO	NO	Voc	Vae	Vas	Yes	
<u> </u>		+ Inclne	rator	247	244	201	221		~~~	
5	⁹ Collect	Holding Tank (2)	Holding Tank	Yes	Yes	Yes	Yes	Yes	Yes	
	(Jered)	Incunerator	liciding	Ver			X	202	20X	
	5		Tank	Xes	Yes	res	Ies	IGS	ICS	
		GATX Eved.	Holding Tank	Yes	No	Yes	Yes	Yes	Yes	
		Holding	Grum Flow	:	;			~~~~		
1		Tank (3)	Thru+Hld Tnk	No	No	Yes	res	IdS	IGS	
<u> </u>		Incinerator	Gruin Flow Thru + Incin.	No	No	Yes	Yes	Yes	Yes	
	4 M/r	ilolding	Ilolding	Vac	Vec	Ves	Vec	Yes	Yes	
	Ump	Tank	Tank	Ids	ICS	IGS	PDT			
	S Collect.	Incinerator	l lolčing Tank	Yes	Yes	Yes	Yes	Yes	Yes	
		CATX	liolding			A		V.	voe	
Ξ		Evap.	Tank	Yes	Yes	Yes	Ies	133	103	_
1		Ilolding	Grun Flow	ζος	, ON	Yes	Yes	Yes	Yes	
_		1011		102		2				
Ξ	•	Incinerator	Gruin Flow Thru + Incin.	No	No	Yes	Yes	Yes	Yes	
E) Based on:									

70

Information contained in available vessel plans. WMS installation requirements. WMS installation criteria and guidelines. 5

(2) Two subchoices evailable for WMS No. 9 as follows:

9a - Concentrated black water transferred from VCT to holding tank (acceptable for all vessels).
 9b - Concentrated black water held in VCT (acceptable for Point Herron only).

(3) Two subchoices available for WMS No. 12 as follows:

f

10. Concentrated black water transferred from VCT to holding tank (acceptable for all venely.

ł

÷.,

The results of this shipcheck analysis are shown in Table 6, which also indicates the percentage of the required holding time goal for black and gray wastewater which can be met by each viable system on each vessel. These holding time percentages result from the Coast Guard installation guidelines which specified that except for the case of holding tanks, the viability of a candidate system is determined on the basis of the feasibility of installing all of the required candidate WMS equipments (within the installation guidelines regarding compartment space availabilities).

In the case of holding tanks (for either black or gray wastewaters and for black or gray wastewater sludge), a candidate WMS configuration was not to be rejected because of the inability to provide 100 % holding capacity, i.e., the inability to install the required holding tank size. Instead, the maximum possible tank size is to be installed, giving preference to black water (or sludge) holding tank capacity, with the remaining capacity being designated for gray water (or sludge). The percentages for holding capacity in Table 6 show the holding tank capacities which could be fitted within the vessel compartments (based on the installation guidelines) as a percentage of the required tank capacities.

WMS Equipment Requirements

The results of the shipcheck were used not only to establish the viable system/vessel combinations but also to determine the actual WMS equipment configurations required to implement each of the viable WMS concepts on each candidate vessel. The equipment configurations for each viable system/vessel combination are shown in Table 7, which also incorporates the results of the tank capacities which could be accomodated by each installation as discussed earlier. Table 7 served as the basis for the remainder of the analysis, i.e., the cost and effectiveness analyses of each viable candidate system/vessel combination.

A discussion of the installation of each viable system as well as drawings showing the locations of waste sources aboard each vessel and the location of WMS equipments within vessel compartments are presented in Volume III of this report.

Table 6 SUMMARY OF VESSEL SHIPCHECK RESULTS

(To Determine Viable Candidate System/Vessel Combinations)

-				<u> </u>	· · ·								·								
	RON (82')	Gray (x)	0	N/N	V/N	V/N	V/N	N/N	N/N	N/N	02	N/N	20	N/N	N/N	30	N/N	30	N/N	¢ X	
LATION (I)	POINT HE	Black (%)	- 58	N/N	N/A	N/N	N/N	N/N	N/N	N/N	100	N/N	100	N/N	N/A	100	N/N	100	N/N	A/N	
BY INSTAL	GE (133')	Gray (X)	100	100	100	100	100	100	100	100	100-	100	100	100	100	100	100	100	100	100	
PROVIDED	WHITE SA	Black (%)	100	100	100	100	100	100	100	100	100	100	001	100	100	100	100	100	100	100	
G CAPACITY	0 (160')	Gray (%)	55	64	64	64	100	100	64	100	64	64	64	100	100	64	64	64	100	100	
CR HOLDING	PAMI.IC(Black (%)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	
GRAY WATI	H (180')	Gray (%)	0	0	12	22	100	100	29	100	13	35	35	100	100	13	35	35	100	100	
BLACK AND	FIRCBUS	Black (%)	100	100	100	100	100	001	001	100	001	100	100	100	100	100	100	100	100	100	
REOUIRED I	(210')	Giay (%)	1	1	N/A	N/A	V/N	N/N	N/A	N/A	ľ	1	V/N	N/N	N/A	1	e	-	N/A	N/A	
NTAGE OF	VIGOROL	Black (%)	40	EE	N/A	N/A	N/N	N/N	N/A	N/A	48	100	N/A	N/A	N/A	100	100	100	N/A	N/A	candidate
PERCE	N (378')	Gray (%)	19	18	13	17	N/A	N/A	17	N/A	21	21	17	N/A	N/A	30	33	17	N/A	N/A	ot a viable
	CALLATI	Black (%)	100	100	100	100	N/N	N/A	100	N/A	100	100	100	N/A	N/N	100	100	100	N/A	V/N	N/A - N
	nt/Disposal svstem	Gray	Holding Tank	Holding Tank	Holding Tank	Holding Tank	low Thru I Tank	Grum Flow Thru+HldTnk	Holding Tank	low Thru ator	Holding Tank	Holding Tank	Holding Tank	Grum Flow. Thru+ Hld Tnk	Srum Flow Thru + Incin.	Holding Tank	Holding Tank	Holding	Grum Flow Thru+Hld Tnk	Srum Flow Thru + Incin.	
TVPF	ns Treatmer	Black	Holding Tank	Chrysler + Hid Tnk	Chrysler + Incin.	Grum Flow Thru+HldTk	Grumman F + Holding	Holding Tank	Grum Flow Thru+Incin	Grumman F. + Inciner	Holding Tank (2)	Incinerator	GATX Evap.	Holding Tank (3)	Inclnerator 1	Holding	Incinerator 1	GATX Evap.	Holding (Tank	Incinerator (
. 1	Subsys	(Black)	Gravity Collect.	Oil Recircul.	(Chrysler)	Gravity Collect. I	(Grumman)	Gravity Collect.	Gravity	Guuman)	Vacuum Collect.	(Jered)	·	<u> </u>		M/T Pump	Collect.			>	
	~	শ		1.~	<u>~</u>	4	Ω.	9		<u>ల</u>	ິ	10		12	13	1	15	16	17	18	1

 Proliminary installation analysis Based on: 3

Physical inspection of vessels to verify/modify the results of the preliminary installation analysis. Since the PAMLICO (160') New Construction could not be scheduled for a physical inspection during the time of this analysis, results for this vessel are based on the available plans and As Built drawings. • •

3

Two subcholces available for WMS No. 9 as follows: 9 - Concentrated black water transferred from VCT to holding tank (considered for all vessels). 9b - Concentrated black water held in VCT (rejected for all vessels).

Two subchoices available for WMS No. 12 as follows: . 12a - Concentrated black water transferred from VCT to holding tank (considered for all vessels). . 12b - Concentrated black water held in VCT (rejected for all vessels). Ξ

200

Table 7

2424B 20208 2 02 0B 39940 24248 15718 24248 2244B 2424B 2240 24240 1346B 2424h 2693B 4668B Callon Each Teak 242.4 Sheet 1 of 6 TANKS⁽⁴⁾ 17500 17508 13468 T OVE 539B 26930 RACK (Callone Each Tank) EWD AFT 51848 25368 265A, 217C 487C 265A 763B 830B 9650 228A, 144C 15338 16688 258A rge Tenka/Incinerators 5 INCINIDATOR SUBSTEM Model 67 υ Model N N COLLECTION AND RICINCUL, SUBSYSTEM Number of ackages **FETM** -Model . . m Number of Superator WMS EQUIPMENT REQUIREMENTS Mode 10/1 Tanks CHUMMAN e 3 01 3 2 EVAPORATORS Ę 9 INCIN-IA- IN NUMBLA U TOAS 25 EVANORATORS 27 25 Callonal 25 25 20 40 40 40 20 9 9 OF INCIN-INIOROI 18 8 18 Lores (NUMBER OF VCT's (Sized By Gallons) Large) eoq 30 / 60 / 20 / 20 / 200 / 250/ Small Roat NUMBIR OF Maintenance GALLATIN (378°) (0) 1 · Iouis 10S/10G 28G 10SA0C 10S/10G 10/S01 100/01 10S/9J ÷ Pressurization and Fluid Wastewater Management 10S <u>10S</u> 10S **10S** 10S 107 57 59 107 57 59 "°) WMS ACCEPTABILETY 28S **2HS** 285 **28S** 28G 28G **28S** 28] 281 28] Time (X) Ycs Ycs Υc Yes Yes Yes Yes Y.C. Yes Ycs Yes Vossol į Tero 19 13 18 17 21 21 17 8 33 5 11 ; i 13.18 0.2 - 01 100 100 100 100 100 100 100 100 100 2 100 101: WMS = V P&FM = T (1) Doce (2) Latter (3) Latter Yes Ycs Ycs Yes Ycs ů Ŋ S 3 Yes Yes Ycs NUMBUR No Yes ટ્ર WM8 ĝ Ž å 2 -m ٠ ŝ ۲ • . 2 7 22 : = 15 16 17 18

Doce WMS must all applicable safety standards?

2 Latter following antered number momat: S = Standard, J = JCRED, G = CATX Latters following entered numbers mean: S = Standard winal only, S/j = Standard winals with indicated number of Jared winal discharge valves, 2/G = Standard winals with indicated GATX flushoneters.

Units internenciers. (4) Letter following entered gelionage danotes tank usage: A = Influent Surge, B = Wastewater inciding, C = Sludge holding, D = Intermediate tank not supplied with MBD.

Tank Ileight { 6 '0" (FWD and AFT) | 5 '-0" (FWD and AFT) 6 '-0" (FWD) and 5'-6" (AFT) æ 4, 14 1, 2 WMS No.

Table 7

t 2 of 6	1	() ()	/	Tellon (Cach Tank	120B	1208							1208	1208				1208	5388	12.08		
Shee	H	N1			Dech Tank)	1548	138C							804					7428				
		N N	Jo a	101																			
		UNUNIC		nolner																			
	z	Žŭ	8	ł	\checkmark																		
	IN YSL		An under Si under	1.00											'								
	U	AND	7	4																			
		SUB3	Nump	kage.													Ī	Ì					
S		DLLEC	8	ž			-																
ENS	1	RICI C	umber erator		a Pe						ĺ				Ī								
EMI	MMAN	10	Ser	Tank	х М		-																
UIR	Unach/	10.00	014.1 ×		1535											1	_						_
REQ		135		15.	N STIC				_			_					!	_					
IN				1 E																			
PME	CAT		rons		0										1	<u> </u>	<u> </u>			_	3		
INO			Anona a	(a)	1 09									 							9		
IS E	1		ISIZ I	Gallo	140									ĺ	 		i						
WN		NIN N		14	202 A												1						L
		NUM	NOT N	10	1074		•					ļ 				 			6	6	6		
	UDEI				0.0.10									 						1			-
I		Pr C	Callo	Arge	100							 											
		ADER	70 70	~	100									! 									-
	//	NUN	(SIz	Small	0at 0 /120																		
-		R OF	\mathbb{N}	~	0 60									·	_		_						
(.013		INMUI LIXLU	10)	•1									 			!			10	. 0	0		
o snc			(2) =	-		35	3S							35/51	3S/5				3S/3(E/SE	35/3(
GOR		ורנגא	3	6	anol Conn	175	17S							171	171				176	176	17G		-
		WMS	bull	हो	13 3 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	Yes	Ycs							Yes	Yes				Yes	Yes	Yes		
Vola		vcc	1 India	Time	120 >>	-	-								-				-	e	-		
	ĺ				5018	64	ß							8	100				100	100	100		
			IMOLR		10.2	Yes	Yes	Ŷ	No	ž	2	ž	ž	ξ.	Yes	g	ž	ž	Yes	Yes	Yes	No No	
	L	:	ž			-	~	-	-	~	•	-	38	9	21	=	2	2	2	5	91	1	

Ĭ P6FM - Preservization and Fluid Maintenance
(1) Does WMS meet all applicable of fary standard 7
(2) Latter following aniered number means: S = Standard, j = JCRCD, G = CATX
(3) Latter following aniered number means: S = Standard, j = JCRCD, G = CATX
(3) Latter following aniered number means: S = Standard, j = JCRCD, G = CATX
(4) Latter following aniered number means: S = Standard, j = JCRCD, G = CATX
(5) Latter following aniered number means: S = Standard urinal only, S/j = Standard urinals with Indicated number of Jered urinal disobarge values, 2/G = Standard urinals with Ladicated autor in the standard urinal disobarge values, 2/G = Standard urinals with Ladicated autor of Jered urinal disobarge values, 2/G = Standard urinals with Ladicated autor of Jered urinal disobarge values, 2/G = Standard urinals with Ladicated autor of Jered urinal disobarge values, 2/G = Standard urinals with Ladicated autor of Jered urinal disobarge values, 2/G = Standard urinals with Ladicated autor of Jered urinal disobarge values, 2/G = Standard urinals with Ladicated autor of Jered urinal number of Jered urinal disobarge values, 2/G = Standard urinals with Ladicated autor of Jered urinal disobarge values, 2/G = Standard urinals with Ladicated autor of Jered urinal number of Jered urinals urinal disobarge values, 2/G = Standard urinals urinal disobard autor of autor of anotext autor of autor of Jered urinal urinal urinal disobard urinals urinal disobarge values autor of Jered urinal urinal disobarge values autor of autor of autor of autor of anotext autor urinal original urinal urinal urinal urinal urinal urinal urinal disobarge disobarge values autor urinal u

....

768A, 1737C Callon Inch Teat 768 A, 1737C Sheet 3 of 6 Latiers following entered numbers moon; 8 . Standard urinal only, 8/] . Standard urinats with indicated number of fered urinat discharge valves, 2/G . Standard urinate with tadicated number TANKS [4] 0 0 1029A, 2545C 2737B 72950 72958 26938 72958 23958 44958 7295B 768A 6109B 768A V89/. 1029A RLACK (Gallone Each Tank) 261A, 380C 1361C 7295B 9032B 21458 21458 2345B 23458 261A 101D INCINIRATOR turge Tanka/Incinerator SUBSYSTEM υ CINYSLUR Model NECINCUL, SUBSYSTEM Number of COLLECTION AND ickage P67M Model WMS EQUIPMENT REQUIREMENTS H Number of Separator RUMMAN -1 -Table 7 3 01 ٣, 8 0 0 2 -0 CATX ~ / NUMBLA-OF 01 00 2 01 (Sized Ry Gallons) 40 / 60 / Ous 25 Sector 5 Secto number means: S = Standard, J = JURED, G = GATX NUMBIR UL INCIN-LAATONS 4 4 4 4 I PIOKOI Teres NUMBER OF VCT's (Sized by Callons) [.arge Boat 60 /20/20/250/ н brde Smell Boat NUMBIR OF WMS - Wastoweter Management System PKTM - Trosswitzetion and Tiuld Maintonned (1) Tocas WMS and et la gaplicable sefety sist (2) Jatier following ontered number moans: 3 (3) Letters following entered numbers moans: 3 g Vossol FIREDUSH (180') *Isung (e; 1S/1G 1S/1G 1S/1G 1S/1G 1S/1G 15/2J 1S/2J 15/2J 1S/2J 1S/2J 12 **1**S **1**S 15 12 IS 2 1S 99 ŝĜ WMS ACC J'FADHLIFY Yes 100 100 Yes 6G 6S 6S ß 99 6S 6S 6S 6S 6S 6S 61 61 6] 5 GATX flushometers 1000 13 Yes Yes 35 Yes 100 Yes Yes Yes Yes S Yes Yes Yes Yes Yes Yes Υ^{CS} ĩ Time (z) Yes te; 100 12 22 100 29 100 13 35 35 100 35 0 100 100 0 (+3010) . TON See 100 Yes | 100 | 100 100 100 100 100 100 100 100 100 100 100 100 100 100 Yes Y_C Yes Ϋ́с S Ycs Yes Yes Yes S S res ĩ Ycs S S NUMBUR WMS ----~ 2 2 2 2 = 5 5 1 2

(4) Letter attending encoded and a stark usage; A = fullwent Surge, B = Wastewater holding. C = Studge holding. D = Intermediate teak not supplied with MSD. 14, 17 .6-.9 9, 12 4'-0" |11'-1" |7'-6" 9 4 2, 5 WMS No.

8'-3" 5'-0"

Tank Height

NOTESI (a) WMS No. 6 - Combined sewage/sludge holding tank (b) WMS No. 18 - Intermediate tank used as Influent surge tank. - 14

Sheet 4 of 6 Each Tenk) 200A, 814C 200A,814C (Callon ¥¥0 TANKS^[4] 6283B **5385B** 6283B 62838 62838 62833 6283B 62830 200A 62830 62830 62838 200A 268A, 1090C 200A 268A (Gellone Lach Tenk) 268A, 285C BLACK 34193 42338 10708 10998 638C 10708 10991 26D 68A urge Tenke/incineratora/ **INCINIXATOR BUBSYSTEM** Number υ Model < inber of -Sludge υ Model RECIRCUL, SUBSYSTEM • Number of COLLECTION AND ackagos WMS EQUIPMENT REQUIREMENTS PLIN • Model < -Number of Scretelor No/ 0 Mode Tanks - i ------NUMBIN OF INCIN-14- NUMBIR O CORE 25 CALVARTOR 2 25 CALLORATOR 2 25 20 CALLORAS **EVALURATOR** ł AUF INCIN-NUMAR . IOTOINS 3 -3 3 1 ; Polor NUMBER OF VCT'S (Sized By Gallons) voon PANILICO (1601) (5) - New Construction **J.Arge** 50 /120/200/250/ Sumall NUMBIR OF 30 ---Í -10) *I aurin 15/10 1S/1G 1S/1G 15/2J 1S/1G 15/1G 15/21 1S/2J 15/21 15/21 2 15 15 SI 1S 1S 2 2 WMS NCCLFFABILITY °۰; Ş \$\$ 4 ş 3 40 ¥ å å Yes, 100 100 Yes 4G ¥ đ \$ 7 4 ¥ 4 ¥ Ycs Yes Yes Υ. C ΥG Ycs Ycs Y.es Ycs Yes Yes Yes 64 YG 100 Yes Yc: Yes Yes **p**ubling Time (X) 55 64 64 64 64 100 00. 64 100 Ċ4 100 64 5 6-1 100 *3.7g 201 100 100 100 100 100 100 100 100. 100 100 3 100 100 100 100 100 Ϋ́с Ycs NUMBUR Ycs Ycs YCS E. Y CS S. I 5 Yer Yes Ycs Yes 153 Z CZ ×CL SMM . • ~ + -. • 2, = 2 2 = 2 9 2 76

Table 7

WMS = Westawhire Management System F6FM = Resentation and fuul Maintenance (1) Toos WMS wet all applicable selecty summards? (3) - Liniter (oliowing antiret number means; 3 = Stania

Initer following antered number monay 3 = Standard,] = [ERED, G = CATX

Istices fullowing entered number amon: 3 = Standard urines with indicated number of fored usual discharge waives. 2/G = Standard usuals with indicated number of GATX Buchnueters Ξ

1 serier following referred galienage denotes tark usege: A = influent Surge, B = Wastewater holding, C = 51 whye holding. D = intermediate tark not supplied with MSD.
 (5) familico is currently outfitted with a Colt industries 459-galion VCT and no wastewater holding tank. Systems 9, 10, 11, 12 and 13 are configured with

ramilice is currently outfitted with a Colt industries 459-galion VCT and no wastewater holding tank. Systems 9, 10, 11, 12 and 13 are configured with smaller VCT's and associated treatment holding tank arrangement in accordance with the guidelines established for this study. It will be assumed, however, that these systems would be

adequately served by die existing 450-gallon VCT plus appropriate treatment subsystents (i.e., incinerator/evaporator) with cost/effectiveness assessments treated accordingly.

2,4 5,6 1. 9, 12, 14, 17 WAIS No.

 (a) WMS No. 6 - Combined sewage/sludge holding tank.
 (b) WMS No. 18 - Intermediate tank used as influent surge tank. NOTES

Tauk Reight 6'-0"

4--3-15.0-

Table 7

eet 5 of 6		TANKS ¹⁴⁾	GRAY	(Callone	Cach Tank!	20638	20638	2063B	20638	. 232C	323A,172C	20638	2A	20638	2063B	2//63B	172C, 323A	323A	20638	2063B	20638	323A, 172C	223A	
, Sh				Gallone	tach Tank)	7228	135C		110A,60C	432 A	7228	110A	43	2008			2008		232B			232B	430	·
		STEM	at o		10											=			1	-	<u></u> i		╡	
		NCINI SUBSY	N.N.	Moc															-+	-			_	
	SLOR				N			_											-+					
	CINY	R.M.	Slue	/Surge	Ν											4			-+			-	\neg	
		IN ANE	N. N.		Н															-				ŗ
		UL. SI	PELI	Pack																_		_		
IN		COLL	lor of	\uparrow	4			-						·									_	
EMI	/NVV		Numb	ank.	70/														-		·			· .
N IR	MMINE	10,	O STATE		-		-	-												\neg		 	-	
REC	1	23 20		19 14	12 E C		İ					-	-					-	I				-	
ENJ			2.2.2	5	55	Ċ			-	~	-	-	-				1	-1		1		-	-	
IPM	CATX		10	1	$\langle \cdot \rangle$																-			
EQU			rorat d iv	1	50 / 64				<u> </u>										-		-			
MS	1		ISI	Gallon	101	ŀ	! i	1																
≥		uu	12.0	1000	27.0		<u> </u>										į		1					
·		MUN	IN TOUR	107	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1		!]					} 			; 		с 		6 	3	3	
• •	CURI I			~			<u> </u> 	! 	<u> </u>		-	 		! !			l I			-				
ļ		or vc	Gallo	Large	250				<u> </u>	! 		1					! 							
		MBIN	Va por		1002						1			1										5
		Г И и	(51	Smell	10 V 20		 	 			 	<u> </u>		 		 	<u> </u>							ce nderd
1301				1	100	╟	$\frac{1}{1}$	1	<u> </u>	<u> </u>	!	<u> </u>		1 -	<u>!</u> i	-								tom Meran
SAGE (10 100		הנש	- SI	1S	IS	IS	IS	1S	IS	1s	12/21	15/2J	15/2J	15/2J	15/2I	1S/1G	1S/1G	1S/1G	1S/1G	1S/1G	ement Syst Fluid Met Reable an
VIIITI		u.rry	N	4 10,2	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1 \$	13	\$	1 2	\$: \$	\$	1 \$	3	4	i 🖓	4	41	46	1.5	4G	ų	4G	peret In end In end
10		WMS	line /	e	19.00	Y C.	3	Yes	Yes	K	Yes	1 J	۲ ۲	, S	Yes	រុ	Ycs	Yes	Yes	Ycs	Yes	Ycs	Ϋ́с	maler rizatio mrct a
	1	1	Imi	/Time	20 20		1 2	100	01	100	101	101	100	100	100	100	100	100	100	100	100	100	100	weeld "costu
		1	No.	1.00	101		1 3	100	100	100	100	100	100	100	s 100	- 	\$ 100	: 100 :	100	100	100	100	s 100	5.0
			WMS INMOI	1	13 13	×	1 2	- 7		2 2	1	1 2	- <u>X</u> e	1 2	- <u>X</u>	- 1 -	× 1] <u></u>	د از	1 × 1	5 76	7 76	Ye	323
	L					1	1	1		<u> </u>		1			1 =		13			1 -	Ĩ	=	=	

(1) Interfollowing entroed number means
 (2) Standard winel with Indicated number of gread winel discharge valves, 2/G - Standard winels with Indicated number of GATX flushcarters.
 (3) Interfollowing entroed number means
 (3) Interfollowing entroed number means
 (4) Interfollowing entroed number means
 (5) Standard winels with Indicated number of GATX flushcarters.
 (4) Interfollowing entered pailones tank usage: A = Indiuent Surge, B = Wastewater holding, C = Studge holding, D = Interfollowing entered with MSD.

2*-0" 6*-0" 5'-0" 4 2, 9, 12 3.-0-1, 5, 14 Tank licight | 5'-6" WAS No.

NOTE: WMS No. 18 - Intermediate tank used as influent surge tank. 17

Table 7

WMS = Wastowelor Mandonment System P6FM = Presurization and Tiuld Maintenance [1] Does V/MS mint cit applicable safety standards [2] Loiter Following entered number measus 3 = Standard, j = JCRED, G = CATK [3] Latter following entered number measus 3 = Standard winet only, S/j = Standard winets with Indicated number of [3] Latter following entered number measus 3 = Standard winet only, S/j = Standard winets with Indicated number of [3] Latter following entered number measus 2 = Standard winet only, S/j = Standard winets with Indicated number of [3] Latter following entered number measus 2 = Standard winet only, S/j = Standard winets with Indicated number of Jered winet discharge valves, 2/G = Standard with Indicated number of G/TX llushometer. to the intercomments.

t **0**-0 j. 2.-6 Tank licíglit | 2'+10" WARS No.

LIFE-CYCLE COST ANALYSIS

THE LIFE-CYCLE COST MODEL

For purposes of the life-cycle cost analysis (a similar approach was used for the effectiveness analysis), the physical system configuration will be viewed as a hierarchy of four levels, namely, system, functions, subsystem and equipments, as shown in Figure 12. In the case of the Wastewater Management Systems (WMS) analyzed, the overall system level is the WMS; the function levels correspond to the black and gray wastewater handling functions of the WMS; the subsystem levels correspond to the black water Collection/Transport subsystem, the black water Treatment/Disposal subsystem, and the gray water Treatment/Disposal subsystem; the equipment level corresponds to items such as fixtures, Macerator/Transfer (M/T) pumps, Vacuum Collection Tanks (VCT), incinerators, etc. It is noted from Figure 12 that equipments and subsystems are not necessarily unique with respect to function, i.e., the same equipment or subsystem may perform more than one function. Two examples of this are the Grumman treatment system which treats both black and gray wastewaters, or a Thiokol incinerator which receives both the sludge from a Grumman treatment system which treats gray water only and the black water stream from a reduced volume Collection/Transport subsystem (Jered or GATX).

The line-cycle cost model is depicted in Figure 13 which shows both the "horizontal" and "vertical" breakdown of the cost. The "horizontal" breakdown is in terms of the various cost elements into which the overall life-cycle cost is subdivided. The "vertical" breakdown in terms of the various stages of calculations which are necessary to pe Orm in order to arrive at the overall system life-cycle cost. The computations are performed essentially in three stages. The first stage relates equipment/ subsystem characteristics and cost estimates to overall system (or subsystem) costs (and characteristics) on the basis of 100% utilization factor. The second stage of the calculations relates the system/subsystem costs and characteristics based on 100% utilization factor to the overall system (or subsystem) costs and characteristics based on vessel mission profiles

./

PHYSICAL SYSTEM/EQUIPMENT CONFIGURATION HIERARCHY

- set and a set

 PUCH VATER (CTHER STORE) OR DRIVED ROM F/EL
 ROM F/EL
 RUCH FORDER
 RUCH (DRIVED ROM). .. O'SAY SHED AN DEIVED MON DEIVED MON ZS BERGTINE DISCOUNT SATE T TRANS OF UNDULL STETTER ansoned conta Table 11 Amuna NIN .. 708 ALAUN. Pacte U-1 TableD Figure 18 NUMBER VAUS OF OVERHALL MUABUTY AND MANTINATUTY ACCOMMODATED MENT OVERHAUL CHARACTERNTICS AND COST NEW OVERHAU UNTERM/RQUIN ACTIVITY QUMACINISTICS COST HER STETTEM OVIELLAUL NEW TOWARD CHANGIN IN DATA AND ARGUMPTICH al vinuta OVERAUL + ç Fable G-1 Table C-I Table F-1 Figure 17 REERT VALLE OF CONFECTIVE (UN-SCIEDULED) MAIN-TEMMICE COFF CH ACTIVITT ACTIVITT ACTIVITTO RIEFFERMANDUR-MERT CM CHAMACTEREFTCS AND CONT AND CONT STETTE ANNUAL CM COST BASED -ON CONTINUOUR OPELATION ANDRUAL CM COST BASED ON MORECTED UTBULZATION Table H-1 Table H-2 Erucr ser-strurry Au-ROUPAENT OL ACTIVITED **WATTERN** NUMER OF STATES Table G-1 Table C-1 Table F-1 MLEANT VALUE OF NEVENTIVE (SCHEDULED) MAINTENANCE COST ACTIVITY CHARACTEMETICS SYSTEM ANNUAL PM COST LASED ON CONTINUOUE ON CONTINUOUE RUBSYSTEM/EQUEN-MENT PM CIAMACTERETICS AND COFT ANNUAL MA COST BASED ON MORECTED UTBLEATHON 1111 RUBYSTON/ Figure 13 ACTIVITES ž MEDIAT VALUE OF NECUMENO EXMANDITURES T Page Vi +Table E-1 STITTLA ANNUAL OPERATING COST INASED ON CONTINUOUS OPERATION Figure 15 OPERATE VS ACTINITY CHAACTERETICS Fable O AMMUAL ONDATING CONT BASED ON MUDECTED UTILIZATION ALINY STEM (ROOF -MENT OFENTENC CHARACTEMETICS AND CURTS STEMATE BURSTERN/ ROUEMENT OPLAATING ACTIVITERS. NESENT VALUE OF OPERATING CORT Page V AVATEM LUM CTOLE CONT Table 10 Page vi DEPENDENCE ON VISSEL MISCION PROFUS DEPENDENCE C.I. VISSEL CILLIAC-TICUETICS AND INQUEDUENTS ACCOMMODATTS SYSTEM BISTAL-LATION COST BLOWING TABLE 1 SYSTEM INSTALLATION COST Figure 14 Page vi FIXED CONTR + Table 9 Page vi 00 Table 8 A COULETTION COST ELEMENTS ETSTEM ACQUERTION CONT BUBSYSTEM/ EQUEVAENT ACQUESITION ON , YULURIMMC 2010 JEANENTS 2010 JEANENTS 2010 JEANEN VESSEE AUGSION RULIES ACCUMANDATED TABLE T DUPLINGANCE

LIFE CYCLE COST MODEL FOR CANDIDATE SYSTEM/VESSEL COMBINATIONS

(i.e., utilization factor for each subsystem, the number of mode changeovers, etc.). The third stage of the calculations relates the overall system cost based on vessel mission profiles to the life-cycle cost based on the useful life of the system and an assumed effective discount rate.

The main purpose of the above breakdown of the costs into different cost elements and each cost element into three different stages of calculations is to facilitate the introduction of the various dependencies which affect the overall system life-cycle cost. It is this breakdown which enables the life-cycle cost to be accurately and consistently estimated. This breakdown also facilitates the analysis of system costs and characteristics in such a way as to yield useful information for system modifications, management, and for trade-off studies and decision-making. In addition, this breakdown provides an opportunity for incorporating an extensive sensitivity analysis capability.

Figure 12 indicates the various tables which represent the inputs and outputs associated with the life-cycle cost model. Tables 8 and 14 through 18 are the basic data inputs for acquisition, installation, operation and maintenance (PM, CM and Overhaul) characteristics and cost estimates. Table 7 lists the equipment requirements for each system configuration on each vessel. Table H-1 lists the sensitivity analysis relationships used. The other listed tables represent the various outputs from the life-cycle cost model.

FIXED COSTS

The fixed costs include WMS acquisition and installation costs. The development of these costs is discussed below.

Acquisition Costs

The basis for estimating WMS acquisition costs was data on MSD subsystem/equipment costs obtained from MSD manufacturers. MSD costs were solicited from manufacturers not on an overall system level but rather on a subsystem/equipment level corresponding to the manner in which the MSDs were hybridized to form the candidate WMS concepts. Acquisition cost was broken down into equipment costs and associated initial spares costs. A form showing the breakdown of each MSD into the subsystems/ equipments and different pertinent model types was sent to each manufacturer requesting equipment and spares costs as well as suggestions for initial spares stocking requirements. The results of such inquiries are shown in Table 8. Acquisition cost estimates for Grumman were supplied by the Coast Guard.

The results in Table 8, in conjunction with the equipment requirements in Table 7, were used to estimate the WMS acquisition costs shown in Table 9. It is noted that holding tanks were considered to have zero acquisition cost, and the installation cost of holding tanks includes the cost of materials required to fabricate the tanks.

Installation Costs

Installation cost estimates were obtained as part of the WMS installation analysis. Such installation cost estimates were made by first defining a number of installation cost elements with associated unit costs and then viewing each WMS installation in terms of these elements, taking existing vessel conditions into account. The form used for estimating installation costs is shown in Figure 14. The completed forms for each viable system/vessel combination appear in Volume III of this report. A summary of the results of the WMS installation cost estimates is shown in Table 10.

NOD		Foutpoort		Equipment	Cost (\$) of As	sociated
MSD	·	Edathmetir		Cost (\$)	Inital Spares	Package
·····	Commode			300	300	(1)
	Urinal Discharge \	/alve		300	150.	(1)
	VCT(with	30 gal.	(Small Boat)	5,000	400	(2)
JERED	associated	60 gal.	(Small Boat)	5,000	400	(2)
	equipment	120 gal.	(Small Boat)	6,000	500	. (2)
	and controls)	200 gal.	(Large Boat)	20,000	1,200	(2)
		250 gal.	(Large Boat)	20,000	1,200	(2)
	Incinerator (includ	ing control	s)	33,000	8,250	(2). (3)
	Commode	i		750	.50	(2)
	Urinal Flushometer			150	10	. (2)
	Macerator/Transfe	r Pump	Fresh Water	1,500 (4)	1,500 (4)	
	(Including contact	or)	Salt Water	3,000	50	(2)
GATX	Evaporator	20 gal.		14,100	, 600	(2)
	(With sludge	40 gal.		14,400	600	(2)
	pump and	60 gal.		15,000	600	(2)
	controls	80 gal.		15.500	600	(2)
	Vapor Treatment Se	ection		0.000	050	(0)
	(Including controls	5)		2,000	250	(2)
	Separator Tank	Model A		4,750	275	(5)
	(Including	Model A/B		5,694	275	(5)
	Controls)	Model B		6.647	275	(5)
	Pressurization & Fluid Maint.	Model A		3,319 (6)	198	(6)
	Package (s)	·				
CHRYSLER	(Including	Pump Pack	age	1,585	N/R	
	controls)	Accumulate	or n	512	26	
		Fluid Mair	nt.Pkg.	1,664	26	
•		Total Mode	al B	4,196 (7)	487	(7)
	Sludge Surge Tank	Model B		5,04]	350	
	Including controls)	Model C		5,200	350	
	Incinerator	Model A		5,462	600	
	(Including controls)	Model C		9,174	550	
	Treatment Subsyst	em		25 000 (8)	. 2 500	(0)
	(Including Con)		23,000 (0)	2,500	(8)
GRUMMAN	Incinerator			о ,		
	Subsystem - Thiok	ol		25,000 (8)	2,500	(8)
60 W F	(Including control	s)	•]		

SUMMARY OF MSD ACQUISITION AND INITIAL SPAPES COSTS

Table 8

(1) Manufacturer recommends one initial spares package for every 5 associated equipments on board the vessel.

(2) Manufacturer recommends one initial spares package for every associated equipment on board the vessel.

(3) Includes the cost of one incinerator liner (Inconel 601 at \$6,500) which was not included in cost provided by manufacturer. A new incinerator liner (Inconel 671 at \$7,800) is currently being evaluated by the Navy.

(4) U.S. Coast Guard policy is to use fresh water flushing and to stock one extra M/T pump per vessel regardless of the number of such pumps installed on the vessel.

(5) Manufacturer recommends one initial spares package for every 4 associated equipments on board the vestel.

(6) includes the cost of flush fluid and expendables (\$145) which was not included in cost provided by manufacturer.

(7) Includes the cost of flush fluid and expendables (\$435) which was not included in cost provided by manufacturer.

(8) Estimates provided by U.S. Coast Guard.

Table 9

WMS ACQUISITION COST AS A FUNCTION OF VESSEL

L		T V P F			4	b	Э	` د	2			ر 	4			-	>	0	•		
·01	Collec-	Treatment	/Disposal	CAI	TATIN (3)	. (.8,	VIG	DROUS (10.)	FIREB	USH (18	(;0	PAM (New	LICO (1 Constr	60 ·)	WHITE	SAGE (133.)	POINT	HERRO	V (82')
1 5	Transport	Subsy	stem		Initial			Initial			Initial			Initial			Initial			nitial	
W/	Subsystem			Equip.	Spares	Total	Equip.	Spares	Total	Equip.	Spares	Total	Equip.	spares	Total	Equip.	Spares	To'al	Equip. S	pared	letel
n	(Black)	Black	Gray	(\$)	(s)	(2)	(\$)	(S)	(\$)	(<u>s</u>)	(\$)	(\$)	(3)	(5)	6	(\$)	(3)	8	(3)	1	3
~	Gravity Collect.	Holding Tank	Holding Tank	0-	-0-	-0-	6-	-0-	ė	- -	-	ę	1,000	100	1,100	÷	ę	÷	¢	ė	÷
7	Oil Rectrcul.	Chrysler +Hld Tnk	Holding Tank	27,039	473	27, 512	9,013	473	9,486	9,013	473	9.480	9,069	573	9,642	8, 069	£13	8.542		N/N	\prod
~	(Chryster	Club sint	Holding Tank	50, 587	1, 373	51, 960		N/A		23, 228	1, 373	24, 601	14, 531	1, 173	15, 704 1	3, 531	1.073	. 60		N/A	Π
-	Collect.	Grum Flow Thru+HldTk	Holding	50,000	5,000	55, 000		N/A		25,000	2, 500	27,500	26, 000	2,600	28, 600 2	5, 000	2, 500 2	7, 500 -		N/A	Π
Ņ	(Grumman	Grumman	Fluw Thru a Tank		N/A			N/A		50, 6.30	5,000	55, 000	26, 000	2, 600	28, 600 2	5, 000	2, 500 2	7. 500		N/A -	
9	Gravity Collect	Holding	Grum Flow Thru+HidTuk		N/A		ŀ	N/A		50,000	5,000	55, 000	26.000	2, 600	28, 600 2	5,000	2, 500 2	7,500	Π	N/A	
~	Gravity	Grum Flow	Holding Tank	100,000	10,000	110,000		N/A		50,000	5,000	55,000	51,000	5, 100	56, 100	000-"0	5,000 5	5, 000		N/A	
80	(Grumman)	- Incinera	low Thru ator		N/A			N/A		100,000	10,000	10,000	51,000	5, 100	56, 100 ¹ 5	000 00	5,000 5	5, COO		N/A	Π
6	Vacuum Collect.	Holding Tank	Holding Tank	37,100	3, 800	40, 900	26, 600	2, 550	29, 150	22,400	1,950	24, 350	Ļ	6	- -	6, 800	850	7.650	5, 900	850	6. 750
10	(jered)	Incinerator	Holding Tank	103, 100	20, 300	123.400	59, 600	10, 800	70,400	55,400	10,200	65, 600	25.000	2.500	27. 500 ^{ll}	12, 800	3, 450 3	6, 250		N/A	$\left \right $
1		GATX Evap.	Holding Tank	142,000	9, 900	150, 900		N/A		57,400	3, 650	61,050	16.400	850	17. 250	000.4	1,700 2	6,000	22, 300 1	V. 7002	, 000
12		Holding Tank	Grum Flow Thru+HidTnk		N/A			N/A		72,400	6, 950	79, 350	25.000	2, 500	27.500	11, 800	3, 350 3	5, 150		N/A	
13	*	Incinerator	Grum Flow Thru+Incin.		N/A			N/A -		122,400	11,950	134.350	50,000	5, 000	55, 000 5	6. 800	6.8506	2, 650	ŢŢ	N/A	T
14	M/T Pump	Holding Tank	Holding Tank	45, 500	3, 900	53, 400	26.760	2, 830	29, 530	10, 656	2,010	12, 660	7.650	1, 860	9. 510	7,650	. 860	9, 510	4. 500 1	. 700	6, 200
15	Collect. (GATX)	Incinerator	Holding Tank	82,500	12, 150	94,650	59,700	11,080	70, 780	43, 650	10, 260	53, 910	32, 650	. 360	3, 610	. 650	4, 360 3	7.010	T	- VN	T
16		GATX Evap.	Hoiding Tank	154, 500	9,000	163, 500	77,700	5, 380	83, 080	45, 650	3.710	49, 360	24,050	2, 710	26, 760	159	7.710/2	7, 860	20, 906	. 5502	3.450
17		Holding Tank	Grum Flow Thru+HldTnk		N/A			N/N		60, 650	7,010	67, 660	32, 650	4, 360	37.014	1025	2, 1, 9	4, 660		~	
18		Incinerator	Grum Flow Thru+Incin.		N/A		Τ	N/A		110,650	12,010	122, 660	J, 65n	6, 860	64, 510	1 0. 2	4, 510 7	2.160	Ţ	- E	Π
'	PAMLICO	is currently	outfitted with	a Colt In	dustries	vacuum co	illection	system	Including	a 450 gal	lon vacu	um tank,	which .	ecelve:	i sanitar	y vastei	I at all	tî aês an	d galley	/turbld	

i

iñ añ ung yano Ĕ

For those system configurations utilizing jered commodes and VCT's (systems 9, 10, 11, 12, 13) - no acquisition cost for such is included and only those costs associated with Incinerate s, evaporators, vapor treatment sections, and treatment subsystems are included.
 For those system configurations utilizing standard commodes (systems 1 thru 8), an acquisition cost of \$750 per commode (: nd \$55 spars.) are included.
 For those system configurations utilizing GATX commodes (systems 1 thru 18), an acquisition cost of \$750 per commode (: nd \$55 spars.) are included.

Vessel

WMS No.

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pij	ping ⁽¹⁾	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2)	
Ta	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4)	
Fo	undations	Pounds	\$.92/Lb. (Materials and Labor)	(5)	
El Ca	ectric bles	Feet	\$ 2.00/Ft. (Materials and Labor)		
M: In: mo	iscellaneous stallations (pumps, otors, skid-mounted mponents, etc.)	Man- Hours	\$15.00/MH (Labor)		
Ac de bu pa	cess Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)		
w	elding	Feet	\$ 6.00/Ft. (Materials and Labor)		
als	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)		
Remov	Other (miscellaneous handling)	Man- Hours	\$15.03/MH (Labor)		
	Tot	al Installa	ation Cost (\$)		

(1) Copper-nickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plate assumed.

(4) Estimate includes a factor of 30% added to allow for request structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to supported.

(6) Based on an assumed cutting rate of 50 ft. /hr.

Figure 14

INSTALLATION COST ESTIMATE FORM

Table 10 SUMMARY OF WMS INSTALLATION COSTS

Ę.

		TYPE		1	INST	ALLATION	COST (S	(
1210	CIVIO	ns/ Treatme	ont/Disposal						
S S	ubsys	sub Sub	system	CALLATIN	VIGOROUS	FIREBUSH	PAMLICO(160')	WHITE SAGE	POINT HERRON
(<u>5)</u> (I	3lack)	Black	Gray //	(378')	(210')	(180')	(New Constr.)	(133.)	-(.7.9)
) Gra	vity	Tank	Holding	47,260	10,200	16,850	- 28,520	13, 190	2.410
2 OII		Chrysler	Holding	12,370	13, 230	12,060	25, 290	13,800	N/A
Keci	rcul.	+ HId Tnk	Tank						
3 (Cu	l yslet,		Tank	71,220	N/A	20, 630	30, 590	16, 800	N/A
4 Gra	vity	Grum Flow	Holding Tank	39.980	N/N	18, 760	24,280	17,000	N/A
2 Cru	mman)	Grumman + Holdin	Flow Thru	N/A	N/A	16,079	15,220	12,890	N/A
6 Gra	vity lect.	Holding Tank	Grum Flow Thru+ HldTnk	N/A	N/A	21,590	21,200	15,460	N/N
7 Gra	vity	Grum Flow Thru+Incin	Holding Tank	69, 060	N/A	25, 640	29, 230	23,080	N/A
	nect. mman)	Grumman I	Flow Thru	N/A	N/N	19, 250	18,030	13, 100	N/A
9 Vaci	uum lect.	Holding Tank	Holding Tank	48,310	16,270	19,710	19,890	12,730	5,460
10 (Jer	(pa	Incinerator	Holding	75,900	23, 530	33, 740	. 21, 370	16,300	N/A
11		GATX Evap.	Holding Tank	47, 340	N/A	31,660	15, 830	12,220	4,690
12		Holding Tank	Grum Flow Thru+ Hld Tnk	N/A	N/A	21,810	12, 760	10,600	N/A
13	>	Incl nerator	Grum Flow Thru + Incin.	N/A -	N/A	29, 320	14,470	13, 640	4,200
14 Pum	_ a	Holding Tank	Holding Tank	47,710	13, 650	19,420	20,490	11.990	N/A
15 Coll	lect. TX)	Incinerator	Holdlng Tank	78,120	20,890	29, 520	22, 540	15, 790	N/N
16		GATX Evap.	Holding Tank	41,720	11,560	23,050	17, 770	10,930	4,220
17		Holding Tank	Grun Flow Thru+Hld Tnk	N/N	N/A	21,280	13,480	- 10, 970	N/A
18	~	Incincrator	Grum Flow Thru + Incin.	N/A	N/N	29, 590	13,080	15,640	N/A
* Inst the	allatio Point E	n costs proc łerron.	ceed from the a	ssumption that a	holding tank (c	currently planne	d but not yet on	board) will be	installed on

.

۰.

N/A - Not a viable candidate system/vessel combination.
RECURRING EXPENDITURES

Recurring expenditures include WMS operating and maintenance costs. For purposes of this analysis, and in accordance with the life-cycle cost model, maintenance costs are broken down into three categories, namely preventive (scheduled) maintenance, corrective (unscheduled) maintenance resulting from random failures of equipment, and overhaul.

A fuller discussion of these operating and maintenance activities, including definitions and rules for classifying tasks into each of the above categories are presented in Volume V of this report. Highlights of operating/maintenance cost analysis are presented below. <u>Operating and Maintenance Costs Based On Continuous Operation</u>

As a first step in estimating WMS recurring expenditures, MSD operating and maintenance cost data were developed on a subsystem/equipment basis corresponding to the manner in which the MSDs were hybridized to form the candidate WMS concepts. MSD data for each of the four operating and maintenance cost elements were recorded on the forms shown in Figures 15 through 18 and are presented in Volume V of this report.

The data in Figure 15 through 17 are based on the assumption of continuous operation or 100% utilization factor, and the data in Figure 18 are given on a per overhaul basis. It is noted that data based on continuous operation do not imply that the subsystem or equipment for which such data are given actually operates continuously. Instead, it means that the data are developed on the basis of the assumption that the vessel is continuously within restricted waters, and the data represent estimates of the subsystem/equipment operation (and maintenance)under such conditions (e.g., percentage of time an incinerator is operating if the vessel were continuously within restricted waters). The assumption of continuous operation or 100% utilization factor was made in order to facilitate the development of generic MSD data which could then be used for all candidate system/vessel combinations of interest.

Maintenance Cost (5) TOTAL Preventive [anuuy Annual Cost of Parts (5) Page Cost of Each Pert (5) PARTS CONSUMED No. of Parts MSD PREVENTIVE (SCHEDULED) MAINTENANCE CHARACTERISTICS AND COST ESTIMATER (Based on 100% Utilization Factor) . Spare Part Required Annuel Cost of Lebor (5) Annel Lebor Required (Man-His) Rate (5/Hr) No. Meinteiners Skill Level Estimated Time berupes (alM-21b) MSD_ Scheduled Interval for Maintenance Action Bris) LABOR Preventive Maintenance Requirement

Ţ

DATA SHEET FOR MSD PREVENTIVE MAINTENANCE

Figure 16

a0

Corrective Maintenance Corrective TOTAL 2 Tenuuy Annuel Cost of Parts (5) Page Cost of Each PARTS CONSUMED . Estimated No. of Parts Used/Year DATA SHEET FOR MSD CORRECTIVE MAINTENANCE Spare Part Required Annual Cost of Labor (\$) Annual Labor Required (Nan-Hrs) Figure 17 Assumed Lebor Rate (\$/Hr) No. Metriciners Estimated Time Lealups (aiM-214) MSD Estimated Time Between Fallures (Hrs) LABOR Corrective Maintenance Requirement

MSD CORRECTIVE (UNSCHEPULED) MAINTENANCE CHARACTERISTICS AND COST 28TIMATES (Based on 100% Utilization Pactor)

[]

MSD MAJOR OVERHAUL CHARACTERISTICS AND COST ESTIMATES

MSD

,

ğ

Page

TOTAL	Cost (\$) Overheul Mejor	
	Cost of Parts for Cost of	
UMED	Part (5) Cost of Each	
S CONS	No. of Parts Required for.	
PARTS	. Part Required	
	Total Cost of Labor (5)	
	Total Labor Required (Man-Hrs)	
	Rete (S/Hr)	
	No. Mainainers	
	Verhauls (Yrs)+ Estimated Time	
BOR	Time Between	
1	Overhaul Requirement	

Figure 18 DATA SHEET FOR MSD OVERHAUL

٠,

It is noted from Figure 15 that operating costs have been broken down into the following elements:

- Labor, including:
 - .. The periodicity
 - .. Time required
 - .. Number and skill level of operator
 - Vessel resources used, including:
 - .. Electric power (including power for pumping flush medium and cooling water)
 - .. Fuel oil
 - .. Fresh water
 - .. Compressed air
- Materials consumed (filters, chemicals, etc.)

Since the data in Figure 15 have to be generic and on a subsystem/equipment basis, development and subsequent use of these data are not a trivial matter. The reason for this is that not all operational characteristics are on a per unit basis, independent of the vessel on which the subsystem/equipment will be operated. As a result of such dependencies, some of the data cannot be explicitly stated but instead have to be given implicitly in a form which indicate the parameters on which the data are dependent. Some examples of such dependencies are as follows:

- Fuel consumption (and electric power) for an incinerator depends on the vessel crew size. As a result, fuel consumption rates have to be given on a per capita basis.
- The frequency of emptying an evaporator depends on the crew size. As a result, the periodicity for this activity is given in man-days rather than in hours.

- The consumption of compressed air for aerating a black water holding tank depends on the size as well as the maximum height of the tank. As a result, compressed air consumption must be given in terms of an expression which can be quantified only when the physical characteristics of the tank become known.
- The cost of fresh water is vessel dependent since the cost is different depending on whether the fresh water is taken from shore and stored (70¢/1000 gallons) or whether it is generated aboard the vessel by an evaporator (\$20/1000 gallons).

Note that in addition to the above, vessel dependencies such as crew size, some of the operating cost elements (e.g. fuel consumption) also depend on vessel mission profiles, but this is another type of dependency which will be treated in the ensuing discussion. This also includes the number of WMS mode changeover cycles from primary to overboard mode and from pierside to primary mode.

Using the data in Figure 15 in conjunction with the equipment requirements information provided in Table 7, the annual operating costs and characteristics for each viable candidate system/vessel combination were computed. In making these computations, all pertinent vessel characteristics on which these cost elements depend have been accounted for. In order to facilitate the use of this information in the next stage of the calculations (which take mission profiles into acccunt) it was necessary to determine these cost elements not on an overall WMS basis, but rather on a WMS subsystem basis. Thus, results for WMS operating costs and characteristics based on continuous operation have been derived and are given separately for each of two major WMS subsystems. For purposes of these calculations, each WMS concept was subdivided into a black water waste Collection/Transport subsystem and a combined black and gray waste Treatment/Disposal subsystem. The results of the above described computations for each viable candidate WMS on each vessel are presented in Appendix B.

The results in Appendix B indicate that the operating costs for the Treatment/ Disposal subsystem are generally much larger than those for the Collection/ Transport subsystem (except for WMS Nos. 2 and 9). Treatment/Disposal subsystem operating costs are especially high for systems with evaporators and even higher for systems with incinerators. Most of the costs are for vessel resources (fuel and electric power). The largest Collection/Transport subsystem operating cost is associated with systems which utilize vacuum collection and oil recirculation^{*} (WMS Nos. 2, 3 and 9 through13). Operating costs are also a function of crew size.

It is noted from Figure 16 that preventive (scheduled) maintenance costs have been broken down into the following elements:

Labor, including:

- .. Periodicity
- .. Time required
- . Number and skill level of maintainer
- Parts (or materials) required

Using the results in Figure 16 in conjunction with the equipment requirements information in Table 7, annual preventive maintenance costs and characteristics for each viable candidate WMS configuration on each vessel were computed. The results of these computations are given in the left side of the tables in Appendix C. It is noted from Appendix C that the results for preventive maintenance based on continuous operation are given on an overall WMS basis rather than on a WMS subsystem basis. The reason for this is that due to the limited experience with these systems, a good basis for reducing the amount of preventive maintenance as function of use (i.e., vessel mission profiles) could not be determined and it was assumed that the same amount of preventive maintenance would be performed on these WMS subsystems/equipments independent of the vessel on which they will be installed. The left-hand portion of Appendix C indicates that most of the preventive maintenance cost is due to labor.

^{*} Note that in an oil recirculation system the Collection/Transport subsystem operating cost includes the cost of the treatment portion as well (except for the holding or incineration function).

It is noted from Figure 17 that corrective (unscheduled) maintenance costs have been broken down into the following elements:

Labor, including:

- .. Frequency
- ... Time required
- .. Number and skill level of maintainer
- Replacement part requirements

It is noted that, as in the case of operating activities, corrective maintenance activities could also have dependencies. An example of such a dependency is the replacement rate for the Jered incinerator liner. It is estimated that this liner has a life expectancy of approximately 500 burnhours. However, the annual number of burn hours for an incinerator on a given vessel depends on the crew size. As a result, the failure rate of the liner is given in terms of man-days rather than in hours.

Using the data in Figure 17 in conjunction with the equipment requirements information in Table 7, annual corrective maintenance costs and characteristics based on continuous operation for each viable candidate WMS configuration on each vessel were computed and are presented on the right side of the tables in Appendix C. As in the case of WMS operation, the results for corrective maintenance are given on the basis of the two major WMS subsystems in order to facilitate modification of these data as a function of vessel mission profiles. The right hand portion of Appendix C shows that in most cases, the corrective maintenance cost for the Treatment/Disposal subsystem is much greater than that for the Collection/Transport subsystem. Exceptions are systems based on reduced volume collection in conjunction with a holding tank or evaporator (WMS Nos. 9, 11, 14, 16 and 17) and for oil recirculation with a holding tank (WMS No. 2). This pattern is not followed by WMS No. 11 on the POINT HERRON due to the small number of fixtures on board this vessel and by WMS No. 17 on the FIREBUSH. Also noted is the fact that most of the corrective maintenance costs are due to the cost of parts.

From Figure 18, it is noted that overhaul costs are broken down into the following elements:

- Labor, including:
 - Overhaul interval (assumed to be two years for purposes of this study)
 - .. Time required
 - .. Number and skill level of maintainer
 - Parts and material requirements

Using the data in Figure 18, in conjunction with the equipment requirements information in Table 7, overhaul costs and characteristics for each viable candidate WMS configuration on each vessel have been computed and are presented in Appendix D. The data in Appendix D are given on an overall WMS basis rather than on a subsystem/equipment basis. Inherent in this is the assumption that the entire WMS will be overhauled at the same time rather than on a subsystem/equipment basis.

It is noted from Appendix D that for systems with complex equipment (i.e., reduced volume collection, incinerators, evaporators, etc.), the overhaul costs are higher and are due mainly to the cost of parts, whereas for less complex systems (e.g., gravity drain with holding tanks) the overhaul costs are lower and are due mainly to the cost of labor.

Operating and Maintenance Costs Based on Vessel Mission Profiles

The second step in estimating WMS recurring expenditures involves modifying the results based on continuous operation by vessel mission profile characteristics. The specific mission profile characteristics which are of interest for this purpose are the percentage of total annual time that the vessel is within restricted waters (or in a non-home port) as well as the annual number of three mile limit crossings and the number of shore dockings at home port and at yards. The percentage of time within restricted waters (or non-home port) is directly translatable into WMS utilization factors, whereas the number of limit crossings and shore dockings are translatable into the annual number of WMS mode changeovers. From Table 2 these

	Crew	WMS Utilization	Annual Number of Mode Changeover Cycles				
VESSEL	Size	Factor (%)	Primary/ Overboard	Pierside/ Primary			
GALLATIN (378')	152	11	36	20			
VIGOROUS (210')	60	5.6	15	16			
FIREBUSH (180')	50	14.1	34	103			
PAMLICO (160')	13	31	0	33			
WHITE SAGE (133')	21	11.1	17	81			
POINT HERRON (82')	8	1.8	46	46			

mission profile parameters for each vessel are as shown below.

In using vessel mission profile characteristics to modify the operating and maintenance costs based on continuous operation, it is important to recognize which WMS subsystems/equipments are affected and which ones are not. Thus, the WMS waste Collection/Transport subsystem has a utilization factor of 100% and therefore the data for this subsystem should not be modified by mission profile characteristics. On the other hand, the WMS waste Treatment/Disposal subsystem is operated only when the vessel is within restricted waters or in a non-home port, and it is turned off when the vessel is beyond restricted waters or connected to a shore waste receiving facility. Consequently, the data for this subsystem must be modified by the vessel mission profile characteristics. An exception to this is the treatment portion of an oil recirculation system which has a utilization factor of 100% (this does not apply to the holding or incineration function).

Generally, the modification consists of multiplying the data for the Treatment/Disposal subsystem based on continuous operation by the WMS utilization facotr. When this product is added to the corresponding cost element for the Treatment/Disposal subsystem data based on continuous operation, the resulting numbers are the desired costs.

The results of modifying the WMS operating characteristics and costs based on continuous operation (given in Appendix B) by vessel mission profile characteristics are presented in Appendix E. These results include the effect of accounting for mode changeovers. It is noted that the distribution of operating task frequencies given in the left hand portion of the tables in Appendix B were not modified by vessel mission profile characteristics since a valid basis for such modifications could be determined. The results in Appendix E indicate that the operating costs increase with an increasing WMS utilization factor.

WMS maintenance costs and characteristics based on continuous operation (given in Appendix C) as modified by vessel mission profile characteristics are presented in Appendix F. It is noted that, as discussed earlier, the preventive maintenance results were not modified by the WMS utilization factors for the reason stated. However, corrective maintenance data for the Treatment/Disposal subsystems were multiplied by the WMS utilization factors and added to the Collection/Transport subsystem. As a result, corrective maintenance costs increase with increasing WMS utilization factor.

Present Value of Operating and Maintenance Costs

The last step in estimating the life-cycle cost of WMS recurring expenditures consists of modifying the annual operating and maintenance costs based on WMS utilization factor by suitable present value factors. Present value factors take into account the expected life of the system and the assumed effective discount rate, which depends on prevailing interest and inflation rates and accounts for the time value of money. Present value factors applicable to operating, preventive maintenance and corrective maintenance costs (F_1) and to overhaul costs (F_2) are given in Table 11. The present value factors in Table 11 are based on the following assumptions:

- . A 10-year useful system life
- . A 10% effective discount rate
- . A two-year overhaul interval

Table 11

PRESENT VALUE FACTORS BASED ON A 10% EFFECTIVE DISCOUNT RATE*

		PRESENT VAL	LUE FACTORS	
PROJECT YEAR	Applicable to	Cumulative (Applicable to	For WMS Ove a two-year ov	erhauls (Based on verhaul cycle)
	Project Year**	Operation, PM:and CM)	Overhaul Status	Cumulative
1	D. 909091	0.909091	WMS Installation	
2	0,826446	1.735537	Overhaul	0.826446
3	0.751315	2.486852		
4	0.683013	3.169865	Overhaul	1.509459
5	0.620921	3.790786		
6	0.564474	4.35526	Overhaul	2.073933
7	0.513158	4.868418		
კ	0.466507	5.334925	Overhaul	2.54044
9	0.424098	5.759023		
10	0.385543	$F_1 = 6.144566$	Overhaul	F ₂ = 2.925983

* OM&B Circular No. A-94, dated 3/22/72, "Discount Rates to be used in evaluating time-distributed costs and benefits.

** The discount factors presented in the table above implicitly assume endof-year lump-sum costs and returns. When costs and returns occur in a steady stream, applying mid-year discount factors may be more appropriate. Present value cost and benefit computed from this table can be converted to a mid-year discounting basis by multiplying them by the factor 1.048809. For example, if the present value cost of a series of annual expenditures computed from the above table is \$1,200.00, the present value cost on a mid-year discounting basis is \$1,200.00 x 1.048809 or \$1,258.57. The present value factor F1 can be obtained from the effective discount rate (I) and the assumed useful system life (n) by the expression

$$F_1 = \frac{(1+1)^n - 1}{1(1+1)^n}$$

It is noted that the above expression as well as the results in Table 11 are based on the assumption that the operating and maintenance costs are identical during each year throughout the life of the system, i.e., any differences in costs which may occur during overhaul years are neglected.

The operating and maintenance costs based on vessel mission profiles (presented in Appendices E and F) are multiplied by the appropriate present value factors F1 or F2 to obtain the present values of operating and maintenance life-cycle costs. The results of this multiplication are presented in Appendix G. Since these recurring expenditures represent the costs for the entire assumed economic life of the system, these can be added to the fixed costs (acquisition and installation) in order to obtain the total life-cycle cost of each viable candidate system/vessel combination.

SENSITIVITY ANALYSIS OF LIFE-CYCLE COSTS

The sensitivity of the overall life-cycle cost to changes in the data and/or assumptions relating to the individual cost elements is indicated in two ways. First, the summary table at the beginning of this report shows each cost element and in addition indicates its relative contribution (expressed as a percentage) to overall life-cycle cost. These percentages serve as indications of the relative importance of changes in the data for each cost element. Second, expressions were derived relating the overall WMS life-cycle cost to the various cost elements, the assumptions, and the other parameters which affect the cost. These expressions indicate the amount

by which any one cost element (or other cost dependent parameter) has to vary in order to effect a given change in the overall life cycle cost, assuming that all other cost factors are held constant. Ideally, for this type of sensitivity analysis, the overall life cycle cost should be related to the actual data at the lowest level of each cost element. However, in view of the computational burden involved when this is done manually, this was not practical. Instead, the sensitivity analysis formulas developed relate the overall life cycle cost to individual cost elements at either the overall WMS level (for fixed costs) or the WMS Collection/Transport and Treatment/Disposal subsystem level (for operating and corrective maintenance costs). In addition to the fixed cost elements (acquisition and installation) and the operating and maintenance cost elements based on continuous operation (or per overhaul), sensitivity analysis expressions were also derived for the WMS utilization factor and the present value factors. The results of this sensitivity analysis are presented in Appendix H. Appendix H includes the derivation of the formulas for sensitivity analysis as well as tables showing the results of this analysis. The entries in these tables indicate the percentage by which the given cost element or other parameter has to change in order to effect a 10% change in the overall life cycle cost.

These results indicate that the sensitivity of a cost element depends on its relative contribution to the overall life cycle cost. As the WMS utilization factor increases, its sensitivity also increases, since this results in a larger contribution of the corresponding cost elements to the total life cycle cost. Comparison of the results for F_1 and F_2 shows greater sensitivity to F_2 , indicating that the life cycle cost is sensitive to the overhaul interval.

EFFECTIVENESS ANALYSIS

THE EFFECTIVENESS ASSESSMENT METHODOLOGY

The effectiveness of candidate systems is determined on the basis of numerous considerations, such as system characteristics and features, assumptions, etc. It is very difficult to make sound decisions based on the simultaneous judgment of a multitude of considerations, many of which may be unrelated. On the other hand, it is fairly easy to make individual decisions on a small scale. The approach used for assessing the effectiveness of candidates is based on converting the relatively difficult problem of trying to arrive at a major decision by simultaneously juggling numerous and often unrelated considerations, into the relatively easy problem of systematically making many "small" decisions. The approach also addresses the necessity of combining the decision-maker's subjective judgments with technical data and relevant assumptions in arriving at an overall effectiveness assessment of each candidate system.

The approach for assessing the effectiveness of candidates and the development of the effectiveness model which forms the basis for this assessment are closely related to the definition of effectiveness. In the context of this study, effectiveness is not to be viewed as a fixed and preformulated expression in terms of some specific variables. Instead, the following definition of effectiveness is used:

> The effectiveness of a candidate is broadly define? as its overall quality. This quality is determined on the basis of how well the candidate fulfills specified objectives, requirements and constraints. Furthermore, this overall quality can be quantified and the resulting number is the effectiveness rating of the candidate. The effectiveness rating is a quantitative measure of the degree to which the candidate has satisfied the aggregate of all the individual criteria for determining conformance with objectives and requirements as well as their relative importance.

It is noted that the above definition of effectiveness implies the following:

It is necessary to specify objectives, requirements and constraints.

It is necessary to establish criteria for judging how well the candidates fulfill the objectives, requirements and constraints.

. It is necessary to indicate the importance of the established criteria relative to one another.

It is necessary to quantify each individual criterion as well as the aggregate of all criteria and their relative importance. This quantification must be based on candidate attribute data (i.e., characteristics).

The effectiveness assessment methodology is the system of analysis techniques and associated computational proceduros which start with the relevant information concerning the candidates and their associated context as an input, and generates quantitative effectiveness ratings as an output. This methodology consists of procedures, guidelines and computational aids for executing the following three main steps of the effectiveness assessment.

Development of the effectiveness model.

Development of effectiveness attribute data geared to the effectiveness model.

. Quantification of effectiveness.

The effectiveness model is, in effect, a framework of criteria for judging the degree of acceptability of each candidate system. This framework is in the form of a hierarchy which structures the effectiveness assessment criteria in successive levels of detail and specificity. A set of weights are then associated with this criterion hierarchy to indicate the importance of each criterion in relation to the others. The development of the effectiveness model consists of the following identifiable steps:

- Selection of a set of measures of effectiveness (M/L_1) . The M/Es constitute a set of highest level overall criteria which will be the basis for assessing the effectiveness of the candidates.
 - Assignment of M/E weights (W_i) . These M/E weights are used to indicate the importance of each M/E in relation to the others.
- Determination of the factors (F_j) and subfactors (SF_k) of each M/E. Factors result from a breakdown of an M/E into its constituent lower level subordinate criteria which are implied by the higher level criterion represented by the given M/E. Subfactors result from a breakdown of a factor or another subfactor into its constituent lower level subordinate criteria which are implied by the higher level criterion represented by the given factor or subfactor. Elementary factors (F_e) or subfactors (SF_e) are those which have no subordinate subfactors and which can be directly related to one or more attributes (i.e., characteristic) of the candidates under consideration.
- Assignment of factor weights (W_j) and subfactor weights (W_k) . These weights are used to indicate the importance of each factor/subfactor (i.e., criterion) in relation to the others at the same level of subordination.

Development of an effectiveness rating function (ERF) for every elementary factor/subfactor. An ERF constitutes a functional relationship between the candidate attribute (characteristic) relevant to the given elementary factor/subfactor and an effectiveness rating which is a quantitative measure of the candidate's acceptability, quality, worth, desirability, etc., with respect to the given criterion. The ERFs constitute an important element

of the effectiveness model. They provide a mechanism for systematically bringing together and integrating the essential elements of the effectiveness assessment, namely:

.. Assumptions, goals, requirements and constraints.

.. Technical information.

. Subjective judgments of the decision maker.

The effectiveness attribute data required is determined by the ERFs. The ERFs also determine the format of these data. A numbering scheme which uniquely identifies each ERF within each M/E is used to associate the data with the corresponding ERF. An important aspect of the development of the ERFs and the associated effectiveness attribute data is its flexibility with respect to the type and level of detail of the required data. This ensures that the data requirements are realistic and are consistent with common practice in the field, i.e., the analyses performed in support of the effectiveness assessment such as MSD analysis, installation analysis, life-cycle cost analysis, etc. Thus, the development of effectiveness attribute data represents another important mechanism for integrating the results of the various analyses which are normally performed in the course of studying the candidates.

The quantification of the effectiveness is summarized in Figure 19. It is accomplished by relating the rating at any level of subordination in the effectiveness model to the next lower level elements of the model as the sum of products of the ratings and associated weights of these elements. Thus, starting with the elementary factors/subfactors, the next higher level subfactor or factor ratings are given as the sum of products of the elementary factors/subfactors. Similarly, the rating for a given M/E is obtained as the sum of products of its factor ratings and their associated weights. Finally, the overall effectiveness rating is obtained as the sum of the products of M/E ratings and their associated weights. Once the effectiveness model and the associated effectiveness attribute data have

۶,

been developed, the quantification of effectiveness is fairly straightforward and is accomplished by a computer program. The output of the computer program consists of an overall effectiveness rating for each candidate as well as effectiveness ratings with respect to each M/E.

As part of the development of the effectiveness assessment methodology, the above steps have been documented in greater detail and guidelines for executing these steps have been included (see Volume II of this report). It is noted both from the previous discussion of the development of the elements of the effectiveness model and from Figure 19 that the M/Es, the factor/subfactors and their associated levels of subordination constitute a hierarchy. Actually, four types of hierarchies can be discerned in connection with the effectiveness assessment methodology, namely:

- A hierarchy of objectives and requirements.
- A hierarchy of criteria associated with the objectives and requirements.

A hierarchy indicating the importance of each criterion in relation to the others.

A hierarchy of effectiveness ratings which are quantitative measures of the degree to which each criterion in the hierarcy is satisfied by each candidate.

The first three hierarchies are associated with the effectiveness model and the last hierarchy is associated with the quantification of effectiveness. However, it is noted from Figure 19 that the quantification of effectiveness includes the use of the weights. Thus, the weights possess a dual character, namely, as indicators of the relative importance of each criterion (related to the effectiveness model), and as numbers used in obtaining the ratings (related to the quantification process). Finally, it is noted that the development of the effectiveness

model can be characterized as analysis (top to bottom process), whereas the quantification of effectiveness can be characterized as synthesis (bottom to top process).* The above discussed relationships in connection with the effectiveness assessment methodology are summarized below.

* It is noted that the life-cycle cost analysis presented in a previous section of this report, is based on a similar approach, consisting of the development of a detailed life cycle cost model appropriate for wastewater management systems (analysis), followed by substitution of data at the lowest level of the model and building up to the overall life-cycle cost (synthesis).

THE EFFECTIVENESS MODEL

One of the tenets of this effectiveness assessment methodology is that in order to produce meaningful results, it is necessary for the decision-maker to participate in the development of the effectiveness model. In conformity with this principle, the effectiveness model was developed in consultation with and the active participation of, cognizant U.S. Coast Guard technical representatives. Such Coast Guard participation vas extensive in the development of the structure of the effectiveness model, i.e., the choice of the M/Es and the breakdown of each M/E into its factors/subfactors and the associated levels of subordination. The M/E as well as the factor/subfactor weights assignments were made by the Coast Guard. Finally, the development of the ERFs was carefully coordinated with the Coast Guard technical monitor.

Measures of Effectiveness and Associated Weights

The effectiveness model for the wastewater management systems analyzed in this study is based on the seven measures of effectiveness (M/Es) shown in Table 12. Each M/E in Table 12 is numbered for reference purposes and a brief statement indicates the kinds of considerations which are encompassed by each M/E (and elaborated by its factors and subfactors). A weight is associated with each M/E to indicate its importance in relation to the others, such that the sum of these weights is 100%. It is noted that the overall effectiveness ratings of the viable system/vessel combinations reflect this weight assignment and should be interpreted accordingly.

M/E Factors/S Anctors and Associated Weights

A breakdown of each M/E into its factors and a further breakdown of factors successively into subfactors and associated levels of subordination is indicated in the following pages. Within each M/E, each factor and subfactor is uniquely identified by a numbering scheme which also indicates its level of subordination. The number of bullets appearing in front of each factor and subfactor is intended to provide more convenient visual indication of its level of subordination.

Table 12

MEASURES OF EFFECTIVENESS AND ASSOCIATED WEIGHTS

MEASURE OF EFFECTIVENESS (M/E)	WEIGHT (%)
 I - ADAPTABILITY FOR SHIPBOARD INSTALLATION (Suitability for vessel, ease of installing, effects on vessel) 	8
 II - PERFORMANCE (How well system accomplishes intended functions) 	15
III - OPERABILITY (Ease of operation, burden on crew, operational expendables)	12
 IV - PERSONNEL SAFETY (Likelihood, severity and ease of correcting hazards) 	11
V - HABITABILITY (Noise, odor, heat, user comfort, aesthetics)	17
VI - RELIABILITY (Potential for failure free operation)	23
VII - MAINTAINABILITY (Ease of correcting failures, manpower and logistic requirements)	14

I - ADAPTABILITY FOR SHIPBOARD INSTALLATION

• ŧ.,

f 3	NO			•		*			
1 0	ALL HERE	+ + +	A	A		+	1	44	•
heet	3DVS (EEI)								
S	(001) CONTRACT						_		
	PANAL CONTRACT								
1	HS (.08 I) HS (REAL)								
	LE COCOR		++			·	-		
	MIL (BLE)				ļ				
	CALL	20 55 90	10	35		12	12	50 F	~~ I
	FACTOR/SUBFACTOR WEIGHTS (%) (As a Function of Vessel) M/E FACTORS AND SUBFACTORS (Description and Level of Subordination)	. WMS suitability for vessel Required capacity of system(s)	Gray	 Extent of additional support systems/equipment required to accommodate WMS (Compressor, fire fighting equipment, bilge alarm, ozone detector, vents, etc.)	 Ease of WMS installation existing commodes/urinals/ Extent of fixture modifications (i.e., existing commodes/urinals/ fixtures vs. special commodes/urinals/fixtures, including 	 hook-up requirements)	Ease of instantation wastewater contention that are a supported in the N/T pumps for GATX)	but not in JERED)	Space requirements
	FACTOR/ SUBFACT DENT, NO,		112 112	13	2 21	525	231	232	233

1_

こころのうちろう

I - ADAPTABILITY FOR SHIPBOARD INSTALLATION

Sheet 2 of 3	(2) / 64 / 25 (2) / 64 / 25	IC COLES LIE	2/2 - 12 8																	
		SALLA T			15	52+		2 E	2		1 2	25	2	01		 ?	75	25		
	FACTOR/SUBFACTOR WEIGHTS (%) (As a Function of Vessel)	M/F FACTORS AND SUBFACTORS (Description and Level of Subordination)	Modularity of systems (i.e., single package unit vs. decentralization of commented	··· Vent requirements	Ease of installing waste Treatment/Disposal subsystem Space remirement-	•••• Hook-up requirements (plaina for final oil frach	cooling water, compressed air, interconnecting remotely located equipment, overboard discharge line, etc.; electric	cables for power supply, remote control panels, etc.; ducting for ventilation. etc.)	Modularity of system (single package unit vs. decentrali- zation of components; note that decentralization of	components may require additional hook-ups and piping	··· Vent requirements	••• Exhaust stack requirements	•• Ease of installing WMS support equipment (e.g., compressor,	•• Ease of compensating for added weight of which	•• Degree of vessel alterations required for WMS installation	enlarged doors/harches trons (e.g., foundations,	for air compressor)	Temporary modifications (e.g., cutting access opening)		
10101	SUBFACT SUBFACT IDENT.	NO.	234	235	241	242			243		244	245	¢7	26	27	1/3		7/7	- <u></u> ,-	

113

for I - ADAPTABILITY FOR SHIPBOARD INSTALLATION

f 3	NOm			-										
heet 3 c	35.	LANDA -	ł	11		1					 			
She	100 - 200 -	LIH M		T								 	•	
	100	ANY NO							Π				<u> </u>	
	HSI	EBE C 82									 		· · · · · ·	
	3003	28.5						1			 			•••••
i	L'LL'	CA ST	30 -	++ 22	15	25	20 20 20	35		2				
	FACTOR/SUBFACTOR WEIGHTS (%) (As a Function of Vessel)	M/E FACTORS AND SUBFACTORS (Description and Level of Subordiration)	. Effects of WMS on vessel	. Stability	Normal range	Vessel resource consumption	Electric power	Potable water	Compressed air	Cooling water				
	FACTOR/ SUBFACT. DENT.	NO.	e	31	33.	35	351	353	354	ççç	 	 		

١

for

· .;

Sheet 1 of 2	15 15 15 15 15 15 15 15 15 15	
	CALLY FER	15 15 30 30 25 25 25 25 25 30 90 10 10 10 10 10 10 10 10 10 10 10 10 10
II - PERFORMANCE	PACTOR/SUBFACTOR WEIGHTS (%) (As a Function of Vessel) M/E FACTORS AND SUBFACTORS (Description and Level of Subordination)	 WMS figures of merit WMS figures of merit Per capita energy consumption (electric power; power for ventilation, compressed air, pumping flush medium and cooling water; fuel; fuel; for firsh water generated aboard vessel) Per capita system welgint (wet) Per capita system welgint (wet) Per capita system wolume Per capita system volume Adequacy of WMS to handle, and effects on performance, of abnormal hydraulic loads Black Bl
	FACTOR SUBFACT DENT, NO,	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

• :

:

for

11 - PERFORMANCE

NORTH THIOR Sheet 2 of 2 (₈₈₇₎ Wen Course) Wen Course) by Will CO (189: (OST) (_{0[2}) NICONORI (318) CALLATIA 15 10 75 25 25 15 10 10 15 65 60 Ability of WMS secondary emissions to meet applicable standards ---Ability of WMS to handle ground garbage and extraneous materials in Toxic malerials (as it affects performance of biological system) FACTOR/SUBFACTOR WEIGHTS (%) (As a Function of Vessel) Performance risk for WMS configuration (i.e., hybrid systems, .. Discharge of significant air pollutants ------Disposal of oil contaminated residues at sea (Description and Level of Subordination) .. Foreign materials/objects Detergents/surfactants M/E FACTORS AND SUBFACTORS black water stream ---. Ground garbage -experience) .. Black .. Gray • • FACTOR/ SUBFACT. IDENT. NO. 71 51 52 53 53 6 61 62 ŝ

III - OPERABILITY

[]	Mol	
et l o	ADIAN HERE	<u>+++</u> + +++++++++++++++++++++++++++++++
She	RULLE SY	
	He Coast	
	Elected of the second s	
	AICOCC	
	C VIII	20 20 20 20 20 20 20 20 20 20 20 20 20 2
	FACTOR/SUBFACTOR WEIGHTS (%) (As a Function of Vessel) M/E FACTORS AND SUBFACTORS (Description and Level of Subordination)	 Ease of WMS operation Automatic/semi-automatic/manual operation Disposal of residue(s) Disposal of violating effluent standards because of procedural errors (discharge of effluent which doesn't meet emission standards, flush oil, evaporator residue, wastewater or sludge from holding tank, stack emissions from inclnerator which do not meet standards, etc.) Burden of WMS on crew's operating personnel Frequency of operator involvement Frequency of operator involvement Skill level requirements Skill level requirements Additional personnel (billets) required Additional personnel (billets) required Additional personnel (billets) required Additional personnel billets) required Additional personnel sevendables Additional personnel billets) required Additional personnel billets) required Additional personnel billets) required Additional personnel billets) required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required Additional personnel billets required
	FACTOR/ SUBFACT. IDENT. NO.	1 11 12 13 25 22 23 26 25 22 23 23 33 33 33 33 33 33 33 33 33 33

117

for

IV - PERSONNEL SAFETY

Ţ	Non					
et l o	ADIATE HEDE		444			
She	NHHE COURCE					
	N PARTICO					
	50- (.01)					
	200000 20000 20000 20000					
	CALLS F	30 - 75 - 25 -	25 - 75 - 25 -	20 75 25 25	10 10 20 20 20 20	•
	FACTOR/SUBFACTOR WEIGHTS (%) (As a Function of Vessel) M/E FACTORS AND SUBFACTORS (Description and Level of Subordination)	 Contact with/spillage of toxic/dangerous substance associated with WMS Inherent design feature Procedural errors/equipment failures (note repair induced hazards) 	 Explosive potential for operator/maintainer of WMS (e.g., pressurized vessels, vapors) Inherent design feature Procedural errors/equipment failures 	 Fire ignition potential of WMS Inherent design feature Procedural errors/eguipment failures Electric shock potential to operator/maintainer of WMS 	 Physical hazards associated with WMS Sharp edges Hot surfaces Rotating machinery for maintainer 	
	FACTOR/ SUBFACT. DENT. NO.	1 11 12	2 21 22	3 31 32 4	5 52 53	

for

.

Sheet 1 of 1	CEE LEE EN CONSTRUCTION	15	25			25	A	25		15			15		2
V - HABITABILITY	FACTOR/SUBFACTOR WEIGHTS (%) (As a Function of Vessel) M/E FACTORS AND SUBFACTORS (Description and Level of Subordination)	. Bacterial contamination associated with WMS (user psychological	. Inherent design fea ure	. Fixture efftacy of WMS	. Flushing procedure requirements	Waste retention in bowi	. Flushing noise	. Odors produced by WMS	Inherent design feature	. WMS heat generation for operator/maintainer/adjacent berthing	working areas	Procedural errors/equipment failures	. Noise levels in vicinity of WMS for operator/maintainer/adjacent berthing and working areas	. Vibration produced by WMS for operator/maintainer/adjacent berthing and working areas	. Effect of WMS on user housekeeping routines
	FACTOR/ SUBFACT DENT, NO.		11	2	22	24	72 26	3	31	4	41	42	2	9	2

د: الت

for

VI - RELIABILITY

=	No										
1 of	ALL HERE		44	4 4	1	A A	•	· · · · · · · · · · · · · · · · · · ·			<u></u>
seet	30 V 5 6 5 1 1	┝━━╫╉			+	$\left - \right $					
S	(B) COLOR (B)										
	PARTICO PARTICO								• ,		
	HS DE IN	╞──╂╂		-++	-+-						
	STO GOT 2					┼╌┼					•
	2031A										
	CALLA TTA	50	30+	25 25 25	15 +	2 IO	20				
			!!	<u> </u>	ļ	! E !	!				
				Ces	0	stel					
	ST 1			ed s	f on	t sy	۹۷ آرو				
	HOIE			lead		otec	ovat				ı
1	×× *>		(in the second s	lal l	allu 	d i	lin I				,
	ACT		ratio	Ithor			uo uo				
	/SUBI		figu	add	(i.e	ants.	ırati				
-	Ĩ E E E		,con	g., ancy	nce all)	eche on)	l bij				
>	FA		lgn/	(e.	to f	ff m srati	Ö				
			des	incy red	lepe		brid				
		AS -	tem	unda el) nent	e Inc	ngs d cu safe	h				
	a tion	Š	(sys	redt esse	Ilure	rati uáte a II	D			•	. •
	TORS	r for	MS	ut v /co	it fa se a	act: for f	S (e				
	BFAC of Sul	nde	r V ity	urat gho nent	men cau	ault	Ce)	•			
	iD su	ςγi	t fo plex	nfig hrou	quip not	for f	for rien		,		
	AN SS AN	nen	inde com	of co es t	of e vill	lo Y: ns 1 ng	risk expe	•			
	CTO ption	freq	ity tem	ent o xtur	ee ee	juac isio	n.				
	/E FA	ure	abil Syst	Exte fi Exte	Deg	Adec Prov (1	labij esiq				
	WE	Fail	Reli	•		::	Reli			·	
	28	 	•				·				
	BFAC BFAC		-	0.0) - 1	υ u	-				
	EA SUI		2 2	0 5	· ~ _	<u>88</u>	9				
					12	20					

for

VII - MAINTAINABILITY

Sheet 1 of 1

NOW		
15: (5: 10: 10: 10: 10: 10: 10: 10: 10: 10: 10		
Constant		_
PANALCO		
ASUBLAT		
10,000 10 10 10 10 10 10 10 10 10 10 10 10		
GALLATTIC	12 50 52 50 50 50 50 50 50 50 50 50 50 50 50 50	
FACTOR/SUBFACTOR WEIGHTS (%) (As a Punction of Vessel) M/E FACTORS AND SUBFACTORS (Description and Level of Subordination)	 Corrective Maintenance (CM) requirements for WMS	
PACTOR SUBFACT DENT. NO.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

1

.

A weight is associated with each factor and subfactor to indicate its importance in rotation to the other factors or subfactors at the same level of subordination such that their sum is equal to 100% (as was done for M/E weights). These weights are assigned to factors and subfactors at a given level of subordination without regard to factor/subfactor weight assignments at higher or lower level of subordination. Factor/subfactor weights may be vessel dependent to reflect individual vessel requirements but for purposes of this study, the same set of weights was used for each vessel. It is noted that the overall effectiveness ratings as well as ratings with respect to each M/E for the viable candidate system/vessel combinations reflect these weight assignments and should be interpreted accordingly.

Effectiveness Rating Functions (ERFs)

An effectiveness rating function (ERF) was developed for each elementary factor/subfactor. Figure 20 shows the form used for documenting these ERFs. This form also facilitates recording the effectiveness attribute data (including its source) and effectiveness ratings for each viable candidate system/vessel combination associated with the given ERF. The effectiveness model used resulted in 111 individual ERFs which are uniquely identified by the numbering scheme for factors and subfactors. Thus, each viable candidate system/vessel combination is evaluated on the basis of 111 individual criteria. These ERFs are presented in Volume II of this report and are numbered to correspond to the numbers associated with each elementary factor/subfactor within each M/E.

EFFECTIVENESS ATTRIBUTE DATA

The effectiveness Attribute Data required as input to the effectiveness model is defined by the ERFs. These data came from three different sources which represent three types of analyses (among others) performed as part of this study, namely: The MSD analysis

The WMS installation analysis

The WMS life-cycle cost analysis

The manner in which the effectiveness attribute data is used for rating elementary factors/subfactors is documented by the corresponding ERFs. In order to facilitate the quantification of effectiveness, the effectiveness attribute data for each viable caldidate system/vessel combination was recorded on the form in Figure 20 in the format specified by the ERF. As noted from Figure 20, this form has a provision for indicating the source of the data and it also lists the non-viable system/vessel combinations for which no effectiveness attribute data (and no ratings) were developed. Some ERFs call for effectiveness attribute data from more than one source, e.g., some elementary factor/subfactor ratings for the M/Es PERSONNEL SAFETY and for HABITABILITY depend on data from both MSD related as well as WMS installation related effectiveness attribute data. In such cases, both sources of data would be indicated on the form in Figure 20. These data, as well as effectiveness ratings, for each viable candidate system/vessel combination with respect to each elementary factor/subfactor are presented in Volume II of this report on the corresponding ERF forms.

MSD Related Effectiveness Attribute Data

Results of the MSD analysis are presented in Volume V of this report. Figure 21 shows a sample form which was used to document MSD related effectiveness attribute data. It is noted from Figure 21 that the MSD effectiveness attribute data were developed and presented on a subsystem level in accordance with the manner in which the MSDs were hybridized to form the candidate WMS concepts. For ease of reference each MSD subsystem characteristic is keyed to the associated ERF by the unique factor/subfactor identification scheme.

EFFECTIVENESS RATINGS FOR ELEMENTARY FACTORS/SUBFACTORS

Figure 20 FORM USED FOR DOCUMENTING EFFECTIVENESS RATING FUNCTIONS AND ASSOCIATED ATTRIBUTE DATA AND RATINGS

124

MSD EFFECTIVENESS ATTRIBUTE DATA

M/E II - PERFORMANCE

MSD_		Sheet _	1_of_4_
M/E Factor/	PERFORMANCE	Attribu	te Data
Subfactor	Champeraturies	Collect, /Transp. Subcutern	Treat, /Disposal
Haent, NO,		00//400	000,000
311	 Effect of peak hydraulic loads in black " water stream on MSD parformance." (a) No significant effect of black water peaks on MSD subsystem performance. (b) Effect of black water peaks is of short duration, with temporary implications for MSD subsystem performance, easy to overcome. (c) Long-term effect of black water peaks, difficult to overcome. (d) No shility of MSD subsystem to handle black water peaks. 		
312	 Effect of peak hydraulic loads in gray⁽¹⁾ water stream on MSD performances (2) (a) No significant effect of gray water peaks on MSD subsystem performance. (b) Effect of gray water peaks is of short duration, with temporary implications for MSD subsystem performance, easy to overcome. (c) Long-term effect of gray water peaks, difficult to overcome with long-term implications for MSD subsystem performance. (d) No ability of MSD subsystem to handle gray water peaks. 	,	
321	 Effect of low flow conditions/long idle times in black water stream on MSD performance(3) (a) No significant effect of black water low flow conditions/long idle times on MSD subsystem performance. (b) Effect of black water low flow conditions/long idle times of short duration, with temporary implications for MSD subsystem performance, easy to overcome. (c) Long-term effect of black water low flow conditions/long idle times, difficult to overcome, with long-term implications for MSD subsystem performance. (d) No ability of MSD subsystem to handle black water low flow conditions/long idle times. 		
(1) Inc (2) Pea (3) An	ludes instantaneous, hourly and daily loads. It load handling ability depends on C/T subsystem. The ability of an MSD which handle peaks usually depends almost entirely on the sizing of this tank. example of low flow condition is when 75% of the crew is not on board vesse! for a remaining 25% of crew is normal. Long idle times are on the order of several wee	employs an influen week and usage r ks of virmally no	nt surge tank to ate by usage of MSD.

Figure 21

SAMPLE DATA FORM USED FOR DOCUMENTING MSD EFFECTIVENESS ATTRIBUTE DATA

WMS Installation Related Effectiveness Attribute Data

Results of the WMS installation analysis are presented in Volume III of this report. Figure 22 shows a sample form which was used to document WMS installation related effectiveness attribute data. These data were developed and are presented on an overall WMS basis. It is noted from Figure 22 that each WMS installation characteristic is keyed to the associated ERF by the numbering scheme for uniquely identifying each factor and subfactor.

WMS Operating/Maintenance Cost Related Effectiveness Attribute Data

Results of the WMS life-cycle cost analysis are presented in Appendices B through G. Some of the data resulting from this analysis (e.g., vessel resource usage, labor and parts requirements for operation and maintenance), constitute effectiveness attribute data. Most of these data were developed and presented on an overall WMS basis. The WMS cost related information used as effectiveness attribute data came mostly from the WMS overhaul costs and characteristics (Appendix D), the WMS operating costs and characteristics based on vessel mission profiles (Appendix E) and the WMS preventive and corrective maintenance costs and characteristics based on vessel mission profiles (Appendix F).

EFFECTIVENESS RATINGS OF VIABLE CANDIDATE SYSTEM/VESSEL COMBINATIONS

The results of quantifying the effectiveness of each viable system/vessel combination by substituting the effectiveness attribute data into the effectiveness model are presented in Table 13. Results for each viable candidate WMS configuration on each vessel are given at two different levels of detail, namely an overall effectiveness rating and a rating for each M/E of the effectiveness model (including its associated weight). The quantification of effectiveness was performed by a computer program. A description of this computer program as well as the prepared input to the program are presented in Volume II of this report.

WMS INSTALLATION EFFECTIVENESS ATTRIBUTE DATA

SEL SE				Ve	sser										an	eer	1 01	
and a star	JE STEEL			M/1	5 I	- ADA	PTAP	BILIT	y for	SHI	BOAR	D IN	STAL	LATI	ON			
V Y						INS	TALL	ATIO	N CH	ARAC	TERIS	TIC		,				
111	Requi (a) <i>A</i> (b) V (c) V	red bia ictual o VMS m VMS ca	ck wat capacit arginal pacity	er hand y of W. ly sziu insuffi	lling cu MS equ ble for cleat fo	als or es vessel (ressel)	ior vesi tceeds has 95 (less t	require -99% o han 95	us actu nd capa if requii % of re	al capa city for red capa quired c	city of vessel. icity). iapacity	W M25						
MS#	1	2	3 -	¥	8	6	7	8	9	10	11	12	13	14	15	16	17	18
Data																		
112	Requi (a) / (b) 1 (c) 1	ired gra Actual - VMS m WMS ca	ay wate capacit arginal specity	r handi iy of W ily suit: insuffi	ing cap MS equ able for cient \$	pacity fo tals or ex r vessel (or vessel)	r vene xceeds (has 95 l (less 1	requir i-99% c than 95	n actua ed capa of requi	il capac icity for red cap quired o	ity of l vessel. acity), apacity	√MS 7)•		,				_
was#	1	2	3	4	8	6	7	8	9	10	11	12	13	14	15	16	17	18
Data					<u> </u>				<u> </u>									
13	(a) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	no addi Some a Many a (1) Ezal	ditional ddition ddition mplen:	support al support al supp al supp . Firefi . Bilge . Comp . Detec feat	st system ort system ort system shing alarm wrestor i stors of area, us system,	ins or equi ens or equi ens or e system t required toxic of es such ; /equipm	ipmen squipm squipm squipm nust be if larg on ves noxio gases i ent do	to requirents requirents requirents requirents requirents re sents research	ired. quired. quired. quired. is insta is is is insta is is is insta is is (2) (3) h incimalied at ot alread d be ins rattes, antly re	eracor. ove bil dy have talled u duce W	ge. s one. vith an	y syste	m that	, as an	interat	, at desig		
		(⁰⁾ Sudi	ability	of WN	tS for i	stallari	00 00	venel s	ignific	antly re	duced.							
WMS #	1	Sut	ability 3	of WN	IS for in	stallari 6	7	venel : 8	ignific 9	antly re	duced.	12	13	14	15	16	17	18
WMS# Data	1	2	3	of WN	is for it	6	7	s second	ignific 9	antly re	luced.	12	13	14	15	16	17	18
VAS# Data 21	1 Exte (a) (b) (c) (d) (e)	1 2 nt of fi No firt Some i All con is req All fir	xture n xture n hree ne hrures ne hrures n hutred. tures n hree n	of Wh	S for D S Sticks 1 S S S S S S S S S S S S S S S S S S S	equired on or rej ation or ment ar sot or m	for WI for WI placem replac sd mod sdifica	MS inst bent. Sement ification (etion at	allation on of w	antly re 10 10 antlease chal-as cplacem Exture	sociates	13 d equip commo ditiona	13 oment (odes an 1 be sid	e.g.,	15 urinal d	15	17 ge valve	18 ==)
WAS# Data 91 WAS#	1 Exte (a) (b) (c) (d) (e) 1	at of fi No fixt Some i All con is req All fix All fix	xture n xture n xture n xtures ne xtures n mode utred. tures n utres n xtures n xtu	of Wh	stions : stions : tification replace laceme s	equired on or rej ation or ement ar sot or me at or m	for WI placem replac 3d mod odifica odifica	MS inst ment. ment. sement ification ation at 8	allation 	antly re 10 10 an an an an an an an an an an an an an	auced.	13 d equip commo ditiona 13	13 orment (odes an 1 be ski 13	e.g., d urina ap requ	15 urinal d iranea	16 tischarj meters ta associ	17 ge valve Sated w	18 (11) (11) (1) (12) (1)

Figure 22

SAMPLE FORM USED FOR DOCUMENTING WMS INSTALLATION EFFECTIVENESS ATTRIBUTE DATA

Table 13

EFFECTIVENESS RATINGS OF VIABLE CANDIDATE SYSTEM/VESSEL COMBINATIONS

GALLATIN (378') Vessel

الهبيه	
0	ł
- 1	ł
- 1	1
	l
_	ł
	l
	1
- 1	ł
*	ł
ŵ	ł
Ð	ì
2	I
20	
	1

	1																				
) WEIGHTS)	Overali	Effectiveness (E) Rating	87	72	68	- 77	N/A	N/A	72	N/A	64	57	58	N/A	N/A	72	65	67	N/A	N/A
Jaauo	SSOCIATE	А 	(23) spille Weint	92	78	78	79	N/A	N/A	80	N/A	53	53	41	N/A	N/A	49	49	41	N/A	N/A
	S (AND A	•	(53) 991114 86117	96	87	80	85	N/A	N/A	83	N/A	44	33	42	N/A	N/A	76	64	74	N/A	N/A
	SS RATINC		(12) Habit Habit	75	51	36	58	N/A	N/A	43	N/A	71	55	65	N/A	N/A	67	50	60	N/A	N/À
	FECTIVENE	ləul	(11) Safety Person	95	88	82	94	N/A	N/A	80	N/A	95	92	16	N/A	N/A	93	91	89	N/A	N/A
	JRE OF EFI	. /	(15) 901(14) 006C-	16	52	52	80	N/A	N/A	71	N/A	65	53	64	N/A	N/A	86	74	85	N/A	N/A
	MEASI	/ •	bertor	72	67	.76	70	N/A	N/A	72	N/A	69	70	58	N/A	N/A	70	68	60	N/A	N/A
		107	(8) 2010 I 100 100 100 100 100 100 100 100 100 10	88	81	78	77	N/A	N/A	73	N/A	72	69	65	N/A	N/A	71	67	64	N/A	N/A
	olding	apacity	(%) (%)	19	18	13	17	N/A	N/A	17	N/A	2 I	21	17	N/A	N/A	30	33	17-	N/A	N/A
8.)		Ö	(x) 319CK	100	100	100	100	N/A	N/A	100	N/A	100	100	100	N//A	N/A	100	100	100	N/A	N/A
LATIN (37		3	nt/Disposal system	Holding Tank	Holding Tank	Holding Tank	Holding Tank	'low Thru g Tank	Grum Flow Thru+HldTnk	Holding Tank	low Thru rator	Heiding Tank	Holding Tank	Holding Tank	Grum Flow Thru+Hld Tnk	Grum Flow Thru + Incin.	Holding Tank	Holding Tank	Holding Tank	Grum Flow Thru+Hld Tnk	Grum Hlow Thru + Incin.
el GN		1YT	Treatment Sub	Holding	Chrysler + Hld Tnk	Chrysler + Incin.	Grum Flow Thru +HIdTk	Grumman I + Holding	Holding Tank	Grum Flow Thru+Incln	Grumman F + Incluer	HoldI ng Tank	Incinerator	GATX Evap.	Holdi ng Tank	Inclnerator	Holding Tank	Inclnerator	GATX Evap.	Holding Tank	Inclnerator
Vesse		/o.//	Subaya	Gravity Collect.	Oil Secircul.	(Chrysler)	Gravity Collect. I	Grumman)	Gravity Collect.	Gravity	Collect.	Vacuum Collect.	(Jered)				M/T Pump	Collect.	·		
			22.5]-	2	ę	4	م <u>ت</u>	ω	~	œ	0,	10	11	12	13	14	15	16	17	18

N/A - Not a visble condidate system/vessol combination.

Table 13

EFFECTIVENESS RATINGS OF VIABLE CANDIDATE SYSTEM/VESSEL COMBINATIONS

			_		_																		
2 of 6	D WEIGHTS)		Effectivenes	🖊 (E) Rating		04	69	N/A	N/A	N/A	N/À	N/A	N/A	61	55	N/A	N/A	N/A	74	65	69	N/A	N/A
Sheet	SOCIATE	- U)	() 1311 1115 1115 1115 1115 1115 1115 111	(53 99 99 198	6	ŝ	81	N/A	N/A	N/A	N/A	N/A	N/A	50	50	N/A	N/A	N/A	53	20 22	44	N/A	N/A
	GS (AND /		גיגא קיר ור	52) 190 190 192	96	2	83	N/A	N/A	N/A	N/A	N/A	N/A	43	31	N/A	N/A	N/A	80	67	62	N/A	N/A
	ESS RATIN	_	ן זון גע קוג־	(1) 198 191	75	2	51	N/A	N/A	N/A	N/A	N/A	N/A	71	55	N/A	N/A	N/A	67	50	60	N/A	N/A
	FECTIVEN	iə. 	() () () () () () () () () () () () () (1) 125 125 125 125 125 125 125 125 125 125	05	2	88	N/A	N/A	N/A	N/A	N/A	N/A	95	88	N/A	N/A	N/A	93	87	68	N/A	N/A
	URE OF EF	_	5) ([[[f] ([[f] ([]]	(1) 19 0 0 0	01	;	54	N/A	N/A	N/A	N/A	N/A	N/A	65	52	N/A	N/A	N/A	86	74	86	N/A	N/A
	MEAS	-	ی) انده: ریزمد:	े।) ह्या बिर्म	с, в	3	56	N/A	N/A	N/A	N/A	N/A	N/A	57	70	N/A	N/A	N/A	69	68	60	N/A	N/A
1			م م م م الالالا الالالا الالالا الالالا الالالا الالالا الالالا الالالا الالالا الالالا الالالا الالالا الا الا الا الا ال ال	4 9 2 6	84	;	69	N/A	A/A	N/A	N/A	N/A	N/A	65	63	N/A	N/A	N/A	76	62	69	N/A	N/A
	Holding	apacit	12	\$ \$ 20/	-	•	1	N/A	N/A	N/A	N/A	N/A	N/A	-	-	N, 'A	N/A	N/A		m	-	N/A	N/A
5		/	75	8) 878	40	2	53	N/A	N/A	N/A	N/A	N/A	N/A	48	100	N/A	N/A	N/A	100	100	100	N/A	N/A
DRO US (21(PE		ant/Disposal Bystem	Gray	Holding	Holding	Tank	Holding Tank.	Holding Tank	Flow Thru g Tank	Grum Flow Thru+HldTnk	Holding Tank	low Thru rator	<u>Yaiding</u> Tank	Holding Tank	Holding Tank	Grun Flow Thru+H!d Tnk	Grum Flow fhru + Incln.	Holdlag Tank	Holdi ng Tank	Holding Tank	Grum Flow Thru+Hld Tnk	Grum Flow Chru + Incin.
el VIGC	TY		any Treatme Sut	Black	Holding	Chryster	+ Hid Tnk	Chrysler + Incin.	Grum Flow Thru+HldTk	Grumman + Holdin	Holding Tank	Grum Flow Thru+Inc1 n	Grumma. F	Holding Tank	Incherator	GATX Evap.	Holdir.g Tank	Inclnerator	Holding Tank	Incinerator .	GATX Evap.	Holding Tank	nclnerator
Vess		1.05/	ColVTri	e (Blank)	Gravity Collect	011	Recircul.	(Chrysler)	Gravity Collect.	(Grumman)	Gravity Collect.	Gravity	(Grumman)	Vacuum Collect.	(Jared)				M/T Fump	Collect. (GATX)			
				3	Ľ	<u> </u>		e)	4	~	9			σ	10	1	12	13	14	15	16	17	8

N/A - Not a visbie candidate system/vessel combination.

129

Tabel 13

EFFECTIVENESS RATINGS OF VIABLF CANDIDATE SYSTEM /VESSEL COMBINATIONS

FIREBUSH (180')

	\square		-														~ .	_				
3 of 6	WEIGHTS).	Overall	Effectiveness		86	71	69	76	- 78	78	73	71	64	57	58	.56	52	75	68	70	68	64
Sheet	SOCINTEL	-47		27 20 20	93	78	76	78	76	76	79	74	48	47	35	36	37	60	57	52	53	53
	S (AND AS		53) PT[TFA =11- =11-	2) 10	96	82	77	84	80	89	81	76	46	31	45	39	26	86	70	84	78	66
	SS RATING	/	())) 1 (())))))))))))))	リアモリ	75	51	46	58	73	60	53	63	71	65	65	56	63.	67	60	60	52	59
	FECTIVENE	1əu	(])][6[h][200]	12 83 4	95	88	82	94	94	95	80	72	95	92	91	95	80	93	16	89	94	80
	URE OF EFI		(5) 0111 [] Dec-	280	06	51	51	76	73	73	67	62	70	59	70	59	52	82	69	82	69	63
	MEASI	/	ן 2) סטכי נעכי	234	71	67	75	69	70	11	11	75	68	69	57	68	67	69	67	59	68	68
		18	م ما الديم ما الديم	4 4 5 6 6	82	80	77	83	83	81	79	78	70	59	61	62	59	67	62	60	58	57
	olding	pacity	(S) (D)	てい	0	0	12	22	100	100	29	100	13	35	35	100	100	13	35	35	100	100
1	H	บั //	() S C K	K) 18	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
BUSH (180		9	nt/Disposal system	Gray /	Holding Tank	Holding Tank	Holding Tank	Holding Tank	flow Thru g Tank	Grum Flow Thru+HldTnk	Holding Tank	low Thru rator	Holding Tank	Holding Tank	Holding Tank	Gr.h., rlow Thru+Hld Tnk	Grum Flow Thru + Incin.	HoldIng Tank	Holding Tank	Holding Tank	Grum Flow Thru+Hld Tnk	Grum Flow Thru + Incin.
el FIRE	0 7 4	111	ung Treatme Sub	C Black	Holding Tank	Chrysler + Hld Tnk	Chrysler + Incin.	Grum Flow Thru +HldTk	Grumman + Holdin	Holding Tank	Grum Flow Thru+Incin	Grumman F + Incine	Holding Tank	Incinerator	GATX Evap.	Hold ing Tank	Inclnerator	Holding Tank	Incinerator	GATX Evap.	Holding Tank	Incinerator
Vess		1:0:1	ColVIra Subsys	(/ (Blank)	Gravity Collect.	Oll Recircul.	(Chrysler)	Gravity Collect.	(Grumman)	Gravity Collect.	Gravity	(Grumman)	Vacuum Collect.	(Jered)				M/T Pump	Collect. (GATX)			
			~	n)	1	. 2	n	4	S	9	7	చ	6	10	11	12	13	14	15	16	17	18

N/A - Not a viable candidate system/vessel combination.

CT ATOPT

EFFECTIVENESS RATINGS OF VIABLE CANDIDATE SYSTEM/VESSEL COMBINATIONS

Ł.

		T	<u>\</u>	_																		
4 nf 6	5) WEIGHTS)	Effectivenes:	(L) Kating	80	64		10 10	79	72	63	65	64	55	60	ск Г	6.5	71	1, 19	40 66	63	58
Sheet		ASSOCIATEI	aintain aintain 3) 3)	27 28 24	84	69	Ĩ	65	20	20	68	72	51	50	44	37	51		21.	49	44	49
	CIVE 021	INN SON		2) 70 74 74	90	74	03	73	68	80	71	65	47	27 -	43	34	22	74	24	20	61	49
	JECC DATTA		131110 131110 -31916 -	1) 78 74	75	51	36	28.	73	60	43	58	71	55	65	56	58	67	50	60	52	54
	ANTTOTAT			1 2 2 1	95	88	82	94	94	95	80	72	95	92	91	95	80	93	16	89	94	80
	SILLE OF 1		Dec-	0 1	87	46	48	21	74	74	63	64	72	62	76	60	53	81	72	83	• 69	62
	MEA			7 4 4 7	63	60	68	61	66	65	62	71	62	63	54	63	53	63	61	55	64	64
1	-	ty / 3		502	55	61	58	56	57	57	54	54	76	73 .	75	74	71	67	64	66	66	63
	Indat	Capaci	(A) (3)	2	55	64	64	64	100	100	64	100	64	64	64	100	100	64	64	64	100	100
()			19CK	8	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100
MLICO (16		(PE	ent/Disposa bsystem	Holding	Tark	Ho.lding Tank	Holaîng Tank	Holding Tank	Flow Thru 19 Tank	Grum Flow Thru+HldTn	Holding Tank		Holding Tank	Holding Tank	Holding Tank	Grum Flow Thru+Hld Tnk	Grum Flow Thru + Incin.	Holding Tank	Holding Tark	Holding Tank	Grum Flow Thru+Hld Tnk	Jrum Flow Thru + Incin.
sel PA		H ,	rang Treatm	Holding	Tank	Chrysler + Hid Tnk	r Chrysler + Incin.	Grum Flow Thru +HIdTk	+ Holdli	Holding Tank	Grum Flow Thru + Incir	- Incine	Holding Tank	Inclnerator	GATX Evap.	Holding Tank	Inclnerator	Holding Tank	Inclnerator	GATX Evap.	Tank	Inclnerator 1
Ves		1.0.1	Subsys	Gravity	Collect.	2 Recircul.	3 (Chrysler	4 Gravity Collect.	5 (Grumman)	6 Gravity Collect.	7 Gravity Collect.	B (Grumman)	Collect.	() () () () () () () () () () () () () (-	Pump	Collect.			
				-للب		·								<u> </u>	<u> </u>	<u> </u>	<u> </u>	-	5	16	17	a]

÷.,

.

N/A - Not a visble candidate system/vessel combination.

,

.

Data A success

Table 13

EFFECTIVENESS RATINGS OF VIABLE CANDIDATE SYSTEM/VESSEL COMBINATIONS

Q

Effectivenes (E) Rating Overall WEIGHTS) of S Maintain. ability (23) MEASURE OF EFFECTIVENESS RATINGS (AND ASSOCIATED Sheet (53) 491115h -Iley Hable-Boliev (17) Personnel Safety Personnel 9S (15) apillet Oper (SI) ອວ_{ບອບ} Perfor-Ship inst **Holding** Capacity (%) (%) (%) Black WHITE SAGE (133') Thru+HldTnk Thru+Hld Tnk Thru+Hld Tnk Grum Flow Thru + Incin. Thru + Incin. Treatment/Disposal Tank Grum Flow Tank Grum Flow Grum Flow **Grum Flow** Grumman Flow Thru **Grumman Flow Thru** Tank HoldIng Tank Holding Holding Holding Holding Holding Holding Holding + Inclnerator Holding [Holding Holding Holding Subsystem + Holding Tank Gray Tank Tank Tank Tank Tank Thru + HIdTk Tank Thru+Incin Tank TYPE ncinerator ncinerator ncinerator Grum Flow Grum Flow ncinerator GATX Evap. Holding Holding Tank Holding Black Holding Chrysler Yu2 PIH + GATX Evap. Chrysler Holding Tank Tank Tank + Incin. Tank Tank ColMrang Vessel Subsys (Blank) Grumman) (Grumman) Rectrcul. (Chrysler) Gravity Collect. Collect. Vacuum Collect. Collect. (GATX) Gravity Collect. Collect. Gravity Gravity (Jered) Pump M/T ő

Not a visble candidate system/vessel combination.

,

N/N

EFFECTIVENESS RATINGS OF VIABLE CANDIDATE SYSTEM/VESSEL COMBINATIONS

	\square			_																		
6 of 6) WEIGHTS)	Overall	Elfectiveness (E) Rating		82	N/A	N/A	N/A	N/A	N/A	N/A	N/A	60	N/A	56	N/A	N/A	71	N/A	66	N/A	N/A
Sheet	SSOCIATE	-uje	53) pilith taluch	1000	85	N/A	N/A	N/A	N/A	N/A	11/A	N/A	44	N/A	38	N/A	N/A	51	N/A	49	N/A	N/A
	SS (AND A		53) PT([[[[]] 6] ["	ンマピー	91	N/A	N/A	N/A	N/A	N/A	N/A	N/A	38	N/A	36	N/A	N/A	75	N/A	72	N/A	N/A
	SS RATING		12) pility gplt-	ファイ	75	N/A	N/A	N/A	N/A	N/A	N/A	N/A	71	N/A	65	N/A	N/A	67	N/A	60	N/A	N/A
	FECTIVENI	190	(1) ayaya a ayaya ayaya ayaya a ayaya ayaya ayaya ayaya ayaya ayaya ayaya aya aya aya aya aya aya aya aya aya aya aya aya aya aya aya aya aya a ay ay	1 22 24	95	N/A	N/A	N/A	N/A	N/A	N/A	N/A	95	N/A	06	N/A	N/A	93	N/A	89	N/A	N/A
	URE OF EF		15) 5111th Det-	SRO 1	83	N/A	N/A	N/A	N/A	N/A	N/A	N/A	65	N/A	67	N/A	N/A	74	N/A	76	N/A	N/A
	MEAS	. /	ן 2) סייכי סייכי סייכי	1 5 8 3	61	N/A	N/A	N/A	N/A	N/A	N/A	N/A	67	N/A	57	N/A	N/A	68	N/A	59	N/A	N/A
	1	107	الله الم مالالال مالالال	4 4 52 6	85	¶/N	N/A	N/A	N/A	N/A	N/A	N/A	62	N/A	61	N/A	N/A	12	N/A	60	N/A	N/A
	Inlding	apacity	10	ちょう	0	N/A	N/A	N/A	N/A	N/A	N/A	N/A	20	N/A	20	N/A	N/A	20	N/A	20	N/A	N/A
(82.)		- o //	() 90¥	8) 18	58	N/A	N/A	N/A	N/A	N/A	N/A	N/A	100	N/A	100	N/A	N/A	100	N/A	100	N/A	N/A
T HERRON		ų	nt/Disposal system	Gray	Holding Tank	Holding Tank	Holding Tank	Holding Tank	flow Thru g Tank	Grun Flow Thru+HldTnk	Holding Tank	low Thru rator	Holding Tank	Holding Tank	Holding Tank	Grum Flow Thru+Hld Tnk	Grum Flow Thru + Incin.	Holding Tank	Holding Tank	Holding Tank	Grum Flow Thru+Hld Tnk	Grum Flow Thru + Incin.
I POIN		TYP	ng Treatme Sub	Black	Holding Tank	Chrysler + Hid Tok	Chrysler + Incin.	Grum Flow Thru+HldTk	Grumman I + Holdin	Holding Tank	Grum Flow Thru+Incin	Grumman F + Inclner	Holding Tank	Incinerator	GATX Evap.	Holding Tank	Inclnerator	Holding Tank	Incinerator	GATX Evap.	Holding Tank	Incinerator
Vesse		0.	Coltra	(Blank)	Scaulty Sollect.	Dil ectroul	Chrysler	Savity Sellect.	Grumman)	Sravity Sollect.	Gravity	collect.	acuum ollect.	Jered)				√/T 'nmp	Collect.			
		~	SX	13		2	3	4	5	60	~		<u> </u>	10 (11	12	13	14	15	16	17	18
																					-	

N/A - Not a visble candidate system/vessel combination.

•

OPTIMUM CANDIDATE SELECTION

LIFE-CYCLE COST VERSUS EFFECTIVENESS

The overall effectiveness rating of a candidate is a quantitative indication of its overall quality. The life-cycle cost of the candidate represents its "penalty" in terms of dollar expenditures. One of the tenets of this cost effectiveness analysis methodology is that there is no a priori relationship between cost and effectiveness*, as the evidence from almost any marketplace will confirm. This relationship is provided a posteriori by the cost effectiveness analysis methodology and, in fact, it is one of the purposes for performing such an analysis. The procedure for selecting an optimum (i.e., most cost-effective) wastewater management system for each vessel consists of simultaneously examining the life-cycle cost as well as the effectiveness rating of each viable candidate and applying a systematic selection procedure for making the choice. Thus, due to the a priori independence of cost and effectiveness, the candidates must be studied in two dimensions.

One procedure for studying the (a posteriori) relationship between cost and effectiveness is to visually display this relationship. A convenient way of accomplishing this is to plot each viable candidate system for a given vessel as a point on a set of cartesian coordinates in which one of the axes (the vertical) represents the life-cycle cost (C) of the candidate and the other axis (the horizontal) represents the overall effectiveness rating (R_E) of the candidate. Effectiveness ratings are numbers which are dimensionless and lie in the range of 0 to 100% and hence the effectiveness scale can be so labeled. However, life-cycle costs are expressed in dollars and the range varies from vessel to vessel. In order to express both the life-cycle cost and the effectiveness ratings in the same units, as required by one of the

*

In order to avoid bias, it is best that the cost and the effectiveness analyses be performed independently of one another, preferably by different individuals or groups of individuals. optimum candidates selection criteria (to be discussed later), it is necessary to normalize the life-cycle costs so that they are dimensionless and lie in the range of 0 to 100%. This can be readily done by expressing the life-cycle cost of each viable candidate as a percentage of the highest such cost for the given vessel. This procedure yields the relative, rather than the absolute, life-cycle cost of each candidate (resulting in a value of 100% for the candidate possessing the highest cost), and the cost axis can be so labeled.

Such a plot of the cost versus effectiveness relationship of all viable candidate systems for a given vessel is a useful analytic tool which can sometimes be used to discern important properties of the candidates by examining the locations of individual as well as groups of candidates in relation to one another. As shown below, there are "desirable" and

"undesirable" regions in the cost vs. effectiveness plane, which can be thought of as a "decision plane". By encircling all the candidates which have a common characteristic (see below), e.g., incinerator, oil recirculation, reduced volume flush, etc., it may be possible to obtain a visual indication whether or not the given concept is cost-effective.

It is noted that such results imply that the characteristic which is common to the group of systems is the dominant factor and that any other differences between the systems in the group are unimportant. If this is not be case, an attempt to encircle systems possessing a common characteristic will result in a region which is spread out throughout the cost vs. effectiveness plane and conclusions cannot be readily arrived at without further analysis to determine the factors (related to cost and/or effectiveness) which result in such a spread.

The cost vs. effectiveness relationship for the candidate, WMS configurations as a function of vessel are shown in Figure 23. For ease of reference, the table in the left hand portion of Figure 23 indicates the WMS concept (but not the configuration), the holding capacity, the cost (both in dollars and relative) and the effectiveness rating for each candidate. It is noted that WMS No.1, consisting of holding tanks for both black (full volume flush) and gray water, is the most cost effective concept on all vessels. However, as can be seen from the left hand portion of Figure 23, this concept does not result in a full holding capacity on all vessels. It is also noted that the least cost-effective concepts are reduced volume flush in conjunction with an incirerator (WMS No. 10 on GALLATIN and VIGOROUS, WMS No. 13 on FIREBUSH, WMS No. 18 or No. 13 on PAMLICO and WHITE SAGE), or reduced volume flush in conjunction with an evaporator (WMS No. 16 or No. 11 on POINT HERRON).

In order to arrive at conclusions that will pertain to the entire fleet, the cost vs. effectiveness relation was plotted by combining the data for all vessels, as shown in Figure 24. In order to prepare this plot, the cost data used is the per capita life-cycle cost, expressed as a percentage of the maximum value for all vessels. It is noted from Figure 24 that the results for the PAMLICO seem to be in a class by themselves. This is due to the fact that this vessel has a reduced volume (vacuum)collection system (whereas all other vessels have a conventional full volume flush collection system) and an unusual mission profile characteristic (i.e., long holding time and large utilization factor). Except for the PAMLICO, WMS No. 1 is seen to be the most cost-effective candidate on a fleet wide basis.

Sheet 1 of 6

LIFE-CYCLE COGT VERSUS EFFECTIVENESS RATING FOR VIABLE CANDIDATE SYSTEMS

Figure 23

Sheet 2 of 6

VIGORUUS (210')

	1.9	TYPE			Ioldu		OST		
~	< ColMre	ins Treatme	nt/Disposal	Ϋ¥.	٩ ۲	SK	~~~	(2)	
M	(Black)		Grav	(%)	(x) 2)		Pley	3 3 1	
1-	Gravity	Holding	Holding	40	-	15.709	-	84	
10	OIL	Chrysler	Holding	53	-	46.358	5	69	
Ċ	(Chrysler)	Chrysler	Holding	3.	·				
3		+ Incin.	Tank	A/A	Π				
4	Gravity	Grum Flow	Holding	N /N					
	Collect.	Thru+HldTk	Tank	Y/Y			'		
Ś	(Grumman)	+ Holdin	riow Inru	A/A	T		_		
19	Gravity	Holding	Grum Flow					Γ	
D	Collect.	Tank	Thru+HldTnk	¥.					
5	Gravity	Grum Flow	Holding						
•	Collect	Thru+Incin	Tank	\$			_		
α	(Grumman)	Grumman I	low Thru	N/A			_		
5		+ Incine	rator						
6	Vacuum	Holding	Holding	48	٦	126.924	58	61	
	Collect.	Tank	Tank						
10	(Jered)	Incinerator	Holding	100	-	220.107	100	55	
11		GATX	Holding	× N					
1		Evap.	Tank						
12		Holding	Grum Flow Than+ Fld Tab	N/A			-		
		VIIDT			T		ļ	Ι	
13	-	Incinerator	Thru + Incin.	N/A					
14	M/T Bimo	Holding	Holding	100	1	113.382	52	74	
15	Collect.	Incinerator	Holding	9	~	195.930	68	65	
	(CALX)		Tank		Ī				
16		GATX Evap.	Holding Tank	100	1	173.901	79	69	
5		Holding	Grum Plow	· · ·					
ì		Tank	Thru+Hld Tnk	K I					
18		Incinerator	Grum Flow	N/A	Τ				
1			Thru + Ir. 1in. 1						
(11) ≉	ased on th	ie mardmum	holding the	of 17.	5.0	lours. Th	te nex		
 C	maller hol	ding time of	72.0 hours	MOUL	d 531	isry appr	oximat	ely	
л	17% OF GUL I	solaing time	Cadmiramenus	•					

Figure 23 LIFE-CYCLE COST VERSUS EFFECTIVENESS RATING FOR VIABLE CANDIDATE SYSTEMS

Sheet <u>3</u> of <u>6</u>

FIREBUSH (180')

		>	_	•								•				_			_			
		₹×/	86	"	69	76	78	78	73	1	3	57	8	56	52	75	8	50	68	64]	ely
1SC	4201	2°20/	6	19	ę	24	36	39	43	67	Ŷ	82	63	67	100	28	69	48	26 S	6	next Text	cima t
ŏ	SK		12	328	495	642	145	267	949	309	505	935	074	557	331	892	382	251	709	116]ē	roudd
0	21-		22	4	105	59	88	6	104	164.	96.	200.	154.	163.	24	69.	169.	E.	135.	211.	ours.	isfy a
foldIr		16 20	0	0	12	22	100	100	29	100	13	35	35	100	100	13	35	35	100	100	4 6.7	d sat
۴	Ϋ.s	रू) देख	100	10	100	100	10	100	100	100	001	100	100	100	100	100	100	100	100	100	Sf 27	would
	int/Disposel Disystem	Gray	Holding Tank	Holding Tank	Holding Tank	Holding	Flow Thru	Grum Flow Thru+HidTnk	Holding Tank	low Thru rator	Holding Tank	Holding Tank	Holding Tank	Grum Flow Thru+ Hld Tuk	Grum Flow Thru + Incin.	Holding Tank	Holding Tank	Holding Tank	Grum Plow Thru+Hld Trik	Grum Flow Thru + Incin.	holding time o	54.0 hours
TYPE	ins Treatme Sub	Black	Holding Tank	Chrysler + Hid Tnk	Chrysler + Incia.	Grum Plow	Grumman + Holdin	Holding Tank	Grum Flow Thru+Incin	Grunman F + Incine	Holding Tank	Incinerator	GATX Evap.	Holding Tank	Incinerator	Holding Tank	Incidentator	GATX Evap.	Holding Tank	Incinerator	e maximum	ling time of olding time
10.1	Subays	(Black)	Gravity Collect.	Oil Fectrcul.	(Chrysler)	Gravity	(Grumman)	Gravity Coilect.	Gravity	(Grumman)	Vacuum Collect.	(Jered)			>	M/T Pump	Collect.				ased on th	mailer hold 9% of all h
	~	শ	-	14	ē	4	ŝ	0	2	æ	σ	10	11	12	13	4	15	9	11	18	Ĩ.	

LIFE-CYCLE COST VERSUS EFFETIVENESS RATING FOR VIABLE CANDIDATE SYSTEM'S

Figure 23

Sheet 4 of 6

10/	111		Ŷ			ŀ		/ PAMIICO (160')
ColUIN	any Treatme	nt/Disposal		Ń	\$K	110	(*)	
	nne		3) L	100 21		2)2)	2 2 /	
(BIACK)	Black	Gray		7			Ì	
Collect.	Holding	Holding Tank	100	55	36.780	30	80	
	Chrysler	Holding	Γ				Γ	
Rectroul.	+ HId Tuk	Tank	100	64	59.160	ş	5	
(Chrysler)	Chrysler + Incin	Holding Tank	100	64	74.735	62	61	
Gravity	Grum Plow	Holding			102 03	23	03	
Collect.	Thru +HidTk	Tank	TUU	10	100.00	;	5	
(Grumman)	Grumman + Holdin	Flow Thru Ig Tank	100	100	57.432	47	72	
Gravity Collect.	Holding Tank	Grum Flow Thru+ HldTuk	100	100	63.664	23	72	
Gravity	Grum Flow That + Incin	Holding Tank	100	19	110.249	16	63	
Collect. (Grumman)	Grumman I	low Thru rator	100	ğ	96.968	8	65	
Vacuum Collecto	Holding	Holding	100	64	44.002	36	79	
(Jered)	Incinerator	Holding Tank	100	64	94.055	77	55	
	GATX Evep.	Holding Tank	100	64	59.173	48	60	\$
	Holding Tank	Grum Flow Thru+ Hla Tub	100	100	72.605	60	56	
	Incinerator	Grum Flow Thru + Incin.	100	100	108.959	06	52	XITA
M/T Pump	Holding Tank	Holding Tank	100	64	57.975	48	11	
Collect.	Incinerator	Holding Tank	100	64	108.995	90	61	
	GATX Evap.	Holding Tank	100	64	75.640	62	66	
	Holding Tank	Grum Flow Thru+Hld Tnk	100	100	86.689	7	63	
	Incinerator	Grum Flow Thru + Incin.	100	100	120.925	100	58	
Based on t	he maximum	holding time	50	40.1	ours. The	Dext		
smaller ho. 98% of all	lding time o holding time	f 228.0 hours requirements	woul	d sati	sty approx	lmate	ly	EFFECTIVENESS RATING (%)

LIFE-CYCLE COST VERSUS EFFECTIVENESS RATING FOR VIABLE CANDIDATE SYSTEMS Figure 23

و Sheet 5 of

WHITE SAGE (133')

Item Item <th< th=""><th>2 ColVin</th><th>10</th><th>TYPI Treatme</th><th>ent/Disposal</th><th>1</th><th>loldi</th><th>0</th><th>10051</th><th></th><th> </th></th<>	2 ColVin	10	TYPI Treatme	ent/Disposal	1	loldi	0	10051		
Siney Sac Sac </th <th>Subsys Subsys</th> <th>Sub</th> <th>0.0</th> <th>system</th> <th>200</th> <th>Ae</th> <th>SK SK</th> <th>197</th> <th></th> <th></th>	Subsys Subsys	Sub	0.0	system	200	Ae	SK SK	197		
Idition 100 100 100 18.974 15 66 nk 100 100 100 58.040 45 65 nk 100 100 100 58.040 45 65 nk 100 100 100 58.040 45 65 nk 100 100 58.040 45 65 nk 100 100 58.040 45 76 ank 100 100 54.685 42 76 unFlow 100 100 54.685 42 76 uk 100 100 95.285 66 69 nk 100 100 85.285 66 69 nk 100 100 85.285 55 56 nk 100 100 85.293 56 56 nk 100 100 70 56 51 nu 100 100 <th>(Black) Black</th> <th>Black</th> <th>_</th> <th>Gray</th> <th></th> <th>* S</th> <th>1</th> <th>12</th> <th>~~~//2</th> <th>_</th>	(Black) Black	Black	_	Gray		* S	1	12	~~~//2	_
Iding 100 100 100 58.040 45 68 Iding 100 100 58.040 45 68 Iding 100 100 58.040 45 68 M W 100 100 58.040 45 55 W W 100 100 51.110 40 76 M W 100 100 54.685 42 75 68 W Thru 100 100 96.242 75 68 56 59 M Thru 100 100 96.242 75 68 56 59 M Thru 100 100 85.285 66 69 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 56 51 56 56 56 56 56	Gravity Holding H Collect. Tank T	Holding H Tank T	H F	olding ank	100	100	18.974	15	86	
Idding 100 100 58.040 45 65 N Thru 100 100 56.434 44 74 W Thru 100 100 51.110 40 76 ank 100 100 54.685 42 75 68 numFlow 100 100 54.685 42 76 76 numFlow 100 100 100 96.242 75 68 76 nk 100 100 100 96.242 75 68 76 nk 100 100 100 85.285 66 69 51 nk 100 100 89.9990 70 56 66 51 nk 100 100 89.9990 70 55 51 51 nk 100 100 100 70 52 51 10 n + Incin. 100 100 109 <t< td=""><th>Oll Chrysler H Rectrcul. + Hid Tnk Te</th><td>Chrysler H + Hid Tnk Te</td><td>НЦ</td><td>olding ink</td><td>100</td><td>100</td><td>46.533</td><td>36</td><td>68</td><td></td></t<>	Oll Chrysler H Rectrcul. + Hid Tnk Te	Chrysler H + Hid Tnk Te	НЦ	olding ink	100	100	46.533	36	68	
Idiang 100 100 100 56.434 44 74 w Thru 100 100 51.110 40 76 um Flow 100 100 51.110 40 76 un Flow 100 100 54.685 42 75 n+ Hidrnk 100 100 96.242 75 68 r Thru 100 100 96.242 75 68 r 100 100 96.242 75 68 16 r 100 100 100 89.990 70 56 r 100 100 100 89.990 70 56 r Iding 100 100 73.991 57 56 u+Hidrnu 100 100 73.991 57 56 u r 100 100 70 56 66 u r 100 100 70 57	(Chrysler Chrysler H	Chrysler Ho + Incin. Te	ž Ž	olding ink	100	100	58.040	\$	65	
w Thru un+Hidrnk 100 100 51.110 40 76 uu+Hidrnk 100 100 54.685 42 75 68 rhuff 100 100 54.685 42 75 68 rhuff 100 100 96.242 75 68 rhuff 100 100 95.285 66 69 rk Thru 100 100 85.285 66 69 rk 100 100 100 89.990 70 56 rk 100 100 100 89.990 70 56 rk 100 100 100 89.990 70 56 rk 100 100 73.991 57 56 51 u+Hidrnk 100 100 73.991 57 56 66 r 100 100 73.991 57 56 66 67 u+Hidrnk 100	Gravity Grum Plow H Collect. Thru+HidTk Ta	Grum Flow Ha	Å Å	olding ink	100	100	56.434	7	2	
um Flow 100 100 54.685 42 76 Iding 100 100 96.242 75 68 At Thru 100 100 96.242 75 68 At Thru 100 100 96.242 75 68 At Thru 100 100 85.285 66 69 At 100 100 89.990 70 56 At 100 100 89.990 70 56 At 100 100 89.990 70 56 At 100 100 73.991 57 56 At 40 100 100 73.991 57 56 Matiow 100 100 73.991 57 56 66 At 100 100 73.977 76 62 64 At 100 100 53.402 41 70 62 <td< td=""><th>(Grumman) Grumman Flo</th><td>Grumman Flo</td><td>14</td><td>w Thru Tank</td><td>100</td><td>100</td><td>51.110</td><td>9</td><td>76</td><td></td></td<>	(Grumman) Grumman Flo	Grumman Flo	14	w Thru Tank	100	100	51.110	9	76	
Iding 100 100 96.242 75 68 r Thru 100 100 85.245 66 69 iding 100 100 85.245 56 69 iding 100 100 85.245 56 69 iding 100 100 89.990 70 56 iding 100 100 89.990 70 56 iding 100 100 64.258 50 59 u+HidTm 100 100 73.991 57 56 m Flow 100 100 73.991 57 56 u+Incin. 100 100 53.402 41 70 iding 100 100 53.402 41 70 k 100 100 72.375 56 66 k 100 100 72.375 56 66 m Flow 100 72.375 56	Gravity Tolding Gr Collect. Tank Th	Tank Th	ងដ	um Flow ru + HidTnk	100	100	- 54,685	4	76	
Thru 100 100 85.285 66 69 Iding 100 100 44.345 34 64 Iding 100 100 89.990 70 56 ik 100 100 89.990 70 56 ik 100 100 89.990 70 56 ik 100 100 64.258 50 59 ik 100 100 64.258 50 59 ik 100 100 100 73.991 57 56 in 100 100 109.556 85 51 iding 100 100 53.402 41 70 iding 100 100 53.402 41 70 ik 100 100 53.402 76 62 ik 100 100 72.375 56 66 ik 100 100 72.375 56	Gravity Grim Flow Ho Collect Tim + Incin Ta	Gr'T. Flow Ho T'in +Incin Ta	Ho Ta	lding nk	100	100	96.242	75	68	
Iding 100 100 100 44.345 34 64 Raing 100 100 100 89.999 70 56 Raing 100 100 100 89.999 70 56 Raing 100 100 100 64.258 50 59 Raing 100 100 100 73.991 57 56 Raing 100 100 100 73.991 57 56 Mation 100 100 73.991 57 56 66 Mation 100 100 97.771 76 62 66 k 100 100 72.375 56 66 6 k 100 100 72.375 56 66 6 m <flow< td=""> 100 100 72.375 56 66 6 a N 100 100 72.375 56 66 6 6</flow<>	(Grumman) Giv aman Flow	Giv aman Flov + Incinerate	Flov	v Thru or	100	100	85.285	66	69	
lding 100 100 89.990 70 56 lding 100 100 64.258 50 59 u+Hid Trul 100 100 73.991 57 56 u+Incin. 100 100 73.991 57 56 m Flow 100 100 73.991 77 56 ding 100 100 53.402 41 70 k 100 100 97.771 76 62 k 100 100 97.771 76 62 k mFlow 100 100 91.509 71 62 m Flow 100 100 91.509 71 62 m Flow 100 100 128.942 100 54	Vacuum Holding Ho Collect. Tank Ta	Holding Ho Tank Tai	Ho Tai	lding nk	100	100	44.345	34	64	
Iding 100 100 100 64.258 50 59 m Plow m Plow 100 100 73.991 57 56 m Plow 100 100 73.991 57 56 m Plow 100 100 109 56 85 51 ding 100 100 109 53.402 41 70 k 100 100 97.771 76 62 k 100 100 97.771 76 62 k 100 100 97.737 56 66 m Flow 100 100 72.375 56 66 m Flow 100 100 72.375 56 66 m Flow 100 100 72.375 56 54 m Flow 100 100 72.375 56 54	(Jared) Incinerator Ho	Incinerator Ho	Hol	lding ik	100	100	066.68	70	56	
m Flow 100 100 100 73.991 57 56 m Flow 100 100 100 109.560 85 51 m Flow 100 100 109.560 85 51 ding 100 100 53.402 41 70 k 100 100 97.771 76 62 ding 100 100 97.771 76 62 k 100 100 97.771 76 62 m Flow 100 100 97.771 76 62 k 100 100 97.771 76 62 n Flow 100 100 72.375 56 66 m Flow 100 100 91.509 71 62 n Flow 100 100 91.509 71 62	GATX Hol Evap. Tan	GATX Hol Evap. Tan	Hol Tan	ding k	100	100	64.258	50	59	
m Flow L+Incin. 100 100 109.560 85 51 ding 100 100 53.402 41 70 ding 100 100 97.771 76 62 k 100 100 97.771 76 62 k 100 100 97.375 56 66 m Flow 100 100 91.509 71 62	Holding Gru Tank Thr	Holding Gru Tank Thr	Gru Thr	m Plow u+Hld Tnb	100	100	13.991	57	56	
ding k 100 100 53.402 41 70 ding k 100 100 97.771 76 62 ding k 100 100 97.375 56 66 mFlow 100 100 91.509 71 62 mFlow 100 100 72.375 56 66 mFlow 100 100 72.375 56 65 mFlow 100 100 72.375 56 57	Incinerator Thn	Incinerator Thu	2 H H	m Flow 1+Incin.	001	100	109.560	85	ts	
ding 100 100 97.771 76 62 ding 100 100 72.375 56 66 k mFlow 100 100 91.509 71 62 m Flow 100 100 91.509 71 62 n Flow 100 100 128.942 100 54	M/T Holding Hol Pump Tank Tan	Holding Hol Tank Tan	Hol Tan	ding k	100	100	53.402	Ŧ	70	
ding k mFlow mFlow a Flow mFlow mFlow 100 100 120 91.509 71 62 0.128.942 100 54	Collect. Incinerator Hol (GATX)	Incinerator Hol	Hol Tan	ding k	100	100	97.77	76	62	
m Flow 1+Hid Tnk 100 100 91.509 71 62 m Flow 1+Incin. 100 100 128.942 100 54	GATX Hol Evap. Tan	CATX Hol Evap. Tan	Hol Tan	ding k	100	100	72.375	56	99	
m Flow 100 100 128.942 100 54	Holding Gru Tank Thn	Holding Gru Tank Thn	SH	m Flow 1+Hld Tnk	100	100	91.509	71	62	
	Incinerator Gru	Incinerator Gru	ទីដ	m Flow u + Incin.	100	100	128.942	100	5	
	7% of all holding time rec	holding time rec	ĕ	uirements					ī	

LIFE-CYCLE COST VERSUS EFFECTIVENESS RATING FOR VIABLE CANDIDATE SYSTEMS

Figure 23

Sheet 6 of 6

Holding COET SB 0 6.070 13 82 SB 0 6.070 13 82 N/A N/A N/A N/A N/A N/A N/A N/A	Holding COET 1 4 1 4 1 4 1 5 1	In Tree Holding Coert Holding Coert Subsystem Subsystem Subsystem Subsystem Subsystem Trink Fincin Tank N/A Subsystem Subsystem Chysis Folding N/A Subsystem Subsystem Subsystem Holding Cumman Flow Holding N/A Subsystem Subsystem Holding Grum Flow Holding N/A Subsystem Subsystem Holding Grum Flow Holding N/A Subsystem Subsystem Fielding Folding Folding N/A Subsystem Subsystem Fielding Folding Folding Ino Subsystem Subsystem Fielding Folding Folding Ino Subsystem Subsystem Fielding Fielding N/A Subsystem Subsystem Subsystem	POINT HERRON (82')																																			
Holdling COET State	Holding COET 1	TYPE Holding Gent Ander Black Serve Serve Serve Serve Black Serve Serve Serve Serve Black Serve Serve Serve Serve Ts:nk Tank Tank Serve Serve Ts:nk Tank Holding N/A Serve Serve Chrysten Fincin. Tank N/A Serve Serve Chrysten Fincin. Tank N/A Serve Serve Chrysten N/A N/A N/A Serve Serve Grummsin Four N/A N/A Serve Serve And Thru-HildTrk N/A N/A Serve Serve Grummans Four N/A N/A Serve Serve Carumans Four Four N/A Serve Serve Carumans Four Four N/A N/A Serve Carumans Four Four Serve Serve Serve Thru-Hinding Grum Four Four Serve Serve Tank Four Holding Ioo 20																																				
Houlding COCT Se 0 6.070 13 8 N/A 6.070 13 8	1 Holding COET 1 6 9 6 1 6 13 6 1 6 6 13 1 6 6 13 1 1 6 13 1 1 6 13 1 1 6 13 1 1 6 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TYPE Holding COET Black Supposition Supposition Supposition Task Tank Supposition Supposition Task Tank Tank Supposition Task Tank N/A Supposition Task Tank N/A Supposition Chrystar Holding N/A Supposition Task Tank N/A Supposition Chrystar Tank N/A Supposition Chrystar Floiding N/A Supposition Chrystar Tank N/A Supposition Chrystar Floiding N/A Supposition Holding Grum Flow N/A Supposition Holding Grum Flow N/A Supposition Floiding Grum Flow N/A Supposition Crumman Flow Holding N/A Supposition Floiding Grum N/A Supposition Chrystar Holding N/A Supposition Floiding Grum N/A Supposition Floiding M/A N/A Supposition Floiding Grum N/A Supposition <th></th> <th></th> <th></th> <th>-</th> <th></th> <th></th> <th></th> <th></th> <th>9</th> <th></th> <th></th> <th>Î</th> <th>•</th> <th></th> <th>-0</th> <th>i</th> <th></th> <th></th> <th>5</th> <th></th> <th></th> <th>4</th> <th>•</th> <th></th> <th></th> <th>2</th> <th></th> <th></th> <th>64</th> <th>•</th> <th></th> <th></th> <th>2</th> <th></th> <th></th> <th></th>				-					9			Î	•		-0	i			5			4	•			2			64	•			2			
Holding COET Abortry 5 58 0 6.070 1 58 0 6.070 1 58 0 6.070 1 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 7 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 1 5 <td>Holding COFT 1 0 5 5 N/A 0 6.070 1 N/A 0 1 1 N/A 0 28.058 59 N/A 0 28.058 96 N/A 0 29.289 96 N/A 0 20 29.289 96 N/A 0 100 20 29.289 96 N/A 0 100 20 47.579 100 N/A 0 100 20 47.579 100</td> <td>TYPE Holding Corr Black Supsystem Supsystem Black Supsystem Supsystem Tonk Tank Supsystem Tonk Tank Supsystem Tonk Tank Supsystem Chrysler Holding N/A Chrysler Holding N/A Chrysler Holding N/A Fincin. Tank N/A Grum Flow Holding N/A Holding N/A N/A Grummen Flow N/A Holding Runk-Holding N/A Holding N/A N/A Grumman Flow N/A Holding Ru/A Grummen Flow N/A Grumman Flow Holding Ibuu-Hincin N/A Grumman Flow N/A Grumman Flow Holding Ibuu-Hincin N/A Grumman Flow N/A <!--</td--><td></td><td>(s)</td><td>2</td><td>-</td><td>1-1</td><td></td><td>` Ŧ</td><td>17</td><td></td><td></td><td>(9</td><td>5)</td><td>T</td><td>sc</td><td></td><td>E</td><td></td><td></td><td>2 2 7</td><td>-:</td><td>EF T</td><td>11</td><td>. :</td><td>AE</td><td>LT LT</td><td><u>ل</u>ــــ</td><td>73</td><td>א א</td><td></td><td></td><td>-</td><td></td><td>2</td><td>T</td><td>+-</td><td></td></td>	Holding COFT 1 0 5 5 N/A 0 6.070 1 N/A 0 1 1 N/A 0 28.058 59 N/A 0 28.058 96 N/A 0 29.289 96 N/A 0 20 29.289 96 N/A 0 100 20 29.289 96 N/A 0 100 20 47.579 100 N/A 0 100 20 47.579 100	TYPE Holding Corr Black Supsystem Supsystem Black Supsystem Supsystem Tonk Tank Supsystem Tonk Tank Supsystem Tonk Tank Supsystem Chrysler Holding N/A Chrysler Holding N/A Chrysler Holding N/A Fincin. Tank N/A Grum Flow Holding N/A Holding N/A N/A Grummen Flow N/A Holding Runk-Holding N/A Holding N/A N/A Grumman Flow N/A Holding Ru/A Grummen Flow N/A Grumman Flow Holding Ibuu-Hincin N/A Grumman Flow N/A Grumman Flow Holding Ibuu-Hincin N/A Grumman Flow N/A </td <td></td> <td>(s)</td> <td>2</td> <td>-</td> <td>1-1</td> <td></td> <td>` Ŧ</td> <td>17</td> <td></td> <td></td> <td>(9</td> <td>5)</td> <td>T</td> <td>sc</td> <td></td> <td>E</td> <td></td> <td></td> <td>2 2 7</td> <td>-:</td> <td>EF T</td> <td>11</td> <td>. :</td> <td>AE</td> <td>LT LT</td> <td><u>ل</u>ــــ</td> <td>73</td> <td>א א</td> <td></td> <td></td> <td>-</td> <td></td> <td>2</td> <td>T</td> <td>+-</td> <td></td>		(s)	2	-	1-1		` Ŧ	1 7			(9	5)	T	sc		E			2 2 7	-:	EF T	11	. :	AE	LT LT	<u>ل</u> ــــ	73	א א			-		2	T	+-	
Holding Sa 0 6.070 Sa 0 6.07	Holding C Holding C N/A 6.070 N/A 6.070 N/A 6.070 N/A 6.070 N/A 6.070 N/A 6.070 N/A 6.070 N/A 6.058 N/A 6.0588 N/A 6.05888 N/A 6.05888 N/A 6.05888 N/A 6.05888 N/A 6.05888 N/A 6.05888 N/A 6.058888 N/A 6.058888888 N/A 6.05888888888888888888888888888888888888	TYPE Holding Colore Black Supsets Supsets State Black Supsets Supsets State Holding Holding Sol State Tank Tank Tank Sol State Chrysler Holding N/A Sol Sol Holding Tank N/A Sol Sol Chrysler Holding N/A Sol Sol Chrun+Incin Tank N/			A and	3 82							(%	5)	T	sc		E	12	2	د د ا	-	EE S	17		A.E		A	13	ิช -				20	2	Ī	Ť	
Holding Harding	Holdtr N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	TYPE Holding TYPE Holding Subsystem Black Subsystem Black Subsystem Holding Subsystem		1 2 1 2 1 2 1 1 2 1 1 2 1 2 1 2 1 2 1 2	2 2 2 2 2 N	13 82							(9	5)	T	sc		E			2 2		F.			ΛE		A	63 T1					100 66	2		+	
	1 N/A N/A N/A N/A N/A N/A N/A 100 1100 0 N/A	TTREE TITRE In Treatment/Disposal As Black Grey Tonk Tank Folding Ss Chrysler Holding N/A Chrysler Holding N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Flow N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Flow N/A Grum Flow Holding N/A Grum Flow Flow N/A Grum Flow Holding N/A Grum Flow Holding N/A Grum Flow Holding 100 holding Grum Flow N/A Holding Grum Flow N/A Garx Holding Ino ncinerator Holding 100 ncinerator Tank Holding 100 ncinerator Tank Holding 100 ncinerator Tank Holding 100 ncinerator Tank Holding 100 ncinerator Tank N/A	ng COET	SK (2) (8)	(2) 2 2 2 2 m	6.070 13 82							(9	5)	T	sc		Е		28.039 00 00 00 00 00 00 00 00 00 00 00 00 00	5 		F. 550			AE	11	.4	29.289 6.2 71					47.579 100 66				
		TYPE Black Subwytonsol Black Stray Holding Holding Tank Tank Chrysler Holding Tank Chrysler Holding Tank Grum Flow Holding Intu-Hilding Tank Holding Grum Flow Holding Grum Flow Thu-Hilding Intu-Hilding Intu-Hilding Grum Flow Thu-Hilding Grum Flow Intu-Hilding Holding Intu-Hilding Grum Flow Intu-Hilding Holding Intu-Hilding Holding Intu-Hilding Grum Flow Intu-Hilding Holding Floiding Grum Flow Intu-Hilding Holding Floiding Grum Flow Intu-Hild Thk Iolding Grum Flow Intu-Hild Ink Iolding Grum Flow Intu-Hild Ink Iolding Grum Flow	olding COET	2 3 / 2 / S	13 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 6.070 13 82							(9	5)		sc		E			5							.4	20 29 289 62 71 H					20 47.579 100 56	2			
Tank Polding Frank Frank Frank Frank Frank Floiding Tank Floiding Frank Floiding Frank Floiding Frank Floiding Frank Floiding Frank Floiding Frank Floiding Frank Floiding Frank Floiding Frank Floiding Frank Floiding Flo			Holding COET	art Uteposet (2) (2) (2) (3) (3) (3) (3) (3) (3)	Gray the web and a set and	Rolding 58 0 6.070 13 82	Holding	Tank	Tank N/A	Holding	Tank N/A Tank	Flow Thru	ig Tank N/A 1 1 1 2)		Thru+HidTak			rator N/A E	Holding	Tank 100 20 28.038 39 60 2	Holding U. S	Tank N/A	Holding 100 20 45 550 56 56		Grum Plow	Thru+ Hid Tnk N/A		Thru + Incin.	Holding [1,00] 20, 29, 289 62 71	Tank 200 = 0 = 0 = 0 = 0	Holding Holding	Tank IN/A	Holding	Tank 100 20 47.579 100 66	Grum Flow 0	Thru+Hid Tuk W/A		

s? . بر

ţ

LIFE-CYCLE COST VERSUS EFFETIVENESS RATING FOR VIABLE CANDIDATE SYSTEMS Figure 23

Sheet 1 of 2

PER CAPTIA TITE-CYCLE COST VERSUS EFFECTIVENTES RATING FOR VIABLE CANDIDATE SYSTEMS

LEGEND

G - Gallatin V - Vigorous F - Firebush P - Pamlico W- White Sage

H - Point Herron

2
õf
0
et
he
εΩ.

-	7	π													_			_			
	N (82	R _E (%)	82	N/A	N/A	N/A	N/A	N/A	N/A	N/A	60	N/A	56	N/A	N/A	12	N/A	99	N/A	N/A	
	HERRO	C (%)	8	N/A	N/A	N/A	N/A	N/A	N/A	A/N	38	N/A	61	N/A	N/A	39	N/A	64.	N/A	N/A	
	OINT	Point	H	N/A	N/A	N/A	N/A	N/A	N/A	N/A	H6	N/A	H	N/A	V/A	4H	V/A	16H	I/A	I/A	
	1 33') P	(%) (%)	36	68	65	74	76	76	68	69	64	9	69	9		0	52 b	9	2	4	
N	AGE (1	でん) RF	10	24	0	59	55	83	61	4	53	9	с С	8)	99	27 7	0 0	376	15. 6	6 5	
NATIO	HITE S	nt C(N	3	3	3	3	3	3	3	3	¥ ≥	N N	≥	3	× N	N S	N.	V 4	N N	
IBINC	3	Poi	1	3	ő	4	Ś	9	7	œ	6	2	7	12	13	14	15	16	17	18	
SEL C	160')	R _E (%)	80	64	61	68	72	72	63	65	64	55	60	56	52	71	61	66	63	58	
AS/VES	LICO (C(%)	30	49	62	57	47	53	16	80	36	78	49	60	90	48	90	63	72	100	
BLE W	PAM	Póint	ΙP	2P	3P	4 P	5P	6P	7P	8P	9P	10P	127	127	13P	14 P	15 P	16P	17P	18P	
CH VIA	30')	R _E (%)	86	71	69	76	78	78	73	71	64	57	58	56	52	75	68	70	68	64	
CR EA	USH (1	C (%)	S	10	23	13	19	20	23	35	21	43	33	35	53	15	36	25	29	46	
I STAIC	FIREB	Point	ΙF	2F	3F	4F	SF	6F	7F	8F	9F	10F	ilF	12F	13F	14F	ISF	16F	17F	18F	
S OF P(. (.)	E(%)	84	69	√/A	V/A	N/A	1/A	V/A	N/A	61 .	55	V/A	N/A	I/A	74	65	69.	V/A	N/A	
DINATE	DUS (21	C (%) R	е	8	N/A 1	N/A I	N/A	N/A 1	N/A 1	N/A 1	23	39	V/A 1	V/A	V/A N	20	35	31	N/A I	N/A	
COORI	VIGOR	oint	1	2V	1/A 1	4/A 1	1/A 1	V/A 1	I/A I	I/A 1	9V	10V	I/A I	I/A I	I/A I	14V	15 V	16V	N/A	V/A	
	78')	i (%)	87	72	68 N	77 I	I/A I	I/A I	72	1/A 1	64	57	58 1	I/A D	I/A I	72	55	67	V/A 1	J/A 1	
	TIN (3	((()	4	10	15	8	I/A N	1/A N	16	I/A N	15	31	25	I/A N	N/A N	16	29	26	V/A 1	I/A P	
	GALLA	oint	ធ	2G	3G	4G	V/A P	V/A P	7G	V/A P	9G	10G	11G	N/A P	I A/N	14G	15G	16G	N/A 1	I/A N	
	osal						2	ow ldTnk						ow Id Tnk	ow Icin.				ow I Id Tnk	ow Ictn.	
	t/Disp	Gray	Holding Tank	Holding Tank	Holding Tank	Holding Tank	low Th	Grum Fl Thru+H	Holding Tank	low Thr ator	Holding Tank	Holding Tank	Holding Tank	Grum Fl Thru+H	Grum FI	Holding Tank	Holding Tank	Holding Tank	Grum FI Thru+HI	Grum Fl Thru + In	
TYPE	reatmer		ling ak	sler Tnk	sler in.	1 Flow HIdTk	mman F Holding	lng	Flow +Inctn	Inciner	ling	erator	ATX ap.	fing	erator 1	ding	erator	ATX ap.	ding nk	erator	1
	T gue	Ella C	Hold	Chry + Hld	Chry + Inc	Pru+ Thru+	+ ³	Hold Tank	Grun Thru	+ Cru	Hold	Incin	04	Hold	Incin	Hol Ta	Incin	Δŭ	Hol Ta	Incin	
l.	ColV	(Black)	avity bliect.	ll ctrcul.	Chrysle	avity ollect.	unman	ravity ollect.	Tavity	ollect. rumman	scuum ollect.	ered)				T D	ollect.				
~	NS	WM	ΰŭ	l <u>o</u> §	5	0 Ŭ 7	ũ	ũŬ S	00	ŬÜ	<u>နို ဂို</u>	5	đ	5	E.	₹ ZZ	<u>ų u</u>	9	5	æ	1

C(%) - Relative per capita life-cycle cost expressed as a percentage of the largest value for any viable WMS/Vessel combination.

 $R_E(\%)$ - Effectiveness rating.

N/A - Not a viable candidate system/vessel combination.

Figure 24

PER CAPITA LIFE-CYCLE COST VERSUS EFFECTIVENESS RATING FOR VIABLE CANDIDATE SYSTEMS

di ma

OPTIMUM CANDIDATE SELECTION CRITERIA

Since cost and effectiveness represent opposing aspects of a candidate (quality vs. cost penalty) and since these two aspects are a priori independent of each other (and hence may result in unpredictable combinations of cost and effectiveness), it is necessary to establish a systematic procedure for choosing an optimum system from among the available candidates. An optimum candidate selection criterion is a rule which can be used consistently for making this type of selection. Such a rule sometimes results in trading off cost (penalty) for effectiveness (quality). Several such optimum candidate selection criteria are discussed below.

Outliers

Outliers are candidates whose cost vs. effectiveness relationship is drastically different from that of all the other candidates. Identification of outliers is a quick and convenient method of determining the most and/or the least cost effective candidates. Thus, in the cost vs. effectiveness, relationship shown below, candidate A is an obvious optimum because it has the highest effectiveness rating and the lowest cost of all available candidates.

In Figure 23, WMS No. 1 is such an obvious optimum. Candidate B above is the least cost-effective choice since it has the highest cost and lowest effectiveness rating of all available candidates. In Figure 23, depending on vessel, WMS Nos. 10, 11, 13, 16 or 18 are such obvious least costeffective candidates.

Other less obvious types of outliers are shown below.

A cost vs. effectiveness relationship represented by the group of candidates A, B, C, D in which cost increases relatively slowly and the corresponding effectiveness ratings increase substantially may result in the choice of the most expensive (and most effective) candidate, since a high gain in effectiveness is obtained for a small increase in cost. In such a situation, one has to decide what constitutes a "large" increase in effectiveness and "small" increase in cost. It is obvious that if all candidates have the same cost but different effectiveness ratings, i.e., lie on a horizontal line, then the optimum is the candidate with the highest effectiveness rating.

A cost vs. effectiveness relationship represented by the group of candidates E, F, G, H in which cost decreases rapidly and the corresponding effectiveness ratings decrease relatively slowly may result in the choice of the least effective (and least costly) candidate, since a substantial decrease in cost is achieved at a relatively shall decrease in effectiveness. Again, in such a situation, one has to decide what constitutes a "substantial" decrease in cost and "small" decrease in effectiveness. It is obvious that if all candidates have the same effectiveness rating but different costs (i.e., lie on a vertical line), then the optimum is the candidate with the lowest life-cycle cost.

Marginal Cost-Marginal Utility Principle

If the cost vs. effectiveness relationship does not fall within the category of outliers(in which case the optimum choice is obvious), an alternative procedure based on the economic principle of Marginal Cost-Marginal Utility (or Marginal Value) may sometimes be used as the optimum candidate selection criterion.

To use this selection procedure, a smooth curve is drawn through the points representing the candidates. An example of such a curve is shown below:

In the curve shown above, points A, C, D, F and H represent candidate systems.* The selection of the optimum system (i.e., the most cost effective system) is determined by considering some of the charac teristics of the above curve relating cost to effectiveness. It is noted that between points b and g as cost increases, the corresponding effectiveness rating also increases. Between points b and A. since an increase in cost is accompanied by a corresponding decrease in effectiveness rating, this region will not contain the optimum choice. It is noted that the cost is minimum at point b. Similarly, in the region between points g and H, since an increase in cost is also accompanied by a corresponding decrease in effectiveness rating, this portion of the curve will not contain the optimum candidate system. Also, note that the effectiveness rating is highest at point g. The most cost effective system is therefore found in the region between points b and g. The optimum choice is determined by drawing a tangent to the curve at an angle of 45[°] with the abscissa, as indicated by point e. This point corresponds to the most cost effective system as determined by the principle of Marginal Cost - Marginal Utility.**

At this point, the rate of change of cost with respect to effectiveness rating, i.e., the slope of the curve, is equal to 1.0 because the tangent line was drawn at an angle of 45° to the abscissa. This means that at this point, a single unit of change in relative cost produces a single unit of change in effectiveness rating. This point is considered to be optimum because if the rate of change of cost relative to effectiveness is greater than 1.0, it indicates that a relatively large change in expenditures will result in a relatively small gain in effectiveness rating. On the other hand, if the rate of change of cost with respect to effectiveness rating is iess than 1.0, it means that a relatively small change in cost produces

^{*} It is noted that to obtain such a relationship, it may first be necessary to eliminate outliers as discussed in the previous section.

^{**} William F. Sharpe, <u>The Economics of Computers</u>, (N.Y. and London: Columbia University Press, 1969), pages 13-19.

a relatively large increase in effectiveness. This is an indication that such a point is not the place to end the search because the optimum has not yet been reached. Thus, when the rate of change is equal to 1.0, a change in cost is balanced by an equal change in effectiveness rating and is the optimum choice.

In the above example, since there is no candidate corresponding to point e, the optimum choice corresponds to the candidate which is closest to point e, namely, candidate D.

In order to utilize this approach, it is necessary that both cost and effectiveness be expressed in the same units. This is accomplished by using the relative, instead of the absolute costs of the candidates, as discussed in a previous section.

Ratio of Cost to Effectiveness Rating

Another optimum candidate selection procedure is based on a ranking of candidates on the basis of the ratio of life-cycle cost to effectiveness rating. An advantage of this selection procedure is that it reduces the two dimensional problem into one dimension and results in a ranking of the candidates which makes the choice of the optimum candidate an obvious one, namely the one with the smallest ratio.

Since effectiveness ratings are dimensionless, the ratio of cost to effectiveness rating (C/R_E) has the dimensions of dollars (\$). Thus, this ratio can be thought of as "cost" in terms of "effectiveness dollars". Since the values of effectiveness lie between 0 and 100%, the value of this ratic, when the effectiveness rating is expressed as a fraction rather than as $\langle \rangle$ percentage, will usually be greater than the cost in absolute dollars. Thus, this ratio can be interpreted as the penalty in dollars (\$) for a low effectiveness rating. As an example, if two candidates have the same life-cycle cost but the effectiveness rating of the first is half that of the second, the latter is "worth", half as much in terms of effectiveness dollars. Similarly, if the

life-cycle cost of one candidate is one half that of another one, but its effectiveness rating is also one half of the other one, then they are both "worth" the same in terms of effectiveness dollars. Thus, this optimum selection procedure results in an equal trade-off between cost and effectiveness ratings.

The results of applying this optimum selection procedure to the viable candidate wastewater management systems for each vessel are shown in Figure 25. In order to simplify the presentation and facilitate comparison of results for each vessel, the ratio of life-cycle cos⁺ to effectiveness rating was plotted as a percentage of the maximum value for each vessel. The results in Figure 25 confirm the conclusions regarding the most and least cost effective systems for each vessel previously determined on the basis of the outlier technique.

In order to obtain results on a fleetwide basis rather than on an individual vessel basis, a similar ranking was obtained by combining the data for all vessels based on the ratio of the per capita life-cycle cost to effectiveness rating. The results of such a ranking are shown in Figure 26. The ranking in Figure 26 is based on expressing each ratio as a percentage of the maximum value for all vessels. The results in Figure 26 also confirm the previously noted observation that the PAMLICO is in a class by itself due to its waste collection system which is different from that of the other vessels and its unusual mission profile characteristics.

F-Firebush

P-Pamlico

W-White Sage

H-Point Herron

RELATIVE RANKING OF VIABLE CANDIDATE SYSTEMS ON ALL VESSELS BASED ON THE RATIO OF PER CAPITA LIFE CYCLE COST (C) TO EFFECTIVENESS RATING (R_E)

	1.1																			
	RON (82	C/R _E (%	9	N/A	N/A	¶.N	N/A	N/A	N/A	N/A	36	N/A	63	N/A	N/A	32	N/A	56	N/A	N/A
	POINT HE	Point	ΗI	N/A	N/A	N/A	N/A	N/A	N/A	N/A	H6	N/A	HII	N/A	N/A	14H	N/A	16H	N/A	N/A
	GE (133')	C/R _E (%)	7	20 -	26	23	20	21	42	37	20	47	32	39	63	23	47	32	44	71
BINATION	WHITE SA	Point	M I	2W	ЗW	4 W	5 W	6 W	7 W	8W	M6	10W	11W	12W	13W	14 W	15 W	16W	17W	18W
FESEL CON	0 (160')	C/k _E (%)	22	44	58	48	38	42	84	11	33	82	47	62	100	39	85	55	66	100
N/SWM 218	PAMLIC	Point	ΙP	2 P	3Р	4 P	ЗP	6P	7P	8Р	d6	10P	11P	12P	13P	14P	15P	16P	17P	18P
EACH VIA	1 (180')	$C/R_{E}(\%)$	3	8	19	10	14	15	18	29	19	44	33	36	58	11	31	21	25	41
OINTS FOR	FIREBUSH	Point	1F	2F	3F	4 F	SF	6F	7F	8F	9F	10F	11F	12F	13F	14F	ISF	16F	17F	18F
ALUE OF P	JS (210')	C/R _E (%)	2	7	N/A	N/A	N/A	N/A	N/A	N/A	22	41	N/A	N/A	N/A	16	31	26	N/A	N/A
	VIGOROI	Point	IV	2V	N/A	N/A	N/A	N/A	N/A	N/A	٨6	10V	N/A	N/A	N/A	14V	ISV	16V	N/A	N/A
	IN (378')	C/R _E (%)	3	8	13	9	N/A	N/A	13	N/A	14	31	25	N/A	N/A	14	26	23	N/A	N/A
	GALLAT	Point	ย	2G	3G	4G	N/A	N/A	7G	N/A	9G	10G	1 IG	N/A	N/A	14G	15G	16G	N/A	N/A
·	nt/Disposal	Gray	Holding Tank	Holding Tank	Holding Tank	Holding Tank	low Thru 7 Tank	Grum Flow Thru+HIJTnk	Holding Tank	low Thru ator	Holding Tank	Holding Tank	Holding Tank	Grum Flew Thru+ Hld Tnk	Grum Flow Thru + Incin.	Holding Tank	Holding Tank	Holding Tank	Grum Flow Thru+Hld Tnk	Grum Flow Thru + Incin.
TYPE	Treatmen	Black	Holding Tank	Chrysler + Hid Tnk	Chrysler + Incin.	Grum Flow Thru+HldTk	Grumman I + Holding	Holding Tank	Grum Flow Thru+Incin	Grumman F + Inciner	Holding Tank	Incinerator	GATX Evap.	Holding Tank	Incinerator.	Holding Tank	Incinerator	GATX Evap.	Holding Tank	Incinerator,
10	ColVira	(Black)	Gravity Collect.	Oil Recircul.	(Chrysier)	Gravity Collect. I	(Grumman)	Gravity Collect.	Gravity	(Grumman)	Vacuum Collect.	(Jered)			>	M/T Pump	Collect. (GATX)			-
	~	M		N	3	4	- v	9	~	8	6	10	11	12	13	4	15	16	17	18

 $C/R_E(\%)$ - Relative ratio of per capita life-cycle cost to effectiveness rating expressed as a percentage of the largest value for any viable WMS/Vessel combination.

5

N/A

- Not a viable candidate system/vessel combination.

FIGURE 26

RELATIVE RANKING OF VIABLE CANDIDATE SYSTEMS ON ALL VESSELS BASED ON THE RATIO OF PER CAPITA LIFE CYCLE COST (C) TO EFFECTIVENESS RATING (RE)

7

Sheet 2 of 2

DISCUSSION

GOALS, POLICIES, GUIDELINES, AND ASSUMPTIONS

The results of this study depend not only on the objective (and subjective) data and characteristics of the systems and vessels analyzed but also on the goals, policies, guidelines, and assumptions used. Hence, the overall as well as specific results should be interpreted accordingly. Although a detailed examination of the consequences of all such objectives, policies, guidelines, and assumptions governing this study will not be attempted here, two important issues are discussed below.

Vessel Holding Time Requirements

The average and maximum holding time requirements for a vessel constitute the most important issues since they affect the following:

- The WMS configuration and equipment sizing.
- . The viability of potential system/vessel configurations.

The life-cycle cost.

Vessel holding time requirements are established on the basis of:

- The definition of restricted waters.
- . The guidelines regarding the basis for setting the holding capacity objective for each vessel.
- . The policy regarding the availability of pierside waste receiving facilities.

The definition of restricted waters is a matter of law, thus limiting the available options. However, an important concern in this regard is the uncertainty of future changes in the definition of restricted waters (as well as effluent standards). This law has been modified in the last few years. The recent extension of territorial waters to 200 miles is an example of a change in the law which may have significant consequences on the mission profiles of certain classes of vessels. In this study, restricted waters were defined as those within three miles from any shoreline and all inland waters.

For purposes of this study, the guideline regarding vessel holding capacity was that the candidate system must be capable of accommodating the maximum holding time encountered in the vessel mission profile data, regardless of how infrequently such a holding time would be required. For some vessels this policy has important implications for the WMS equipment configuration requirements and viability due to large differences between this maximum and the other holding times. The ratio of the maximum holding time to the next smaller holding time for some of the vessels is as follows:

- VIGOROUS more than 2 to 1
- . FIREBUSH approximately 5 to 1
- . PAMLICO more than 2 to 1
- POINT HERRON more than 4 to 1

Thus, for these vessels, if the guideline for holding capacity was based on the objective of satisfying only P% rather than 100% of all holding time requirements, this would profoundly affect the WMS equipment requirements and sizing and, in some cases, system/vessel combinations determined to be non-viable might be judged as viable. However, the consequence of such a decision is that WMS configurations would be accepted which would, with a priori knowledge of the decision maker, result in either the violation of emission standards approximately (100-P)% of the time or the vessel operations (i.e., mission profiles) would have to be modified to avoid this.

Another important issue which affects vessel holding capacity (and is related to the above discussion regarding the maximum holding time) is

the U.S. Coast Guard policy of providing pierside waste receiving facilities only at the vessel's home port (and at yards). Provision of shore waste receiving facilities at non-home ports as well, would affect vessel mission profile results and may eliminate the necessity for unusually large holding capacities.

Management of Black and Gray Wastewaters

A list of the systems which can accommodate the maximum holding time for black and gray waste waters on each vessel is presented in Table 14. The systems which do not appear in Table 14 are either nonviable candidates or do not provide the full holding capacity for black or gray wastewater, as the case may be.*

The following observations can be made from the results in Table 14:

. The WHITE SAGE (133') is the only vessel for which all candidate systems are capable of providing the full holding capacity for both black and gray water.

The objective of providing required gray water holding capacity cannot be met on the following vessels:

- .. GALLATIN (378')
- .. VIGOROUS (210')
- .. POINT HERRON (82')

* The inclusion in this study of systems which do not provide 100% of the required holding capacity for black and gray wastewaters resulted from a Coast Guard guideline that, if the holding capacity is determined by a tank and full capacity cannot be provided, such systems are not to be eliminated from the study as non-viable candidates. Instead, the maximum available tank capacity is to be provided for black and gray wastewaters, giving preference to the management of black water. Table 14

CANDIDATE SYSTEMS WHICH PROVIDE FULL HOLDING CAPACITY

None	9, 11, 14, 16	99.12	21.5	0.66	æ	POINT HERRON (82')
All	ll	96.88	62.0	65.5	21	WHITE SAGE (133')
5, 6, 8, 12, 13, 17, 18	All	97.78	228.0	456.0**	13	PAM'LCO (160') * New Construction
5, 6, 8, 12, 13, 17, 18	All	99.26	54.0	277.9	50	FIREBUSH (180')
None	10, 14, 15, 16	96.77	72.0	172.0	60	VIGOROUS (210')
None	1, 2, 3, 4, 7, 9, 10, 11, 14, 15, 16	98.21	88.0	97.5	152	GALLATIN (378')
Gray Wastewater	Black Wastewater	Excluding the Maximum	· (Hours)	(Hours)	DIZE	
e required capacity	100% of th holding	% of All Holding Times	Next Smaller Holding Time	HOLDING	CREW	VESSEL
which provide	WMS Nos.	HOLDING TIMES	ALL OTHER I			

158

* Based on data from SHADBUSH (74") and CLAMP (75").

** Maximum holding time used for WMS design purposes is 501 hours, an increase of 10% to reflect anticipated longer holding time requirements as a result of more available space for stocking supplies.

On the two other vessels on which required gray water holding capacity can be provided, namely FIREBUSH (180') and PAMLICO (160'), this can be implemented only by systems which employ flow through treatment (using the Grumman MSD) of the gray water stream (sometimes in combination with the black water stream) in conjunction with either an incinerator or a holding tank for the resulting sludge.

It is noted that the above conclusions are based on the applicable guidelines and assumptions for holding capacity goals, installation, waste generation, mission profiles, etc. Modification of one or more of the above guidelines and assumptions may result in different conclusions.

ANALYSIS OF RESULTS

The various analyses which have been performed as part of this study have generated numerous results and information at several levels of detail. These results can be used to draw conclusions about a number of questions and issues which may be of interest to a decision maker.

The first, and most important step in arriving at conclusions is the formulation of specific questions. The candidate systems analyzed constitute a wide range of different concepts. As a result, caution should be applied to avoid making comparisons between system concepts which differ in more than one respect, in order to avoid confounding the issue or questions being raised.

An exhaustive examination of all possible issues and questions will not be attempted here. However, some of the results are discussed below for the purpose of arriving at some conclusions, and as a means of illustrating the techniques which can be used to answer specific questions. A summary of the reasons why certain results may vary from vessel to vessel is also presented.
Optimum Systems

The determination of the optimum, i.e., most cost-effective, candidate system for each vessel is one of the most important objectives of this study. From the results in Figures 23 and 25 it would seem that this issue is easily resolved since WMS No. 1 is the optimum candidate on all vessels. Furthermore, WMS No. 1 appears to be the optimum not only on the basis of the ratio of cost to effectiveness rating, but it seems to be an obvious optimum since it is an outlier.

However, this issue is not that simple. The reason for this is that, as indicated in Table 14, WMS No. 1 does not provide full holding capacity for both black and gray wastewaters on all vessels. Consequently, the questions regarding the optimum candidate for each vessel must be reformulated in terms of different holding time objectives. Table 15 indicates which WMS viable candidate is the optimum on each vessel as a function of holding time objective. The following observations can be made from the results in Table 15:

- The WHITE SAGE is the only vessel on which WMS No. 1 is both the optimum and provides full holding capacity for black and gray wastewaters.
- No optimum candidate system (based on the candidate WMS concepts investigated as well as the guidelines and assumptions governing this study) is available to meet the full holding capacity for black and gray wastewaters on three vessels, namely GALLATIN, VIGOROUS, and POINT HERRON. On these vessels, optimum candidates for the more limited objective of providing full holding capacity for black water only are WMS No.1 fc. the GALLATIN, WMS No. 14 for the VIGOROUS and WMS No. 9 or No. 14 for the POINT HERRON. On the latter two vessel^c. WMS No. 1 is the optimum when the holding time object.ves are further reduced by dropping the requirement for

OPTIMUM CANDIDATE SYSTEMS AS A FUNCTION OF HOLDING TIME OBJECTIVES

	:	an city For I Gray							
candidates	objectives	Less Th 100% Capac Black and	1	~ 1	ł	I	I	/1	
hich are optimum	holding capacity	100% Capacity For Black Only	11	14	/ 1	/ 1	I	9 or 14	
WMS Nos. + w	under different	100% Capacity For Black and Gray	None	None	S	S	71	None	
	UTILIZATICN	FACTOR (%)	II	2.6	14.1	31.0	t.t	1.8	
IOLDING TIMES	% of All	Holding Times Excluding the Maximum	98.21	96.77	99.26	97.78	96.88	99.12	
ALL OTHER F	Next Smaller	Holding Time (Hours)	88.0	72.0	54.0	228.0	62.0	21.5	
	MAXIMUM	TIME (Hours)	97.5	172.0	277.9	456.0**	65.5	0.66	
		CREW SIZE	152	60	50	13	21	8	
		VESSEL	GALLATIN (378')	VIGOROUS (210')	FIREBUSH (180')	PAMILCO (160') * New Construction	WHITE SAGE (133')	POINT HERRON (82')	

161

* Based on data from SHADBUSH (74') and CLAMP (75').

** Maximum holding time used for WMS design purposes is 501 hours, an increase of 10% to reflect anticipated longer holding time requirements as a result of more available space for stocking supplies.

 \bullet A check (/) next to the WMS No. designates the most cost effective candidate for the vessel.

j

Table 15

· r

managing gray water and accepting less than 100% holding capacity for black water (40% for the VIGOROUS and 58% for the POINT HERRON).

On the FIREBUSH and PAMLICO, WMS No. 5 is the optimum, under the objective of providing full holding capacity for both black and gray wastewaters. On these vessels, if the requirement for managing gray water is dropped completely (on the FIREBUSH) or limited (to 55% on PAMLICO), then WMS No. 1 is the optimum candidate.

It is emphasized that the above conclusions are all subject to the guideline of setting the holding capacity goals for each vessel on the basis of the maximum holding time, as well as the other guidelines governing this study. Hence, when using the results in Table 15 to study the implications of modifying the guidelines and assumptions of the study, one should not overlook the possibility that such changes may lead to different conclusions. This is so because such changes may affect the installation, the viability, the costs, the effectiveness ratings, and therefore their relative magnitudes.

Comparison of WMS Concepts

Of the 18 WMS concepts, seven include an incinerator which is associated either with the black water stream or with both the black and gray water streams (WMS Nos. 3, 7, 8, 10, 13, 15, and 18). Two of them include an evaporator which is associated with the reduced volume black water stream (WMS Nos. 11 and 16). Some questions which may be of interest to a decision maker, from a cost-effectiveness point of view, are:

- . Are incinerators preferable to holding tanks?
- . Are evaporators preferable to holding tanks?
- . Are incinerators preferable to evaporators?

- Is reduced volume collection preferable to reduced volume macerator/transfer (M/T) pump collection?
- Is oil recirculation preferable to flow through treatment?

As was pointed out earlier, in making comparisons between candidate WMS concepts it is important to compare systems which are similar in all except one respect, i.e., to investigate one variable at a time in order to avoid confounding the issue by other differences which may not be relevant. This principle can be applied by making side-by-side direct comparisons of the candidate WMS concepts on each vessel which are similar in all respects, except for the substitution of a holding tank for an incinerator or evaporator, an incinerator for an evaporator, vacuum collection for pump collection, oil recirculation for flow through treatment, etc.

Such comparisons of WMS concepts are presented in Table 16. The following inferences can be made from the results in this table.

- For all viable system/vessel combinations where such comparisons can be made, a holding tank is more effective and less costly (therefore more cost-effective) than an incinerator.
- For all viable system/vessel combinations where such comparisons can be made, a holding tank is more effective and less costly than an evaporator.
- For all viable system/vessel combinations where such comparisons can be made, an evaporator is more effective and less costly than an incinerator.

For all viable system/vessel combinations where such comparisons could be made, pump collection is more effective than vacuum collection. However, no pattern is evident with respect to life cycle cost and cost-effectiveness. This indicates that other considerations which are vessel dependent (i.e., WMS equipment configuration differences affecting acquisition cost, differences in vessel conditions affecting installation, etc.) are more important in determining life-cycle cost than the difference between vacuum and pump

, ,	1.5	1 6	•										
-	2 4 ya	al Jan Iney		N	N/A	N/N	57 N/N	N/N	51 N/A	Ň	55 25 100	51 vs 87	.
à	NNC HL	1000 100 100 100 100 100 100 100 100 10		N/A	N/A	NA	60 N/A	N/A	71 N/A	N/A	5 8 0 5 6 0	71 vs 66	ctive
	× (Car Car		N/A	N/A	N/A	28,058 N/A	N/A	29.289 N/A	N/A	28.058 vs 45.559	29.289 vs 45.579	cost clie
	Ceet) TOVS	Valle Call	ç	23 VS 37	32 vs 59	28 vs 52	29 vs 67	55 vs 90	32 vs 66	62 vs 100	29 V5 46	32 .vs 46	s more
	1111	Ballos Civeres	3	65 65	74 VS 68	76 vs 69	64 VS 56	56 vs J 1	70 VS 62	62 vs 54	vs 59	70 vs 66	1 otte
		Carler		46.333 vs 58.040	56.434 vs 96.242	51.103 vs 85.265	44.345 vs 89.990	73.991 vs 109.560	53.402 vs 97.771	91.509 vs 128.942	44.345 vs 64.258	53.402 vs 72.375	ive C/R
	VICANDUS (210) FEREDUSH (160') FAMELICO (100	1900 C 45	,	44 759 59	48 vs 84	39 vs 71	33 vs 82	62 vs 100	39 vs 85	66 vs 100	33 47 47	39 vs 55	f relati
. Table 16 COMPARISON OF WMS CONCEPTS •		Ra RUE CUA		63 ¢4	68 vs 63	- 71 vs 65	64 vs 55	56 vs 52	71 vs 61	63. vs 58	64 60 60	71 vs 60	alue o
		Cal (R)		54.160 vs 74.735	68.501 vs 110.249	57.432 vs 96.968	44.002 vs 94.065	72.605 vs 108.959	57.975 vs 108.996	86.689 vs 120.925	44.002 vs 59.173	57.975 vs 75.640	A lower v
		100 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	:	33. 23	17 vs 31	24 vs 49	32 .vs 75	62 .vs 100	20 V5 53	43 vs 70	32 vs 56	20 vs 36	per.
		10000000000000000000000000000000000000		71 vs 69	76 vs 72	77 vs 71	64 vs 57	56 vs 52	75 vs 68	68 vs 64	58 58 58	75 vs 70	st num
		Cost (58)		47.328 vs 105.495	59.642 vs 104.949	88.145 vs 164.309	96.505 vs 200.935	163.557 vs 244.331	68.812 vs 169.382	135.709 vs 211.911	96,505 vs 154,074	68.812 vs 117.251	s the lowe
		Relative C. I.S.		N/A	N/A	N/A	52 52 vs 100	N/A	38 vs 75	N/A	52 52 vs N/A	38 vs 63	recede
		נים נוער בעוביא		69 N/A	N/N	N/A	61 61 55	N/A	74 vs 65	N/A	61 Star	74 vs 69	nber p
		Carl ERS		46.358 N/A 105.495	N/A	N/A	** 126.924 vs 220.107	N/A	113.882 vs 195.930	N/A	** 126.924 N/A	113.882 vs 173.901	ighest nur
	RLC) NI	100 - 100 -		25 vs 42	20 vs 40	N/A	46 vs 100	N/A	45 vs 82	N/A	46 79 79	45 vs 74	the hi
	GALLAT	5073A 7300 P3		72 vs 68	77 vs 72	N/A	64 vs 57	N/A	72 vs 65	N/N	64 58 58	72 vs 67	bue (
		Cast 12K		135.988 vs 217.483	114.804 vs 221.996	N/A	225.474 vs 435.003	V/N	249.329 vs 406.995	N/A	225.474 vs 349.527	249.329 vs 377.454	orackets (
		I LEM OF CONPARISON	Holding tank (WMS No.) vs hichiaratic (WMS No.) for concentrated waste or sludge	. Off recirculation, gray water holding (2) vs (3)	. Gravity collection flow through treatment of bluck wuter, gray water holding (4) vs (7)	 Gravity collection, flow through treatment of combined black and gray water (5) vs (8) 	. Vacuun collection, gray water holding (9) vs (10)	. Vacuum collection, gray water flow through treatmer: (12)vs (13)	. Pump collection, givy wuter incluing (14) vs (15)	 Pump collection, gray water flow through treatment (17) vs (18) 	 Holding tank (WMS No.) vs evaporator (WMS No.) for concentrated black water. Vacuum collection, gray water hulding (9) vs (11) 	. Pump collection, gray water holding (14) vs (16)	The system number appears in t

			-	S	MPAR	SON OF W	'MS C(ONCE	PTS •						F	Pa	ge 2	of 2
	CM	LLATIN	(378.)	VICOR	015 210	.	FIREN	et) HSUN	6	A A	MUCO ((1001)	IIA	LE SAGE	(IEI)	LINNA	S	Ê
199) (94	Crs,	Velan (Ca) Star	287 (287 (287) (277) (27	Beills Lieven	Salion Construction	Corr Est	Kalling Chines	1000 000 000 000 000 000 000 000 000 00	Car EX		(2) 84	1997 1997 1998 1998 1998 1998	45	Balling (B)	5	Section of the sectio	the state of the s	3 12 020
				•										•				
/ 135.00) vs 349.5	03 57 27 58	2 × 10	0 220.107 5 v5 9 N/A	55 vs N/A	100 vs N/A	200.935 vs 154.074	57 vs 58	75 vs 56	94.065 vs 59.173	55 50 50	82 V 5 47	89.99 vs 64.25	0 26 23 29	67 46	N/A	N/A	N 001	4
() 406.99	95 6 54 6	5 2 C	2 195.930 ss vs 14 173.901	65 69 69	75 vs 63	169.382 vs 117.251	68 vs 70	53 vs 36	108.996 vs 75.640	61 vs 66	85 × 5	72.77	1 62 5 66	99 × 99	N/A 45.579	N/N 99	z 6	< 1
			*	:	:				4									
225.4 vs 249.3	74 6 29 7	4 2 4	126.924 5 113.882	61 vs 74	. 52 . vs 38	96.505 v5 68.812	64 vs 75	32 VS 20	44.002 vs 57.975	64 vs 71	33 29 29	46.34 vs 53.40	2 70 2 70	32 <29	28.058 vs 29.289	2 c 60	57 51 51	
435.0 Vs 406.9	03 5 95 6	5 B	00 220.107 s 12 195.930	55 vs 65	100 vs 75	200.935 vs 169.382	57 vs 68	75 VS 53	94.065 vs 108.996	55 V5 61	82 vs 85	89.99 vs 97.77	0 56 1 62	67 666	N/N	N/N	Ň	<
349.5 VS 377.4	27 5 54 6	8 5 1	9 N/A s 173.901	N/A 69	N/A 63	154.074 vs 117.251	58 vs 70	56 v5 36	59.173 vs 75.640	60 vs 66	47 vs 55	64.25 vs 72.37	5 29 20 20	46 46 46	45.559 • vs 45.579	56 55	100 vs 87	
er N/A	Ż	N N	A N/A	N/A	N/A	163.557 vs 135.709	56 vs 68	62 vs 43	72.605 vs 86.689	56 vs 63	62 vs 66	73.99 vs 91.50	1 56 9 62	55 62 vs	N/A	N/N	ž	۷
A-N/A	Z	A N.	/N N/A	N/A	N/A	244.331 vs 211.911	52 vs 64	100 vs 70	108.959 vs 120.925	52 vs 58	9 × 8	109.56 vs 128.94	0 51 2 54 2	<u> </u>	N/A	N/N	ž	< 1
135.21	88	× 5	46.358	69	1	47.328 vs	12	4 N N	59.160 vs	, 9 > 9	4	46.533			R N	K N	ž	
114.8 1- 217.4	83 66 v		12 N/A	N/N	N/N	105.495 vs	69 87	33	74.73 vs	555	65 S 8	58.040 vs 96.242	فَخف	37	K N	V N	Z	<u> </u>
221.9			10 +ha hiahaet		to a the	Indest III	c interview	Nol A	ver value		ative	C/R_ rati	1 2	ore of	nst effectiv	- s	ļ	٦

++ Only 48% of required black water holding caparity provided.

165

Ţ

collection. The reason for the higher overall effectiveness ratings of pump collection vs vacuum collection can be determined by examining the results of the effectiveness ratings for viable system/vessel combinations presented in Table 13. These results indicate that WMS concepts utilizing pump collection consistently exhibit significantly higher ratings for the M/Es "Operability" and "Reliability" than the WMS concepts utilizing vacuum collection. The higher Reliability ratings for pump collection result from its greater redundancy and lower complexity than for vacuum collection which is centralized.

For all viable system/vessel combinations where such comparisons can be made, oil recirculation is less effective than flow through treatment, with no pattern apparent for life-cycle cost or cost effectiveness. This indicates that other vessel dependent considerations are more important in determining life-cycle cost. Although the acquisition cost is lower for oil recirculation, the 100% utilization factor for the treatment subsystem tends to neutralize this advantage. The lower overall effectiveness rating for oil recirculation results from its consistently lower ratings for the M/Es "Operability" and "Habitability".

The above inferences regarding a holding tank vs an incinerator or evaporator take on special significance when one takes into account the holding capacities of the WMS concepts being compared. With the exception of WMS No. 9 on the VIGOROUS, all other pairs of WMS concepts comparing a holding tank to an incinerator or evaporator provide full holding capacity for black water (but not for gray water).

One can therefore conclude than an incinerator (besides being less cost-effective) provides no advantage in black water holding capacity, except for the VIGOROUS, on which WMS No. 10 (with incinerator) provides 100% of required black water holding capacity vs 48% for WMS No. 9 (with holding tank). Similarly, one can conclude that an evaporator (besides being less cost-effective) provides no advantage in black water holding capacity over a holding tank. It is noted that even on the

VIGOROUS, the 48% black water holding capacity of WMS No. 1 (with holding tank) could not be offset by WMS No. 11 (with evaporator) since the latter is not a viable candidate. Thus, the improvement in holding time which the evaporator might have provided could not be taken advantage of on this vessel due to the inability to install this configuration. Further examination of the WMS concepts being compared indicates also that incinerators or evaporators offer no advantage in gray water holding capacity.

This lack of advantage in either black or gray water holding capacity of incinerators or evaporators is especially significant in view of the fact that the goals for holding capacity are based on the maximum holding time for each vessel. Thus, the holding time requirements can therefore be only overstated rather than understated. The implication of this is that incinerators and evaporators are either not usable (due to the inability to install the associated configuration) or, when usable, are not required.

In view of the above discussion, the results indicating that evaporators are more cost-effective than incinerators may be academic. The advantages of incinerators over evaporators and holding tanks is the indefinite holding times which they provide. Although this consideration is one of the factors in the M/E "Performance," the overwhelming majority of cost as well as effectiveness considerations tend to favor holding tanks over incinerators and evaporators.

Ranges for Cost and Effectiveness

Ranges of cost and effectiveness values are of interest when comparing candidates, since this brings out differences which are inherent in the systems. In addition, the analysis of extremes (minimum and maximum values) to determine the reasons why the highest and lowest values are associated with certain candidates may provide useful insights into system properties.

Highest and lowest values for a number of cost effectiveness ratings and other properties of viable system/vessel combinations are presented in Table 17. Some observations about the range of values in Table 17 are discussed below.

Table 17 RANGES FOR COST AND EFFECTIVENESS RESULTS*

		RANGES FOR COST	AND EFFECTIVENESS	tesults +		Sheet 1 of 2	
CHARACTERISTIC	GALIATIN (378')	VIGOROUS (210')	FIREBUSH (180°)	PAMLICO (160')	WHITE SAGE (133')	POINT HERRON (82")	
 Cost Effectiveness rank determined by relative ratio of cost to effective- ness rating (%). A lower rank is more cost effective. 	001 (01) 9 (1)	(10) 100 (1) 5	(13) 100 (1) 6	(13) (18) 100 (1) 22	(11) 9 (11) 9 (11)	00[(I) 6 (I)	
 Life cycla costs (5K) Overall WMS cost per vessel. 	(10) 435.003 (1) 58.383	(10) 220.107 (1) 15.709	(13) 244.331 (1) 22.474	(18) 120.925 (1) 36.780	(18) 128.942 (1) 18.974	(16) 45.57 9 (1) 6.070	
. Per capita WMS cost.	(10) 2.862 (1) 0.384	(10) 3.668 (1) 0.262	(13) 4.887 (1) 0.449	(18) 9.302 (1) 2.829	(18) 6.140 (1) 0.904	(16) 5.947 (1) 0.759	
. Fixed Costs(capital investment)	(16) 205.220 (1) 47.260	(16) 94.540 (1) 10.200	(13) J£3.570 (1) 16.850	(7) 85.330 (9) 19.890	(18) 87.800 (1) 13.190	(11) 28.690 (1) 2.410	
. Recurring Freenditures (Opera and Main- tenance Jits)	(10) 235.703 (1) 11.123	(10) 126.177 (1) 5.509	(10) 101.595 (1) 5.624	(15) 49.046 (1) 7.160	(15) 44.971 (1) 5.784	(16) 19.909 (1) 3.660	
. Acquisition cost.	(16) 163.500 (1) 0	(16) 83.080. (1) 0	(13) 134.350 (1) 0	(18) 64.510 (9) 0	(18) 72.160 (1) 0	(11) 24.000 (1) 0	
. Installation cost.	(15) 78.120 (4) 39.980	(10) 23.530 (1) 10.200	(10) 33 .740 (2) 12.060	(3) 30.590 (12) 12.760	(7) 23.080 (12) 10.600	(9) 5.460 (1) 2.410	
. Operating cost.	(10) 35.239 (1) 1.942	(10) 13.819 (1) 0.645	(13) 17.991 (1) 2.378	(3) 10.986 (1) 2.347	(3) 10.999 (1) 1.751	(11) 3.281 / 1) 0.928	
. Preventive mainte- nance cost.	(16) 31.227 (3) 2.654	(16) 15.847 (1) 1.438	(16) 8.209 (1) 1.198	(12) 5.745 (3) 1.081	(12) 5.745 (3) 1.081	(11) 5.149 (1) 1.198	
. Corrective mainte- nance cost.	(15) 149.884 (1) 2.636	(10) 57.040 (1) 1.223	(15) 43.399 (1) 0.664	(15) 29.912 (1) 1.505	(15) 26.200 (1) 0.725	(16) 9.401 (⁷ 3) 0.264	
. Overhaul cost.	(10) 80.160 (1) 3.669	(10) 48.086 (1) 2.203	(10) 37.415 (1) 1.384	(13) 10.554 (1) 1.870	(13) 10.554 (1) 1.870	(11) 4.175 (1) 1.270	
* In each column, the system i	number appears in brac	kets () and the highes	it number precedes the	lowest number.			

168

17	FFECTIVENESS LESULTS+
Table	RANGES FOR COST AND E

ŧ

AN ADDRESS OF A DESCRIPTION OF

		RANGES FOR COST /	AND EFFECTIVENESS U	• STTTS •	r	Sheet 2 cf 3
CHARACTERISTIC	GALLATIN (378')	VIGOROUS (210')	FIREBUSH (180')	PAMLICO (160')	WHITE SAGE (133')	POINT HERRON (82')
. Effectiveness Ratings (∞)						(1) 02
. Overall effectiveness rating	(1) 87 (10) 57	(1) 84 (10) 55	(1) 86 (13) 52	(1) 80 (13) 52	(1) 86 (13) 51	(11) 56
. Adaptability for	(1) 88	(1) 84	(4) (5) 83	(12) 74	(1) 95	(1) 85
shipboard install- ation rating.	(16) 64	(15) 62	(18) 57	(7) (8) 54	(18) 67	(16) 50
. Performance - rating.	(3) 76 (11) 58	(10) 70 (2) 56	(3) (8) 75 (11) 57	(8)71 (11)54	(8) 7 4 (16) 61	(14) 68 (11) 57
Operability	16 (1)	10 (T)	(1) 90	(1) 87 (2) 46	(]) 87 (2) 46	(1) 83 (9) 65
. Personnel safety	(1) (3) 32 (1) (9) 95 (7) 80	(11) (9) 95 (15) 87	(2) (2) (2) (12) 95 (1) (6) (9) (12) 95 (8) 72	(1) (6) (9) (12) 95 (8) 72	(1)(6)(9)(12) 95 (8) 60	(1) (9) 95 (16) 89
Habitability	(1) 75	(1) 75	(1) 75	(1) 75	(1) 75	(1) 75
rating	(3) 36	(15) 50	(3) 46	(3) 36	(3) 36	(16) 60
				•	,	
. Reliability rating.	(1)96 (10)33	(1) 95 (10) 31	(1) 9£ (10) 31	(1) 90 (13) 22	(1) 94 (13) 19	(1) 91 (11) 36
. Maintainability	(1) 92	-(1) 93	(1) 93	(1) 84	(Ì) 86	(1) 85
rating.	(11) (16) 41	(16) 44	(11) 35	(12) 37	(12) 41	(11) 38
4. Figuras of merit						
. Per capita W MS weight (lb.).	(1)1,040 (16)558	(14) 641 (16) 371	(6)2,108 (2)496	(1) 8, 585 (13) 1, 105	(1) 1, 692 (8) 670	- (9) 937 (1) 585
. Per capita WMS volume (ft.3).	(3) 31.5 (7) 27.7	(15) 22.0 (1) 20.9	(12) 90.8 (2) 30.2	(3)289.3 (8)73.8	(7) 137.3 (16) 71.6	(14) 96.4 (1) 51.3
. Per capita annu a l	(10) 679	(10) 411	(13) 947	(13) 2, 514	(13) 847	(11) 116
energy consumption (Kwh).	(2) 4	(2) 2	(2) 5	. (2) 31	(2) 3	1 (1)

* In each column, the system number appears in brackets () and the highest number precedes the lowest number.

1. 1. 1.

a. Cost Effectiveness

The cost effectiveness rank varies over a wide range (of more than 10 to 1) except for the PAMLICO, which has a vacuum collection system and significantly different mission profile characteristics. For all vessels, WMS No. 1 is the most cost effective candidate.

b. Life Cycle Costs

The life cycle cost, both on a vessel as well as on a per capita basis, varies over a wide range, the lowest variation being for the PAMLICO due to its specialized collection system and mission profile characteristics. The lowest life cycle cost is associated with WMS No. 1 and the highest cost is associated with systems which employ a specialized collection subsystem and an incinerator (WMS Nos. 10, 13, 18) or evaporator (WMS No. 16) in conjunction with a holding tank (WMS Nos. 10, 16) or a Grumman flow through treatment system (WMS Nos. 13, 18). The reason for the low life cycle cost of WMS No. 1 is its low capital cost (since it requires little additional equipment and installation) and low recurring expenditures (lue to the simplicity of the system). Opposed to this is the complex equipment required for the other systems, resulting in expensive acquisition, installation, operation and maintenance.

Capital costs vary over a wide range, being lowest for WMS No. 1 and highest for WMS Nos. 11, 13, 16, 18. The exception is the PAMLICO, in which case the lowest fixed cost is for WMS No. 9 and the highest for WMS No. 7. The large difference in capital costs between the candidates stems largely from the type of collection system aboard the vessel. The original acquisition and installation costs for the existing drain system are not accounted for, resulting in high costs for

conversion. The balance of the difference is due to the higher acquisition and installation costs issociated with the more complex systems (incinerators, evaporators, waste treatment equipment).

The above is confirmed by an examination of the individual acquisition and installation cost elements in Table 17. The acquisition cost for tanks is zero by definition (the entire cost for tanks being included in the installation cost), resulting in an acquisition cost of zero for WMS No. 1 on all vessels except on the PAMLICO. On this vessel, zero acquisition cost is associated with the existing drain system corresponding to WMS No. 9. It is also noted that installation costs are hightly vessel dependent due to dependence on conditions existing on board the vessel.

Recurring expenditures vary over a wide range being lowest for WMS No. 1 and highest for WMS Nos. 10, 15 and 16. The low values for WMS No. 1 are due to the simplicity of his system, resulting in low operating costs (low labor and vessel resource costs) and low maintenance costs (low labor and parts costs). The high costs of operating and maintaining the other candidates results from their complexity (which increases maintenance costs) and the use of an incinerator or evaporator which results in higher operating costs (due to higher labor and vessel resource costs). The above conclusions regarding this variation in recurring expenditures as a function of system complexity can be confirmed by examining the individual cost elements (i.e., operation, preventive and corrective maintenance, and overhaul) in Table 17.

c. Effectiveness Ratings

In order to facilitate the interpretation of the results for effectiveness ratings, it is necessary to refer to the effectiveness model. Specifically, reference should be made to the measures of effectiveness (M/Es) and their associated weights (Table 12) and the factors/subfactors together with their associated weights (presented in a discussion of the effectiveness model), as well as the individual effectiveness rating functions for each elementary factor/subfactor (presented in Volume II). In general, the rating for each elementary factor/subfactor depends on either the WMS concept alone (independent of the vessel), or on the specific WMS configuration and equipment sizing, in which case such ratings are both system and vessel dependent. The above should be kept in mind when interpreting the effectiveness rating results in Table 13.

The overall effectiveness rating is highest for WMS No. 1 and lowest for WMS Nos. 10, 11 and 13 which consist of a vacuum collection subsystem and either an incinerator or an evaporator in conjunction with a holding tank or a Grumman treatment system. The overall effectiveness ratings range from 87% (WMS No. 1/GALLATIN) to 51% (WMS No. 13/WHITE SAGE).

The ratings for the M/E "Adaptability for Shipboard Installation" vary from 95% (WMS No. 1/WHITE SAGE) to 54% (WMS Nos. 7 or 8/ PAMLICO). No pattern is apparent since these ratings are highly dependent on the specific WMS equipment configuration which differs from vessel to vessel even for the same WMS concept, and on conditions aboard the vessel (as was the case for installation cost estimates).

The ratings for the M/E "Performance" vary from 76% (WMS No. 3/GALLATIN) to 54% (WMS No. 11/PAMLICO) with no pattern being apparent. The vessel dependent considerations (factors/subfactors), resulting from differences in equipment configurations and sizing for the same WMS concept, include: the figures of merit (per capita weight, volume and energy consumption); adequacy of holding times (for systems which utilize black and/or gray water holding tanks); the ability to handle peaks (on systems employing influent surge tanks); and the ability to handle additional personnel. Since the highest "Performance" rating for any system is 76%, this indicates that none of the system/vessel combinations obtained high ratings for all or most of the considerations relevant to this M/E.

The ratings for "Operability" are highest for WMS No. 1 on all vessels and lowest for WMS Nos. 2, 3, 9 and 10. The ratings range from 91% (WMS No. 1/GALLATIN or VIGOROUS) to 46% (WMS No. 2/PAMLICO or WHITE SAGE). Considerations which are vessel dependent and which also account for the high ratings for WMS No. 1 include the burden on operating personnel (labor, etc.), and operational supplies.

Ratings for "Personnel Safety" range from 95% to 60%. Systems rated high are WMS Nos. 1, 6, 9 and 12 (which consist of either a gravity or a vacuum collection subsystem, holding tanks, and may include a Grumman treatment system without an incinerator). Systems rated low include WMS Nos. 7, 8, 15 and 16 (which include an incinerator or an evaporator). Vessel dependent considerations include the proximity of WMS equipment to working and berthing areas or to a fuel tank.

Ratings for "Habitability" range from 75% for WMS No. 1 on all vessels to 36% for WMS No. 3 (Chrysler oil recirculation with an incinerator). Vessel dependent considerations include the proximity of WMS equipment to working and berthing areas. The relatively low maximum rating of 75% indicates that none of the WMS concepts received high ratings for all or most of the considerations relevant to this M/E. Although most of the individual elementary factor/subfactor ratings are 100% for WMS No. 1, it received a rating of 0 for odor production* (due to the holding tanks) which has a weight of 25%, resulting in its overall rating of 75%.

Ratings for the M/E "Reliability" range from 96% (WMS No. 1/ GALLATIN) to 19% (WMS No. 13/WHITE SAGE). The highest ratings are associated with WMS No. 1 and the lowest ratings are associated with WMS Nos. 10, 11 and 13 which employ vacuum collection with either an incinerator or an evaporator in conjunction with a holding tank or a Grumman treatment system. Vessel dependent considerations are due to WMS equipment configuration differences, include the number of equipment failures and configuration redundancy.

Ratings for the M/E "Maintainability" range from 93% (WMS No. 1/ VIGOROUS or FIREBUSH) to 35% (WMS No. 11/FIREBUSH). The highest ratings are associated with WMS No. 1 and lowest ratings are associated with WMS Nos. 11, 12. and 16 which employ reduced volume collection and include either an evaporator or a Grumman treatment system. Vessel dependent considerations,

*See ERFs in Volume II

due to WMS equipment configuration differences, include labor requirements (frequency and man-hours for PM, CM and overhau!), spares stockage requirements, and differences in clearance around the equipment (for maintenance) provided by each installation.

d. Figures of Merit

No pattern is apparent for the values of per capita weight and volume. Both the highest and the lowest values are highly vessel dependent. These results are due to the following:

- The discrete nature of WMS equipment capacities (which sometimes results in over-capacity relative to the crew size).
- Inclusion of systems which do not provide full holding capacity (i.e., the black and gray water holding tank capacities, in relation to the crew size, varies from vessel to vessel).
- . The inherent differences in the drain piping weights and volumes in relation to the crew size from vessel to vessel.
- The inaccuracies in estimating the weight and volva.) of the existing as well as installed drain piping.

The annual per capita energy consumption (in Kwhr) varies over a very wide range from 1 (WMS No. 1/POINT HERRON) to 2,514 (WMS No. /PAMLICO). The lowest values are associated with WMS . 1 and WMS No. 2 (Chrysler oil recirculation in conjunction with holding tanks). The highest values are associated with WMS Nos. 10, 11 and 13, indicating that the most energy intensive systems are those which have either an

incinerator or an evaporator. It is also noted that the maximum per capita energy consumption varies over a wide range (from 116 to 2, 514) and it is vessel dependent. The reason for this is that the per capita energy consumption is highly dependent on the WMS utilization factor. Comparison of the utilization factors associated with each vessel and the maximum per capita energy consumption indicates strong correlation between them, as shown in the tabulation below.

Vessel	WMS	Maximum	Annual
	Utilization	Per Capita	Energy
	Factor	Consump	ption
	(%)	Value (Kwh)	WMS No.
PAMLICO (160')	31.0	2,514	13
FIREBUSH (180')	14.1	947	13
WHITE SAGE (133')	11.1	847	13
GALLATIN (378')	11.0	679	11
VIGOROUS (210')	5.6	411	10
POINT HERRON (82')	1.8	116	11

The reason for the strong dependence of the maximum per capita energy consumption on the WMS utilization factor is that most of the energy consumption is due to the waste Treatment/ Disposal subsystem, whose operation is dependent on the vessel mission profiles. It is noted from the above table that although the maximum per capita energy consumption is highly dependent on the WMS utilization factor, it does not seem to be proportional. This is due to the fact that the most energy intensive system, WMS No. 13 (Vacuum collection, a Chumman treatment system for gray water, and an incinerator for the black water and gray water sludge), is not a viable candidate on all vessels. Thus, on the three vessels (FIREBUSH, PAMLICO, WHITE SAGE) on which WMS No. 13 is a viable candidate, the

maximum per capita energy consumption and WMS utilization factor are approximately proportional. The greatest discrepancy occurs between the GALLATIN and the WHITE SAGE which have almost identical WMS utilization factors (11% vs 11.1%) but their maximum per capita energy consumptions are considerably different (679 vs 847), since these maximum values are associated with different system concepts (WMS No.10 vs. WMS No.13).

Variations in Results Across Vessels

It has been noted in the previous discussions that certain results do not always follow a well defined pattern from vessel to vessel even when comparing similar WMS concepts. Some of the reasons for this seeming lack of consistency have been given in the discussion for specific results. When well defined patterns of results are discemed, it indicates that the characteristic relevant to this pattern is sufficiently dominant to overcome the influence of those considerations which tend to cause a lack of consistency.

A summary of the considerations which result in a lack of uniformity in results across vessels follows.

> The elimination of certain WMS concepts on different vessels tends to distort all results (cost, effectiveness ratings and optimum system selections based on ranking) which are based on normalization (i.e., division of results by the largest number).

Differences in performance requirements due to vessel mission profiles (i.e., the maximum holding time requirement) results in WMS configuration requirements for similar WMS concepts on different vessels which are disproportionate in relation to the crew sizes. This results in "distortions" not only in acquisition and installation costs but preventive maintenance costs, overhaul costs and effectiveness ratings for elementary factors/subfactors. Differences in WMS utilization factors due to vessel mission profiles would result in different operating and maintenance costs as well as in effectiveness ratings of related elementary factors/subfactors, even if any other differences did not exist. The discrete capacities of MSD subsystems/equipments sometimes results in mismatches between installed capacity and crew

size. This results in distortions in acquisition and installation costs in relation to the crew size. Similarly, the same WMS configuration on vessels which have different crew sizes (which can result from the discrete capacities) would result in different operating and maintenance costs as well as in effectiveness ratings of related elementary factors/subfactors, even if any other differences did not exist.

Differences in both the physical conditions as well as in the presence of some waste treatment equipment (holding tanks, non-standard drain system, special fixtures, etc.) result in "distortions" in installation and acquisition costs as well as installation related effectiveness ratings even if any other differences did not exist.

The inclusion of WMS configurations which do not fulfill the full holding capacity for black and/or gray wastewater tends to distort both the installation cost as well as effectiveness ratings for elementary factors/subfactors relevant to installation and to holding capacity.

EFFECTIVENESS ASSESSMENTS

In comparison to the life-cycle cost analysis, the effectiveness assessment methodology developed and used in this study may seem somewhat esoteric and perhaps controversial. The reason for this may very well be due to the differences in the units of measurement which each of these two analyses use and the associated underlying concepts. The life-cycle cost analysis deals with money, a universal unit and a concept which is familiar to everyone and is part of everyone's daily experience. By contrast, effectiveness deals with quality. But, quality immediately implies two things, namely, subjectivity and a standard (i.e., requirement, objective, constraint), against which the quality is to be measured.

However, there is no such thing as a universal standard of quality, since quality is a function of goals and requirements and these, in turn, depend on the specific set of candidate systems, processes, approaches, etc. being analyzed and compared. As a result, there is no universal measure and associated unit for quality.

The effectiveness assessment methodology used in this study is intended to provide a means for quantifying quality and taking all relevant considerations into account. The effectiveness ratings are the units of quality. The following paragraphs discuss some of the aspects and issues associated with the effectiveness assessment methodology. The nature, use and interpretation of effectiveness ratings are also discussed.

Subjective Judgement, Repeatability and Validity of Results

Subjective judgements* of the analyst play a prominent role in the development of effectiveness rating functions (ERFs) as well as the effectiveness model structure and the associated weights. Thus, such subjective judgements become an integral part of the resulting ERFs and are therefore reflected in the effectiveness ratings of candidate system/vessel combinations for the elementary factors/subfactors (and subsequently the M/E ratings and the overall effectiveness ratings).

^{*}It is noted that "subjective judgement" is somewhat of a redundancy since it is questionable whether there is such a thing as "objective judgement". Thus, if the judgement were purely objective, it would imply that the same conclusion could be arrived at by logical deduction, in which case, it would not be a judgement but rather a detormination and, in fact, could be performed without human intervention - e.g., by a computer.

This raises a potentially serious question regarding the meaning and validity of the results. Thus, if the effectiveness ratings are dependent on the particular analyst conducting the study, then it might be inferred that if different decision makers conducted the analysis, different results might be obtained, i.e., the results are not necessarily repeatable across different analysts. Such an a priori conclusion regarding the seeming lack of "stability" of the results, may be alarming or disturbing and may prompt questions as to the identity and source of the "real" or "true" ERFs. It is noted that a similar issue can be raised regarding the structure of the effectiveness model and the associated weights.

The resolution of this apparent dilemma lies in the nature, definition, and intent of an effectiveness analysis. It will be recalled that effectiveness was defined as inherently being subjective in nature and dependent on the decision-maker, i.e., effectiveness is what the decisionmaker says it is, or, effectiveness is in the eyes of the beholder. Although this may seem like a circuitous and self-serving definition of effectiveness, it is noted that it corresponds to the manner in which decisions are made by individuals whether in their personal lives or in making consequential decisions based on highly technical information. In fact, making a decision, by definition, implies the exercise of a subjective and judgemental faculty, rather than a process of arriving at a conclusion on the basis of some objective set of rules. Thus, for example, it would not be meaningful to ask someone to decide whether system A weighs more than system B. Rather, one can be asked to determine whether system A weighs more than system B. On the other hand, one cannot determine, but rather one would have to decide, whether one system aspect is more important, better, nicer, worthier, preferred, etc., than another.

Another point to keep in mind in connection with the nature of the above dilemma is that a numerical quantity for effectiveness is not meaningful in an absolute sense but only in a relative sense. Thus, regardless of the specific numerical assignments that are made, as long as they are consistent, differences among candidate system/vessel combinations can be

brought out. This is the basic purpose of an effectiveness analysis. An effectiveness analysis is not in itself a decision-making process. Instead, effectiveness analysis is a tool which the decision-maker can use to obtain the information he needs in a systematic manner and organize it in a convenient form for use by him in the decision-making process.

Some Characteristics and Features of the Effectiveness Assessment Methodology

The effectiveness assessment methodology developed as part of this study has been found to be applicable for quantifying the effectiveness of candidate system/vessel combinations at several levels of detail. It thus enables a decision-maker to compare candidates with respect to different individual aspects of effectiveness as well as the overall effectiveness. If used properly, this methodology can serve as a useful analytic tool for cost-effectiveness studies, trade-off studies, sensitivity analyses, etc. Some of the relevant characteristics and features of this methodology are as follows:

- . It can accommodate all considerations of interest to the decisionmaker.
- . It synthesizes technical and objectively determined quantitative system/vessel data with qualitative system/vessel information and subjective judgements of the decision-maker.

It is highly flexible with respect to the range and magnitude of the problems it can accommodate. Thus, the analysis can be either very detailed and comprehensive which may be suitable for largescale systems, or it can be much smaller in scope and less detailed as warranted by the objectives of the study and the data available.

It provides results at several levels of detail. Effectiveness ratings for each candidate are provided on three levels as follows:

- . An overall effectiveness rating
- ... A rating for each effectiveness measure
- . A rating for each elementary factor/subfactor
- It provides a means of determining the effect of changes in data, assumptions, subjective judgements, etc.
- It has been found that application of the methodology tends to clarify issues, may result in a fresh outlook and often new insights are gained, even by knowledgeable individuals who are familiar with the problem. This is due to the following aspects of the methodology:
 - .. Effectiveness is defined in terms of, and directly related to, the objectives, requirements and constraints of the problem.
 - .. Development of the structure of the effectiveness model requires the determination of overall assessment criteria followed by a systematic and successive breakdown of each overall criterion into constituent sub-criteria. This process results in an in-depth examination of the problem. Thus, issues which have either been overlooked or which were vague and ill-defined are identified and resolved.
 - . The need to assign a weight to designate the relative importance of each criterion encourages reflection on the basic issues pertaining to the objectives, requirements, etc.
 - .. Development of effectiveness rating functions results in consideration of the relevant requirements, constraints, the type of data available, the level of detail of the analysis, and identification of the judgements used in deciding what is desirable as well as undesirable.

Properties, Interpretation and Use of Effectiveness Ratings

a. Meaning of Effectiveness Ratings

Although the overall effectiveness rating of a candidate is a number in the range of 0 to 100%, it cannot be legitimately interpreted as a probability. Instead, the rating should be interpreted as a measure of the overall quality or "worth" of the candidate, determined as a weighted average of all considerations, i.e., the extent to which the aggregate of all the individual criteria are satisfied, weighted by the importance of each one relative to the others. Also, overall effectiveness ratings are to be used mainly for comparing candidate systems rather than in an absolute sense.

Similarly, the ratings of candidates with respect to individual M/Es are not to be interpreted as probabilities. It is especially important to keep this in mind when considering M/Es whose attributes or characteristics are usually given as probabilities.

Examples of such M/Es are "RELIABILITY" and "MAINTAINABILITY" whose ratings for a given candidate system <u>do not</u> have the usually used interpretation of being the probability that the system will not fail for a given period of time (Reliability) or the probability that the system will be restored within a given time interval (Maintainability). Instead, the ratings of candidates with respect to these M/Es are to be used for comparing the Reliability and Maintainability of the candidate systems. Furthermore, these M/E ratings may be based either entirely on objectively determined quantitative data, or partially on such data and partially on qualitative system information and subjective judgements. Hence, it is important to be aware of the distinction between the Reliability and Maintainability of a candidate system, which are characteristics or attributes of

the system, and the effectiveness <u>ratings</u> of the system for the M/Es "RELIABILITY" and "MAINTAINABILITY" which include subjective judgements pertaining to such issues as what constitutes minimum acceptable and ideal levels as well as the "worth" of intermediate levels of the values for these attributes. It is noted that the Reliability or Maintainability of a candidate system, i.e., the associated probability values, may serve as an input (i.e., the attribute variable in the effectiveness rating function) in rating the system for the M/Es "RELIABILITY" and "MAINTAINABILITY", but the rating may be based on other inputs as well. If these probabilities are used as the attribute variable and a linear relationship is used as the basis for the effectiveness rating function (ERF), then the ratings for these M/Es take on the values of the system Reliability and Maintainability characteristics.

b. The Effect of Weights and Levels of Subordination on Ratings

Variations in overall effectiveness rating (R_E) across candidate systems are generally of smaller magnitude than variations in ratings with respect to any one M/E for different systems. Also, a variation in the value for overall effectiveness rating of a system is nuch more significant than a variation of the same magnitude in the system rating (R_i) with respect to any one M/E alone. The reason for these two conclusions is that the overall system effectiveness rating is obtained as a sum of the weights are all in the range of 0 to 100% (and their sum is 100%), they tend to smooth out (and sometimes swamp) the variations in M/E ratings. Thus, a very large variation in any one M/E rating must occur in order to have any significant effect on the overall effectiveness rating (if everything else is held constant). And, in order to produce a large upward (downward)

variation in the overall effectiveness rating, extremely large upward (downward) variations in the ratings with respect to several M/Es must occur simultaneously (if no other variations occur).

The above conclusions can be simply illustrated with some numerical examples. Thus, a 10% change in a system rating with respect to an M/E which has a weight of 10% will result in only a 1% change in the overall effectiveness rating for that system. Similarly, even for an M/E which has a weight of 25%, a 10% change in the system rating with respect to this M/E will result in only a 2.5% change in the overall effectiveness rating for this system.

Since each M/E which is represented in the effectiveness model is generally weighted in such α way that it alone does not dominate the overall effectiveness rating, it is necessary to exercise some caution in using the overall effectiveness rating values for making decisions. This indicates the importance of examining the individual M/E ratings of a candidate in addition to its overall effectiveness rating.

Similar conclusions can be drawn with respect to the effect of factor weights on the corresponding M/E rating and the effect of subfactor weights on the corresponding factor ratings. In addition, this effect is multiplicative when more than one level is considered. It is noted that this is not an unexpected result and it is consistent with the fact that, generally, as the number of considerations determining the outcome of a decision is increased, the influence of any one consideration on the decision must, of necessity, decrease. Thus, the overall effectiveness rating is less sensitive to variations in factor ratings than it is to similar variations in M/E ratings, etc. On the other hand, it should be kept in mind that the overall effectiveness of a system is defined in terms of the aggregate of all criteria*rather than in terms of any one criterion, and the weight assignments for relative importance imply the manner in which the decision-maker is willing to trade-off one criterion (consideration) for another one.

c. Use of Effectiveness Ratings

Effectiveness ratings reflect the characteristics and features of the effectiveness assessment methodology discussed earlier and hence the resulting effectiveness ratings should be interpreted accordingly. Following are some guidelines for the use and interpretation of the overall effectiveness ratings as well as the ratings for each M/E.

The effectiveness assessment methodology does not in itself constitute an automated decision process which eliminates the need for a decision-maker. Instead, the effectiveness assessment methodology is a tool to be used by the decision-maker as an aid in analyzing and evaluating the candidates. As a result, the effectiveness ratings should not be thought of as automatic indicators of the effectiveness of the candidates independently of the decision-maker so that necessity for any further considerations is eliminated. Instead, since effectiveness ratings represent the quantitative result of the synthesis of objective and subjective system information, assumptions, requirements and the subjective judgements of the decisionmaker, they should be used as a basis for making comparisons, trade-offs, analyzing the effects of changes in data and/or assumptions. etc.

* This is analogous to the legal principle of reaching a verdict on the basis of the "preponderance of evidence".

Effectiveness ratings should not be used as the basis for determining the viability of potential candidates. Such a determination must be made prior to the effectiveness analysis as part of a preliminary analysis on the basis of gross considerations (i.e., minimum requirements), to eliminate non-viable candidates. As indicated in the discussion on the effect of weights on ratings, the effectiveness ratings are not adequate for providing the type of gross differences between candidates which are required for a preliminary analysis.

The effectiveness ratings are most meaningful when used and interpreted in the context of the effectiveness model. Hence, the more familiar one is with the effectiveness model, the more meaningful are the ratings.

Although the overall effectiveness ratings of a candidate are the most important and most often used indicator (figure of merit) of the effectiveness assessment, the individual M/E ratings for the candidate should also be examined and the reasons for either poor or high ratings should be understood. These M/E ratings may sometimes provide a rationale for a decision which overrides the importance of either a low or a high overall effectiveness rating.

The overall effectiveness rating of a candidate is a quantitative indication of its overall quality and hence is a convenient figure of merit which can be used as a basis for comparing and/or ranking the candidates being considered.

Although the effectiveness ratings are most meaningful in a relative sense when comparing candidates against one another, rather than in an absolute sense, the rating for a candidate may be used as a rough indication of how well or how poorly the candidate is likely to fulfill the established goals and requirements. Thus, an overall effectiveness rating of 100% means complete satisfaction of all stated goals and requirements. Hence, if the overall effectiveness ratings for all candidates are low, and especially if the variation among them is small, it may be the basis for a decision that none of the available candidates are acceptable since the objectives and requirements are not likely to be met by either one of them. Prior to forming such a conclusion, one should first reexamine the effectiveness model used to ascertain that it is a reasonable conclusion. The extent to which effectiveness ratings can be used in an absolute sense rather than in a relative sense depends largely on the nature of the elementary factor/subfactor effectiveness rating functions (ERFs) used. Specifically, the important consideration in this regard is whether the rating is based on comparison of the attribute data to an absolute value or it is based on comparing all other candidates to the candidate having the largest (or smallest) value of the attribute variable, i.e., a rating based on scaling. ERFs based on comparison with an absolute value yield an effectiveness model which lends itself more readily for using effectiveness ratings as a basis of direct comparison of candidates with objectives and reguirements, than do ERFs which are based on scaling procedures. On the other hand, it is usually more difficult to formulate ERFs based on comparison with an absolute

value, since it generally is not obvious or easy to find a basis for establishing the level of such an absolute value.

- The interpretation of effectiveness ratings should be guided by the following considerations:
 - An elementary factor/subfactor rating of zero for any candidate does not imply that the candidate, as a whole, is unacceptable. Instead, this should be interpreted as meaning that a particular aspect of the candidate (among many others being considered) which is represented by the given ERF is not acceptable. This point is best illustrated by an ERF which has two discrete values only, namely, 0 and 100, and which usually arises from a yes or no question.
 - . Overall effectiveness ratings as well as individual M/E ratings should be interpreted in the context of a weighted average of multiple considerations. Hence, as was pointed out in the discussion on the effect of weights and levels of subordination on ratings, no one consideration can generally dominate these ratings.
 - Since the overall effectiveness rating (or even individual M/E ratings) will generally not be sufficiently sensitive to variations in ratings for individual considerations (i.e., criteria) which are of special interest to a decision-maker, it is necessary to make special provisions for drawing attention to such individual considerations. An effective way of accomplishing this is the technique of "flagging" the criteria of interest by listing the effectiveness ratings for them in a prominent position

when presenting the results of the analysis. In the candidate system/vessel combinations analyzed as part of this study, the holding capacity of each system for black and gray wastewater was thus flagged by listing the ratings for these two criteria in tables showing the results of the analysis.

CONCLUSIONS

Management of Gray Water

- The objective of managing gray water cannot be fully realized with any of the candidate systems analyzed, and within the guidelines of this study, on the following vessels:
 - .. GALLATIN (378')
 - .. VIGOROUS (210')
 - .. POINT HERRON (82')

A flow-through treatment system (Grumman) is required in order to provide full gray water holding capacity on the following vessels:

.. FIREBUSH (180')

.. PAMLICO (160')

Full black and gray water holding capacity can be provided with use of holding tanks and conventional full volume flush gravity drains (WMS No. 1) on the WHITE SAGE (133').

Optimum Systems

The optimum (most cost-effective) candidate system on each vessel as a function of holding capacity objectives is as follows:

Vessel	Less Than Full Capacity For Black & Gray Water	Full Capacity For Black Water Only	Full Capacity For Black & Gray Water
GALLATIN (378')	-	1	None
VIGOROUS (210')	1	14	None
FIREBUSH (180')	-	1	5
PAMLICO (160')	-	1	5
WHITE SAGE (133')	-	-	1
POINT HERRON (82')	1 .	9 or 14	None

The overall life-cycle costs (as well as the individual cost elements) of the candidate systems varied over a large range on each vessel. These variations are greater than those for the overall effectiveness ratings.

Incinerators, Evaporators and Holding Tanks

- . Holding tanks are more cost-effective than either incinerators or evaporators.
- . . . Evaporators are more cost-effective than incinerators.
- . In all viable candidate system/vessel combinations, except for WMS No. 9 on the VIGOROUS (210'), a holding tank can be substituted for an incinerator or evaporator without sacrificing full holding capacity for black water.

Vacuum Collection Versus Pump Collection

Comparison of WMS concepts based on reduced volume flush collection which are similar except for the use of vacuum collection versus macerator/ transfer (M/T) pump collection leads to the following conclusions:

- There are no consistent patterns for life-cycle cost or for cost-effectiveness. This indicates that other considerations, namely differences in WMS equipment configurations and differences in vessel characteristics, are more important.
- . Pump collection is more effective than vacuum collection.

Vessel Mission Profile Characteristics

. The holding time goal for a vessel is an important system design parameter which has a strong influence on determining candidate WMS equipment configuration and the feasibility (as well as the cost) of installation. Analysis of vessel holding times leads to the following conclusions:

- . On some vessels, the maximum holding time is much larger than all other holding times. The ratio of the maximum holding time to the next smaller holding time on these vessels is as follows:
 - VIGOROUS (210') more than 2 to 1
 - FIREBUSH (180') approximately 5 to 1
 - PAMLICO (160') more than 2 to 1
 - POINT HERRON (82') more than 5 to 1
- . The maximum holding time for most vessels is due to the unavailability of waste receiving facilities at non-home ports or operation within inland waters.
- The WMS utilization factor is an important parameter in determining WMS operating and maintenance costs. This vessel mission profile characteristic varied over a wide range, from 1.8 % for the POINT HERRON (82') to 31% fr the PAMLICO (160').

The Cost Effectiveness Analysis Methodology

The cost effectiveness analysis methodology developed and applied as part of this study is a powerful and versatile analytic tool, useful for making decisions in the context of comparing competing candidates. The numbers which result from the quantification of life-cycle cost and effectiveness can be manipulated to reveal important properties of the candidates, determine the presence or absence of trends and the reasons for them, examine issues of interest to the decision maker, make inferences and arrive at conclusions. This methodology can successfully interact with the various supporting studies used to develop the necessary data (e.g., MSD analysis, WMS installation analysis). It does this by providing structure and direction to these studies and then accepts the results of these analyses and integrates them with the other considerations which form the context of the problem.

- Some of the salient properties of the effectiveness assessment methodology are:
 - . Effectiveness is directly related and tailored to the goals requirements, and other issues forming the context relevant to the candidates being analyzed. All considerations of interest can be addressed and accommodated.
 - It successfully integrates quantitative objective data, qualitative objective and subjective data, and less tangible information such as goals, requirements, constraints, policies, guidelines, assumptions, and the subjective judgements of the decision-maker.
 - . It can handle, in a practical way, the large amounts of data which must be accommodated in order to examine the numerous considerations involved in selecting an optimum candidate.
 - . It provides results (effectiveness ratings) at three different levels of detail. These are useful in interpreting the quantitative results in terms of system features and characteristics in the context of the original goals and assumptions.

Some of the salient properties of the life-cycle cost model are:

- . It accommodates the large amount of data required and addresses the numerous dependencies and assumptions which affect the life-cycle cost of candidate wastewater management systems (vessel characteristics, subsystem/ec.)ment reliability and maintainability, discount rate, etc.).
- . Costs are provided at several different levels of detail. These are useful in studying system properties and making inferences.

- .. It provides operating and maintenance characteristics which are of interest in themselves, in addition to their economic implications (man-hour requirements, vessel resource requirements, logistic requirements, etc.).
- .. The computations required, when executed manually, are tedious, time consuming, subject to error and must be performed by an individual familiar with the candidate systems, vessels and the underlying assumptions. It is therefore impractical to reevaluate the life-cycle cost manually due to changes in configuration, data, parameters, assumptions, etc. Automation of the life-cycle cost model is necessary in order to provide a flexible and generalized life-cycle cost analysis methodology.
RECOMMENDATIONS

Candidate Systems

- A system employing existing conventional full volume flush gravity drains in conjunction with black and gray water holding tanks (i.e., WMS No. 1) should be specified for vessels on which this WMS concept provides full holding capacity for both black and gray wastewaters. The WHITE SAGE (133') is a candidate for this system concept. In addition, if the Coast Guard policy with respect to gray water management and/or maximum holding time is modified (see ensuing paragraphs), the use of this WMS concept should be considered for other vessels as well.
- A holding tank should be specified in place of an incinerator or evaporator in system/vessel combinations where this is relevant.
 - Unless significant breakthroughs in the physical, operational and economic characteristics of incinerators occur, their use should not be considered. A possible exception might be in those cases where their advantage of providing an indefinite holding time becomes an overriding consideration.

The use of evaporators should not be considered.

Objectives, Policies and Programs

. In view of the consequences (economic, system configuration/ equipment sizing, and feasibility of installation) of long and atypical holding times for some vessels, possibilities for eliminating some of the conditions which give rise to them should be investigated. Two possibilities are as follows:

- .. Reexamine the policy of not providing waste receiving facilities at vessel's non-home ports. The possibility of making such pumpout facilities available both at Coast Guard and other ports of interest should be considered.
- .. The guideline of using the maximum holding time as the basis for determining the holding capacity objectives for a vessel should be reexamined. As a consequence of this, it will either be necessary to modify vessel operational profiles or emission standards will be violated, albeit infrequently.

In view of the difficulty of and/or the reduction in cost-effectiveness resulting from the requirement of managing gray water, the following should be considered:

- .. Eliminate the objective of managing gray water, at least on some vessels.
- .. Consider the possibility of reducing the hydraulic load due to gray water. This might be best done in conjunction with the black water hydraulic load management (perhaps based on reuse concepts) as an integrated waste reduction program for hotel wastes on board U.S. Coast Guard vessels.

In view of the cost-effectiveness of holding tanks, effective and efficient tank aeration procedures should be devised and implemented to eliminate negative habitability and safety effects of holding tanks.

The effect of the newly established 200-mile limit for territorial waters on the results and conclusions of this study should be evaluated. Such an evaluation should proceed from an examination of how and to what extent the mission profiles of vessels which are affected by the new limit would be modified. The consequences of modified mission profile characteristics could then be investigated.

The results and conclusions of this study should be reviewed in the light of the recent Coast Guard survey and analysis of wastewaters aboard the vessels included in this study. Such an evaluation should compare the experimentally established waste generation rates with those assumed for the purposes of this study to determine the effect of candidate WMS configurations and equipment sizing.

The Cost-Effectiveness Analysis Methodology

Application of the cost effectiveness analysis methodology developed as part of this study should be considered for other problems. Due to the generality of the underlying concepts and the flexibility with respect to the scope of problem and data availability of both the life-cycle cost and the effectiveness modeling approaches, this methodology can be applied to problems of the same, smaller, or larger scope than that of selecting WMS candidates for vessels. Its application to wastewater management systems should not be viewed as a limitation but rather as a demonstration. This methodology is applicable to any problem in the context of studying competing candidates and selecting an optimum. In addition, either the life-cycle cost analysis model alone or the effectiveness assessment methodology alone can sometimes be used to advantage in some situations.

The life-cycle cost model should be automated in order to make available a flexible and at the same time, practical life-cycle cost analysis methodology. Such automation is essential in order to facilitate reevaluation of results due to: changes in data, system configuration, assumptions and guidelines; application to other systems; and to facilitate sensitivity analyses.

DEFINITIONS AND ABBREVIATIONS

The definitions and abbreviations of certain terms used in conjunction with this study are given below.

ABBREVIATIONS

ERF		Effectiveness rating function
M/E	-	Measure of effectiveness
MSD	-	Marine sanitary device
WMS	-	Wastewater management system (for black and gray
•		wastewaters)

DEFINITIONS

Attribute

A quantitative or qualitative characteristic of the candidate systems/ subsystems/equipments and/or vessels which is used as the basis for assigning an effectiveness rating to elementary factors/subfactors. Attribute is also used in connection with the following:

Attribute Data

The quantitative or qualitative "values" of specific attributes or attribute variables for the candidate system/vessel combinations.

Attribute Variable

A variable which is used for quantifying an attribute of candidate system/vessel combinations. Attribute variables are often functions which relate attribute data at the system/subsystem/ equipment/vessel level to a numerical or qualitative "value" which is used in conjunction with effectiveness rating functions to obtain an effectiveness rating for elementary factors/subfactors.

Black Water

Wastewaters which includes sewage, i.e., the output from commodes and urinals, and garbage grinder slurry.

Bravo Status

The time allowed for a vessel to get underway.

Charlie Status

The vessel is tied up for maintenance, usually at its own home port. Effectiveness

The overall quality of a candidate determined on the basis of how well the candidate fulfills specified objective, requirements and constraints.

Effectiveness can be quantified and the resulting number is the effectiveness rating of the candidate which is a quantitative measure of the degree to which the candidate has satisfied the aggregate of all established individual criteria and their relative importance.

Effectiveness Rating Function (ERF)

A rule which relates one or more qualitative or quantitative system/ subsystem/equipment/vessel characteristics (attributes) to an effectiveness rating for an elementary factor or subfactor.

Elementary Factor/Subfactor

A factor or subfactor which has no subordinate subfactors and which can be readily related to a single attribute (or a function of one or more attributes) of the candidate system/vessel combinations being analyzed.

Factors

The set of criteria which are implied by a M/E. Factors are characterized (for any candidate system/vessel combination) numerically by two quantities, namely, a rating (which measures how well the candidate satisfies the criterion) and a weight (which indicates how important this factor is in relation to the other factors of the same M/E).

Gray Water

Wastewaters which include: the output from galley drains (sinks, kettles, dishwasher excluding the garbage grinder); turbid waters from lavoratories, showers and laundry; drainage from air conditioners, drinking fountains and interior deck drains including those in head spaces.

Holding Times

The continuous time intervals during which a vessel is in restricted waters and/or in any non-home port, other than a yard. The maximum Holding Time for a given vessel is the longest holding time encountered during the time period over which data was taken. During holding time intervals, wastewaters may not be discharged overboard and therefore have to undergo Treatment/Disposal by the vessel WMS (i.e., it must operate in the primary mode).

Level of Subordination

The indenture of a given factor or subfactor in the hierarchical structure of the effectiveness model. A numbering scheme used to uniquely identify each factor/subfactor with each M/E indicates the level of sub-ordination.

Measures of Effectiveness (M/E)

The set of highest level criteria used as the basis for assessing the overall effectiveness of candidate system/vessel combinations. M/Es are characterized (for any candidate system/vessel combination) numerically by two quantities \bigcirc amely, a rating (which measures how well the candidate satisfies the criterion) and a weight (which indicates how important this M/E is in relation to the others).

Optimum Candidate

The most cost-effective candidate based on a specified optimum candidate selection criterion.

Rating

A quantity which measures the degree to which a candidate satisfies either a single criterion or the aggregate of a set of criteria and their relative importance. A rating is given as a percentage in the range of 0 to 100% using the convention that the higher the rating the greater the degree acceptability or quality of the candidate and vice versa. Ratings are used in conjunction with the following:

- . Overail effectiveness
- . M/Es
- . Factors
- . Subfactors
- . Elementary factors/subfactors

Refurbishment

Unscheduled vessel repairs which cannot be made at a vessel's home port and hence are made at a yard.

Scheduled Yard Availability

Time set aside for vessel maintenance and overhaul at a yard.

Sortie

The various vessel movements, i.e., the transits in and out of restricted waters, arrivals at and departures from ports, etc., associated with the normal operations of a vessel. For purposes of this study, a sortie is initiated when a vessel leaves its own home port or a yard (i.e., when it is disconnected from a shore waste receiving facility) and ends when the vessel arrives at its own home port or at a yard (i.e., when it is connected to a shore waste receiving facility).

Sufactors

The set of criteria which are implied by a factor or another higher level subfactor. Subfactors are characterized (for any given candidate system/vessel combination) numerically by two quantities, namely a rating (which measures how well the candidate satisfies the criterion) and a weight (which indicates how important this subfactor is in relation to the other subfactors at the same level of subordination under the corresponding factor/subfactor).

Times Beyond Restricted Waters

The continuous time intervals during which a vessel is beyond restricted waters. When a vessel is beyond restricted waters, it may discharge wastewaters overboard (i.e., the WMS may operate in the overboard discharge mode).

Weight

A quantity which indicates the importance of each criterion in relation to the others, at the same level of subordination in the hierarchical structure of the effectiveness model. A weight is given as a percentage in the range of 0 to 100%, using the convention that the higher the weight the more important the criterion (in relation to the others at the same level) and vice versa. Weights are assigned such that their sum is equal to 100 for all criteria at the same (and every) level of subordination. Weights are used in conjunction with the following:

- M/Es
- Factors

Subfactors

Elementary factors/subfactors

BIBLIOGRAPHY

WASTEWATER MANAGEMENT SYSTEMS

- Qualification Test Report, Jered Report No. A20118NB001 for Model M20118 Sewage Disposal System, 10 October 1974.
- Operation and Maintenance Instructions, 10-20 man Shipboard Waste Treatment System, PDR-501E-20 Grumman Aerospace Corp. USCG Contract DOT-CG-20733A.
- Operation and Maintenance Manual, Evaporative Toilet System for MONOB, General American Transportation Corp. (GATX), not dated, issued Spring 1976, Contract N00024-74-C-5272.
- Van Hees, W., and Sharkins, G.S., Technical Evaluation of the GATX Evaporative Toilet System (Model II) NSRDC Report 4440, December 1974.
- OPTEVFOR Report CNO Project O/S 225, Operational Evaluation of the GATX Controlled - Volume-Flush Sewage Treatment System (Report Symbol OPNAV 3930-1K), 5 June 1975.
- Geyer, A., Laboratory Evaluation of a Chrysler Corporation Oil Flush Marine Sanitation Device (MOD-2), NSRDC Rept. MAT-74-58, February 1975.
- Claunch, R.W. & Werner, M.P., Phase II Report of Shipboard Sewage Treatment System Development Program for US NAVSHIPSYCOM. Tech. Rept TR-RE-75-271, February 21, 1975 (Chrysler).
- Operation and Service Manual for Model A Sewage Treatment System (US Army MERDC, LCU 1466 Class) OM-ES-LCU-74-5, 29 March 1974 (Chrysler).
- Installation, Operation, Maintenance and Repair Instructions with Parts List, Sewage Disposal System, Model V85003 (JERED) Contract N00024-73-C-5465, December 1975.

- Installation, Operation, Maintenance and Repair Instructions with Parts List, Sewage Disposal System, Model V85003 (JERED) Contract N00024-73-C-5465, July, 1973.
- Installation, Operation, Maintenance and Repair Instructions with Parts List, Sewage Disposal System, Model M20118 (JERED) Contract N00024-70-C-0275, July, 1974.
- 12. Owner's Manual for Small Boat Sewage Collection System; Operation and Service Instructions with Parts List, JERED Industries, Inc.
- Raupuk, Milton, W., Evaluation of JERED "Vacu-Burn" Sanitary Sewage Treatment System, NSRDC Report 28-612, May, 1973.
- Product Catalog for "Aqua-Sans" Sewage Treatment System, Chrysler Corporation (not dated).
- Raupuk, Milton W., Shipboard Evaluation of JERED "Vacu-Burn" Sewage Disposal System Installed Aboard USS Kraus (DD-849), NSRDC Report 4545, February, 1976.
- Operational and Maintenance Instructions with Illustrated Parts Breakdown, Sewage Treatment System, Model C. (Chrysler) Contract N00024-71-C-5330, February, 1972.
- Schaller, Carl, NAVSHIPS Test and Evaluation Plan for GATX Evaporative Type Shipboard Sewage Treatment System on the USN MONOB (YAG 61), February, 1974.
- Schaller, Carl, NAVSHIPS Test and Evaluation Plan for the JERED Vacu-Burn Shipboard Sewage Disposal System, February, 1974.
- Van Hees, W., and Gills, L.C., Laboratory Evaluation of the GATX Evaporative Toilet System, NSRDC Report 3948, July, 1973.

- 20. Evaporative Toilet System for U.S. Navy Research Vessel MONOE; Operation and Maintenance Manual, General American Transportation Corporation (GATX), February, 1973.
- 21. NAVSEC Letter: 6159:CLS:sp, 9480, Ser 415-6159, dated 21 August 1972.
- 22. NAVSEC Letter; 6159:DL:sp, 9480-8, Ser 573-6159, dated 27 November 1972.
- Rosenbusch, J.M., State-of-the-Art Report on Marine Sanitation Devices, U.S.C.G. Report CG-D-11-73, Contract DOT-CG-32,785-A, June, 1973.
- 24. Preliminary MRCs for GATX Systems.
- 25. Preliminary MRCs for JERED Systems (USS Kraus only).
- 26. Constant, A.E., "Marine Pollution Control: Part III- Ship Design Requirements; The Design Approach, "Naval Engineers Journal, October 1975, p.47.
- 27. White, J.A., "Operational Experience With a Vacuum Collection and Waste Incineration System Aboard a U.S. Coast Guard Cutter," ASME Publication 76-ENAs-47, 1976.
- 28. White, J.A., "Operational Experience With a U.S. Coast Guard R&D Prototype Shipboard Wastewater Treatment System," ASME Publication 75-ENAs-27, 1975.
- 29. Scarano, T. S., and Ard, R.W., "Coast Guard Research and Development in Shipboard Wastewater Treatment," ASME Paper No. 73-ENAs-37, 1973.

 Bertges, W.C., "Recreational Vessel Waste Pollution," U.S. C. G. Report CG-D-112-74, June, 1974.

COST EFFECTIVENESS ANALYSIS

- Orbach, S., Cost Effectiveness Study of Selected Marine Sanitary Devices. Phase I - Final Report: Development of Life Cycle Cost Estimates, NSRDC Report 4425, September, 1974.
- Orbach, S., and Field, R., Cost Effectiveness Study of Selected Marine Sanitary Devices. Phase II - Final Report: Effectiveness Assessment, NSRDC Report 4426, September, 1974.
- U.S.C.G. Military and Civilian Manpower Billet and Life Cycle Costing, July, 1975.
- 4. Harrington, Roy L. (ed.), Marine Engineering, Society of Naval Architects and Marine Engineers, 1971.
- Sharpe, William F., <u>The Economics of Computers</u>, (N.Y. and London: Columbia University Press; 1969), pages 13-19.
- 6. Enlisted Qualification Manual CG-311 (1975) DOT, USCG.
- Miller, J.R., Assessing Alternative Transportation Systems, RM-5865-DOT, (PB185167), April, 1969.
- Miller, J.R., A Systematic Procedure for Assessing the Worth of Complex Alternatives, ESD-TR-67-90, Mitre Corp., MTR-260 (AD662001), November, 1967.
- Valentine, B.W., Self-Contained Sanitation Systems for 2- to 15-Man Polar Facilities, Naval Civil Engineering Laboratory, TR-R-759, March 1972.
- 10. Department of Defense, Economic Analysis Handbook, 2nd edition.
- Heller, S.R. ", On a Quantitative Expression for Cost and Effectiveness and its Use, " Naval Engineers Journal, February, 1973, pg. 70.
- 12. OM & B Circular No. A-94, dated 3/22/72, "Discount Rates to be Used in Evaluating Time-Distributed Costs and Benefits."

- Maltz, M.D., "Measures of Effectiveness for Crime Reduction Programs," Operations Research, Vol. 23, No. 3, May-June, 1975, p. 452.
- 14. Klee, A.J., "The Role of Decision Models in the Evaluation of Competing Environmental Health Alternatives," Management Science, Vol. 18, No. 2, October, 1971 p. B-52.
- Klee, A.J., "The Utilization of Expert Opinion in Decision Making," AIChE Journal, Vol. 18, No. 6, November, 1972, p. 1107.
- 16. Einhorn, Hillel, J., "The Use of Nonlinear Non-Compensatory Models in Decision Making," Psychological Bulletin, Vol.13, No. 3, 1970, p. 221.
- Adam, Everett. E., and Pohlen, Michael F., "A Scoring Methodology for Equipment Replacement Model Evaluation," AIIE Transactions, Vol. 6, No. 4, 1974, p. 338.
- Helmer, Olar, "Analysis of the Future: The Delphi Method," P-3558, The Rand Corporation (AD 649640).
- Piersall, Charles H., and Borgstrom, Robert E., "Cost Analysis of Optional Methods of Shipboard Domestic Waste Disposal," Naval Engineers Journal, Vol. 85, No. 1, Feb. 1973, p. 86.
- Messer Associates, Inc., "Measures of Effectiveness for Refuse Storage, Collection, and Transportation Practices," EPA Report 670/2-74-082, Contract No. 68-03-0260, November, 1974 (PB 241252).
- 21. MIL-STD-882, System Safety Program for Systems and Associated Subsystems and Equipment: Requirements for, 1969.

APPENDIX A

SCHEMATIC DIAGRAMS OF WMS CONCEPTS

IHX Pier Connection Overboard Sewage Galley Turbid Ū. **(**3 Deck Drains, Garbage A/C Conden-Grinder sate, D. F. Ż 2) Compressed ->> Air Sewage Galley/Turbid Holding Tank Holding Tank

1. Full Volume Flush Gravity Collection/Holding Tank for Black Water/ Holding Tank for Gray Water

١

2. Full Volume Flush Oil Recirculation and Gravity Collection/Chrysler System with Sludge Holding Tank for Sewage/Holding Tank for Gray Water

A-3

.

Full Volume Flush Oil Recirculation and Gravity Collection/Chrysler, System with Incinerator for Sewage/Holding Tank for Gray Water

3.

đ,

9a. JERED Reduced Volume Flush Vacuum Collection/Holding Tank for Concentrated Black Water/Holding Tank for Gray Water

9b. JERED Reduced Volume Flush Vacuum Collection/Concentrated Black Water Held in VCT/Holding Tank for Gray Water

10. JERED Reduced Volume Flush Vacuum Collection/Incinerator for Concentrated Black Water/Holding Tank for Gray Water

JERED Reduced Volume Flush Vacuum Collection/GATX Evaporator 11.

.

1 /

14. GATX Reduced Volume Flush M/T Pump Collection/Holding Tank for Concentrated Black Water/Holding Tank for Gray Water

15. GATX Reduced Volume Flush M/T Pump Collection/Incinerator for Concentrated Black Water/Holding Tank for Gray Water

16. GATX Reduced Volume Flush M/T Pump Collection/GATX Evaporator for Concentrated Black Water/Holding Tank for Gray Water

APPENDIX B

ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS BASED ON CONTINUOUS OPERATION Table B-1

ESTIMATED ANNUAL WAS OPERATING CHARACTERISTICS AND COSTS BASED ON CONTINUOUS OPERATION

1	,0°.'	S Suries S)		-					•	T	•			T i	A L				1	T	
		JUN IDIOL ISO	- 2, 093	1.254	3.870	1. 1. 898	Ī		26.50		608	21.463	15.522	Ī	1056		20, 708	15.522	Ī		
CES USED	Ē	Loso Loso	6 <u>7</u>	58 85	14.212 14.212	2-244	Π		24-490-		145	127.01	12.554		965	139	121 -61	12.554			
	it (\$/Yea	12000000000000000000000000000000000000	886	73	0	22			L. 086		112-	238	1. 028				862	L. 028			
	S S	100100 10010 10010 10010 10010										- 224 -	- 224 -			- 717 -	- 717	- ; ; ;			
10944	NL DUC	110 Ions			14,064				18-824			18-262					18,262				
100011	ALCOLY	20 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M 0 M	4f	12	153	2 213			- 4- 990		. 34	721	11.526 11.526			24	-52 621	11.526			ater.
	age Rate	Compression	67		004	- 9 - S			23.1		<u>- 9 - 61</u>	5_Å	31.9			27-42	5.6	31.9			fresh w
	nual Usi	1950-N 450-1-1 100				• • • •					74, 117	21.1.92	211-62			79.592	76.562	76.5.62			or stored
52 6 //	An	10 ISN 3 (4.9.7)	6.0	2	3 7 36 062				9 48.267		21.6	046.825	~				0 46, 825				gallon fc
	ST ers	ELECTIC **	1.37	- 1.93	5 12	20.02			166.33		25,63	25.63	25.63			22.1-	r 20, 71	B84.21			07¢ per (
IZE		They insue of year		2.542	2.547	191			161												r and 0.
CREWS	I/BOI	Cost 1500	1 664	1, 265 1, 669 -	1.265-	- 493 - I			- 979- 1		2.222	2,222 2,342	2 222 2 968			1.664	1.587 -	2.968 -			resh wate
// •••	NT N	sinon Hones	243	183 244	183 143	3 20			300 -		-354	354 361	354 441		╎	743	-247	440-			nerated f
(378')	STASKS	Allenuus Allenuus									-	1 1	-								essel ge
ALLA'TIN	MBER C	YOUN ALYON		21	23	2			8		1	3	7				1	9	•		on for ve
SSELC	NU	N. S. I.I.S.		~ ~	0	9			12		2	4	20				1	18			er gallc
Ч (ON SWA	4	1	*	12	1/N	N/N		N/N	44	44	42	1/N	N/N	4	4	2	N/I	N/F	* 2¢ p(
			_	~	*	4	S	l °			6	-	=	12	13	14	15	16	17	18	l j

** Includes energy for pumping flush/cooling fluid.

*** Excluding mode changeovers.

**** Collection/Transport subsystem includes entire Chrysler treatment system, except for holding tank or incinerator, as the case requires.

Collection/Transport subsystem (black only)

/stem _____Treatment/Disposal subsystem (black and gray)

,
LETIMATED ANNUAL WMS OPERATING CUARACTERISTICS AND COSTS BASED ON CONTINUOUS OPERATION Table B-1 (Cont'd)

Cost Annuel . Bfe-- 882 1.998 150 Conce 0530A 1010 -2%-----7.-347-1 4.956 . . . Compresses Cost (\$/Year) - 37 - 1 - 22-- 19--94 10) 22 406 VESSEL RESOURCES USED - 54 -- 59 - -. - 59 - . 54 -54 Ites 362 Cent 7.Z08 Z. 208 Power Kault * : . 550 • ELECTIC . . . 245 901 X 3051 V 1252 s sajaujo, Annual Usage Rate 12:9 -2.2 [2.6] . <u>1</u>. 6. 1 - 2:2 -- 6.3 18.4 10, 0, 0, 1, 1 (10, 0, 0, 1, 1) 10, 222 0. 222 222.05 Q. 777 U. 777. Ten In 18, 483 18.483 (Jane Charles) **8.175** ELECTUC -- 285 -8-195 -465 -8. 585 51.663 Consulta Cost of Materials . 60 849 C RUW SIZE (1037 (S) LABOR 45 - 1, 160 -1 -1.171-Cost 8.07 - 832 ---Let Lear SJNOH-UBW 141-1 -181--175- -- 661 122 FREQUENCY INDICATED VESSEL «VIGOROUS (210') Thenauy AI YIUO IN 8 -2 11400M و ~ 11180 V/N N/N N/A N/A N/A N/A N/A N/A N/A V/N N/A 22 ო m 23 ~ ·ON SWM **** **** 10 ස 5 13 15 91 17 18 ŝ ھ 11 12 14

2¢ per gallon for vessel generated fresh water and 0.07¢ per gallon for stored fresh water.

** Includes energy for pumping flush/cooling fluid.

*** Excluding mode changeovers.

**** Collection./Transport subsystem includes cutire Crysler treatment system, except for holding tank or inclnerator. as the case requires.

Collection/Transport subsystem

Treatment/Disposal subsystem (black and gray) 1 (black on ty)

B-3

Table B-1 (Cont'd)

ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS BASED ON CONTINUOUS OPERATION

	2	\$ ₀	2	-00																					
		~		UN N	2000	- 517 -	284	184	5 190	- 1257-3	- feg .	1385	<u>. 636 -</u>	- 957 -	974	- 283 - 1	041		258-1	25	2647	5.041	<u>- j</u> fr-1	1.328-1	
			1 3	•0. •0. •0.	100 00 00 00 00 00 00 00 00 00 00 00 00			- 44	6 <u>9</u> 3		285	979	366-13	649 - hr	442	4 24	130-055	- 616-	<u>556</u>	<u>14</u>	476 25	130-1	-1- <u>5</u> (c.	555-1-9	
		(\$∕Year)		5 2 2 2	1 6 4 4 1 CO 4 4			37 -	<u></u>	23-1-1	<u>98</u> - 1-2	88 2	157 - 1-8	157 - 1-9	31 -	28- 56	38 - 1-4	3112	127-18	30	78-1-6	38.44	<u>1 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2</u>	352-1-8	
	LES USEI	Cost	10	ی اف ^ر	10,001 10,001 1,000	-+	•								12.24			13-46-	13.61	17.63	17 63	17 63			
1	RESOURC		2	In Array	36 E @) 10 n 3				.627				- 193-	. 193		. 193			153		6. 193 -		++	6. [93]	
	VESSEL		0	20/10	AND TO ME	2-1-		- 01	1 3 66 9	1-191.1	2.187-2	2.191.5	2.016	3. 093 - 6		- 315 -	3, 792 -	2. 488-2	2-200-2	- j	205	5.792	2. 18 ⁴	2.006	ater.
		ige Rate	00	550	100 A 1 10 1		62.5	11.7	100	5.8	20	77.4	2.7	-7.6-	81.	1.8	10.5 -		-1.6	20	- 1:84	-10.5	- 20	- 7.6 1	fresh w
1		anual Usa		~	10 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1							•			22, <i>7</i> 40	22,440	27,740	22740	22,-740	201-165	207 - 27 207 - 27 207		25, 185	707-427	or stored
		AC	-		Ions (Jan)	4			7 n1 , 863	{	8	5	4 15.878	3 15-878		0 15-876	4.0	6	15-876		0-IS, 87	36	36	8915.826	gallon f
	5	er,		E 2 1	race rice	9	45		- 1 2. 19	- 36.28	- <u>72</u> - 90	- <u>73</u> 02	- 67.75	- [[.03.3]	35	-6-85	- 126,3E	- 172.45	66-35		- 5 83	126.3	- 72 -	- 166. ê	.07¢ per
IZE	***	Ř		r 7 				0	- 849 0	60	. 161 -	161	80	rei -				191	80		1		- 165 -	80	ter and 0
C REW S		LABC					440	415	422 - 497 - 1	747	245	1.245	066	1.147.1	850 832	850 171	911 911	1-661	<u>850</u>	- 832 -	- 141.1	- 116	[.66] -	268	fresh wa
	***	S AT	with w	ino.	Per Yer	, ,	ij	-1-19	- 53] _{йн}	188-1-	020	178-	122	135	135 136	-135	135 135	-122-	-181-	-136-1-		-1-40	enerated
H (180')		OF TASKS		1 	lenuur ya										-		~	1	I I						n lasse
REBUS		MBER (JUL NC		YOUN TIN	.		~	' o		8	~	4	æ	~	2	~	3	8			5	2	10	
CL FI		INN	FREE		ALC LA			~	~	- -	و	و	2	10	2	m	0	8	13		-	4	9	6	ollen.
VESS!	Ĺ		*	·0,			~	2	-	ه ا	6	6	<u>د</u>	8	=	10	2	1	1	2	3	1	10	4	20.00
					NN			****	***	4	s	9	1	∞	6	10	Ξ	12	13	14	15	16	17	181	* j

as the sear init notices and 42

** Includes energy for pumping flush/cooling fluid.

*** Excluding mode changeovers.

**** Collection/Transport subsystem includes entire Chrysler treatment system, except for holding tank or inclnerator, as the case requires.

Collection/Transport subsystem ---- Treatment/Disposal subsystem (black and gray) (black only)

Table B-1 (Cont'd)

ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS BASED ON CONTINUOUS OPERATION

i.		's _{0.}	ani 0												2								
			BUR	Loco 1 200 21	-1. 006 -	108	1,108 -	-125.2	2.050	2.181	-106-	3.688 -		- 2. 598 -	1. 682 -	z 507	-1.588	- 268	-2.318-	-1.682-	- 2- 476	- 3. 688-	
		'Year)	03556 03556	Inosed I I I I I I I I I I I I I I I I I I I	174		- 1.222	-1.1.101	1.140	1.21	- 1 - 1 - 036 -	- 1-3, 034 -	- 45 45-	- 1.943-	- - I, 074-	h1:r\$}-			- 1 1 2 43	- 1 1. 074	- - - - - - - - - - - - - - - - - - -	1 3.034	
	CES USED	Cost (\$/	(0) (0) (0) (0) (0) (0) (0) (0) (0) (0)	100 00 00 00 00 00 00 00 00 00 00 00 00	120	23		2	46	177		93			<u>5</u> -88	53	<u>-</u> - 33	-555	- 5 93	-5BB	55	5 5	-
	EL RESOURC		IT STATE	26 E @ n.3 19 N 0 19 N 0 19 N 0 19 N 0			- 1. 203 -		- 4		8-11-610-1	1 -11.610 -	3 1	0 -11 : 610 - 1	9		9- h: ara -	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	2- 1. 610 -		4	1 1 610 1	
	VESS	e Rate	905	0 27 62 12 0 0 27 62 12 0 0 27 62 12 0		- 46	- 00r - 1	2 44 - 1 1 DA	- 41 11 ng	eo 11 - 5	1.98 11.33	1.98 -11.33	9.16-6-4	1 98 1 24	2.73 - 98	9.16-11.09	1.98 1 . 33	- 16.8	1.98 24	86 - 1- 57. S	0.11-11-09	1.58 11:33	esh water.
		nnual Usag	m	192 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	- 2 ⁰		4 4-			³	B	B		8 - 548		5-38	g 6. 548		g - 6, 548	- 6 - 5 4 9 -	- 6, 548	8 6 54B	for stored fr
		1	×* 0/	LE POKS FUE	- 17 117	- 376	- 376 3.08	- 512	17 463		17 1 445 - 4. 12	r. 359 4. 12	- 329	- 329 4. 12	329	- 329	r 359 a. r2	- 62	- 592 74, 12	$\frac{62}{861}$	$\frac{62}{420}$	62 359 4 12	per gallon
1ZE 13	57	erte		00 00 10 10	-			- 80 - 13f	- 80 - ₃ f	- ŝo - la	- 80 - 44	80 44		[-]		80 36	8044	-		32	80 38	80 42	and 0.07¢
CREWS	I ABOR		, , , , , , , , , , , , , , , , , , ,	0 2 2 0	H32	386 833	386 471	1 247	630	830	- <u>9</u> 90	574	462 832		272 608	1.247 -	574	- 832 - -	- 575	608	1.247	574	fresh wate
(160')	ACKC AT	DICATED			1-122-1	-122-	63	- 285	-124-1	124	- 130	- 89	-121-	- 74 - 74	90-	-185	- 74 - 1 - 89 - 1	122	- 36 -	06	-185-	- <u>8</u>	d aenerated
AMLICO		ENCY IN	×1	AJIO JY		2	2		1	1	4	4		2	2 1	-	3		3	1 4	1	4	OF VESSE
SEL F	The way	FREQU		Neek		-	2	3	3	3	2 2	2 N	-	4	e	4	2		2	2	3	5	gallon f
VES			.o.	20 20	2	6	2	9	2	S	s	4	-	9	9	=	6	2	1	1	9	4	2¢ ner
				N.M	-	***	***	4	S	9	~	8	6	10	=	12	13	14	15	16	17	8	*

ty put gatton to vouce yourself a fluck cooling fluid.

*** Excluding mode changeovers.

*** Collection/Transport subsystem includes entire Chrysler treatment system, except for holding tank or incinerator, as the case requires.

Collection/Transport subsystem ---- Treatment/Disposal subsystem (black and gray)

Table B-1 (Cont'd)

ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS PASED ON CONTINUOUS OPERATION

۰.

	Į	's _c	S SUL S	·																		
			enuuy iso					L	L													
			350		1,10	1,10	<u> </u>					23	533			533						
		(11				12								72		- 33	- 44	20			-228	
	SED	ost (\$∕Ye	255 0 10 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		3	F					- 470			12-62-		- 150 -		- Lco	CV		-usi-	
	URCES U	Ŭ	105 36E									8	8	∞.	8	B	B	8-	8	8		
	EL RESO		I ON SCORE			2-1-534				-122-6-	-12-61-1		-12-64-			- 72. 501		- 15 RAF	· · · · ·		2.601	
	VESS	Ite	CITAL COLOR				, 1							- 1 - 54	-11-084	- 1.464		387	- 1 - 5 a)		11:477	
1		Usage R	Compression of the second second second second second second second second second second second second second s						ء ب		- 202	8 1 - 7 7 7	8 P- 266	8 4 4 TS	8 1.713	8 3.204	<u>8</u> 1-987	8 2.04	8 745	8	8 1. Z0	
		Annual	US DI ION			182					69	- LQ, 52	60 10 52	10, 57	- 10.52	69 10. 52	10, 57	69 10.57	10.57	110.57	69 10.57	for stor
	Ţ			27	391	391	27	27	503	27 27	27 1 5 - 0	146	146 r-4	146 065	145 470	224 5,6	156	100-6.6	100 065-	100	100 6 6	or callon
21	57.	eure	Consumed Consumed Consumed				76		 		49	2.		2°.5	-9 <u>6</u>	43,	;	12.	53			0.076.0
EW SIZE	AROR		Cost Cost		<u>112- -</u>	211	, un	- <u>1</u>	- 60	- AG	- 80				80	- - : 80		;			90	ator and
CR	*		Cost Get regi	000	386 834	386 418	1.247	830	1.247	- 4ª0	- 574	1.462 - 022		462 - 618	46:	1 62 574-	832	575	618 -	1.247	- 574	l fruch w
(133.)	** SKS AT	DICATED	Allenn.	-		09 10	185	124	185	150	68	152	- 74	92	- 74 - 185	74	-122	87		. 18'5	- 6A	
TE SAGE	ER OF TA	NCY INC	Annonthe M		2		1	1	1					-								o lassav
HM	IG M BI	REQUE	AIXOOM					~								-			-	I		on for
VESSEL	1	F	Allet io:	2		2	6	5	6	5 3	4	7 2	6 (۲ و	7 3	6	2	-	1 2	6 3	2 5	per gall
			" SWM	1	****	***	4	5	9	r	8	6	10	11	12	13	14	15	16	17	18	* 2¢

gallon tor stored tresh water. ** Includes energy for pumping flush/cooling fluid.

*** Excluding mode changeovers.

**** Collection/Transport subsystem includes entire Chrysler treatment system, except for holding tank or incinerator, as the case requires.

Collection/Transport subsystem (black only)

ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS RASED ON CONTINUOUS OF IV. HOK Table B-1 (Cont'd)

ison survey cosi 124 ---36(- - - - 83 1.26 Cost Cost 105001 **5** 901 901 661 ; 1010 Valia Sec Cost (\$/Year) 120-3-CO-4C 3-CO-4C 3-1 54 . -----VESSEL RESOURCES USED •45013 - - 4 - -~ 110) 365 3 Lise city ---- 007 409... 1901×100 * 2¢ per gallon for vessel generated fresh water and 0.07¢ per gallon for stored fresh water. Compressi 1.68 Usage Rate 2.07 <u>8</u>9. L וזניב <u>.</u>6... (1979) (1979) (1979) 4 380 4 380 4, 380 4.340 Annual Tes ITO IONS ANK CENT ELOCITIC 124 526 20.221 32 20.221 526 Constructor Constructor Cost of Ma æ CREW SIZE (12) Test LABOR 347 416 347 --- 832 --- 503 Per year SJUCH-UPW 61.1 122 - 1 55 - 89 - 1 722 --FREQUENCY INDICATED VESSEL POINT HERION(82') Allenuuy AIUSUOW TIYOOM 2 -~ 11100 N/A N/A N/A N/A V/N N/A N/A N/A N/A N/A N/A N/A N/A 4 e ON SWM 0 **** *1** 18 φ 30 6 10 11 13 15 2 12 14 16 17 4 ŝ

** Includes energy for pumping flush/cooling fluid.

*** Excluding mode changeovers.

**** Collection/Transport subsystem includes entire Chrysler treatment system, except for holding tank or incinerator, as the case requires.

B-7

APPENDIX C

ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON CONTINUOUS OPERATION

Table C.1

CREW SIZE 1	
(378')	
GALLATIN	
CSSEL	

	TION
	OPER
	IUOUS
	ONTIN
	NC
	BASED (
	COSTS
	UND
	ICS 1
	RIST.
	CTE
	HARA
	มี ม
•	IANC
	NTU
	MAI
•	VMS
	AL V
	ANNU
	TED
	STIMA

	Π	7.	100 x					1										!			1	
			LOSI CN	289	3,402	26,119	1.349			7,039		- 8-249	84, 120	8, <u>249</u> 5, 021	ŀ		15-339-	15, 246 83, 156	15, 246 5, 021			
	ANCE (CM)	Labor	rapot Cost	156	<u>614</u> 164	<u>614</u>	<u>87</u>					434	1, <u>340</u>	1. 340 717			$-\frac{2}{164}$	- <u>2,850</u> -	2, 850+			
	VE MAINTEN	K	bet Kent	22	106 20	106	12					202	<u>131</u>	202					- <u>521</u> -133			
	CORRECTI	Parts	1308X 51 3303		2,788	- <u>2, 738</u>	<u>133</u>			6,428			<u>603</u>	<u>6.909</u> 4.304			-12-396	12, 396 82, 399	-12.396			
		2	Her Feer	<u>19</u>	59 		19 150			19 149		-153	153	153	-		198	1 <u>1 98</u>	-1 <u>98</u>			
	×	R	Webstrack of	$\frac{16}{56}$	(-56 56	(-162	28			742		541	541 188				191	$\frac{191}{105}$				ay)
		1	COST PIN	468	644	432	78° X	X	₹	606 -)		2, 071	2, 077	3, 544	\sim	×	3,609 \	3, 417 X	5, 082 X	25	×	lack and gr
	(W)		COST OF POL	16	16	8	92			124		36	142	78			429	453	421			ubsystem (h
SIZE 474	TENANCE (I	labor	1000 CO25	452	628	424	697			482		1, 985	1, 935	3, 466			3, 180	2, 964	4,661			/Disposal s
CREW	ITIVE MAIN	/ pe	Such Len	12	96	62	106			67		313	306	544			476	442	707			Treatment/
(.8/	PREVEN	Indicate	Allenin		-		•			•		13	51	19			18	22	24			
ATIN (3		conenpo	Sent.	4	13	16	14			16		44	4B	54			4	s	14			
CALL		ks at Fr	Alliend	14	20	14	22			26		24	24	16			32	28	24			subsyste
/ESSEL_		r of Tas	Womer	•		12	12			12		2	~	п			84	84	90			ansport
-	K	Numbe	THOS M	2	2	4	~			2		16	16	. 32			20	19	36			tion/Tr
	L		· S.W. S.S.	•				N/A	N/A	, 	- N//A -	-	-	-	N/A	N/N				N/A	¥N N	Colloc
					2	-	4	s	ور	2	8	6	10	=	12	61	14	15	1.5	11	R I	
										C-	.2											

ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON CONTINUOUS OFERATION Table C-1 (Cont d)

 Table C-1 (Cont'd)

 ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON CONTINUOUS OPERATION

١

	6	NO SUSSE	56	68	42	- 2	555	4	5 20	15	6 9	2-	6	1			1	8 7	50	00	201	2	[@
		1010		Ĩ	1-1	Ĩ	2°2	2.1	3.4	3.44	3.51	6, 77 2, 83	63	2,83	2, 83	2,38	2,83	3, 10	3, 10	3, 10	3,10	3, 10	6.67
ANCE (CM)	Labor	Labor Cost	31	51	232		31	189	266 31	266 31	306 31	581 599	82		599	599	297 599	613 627	82 627	363 627	627	627	613
E MAINTEN	//	bet heat	4	7			4	25 4	4	34	46	88 89		+ <u>68</u> +	89 - 14	89	86 86	100	110	110	110	110	100
CORRECTIV	Parts	Cost Singer	25	317		910	25	25	25	3.179	3.213	6, 189 2, 232	554	2.232	2.232	2,232	<u>3.416</u> 2.232	6, 065 2, 475	2, 475	2.475	2.475	2,475	6, 065 II
	1	Her Rear		- 12		17		4			75 	139 46	28	$-\frac{46}{35}$	46-35-4	46	46	30	30	35 32	30	30	97
XX	× A	Beter is the	8	24			8	7.3		601 8	71	131 255	28	180	255	255	255	42	- 42	42	42	42	92 11
•	//	1997 35 0 1997 35 0 1997 1990 1	195 M.		254 X-	197 <u>-</u>	394	1216	. 915						1,412 N	306	225			336 M-	. 231 X-		
()	<i>∞,</i> //	COST OF POLIC	1 4	•	4	4	46	80	80	62	91			68	36	116	130	100	128	96	176 1	190	
ENANCE (PI	Labor	18 801 COST	161		250	193	348	436	436	241	113		0 1 .c	921	1, 376	1. 190	1.095	811	786	1,241	1, 055	959	
TIVE MAINT	pa l	Stort Sed Lones	30		- 39	29	53	65	65	33	y y	150	00.4	146	217	184	164	122	119	189	157	137	-
PREVEN	Indicate	Allo	1		. 1	1			.		.	1	:	17	15	13	1	4	8	6	4	4	
	guency	Self.	-	T	4	7	-	=	=	8	14	2		14	15	22	21	2	4	s	12	11	
	s at Fre	(Jeysend	4	T	~	8	=	12	12	1	20	7		1	10	22	29	9	=	~	19	26	
	of Task	NOUR NOUR	•			s	9	12	12	9	12		·	4	9	16	2	5	17	19	29	23	
	Number	TIYBERIT.		T	-	2		-	-	-	. 2		·	~	10	s	~	5	s	10	5	7	
4		THEO DN	•		•	ı		,				 	1	•		1	,		 '			t	
		SWM	-	T	2	e	4	S	9	. ~	8	6	1		=	12	13	14	15	9	2	8	1

Table C-1 (Cont'd) Estimated annual wms maintenance characteristics and costs based on continuous operation

		Cost CN	6 36	106 636	<u>106</u>		106	902	519	252	125 636	216		ŝĒ	252	321 636	216-	321-015	321	321	
(CM)	abor	Los Cos	2	211,	3 <u></u> 2	0				<u>6 3</u>	<u>3</u>				9	2 2	$\frac{2}{1}$ - $\frac{2}{8}$	22	<u>13</u>	<u>1 2</u>	
TENANCE	2	Tofor Tofor	τ. Α	20 8			21 			27	31	23	4 1 1 1		27	<u> 9</u> 6					
FIVE MAIN	7	Lies (1)	•		35	• 62 	12	21	49	42	3 <u>-</u> 1	34	25	25	62 75	121	$\frac{81}{34}$		23	81 42	
CORRECT	Pàrts	2 × 20	- 554	<u> </u>	903 1,856	18 1,985	1, 748	1. 248	3.213	2.976	1.01	7, 985	1.01	<u>1, 011</u> 1, 985	$\frac{1}{2},011$	-L 852	1, 859 7, 985	1.859	1.985	2, 976	
		KC: Jeel		26	$-\frac{16}{23}$	3 75	64	3 64		3 65	-28	32	27 23	27 75	27 64	22	<u>22</u> <u>32</u>			22 64	
×	A .	Bet a statist	28	17 28	29	72	5 	5 61	21 7	5 60	-28	74 83	<u>7</u> 4		- 74 60	- 30	30 83	30	30	30 60	
		Na 100	34 X	93 X-	76 M-	94 N	56 M	56 X-	03 N-	64 M	74 M-	83 M		35 M-	os M	34 M-	43 AF-	49 X	94 X	64 N	and are v
		IC. LEGE	8	8	4	6	2 3	2 3	3	8	6 7	2	2 8	4	6	7 7	9	8	5		tom (hlack
CE (PM)	2	Cost Cost				4	4	4	9	5	4	9	4	8	Ø	-	6	-	11	17	
VINTENAN	Iab	Lebor Lebrar	226	285	172	348	314	314	241	206	728	621	848	851	209	657	550	215	622	637	
INTIVE M	ted //	Allenui	36	44	25	53	48	48	33	28	115	96	134	132	108	100		118	117	92	Tan Designation
PREVI	cy Indica	Allonuu			-	•	•	•	•	1	,	•	-	•	-		-	~	3	3	Ĺ
	Produen	Serie Cuarterit	7 2		5	1	8	8 6	3	2 0	0	2 8	6 8	4 12	0 12	0		2 4	$\left \right $	13 7	
	f Tacke	ATUSUOIN		-	2 5	9	9	9	9	9			2	-	9	12	- - -	: ::		17	
/	Mumber	TI YOOM		-	2	-	-	-	-	-	2	s	2	5	2	4		r 9	4	4	
Ĺ		· ON SU		,		,				ļ ,	_		-	-			 		.	. .	
		- WM	1	1	- -	4	S	9	~	8	6	9	=	12	13	1	-	1 91	12	18	

~

ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON CONTINUOUS OPERATION Table C-1 (Cont'd)

ESTIMATED ANNUAL WMS MAINTENANCE CHAPACTERISTICS AND COSTS BASED ON CONVINUOUS OPERATION Table C.1 (Cont'd)

Treatment/Disposal subsystem (black and gray)

Collecticn/Transport subsystem

C-7

APPENDIX D

ESTIMATED WMS OVERHAUL COSTS

Table D-1

ESTIMATED WMS OVERHAUL COSTS*

152

CREW SIZE

GALLATIN (378')

VESSEL

** Average Labor Rate: Cost of Labor = \$/Hour.

Table D-1 (Cont'd)

ESTIMATED WMS OVERHAUL COSTS*

60

CREW SIZE

VIGOROUS (210')

VESSEL

Cost Cost 4,810 753 5, 360 9,749 1,862 16, 434 11,495 (Ineysen) Neresiel Neresiel Correster 140 7,926 3,719 10, 512 1, 331 4,226 14,719 Overhaul 10,000 20 135 104 145 189 27 94 (JNOJJ/S) 3187 JOG 57 8583975 ** 6.90 7.00 7.00 7.66 7.76 6.97 6.87 Ineusano Labor , so Cost 613 1,715 532 1,823 983 1, 134 1,091 (mether) Theurs ber 88 76 238 221 158 143 162 Leensen Der Ineujano Stser JO JOGUNN N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 31 37 47 53 66 105 124 ON SWM 0 18 16 9 10 12 13 14 15 ŝ 8 6 17 2 e 5 11 4

* Assumed Overhaul Frequency of one overhaul every 2 years.

** Average Labor Rate: $\frac{Cost of Labor}{Total Man-Hrs} = \$/Hour.$

Table D-1 (Cont'd)

ESTIMATED WMS OVERHAUL COSTS*

50

CREW SIZE

VESSEL FIREBUSH (180')

٠,

Inouro		,			r		f	 		ţ		,						
Theirien	674	1, 764	2, 659	1, 090	1, 350	1, 350	2, 491	4, 334	6, 101	12, 787	6, 411	6, 982	10, 925	2,270	8, 955	2, 581	3. 151	7, 093
Recerce Lord	49	1,240	2, 068	360	679	629	1, 870	3, 700	4, 367	11, 160	4, 709	5,004	9,215	1, 614	8, 407	1,957	2, 252	6, 462
KO. OF KO. OF KO. OF	7	14	29	35	63	63	51	95	80	06	.97	136	156	55	. 65	91	111	131
A VELASIE	7.07	7.08	7.12	6.95	7.06	7.06	7.14	7.46	7.74	7.82	7.84	7.64	8.03	6.83	6.86	7.01	6,86	7.42
	424	524	165	730	671	671	621	634	1, 734	1, 627	1, 702	1, 978	1, 710	656	548	624	899	631
Kenis Per	60	74	83	105	. 95	95	87	85	224	208	217	259	213	96	80	89	131	85
Kunnber of Kunnber of Kon	13	24	41	52	81	81	58	98	33	39	48.	101	90	43	49	58	111	100
SWM	-	2	3	4	S	9	7	8	6	10	11	12	13	14	15	16	17	18

* Assumed Overhaul Frequency of one overhaul every 2 years.

** Average Labor Rate: Cost of Labor = \$/Hour.

Table D-1 (Cont'd) ESTIMATED WMS OVERHAUL COSTS*

13

CREW SIZE

PAMLICO (160')

VESSEL

Inerreal Cost 1,718 1,082 639 2,003 2,483 3,348 2,019 2,388 1,846 906 906 2,301 1,947 1,774 3, 173 3, 433 3, 607 2,214 Inelijeadis 35 1,226 1, 675 354 354 354 1,864 1,830 1,200 1, 518 1,-864 1,690 3, 340 2,709 1, 379 3,028 1,511 3,021 In equan so or or ŝ 12 19 33 33 33 49 49 18 34 36 46 39 83 62 55 57 67 6.83 6.94 7.00 7.00 6.83 6.93 7.11 6.06 7.23 7.41 6.96 6.86 6.83 7.03 6.61 6.72 7.22 6.82 Crewant Labor 35°C) 546 604 492 328 728 546 619 405 437 436 327 329 558 267 574 464 467 696 (netren) Honte ber 105 87 22 48 78 78 87 59 99 102 -uew 56 47 48 83 66 84 17 37 Inerhau Joan Destrict SYSEL 30 Jagunny 16 27 30 50 45 45 20. 68 51 23 29 28 33 39 38 57 58 67 ON SIVM 18 10 S 9 8 თ 13 14 2 16 2 3 4 5 1 12 17

Assumed Overhaul Frequency of one overhaul every 2 years,

** Average Labor Rate: Cost of Labor = \$/Hour.

ESTIMATED WMS OVERHAUL COSTS-Table D-1 (Cont'd)

CREW SIZE VESSEL WHITE SAGE (133')

÷

21

Tr.er.up							+								+					·
	150.57	639	1, 718	2,003	1, 082	006	1,082	2,482	2,301	1,947	3, 348	2,019	2,388	3, 607	1, 774	3, 173	1, 846	2.214	3, 433	
	10 20 20 20	35	1,226	1,675	354	354	354	1, 854	1,864	1, 511	3,021	1, 690	1, 830	3, 340	1,200	2, 709	1, 379	1.518	3, 028	
Net Set	1 20 20 0	5	13	19	33	33	33	49	49	18	34	36	. 46	62	39	55	57	67	83	, years.
100120 000 8:00 **	13 6 8	6.94	6.83	6.83	6.93	7.00	6.93	7.10	7.41	6.61	6.96	6.85	6.72	7.22	6.83	7.03	6.06	6.82	7.23	haul every 2
Iabo	0 20 00	604	492	328	728	546	728	618	437	436	32.7	329	558	267	574	464	467	. 969	405	r of one over
	10 07 W	87	72	48	105	78	105.	87	59	66	47	48	83	37	84	66	77	. 102	55	ul Frequency
LANGER DE LEGER DE LEG	2 10 10 1 X	16	27	30	50	45	50	56	51	23	29	28	57	58	33	39	38	67	68	umed Overha
SX SX	1 3	-	2	e	4	S	9	2	<u>د</u>	6	10	11	12	13	14	15	16	17	18	* Acc

****** Average Labor Rate: Cost of Labor = \$/Hour.

3

Table D-1 (Cont'd) ESTIMATED WMS OVERHAUL COSTS*

VESSEL POINT HERRON (82') CREW SIZE

ω

Iner.	$\overline{}$		•																
	2015 01 1015 01 1015 01	434								1, 355		1.427			1, 269		1, 342		
No No	COSC 02 12 60	14								935		1, 114			781		960		
		2								15		33			24		42		
or <u>عا</u> + • • • • •		7.00								6.67		6.80			6.78		6.95		
S / Labo		42.0								420		313			488		382		
190 190 101	eysano sonce hones yey -	60								63		46			72		55		
0. 0. 0. 0.	A nuper syses Numper Numper	8	N/A	N/A	N/A	N/A	N/A	-N/A	N/A	20	N/A	25	N/A	N/A	22	N//A	27	N/A	N/A
	SWM	-	2	¢,	4	ъ	9	2	8	6	10	11	12	13	14	15	16	17	18

* Assumed Overhaul Frequency of one overhaul every 2 years. ** Average Labor Rate: $\frac{Cost of Labor}{Total Man-Hrs} = $/Hour.$

APPENDIX E

ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION

Br. GUILINU (1291) No. OF MAGOVER CYCLI3 PRAVIA W Str. List No. OF MAGOVER CYCLI3 PRAVIA W Str. List No. OF MAGOVER CYCLI3 PRAVIA W Str. List No. OF MAGOVER CYCLI3 PRAVIA W Str. No. OF MAGOVER CYCLI3 PRAVIA No. OF MAGOVER CYCLI3 PRAVIA W Str. No. OF MAGOVER CYCLIA No. OF MAGOVER CYCLIA PRAVIA W Str. No. OF MAGOVER CYCLIA PRAVIA No. OF MAGOVER CYCLIA PRAVIA W Str. No. OF MAGOVER CYCLIA PRAVIA No. OF MAGOVER CYCLIA PRAVIA W Str. No. OF MAGOVER CYCLIA PRAVIA No. OF MAGOVER CYCLIA PRAVIA W Str. No. OF MAGOVER CYCLIA PRAVIA No. OF MAGOVER CYCLIA PRAVIA W Str. No. OF MAGOVER CYCLIA PRAVIA No. OF MAGOVER CYCLIA PRAVIA W Str. No. OF WAST No. OF WAST No. OF WAST M Str. No. OF WAST No. OF WAST No. OF WAST No. OF WAST M Str. No. OF WAST M Str. No. OF WAST No. OF WAST No. OF WAST No. OF WAST No. OF WAST	N (178') N (178	VESSEL RESOUR E 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	WMS UTILIZATION WMS UTILIZATION CES USED (Annual) CES USED (CES USED (Annual) CES USED (CES USED	FACTOR (%)	11 NU NU NU NU NU NU NU NU NU NU NU NU NU	Contraction of Monte CHAI	- Overboard - Primary - Pr	23 EX XEN XEN XEN XEN XEN XEN XEN XEN XEN
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	A E A A A E A A A E A A A E A A A E A A A E A A A E A A A E A A B 6.83 1.978 - B 6.83 1.978 - B 6.83 1.978 - B 6.83 1.978 - B 6.62 8.330 - B 6.44 18.496 5.30 B 6.30 27.910 5.15 B 6.33 6.7.895 -	VESSEL RESOUR VESSEL RESOUR 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	CES USED (Annuel) CES USED (Annuel) CES USED (Annuel) CES CE CES r>CE CE CE CE CE CE CE CE	254 250 254 250 br>250 250 250 250 250 250 250 250 250	VE38E1 R	Pierside BOUNCE COSTS (Serie 44 119 119 119	Primary Annual) 53 53 53 53 53 253 253 253 253 253 253	3.029 3.
Motion Proprie Motion	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 <th>350 5 5 5 350 5 5 5 350 - - - 390 - - - 310 -</th> <th>Contraction (Contraction) Contraction (Contract</th> <th>254 254 256 250 250 250 250 250 250 250 250 250 250</th> <th>2.070 2.070</th> <th>20000000 CO815 (20000 - 44 20000 - 2000 - 44 20000 - 2000 - 2000 20000 br/>20000 - 2000 20000 br/>20000 - 2000 2000 20000</th> <th>2, 624</th> <th>1000 0000 0000000000000000000000000000</th>	350 5 5 5 350 5 5 5 350 - - - 390 - - - 310 -	Contraction (Contraction) Contraction (Contract	254 254 256 250 250 250 250 250 250 250 250 250 250	2.070 2.070	20000000 CO815 (20000 - 44 20000 - 2000 - 44 20000 - 2000 - 2000 20000 br>20000 - 2000 20000 br>20000 - 2000 2000 20000	2, 624	1000 0000 0000000000000000000000000000
	3 2 8 4 5 4 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 9 5 3 3 9 3 3 9 3 3 3 3 3 3 3 3 3 3 <th>E E<th>Celific 4 10 Celific 4 10 Celific 4 10 Celific 4 12 1.37</th><th>254 250 250 250 250 250 250 250 250 250 250</th><th>2.070 2.070</th><th>Ar - dugo</th><th>22 22 22 22 22 22 22 22 22 22 22 22 22</th><th>1000 1000 1000 1000 1000 1000 1000 100</th></th>	E E <th>Celific 4 10 Celific 4 10 Celific 4 10 Celific 4 12 1.37</th> <th>254 250 250 250 250 250 250 250 250 250 250</th> <th>2.070 2.070</th> <th>Ar - dugo</th> <th>22 22 22 22 22 22 22 22 22 22 22 22 22</th> <th>1000 1000 1000 1000 1000 1000 1000 100</th>	Celific 4 10 Celific 4 10 Celific 4 10 Celific 4 12 1.37	254 250 250 250 250 250 250 250 250 250 250	2.070 2.070	Ar - dugo	22 22 22 22 22 22 22 22 22 22 22 22 22	1000 1000 1000 1000 1000 1000 1000 100
0 0 263 6.58 350 - 7.37 12 10 - 7.47 7.37 13 <	63 6.58 350 - 18 6.63 1,978 - 52 6.87 2,497 3,9 43 6.62 8,330 - 87 6.44 18,496 5,30 97 6.44 18,496 5,30 96 6.32 25,756 - 96 6.33 67,895 -	350 - 978 - 497 3,967 - - 330 - 330 - 376 5,309 756 - 756 - 910 5,151 910 5,151 913 5,151	7.37 12 1.32 15 0 356 .616 56	10 59 75 250 . 250		et 8 6	53 53 67 2. 253 253 2. 253 2.624	- 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0 × 0
169 217 1,616 6,83 1,978 - 1,37 15 15 1,377 - 16 2 3,347 5,17 3,137 169 276 1,526 6,87 2,997 1,967 - 0 356 75 1,377 - 1 1 2 3 1 3	18 6.83 1,978 52 6.87 2,497 3,9 43 6.62 8,330 - 87 6.44 18,496 5,30 87 6.44 18,496 5,30 86 6.32 25,756 - 86 6.33 67,893 -	978 - 497 3.967 330 - 346 5.309 496 5.309 756 - 79.1 910 5.151 79.1 895	1.32 15 0 356 .616 56 2.54 592	59 75 250 . 554	1, 547	8 m 61	2. 67 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	- 11 47 4, 23 18 7) 18 7) 10 18 3, 029
169 226 1,537 6.87 3,967 7.6 356 75 1,547 - 1 622 5.77 5.71 7.71 5.61 7.73 2.62 1.67 7.61 7.73 2.62 1.67 7.73 2.62 1.67 7.73 2.62 1.67 7.73 2.63 1.73 2.63 1.67 7.73 2.63 1.73 2.63 1.73 2.63 1.73 2.63 1.73 2.66 1.73 2.63 1.73 2.63 1.73 2.63 1.73 2.63 1.73 2.63 1.73 2.63 1.73 2.63 1.73 2.63 1.73 2.63 1.73 2.63 <th2.63< th=""> <th2.64< th=""> <th2.63< th=""></th2.63<></th2.64<></th2.63<>	52 6.87 2,497 3,9 43 6.62 8,330 - 97 6.44 18,496 5,30 97 6.44 18,496 5,30 96 6.32 25,756 - 98 6.33 67,895 -	497 3,967 - 330 - - 496 5,309 - 756 - 79,1 756 - 79,1 895 - 79,1	0 356 .616 56 2 54 592	75 250 . 554	1.547	3	1, 622 2, 2, 253 2, 253 2, 253 2, 253 2, 253 2, 253 2, 253 2, 253 2, 254	11 5, 72 18 71 11 3, 029
169 67 413 6.12 8,330 16 56 73 18 713 169 60 387 6.44 18,496 5,303 - 2.54 592 554 2.070 . 119 2.624 18 713 159 610 2.534 6.32 2.515 2.1 773 - 224 112 1.009 - 5.733 159 419 2.639 6.30 2.151 731 2.156 211 7.13 2.093 224 18 713 2.573 159 419 2.610 5.111 7.156 211 7.13 2.033 2.013 2.734 12 10.09 2.573 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733 5.733<	43 6.62 8.330 - 97 6.44 18.496 5.3 96 6.34 25.756 - 98 6.33 27.910 5.15 98 6.33 67.895 -	330 - - 496 5,309 - 756 - 79,1 756 - 79,1 895 - 79,1	.616 56 2.54 592	250	2.070	F 611	253	18 71.
169 60 387 6.44 18.496 5.309 - 2.54 592 554 2.670 119 2.624 18 3.029 159 406 2.54 6.32 731 2.117 2.156 221 773 2.63 12 1.099 - 3.573 159 410 2.639 6.31 27,117 2.156 221 773 2.6 12 1.099 - 3.573 159 428 2.708 6.31 67,117 3.196 5.03 2.03 2.6 12 1.099 - 3.573 159 428 2.708 6.31 67,117 3.190 520 2.03 2.24 11 2.373 - 5.735 159 428 2.708 5.31 79,117 3.509 520 2.03 2.34 113 2.373 - 5.071 159 42 51 79,117 3.509 2.03 2.03 2.34 113 2.373 - 5.071 218 62 41	97 6.44 18,496 5,30 94 6.32 25,756 - 95 6.30 27,910 5,15 96 6.33 67,895 -	496 5, 309 - 756 - 79, 1 910 5, 151 79, 1 895 - 79, 1	2.54 592		2,070	119	2.624	3.029
169 60 397 6.44 18, 496 5, 309 - 2.54 592 5 54 2.070 119 2.624 18 3.029 159 406 2.534 6.32 25,756 - 79,117 2.156 221 773 - 224 12 1.096 - 3,573 159 419 2.639 6.30 5,151 79,117 3,509 520 2,039 224 12 1.096 - 3,573 159 428 2.706 6.33 67,910 5,151 79,117 3,509 520 2,036 224 13 2,796 - 5,733 - 5,733 - 5,733 - 5,733 - 5,733 - 5,733 - 5,733 - 5,733 - 5,733 - 5,733 - 5,733 - 5,733 - 5,733 - 5,733 - 5,913 - 5,733 - 5,913 - 5,733 - 5,913 - 2,743 45 2,143 45	B7 6.44 18,496 5,30 54 18,496 5,30 5,30 54 6.32 25,756 - 59 6.30 27,910 5,15 58 6.33 67,895 -	496 5, 309 - 756 - 79, 1 910 5, 151 79, 1 945 - 79, 1	2.54 592	· 254	2,070	119	2,624	3, 029
159 406 2.534 6.12 $25,756$ $ 79,117$ 2.156 2.24 12 1.009 $ 3.73$ 159 419 2.639 6.12 $25,756$ $ 79,117$ 2.156 221 773 $ 224$ 12 1.009 $ 3.73$ 159 428 $2,706$ 6.132 $55,151$ $79,117$ 3.509 520 2.03 224 12 110 2.573 $ 5,131$ 159 428 $2,706$ 6.33 $67,695$ $ 79,117$ 3.509 520 2.036 224 113 2.373 $ 5,731$ 218 62 401 6.46 $ 76,562$ 2.343 45 2.6 $ 5.373$ $ 5.091$ $ 5.796$ $ 5.791$ $ 5.091$ 218 62 910 5.151 $76,562$ 2.343 45 2.6 2.09 2.925 2.961 $-$ <	4 6.32 25,756 - 39 6.30 27,910 5,15 36 6.33 67,895 -	756 - 79.1 910 5.151 79.1 895 - 79.1			2. 0/0	617	2,624	3, 029
139 406 2,534 6.12 25,756 - 79,117 2.156 221 773 - 224 12 1.009 - 3.573 159 419 2,639 6.30 2,1910 5,151 79,117 3.509 520 2,035 24 12 1006 - 3.573 159 428 2,706 6.33 67,695 - 79,117 3.509 520 2.035 2.03 234 13 2,373 - 5,735 218 62 401 6.47 848 - 76,562 2.343 45 26 - 277 13 2,373 - 5,061 218 62 30 6.48 - 76,562 2.616 514 90 2,070 217 2 2 5,07 2 5 65 5,061 - 2,373 - 5,070 5 5 0 2 2 2 2 1 2 3 5 0 2 2 2 0 2 2 </td <td>34 6.32 25.756 - 39 6.31 27.910 5.15 38 6.33 67.895 -</td> <td>756 - 79.1 910 5.151 79.1 895 - 1.9.1</td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td></td>	34 6.32 25.756 - 39 6.31 27.910 5.15 38 6.33 67.895 -	756 - 79.1 910 5.151 79.1 895 - 1.9.1				-		
159 419 2.639 6.37 27,910 5.151 79,117 .616 679 837 2.009 224 26 7.003 $-$ 3.573 159 428 2.708 6.33 67,895 - 79,117 3.509 520 2,036 - 224 113 2,373 - 5,735 159 62 401 6.47 848 - 76,362 2.343 45 26 2,73 13 2,099 277 13 2,091 - 3,091 218 62 401 6.47 848 - 76,562 2.1343 45 26 - 2,17 13 2,193 - 2,133 - 2,133 - 2,133 - 2,133 - 2,133 - 2,099 - 2,133 - 5,091 - 5,091 - 5,091 - 5,091 - 5,091 - 5,091 - 5,091 - 5,091 2,133 - 5,091 2,133 - 2,099 2,192 <t< td=""><td>39 6.30 27,910 5,15 08 6.33 67,895 -</td><td>910 5, 151 79, 1 895 - 79, 1</td><td>17 2.156 221</td><td>773</td><td></td><td></td><td></td><td></td></t<>	39 6.30 27,910 5,15 08 6.33 67,895 -	910 5, 151 79, 1 895 - 79, 1	17 2.156 221	773				
159 428 2,708 6.13 67,695 - 79,117 3.509 520 2.036 - 224 113 $2,373$ - 5.081 218 62 401 6.47 848 - 76,562 2.343 45 26 - 217 12 235 - 6.50 218 62 401 6.46 - $76,562$ 2.343 45 26 2 237 235 - 656 218 62 339 6.34 3.002 5.151 $76,562$ 2.616 534 90 2.009 217 255 255 2.555 2.565 2.534 2.09 2.17 2352 2.555 2.555 2.565 2.565 3.699 3.44 1.289 2.342 2.255 2.565 2.155 2.565 2.17 2.17 2.192 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.165 2.17 2.17 2.125 $2.$	08 6.33 67,895 -	1.67 - 228	17 .616 679	837	2.009 2	26 16	500 -	
218 62 401 6.47 848 - 76.562 2.343 45 26 - 217 12 235 - 656 218 62 391 5.34 3.002 5.151 76.562 2.343 45 26 - 217 12 235 - 656 218 84 544 6.48 3.002 5.151 76.562 $.616$ 514 90 2.009 217 26 2.342 - 2.735 218 84 544 6.48 42.987 - 76.562 3.509 344 $1,289$ - 217 26 2.163 - 2.163 adder smode chang:overs. 76.562 3.509 344 $1,289$ - 217 212 2.163 - 2.163 adder share: Cost of Labor 732 2.133 2.12 2.133 2.1612 2.134 2.17 2.133 2.163 2.163 2.1		. -+	17 3.509 520	2,036		24 113	3.090	- 5,735
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$								
z_{10} b_{2} 401 $b_{4}7$ 648 - 76.562 2.343 45 26 - 217 12 235 - 656 218 62 393 6.34 3.002 5.151 76.562 $.616$ 514 90 2.009 217 26 2.342 - 2.735 218 84 544 6.48 42.987 - 76.562 3.509 344 $1,289$ - 217 213 2162 - 2.163 $udes$ mode changeovers 76.562 3.509 344 $1,289$ - 217 113 1.619 - 2.163 $udes$ mode changeovers 76.562 3.509 344 $1,289$ - 217 113 1.619 - 2.163 $udes$ mode changeovers 76.562 3.509 344 $1,289$ - 217 113 1.619 - 2.163 $udes$ mode changeovers 76.562 3.509 344 $1,289$ - 217 113 1.619 - 2.163 $udes$ mode changeovers 76.562 3.509 344 $1,289$ - 217 113 1.619 - 2.165 $ude route changeovers78.693.441,289-2171131.619-2.165ude route route changeovers2.7993.441,289$								
218 84 544 6.48 42.987 - 76.562 .616 514 90 2.009 217 26 2.342 - 2.735 218 84 544 6.48 42.987 - 76.562 3.509 344 1.289 - 217 113 1.619 - 2.163 udes mode chang:overs. . . 76.562 3.509 344 1.289 . 217 113 1.619 - 2.163 udes mode chang:overs. . . . 217 113 1.619 - 2.163 3Ge Iabor Rate: 217 113 1.619 - 2.163	1 6.4/ 848 -	848 - 76, 56	62 2.343 45	26		7 12	255	656
udes mode chang:overs. 390 Labor Rate: Cost of Labor Total Man-Hrs = \$/Hour	4 6 48 42 007 -		62 .616 514	06	2,009 21	7 26	2, 342	2,735
udes mode chang-overs. agu Labor Rate: Cost of Labor : Total Man-Hrs = \$/itour		SC'8/	100 FDC - 5 70	1, 289	~	2 EU	1,619	2,163
udus mode changcovers. ragu Labor Rate: <u>Cost of Labor</u> = \$/Hour								+
	rs. of Labor Man-Hry = \$/Hour	lour						4
g flush medium and cooling water.	6.47 848 - 6.34 3.002 5.15 6.48 42.987 - f.labor = \$/Hour	848 - 76, 50 002 5, 151 76, 50 987 - 76, 50 16. 50	62 2.343 45 62 .616 514 62 3.509 344	26 90 1,289	2,009 21	7 26	235 2, 342 1, 619	2,16

· [·

•

and the second

í.

•

ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION Table E-1 (Cout'd)

	ſ	11	· Xei																			
YEAR		(JQ	6uja	Log Deu Log	105	1.425							1, 81 3	2, 249				246	683	535		
CLES PER			Iqsun	Control Control		849		T	T				·	•		T		•	·	•		
COVER CY Overboard	A multi	(Iau)		N'S) losoy IIV	6	7		T	T	T	T		320	240				68	486	339		
DDE CHANG	Pierside -	COSTS (Ani	400 1 V TC	1 6 5 V	و	2												▼	~	23		
vo. or Mc	•	RESOURCE	No Lor	25 23	•								59	59				5	54	54		
- -		JASSEL		•Xsj I∙nj			-+						-+ 	404				-	101	·		
OR (%) <u>5.</u>			J.C.	ELOCUTION C		15				Ì			259	272				Ī	23	263		
ION FACT	//	al)	S I de	Per Construction	s	6					•		178	411				27	256	189		
UTILEAT		SED (Annu	100°	Comp.	1.03	.25816							.3528	.1232				.8344	.12	.7056	-+	
SM W		OURCES U	No re-	¹⁰ 1105) 45013	 								32, 777	32, 777				30, 222	30, 222	30, 222		
ļ		ESSEL RES	(*u) 11((E)	Lord Control	-									1, C35					1, 035	- - -		
			10	ELOCE	107	488							8, 609	9,043				311	744	.8,779		
	1		100	1090 V	6.40	6.77							6.29	6.26				6.34	6.35	6.32		-4
(.017) S			1070	1500	96	576							1,490	, 509 -				178	197	196		
COROU	60	1 ARO	1090 B	VI I EI O	15	85		,		·			237	241				28	31	31		
SEL VI	W SIZE		Mode	222 22 22 2025	1 6 1	107							98	96				131	131	131		
VES	CRE		Chai	Sours -		17	N/A	N/A	N/A	N/A	N/A	N/A	16	16	N/A	N/A	N/A	21	21	21	N/A	N/A
			4	No.	Ŀ	- ~	6	4	5	و	7	8	6	2	=	12	13	14	15	16	17	18
												E	- 3									

(1) Includes mode changeovers.

(2) Average Labor Rate: $\frac{Cost of Labor}{Total I Man-Hrs} = $/Hour$

(3) Includes energy for pumping flush medium and cooling water.

ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION Table E-1 (Cont'd)

Cost (2 Xosi 1, 140 1,907 1,176 1, 748 1, 381 1, 254 2,571 902 1,078 1, 915 2, 169 2,928 387 2, 102 1, 723 2, 664 2,443 807 Total NO. OF MODE CHANGEOVER CYCLES PER YEAR Costs (5, 200 Consumables 20 849 23 23 11 849 1 23 23 1 2 11 (100 × 5, Primary - Overboard Kesomces Plerside - Primary 1, 439 938 352 358 675 1, 147 966 560 45 608 160 422 254 73 22 324 1,209 1, 362 VESSEL RESOURCE COSTS (Annual) (100 × 5) Jir . auog 80 0 50 50 18 48 18 ŝ 18 1 **4**8 18 50 69 ~ 1 111 Π (100 × 5) LEBEN Marsi 17.63 17.63 19.42 19.42 19.42 19.42 19.42 17, 63 17, 63 17.63 (100 X S) lio ieng 873 873 873 652 873 873 ELOCUTE WMS UTILIZATION FACTOR (X) 14.1 286 310 244 σ 36 542 316 290 311 439 217 899 523 497 23 157 1 EL CONSTITUTION 223 809 393 107 18 613 450 805 908 156 752 361 947 49 15 217 281 531 VESSEL RESOURCES USED (Annual) (901 × 102) .8178 2.82 10,91 1.48 1.07 1.07 1.48 2.54 1.07 .25944 2.82 */¥ 1.65 0 1,07 2.54 2.82 8.81 ''''o') .25 (Eallons) eresh Weers 25,185 27,740 27,740 25, 185 25, 185 27,740 25,185 25, 185 27,740 27,740 1 (euoiie) ¹¹⁰ Iong 2,239 2,239 2, 239 2,239 2, 239 1, 673 (E) (KWHE) Jomod Elocuic 17,439 5,250 7,206 9,538 16, 581 1,201 10, 523 14,631 690 9, 665 127 494 756 10,344 10, 360 8,117 24,974 18,058 A Verage 6.32 6.36 6.33 6.39 6.42 6.47 6.44 6.34 6.32 6.40 6.32 6.37 6.40 6.60 6.47 6.47 6.41 6.63 VESSEL FIREBUSH (180') 771 1,469 1, 517 1,478 762 810 773 879 731 314 1,047 731 1,477 1,586 1,036 731 695 717 Loren Caper LABOR 249 122 233 234 119 240 128 121 137 158 108 49 157 113 113 113 112 231 50 Changeovers دومر CREW SIZE 645 555 645 645 645 645 502 502 502 502 502 555 555 555 555 555 Mode 555 15) 251 Soj 100 'sunor 79 102 102 UPW 40 87 87 87 87 87 87 87 79 79 79 79 102 102 102 wms , No. 14 15 10 16 17 18 8 σ 1 12 13 ~ و 3 E-4

(1) Includes mode changeovers

(2) Average Labor Rate: Cost of Labor = \$/Hour

(4) Includes electric power for compressed air, pumping flush medium and cooling water; fuel; power for fresh water if generated aboard vessel. Per Capita Energy Consumption (Kwhr/Year) = Total Annual Resource Cost (less stored water cost, if any) x 1 S0.03/Fwh:r (3) Includes energy for pumping flush medium and cooling water.

ESTIMATED ANPIUAL WMS OPERATING CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION Table E-1 (Cont'd)

VESSEL PAMLICO (160')

NO. OF MODE CHANGEOVER CYCLES PER YEAR WMS UTILEATION FACTOR (%) 31

		7	100XSI	<u> </u>							-	_									
		(4	Denering Denering	382	1 524	1.788	116	792	833	1.431	1.300	851	1.356	906	1 343	1.720	456	960	200	948	1, 324
		.			112	711	25	25	25	25	25				25	25				25	25
- Overboai	Aipunta -	nnual)	soomeos nosomeos	ŝ	61	390	344	355	396	944	942	62	647	377	00	986	25	609	339	363	948
· Primary -		CE COSTS (A	Coup. Vr.	53	2	0		14	55	29	29	16	29	27	16	29	17	29	27	17	29
		L RESOUR	LIDA HEAL								,	2	5	2	5	s	s	s	S	s	5
		VESSE	IIO IONA (Jeogle)		-	373		1	1	66¥	499	,	499		,	499	4	499			499
			ELOCIFIC ELOCIFIC	2	12	17	341	341	341	416	414	41	114	345	379	453	3	76	307	341	415
		(len	Der Constra Energy (S) Per Copile Der Copile	141	49	1,000	882	910	1,015	2,421 -	2,415	- 147	1, 647	152	1,014	2,514	51	1, 549	859	918	2,417
		USED (Ani	(SCF AIR Comp. AIr	9.05	1.69	0	.7564	2.92	11.16	. 6138	.6138	2.84	.6138	. 8463	2.84	. 6138	2.92 -	.6138	.8463	2.92	8613.
		SOURCES	ELESH Merei		i	1	I	, I , I	-	'	ï	6, 548	6, 548	6, 548	6, 548	6, 548	6, 548	6, 548	6, 548	6, 548	6, 548
		VESSEL RE	IIO Ionj (E)	'	1	956	•	'	'	1, 280	1, 280		1, 280	'	!	1, 290		1, 280	'	١	1, 280
			Electric Electric	53	403	569	11, 345	11, 321	11, 329	13, 795	13, 768	1, 359	3, 807	11, 515	12, 635	15, 080	92	2, 540	10, 248	11, 368	13, 813
ļ			Cabor B. Labor B. Average	6.67	6.50	6.48	6.69	6.65	6.65	6.51	6.40	6.47	6.33	6.45	6.46	6.27	6.63	6.50	6.56	6.67	6.38
	ą	ž	Cost 1900	327	799	687	542	412	412	462	333	789	709	529	918	709	431	351	361	560	351
2E 1		3	Cotal Labor	49	123	106	81	62	62	7	52	122	112	82	142	113	65	54	55	84	55
DEW SE			Mode hangeov	69	155	155	155	155	155	155	155	69	69	69	69	69	173	173	173	173	173
U			MS ROJE	=	24	24	24	24	24	24.	24	1	Ξ	11	11	11	27	27	27	27	27
			Mo	-	2		•	2	9	7	8	6	10	=	12	13	14	15	16	17	18
											C = 3	3									

•

(1) Includes mode changeovers.

(2) Average Labor Rate: Cost of Labor = \$/Hour

(3) Includes energy for pumping flush medium and cooling water.

(4) Includes electric power for compressed air, pumping flush medium and cooling water; fuel; power for fresh water if generated aboard vessel. Per Capita Energy Consumption (Kwhr/Year) = Total Annual Resource Cost (Icss stored water cost, if any) x 1 80.03/Kwhr

Table E-1 (Cont'd)

į

ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION ٦

	Ī	(4	Poksi .									~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~								<u> </u>	
		(10)	Cost of Cost o	285	1, 622	1, 790	686	641	690	963	960	1, 023	1, 321	1,170	1, 177	1,425	668	106	750	174	1,061
		; 	Constant (S A		711	111	σ	6	6	σ	6	•	•	- - -	6	6	•	·	•	σ	6
COVER CY Overboard Primary		iual)	Seconcez Seconcez Ilir	دو :	16	231	123	124	127	428	471	74	421	265	194	525	66	360	204	150	511
DDE CHANGE Primary - (Plerside -		COSTS (And	COMP. AL	-		0	0	-	•	17	17	-	17	ìó		17	~	17	16	18	17
, 		RESOURCE	Lever (1995)	,	•	•	•		•	,		8	8	8	8	8	80	8	8	8	8
3		VESSEI	lio ions		ı	216	•		,	289	289	•	289		•	289	•	289	'	'	289
			Conner bonner Electric	2	12	15	123	123	123	- 122	165	65	107	241	185	228	90	46	180	124	197
ION FACT		al)	Per Consultation	10	25	367	195	197	202	747	747	103	656	408	295	847	· 8	559	310	225	749
S UTILIZAI		JSED (Annu	Comp. Alt	.68598	.12876	0	.06	.22089	68598	355644	.355644	190143	355644	490065	190143	.355644	.220557	.355644	49	58	.36
MM		OURCES 1	Cellor Eresh Warer	1		,	,	•	•	-	·····	10,578	10,578	10,578	10, 578	10,578	10, 578	10,578	10,578	10,578	10,578
		ESSEL RES	(Collove) Ino Ions		1	553		•	•	740	740	,	740			740		740	-	-	740
			Elecaric Elecaric	48	407	489	4,089	4,089	4,089	4,079	5, 506	2,163	3, 579	8,038	6, 195	7, 609	2, 987	1, 533	5, 992	4,148	5,564
31)	1		A VOC AGE	6.34	6.94	6.33	6.25	6.43	6.25	6.34	6.32	6.33	6.29	6.33	6.32	6.29	6.32	6.29	6.35	6.34	6.29
SAGE (13]]	NO	1002 1002 1002 1002 1002 1002 1002	279	895	64 8	554	508	554	526	480	949	006	306	974	006	569	541	546	615	541
WHITE		LAB	Construction of the second	44	129	134	87	62	. 87	83	76	150	143	143	154	143	.0 6	86	86	67	86
ESSEL_			Mode hangeov	187	416	416	416	416	416	416	416	374	374	374	374	374	477	477	47:	477	477
> (_	MS HOUL	30	99	66	66	66	66	66	66	59	59	59	59	59	76	76	76	76	76
			MON	[-	2	•	4	2	9	-	8	6	10	=	12	13	3	15	16	12	18

...

ļ

(2) Average Labor Rate: $\frac{Cost of Labor}{Total Man-Hrs} = $/Hour$

(3) Includes energy for pumping flush medium and cooling water.

(4) Includes electric power for compressed air, pumping flush medium and cooling water; fuel; power for fresh water if generated aboard vessel. Per Capita Energy Consumption (Kwhr/Year) = <u>Total Annual Resource Cost (less stored water cost, if any)</u> x <u>1</u> S0.03/Kwhr

1

ESTIMATED ANNUAL WMS OPERATING CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION Table E-1 (Cont'd)

Cost (2 Legi) Cost (2 Legi) Cost (2 Legi) NO. OF MODE CHANGEOVER CYCLES PER YEAR 156 4 4 4 4 4 526 534 **∔** 1 **∔** ↓ 104 4 4 4 412 1 Costs (S/Kest) Consumables 9 46 1 1 Primary - Overboard ______ Plerside - Primary _____ HOOX'S, sesonces 1 1 1 VESSEL RESOURCE COSTS (Annual) 1 19 3 36 hoor si JA . duog 1 c 0 0 i (100 × 5) seigh Maies 111 111 e e m c (+00 × 5) 110 Ions 1 111 Electric WMS UTILIZATION FACTOR (%) 1.8 1 0 16 1 27 12 Electoria (Consumption) יי ו ו 9 1111 1 62 116 -VESSEL RESOURCES USED (Annual) (201 × 102) 1 J}# . Goinp, 03726 ; .03024 1111 .0162 .03024 .0207 1 (Suolies) 1 Lesh Wessi 1 2, 190 2,190 2,190 2,190 (euo1105) ¹¹0 ion_s 1 1 1 (E) (KMUL) KOMOL EIOCELIC 1 1 α) 38 403 527 889 A Verses POINT HERRON (82') 6.29 6.34 1 6.23 6.35 6.29 1 1 1 f 400 1 151 1 1 Local Labor 507 503 395 ł 1 LABOR 8 1 24 80 80 63 1 63 ्ववर्य Changeovers CREW SIZE Mode 145 s) 144 145 VESSEL 1 385 385 1 ł Soc 100 'Inot N/A N/A N/A N/A. N/A N/A N/N N/A N/A N/A N/A N/A .uew N/A 23 23 23 61 61 W MS No. ŝ ي ع 10 æ σ 14 15 Ξ 12 13 16 17 18 E-7

(1) Includes mode changeovers.

(2) Average Labor Rate: $\frac{Cost of Labor}{Total Man-Hrs} = $/Hour$

(3) Includes energy for pumping flush medium and cooling water.

Includes electric power for compressed air, pumping flush medium and cooling water; fuel; power for fresh water if generated aboard vessel. Por Capita Energy Consumption (Kwhr/Year) = Total Annual Resource Cost (less stored water cost, if any) × 1 Crew Size E

Ż

APPENDIX F

ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION

ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION Table F.1

	7. 2																		
AV.	P. M P. M C. M. Coi (\$/Year)	897	4, 186	6, 707	1,487			1,600		10,460	19, 579	12, 345			18,995	27,810	20,880		-
	e** Total tte C.M. (S/Year)	429 M	3. 542 X	6, 275 X	698 X	×	×	994 X	X	8, 389 N	17, 502 X	8,801 X	8	×	15,386 N	24, 393 M	15, 798 X		X
CE (CM)	ABOR r Averag (\$/Year)	6.56	5.85	5.89	6.90			6.77		6.62	6.67	6.54			5.72	5.75	5.71		
MAINTENAN	L I. I.abo s/ Cost (\$/Year	174	632	642	129			154		1,358	1,440	1.419			2,868	2,933	2,929		
ORRECTIVE	Hour	25	108	109	18			22		205	216	217			524	533 -	536		
C	PARTS ber Cost (\$/Year	255	2,910	5, 633	570			840		7,030	16,062	7,382			12,518	21,460	12,870		
	imber Num f Irs/ Used Yaar	25	65	71	35			35		159	158	163			204	204	208		
	Year	22	68	74	44			44	•	547	562	562	\ \	\triangleright	197	203	212		
NCE (PM)	tt of Tota tals P. M ar) Cost (S/Year)	468	644	432	789			606		2,071	2,077	3, 544			3,609	3,417	5,092		
MA INTENAI	ge** Cos tate Mater (\$/Ye	16	. 16	80	56			124		86	142	78			429	453	421		
REVENTIVE	or Avera t Labor 1 ary (\$/Year	6.37	6.41	6.39	6.58			7.19		6.35	6.33	6.38			6.68	6.59	6.59		
A CALLAT	In- LA Lab L'A Cost r (S/Ye	452	628	424	269			482		1, 985	1, 935	3,466			3,180	2,964	4,661		
VLSSEL	w MS Ma o. Yeau	11	98	62	106	N /N	V/N	67	N/A	313	306	544	N/A	N/A	476	442	707	NY'A	N/N
•	Ż	-	2	-	-	2	9	-	•		, <u>o</u>	=	12	10	=	12	۲	17	

* Although the treatment/disposal subsystem is not utilized 100% of the time, it will be assumed that preventive maintenance routines will be maintained as if the subsystem were used continuously. ** Average Labor Rate: Cost of Labor = \$/Hour

... ,

ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION Table F.J (Cont'd)

i

•.

ļ

`•/ /

			_ `																					
	R	R	P. M.	C.M. Cost (S/Year)			1, 330							6, 612	10.460				8 070	0/2 10	10, 811	9.812	T	
			e • • Total	(S/Year)	199		~~~~	⊅			<	×	X	5, 638 M	9.283		\$	\$	7 12 A		0.300	7, 233 N	*	М
	ICE (CM)	ABOR	x Averag		6.67	90 2								6.68	6.70				5.77		6/ .0	5.76		
5.6	MAINTENAN		n-/ Labo	(\$/Year	98	257								979	966				1.483	002	000 .	1, 31/		
FACTOR (%)	CORRECTIVE		Ma	r) Year	14	Ş								147	149				257	750		700		_
TILZATION	U	PARTS	ber Cost	(\$/Yea	101	986								4, 659	6,480				5, 645	7 466		0, /30		=-
W MS U	*		imber f irs/ Used	Уваг	12	25								66	66				76	76	:			
E 60	X	X	al Repa	Year	24	30.								396	399				110	611		~		
CREW SZ	NCE (PM)		t of Tota tals P.M	ar) Cost (\$/Year)	234	293							S	1, 174 X	1. 177 X	×		\geq	1, 842 X	1.845 X	2 570 V			1
	MAINTENAL		ige** Cos Rate Mater) (S/Yea	8	8								40	68				214	242	210			
US (210')	PREVENTIVE	ABOR	or Avera t Labor	ary (S/Year	6.28	6.33								6.35	6.35				6.72	6.68	6.60			
L VIGORO			an- Lat urs/ Cos	ur / (\$/Ye	226	285								1, 34	1,109				1. ó28	1, 603	2, 369			atmost /dto
VESSE	#		W MS M.	Yea	36	45	N/A	N/A	N/A	N/A	N/A	N/A		6/1	175	N/A	N/A	N/A	244	240	359	N/A	N/A	and the tre
			~	\square	-	8		•	s	y	-	8	•	2	2	=	2	61	Ŧ	15	91	17	18	* Aith

/

:

Although the treatment/disposal subsystem is not utilized 100% of the time, it will be assumed that preventive maintenance routines will be maintained as if the subsystem were used continuously.

. . . .

** Average Labor Rate: Cost of Labor = \$/Hour Total Man-Hrs

ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION Table F-1 (Cont'd)

1

				>								5										
		W_	P.M.	C.M. Cos	303	1,449	2,123	757	1,058	1,058	855	1,540	3,907	7,781	4, 491	4.661	4,997	4,103	7,976	4,686	1,85/	761 °C
			e** Total	(S/Year)	108 X	1, 195 X	1,926 X	363 X	542 X	542 X	552 X	1.011	2.921	6, 792 X	3, 079 N	3, 355 X	3.772 X	3, 192 X	7.063 X	3,350 X	3.626 M	4.043 M
	CE (CM)	ABOR -	Averag	(S/Year)	7.60	6.67	6.76	7.25	7.67	7.67	7.40	7.06	6.71	6.77	6.67	6.82	6.65	5.71	5.79	5.71	5.82	5.75
14.1	IAINTENAN	ב	Labor	(\$/Year)	38	240	250	58	69	69	2	113	611	650	634	641	685	639	678	662	669	713
ICTOR (%)	DRECTIVE N	/	Man-	Year	5	36	37	8	6	6	10	16	16	96	95	94	103	112	117	116	115	124
LEATION IN	18 18	PARTS	er		20	955	1,676	305	473	473	478	868	2,310	6, 142	2,445	2,714	3, 087	2,553	6, 385	2,688	2,957	3, 330
W MS UTI			aber Numb	's/ Used	6	20	23	14	20	20	14	24	50	51	51	63	59	34	35	35	47	43
50	R	R	Nun of	Year Year	10	20	21	18	23	23	18	. 26	259	280	264	271	268	46	99	51	58	55
CREW SIZE	CE (PM)		of Total	lls P.M. Cost (S/Year)	N 261	254 X	197 X	394 X	516 X	516 N	303 X	529 X	986 X	889 X	1,412 X	1, 306 X	1, 225 X	911 X	913 X	1,336 X	1, 231 X	1, 149 K
	IN INTENANC		a** Cost	ite Materia (\$/Year	4	4	4	46	80	08	62	116	40	68	36	116	130	100	128	96	176	190
(180.)	EVENTIVE N	OR	r Average	ry (\$/Year)	6.37	6.41	6.66	6.57	6.71	6.63	7.30	7.37	6.31	6.31	6.34	6.47	6.68	6.64	6.61	6.57	6.72	7.00
FIREBUSE	d	IAP	Iabo	s/ Cost (\$/Yea	161	250	193	348	436	431	241	413	946	921	1.376	1,130	1.0	811	786	1.241	1,055	959
VESSEL		/	TMS Mar	Year	1 11	66	29	5	65	65	33	56	150	146	217	184	164	122	119	189	157	137
			~*	DN	Ĺ	•				,				· =	: =	2	2			ä	: =	18

Ţ

* Although the treatment/disposal subsystem is not utilized 100% of the time, it will be assumed that preventive maintenance routines will be maintained as if the subsystem were used continuously.
** Average Labor Rate: Cost of Labor = \$/Hour

< َ

1

ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION Table F.1 (Cont'd)

	N	N	P. M.	va/Year)	- F-2-	1, 596	1,887	1, 116	995	995	1, 442	1, 321	2, 146	4.405	2, 379	2,784	2, 989	3, 252	5, 511	3, 484	3, 889	4, 094				
			ge** Total ate C.M. Cost	(s/Year)	245 X	1, 303 X	1.711 X	722 X	639 X	639 X	1, 139 X	1, 057 X	1, 372 X	3, 722 M	1. 489 M	1. 849 X	2, 184 X	2. 518 X	4, 868 X	2, 635 X	2; 995 X	3, 330 X	nes will be			
	VCE (CM)	LABOR	yr Avera Labor R (\$/Year)		7.86	6.00	6.30	7.42	7.18	7.18	6.94	6.82	6.75	6.56	6.27	6.76	6.58	5.80	5.80	5.67	5.85	5.83	enance rout			
16	MAINTENAN		n- Labo rs/ Cost (\$/Yeau		55	228	233	89	79	79	125	116	189	236	207	223	250	487	534	505	521	548	ntive maint			
ACTOR (%)	ORRECTIVE	1	Hour Year		~	38	37	12	11	11	18	17	28	36	33	33	38	84	92	68	89	9 4	l that preve			
I NOITAZII	0	PARTS	ber / Cost (5/Year		190	1,075	1,478	633	560	560	1,014	941	1, 183	3,486	1, 282	-1,626	1, 934	2,031	4, 334	2,130	2,474	2, 782	be assumed			
W MS UT			mber Numi rs/ Used Year		12	25	23	26	22	22	27	23	36	37	34	50	46	31	32	42	52	42	Ime, it will			
E 13	Ø	R	I Repair		16	26	26	27	24	24	27	24	83	100	86	96	93	39	56	42	52	49	0% of the t			
CREW SIZ	ICE (PM)		t of Tota als P.M. r) Cost	19/ TEAC	234 X	293 X	176 X	39 4 X	356 🕅	356	303 X	264 X	774 X	683 X	890 X	935 X	805 X	734 X	643 X	849 X	894 X	764 X	utilized 10	valy.		
ļ	MAINTENAN		ge** Cos late Materi (\$/Yea	<u></u>	8	8	4	46	42	42	62	58	46	62	42	84	96	77 -	93	73	115	127	stem is not	ised continu	\$ ∕Hour	
(160')	REVENTIVE	BOR	or Avera t Labor I ar) (\$/Year)	/	6.28	6.48	6.88	6.57	6.54	6.54	7.30	7.36	6.33	6.48	6.33	6.45	6.56	6.57	6.88	6,58	6.66	6.92	posal subsy	stem were t	of Labou =	Man-Hrs
. PAMLICO	Р	VI I	n- Lab rs/ Cost f (\$/Ye		226	285	- 172	348	314	314	241	206	728	621	848	951	709	657	550	776	779	637	satment/dis	f the subsy	tate: Cost o	10101
VESSEL			WMS Mi 9. Hou Yea		36	44	25	53	48	48	33	28	115	96	134	132	108	100	80	118	117	92	ough the tre	ntalned às l	age _i Labor ƙ	
			- Z	ļ	-	7		•	ŝ	9	~	8	6	10	=	12	7	-	15	16	51	18	* Alth	11em	Aver	

÷.

F - 5

ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION Table F-1 (Cont'd)

	N	N	P.M.	(S/Year)	352	1.497	1, 591	741	674	703	811	741	1,950	3, 178	2, 106	2, 282	2.272	3, 679	4, 907	3, 837	4,010	4,000			
•			ge** Total	(S/Year)	118	1,204 X	1.415 X	347 X	318 X	347 X	508 X	477 X	1, 176 X	2, 495 X	1, 216 N	1, 347 X	1,467 X	2, 945 X	4, 264 X	2, 988 X	3, 116 X	3, 236 N	tines will be		
	ICE (CM)	ABOR	k Avera	r) (S/Year)	7.80	6.67	6.72	8.14	9.00	8.14	7.30	7.56	6.62	6.62	6.39	6.57	. 6.47	5.01	5.06	4.98	5.03	5.03	enance rou		
1.1	AINTENAN		- Labo	(\$/Year	39	240	242	57	54	57	73 -	68	172	192	179	184	194	471	491	478	483	493	ntive maint		
ACTOR (%)	DRRECTIVE D		Man	Year	s	36	36	7.	9	7	10	6	26	29	28	28	30	94	97	96	96	98	that preve		
ILZATION F	18	PARTS	er Cost	(\$/Year)	56	964	1, 173	290	264	290	435	409	1,004	2, 303	1,037	1, 163	1,273	2,474	3, 773	2,510	2, 633	2, 743	be assumed		
W MS UT			nber Numb	Year	9	19	19	2	10	11	11	10	30	31	30	35	34	53	54	53	58	57	ime, it will		
21	H		of Benali	Year	10	24	24	15	14	15	16	. 12	105	111	106	109	109	61	67	62	65	65	0% of the t		
CREW SIZI	CE (PM)		of Tota	r) Cost (\$/Year)	234 K	293 X	176 X	394 X	356 · X	356	303 X	264 X	774 X	683 X	890 X	935 X	805 X	734 X	643 X	849 X	894 X	764 X	t utilized 10	uously.	
;	VA IN TENAN		e** Cost	(\$/Yea	8	80	4	46	42	42	62	58	46	62	42	84	96	17	- 66	73	115	127	stem is no	used continu	\$/Hour
SE (133')	PVENTIVE	BOR	or Averag	ary (S/Year)	6.28	6.33	6.88	6.57	6.54	6.54	7.30	7.36	6.33	6.47	6.33	6.43	6.56	6.57	6.88	6.58	6.66	6.92	posal subsy	stem were t	of Labor =
WHITE SAC		ITAI	n-, Labo	rs/ Cost (\$/Yea	226	285	172	348	314	314	241	206	728	621	848	851	709	657	550	776	677	637	eatmer:/dis	f the subsy	ate: Cost o
VESSEL			ww.	7. Hou	36	45	25	53	48	48	13	28	115	96	134	132	108	001	80	118	117	92	ough the tre	stained as 1	age Labor R
			\sim	ž	<u> </u> -	6	3	•	6	9	-	8	•	2	=	2	13	-	1	:2	11	18	* Alth	malı	** Aver

.

ţ

•..

ESTIMATED ANNUAL WMS MAINTENANCE CHARACTERISTICS AND COSTS BASED ON PROJECTED WMS UTILIZATION Iuble F-1 (Cont'd)

Although the treatment/disposal subsystem is not utilized ivu% of the time, it will be assumed that prev maintained as if the subsystem were used continuously. ** Average Labor Rate: Cost of Labor = \$/Hour Total Man-Hrs

APPENDIX G

PRESENT VALUE OF ESTIMATED LIFE-CYCLE

WMS OPERATING AND MAINTENANCE COSTS

G-1

Table G-1

PRESENT VALUE^{*} OF ESTIMATED LIFE CYCLE WMS OPERATING AND MAINTENANCE COSTS

GALLATIN (378')

VESSEL

11 (S)																				¢.
E-CYCLE COS	LOLVE LOLVE	11, 123	66,106	94, 303	19,824			42, 936		127, 264	235, 703	151,287			148,219	234, 185	172,234			a discount ra
E* OF LIF	Nether Nether Overher	3,669	14, 381	17, 939	6, 300			14,492		41,037	80, 160	44, 212			27, 422	46,500	30, 644			v offoot'
ENT VALU	Wainten Conscrive Conscrive	2,636	21,764	38, 557	4,289			6,108		51,457	107, 542	54,078			94,540	149,884	97,072	-		01 (0) 2-
PRES	Wainter Mainter	2,876	3, 957	2,654	4,848			3,724		12, 725	12, 762	21, 776			22, 176	20,996	31,227			
75	Oberaruc Oberaruc	1,942	26,004	35, 153	4, 387			18,612		21,955	35,239	31,221			4,031	16,805	13,291			10
//		1,254	4,915	ô, 131	2,153			4, 953		14, 025	27,396	15,110			9, 389	15,892	10,423			
** (\$/Year)	Combined Kiel	1,213	4,186	6,707	2,201			4,620		14,033	25, 314	17,426			19,658	30, 545	23,043			(0) H-
IAL COSTS	Concertuse Concertuse	429	3,542	6,275	698			994		8,389	17,502	8,801			15, 386	24, 393	15,798			-111- 02 61
ANNU		468	644	432	789			606		2,071	2,077	3, 544			3,609	3,417	5,082			1
	WR SW	316	4.232	5,721	714	N/A	N/A	3, D29	N/A	3, 573	5, 735	5,081	N/A	N/A	656	2,735	2,163	N/A	N/A	
	IM	1	2	e S	4	5	9	7	8	б	10	11	12	13	14	15	16	17	18	4

* Based on (1) projected why wild dillication.

G-2

PRESENT VALUE^{*} OF ESTIMATED LIFE CYCLE WMS OPERATING AND MAINTENANCE COSTS Table G-1 (Cont'd)

VESSEL VIGOROUS (210')

AMNUAL COSTS** (5/Year) 5 PRESENT VALUE* OF LIFE-CYCLE C No. 2	OST (S)																						
MMS ANNIAL COSTS** ($\frac{1}{2}$, $\frac{1}$	E-CYCLE C		90U 80	TOIVI	5.509	23 642	210102						81 504	126, 177				70, 702	104,260	79.261			
MNUIL COSTS** (\$/Year) Free Fre	JE* OF LIF	-	וז סטנפי	leuren C	2.203	5.448							28, 525	48.086				14,074	33, 634	15.683		T	
ANNUAL COSTS** $(S' Year)$ S'	SENT VAL	/	en la ne	Veluce Veluce	1. 223	7.638							34, 643	57.040				43, 798	55,092	44,444	·		
WMIS SC	PRE		ο _Λ χ Δι.	AUTEN AUGAGUGU	1,438	1.800							7.214	7.232				11,318	11, 337	I5,847			
WMS Solution Annual Costs** (s/Year) No. No. No. No. 1 105 234 199 538 753 2 1,425 293 1,243 1,536 1,862 3 N/A No. No. No. 4 N/A 1243 1,536 1,862 3 N/A No No No. 5 N/A No 1,243 1,536 1,862 3 N/A No No No No 4 N/A No No No No 6 N/A No No No No 9 1,177 9,283 1,536 1,862 9 1,177 9,283 12,709 16,434 10 2,249 1,177 9,283 12,709 11 N/A No No No 12 N/A 5,283 12,709 16,434 13 N/A 11,177 9,283 12,709 13 N/A No 11,435 16,434 13 N/A 11,177 9,283 12,709 14 246	35		רי געפתו געפתו	A BE BAL	645	8,756							11.122	13, 819				1,512	4,197	3, 287			
WMS See See <td></td> <td>.75</td> <td>CVS)</td> <td>orethe Orethe</td> <td>753</td> <td>1,862</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9, 749</td> <td>16,434</td> <td></td> <td></td> <td></td> <td>4,810</td> <td>11,495</td> <td>5, 360</td> <td></td> <td></td> <td></td>		.75	CVS)	orethe Orethe	753	1,862							9, 749	16,434				4,810	11,495	5, 360			
WMS SC ANNUAL COSTS NO. SC	** (\$/Year)	0		Nal Indo	538	1,536							8, 622	12,709				11, 304	11,494	10,347			
WMS No. No. No. No. No. No. No. No. NA 2 1,425 234 2 1,425 234 2 1,425 234 2 1,425 234 2 1,425 234 2 1,177 1 1 1 1 2,249 1,177 1 1 1 2,249 1,177 1 1 2,249 1,177 1 1 1 1 2,249 1,177 1 1 2,249 1,177 1 1 1 1 2,249 1,177 1 1 2,249 1,177 1 1 1 1 1 2,259 2 3 3 4 5 2 3 4 5 2 3 4 1,174 1 1 2,293 2 3 4 1,177 1 1 1 1 1 2,293 2 3 4 1,174 1 1 1 1 1 2,293 2 3 4 1,174 1 1 1 1 1 2 2 3 4 1 1 1 1 2 3 4 1 1 1 1 2 3 4 1 1 1 2 3 4 1 1 1 2 3 4 1 1 1 2 3 4 1 1 1 2 3 4 1 1 1 2 3 4 1 1 1 2 3 4 1 1 1 2 3 4 1 1 1 1 2 3 1 1 1 1 2 3 1 1 1 1 1 1 1 1	UAL COSTS	0	R NG	Correct And	199	1, 243				 	,		5, 638	9, 283				7,128	8, 366	7, 233			
WMS No. No. No. No. No. No. N/A 1 105 2 1,425 3 N/A 4 N/A 6 N/A 6 N/A 8 N/A 8 N/A 9 1,810	ANNI	/	5.1 L'S	bren are	234	293							1,174	1,177				0	1,845	2,579		•	
M N N N N N N N N N N N N N N N N N N N			/WS	obere .	105	1, 425	N/A	N/A	N/A	N/A	N/A	N/A	1,810	2,249	N/A	N/A	N/A	246	683	535	N/A	N/A	
			Ч	Z		2	3	4	5	ų	7	8	6	10	11	12	13	14	15	16	17	18	4

* Based on (1) projected WMS utilization, (2) an assumed 10 year useful life and (3) 10% effective discount rate. ** Based on projected WMS utilization.

. .
Table G-1 (Cont'd)

"

ſ

PRESENT VALUE^{*} OF ESTIMATED LIFE CYCLE WMS OPERATING AND MAINTENANCE COSTS

	OST (\$)																				
	E-CYCLE C	BUCB	E LOLA	5,624	25,782	60,264	13, 382	17,075	17,677	24, 309	35,059	52,445	101,595	61, 364	62,397	80,661	36, 812	85,952	44,831	46, 769	59, 661
	E* OF LIF	n euce	Overtier of	1,384	5,161	7,780	3,189	3,950	3,950	7,289	12,681	17,851	37,415	18, 758	20,429	31,966	6,642	26,202	7,552	9,220	20, 754
·	ENT VALU	ne guce	Conecut	664	7,342	11,834	2,230	3,330	3, 330	3, 392	6,212	17,948	41,734	18,919	20,615	23,177	19,613	43,339	20,584	22,280	24, 842
	PRES	1,1,0 A	ALONG LAL	1,198	1,561	1,210	2,421	3, 171	3,171	1,852	3,250	6,059	6,077	8,67E	8,025	7,527	5,558	5,610	8,209	7,564	7,060
	25	Line Co	Cheres .	2,378	11,718	39,440	5,542	6,624	7,226	11,766	12,916	10,587	16,369	15,011	13,328	17,991.	4,959	10,741	8,486	7,705	7,005
		10 10 10 10 10 10 10 10 10 10 10 10 10 1	22 22 22 0 22 22 22 0 2 2 2 2 2	473	1,764	2,659	1,090	1,350	1,350	2,491	4, 334	6,101	12,787	6,411	6,982	10,925	2,270	8,955	2,581	3, 151	7,093
	** (\$/Year)	A No.	E CO CO E E	690	1,449	2,123	1,659	2,136	2,234	2,770	3,642	5,630	10,445	6,934	6,830	7,925	4,910	9, 724	5,067	6,111	6, 332
	IAL COSTS	Price Barce	COLOCION COLOCION	108	1,195	1,926	363	542	542	552	1,011	2,921	6, 792	3,079	3, 355	3, 772	3, 192	7,053	3, 350	3,626	4,043
(180')	ANNL	en j	A NE LE	195	254	197	394	516	516	303	529	986	989	1,412	1,306	1,225	911	913	1,336	1,231	1,149
FIREBUSI		SW SW	Operers	387	1,907	2,571	<u>902</u>	1,078	1.176	1, 915	2,102	1, 723	2,664	2,443	2,169	2,928	807	1,748	1,381	1,254	1,140
VESSEL		IM	No	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18

* Based on (1) projected WMS utilization, (2) an assumed 10 year useful life and (3) 10% effective discount rate. ** Based on projected WMS utilization.

G-4

PRESSINT VALUE^{*} OF ESTIMATED LIFE CYCLE WMS OPERATING AND MAINTENANCE COSTS Table G-1 (Cont'd)

	OST (\$) 7																						
	E-CYCLE C			IV IOI	7,160	24, 228	28,441	15,621	13, 612	13,864	24, 919	22,838	24, 112	45,195	26, 093	32, 345	39, 483	27,975	49.046	31,110	36,199	43, 335	
	JE+ OF LIF	•	In .	Na Inte	1,870	5,027	5,861	3,166	2,633	2, 633	7, 265	6,-733	5, 697	9, 796	5,908	6,987	10, 554	5, 191	9, 284	5,401 -	6,478	10,045	
	SENT VALI			Correction Correction	1,505	8,006	10,513	4,436	3, 926	3,926	6,999	6, 495	8,430	22,870	9,149	11,361	13,420	15,472	29, 912	16,191	18,403	20,461	
	PRE			We TUTE	1,438	1,800	1,081	2,421	2,187	2,187	1,862	1,622	4,756	4,197	5,469	5,745	4,946	4,510	3,951	5,217	5,493	4,694	
	38			nereto	2,347	9,395	10,986	5,598	4,866	5,118	8, 793	7,988	5,229	8, 332	5,567	8,252	10,569	2,802	5, 899	4,301	5,825	8,135	/
				0 20 20 C	639	1,718	2,003	1,082	006	900	2,483	2,301	1,947	3, 348	2,019	2,388	3,607	1,774	3,173	1,846	2,214	3, 433	
1	** (\$⁄Year)	00	A POUL	E C C C C 2	861	1, 596	1,887	2,027	1, 787	1,828	2,873	2,621	2,997	5,761	3,285	4,127	4,709	3, 708	6,471	4,184	4,837	5.418	
	JAL COSTS	00		E CE E	345) 1, 303	1, 711	722	639	639	1,139	1,057	1,372	3, 722	1,489	1,849	2,184	2,518	4,868	2,635	2, 995	3, 330	
CO (160°)	ANNI		SU.	A 20 2	234	292	176	394	356	356	303	264	774	683	890	935	. 805 .	734	643	849	894	764	
PAMLIC	/		WS SW	ob ^{gg}	382	1,529	1, 788.	116	792	833	1,431	1,300	851	1,356	906	1,343	1,720	456	960	200	948	1, 324	
VESSEL			M			2	m	7	S	5	~	80	6	10	11	12	13	14	15	16	17	18	•

* Based on (1) projected WMS utilization, (2) an assumed 10 year useful life and (3) 10% effective discount rate. ** Based on projected WMS utilization.

G-5

PRESENT VALUE^{*} OF ESTIMATED LIFE CYCLE WMS OPERATING AND MAINTENANCE COSTS Table G-1 (Cont'd)

WHITE SAGE (133')

	OST (\$) /			~ .	_		, '															
	E-CYCLE C	BUCO	TV IOI	5, 784	24, 191	26, 636	11,934	10,713	11, 735	18, 162	17, 185	23, 965	37,440	26,038	28,241	33, 270	31,902	44,971	33, 585	35,879	41,142	
	IE* OF LIF	יסטכי .	ethevo	1,870	5,027	5,861	3,166	2,633	3,166	7.262	6, 733	5,697	9, 796	5,908	6, 987	10,554	5,191	9,284	5,401	6,478	10,045	
	SENT VALU	• • • • • • • • • • • • • • • • • • •	Corect	725	7,398	8,695	2,132	1,954	2,132	3,121	2,931	7,226	15,331	7,472	8, 277	9,014	18,096	26,200	18, 360	19, 146	19,884	
	PRES	eny;	ASTER OF OF	1,438	1,800	1,081	2,421	2,187	2,187	1,862	1,622	4,756	4,197	5,469	5,745	4,946	4,510	3,951	5,216	5,499	4,694	
	2	Linguille Co	Deleta Deleta	1, 751	9,966	10,999	4,215	3, 939	4,240	5,917	5,899	6,286	8,116	7,189	7,232	8,756	4,105	5, 536	4,608	4,756	6,519	
				639	1,718	2,003	1,082	900	1,082	2,482	2,301	1,947	3,348	2,019	2, 388	3,607	1,774	3, 173	1,846	2,214	3, 433	•
l	3** (\$/Year)	P LOU POUCE	CO CO CO CO	637	1,497	1,591	1,427	1,315	1,393	1.774	1,701	2,973	4,499	3,276	3,459	3,697	4, 347	5,808	6,087	4,784	5,061	
g.)	UAL COST	BOUED.	E CO S	11-9	1,204	1,415	347	318	347	508	477	1,176	2.495	1,216	1,347	1,467	2,945	4,264	2, 988	3,116	3,236	
SAGE (13:	ANNI	Bu	At 20 5	234	293	176	394	356	356	303	264	774	683	890	935.	805	734	643	849	894	764	
WHITE		WS	000 / CO	285	1,622	1,790	686	641	690	963	960	1,023	1.321	1,170	1,177	1,425	663	- 106	750	774	1,061	- 10
VESSEL		M	NY		5	3	4	S	9	7	8	6	10	11	12	13	14	15	16	17	- 18	

i

* Based on (1) projected Wive utilization, (2) an assumed 10 year useful life and (3) 10% effective discount rate. ** Based on projected WMS utilization.

G-6

PRESENT VALUE^{*}OF ESTIMATED LIFE CYCLE WMS OPERATING AND MAINTENANCE COSTS Table G-1 (Cont'd)

(2) an assumed 10 year useful life and (3) 10% effective discount rate.

Based on (1) projected WMS utilization, Based on projected WMS utilization.

*

APPENDIX H

٠.

SENSITIVITY ANALYSIS OF LIFE-CYCLE COST

Derivation of Formulas for Sensitivity Analysis

The following definitions are used:

- C Overall WMS life cycle cost
- A WMS acquisition cost
- I WMS installation cost
- O_{C/T} Annual operating cost of WMS (black water) Collection/ Transport subsystem based on continuous WMS operation
- O_{T/D} Annual operating cost of WMS Treatment/Disposal subsystem (black and gray) based on continuous WMS operation
- PM Annual WMS preventive maintenance cost for (black water) Collection/Transport subsystem and the Treatment/ Disposal subsystem (black and gray) based on continuous WMS operation
- CM_{C/T} Annual corrective maintenance cost of WMS (black water) Collection/Transport subsystem based on continuous WMS operation
- CM_{T/D} Annual corrective maintenance cost of WMS Treatment/ Disposal subsystem (black and gray) based on continuous WMS operation
- OH WMS overhaul cost (per overhaul)
- U WMS utilization factor (for black and gray) Treatment/ Disposal subsystem for a given vessel
- $F_1 = 6.144566$ Discount factor applicable to operating, preventive and and corrective maintenance costs (based on a 10% effective discount rate and a useful system life of 10 years)

F₂ = 2.925983 - Discount factor applicable to overhaul maintenance costs (based on a 2-year overhaul cycle, a 10% effective discount rate and a useful system life of 10 years).

Δ

- This symbol, appearing in front of any one of the above symbols, designates a change in the quantity represented by that symbol.

In terms of the above symbols, the overall life cycle cost (C) of any candidate system on a given vessel is related to its various cost elements by the expression

$$C = A + I + F_1 \left[O_{C/T} + U \left(O_{T/D} \right) + CM_{C/T} + U \left(CM_{T/D} \right) + PM \right] + F_2 \left[OH \right]$$

The sensitivity of the overall cost to a change (error) in any one of the cost elements can be readily determined by introducing a change in that cost element, keeping the other cost elements constant, and deriving the expression for the resulting change in overall cost. Thus, a change in acquisition cost (ΔA) is related to the change in overall cost (ΔC) by the expression

$$C + \Delta C = A + \Delta A + \{ \text{Remainder of of previous expression} \}$$
$$C + \Delta C = \Delta A + \underbrace{A + \{}_{C}$$

The percentage change in acquisition cost is related to the change in overall cost by the expression

$$\frac{A A}{A} (\%) = \frac{100 A C}{A}$$

 $\Delta A = \Delta C$

.....

(1)

The above expression can be used to determine the percentage change in acquisition cost which will result in a given change in overall life cycle cost. As an example, in order to determine the percentage change in acquisition cost that will result in a 10% change in WMS life-cycle cost, 10% of the life cycle cost (Δ C) and the acquisition cost (A) are substituted in the above expression and the result is the required percentage change in acquisition cost.

Similarly, the percentage change in installation cost (ΔI) is related to the change in overall cost by the expression

$$\frac{\Delta I}{I} (\%) = \frac{100\Delta C}{I}$$
(2)

The sensitivity of the overall cost to the annual operating cost of the Collection/Transport subsystem $(O_{C/T})$ is obtained from the relation

$$C + \Delta C = I + A + F_1 \left[O_{C/T} + \Delta O_{C/T} + U (O_{T/D}) + CM_{C/T} + U (CM_{T/D}) + PM \right] + F_2 \left[OH \right]$$

$$C + \Delta C = I + A + F_1 \left[O_{C/T} + U (O_{T/D}) + CM_{C/T} + U (CM_{T/D}) + PM \right] + F_2 \left[OH \right] + F_1 \left[\Delta O_{C/T} \right]$$

$$C + \Delta C = I + A + F_1 \left[O_{C/T} + U (O_{T/D}) + CM_{C/T} + U (CM_{T/D}) + PM \right] + F_2 \left[OH \right] + F_1 \left[\Delta O_{C/T} \right]$$

$$\Delta O_{C/T} = \frac{\Delta C}{F_1}$$

Hence,

$$\frac{\Delta O_{C/T}}{O_{C/T}} (\%) = \frac{100\Delta C}{O_{C/T}(F_{I})}$$

(3)

Similarly, the following other relationships are obtained:

$$\frac{\Delta C M_{C/T}}{C M_{C/T}} (\%) = \frac{100 \Delta C}{C M_{C/T}(F_1)}$$
(4)

and

$$\frac{\Delta PM}{PM} (\%) = \frac{100 \,\Delta C}{PM \,(F_1)}$$
(5)

The relationship between $\Delta O_{T/D}$ and ΔC is derived from the expression

$$C + \Delta C = I + A + F_{1} \left[O_{C/T} + U \left(O_{T/D} + \Delta O_{T/D} \right) + CM_{C/T} + U \left(CM_{T/D} \right) + PM \right] + F_{2} \left[OH \right]$$

$$C + \Delta C = I + A + F_{1} \left[O_{C/T} + U \left(O_{T/D} \right) + CM_{C/T} + U \left(CM_{T/D} \right) + PM \right] + F_{2} \left[OH \right] + F_{1} \left[U \left(\Delta O_{T/D} \right) \right]$$

$$C$$

$$C$$

$$\Delta C = F_{1} \left[U \left(O_{T/D} \right) \right]$$

$$\Delta O_{T/D} = \frac{\Lambda C}{F_{1} (U)}$$

$$\left[\frac{\Delta O_{T/D}}{O_{T/D}} \left(\% \right) = \frac{100 \ \Delta C}{O_{T/D} (F_{1}) \ U} \right]$$
(6)

Similarly,

$$\frac{\Delta CM_{T/D}}{CM_{T/D}} (\%) = \frac{100\Delta C}{CM_{T/D}(F_1) U}$$
(7)

A change in WMS overhaul maintenance cost (Δ OH) is related to a change in overall life cycle cost by the expression:

$$C + \Delta C = A + I + F_{1} \left[O_{C/T} + U \left(O_{T/D} \right) + CM_{C/T} + U \left(CM_{T/D} \right) + PM \right] + F_{2} \left[OH + \Delta OH \right]$$

$$C + \Delta C = A + I + F_{1} \left[O_{C/T} + U \left(O_{T/D} \right) + CM_{C/T} + U \left(CM_{T/D} \right) + PM \right] + F_{2} \left[OH + E_{2} \left[OH \right] + E$$

 $\therefore F_2[\Delta OH] = \Delta C$

$$\Delta OH = \frac{\Delta C}{F_2}$$

Therefore,

$$\frac{\Delta OH}{OH} (\%) = \frac{100 \Delta C}{OH (F_2)}$$
(8)

The sensitivity of the overall cost to the WMS utilization factor is derived from the relationship:

$$C + \Delta C = I + A + F_{1} \left[O_{C/T} + (U + \Delta U) O_{T/D} + CM_{C/T} + (U + \Delta U) CM_{T/D} + PM \right] + F_{2} \left[OH \right]$$

$$C + \Delta C = I + A + F_{1} \left[O_{C/T} + U (O_{T/D}) + CM_{C/T} + U (CM_{T/D}) + PM \right] + F_{2} \left[OH \right] + F_{1} \left[\Delta U (O_{T/D} + DM_{T/D}) \right]$$

$$C$$

$$C$$

$$\Delta C = F_{1} \left[(\Delta U) (O_{T/D} + CM_{T/D}) \right]$$

$$\Delta U = \frac{\Delta C}{F_{1} (O_{T/D} + CM_{T/D})}$$

$$(9)$$

The sensitivity of the overall life-cycle cost to a change in present value factors (F_1 or F_2) can be investigated by following a procedure similar to that for the cost elements and the utilization factor. The effect of a change (ΔF_1) in the present value factor (F_1) for WMS operating, preventive and corrective maintenance costs is derived from the expression:

$$C + \Delta C = A + I + \begin{pmatrix} F_{1} + \Delta F_{1} \end{pmatrix} \begin{bmatrix} O_{C/T} + U \begin{pmatrix} O_{T/D} \end{pmatrix} + CM_{C/T} + U \begin{pmatrix} CM_{T/D} \end{pmatrix} + PM \end{bmatrix} + F_{2} \begin{bmatrix} OH \end{bmatrix}$$

$$C + \Delta C = A + I + F_{1} \begin{bmatrix} O_{C/T} + U \begin{pmatrix} O_{T/D} \end{pmatrix} + CM_{C/T} + U \begin{pmatrix} CM_{T/D} \end{pmatrix} + PM \end{bmatrix} + F_{2} \begin{bmatrix} OH \end{bmatrix} + \Delta F_{1} \begin{bmatrix} O_{C/T} + U \begin{pmatrix} O_{T/D} \end{pmatrix} + CM_{C/T} + U \begin{pmatrix} CM_{T/D} \end{pmatrix} + PM \end{bmatrix}$$

$$C + \Delta C = \Delta F_{1} \begin{bmatrix} O_{C/T} + U \begin{pmatrix} O_{T/D} \end{pmatrix} + CM_{C/T} + U \begin{pmatrix} CM_{T/D} \end{pmatrix} + PM \end{bmatrix}$$

$$\Delta F_{1} = \frac{\Delta C}{O_{C/T} + U \begin{pmatrix} O_{T/D} \end{pmatrix} + CM_{C/T} + U \begin{pmatrix} CM_{T/D} \end{pmatrix} + PM }$$

$$\frac{\Delta F_{1}}{F_{1}} \begin{pmatrix} \chi \end{pmatrix} = \frac{100 \Lambda C}{F_{1} \begin{bmatrix} O_{C/T} + U \begin{pmatrix} O_{T/D} \end{pmatrix} + CM_{C/T} + U \begin{pmatrix} CM_{T/D} \end{pmatrix} + PM } \end{bmatrix}$$
(10)

It is noted that the expression in the denominator is the product of F_1 and the annual cost of operation, preventive maintenance and corrective maintenance based on WMS utilization factor. This product is also equal to the present value of the life cycle cost of operation, preventive maintenance and corrective maintenance.

The sensitivity of the overall life-cycle cost to a change (ΔF_2) in the present value factor (F_2) for WMS overhaul is determined from the relation:

$$C + \Delta C = A + I + F_{1} \left[O_{C/T} + U \left(O_{T/D} \right) + GM_{C/T} + U \left(CM_{T/D} \right) + PM \right] + \left(F_{2} + \Delta F_{2} \right) \left[OH \right]$$

$$C + \Delta C = A + I + F_{1} \left[O_{C/T} + U \left(O_{T/D} \right) + CM_{C/T} + U \left(CM_{T/D} \right) + PM \right] + F_{2} \left[OH \right] + \Delta F_{2} \left[OH \right]$$

$$C + \Delta C = A + I + F_{1} \left[O_{C/T} + U \left(O_{T/D} \right) + CM_{C/T} + U \left(CM_{T/D} \right) + PM \right] + F_{2} \left[OH \right]$$

$$\Delta C = F_2 (OH)$$

$$\Delta F_2 = \frac{\Delta C}{OH}$$

$$\frac{\Delta F_2}{F_2} (\%) = \frac{100 \,\Delta C}{F_2 \,(OH)}$$
(11)

The expression in the denominator is the present value of the lifecycle cost of WMS overhauls.

It is noted that the expressions in (10) and (11) can be used to determine the sensitivity of the overall life-cycle cost to changes in the present value factors F_1 and F_2 . However, these present value factors, in turn, are based on a number of assumptions and the above sensitivity relationships do not directly indicate which assumption is the dominant one. The governing assumptions for F_1 are the following:

- . An effective discount rate of 10% which includes the combined effects of inflation and interest rates.
- . A useful system life of 10 years.

The corresponding assumptions for F_2 are as follows:

- An effective discount rate of 10%.
- A useful system life of 10 years.
- WMS overhaul intervals of two years.

The above result for the present value factor F_1 can be related to the assumed effective discount rate (I) and the useful system life (n) by the following relationship:

$$F_1 = \frac{(1+I)^n - 1}{I(1+I)^n}$$

Similarly, an expression for the prevent value factor F_2 can be developed in terms of I, n and the overhaul interval.

Cost Element or Cost-Dependent Parameter Being Varied	Formula	Formula No.
Acquisition cost (A)	$\frac{\Delta A}{A} (\%) = \frac{100 \Delta C}{A}$	1
Installation cost (I)	$\frac{\Delta I}{I} (\%) = \frac{100 \Delta C}{I}$	2
Annual operating cost of the (black water) Collection/Transport subsystem based on continuous operation (O _{C/T})	$\frac{\Delta O_{C/T}}{O_{C/T}} (\%) = \frac{100\Delta C}{O_{C/T}(F_{I})}$	3
Annual corrective maintenance cost of the (black water) Collection/Transport subsystem based on continuous operation ($CM_{C/T}$)	$\frac{\Delta CM_{C/T}}{CM_{C/T}} (\%) = \frac{100\Delta C}{CM_{C/T}^{(F_1)}}$	4
Annual system preventive maintenance cost based on continuous operation (PM)	$\frac{\Delta PM}{PM} (\%) = \frac{100 C}{PM (F_1)}$	5
Annual operating cost of the Treatment/ Disposal subsystem (black and gray) based on continuous operation (O _{T/D})	$\frac{\Delta O_{T/D}}{O_{T/D}} (\%) = \frac{100 \Delta C}{O_{T/D}(F_1) U}$	6
Annual corrective maintenance cost of the Treatment/Disposal subsystem (black and gray) based on continuous operation (CM _{I/D})	$\frac{\Delta CM_{T/D}}{CM_{T/D}} (\%) = \frac{100 \Delta C}{CM_{T/D}^{(F_1)} U}$	7
System overhaul cost - per overhaul (OH)	$\frac{\triangle OH}{OH} (\%) = \frac{100 \triangle C}{OH(F_2)}$	8
Utilization factor for the Treatment/ Disposal subsystem - black and gray (U)	$\frac{\Delta U}{U}(\%) = \frac{100\Delta C}{U(F_1)(O_{T/D}^+ CM_{T/D}^-)}$	9.
Present value factor for operation, preventive maintenance and corrective maintenance (F_1)	$\frac{\delta r_1}{r_1} \approx -\frac{r_1 \left[O_{C/T} + U \left(O_{T/D} \right) + CM_{C/T} + U \left(CM_{T/D} \right) + FM \right]}{100 \ \delta C}$	10
Present value factor for overhaul (F ₂)	$\frac{\Delta F_2}{F_2} (\%) = \frac{100 \Delta C}{F_2 (OH)}$	11

Table H-1Summary of Formulas for Sensitivity Analysis

١

Table H-2

RESULTS OF SENSITIVITY ANALYSIS

GALLATIN (378.) Vessel

; 101 ŝ WAY PLAN

	;	TDC I		2			•					5		lization	ractor		
	/ //c		TYR		Cape	ting A			X Char	oge in Cost	Element	LE LE		1	1 27	Change	-
	Subi (Black		atment/Dispo Subaystem	10	ack / Gr	A No	UORID	AN CPA	uration (4)	- R. C.	Co Sentin	meative t., (C.M) (4)) Aver	to- Interest		Present Le Factors	
J	Ref.	Black	Gray	8	1 / 001	3	25.57	C/T ⁽²⁾	(E)Q1/2	7 4 2 2 8 6	S CAL	1/1/0(3	(2)	S X X	() E1	(B) /	_
أمومسا	I Gravity I Collect.	Heluing Tank	Tank	100	19	•	12	15, 836	413	203	329	679	159	257	481	159	
<u> </u>	2 Rectrcul.	Chrysler + Hid Tnk	Holding Tank	100	18	49	32	57	1,147	56	65	1,582	32	665	53	32	
	3 (Chryslar	Chrysler + Incin.	Holding Tank	100	13	42	31	91	1,834	133	104	123	40	78	53	6	
	Gravity Collect.	Grum Flow thru+HidTk	Holding Tank	100	17.	21	29	31, 140	347	268	849	391	182	496	522	182	
	S Grumman)	Grumman + Holdin	Flow Tinu 19 Tank	N/A	N/A						\prod						
L	6 Gravity Collect.	Holding Tank	Grum Flow Thru+ HidTak	N/A	N/A						T						
L	7 Gravity	Grum Flow Thru+Incin	Holding Tank	100	1	20	32	60, 215	123	596	1, 642	467	153	264	480	153	
	S(Grumman)	Grumman I + Inclne	Flow Thru rator	N/A	N/A	U										2	
<u> </u>	Vacuum Collect.	liolding Tank	Holding Tank	00	21	- 		114	1, 844	177	44	2, 623	55	2,925	161	55	
<u> </u>	(jered)	Incinerator	Holding Tank	100	21	35	57	220	300	341	36	77	54	165	172	54	
=		GATX Evap.	Holding Tank	100	17	23	74	177	333	161	69	1, 030	79	680	201	79	
12		Holding Tank	Grum Flow Thru+ Hid Tak	N/A	N/A											1	
H		Incinerator.	Grum Flow Thru + Incin.	N/A	N/A												
14	Pump	Holding Tank	Holding Tank	100	30	47	52	1, 698	2,046	112	27	2, 900	16	3, 241	127	16	
12	Collect.	Incinerator	Holding Tank	100	33	43	52	2, 771	291	194	43	72	88	157	133	88	
16		GATX Evap.	Holding Tank	100	17	23	90	2, 570	360	121	40	1, 112	123	734	164	123	
11		Holding Tank	Grum Plow Thru+Hld Tnk	N/A	N/A		Π										
3		Incinerator (Grum Flow Thru + Incin.	N/A	N/A											4	
E	Which wil	I result in a	1 10% change	In total	WMS II	fe-cycle	cost.	(6) Bast	ed on assum	ned 10% effe	hetive di	scount rat	e and g us	teful evetem	life of 10	Vent	
85	Black wat	er Collectio	n/Transport s	ubsyste	а.	l		(7) F ₁ =	• 6, 144566	- Present vi	alue fact	or for ope	rating, pr	eventive and	correctiv		
Ē	X change	usy water In annual co	ind instant on c	sontinuc	mayaun Jus WMC	am. Superati	, no	(8) · F., .	2 925983	- Present vi	nce conta Alva facto		and luct	- Asses		!	
(2)	% change	in cost per (overhaul.					7 • • • • •		overhaul 1	Interval).						

H-10

maintenance costs. (8) $F_2 = 2.925983$ - Present value factor for overhaul costs (based on a two-year overhaul intervel).

Table H_2 (Cont'd) .

RESULTS OF SENSITIVITY ANALYSIS

WMS Utilization Factor (%) 5.6%

29		- 12													·								_		-			
3-5 (%)	Change	l Present lue Factor	/ P. (0)	7	29										44	46				81	58	ī				10 years. Ive		ł
actor	101		La la	292	49						·				147	173				101	170	168				a life of d d correct		
zation F			1 12 13 13 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	287	894										2.430	152				2,130	135	586				iafui systan Iventive an	- Proved a	
MS Util		Overb	(2) (5)	"	29		Ī			·				T	44	46				81	58	111	·			and au rating, pr	tern linet	
Ś	10	rective C.M. (4)	/(E)Q/L /	718	2,118							Ì			5,800	191				5,204	170	2,013				scount rat In for ope		
	Element	Cor	C V(I)	157	63									Ţ	37	64				26	45	40				Tective di value fact	ance cost	linterval)
	je in Cost	• A 770		109	42						,				176	304				101	173	110				med 10% ei - Present	mainten Bergent	overhau
	X Chan	(1)	(1)(1)	478	1,547		T				T				4,182	734				3,605	653	826				id on assui 6. 144566	9 075083	
		8	C/1 ⁽²⁾	12.783	59										127	216				2,942	5,061	4, 45 2				(6) Base (7) F. =		(0) [2]
		UCT UCT	Tereu	15	35				Ť		Ť				78	94				83	94	150				coat.		
	5		The second		49	Π			T		Ţ				44	31				39	28	21				ife-cycle	88.	
	Hold	Cupaco C		Ŀ	-	N/A		N/A	N/A	N/A		N/A	N /A		1	1	N/A	N/A	N/A	-	(1)		N/A	N/A		1 WM3 1	subayat	
210')				40	53	N/A		N/A	N/A	N/A		N/A	N/A		48	100	N/A	N/A	N/A	100	100	100	N/A	N/A		e in tota subsvet	(sposal	
GOROUS (TYRE	tment/Dispo bubsystem	Gray	Holding	Holding	Holding	Tank. Holding	Tank	Flow Theu g Tank	Grum Plow	Thu+Ham	Tank	low Thru	rator	Tank	Holding Tank	Holding Tank	Grum Flow Thru+ Hld Tal	Grum Flow Thru + Incin.	Holding Tank	Holding Tank	Holding Tank	Grum Plow Thui +Hid Tuk	Grum Plow	Thru + Incin.	a 10% change w/Transport	Treatment/D	ost pased on overhaul.
sel VI(10. 2	Black	Holding	Chrysler + HId The	Chrysler	+ Incin. Grum Plow	Thru+HldTk	Grumman + Holdin	Holding	Tank Crim Plan	Thui+Incin.	Grumman I	+ Inclue	Tank	Incluerator	GATX Evap.	Holding Tank	Incinerator	Holding Tank	Incinerator	GATX Evap.	Holding	Incinerator		ll result in . ter Colfectio	I gray water	in cost per
Ves		Trar 3ubsy	(S) (Black)	Gravity Collect	Otl Becteril	(Chrysler)	Gravity	Collect.	(Grumman)	Gravity	Collect.	Gravity	Collect. [Grumman]		Vacuum Collect.	(jered)			_	M/T Pump	Collect.					Which wi	Black and	% change
			~	٢Ľ	1 4	م			S	0	Ţ	~	30	Ļ	a	10	1	<u>1</u>	13	4	5	<u>م</u> ر	1	18		23	103	<u> 6</u>

1

Table H-2 (Cont'd)

RESULTS OF SENSITIVITY ANALYSIS

WMS Utilization Factor (%) 14.1

	Ves	sel FIRI	EBUSH (180	-	1							-M	MS Util	I ZATION F		
		/ /me	TYR		Holdh	5	 		X Chang	ge in Cost	Element			2 2	× (2)	Change
	Tra	ns. Tree	atment/Disposi Aubsystem		tapaci		HOT	Se Open	ation ⁽⁴⁾		COI COI	Tective L. (CM) (4)	Overh Maint			Present Le Factori), (6)
~	(BLOCK	Black	Gray	8	(32)	MBOY	PISUT	C/ C/T(2)	(1)(1)	1 4 4 4 8 4 4	S CAR	/ 1/D (3)	3	5 5 4	12	F2 (8)
E	Gravity	Holding	Rolding	100	0		13	18,288	274	188	653	705	162	197	326	162
<u>م</u>	OII	Chrysler	Holding	100	ò	50	39	60	2,842	49	67	3,708	31	1,609	53	31
ų	(Chrysler)	Chrysler	Holding	100	12	43	51	134	591	142	150	. 552	46	285	81	46
	Gravity	Grum Plow	Holding	100	22	22	32	48,532	281	246	1,733	200	187	149	360	187
Ś	(Grumman)	Grumman	Flow Thru	100	100	16	55	71,726	276	278	2,562	295	223	143	413	223
ه	Gravity	Holding	Grum Plow	100	100	17	44	76,708	248	297	2,740	316	239	, 139	422	239
1	Gravity	Grum Flow T'set find a	Holding Tank	100	29	19	41	85,400	126	564	3,050	344	144	92	379	144
8	Collect. (Grummen)	Grumman	Plow Thru	100	100	15	85	133, 703	173	506	4,775	280	130	167	451	130
6	Vacuum	Holding	Solding	100	13	40	49	145	1, 144	160	55	1,751	5 4	692	171	54
10	(jered)	Incinerator	Holding	100	35	31	60	3 02	303	331	116	83	54	65	192	54
11	•	GATX	Holding	100	35	25	49	231	353	178	68	1,009	82	261	222	82
12		Holding	Grum Plow Thru+ Hid Tub	100	100	21	75	246	456	204	94	508	80	240	239	80
13		- cinerator	Grum Flow Thru + Incin.	100	100	18	83	367	296	325	140	422	76	174	308	76
13	M/T Pump	Holding	Holding Tank	100	13	54	35	4,485	817	123	36	1,250	104	494	140	104
15	Collect.	Inclourator	Holding Tank	100	35	31	57	11,026	256	302	89	70	65	55	174	. 65
16		GATX Evap.	Holding Tank	100	35	24	51	7,633	268	143	62	768	155	199	193	155
1		Holding Tank	Grum Plow Thru+Hid Thk	100	100	20	64	8,834	378	179	71	422	147	199	222	147
18		Incinerator	Grum Flow Thru + Incin.	100	100	17	72	13,795	257	300	111	366	102	151	335	102
128229	Which w Black we Black an K change	rill result in ater Collecti d gray water e in annual (e in cost per	a 10% change on/Transport s r Treatment/Du cost based on	In total ubsysta sposal continue	WMS I III. Bubayati Dus WM	lfe-cycl. am. 3 operat	e cost. kon.	(6) Bas (7) F ₁ (8) F ₂	ed on ass 6. 14 566 2.9 25983	- Present Maintei Present Overhau	iffective d r value fac mance cost value fac il interval	Lacount rational target for operation of the second s	te and K u erating, P schaul cos	safisi ayate reventive ar its (based o	m life of vd correct n a two-y	10 years.

H-12

 $\langle \rangle$

Table H-2 (Cont'd)

RESULTS OF SENSITIVITY ANALYSIS

Vessel PAMLICO (160')

WMS Utilization Factor (%) 31

			TYFE		Holdin				X Chang	ie in Cost	Element	11	·		* (1);	Change
	Trar		htment/Disposi hubsystem			NRO-	- AND	6 Open	ation ⁽⁴⁾	AVING	Con	rective (L)M()	Maint		E A CO	Present ie Pactors), '5)
1.5	(Black)	Black	Gray	l îg	(2)	moor	ersur .	(C/T ⁽²⁾	(E)Q/I	1 6 5 8 8	C/13	/ ⁽¹⁾ a/1	(2)	8 X 8	F	107
J-	Gravity Collect.	Holding	Holding Tank	100	55	334	13	59,858	192	256	1.247	304	197	118	427	761
5	Oil Rectreut.	Chrysler + Hid Thk	Holding	100	64	61	23	87	362	53	87	488	40	208	99	40
<u>ल</u>	(Chrysler	Chrysler + Incin.	Holding Tank	100	64	48	24	110	232	113	110	201	44	108	64	44
4	Gravity Collect.	Grum Flow Thru +HldTk	Holding Tank	100	64	24	28	11,482	148	283	2, 323	165	216	78	338	216
ŝ	(Grumman)	Grumman + Holdin	Flow Thru or Tank	100	100	20	38	93, 468	147	263	1,947	158 -	218	7 <u>6</u>	321	218
6	Gravity Collect.	Holding Tank	Grum Flow Thru + HidTnk	100	100	22	30	103, 610	153	.291	2,159	175	242	82	348	242
<u> </u>	Gravity	Grum Flow Thru+Incin	Holding Tank	100	64	20	38	179, 425	141	592	3, 738	164	152	76	384	152
త	Collect.	Grumman + Inctre	Flow Thru rator	100	100	17	54	157, 811	138	598	3, 288	157	144	73	370	144
<u></u>	Vacuum	Holding	Holding	100	64	•	22	141	260	93	61	363	77	152	147	77
10	(jered)	Incinerator	Holding	100	64	34	44	3.02	196	224	130	60	96	46	163	96
1		GATX Evan-	Holding	100	64	34	37	190	185	108	82	305	100	115	180	100
12		Holding Tank	Grum Plow Thru+ Hid Tok	100	100	26	57	233	154	126	101	175	104	82	176`	104
-13	•	Incinerator	Grum Flow Thru + Incin-	100	100	20	75	350	155	220	151	176	103	82	231	103
1	M/T Pump	Holding	Holding	100	.64	61	28	13,480	342	21	41	479	38	199	25	38
15	Collect.	Incinerator	Holding Tank	100	64	29	48	25, 341	227	276	76	70	117	53	168	117
16		GATX Nyap.	Holding Tank	100	64	28	43	17,586	236	145	53	391	140	147	181	140
1		Holding	Grum Flow Thru+Hld Tnk	100	100	23	64	20, 155	184	158	61	210	134	98	179	134
18		Incinerator	Grum Flow Thru + Incin.	100	100	19	92	28, 114	172	258	85	195	120	91	223	120
158938	Which w Black wa Black an Black an Change	ill reault in ther Collecti d gray water e in annual	a 10% change Ion/Transport I r Treatment/Di cost based on r overhaul.	in tota iubayat aposal continu	I WMS II em. subsyste ous WM	fe-cycle im. 8 operati	cost.	(6) Bar (7) F ₁ (8) F ₂	ed on ass u = 6, 14566 = 2,925983	- Present - Present maintei - Present overhau	iffective d value fac nance cost value fac ul interval	iscount ra itor for op is. tor for ov).	erating, p erhaul co	reful syste reventive ar rts (based o	m life of nd correct n a two-y	I'S years.

RESULTS OF SENSITIVITY ANALYSIS Table H-2 (Cont'd)

WMS Utilization Factor (%) 11.1

71																								
(%)	Change	Press	/ F2 ⁽⁸⁾	101	32	34	61	66	59	45	43	27	31	37	36	35	35	36	46	48	44	0 years.	5	ł
actor	12:		$r_{r_1}^{(\eta)}$	298	51	59	64	63	64	88	82	24	33	32	35	48	20	27	19	31	Ş	life of 1	correct	a two-ye
Ization I	1		S W LON	185	462	173	162	169	156	149	143	390	81	280	236	197	528	88	315	282	232	eful system	ventive and	(based on
MS Util		Mainte		101	32	34	61	66	5.9	45	43	27	31	- 37	36	35	35	36	46	48	44	e and z us	rating, pre	rhaul costi
3	(I)	meative L. (C.M) (4)	(E) a/I /	437	1,073	337	307	309	298	341	324	1,021	105	928	499	494	1, 231	115	1,046	617	584	scount rat	or for ope	or for ove
	Element	Co	S CAR	643	67	83	1,913	1,733	1,854	3, 263	2,892	65	132	36	109	19 İ	30	55	41	52	73	fective di	value fact ince contr	value fact interval)
	ge in Cost	• <i>лузи</i> •,		132	42	87	38	38	41	84	86	15	35	19	21	36	19	40	23	27	45	ed 10% efi	- Present	Present -
	% Chan	()	(E)Q/1	319	810	357	342	372	326	266	256	630	355	401	447	329	923	386	451	520	387	unsse uo p	6.144566	2.925983
		S Oper	C/T ⁽²⁾	30, 879	68	85	91,837	83, 163	89, 005	156,626	38,806	135	274	196	225	334	7,901	14,465	10,709	13,539	19,077	(6) Base	() L []] =	(8) F ₂ =
		""OT	Tur	14	34	35	32	40	35.	42	65	35	55	53	70	80	45	62	6E	83	82	cost.		.no
	50		nb.	1	54	40	21	19	20	17	16	58	25	25	21	17	56	26	26	20	18	e-cycle	É	operatio
ļ	Hold	ck / Gra	(2)	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	100	WMS III	m. ubsvate	us WMS
33')		Bla	(%)	100	1 00	100	100	100	100	100 1	100	100	100	100	100	100	100	100	100	100	100	In total	ubsyste spotal a	continuo
E SAGE (1:	TYPE	atment/Dispo Subsyster	Grày	Holding Tank	Holding Tank	Holding Tank	Holding Tank	Flow Thru g Tank	Grum Flow Thru+HldTnk	Holding Tank	'low Thru rator	Holdi ng Tank	Holding Tank	Holding Tank	Grum Flow Thru+Hld Tnk	Grum Flow Thru + Incin.	Holding Tank	Holdi ng Tank	Holding Tank	Gru m Flow Thru +Hld Tnk	Srum Flow Thru + Incin.	t 10% change	n/Transport s Treatment/Dh	overhaul.
sel WHIT		ns. Tre	Black	HoldIng Tank	Chrysler ÷Hld Tnk	Chrysler + Incin.	Grum Flow Thru+HldTk	Grumman + Holdin	Holdin g Tank	Grum Flow Thru+Inctn	Grumman F + Inclne	Holding Tank	Incinerator	GATX Evap.	Holding Tank	Incinerator.	Holding Tank	Incinerator	GATX Evap.	Holding Tank	ncluai ator	l result in a	er Collectio arev water	in annual c
Ves	Co	Trai		Gravity Collect.	Oll Recircul.	(Chrysler)	Collect.	(ກາງມີ	Gravity Collect.	Gravity	(Grumman)	Vacuum Collect.	(Jered)				M/T Pump	Collect.				Which wil	Black wate Black and	k change K change
			~	<u> </u>		ς Γ	4	s_	م	~	80	5	10	11	12	13	14	5	1.6	17	18	Ξ	ର ପ୍ର	E 9

Table H-2 (Cont'd)

RESULTS OF SENSITIVITY ANALYSIS

WMS Utilization Factor (%) 1.8

ł ,

H-15

*U.S.G.P.O. 727-105/1302-1661