" AD=A061 122 MASSACHUSETTS INST OF TECH CAMBRIDGE LAB FOR COMPUTE==ETC F/6 12/2
REAL=TIME CONTROL STRUCTURES FOR BLOCK DIAGRAM SCHEMATA.(U)
AUG 78 T J TEIXEIRA N00O14=75=C=0661
UNCLASSIFIED MIT/LCS/TR=204 '

| o |

Be 12z

END

DATE
FILMED

(-78

ooc

B MébSKGHUSEI‘T%

INSTITUTE OF
TECHNOLOGY

| a2 LABORATORY FOR
| a2 COMPUTER SCIENCE

HFﬁ
-~

REAL-TIME CONTROL
STRUCTURES FOR BLOCK
DIAGRAM SCHEMATA

MIT/LCS/TR-204

ADAO 61

Thomas J. Teixeira

R ——

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was
monitored by the Office of Naval Research under

contract no. N00014-75-C-0661

| This docwment hun ';;.' = e
Ix T)Ilbh e (“J ety
{f‘r*-j ution

e

DDC FILE COPY

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

i
i
&
!
]
B
i
&

|
|
|
i
i
1
|
1

e

|
1’

e 4
=

10

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
. BEFORE COMPLETING FORM

REPORT DOCUMENTATION PAGE

. REP NUMBER
IT/LCS/TR-264 7

S WM“”
q M&f‘r'r’j ‘#85 /';’4
=

5. IYPEOE-AERGARERERIOD COVERED

6. PERFORMING ORG. REPORT NUMBER

L MIT/LCS/TR-204

chemata , ?

e M.S. ~
féa{?%eal—Time Control Structures for Block Diagram / chesls FRIUALY 1278

7. AUTHOR(®) 8. CONTRACT OR GRANT NUMBER(s)

nclassified

Se. DECL ASSIFICATION/DOWNGRADING
SCHEDULE

545 Technology Square
1 e
Sapa (::ZAug-“w ;
artment o efense 2 N BTG PN s
f§g Wil e
r
epartment of the Navy

Thomas Teixeira \\-__ifl—/) ,E; ugﬂﬁia-75-c1ﬂ661/
v e
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK
AREA & WORK UNIT NUMBERS
IT/Laboratory for Computer Science
Cambridge, MA 02139 &
11. CONTROLLING OFFICE NAME AND ADDRESS
Advanced Research Projects Agency
ng:oﬁ?“vR°E}§8§'d 81
T MONITORING AGENCY NAME & ADDRESS(if different from Conteg g . SECURITY CLASS. (of thie report)
ffice of Naval Research o
Information Systems Program
rlington, VA 22217
16. DISTRIBUTION STATEMENT (of this Report) 4

pproved for public release; distribution unlimited

P

17. DISTRIBUTION STATEMENT (of the abetract entered in Block 20, if different lrom Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side if necessary and identify by block number)
real-time scheduling

riority scheduling

deadline-driven scheduling

ultiple processor real-time systems

20. *STRACT (Continue on reverse side if necesesary and identily by block number)

Block diagram schemata model computation systems in the context of an
external environment. The environment imposes various constraints on the real-tim
performance of any implementation of a block diagram schemata. The model is used
to provide precise definitions of real-time performance. The portion of the
implementation that affects the rcal-time performance is called the control
structure.

This research investigates several strategies for synthesizing control
structures to satisfy the external real-time specification

DD ," 5%, 1473 eoiTion oF 1 NOV 68 1s OBSOLETE

1~ .

o
Nt

SECURITY CLASSIFICATION OF THIS PAGE (When Data lnlnod)‘ x

407,42 T8 1108 002 %u

,
$

o

e i G e o

CUMTY CL FICATION OF THIS PAGE(When Date Bntered)

20. is to execute all the blocks in the diagram in some fixed order. Control
structures of this type have been somewhat ignored for time critical
applications. The synthesis problem is shown to be solvable in the sense
that acyclic control structures do not need to be considered. A branch-and-
bound synthesis algorithm is presented which requires exponential time in th
worst case. Although no efficient synthesis algorithm was found, the
conjecture that the problem is NP-complete is not proved.‘é‘i\‘

The other strategy for implementing control structures makes use of the
fact that in some applications the input values change at discrete times.
Under this assumption, block diagram schemata are similar to traditional
models of real-time computations. An efficient algorithm for assigning fixed
priorities to independent tasks is presented that guarantees the real-time
specifications will be met. This algorithm relaxes previous restrictions
of the deadline for a task being coincident with its next request.

Finally, some of the issues involved with multiple processor control
structures are discussed, although no specific algorithms are investigated.

SECURITY CLASSIFICATION OF THIS PAGR(When Date Bntered)

MIT/LCS/TR-204

REAL-TIME CONTROL STRUCTURES FOR BLOCK DIAGRAM SCHEMATA

by

Thomas Joseph Teixeira

August 1978

Massachusetts Institute of Technology
Laboratory for Computer Science

Cambridge Massachusetts 02139

REAL-TIME CONTROL STRUCTURES FOR BLOCK DIAGRAM SCHEMATA
by

Thomas Joseph Teixelra

This report is a minor revision of a thesis submitted to the Department of Eiectrical
Engineering and Computer Science on January 30, 1978 in partial fulfilment of the
requirements for the Degree of Master of Science.

ABSTRACT

Block diagram schemata model computation systems in the context of an
external environment. The environment imposes various constraints on the real-time
performance of any implementation of a block diagram schema. The model is used
to provide precise definitions of real-time performance. The portion of the
implementation that affects the real-time performance is called the control
structure.

This research investigates several strategies for synthesizing control structures
to satisfy the external real-time specifications. The simplest strategy is to
execute all the blocks in the diagram in some fixed order. Control structures of
this type have been somewhat ignored for time critical applications. The synthesis
problem is shown to be solvable in the sense that acyclic control structures do not
need to be considered. A branch-and-bound synthesis algorithm is presented which
requires exponential time in the worst case. Although no efficient synthesis
algorithm was found, the conjecture that the problem is NP-complete is not proved.

The other strategy for implementing control structures makes use of the fact
that in some applications the input values change at discrete times. Under this
assumption, block diagram schemata are similar to traditional models of real-time
computations. An efficient algorithm for assigning fixed priorities to independent
tasks is presented that guarantees the real-time specifications will be met. This
algorithm relaxes previous restrictions of the deadline for a task being coincident
with its next request.

Finally, some of the issues involved with multiple processor control structures are
discussed, although no specific algorithms are investigated.

Key Words and Phrases: real-time scheduling, riority scheduling, deadline-driven
scheduling, control structures

Acknowledgements

Steve Ward has been indispensable as an advisor in transforming my rather hazy
ideas about realtime programming Into a workable research topic. His enthusiasm
kept this research progressing at many points when | was stuck or otherwise
sidetracked.

Thanks are due to John Pershing, Al Mok and Jay Wahid for their work In
providing a test bed for some of the ideas expressed in this thesis. Al Mok has
also been especially helpful with his knowledge about scheduling theory and
algorithms.

The entire Domain Specific Systems Research group has at some time
contributed to the computer facilities that made the actual production of this
document as well as the research possible, especially John Pershing and Terry
Hayes.

Finally, | wish to thank Gilllan Teixelra for her emotional and moral support

throughout the course of this research.

This research was supported by the Advanced Research Projects Agency of the
Department of Defense and was monitored by the Office of Naval Research under

Contract No. NOOO14-75-C-0661.

R

Table of Contents

1: Introduction

1.1: Previous Work
1.2: Statement of the Problem
1.3: Thesis Overview

2: Block Diagram Schemata

_ 2.1: RealTime Performance and Specifications
| 2.2: Functionality of Blocks
E! 2.3: Example

3: Static Control Structures

3.1: Existence of Cyclic Control Structures

3.2: Generating Real-Time Control Structures

3 3.3: A Branch-and-Bound Method for Generating Control Structures
3.3.1: Determining the Relative Frequency of Constraint Paths
3.3.2: Strategies for Combining Solutions
3.3.3: Performance of the Algorithm
3.3.4: Speeding up the Algorithm
3.3.6: Practical Experience

3.4: Heuristics for Generating Control Structures

PP,

4: Static Priority Interrupt Control Structures

4.1: Dynamic Control Structures
4.2: Model for Static Interrupt Control Structures
4.3: Assigning Priorities to Independent Tasks
4.4: More Complex Models
4.4.1: Scheduling Overhead
4.4.2: Non-preemptive Control Structures
4.4.3: Non-Distinct Priorities
4.5: Applications to the Control Structure Problem
4.6.1: Chains of Independent Tasks
4.6.2: More Complex Task Relations
4.56.3: Combining Static and Dynamic Control Structures

8: Multiple Processor Control Structures

6.1: Assigning Control Structures to Multiple Processors
6.2: Dynamic Assignment of Processors

6: Summary and Conclusions

References

..
6.
10.
11,
13.
15.

18.
21,

72,
74,

78,

T8.

o

List of Figures

2-1: A block diagram schema requiring a multi-processor control structure
2-2: A Block Diagram Containing a Cycle

2-3: Typical block dlagram schema

2-4: Latencies for static control structures

2-5: Latencles for dynamic control structures with static schedulers

3-1: Typical Laxity Table

3-2: Counter-Example to Least Laxity Scheduling

3-3: Block Diagram Where All Constraints Appear More Than Once
3-4: Reglons of a Critical Window

3-5: Counter-Example to Slack as a Dominance Relation

4-1: Counter-example to priority = 1 / latency

5-1: A simple multi-processor control structure

—

Real-Time Control Structures for Block Diagram Schemata

1: Introduction

There are many applications for comnputers where the reaktime performance of
the program Is critical. These applications all Involve asynchronous Interaction with
the external environment and It Is this environment that Imposes the reaktime
restrictions. For example, davice drivers in oporating systems must respond to
Interrupts before the information is lost. Another application is in direct digital
control and process monitoring.

However, most high-lavel languages are not designed for producing time critical
programs. The languages allow the user to define appropriate functional and data
abstractions foi his problem, but have no notion of reaktime or asynchronous
Interaction with the real worid. Insteac. the user must design a control structure
for his problem suitable for a single sequential process that will satisfy all the

reaktime constraints.

1.1 Previous Work

Many operating systems do have notions of reaktime and external Input and
output, but they are supportad at a fairly low level [18, 20]. The application
program typically has to deal with priorities, setting reattime alarms, and responding
to interrupts. These actions may be necessary to satisfy the constraints, but they
0 not bear a close relationship to the constraints. For example, It is seldom
sbvious what priority must be assigned to a task that must complete in ten
milliseconds and uses one millisecond of CPU time.

Early work on applications oriented realtime oparating systems was done by

-6

e e —————— e

Previous Work Section 1.1

Flala [6). Fiala proposed a model of real-time processes characterized by three
parameters pear process.

(1) P‘ the maximum CPU time used by process /.
(2) 0, the maximum delay allowed trom the time process / requests service

to the completion of servicing that raquest.

(3) 7' the minimum period between requests for procass /.

Flala proposes three scheduling algorithms for this model. The first (and
simplest) executes the process that must complete the soonest. i.a. the process
with the earliest deadline. This algorithm is optimal in the sense that if any
schedule satisflas the deadline requirements for all the processes, so does the
earllest deadline schedule. However, this result is proved in the context of
process switching requiring negligible overhead.

Flala's second algorithm Is a modification of the earliest deadline scheduler that
minimizes the number of process switches while retaining the optimality condition of
the earliest deadline algorithm. This is accomplished by having the scheduler check
to see If the current process must be preempted when a process with an earler
deadline requests service. This is done by simulating the action of the scheduler
on the current requests. Unfortunately, this algorithm would require extensive
computation whenever a process requests service. Accordingly, Fiala's third
algorithm pre-computes a lower bound on the expression required by the minimum
switching algorithm. With the lower bound, the extra computation required by the
third algorithm requires an extra comparison at process request time. The algorithm

Is also optimal in the same sense and requires less overhead than the simpler

P

Previous Work Section 1.1

earliest deadline algorithm.

However, Flala makes no attempt to integrate his model and scheduler Into a
reai-time language system. One such approach Is control robotics developed by
Dertouzos [3] and Geiger [6]. A control robotics program is organized as a set of
daemons which continuously monitor some condition and execute the body (a
corrective procedure) when the condition Is true. The roal-time specifications for a
daemon are the delay from when a condition becomes true to when the program
detects the condition (the recognition time) and the delay from detecting a
condition and executing the body (the response time). Geiger's implementation of
control robotics periodically samples the condition with a period slightly less than
the reacognition time (the slightly higher rate will allow for preemption by other
daemon conditions). The daemon bodies are scheduled using an earllest deadline
scheduler.

One weakness of control robotics Is that no guarantee of satisfying the real-time
constraints is made at compile time. This could be done If the user declared a
minimum period between executions of a daemon body and the compiler determined
the computation time of the daemon bodies. Since it is impossible to determine the
computation time for an arbitrary procedure, the compiler may require declarations
to determine the compuutlon time.

A more substantial problem of Geiger's implementation is the assumption that the
conditions for daemons are independent of the execution of other daemon bodies.
Therefore, complex structures of daemons whose conditions depend on variables
changed by other daemons could result in much unnecessary computation. All in all,

control robotics does not provide any more of a model for real-time programming

B sy i

e L enpe—

t
§

e ——— L

Previous Work Section 1.1

than Flala’'s work beyond suggesting some syntax for identifying tasks and
specifying their deadlines.

Another system that deals with reai-time specifications at the user level Is
TOMAL (Task Oriented Microprocessor Language) [12]. On the surface TOMAL is a
combination of a modern block structured programming language and a typical mini
computer ‘real-time’ operating system. However, In addition to assigning static
priorities to tasks, a response time may be specified for a task. This response
time Is similar to the recognition time for control robotics and specifies the maximum
delay between a request for a task activation and the initiation of that task.
Another feature of TOMAL is that interrupt routines only request task activation and
do not respond to the interrupt in any substantive way. This reduces the amount
of object code that does not run under the task scheduler and allows the TOMAL
system to check the consistency of the realtime constraints for the entire system.
However, TOMAL makes no attempt to verify real-time specifications on service
times for tasks.

Data flow schemata deserve mention as a realtime system since one proposed
applications is digital signal processing [2, 22]. It is designed to facilitate highly
parallel computation and statements may be executed as soon as all their input
variables have been computed. If several statements are executable an arbitrary
statement is chosen. However, with the addition of real-time constraints to mediate
this decision, data flow would be a powerful real-time system. The other major
drawback of data-flow is that Is not suited for implementation on conventional

computer architectures.

{
1
|
{

S Sl N S s e S 2 T, i

1.2: Statement of the Problem
The goal of this research is to develop theory that is applicable to the

implementation of a programming system designed to the restricted domain of time-

critical applications. The main criterion of the suitability of the language to this

domain should be that small changes in the real-time specifications shouid result in
small, obvious changes In the source program. It is conceivable, and indeed
desirable, that these changes could have a dramatic effect on the object program
produced. This reorganization of the object program is precisely the process that
should be automated.

Conventional languages already provide facilities for functional and data
abstraction, and numerous researchers are already working in this area. Therefore,
this research will focus on the global control structure for programs. This includes
Issues such as the number- of processors to use in an Implementation, deciding
what Interrupt structure (if any) is necessary, decomposing the program into tasks,
and assigning parameters required by the appropriate task scheduler.

Since normal language semantic issues are being avoided, the description of a
program can be made extremely simple. The intuitive model for a real-time program
Is that of continuous time analog block diagrams. The graph defines a precedence
relation among operators Identical to the data flow in the diagram. The program will
be specified as a directed graph of actions to be performed and their functional
dependence, with arcs of the graph representing data paths. The graph must be
acyclic since cycles in a block diagram represent feedback systems. Automatically
producing an object program that solves the feedback equation would require more

detailed semantics for the programs as well as other disciplines outside the scope

-10-

{
{
1
i
{
L]

it g o g g i
P K sy Al o i by af

Statement of the Problem Section 1.2

of this research. However, In some speclal cases, cycies can be handles by
rearranging the block diagram. A strict upper-bound must be placed on the
computation time required for each action. The real-time constraints specify upper
bounds of the propagation delays through the block diagram and of the bandwidths

of the input and output signais.

1.3: Thesis Overview

Chapter 2 develops the block diagram model of computation. The block diagram
model is a program schematic model similar to data flow. However, real-time and an
external environment are explicit in the model. In addition, the block diagram model
separates the data-flow of the schema from the control flow, which is embodied in
the control structure. The control structure specifies the execution order of the
blocks at object time. The research problem may be formalized as finding control
structures for block diagram schemas which satisfy the given real-time
specifications. The major use of the model is to define the semantics of the real-
time specifications.

Chapter 3 investigates various static control structures (control structures that
as7e Independent of the data wvalues at object time). Although static control
structures may be used widely In specific applications (particularly in small,
dedicated systems such as those implemented on microcomputers), they have been
ignored by designers of real-time programming systems, mainly because their real
time performance in the general case has not been studied.

Chapter 4 investigates extended semantics where the external inputs do not

change continuously. In this situation, a dynamic control structure may be used. A
“11-

Thesis Overview Section 1.3

dynamic control structure is a control structure that does depend on the data
values at object time. The chapter investigates a subclass of dynamic control
structures, namely static priority Interrupt control structures. The prototypical
example is an interrupt system where the system does nothing untii an input
changes, although it includes systems without physical interrupts where the inputs
are sampled. The prioritltes are static as opposed to the earliest deadline
scheduler where the priority of a task is a function of time.

Chapter & discusses some of the Issues that arise when more than one
processor |is avallable for the Iimplementation. The realtime performance of
multiprocessor systems are analyzed and the realtime performance of a block
diagram schema is bounded. Some techniques for distributing the processing among

several processors are suggested, although specific algorithms are not studied.

-12-

2: Block Diagram Schemata

Most models of computation do not capture the notion of a "realtime" system
which monitors continuously changing inputs from some external environment. Block
diagram schemata model the external environment explicitly and recognize the
existence of real-time specifications placed by the environment on the computing
mechanism. They are based on the Intuitive model of the conventional analog block
diagram whose inputs and outputs are changing continuously. An (m,n) block
diagram schema consists of an (m,n) block diagram module, a control structure, a
configuration and an environment which manipulates the configuration
asynchronousiy with the control structure. Within the mode), It is assumed that
values change continuously. Obviously, the computations cannot be performed
continuously on a digital computer. The realtime specifications determine how
often the control structure must compute new values, as well as how fast it must
compute them.

An (m,n) block diagram module is a directed graph whaose nodes are either
blocks or links. The terms predecessor and successor will be used with the
conventional definitions. Data is stored in the links while the blocks perform the
actual computation. Accordingly, only one arc may point to each link. The graph
must be proper in the sense that arcs may not point from links to links or from
blocks to blocks. Upper-case letters will be used to denote blocks and lower case
letters to denote links. The predecessor of a link Is called the speci/fier of that
link and the successors of a link are called the watchers of the link. The
predecessors and successors of a block are called the /nputs and outputs of the
block respectively.

An (m,n) module has m links with no input arcs (/nput links) and n links with no

output arcs (output /inks). The input links recelve their values from an external,

-13-

Block Diagram Schemata Section 2

continuous time function called the input signal. The values at the output links
define an external, continuous time function called the output signal.

The model assumes the existence of a global clock which defines the passage
of real time. Hewitt argues against the use of global clocks since they cannot be
implemented in distributed systems [9]. While Hewitt's objections against global
clocks are valid, assigning times within Hewitt's framework of local orderings would
be more complicated. This complexity Is unnecessary since the events being timed
are always ordered by one of Hewitt's local orderings.

A configuration is an assignment of tokens to the links of a schema. The token
contains a value and a set of labels of the form (/ink, birth). These labels Indicate
when the token arrived at the input link Jink. Each link always contains some
token, since signals are always defined in a continuous time block diagram.

The computation of a block diagram schema is described by a serles of
snapshots. A snapshot consists of a biock diagram module and an assoclated
configuration. The initial snapshot assigns null values to all tokens except for
tokens on the input links of the schema which are assigned the current value of
the Input signal. The label set of all links is initialized to {(/ink, 0)}. The
computation proceeds from one snapshot to the next through the firing of blocks.
The control structure is the strategy for choosing which block to fire next. The
fired block accesses the tokens on its input links, and replaces the tokens on its
output links. The label set for the output token becomes the union of the old label
set of the token and the label sets that were assigned to the tokens on all the
input links of the block. The time in the label (/t) for the link / at each input arc

of the fired block is replaced by the label (/,time), where time is the current

-14-

o

P ——————

Block Diagram Schemata Section 2

contents of the global clock. This action occurs after any tokens have been
replaced on the output links, but the time for the new label sets is immediately
after the Input tokens were accessed. In addition, If / is an Input link, its value is
set to the current value of the input signal. The block need not replace any output
tokens. This differs from data flow since tokens are not removed from the input
links after a block is fired. The data flow restriction is not appropriate since the
value of a token Is defined at all times.

The amount of computation time used by block A is denoted tA. If the control

structure fires block A on some processor at time t, that processor will complete

and replace the output tokens on that block by the time t+tA. The computation

times used will be upper bounds either computed by whatever language processor

Is used to create the primitive blocks or declared by the user.

2.1: Real-Time Performance and Specifications

A block diagram schema is an approximation to a continuous time block diagram.
There are many factors affecting the quality of the approximation. However, the
factors influenced by the control structure are how long the schema takes to
compute the values of output tokens from the Input tokens, and how often it
performs these computc.ﬂons. The real-time specifications will place bounds on
these quantities. A control structure that satisfies all the real-time specifications is
called a feas/bl/e control structure.

The age of a token with respect to a link / at time t is defined as t-to it (1, to)

Is in the label set of the token, and undefined otherwise. The /atency between

16

e ————————————

RealTime Performance and Specifications Section 2.1

links @ and b is denoted l. b and is the upper bound of the age at any time of

tokens at b with respect to link a. The user can specify an upper bound on the
latency between two links. The first link will be an Input link of the schema and
the second link will be an output link.

Latency specifications can also be expressed In terms of continuous-time

functions:

B(0) = F(a(t-a(), -+ +), AlD)sl, p (2-1)
Here 5(!) Is the function whose value is the value of the token at link b at time t;
a(t) is the function whose vaiue is the signal at link a at time ¢; A(t) corresponds
to the age of the tokens at link b. Notice that A(t) is generally not constant, but
Is bounded. The user knows how close b(t) must be to b(t) = F(a(t), - -+). Using
information about the magnitude of £ and a and their derivatives, the user can use
equation (2-1) to calculate the latency specifications necessary to achieve the
desired accuracy of b(e).
The other measure of real-time perfoimance is how often new values are

computed. The bandwidth from link a to link b (notation 8. b) Is the maximum rate

at which the control structure must compute new values at » from values at a. The
bandwidth specification Is not easlly expressible in terms of continuous-time
functions. It may be thought of as a requirement on how often the value of 5(()
must change.

The bandwidth specification may seem superfluous since the latency
specifications also impliles how often the value of 5(() changes.. However, |t is

possible for a multiple processor control structure to exhibit bandwidth performance

-16-

e e dii

RealTime Performance and Specifications Section 2.1

that exceeds the rate implied by the latency specification. An example is shown in

1 figure 2-1.

tA = 10msec
‘8 = 10msec

Ba,c = 76/sec

I"'c = 40msec

A block diagram schema requiring a multi-processor control structure
Figure 2-1

In this example, both A and B require ten milliseconds of computation time. A
single processor control structure that executes ABABAB - - - can guarantee a
latency from a to c of forty milliseconds and a bandwidth from a to c of fifty per
second. However, if processor one executes AAA --- and processor two
executes BBB - - -, then the latency from a to b is still only forty milliseconds but
the bandwidth increases to one hundred.

While the block diagram model is useful for deflning performance for realktime
programs, it does not yield many insights into the problem of synthesizing a feasible
control structure. The gr.aph itself resembles a partial order on a set of tasks, but
the semantics of block diagram schemata are not as restrictive as this partial
order. In most schematic models, a task must not be executed until all its
predecessors have been executed since (presumably) it would not have data

avallable at all its inputs. The block diagram model has no such restriction and as

17-

e —— ' . L.. “

S i o Ha s 14 eSS i i el ol AR Qe cup Rodh i

RealTime Performance and Specifications Section 2.1

a result is able to execute some parts of the schema more often than other parts.

On the other hand, there are certain execution orders that can be ruled out
since they are obviously inefficient. For example, once a block has been fired, It
need not be fired again until one of its predecessors has been fired again since all
its inputs will be unchanged. Therefore, it outputs will not change. Similarly, if no
successor of a block A is fired between firings of A, the previous execution of A
was unnecessary since no block !ooked at the previous values of the tokens on
the output links of A.

If these restrictions are combined, each firing of a block must be surrounded (in
time) by at least one predecessor and at least one successor. Equivalently, the
allowable execution sequences may be found by shuffing all the paths from an
input link to an output link. These paths will be referred to as constraint paths or

Just constraints.

2.2: Functionality of Blocks

The semantics of block diagram schemata make some useful block functions
awkward to Iimplement. For example, a block that performs differentiation Is
essential for applications in real-time process monitoring and control. In classical
direct digital control, the system is discretized by sampling at some specific period.
Differentiators are replaced by unit delays and the feedback gains are adjusted
appropriately. This is possible only because the inputs are sampied at a known
frequency.

In block diagram schemata there is no guarantee of periodic execution. The

bandwidth specifications set a lower bound on how often a block must be
-18-

Functionality of Blocks Section 2.2

executed, and a differant lower bound may be implied by the latency specifications.
They do not place any upper bound on how often the block is executed.
Therefore, it Is impossible to tell a prior/i when and how often a block will be
executed. This would seem to rule out any blocks that would require state
variables, but this is not true. A white noise generator could be impiemented using
a pseudo-random number generator. This would use a state variable, but it would
not run into any problems by not knowing how often it is executed. But most other
functions that need to produce or transform a time dependent sequence of values
will be Impossible to implement.

The only general solution to the problem Is to have a real-time clock as part of
the system. Then a differentiation block could remember both its previous input and
the time it was last executed and compute the obvious first order approximation.
The major difficulty Is that the real-time clock would have to provide much finer
resolution than the 60 cycle clocks found in typical computer systems.

The user should be able to define his own time dependent functions since any
selection of primitive blocks will probably turn out to be too limited for some
application. Therefore, it becomes necessary to provide some primitive blocks
which would probably lead to nonsensical programs If used carelessly. In particular,
If the user had a unit delay biock and access to the real-time clock he could deflne
arbitrary approximations to differentiators, although undisciplined used of the unit
delay block would result in useless programs.

Implementing integration would still be a problem since the block diagram for a
first order Integrator would contain a cycle (see figure 2-2). The problem with

cycles is that it is unclear whether the cycle represents use of a state variable,

19

PSS —

Functionality of Blocks Section 2.2

as in data flow, or implied solution of simultaneous equations, as in continuous time
block diagrams. In the case of integrators it is clear that the cycle represents use
of a state varlable, since the cycle contains a unit delay block. In this case, the
cyclie can be broken at the input to the delay block. The delay block is treated as
a watcher of link @, even though it gets its input from link 7. This transformation
alters the order In which the blocks are executed by changing the constraint
paths. Unit delays were handied by a similar transformation in BLODI [11], a
system for simulating discrete time block diagrams, and would be handled in the

same way by a programmer [21].

time

A Block Diagram Containing a Cycle
Figure 2-2

s

el st A3 ik Sl s A N i

Example Section 2.3

2.3: Example

The interaction between the real-time specifications and the control structure
can be illustrated by a series of examples. In these examples the block diagram
module is left unchanged while the latency and bandwidth specifications are varied.
These variations will necessitate changes in the control structure used to

Implement the block dlagram schema. The block diagram module itself is shown in

figure 2-3.
b
—3 A B>
a c
B |—
. f
d e
t‘-10
13-5
tc-lo
tD-6

Typical block diagram schema
Figure 2-3

The simplest control structures to consider are cycles that repeatedly execute
the blocks in some fixed order. There 3! (= 68) ways of executing four blocks once
per cycle (Ignoring starting transients). For a small example like this it is feasible

to enumerate all such cycles and test them to see If they satisfy the latency

-21-

Example Section 2.3

constralnts‘. All these control structures are independent of when new tokens

actually arrive. The worse-case assumption is that a new token arrives immediately
after the previous token is marked old. This assumption is used in calculating
worst-case latencies, which are shown in figure 2-4. Notice that although ABCD is
better than ACBD and ADBC s better than ADCB, there s no best control structure.
In fact, we can choose latency specifications such that only one of the control
structures will work. The first six control structures in figure 2-4 sample the inputs
once per cycle, i.e. once every 30 time units. However, if any of the bandwidths
B

8 or 'd f is greater than 1/30 then some other control structure must be

ac’' af

used.

Control |, {1y Iy
Structure | ac | af a.f
ABCD 45 | 60 | 45
ACBD 66 | 60 | 60
ACDB 60 | 66 | 45
ADCB 60 | 45 | 60
ADBC 50 | 456 | 56
ABDC 45 | 60 | 60

ABDCD 60 | 66 | 50
ADBCD 66 | 60 | 50
ABCABD 40 | 65 | 75
ACDBCD 76 | 70 | 40
ADBADC 656 | 40 | 70

Latencies for static control structures
Figure 2-4

A slightly more complicated class of control structures is cycles whera some

blocks may be executed more than once. For example, the control structure

1. However, such an algorithm Is not practical since the computation time taken by
such an algorithm would grow exponentially with the number of blocks.

-22-

J

Example Section 2.3

ABCABD has worst-case latencies as shown in figure 2-4. This control structure will

satisfy Its bandwidth constraints if B. e Is less than one every twenty time units
and B. f and Bd ¢ are less than one every forty-five time units.

The next class of control structures to consider are dynamic control structures
with static prilority scheduling. These control structures make use of the current
environment to determine which blocks to fire next. The dynamic control struciures
assume that the values of tokens at input links do not change continuously. When
the value of a token at an input link changes, a request is made for a set of tasks.
The request is serviced by firing a fixed sequence of blocks as specified by the
task. Since the processor is generally busy when a request occurs, the requests
are remembered until the processor is idle, when one of the requested tasks is
selected to be executed. Each task is assigned an integer priority. The task with
the highest priority Is serviced next. The scheduler is static since the priority for
a task is always the same relative to other tasks. The earliest deadline scheduler
Is an example of a dynamic priority scheduler, since the priority of a task depends
on its current deadline. If the task being serviced can be temporarily suspended,
the control structure is preemptive.

A dynamic control structure need not be interrupt driven. For example, the
control structure could sample the inputs between executing blocks. However,
preemptive control structures cannot be implemented without interruputs.

In the example of figure 2-3, there are many ways to construct tasks to be
requested by changing inputs. One such task system is to fire ABD (or ADB) when
the value at a changes, and CD when the value at d changes. The worst case

occuis when the values at a and d change simultaneously. The latencies for this

-23-

r’

R

{
l
!
|
|

A . b e & A

Example Section 2.3

case are shown In figure 2-5. These latencies can be sustained only if the
bandwidths at a and d are both less than once every 35 time units (otherwise the
control structure would fail behind). in a sustained worst case, new tokens arrive
once every 35 time units. A trace of block firings would seem to indicate that the
static control structure ABDCD is being executed, which has latencies 15 to 20
units larger than those for the dynamic control structure. However, in the dynamic
case it is known exactly when the input signal change. In particular, the processor
will be idle if more than 35 time units elapse between a change in input signals, so
the processor will be able to respond tc a change immediately. In a static control
structure, the change would not be responded to until the control structure gets

around to it.

| Task String
Prlorlty 'a.c '&.f Id.f

1 2
ABD CcD 30 | 36 | 16
ADB CD 36 | 30 | 16
cD ABD 16 | 20 | 36
CcD ADB 20 | 16 | 36

Latencies for dynamic control structures with static schedulers
Figure 2-5

3 Static Control Structures

The main function of the control structure in a schema is to specify when to fire
each block. If the control structure Is Independent of the configuration (i.e.
unaffected by changes made by the environment) It is a static control structure.
An example of a static control structure is a loop which fires all of the blocks in
the schema cyclically. Control structures which make use of configuration (e.g. via
Interrupts) are called dynamic control structures.

The latency specification from a to b will be satisfied only if all tha blocks along
all paths from a to b are firead at least once during each time Interval of duration

I. b time units. Otherwise there would be time Intervals longer than I. b when the

alabel at b will not change and therefore the age with respect to a of the token at

b will be greater than I. b Similarly, the bandwidth spacification from a to b will be

satisfied if and only If the interval between firing the blocks along the constraint

paths Is less than 1 / 'a.b‘

For single processor control structures It is possible to construct a trace of the
blocks that are fired by the control structure. The trace is a string over an
alphabet £ whose elements correspond to the blocks of the schema. Each element

A of 2 Is assigned a weight (notation |A|) equal to t,. The weight of a string is
defined to be the sum of the welght of its elaments. A string s1 contains S 2 If all
the elements of S2 appear In S, In the order they appear in s,‘,. For example, the

string ABCOE contains the string 8D, even though BD Is not a substring of ABCDE.

Regular expressions will be used to denote sets of strings. in particular, if S is a

string, s" denotes the set of strings S, SS, SSS, ' .. as well as the empty string.
It Is necessary to model Intervals In continuous time of arbitrary origin and

duration, since the latency specifications require gll intervals of specific duration to
26

|
|

Static Control Structures Section 3

contain the corresponding constraint path. Therefore the weight of the initial and
final elements of a string may be countad at less than their nominal weights. For

example, If |a, :--a,|=w (weighting a, and a, at |a,| and |a,|), then
[ay - ‘k] Is a string of welight less than w since both a, and a, are welighted
at less than |a,| and |a, |. However, If the Initial cr final elements do not have

full weights, the may not be included as part of any contained string. Weighting
these elements at less than their full values corresponds to shrinking an interval of

slze w in continuous time: if the interval starts after a, starts executing, then the
Interval does not contain a, reading Its inputs. A string will be preceded by a ‘[’

or followed by a ‘T if the first or last element in the string Is walghted at less than
its nominal value.

A single processor static control structure is completely specified by Its trace,
which is determined at complle time (hence the name stat/c control structure). The
realtime specifications on the control structure can be rephrased as constraints on
Its trace. In particular, the latency specification from a to b Is satisfled If and only
If all the constraint paths from a to b are contained in every substring In the trace

of weight I. b The bandwidth specification is satisfled if and only If the welght of
all substrings between occurrences of the constraint paths are less than 1 / B‘ b

At this point it is possible to deal exclusively with the trace of the control

structure and the constraint paths. Constraint path / will be denoted c, with
latency specification 'l and bandwidth specification 'l‘ It c, Is a path from a to b,

l, -l. b and 'I "a.b‘ It will also be necessary to deal with the talls of the

-26-

Static Control Structures Section 3

constraint paths. If C, “¢,1%.2" " " Cin> where cue! then the jth tail of C, is

€1l "%Li%+1 """ Cia

Since the control structure must satisfy the real-time specifications for all time,
the trace corresponding to the control structure will be a Infinitely long string.
Since the control structure can be Iimplemented only if the trace can be generated
using a finite program, It would be very awkward If the only feasible control
structures were acyclic. Fortunately, It can be proved that if any feasible control
structure exists, then there exists a feasible control structure that fires the blocks

In some cyclic order.

3.1: Existence of Cyclic Control Structures

The theorem proved In this section can be stated as:
Suppose there exists a string o = ajaaq " ez such that w satisfles
the real-time constraints. Then there also exists a finite string 8 such that
the string ﬂ' also satisfles the realtime spacifications.

This theorem will be proved using several lemmas.

Refinition: A critical window of a control structure o for the constraint CI Is a

substring ¢ Ml of @ that contains two occurrences of CI. but

m
v I] contains no occurrences of C,.

The most critical window for cl is the critical window with the greatest
welght.

Lamma 3-1: The string » satisfies the latency specifications for C / if and only if
I¥; 51, for the most critical window ¥, in w.

-27-

Existence of Cyclic Control Structures Section 3.1

Proot:
only If: Assume w satisfies the real-time specifications. Then any substring
of o of wesight 'I contains CI. In particular, the substring
[a - -~ ’m"mﬂ] of weight |, must contain C;,. Since [&I] does not

contain Cl. the substring [&, of weight ll-c. where « Is arbitrarily small

contains one occurrence of Cl. Therefore, “’/’ < l,. +s, ¢20.

If: Assume the most critical window ¢ i has welght greater than 'I' Let 4
be any substring of ["i] where |y| =1;. ¥ exists since:

1%, 0= 19, 1~ > 1,
Since ir, is a critical window, then [&'.] contains no occurrences of C,.
But ¥y Is a substring of [¥ i] and also does not contain C i Hence, ¥ is a

substring of @ of weight I, that does not contain the constraint path.
Therefore, » does not satisfy the latency specifications. &

Corollary; Since i,. contains two occurrences of C,, the period between
successive occurrences of C; must be less than |, - IC; 1.

This lemma shows there is a time limit between the starts of successive

occurrences of Cl. The bandwidth specifications directly limit this Interval.

Therefore, it will be assumed that the latency specifications are more severe than
the bandwidth specifications. If not, the latency specifications can be adjusted so

that:
I, < <+|C |
18 i
]

The time remaining until the start of the next appearance of a constraint path is
called the /axity of that constraint. Given a control structure, we can construct a
table of laxities for each position in the corresponding string » with the property
that the table entries are non-negative If and only if » satisfies the latency

specifications. The only difficulty is in accurately determining the start of an

occurrence of a constraint string. This will be handled by keeping laxities for the
-28-

i
{

e T =

Existence of Cyclic Control Structures Section 3.1

talls of the constraint strings. The true laxity for a string will be reflected in the
laxities of its talls If the start of the constraint path Is falsely identified.

An element of the table d[/,j,k] Is the laxity for the path c, J just before a, Is

fred. The table should be thought of as rectangular with columns labeled by

elements of w. The entries in the first column are:

d[ll]nol.|l'|cl'j| (3'1)
since the constraint path C, must occur by 'l - |c, j |- The remaining columns can
be fllled in by simple recursion rules.

If the next element In @ Is not the same as the first element In a constraint

path, the laxity for that path decreases by the weight of that element:

aytc; jRd/. Lk 1] = d[i./k]-|ay | (3-2)
There are two possibilities if the next element in the solution is the same as the
firat element In a constraint path. If this | the start of an occurrence of a
constraint path, the laxity for the tail of that path should be no more than the
current laxity for the constraint path. It (s possible that the .ail will aiready have
a more severe laxity since different constraint paths can have Identical tails. In
addition, the laxity for the whole constraint path will become the original limit the
instant after the first element appears. Therefore, the laxity bacomes the original
laxity minus the welght of the first element.

However, |f a, Is pot the start of an occurrence of CI j the laxity should
decrease by l‘kl' Fortunately, this problem will be handled automatically by
assuming that an occurrence of C Wi starts whenever a =g J° If it Is not part of

an occurrence of c, J ¢, j will appear again before alil of c,] appears. Whan this
-20-

Existence of Cyclic Control Structures Section 3.1

happens, the laxity for CI j+1 will have decreased by the amount the laxity for
C,] should have decreased If the start of the path had not been Incorrectly
Identified. When < i appears agaln, the laxity for C'. J+1 will be less than the

laxity for C’ 7 Therefore:

d[/,j+1,k+1] = min(d[/,j,k).d[/.j+1.k}-|a, |)

%11 ® |l k11 =1,-1C, - lay| iy

Equations (3-2) and (3-3) can be transformad to produce rules for computing the

k+1st column of the laxity table from the kth column:

1=1€; ; 1-layl If ay =cy,j
d[.jk+1]= I min(d[1,j-1.k], dL1Jk)-lay) ifay=c, | e
dli.jk]-|a, | ¥ ax%2, 11,51

As an example, figure 3-1 shows the laxity table for the control structure ABCD

and the block diagram module from figure 2-3.

In this table, the laxities at time 60 are Identical to the laxities at time 30. The
next column in the table would be identical to the column at time 40. The rest of

the table becomes periodic, and all the entries are non-negative. The periodicity

allows us to prove that (ABCD)“r will satisfy the latency specifications for all time.
This Is formalized in the following lemmas:

Lemma 3-2: If:
vl.j d[i,j,m] 2 d'[/,j,k] and a ~a'y

then:

o

Existence of Cyclic Control Structures Section 3.1

A 8 C D A 8 C D A %0

© | (10) | (16) | (26) | (30) | (40) | (a5) | (66) | (80) | (70)

AB 30 20 16 5 0 20 16 5 o * %
B8 40 30 356 256 20 0 356 25 20
|CD 30 20 16 20 185 5 0o 20 16
D 40 30 25 16 36 26 20 0 36
| AD 45 356 30 20 15 35 30 20 16
D 65 45 40 30 60 | 156 10 0 60

14-10 QB-S tc-10 QD-S

| Iag = 46 lop = 46 1, = 60

Typlcal Laxity Table
Figure 3-1

v),; alifm+1)2 &'l k1]

Proof: From case analysis of (3-4) and elementary algetra. ®

Lemma 3-3: Let:
.-a1-...k_1
’-.k-...m-1
1-°muc-

If » = oy satisfies the latency specifications and:
V,J d[i,),k])=d[}/.j.m]
then:
f o' = affy
1] - .'1.02 cas
also satisfles the latency specifications.

Proof: Construct the laxity table d' for o'
'I.]‘[I'I'o] - 'l..'c'ul ' - d[l.j.o]
Since a, = 0'1. (3-4) leads to:

e —

Existence of Cyclic Control Structures

V“d'[l.j. 1]=d[/j,1]
Similarly:
vi.j.lsmd'["j"] = d[i,jJ 20

Therefore
VM d'i.jm]=d'[i.j.k]

From lemma 3-2:
'l-l dli.j.m+1])2 &[4, /j.k+1]
=d[/,/k+1]20

Similar reasoning will show:
V“ d'[i.j,2m-k-1]2 d'[i,j.m-1)]
«d[/,jm-1]20

Now a', . =a,, so lemma 3-2 still applies:

Inductively:
V). ja2m U1 +m-K] 2 (1,112 ©

Combining (3-5) and (3-8):
v, Nd‘[l.].l] 20

Section 3.1

(3-6)

(3-8)

Therefore, from lemma 3-1, «' satisfies the latency specifications. ®

Corollary: Let a-a,---a i, "!k b, and y=a, -
satisfles all the latency specifications and d[/,j,k]=d[/,j,m] for some
k<m, then a8 also satisfles the latency specifications. The proof is by

Induction. ®

duplicate columns and applying lemma 3-3:

If »=afy

The main theorem can now be proved by showing that any laxity table will have

Theorem 3-4: If any string » satisfies the latency specifications then there exists a

string of the form 0' which also satisfies the latency specifications.

it i

Existence of Cyclic Control Structures Section 3.1

Proof: Construct the laxity table for w. There are a finite number of
passibilities for each table entry since each entry is 'i - |C'.| minus a sum

of a finite number of |a, |'s. The number of different la, |'s is limited by

the number of blocks in the block diagram schema. The number of terms in
the sum must be fnite since each lakl Is greater than zero and the laxity

entry is also greater than or equal to zero. Therefore, the possibilities for
each column are limited and eventually some column in the table will be
repeated and k and m satisfying the conditions of lemma 3-3 exist.

Applying the corollary to lemma 3-3 says a solution of the form cﬂ‘ exists.
However, d[i.j,1]=1;-|C; j | 2d[i,j,k], for all k (the rules for filling in the

table never increase the laxities except to set d[/,j.k] to |,-1¢; jl.

Applying lemma 3-2 shows that 8" is also a solution. ®

The major implication of this theorem is that only cyclic strings need to be
considered for static control structures. These strings can be enumerated, so the
problem of finding a static contral structure is in principal solvable. Since the proof
also places an upper bound on the length of the cycle (equal to the total number of
possible laxities at any position), so an algorithm that generated all possible strings
would be effective In the sense that it would always halt in a finite amount of time.
However, it would require computation time that grows exponentially with the
complexity of the schema, so the problem would be computationally intractable if

this were the only algorithm.

3.2: Generating Real-Time Control Structures

The problem of generating a feasible control structure is a scheduling problem.
The problem |Is deterministic since the parameters of the problem are strictly
bounded as opposed to being unbounded random variables. A wide varieties of
spacial cases of the general scheduling problem have been studied, and some

results are surveyed by Gonzalez [7], though relatively little work has been done
-33-

Generating Real-Time Control Structures Section 3.2

on scheduling in the presence of deadlines.

Gonzalez and Soh developed a simple aigorithm that minimizes the number of
processors used to schedule independent tasks. The tasks are statically assigned
to processors and always run to completion. The deadlines for each task
correspond to the period of the requests for that task and must be a power of
two. Their algorithm is not optimal if the periods are not a power of two and no
optimal algorithm is known, although several heuristic algorithms have been
Investigated.

Liu and Layland considered the problem of scheduling independent tasks on a
single processor [14]. Each task requests service periodically with a deadline for
service coinciding with the time for the next request. They present a method of
assigning static priorities to the tasks that will meet the deadlines if any static
assignment of priorities will. In addition, they prove the schedule which executes
the task whose deadline is earliest is optimal in the sense It will meet the
deadlines if any schedule will. They then prove hecessary and sufficient conditions
for a set of tasks to be scheduled by the earliest deadline (ED) algorithm to meet
all its deadlines, and conclude that ED algorithm allows 100% utilization of the
processor as opposed to figures as low as 70% for static priority algorithms.

Gelger extended the proof of the optimality of ED scheduling to include the case
were the requests are not periodic [6]. Fiala presented the same basic proof and
also derived necessary and sufficient conditions for the ED scheduler with a mix of
periodic and aperiodic tasks [5].

Mok investigated scheduling independent tasks on multiple identical processors

[168]. Mok shows that no optimal algorithm exists for this problem unless the

-34-

Generating Real-Time Control Structures Section 3.2

deadlines, computation times and at least some future request times are known. An
algorithm related to the ED algorithm is presenteu which Is shown to be optimal if
all requests are simultaneous. This algorithm executes those tasks with the least
laxity, where the /axity of a task is the deadline for the task minus its remaining
computation time. Unfortunately, both the least laxity and ED schedulers are shown
to be non-optimal even for tasks with periodic requests. However, the least laxity
scheduler Is optimal for periodic deadlines where tasks may be executed at any
time (l.e. if the deadlines are coincident with the next request, the least laxity
scheduler Is optimal if it Is allowed to execute tasks before they have been
requested).

The problem of scheduling tasks related by a partial order on multiple identical
processors has been studied by Manacher [16]. Deadlines are specified for any or
all tasks in the system. Manacher’s algorithm derives deadlines for all tasks In the
system by using the observation that a task must complete executing in time to
allow its successors to executed before their deadlines. The scheduler then
executes those tasks with the earliest deadlines that have had all their
predecessors executed. This algorithm is not optimal, and does not consider either
periodic requests or multiple start-times. However, it is a reasonable heuristic,
especially as the number of processors increase.

Unfortunately, none of these results generalize to the static control structure
problem, even for a single processor, although control structures could be
constructed which would meet the conditions of the particular special case and
satisfy the realtime constraints. For example, if the block diagram consisted of

unconnected (independent) blocks, the earliest deadline scheduler could be used

-36

Generating Real-Time Control Structures Section 3.2

with task / being block / and the request period for each task being the minimum of

l, /2and 1/ Bl' The period between requests would have to be less than 'I /2

since (in the absence of other information) it is possibie for the task to be
executed immediately after one request and immediately before the following

deadline. Lemma 3-1 says this time interval must not be greater than 'I‘

On the other hand, thes: heuristics areliable to be overly restrictive, particularly
since they tend to deal with independent tasks. It would be possible to derive
independent tasks from a block diagram schema by treating the constraint paths as
independent, but at the cost of introducing new blocks and much unnecessary
computation. One promising approach for deriving a static control structure is to
simulate some more general control structure until a cycle In the trace of that
control structure is found. An obvious choice of a more general control structure is
a least laxity scheduler (using laxities as defined for block diagram schema) which
follows the partial order for the tasks (blocks) based on the constraint paths.
More precisely, the scheduler would build a laxity table, with starred entries
Indicating constraints strings which cannot be fired because of the partial order.
The scheduler chooses the first block of the unstarred constraint string with the
smallest laxity to head the next column. If two constraints have the same laxity,
either can be fired next. Figure 3-2 shows such a laxity table for the block

diagram schema from figure 2-3 using the same latency specifications as figure 3-1.

At time 40, none of the latency specifications have been violated. However,
since there are now two constraints with laxity O, at least one entry in the next

column will be negative. By firing C at time 10, an additional request for C is

-36-

Generating RealTime Control Structures Section 3.2

A c D B A ?

.1 (0) (10) | (20) | (25) | (30) | (40)
ABl[30| *20 | *10 | *5 0 | *20
Bl 40| 30| 20| 15 | a5 [
co]l 30| 20 =20 15 | 10 0
Dl 40| 30] 20| 35 | a0 20

AD 45 *36 *25 20 16 *36
D " 656 45 35 50 45 16

tA-1O QB-S to=10 tD-f'

g = 46 ICD-45 lap = 60

Counter-Example to Least Laxity Scheduling
Figure 3-2

created with deadline 50. In the control robotics environment, the existence of
this request makes scheduling impossible. However, if B is fired and C is delayed
until time 15, the additional request also gets delayed to a point where it Is
possible to schedule all the requests. The least laxity algorithm simply does not
deal with interactions between requests and deadlines.

It is interesting to note that the least laxity scheduler fails for this even If the
constraint path AD is ignored. The remaining constraint paths AB and CD are
independent, yet they cannot be scheduled using the ED algorithm using the worst-

case period of I, /2. If periods are kept at |, -|C.|, the tasks still cannot be
i i i

scheduled by the ED scheduler if the individual blocks are scheduled separately.
The fallure in this case can be viewed as an inability of the ED scheduler to derive
the proper phase relation between the tasks.

The schedule shown in figure 3-3 Is not the only least laxity schedule. For
example, at time 25 CD has the same laxity as B and therefore C could be fired

instead of B. However, the reader can verify that all the least laxity schedules for

-37-

R e TR S A oy v b

Generating ReakTime Control Structures Section 3.2

this example fall to satisfy the latency specifications.

3.3: A Branch-and-Bound Maethod for Ganarating Control Structures
Rather than generating acyclic control structures and looking for a cycle, the
algorithm described in this section works by generating a cyclic control structure
that satisfies the realtime specifications for one of the constraint paths. The
{ solutions for other constraints paths are combined to form a control structure that
satisfies ali the realtime specifications. The basic semantics of firing blocks rules
out control structures that are not shuffles of the constraint paths since these

control structures perform redundant computations. Therefore, this algorithm should

i not miss any solutions. There are two major problems that the algorithm has to

| deal with: (1) How many times must each constraint path appear In one cycle of

the total control structure. (2) How should the constraints paths be combined into

one cycle.

3.3.1: Determining the Relative Frequency of Constraint Paths
The first step In the algorithm Is to determine how many times each constraint
E | appears in on2 cycle of the total solution. Upper and lower bounds can be derived
from the length o' the cycle and tha basic latency specification. Consider the

lowar bound on the number of appearances of constraint /: let k, be the number of

appearances of C, In one cycle of the solution o Lat w,~|C;| and ¢ = le].

Since the latency specification for C, raquires C, to appear at least once every |

-38-

Determining the Relative Frequency of Constraint Paths Saation 3.3.1

I, W, time units:
G "
A2 e ~—I (9-7)

This leaves ¢ (the langth of the cycle) to be determined. However, if CI appears

A i times:

cakw, (3-8)
More precisely, the algorithm starts with the assumption that each block and

constraint appears once and that ¢ - !la. This approximation Is used to darive "I
A

for all constraints in the schema. If any X increases, this Is used to update the

minimum number of times each block in the constraint must appear, which in turn

may cause ¢ to increase. This process continues until all "I are consistent with c.

In practice, this only takes a few iterations.

Theorem 3-4 places an upper bound on the number of blocks In a cycle, but this
bound is not directly applicable to the branch and bound algorithm since the
branch-and-bound algorithm does not try all cycles of a given length. An upper
bound on the number of appearances of any constraint can be easily derived if the
number of appearances of the other constraints {8 haeld constant,

First, an upper bound on the length of a cycle can be derived by applying
equation 3-7 to all constraints except constraint /. Then the minimum weight of a

cycle containing A f appearances of C f can be computed for all ; # /. letting ¢ max

be the maximum allowed cycle weight and ¢ be the minimum cycle waeight (not

including constraint /), the minimum walght of a cycle containing A, appearances of

-3

Determining the Relative Frequency of Constraint Paths Section 3.3.1

C’ is:

c+kw, (3-9)

Therefore, the upper bound on k, can be derived by restricting the resultant cycle

weight to be less than ¢ maxt

k; s max (3-10)
This ignores the possibility of blocks in C | already appearing In the cycle as part

of other constraints. However, Including more appearances of constraint / will

eventually cause the minimum cycle length to exceed ¢ e’

This still does not bound the number of appearances for all constraints, since
constraint / can appear more often if constraint /| appears more often, etc. Placing
an arbitrary bound on one constraint will also bound the number of appearances of
all other constraints. For example, requiring at least one constraint to appear only
once places a fairly tight bound on all constraint. However, It is not true that a

solution of this type always exists. An example is shown in figure 3-3.

3.3.2: _ Strategles for Combining Solutions

Once the number of appearances per cycles of each constraint path is known,
the constraint paths can be permuted to form a control structure which satisfies all
the real-time specifications. Many of the techniques for improving the efficiency of
‘branch-and-bound’ optimization algorithms can be applied to this problem even
though it is not an optimization problem. An optimization problem seeks a

-40-

!
1

rr——er 1+

Strategles for Combining Solutions Section 3.3.2
D b—
)
—{ A —{d
a
e
h
— B F }——
b a J
——ﬂ C
c f

'A-'B-‘C-‘D-'E-‘F-1

l..q < 1N
'.,1 < 16
'b.j S

'e.l < 10

Control Structure: (ABFDECBFADEBFCF)"

Block Diagram Where All Constraints Appear More Than Once
Figure 3-3

permutation of n objects that maximizes an evaluation function f of the

permutation.

A ‘branch-and-bound’ algorithm for this problem generates permutations for a

-41-

R i b i e

Strategies for Combining Solutions Section 3.3.2

subset of the objects and extends these permutations to larger subsets. The
permutations to the subsets are called part'/al solutions, and are arranged in a tree.
Nodes in the tree correspond to partial solutions and the descendents of a node
are the extenslons of that partial solution. Branch-and-bound algorithms are often
more efficient than direct enumeration since it is often unnecessary to examine the
entire search tree. The key to pruning the search tree Is the dominance relation
on nodes of the tree. The evaluation function f can be extended to arbitrary
nodes of the search tree by defining the value of a non-terminal node to be the
maximum value of its descendants. Then node A dominates node B if and only if
f(A) > f(B). The branch-and-bound algorithm may prune any subtree whose root
node is dominated by some node of the tree that has already been explored.

In general, the dominance relation for a particular optimization problem cannot be
computed without examining the entire tree. Howevaer, It is often easy to compute
some weaker relation. These weaker relations are usually referred to as
dominance relations In the literature, so we will use the term strong dominance
relation to refer to the dominance relation that relates A to B If and only If
f(A) > r(B).

Branch-and-bound algorithm vary In the order the tree Is searched and how the
dominance relations _used to prune the search tree. Kohler and Steiglitz classified
branch-and-bound algorithms and initiated the theoretical study of dominance
relations [13]. They demonstrated the surprising result that pruning based on a
stronger dominance relation does not always improve the efficiency of the algorithm.

However, Ibaraki showed that stronger dominance relations do lead to more efficient

Strategles for Combining Solutions Section 3.3.2

algorithms for several common classes of branch-and-bound algorithms [10).

Branch-and-bound algorithm as dofined by Kohler and Steiglitz also make use of a
function g that places a upper bound on the value of f at each node. If L is the
maximum f(A) for |aaf nodes A encountered, pruning sub-trees with g(A) <L can
only improve the efficiency of the algorithm. However, the upper bound function
can also be viewed as a particular dominance relation.

The control structure problem as stated is not an optimization problem. However,
it is still possible to define a dominance relation between nodes of the search tree:
node A strongly dominates node B unless B leads to a valid control structure and A
does not. Assuming the nodes at each level are generated in a random
(lexicographic) order, the best pruning for the algorithm to use Is to retain the node
at each level which dominates the other nodes. If this dominance relation can be
easily computed, the algorithm can generate a valld control structure without
backtracking.

As a first step towards computing a dominance relation, define the s/ack for each
constraint to be the difference between the latency requirement and the latency
actually achieved by the control structura. The constraint with the least slack Is
the most critical constraint (MCC). The slack In the MCC could also be used as a
value function to be maximized. If no control structure satisfies the real-time
constraints, the control structure maximizing the slack in the MCC |s probably a
good ‘close’ solution. Also, the slacks may be used to evaluate any heuristic
algorithms for deriving control structures.

The latency achieved by a static control structure for a constraint c'. Is the

waeight of the most critical window for C,. Adding a block to the cycle of the

-43-

—

Strategies for Combining Solutions Section 3.3.2

control structure cannot increase any slacks since the weight of some critical
window will be increased. The only exception would be If the new block completes
an additional occurrence of some constraint path, thereby creating new critical
windows. This cannot happen If the blocks being added are elements of some
other constraint path, since no constraint path is contained in another constraint
path. Therefore, the MCC slack can be used as an upper bound function in a
branch-and-bound algorithm to maximize the MCC slack. Upper bound functions are
also often used to guide the search in branch-and-bound algorithms. For example,
the aigorithm could always expand the node with the greatest upper bound.

If the slacks in each constraint are reduced by the same amount when a new
block is added to the cycle, then the partial solution with the greatest MCC slack

would be a dominant solution. Unfortunately, this is not generally the case.
Consider dividing a cycle o of the control structure w into reglons 0, J and E, It as
shown In figure 3-4. The 0, i regions contain one occurrence of C,. but [¢]
contains no occurrence of Ci. The critical windows of cl are 0,' jEl. l‘l- jer
Therefore, adding blocks to a El j region increases the weilght of ¢ i and adding
blocks to a 0,_1 reglon Iincrease the weight of &,'1_1 and 0“. Even |If “i-ll
increases, the slack for C; will not decrease unless |¢, jl = max | ¥, J |. The slacks
1] k i
can not be used to compute a dominance relation since the interdependence of
constraint paths may force new blocks to be added within the most critical window

of some constraint, while another solution with a smaller MCC slack might have a

critical window of the right size in the right place.

-44-

Strategies for Combining Solutions Section 3.3.2

|" ‘I.‘l "l

%1 &1 %2 b ¢4
- *1'2 -

Reglons of a Critical Window
Figure 3-4

Keeping vectors of slacks for each constraint path does not correct the problem.
Consider the example shown of figure 3-3 with the latency specification as shown

in figure 3-6. It can be easily verified that (ADEFCADBC)' is a feasible control

structure for this schema. It is also the only feasible control structure'. AD and

CF must appear at least twice in one cycle of the solution. Figure 3-5 shows

slacks for this constraints for two partial control structures. The merging of
(ADAD)" and (CFCF)" that leads to the solution is (ADFCADFC)". However, the
slacks for CF in (ADCFADCF)' are larger and the slacks for AD are the same, so

(ADCFADCF)" would dominate (ADFCADFC)" even though it doesn’t fead to a

solution.

3.3.3: Performance of the Algorithm

Assume each constralr_lt path contains an average of k blocks. The slack of a
constraint path In a trial cyclic solution can be determined in at most k scans of
the cycle. If there are n constraint paths there wlill be o(nk) scans of each trial

solution generated by the algorithm. The trial cycies will be o(nk) bilocks long (this

1. This was verified by checking all cyclic control structures that might be
generated by a branch-and-bound algorithm assuming that the least critical
constraint only appears once per cycle.

-46-

Performance of the Algorithm Section 3.3.3

l. g s 7

l.' j < 14

'b. J < 12

Control Slack
Structure Constraint
AD CF | AEF | BF

ADFCADFC 1 2 - -
ADCFADCF 1 4 - -

Counter-Example to Slack as a Dominance Relation
Figure 3-6

ignores the possibility of a constraint appearing several times in one cycle). The
overall time complexity af the algorithm will be o(nakz) times the number of trial

cycles generated per problem.

Assume the trlal cycle contains m, blocks and the next constraint path contains
;n 2 blocks. There are (m1¢m2—1)l cycles containing all the blocks, but we are
only Interested in one of the m1! permutations of the blocks in the old cycle, and
(m2-1)l permutations of the blocks In the new constraint (i.e. we must consider
m, different phase relations of the two cycles). Therefore, the number of different

trail cycles generated at this step Is:

(my+m -1) =9
1.2 .m1(m‘""2) (8-11)

= m
m o \(m 5-1)! 1
Of course, If some blocks of the new constraint are already contained in the old
cycle, or if the next constraint appears more than once, not all of the generated
cycles will be distinct. However, it Is rather difficult to avoid generating these

-46-

g

D i T

Performance of the Algorithm Section 3.3.3

cycles. There will be relatively little extra cost to the algorithm as long as it does
not Investigate cycles that are identical to cycles that have already lead to
fallures. Therefore, the number of trial cycles generated by the merging algorithm

when it finds a solution without backtracking is approximately:

; é’zk Ju=15 (3-12)

Equation (3-12) is o(kn"”) since the binomial term in the sum is o(nX) and there
are n terms.
If the merging algorithm fails to find a solution, then it must have backtracked

through each trial solution and the total number of cycles generated is:

ek () e - ek (1)) (3-13)

which can be approximated:

Il;’izk (V) (3-14)

Equation (3-14) Is o((kn®)") or o(k"nkM), and is exponential in the number of
blocks in the schema. This is a very loose upper bound and would only .be
achieved If all generated solutions were plausible except when the last constraint
was being merged in. However, this bound Is achievable if the first n~1 constraint
paths had relatively large latency specifications while the last constraint path had
relatively small latency specifications. This situation can be easily avoided by
starting with the path with the smallest latency constraints relative to the weight

of the path.

-47-

E

Performance of the Algorithm Section 3.3.3

3.3.4: Speeding up the Algorithm

There are many ways the average performance of the algorithm could be
improved. For example, if we had a tighter lower bound on the slack in the MCC,
we could prune more subtrees. We can get a tighter bound by determining what
new blocks must be added to the control structure. Adding a new block always
increases the size of some critical window for a constraint by at least the weight
of the block. Therefore, If the sum of the slacks for a constraint is less than the
total weight of blocks that must be added to the control structure, at least one of
the critical windows for that path will exceed the latency specification for that
path. This tighter bound has no effect on the performance If no backtracking is
necessary. However, If no solution is found, using the tighter bound is roughly
equivalent to reducing n, since fewer constraints need to be combined before the
control structure is recognized as infeasible.

Notice that the performance of the algorithm would not be of polynomial
complexity even if there were a dominance relation that totally ordered the
passibllities at each level. The problem is that the.number of partial solutions that
must be generated by a naive algorithm can grow exponentially with the complexity
of the schema. Therefore, finding a good dominance relation Is not as important as
finding a se?rch function that generates nc;dos that are most likely to lead to a
solution first.

Since the weight of the critical windows increase when new blocks are added,
we might try merging in new constraint paths sc that no new blocks are added
before trying more general mergings. This will improve the performance if the

solution is an extension of this type of merging, even if the algorithm must

-48-

Speeding up the Algorithm Section 3.3.4

backtrack since fewer nodes are generated on that level. If the algorithm must
backtrack through all the control structures of this type, the performance of the
algorithm Is somewhat worse. The effect of this heuristic may be approximated by
reducing kK, since the length of the strings merged into the current control structure
will be reduced.

The other way of improving the performance of the algorithm is to reduce the
complexity of the problem. This can be done by replacing sub-graphs of the block
dlagram module with new blocks. Whenever the new block is firad, the blocks
comprising the subgraph replaced by the new block are fired in some fixed order.
This replacement can dramatically reduce k, and would improve both the best- and
worst-case performance. However, combining blocks in this way can result in a
schema which has no feasible control structures even though the original schema
does.

Since the process of generating a control structure can be so time consuming, it
would be extremely useful to quickly identify realtime specifications that are
Impossible to satisfy. One way of doing this is to compute the percentage of CPU
time required by each block. If the sum of this percentage over all blocks in the
schema Is greater than 100%, the latency specifications are obviously unsatisfiable.

The percentage of the CPU required by each block is easily computed: each

constraint C, must be executed at least once every l'.—|Cl|ﬁ time units.
Therefore, each block c, j in C, must be executed at least once every |;-|C, |+

time units and its corresponding CPU percentage is:

Speeding up the Algorithm Section 3.3.4

le; 1|
.o 5480 (3-15)

It an block appears in several constraints, its CPU percentage is the maximum of
the percentage implied by each constraint the biock appears in. Using the
maximum rather than the sum corresponds to assuming that each time the block is
fired it will help satisfy all the constraints it appears in. Alihough this Is not
necessarily the case, it is a lower bound on the CPU usage.

Another quick test for unsatisfiable latency specifications Is that the slack in
each latency specification must be larger than the computation time for all blocks
not contalned in that constraint path. Otherwise, the ¢ portion of some critical

window for that constraint will be too large (refer to figure 3-4).

3.3.56: Practical Experience

A branch-and-bound algorithm similar to the one described above has been
Implemented as part of a system for implementing continuous-time block diagrams on
conventional micro-processors. The implementation runs on a PDP-11/70 under the
UNIX timesharing system. The block diagram is described using an interactive
graphics editor developed by John Pershing [18]). The branch-and-bound algorithm
Is only responsible for choosing the order to execute the blocks. The object code
for the block diagram is produced by a separate program.

The program uses all of the heuristics mentioned above except it does not
combine sub-graphs into new blocks. The program is able to find control structures
to satisfy most latency specifications for small block diagrams using less than a

minute of CPU time. So far, only one set of latency constraints has been found

-60-

Practical Experience Section 3.3.5

where a valld control structure oexists but no control structure was found by the
program (see figure 3-3). Some latency specifications require more time to find a
valid control structure.

In the absence of a fast optimal algorithm, it is preferable to have a fast
algorithm which yields ‘good’ control structures quickly. Heuristic algorithms are
generally evaluated one of two ways: one approach chooses a fixed algorithm and
derives an upper (or lower) bound on how far the algorithm's solution is from the
optimal solution. For example, Graham's algorithm for scheduling independent tasks
on multiple processors executes tasks which require more processing time first.
The resulting schedule is no more than 4/3 times as long as the optimal schedule
[8]).

The other approach develops a family of algorithms each requiring polynomial
time. As the degree of the polynomlal increases, the solutions found by the
programs are closer to optimal. The family of algorithms ‘s monotonic in the sense
that the an algorithm taking more time never produces a poorer solution than one
taking less time. If the degree of the polynomial were increased to infinity the
algorithm would be optimal. However, it would also no longer be polynomially time
bounded. An example Is a serles of scheduling algorithms employing limited
lookahead [1].

The second approach does not seem applicable to the control structure problem.
Limiting the breadth of back-tracking yields a family of exponential time algorithms
with the exponent increasing with the amount of back-tracking. A family of
polynomial aigorithms would result if at most k blocks were merged at a time with

no backtracking. However, these algorithms are very unsatisfactory if any

-51-

!

e VR A S

Practical Experience Section 3.3.6

constraint must appear more than once. If the number of blocks in the constraint
path is less than k, than all biocks for the second (and subsequent) appearance of
the constraint will be merged coincident with the existing occurrences of those
blocks. If k is increased so this does not happen, the performance of the algorithm

is only slightly better than the complete algorithm with no backtracking.

3.4: Heuristics for Generating Control Structures
Steve Ward has experimented with some quick, simple heuristics for generating

static control structures. Basically, the heuristic constructs control structures of

the form (aBayad - - -). where a Is the most critical constraint path and 8, v, §, et
cetera are taken from the other constraint paths. More specifically, blocks from
the next most critical constraint are added to B with the restriction that |aBa| is

less than l.. If more blocks remain In the constraint they are added to ¥ so that
|leva| is less than [,. Once all constraints have been merged in this way, the

latency specifications are checked. If they are all satisfied then the generated
string Is a feasible control structure.
The heuristic will also call itself using the current solution as @ so the generated

solution may also be of the form:

((aBery - - - Wo(aary - -+ Jo+ -)"
Since thaese heuristics construct a control structure rather than search for one,
they run very quickly. However, they also do not find solutions to a fairly large
number of latency specifications, even for simple block diagrams. Still these

heuristics are more attractive as a basis for an approximate algorithm, not only

-652-

b

b e ol e cpiai o ik L e i

Heuristics for Generating Control Structures Section 3.4

because of their speed but also these heuristics could be extended to handle
particular styles of block dlagrams as the process of constructing control

structures becomas better understood.

4: Static Priority Interrupt Control Structures

In some applications, the tokens at the input links do not change continuously. If
the control structure can detect when an input changes, the real-time performance
can ba Iimproved. Intuitively, this is possible since If no inputs to a block have
changed, that block does not need to be executed. On the average, this type of
control structure ought to do less computation and therefore ought to have better
reaktime performance. On the other hand, better average performance does not
guarantee better worst-case performance and specific questions of performance
must be answared with respect to a particular model.

Although the prototypical example of a dynamic control structure is interrupt
driven, It is important to realize that hardware interrupts are not necessary. For
example, a control structure could sample the Inputs until one or more inputs
change. After all the computation Initiated as a result of these changes had
completed, the control structure would continue to sample the Inputs. In general,
such a scheme would risk missing changes in the Inputs. However, the control

structure can use the reaktime specifications to guarantee this will not happen.

4.1: Dynamic Control Structures

Many of the strategles for scheduling Independent tasks to satisfy real-time
constraints mentioned In the previous chapter use dynamic control structures. For
example, Llu and Layland use static priority Interrupts and consider the case (in our
terms) where the latency Is equal to the period between requests [14]. They
consider the earliest deadline schaeduler only in this context although the earliest
deadline schedule is optimal for any sequence of requests and deadlines, as
mentioned earller.

Glven an optimal scheduler, is there any reason to consider a suboptimal
-54-

Dynamic Control Structures Section 4.1

scheduler? The answer will be yes if a good suboptimal scheduler exists which
uses less resources than the optimal scheduler. The earliest deadline scheduler
needs to find the highest priority task to execute whenever a task completes
(alternately, it needs to Insert requests into the proper position in a task queue).
A static priority interrupt control structure also needs to find the highest priority
task to execute. However, this is done in hardware by many existing computers,
Including cuvirent microcomputers. Also, the earliest deadline scheduler requires a
realtime clock to compute the deadlines for each task from the request time and
the latency specification. Therefore, static Interrupt control structures are
sufficiently simpler than a earliest deadline control structure to deserve further

consideration.

4.2: Model for Static Interrupt Control Structures

A static Interrupt control structure associates a task with each block In the
diagram. The tasks are related by a precedence relation consistent with the block
diagram. Each task has a pr/ority and may be /dle, active, or requested. The
priority may be thought of as an integer with numerically greater priorities being
better.

When an Input changes, all tasks whose blocks are watchers of that input
become requested. The control structures chooses the task with the highest
priority among the requested tasks. This task is active until the block complete
executing when all Its successor tasks become requested and the task Itself
becomes idle. If the control structure allows active tasks to be suspended while

another task Is executed the control structure is call preemptive. Otherwise it is
-66-

!
?

Model for Static {nterrupt Control Structures Section 4.2

non-preemptive. Unless otherwise noted control structures are assumed to be
preemptive.

The latency performance of any static Interrupt control structure can be
determined for each task by adding the computation time for that task to the
maximum computation time used by higher priority tasks while the task is on the
ready queue. The difficulty in this analysis is in determining how much computation
might be used by other tasks.

The simplest case to consider Is when all the tasks are /independent (each task

consists of exactly one block). Each task / requires ‘I units of computation; and
has priority P latency l,. and bandwidth B i Without loss of generality, the tasks

can be numbered so that:
P12P22 St
The overhead of assoclated with interrupts, selecting a task for execution, etc.
will be ignored for the time being. We shall also assume that all priorities are
distinct.
The latency for task / when Its inputs change discretely is simply the maximum
aelapsed time between a change in an input and the termination of the task. This

must be less than 'I If the latency specification for task / is satisfled. The

Interpretation of fhe bandwidth specification Is also simplified. Instead of
speacifying a minimum rate for gampling inputs, the bandwidth specifies the maximum
rate at which an input changes.

The latency specification for task / will be satisfied if and only if the block for

task / can be completely executed during any time Interval of duration l,. During

-66-

Model for Static Interrupt Control Structures Section 4.2

this interval, tasks with priority better than P will also be run, and the amount of
CPU time used by higher priority tasks must be less than | P t,.

Notice that this model is equivalent to the model used by Fiala. Flala's Pl
corresponds to t,. Dl corresponds to l,. and T, corresponds to 1/ BI‘ Therefore,

for a single processor we have the obvious restrictions:

1
‘, < |' < —'T (4-1)
and:
n
z 8;t; <1 (4-2)

=1

The summands in (4-2) are the fraction of CPU time used by task i. Obviously the

total fraction of the CPU used by all the tasks must be less than one. Equation

(4-1) can be derived from (4-2).

Lemma 4-1: The amount of CPU time used by n independent tasks using a static
priority scheduler in a window of duration At does not depend on the
relative priority of the tasks.

Proof: The processor is always busy If some task is requesting service.
Changing the priorities of the tasks will never cause the processor to
remain idle when some task requests service, nor will it affect when the
tasks request service.

Since the control structure only executes a task if some Input to the task

changes, task / cannot be executed more often than once every 1/!, time units.

Clearly, a task uses the maximum CPU time if any Interval if it requests service at
this maximum rate.

Assume task / requests service at times O, 1/0,. 2/0,. +++, and let C,(t) be

the maximum amount of CPU time used by task | in the Interval (0, t). The highest

57-

Model for Static Interrupt Control Structures Section 4.2

priority task (task 1) always starts executing inmediately after It reqiiests service

and executes for t1 time units, so it will be executed lB1t j complete times in the

interval. Let r -t—la1t] be the amount of time at the end of the window after

the last request for task 1. Task 1 will be executing during the interval (t-r, t)

since task 1 has the highest priority. However, If r >t1. only t, units of

computation will be used so:

o]
¢y~ |8, t]t,wnm = (4-3)
The maximum amount of CPU time used by task 1 in the interval (At, t+At) is:

C ,(t+at) - C ,(at) (4-4)

We will show that this is maximized when At = 0 by showing:

C,(t+at) -C ,(at) < C , (1)

C1(t#At)-C'(t)$C1(M) (4-6)

Since the requests for task 1 occur with a regular period, C ‘(t) is also periodic.
In fact:

Therefore, we need only consider At between 0O and 1/01 , In which case:

c 1(Az) - mln(t,. At) (a-7)
This Is the maximum amount of CPU time used by any interval of duration At

since the CPU time used cannot be greater than the duration of the interval nor

-68-

Model! for Static Interrupt Control Structures Section 4.2

can It be greater than t, if the interval contains less than one period. Therefore,

the inequality in (4-5) holds since the left hand side is the amount of CPU time
used in an interval of duration At starting at t.

The worst case for a set of tasks will occur when all tasks request service at
time O and continue requesting service at their respective maximum rates. This Is
true since the highest priority task wiil use its maximum amount of CPU time under
these conditions, and by lemma 4-1, any task can be made the highest priority task
without affecting the amount of CPU time used by the set of tasks.

Define C, (t) by:

[5:¢)

B,

C,(t)- lB'tJ t; +min ['l' t-
The amount of CPU time used by tasks j and & is not necessarily c,(z) summed

over J and k. The difficulty is that if requests for tasks j and k occur sufficiently
near the end of the window and of each other then only the higher priority task will
actually be executed. Therefore, It Is necessary to determine a precise schedule
for the interval from O to t. However, If we are only interested in how much CPU
time Is used in this interval, lemma 4-1 assures us that we may assign arbitrary
priorities to tasks] and k.

However, a sufficient éondltlon for satisfying the latency specification for task /

is:

-1
|, zt,*lf1cj(l,) (4-8)
This equation can be made more Intuitive If the time required by task J Is

approximated by:
-60-

Model for Static Interrupt Control Structures Section 4.2

I,Bltl (4-9)
Then equation (4-2) becomes:
1-1
'l”i*'ljf,'l'] (4-10)
This can be rewritten as:
Y
I, 2) (4-11)

The denominator in equation 4-11 represents the fraction of CPU time available to

task /. The effect of higher priority tasks is equivalent to reducing the CPU speed.

4.3: Assigning Priorities to Independent Tasks

One of the weaknesses of traditional real-time operating systems based on
static priority scheduling Is that the system does not verify that the priorities
assigned by the user are consistent with his real-time specifications. Even if the
system checked these specifications, the user still must assign priorities, which do
not have a simple relation to the realtime specifications. The obvious strategy of
assigning the highest priority to the task that requires the fastest response time
does not work. Consider the example in figure 4-1. Either task 1 or task 2 can

run at the best priority since l, 2 t,. it P - 1/l,, then Py > LY and the the latency

for task 2 is:

L

i Assigning Priorities to Independent Tasks Section 4.3

tp+ |128 |ty + min [‘1' '2“l|—2|:1—J‘]
1

& 18 _[ae
12+ l a]2+min(2. 16 [4]4]
! =12+ 8 + min(2,0)

-20‘!2-16

However, the latency for task 1 if Py > Py Is:

t+ ll132]t2 + min [tz. n,-—l-l];i
2

15 16
2+ |24I +mln(12. 16 124124)

=2+ 0+min(12,15)

- 1451, =16
t,e2 By=L |, =15
1 1 & 1
1
=12 By=cL 1 =18 |

Counter-example to priority = 1 / latency
Figure 4-1

The algorithm successively finds a task that can satisty its latency
specifications while nslénod the lowest priority. If there are several such tasks,
choose one arbitrarily. This task is assigned the lowest priority and removed from
the set of tasks. The next task selected will be assigned a priority higher than all

previously assigned priorities but lower than all tasks still unassigned. This

continues until no task remains or no task can be found that can execute at a

-61- !

aind

Assigning Priorities to Independent Tasks Section 4.3

priority lower than all other tasks. In this case, no assignment of static priorities
will satisty all the latancy specifications using only one processor. This algorithm
will never make a bad choice. Consider the situation when one or more tasks
remain yet no task can be assigned the lowest priority. Any task that could

possibly run at a lower priority has already been assigned a lower priority.

4.4: More Complex Models

The model for static interrupt control structures made several simplifying
assumptions, such as ignoring scheduling overhead, assuming preemptive scheduling
and distinct priorities. The model can be easily changed to account for different

assumptions.

4.4.1: Scheduling Overhead

When a task requests service, the control structure must compare the priority of
the task with the priority of the currently executing task. If the priority of the
current task is higher, then new request must be queued In some manner. When
any task completes execution, the control structure must select a new task to
execute. Also, sw!tchlng the processor between tasks will generally involve
setting up some processor registers. However, all of these actions will occur for
every Instance of a task requesting service, so these overhead costs can be

Included in the maximum CPU time used by task / = L. The basic algorithm of

finding a task which can be assigned the worse priority while still satistying (4-6)

is still correct.

Scheduling Overhead Section 4.4.1

4.4.2: Non-preemptive Control Structures

If the currently executing task always runs to completion before a new task is
run, ther the latency specification for a task must be large enough to allow for any
task with worse priority to execute as well as the CPU time used by tasks with

better priority. Thus, (4-6) becomes:

l ‘5
2t + (]
e2%*

n
)+lm;ax1(tj) (4-12)
-]+

Again, the assignment algorithm does not require any changes. This is obvious if

e

the algorithm finds a valid assignment of priorities. Increasing the priority of some
task relative to task / moves a task into the summation term in equation (4-12).

Since C I(t) is greater than or equal to t J making this change can only increase

the right hand side of (4-12).

4.4.3: Non-Distinct Priorities

For various reasons it may be desirable to assign several tasks Identical
priorities. For example, the computer hardware may only support a limited number
of interrupt priorities. Since the control structure is free to execute any of the
requested tasks having the highest priority, all tasks having the same priority as
task / must be treated as if they had higher priorities when checking the latency
specifications. This assumes that the control structure only executes task / when

all other requested tasks have priorities strictly worse than P,

However, this also makes the often unrealistic assumption that a task can be

preempted by a task with equal priority. If this is not the case it is necessary to

-63-

Non-Distinct Priorities Section 4.4.3

simulate the control structure on the worst case sequence of requests. It is not
sufficient to treat these tasks as if they had lower priority but are not preemptibie
since a pair of tasks can make a sequence of requests so that one of them
requests service again while the other is being executed. Therefore, the first task
can be executed twice while task /i is waiting for service although task /i is never

preempted.

4.5: Applications to the Control Structure Problem
Verifying the realtime performance of a static priority scheduler on more
complex task structures is a straightforward extension of the verification for

independent tasks. A latency specification 'I Is satisfied if and only if all blocks in
the constraint path can always be executed during any interval of duration I,. It

becomes slightly more complex to compute the amount of CPU time used by higher
priority tasks since some tasks (blocks) will not be runnable when other tasks are

requested.

4.6.1: Chains of Independent Tasks

If no block appears in more than one constraint path, the constraint paths can
be treated as independent tasks. A task will never be Interrupted by a request of
a predecessor if the realtime specifications are met since the period between
requests is not less than the dead!ine for any one request.

The priority assignment problem would be very much more difficult if it were

necessary to consider assigning different priorities to individual blocks in a chain.

-64-

Chains of Independent Tasks Section 4.5.1

However, it does not make sense to assign lower priorities to some blocks in the
constraint path, since it makes no difference where in the chain higher priority
tasks are allowed to interrupt. Therefore, all the tasks in the chain can be
assigned the same priority as the task in the chain with the least priority.

In the presence of overhead it is more efficient to create one ‘super-task’ that
executes all the blocks consecutively rather than incurring the overhead of a
request for each block in the chain. However, if the control structure is non-
preemptive it may be necessary to create several smaller ‘super-tasks’ to reduce
the amount of time that must be spent waiting for low priority tasks to complete.
Deciding how many tasks to create and how large to make them could be made on
the basis of how much CPU time needs to be freed up in order to find a task to

assign the currently worst priority.

4.6.2: More Complex Task Relations

There are fundamentally two ways different constraint paths can have a common
block: the common block can have more than one successor or it can have more
than one predecessor. We will first cons!der the simplest example of each type of
interdependent constraints.

Consider a block diagram in which block A has successors B and C. The
constraint paths for this diagram are A8 and AC. Since a request for A4 will always

cause requests for both 8 and C, BAB 'BAC' Therefore, neither 8 nor C will be

interrupted by requests for A as long as the real-time specifications are met.

Now, If Pg > Pc then the sequence of blocks executed whenever A is requested

-656-

i Tt A i S e S e i

More Complex Task Relations Section 4.5.2

is ABC. Otherwise the sequence AC8 will be executed. We can therefore replace
the tasks A4, 8, and C by a task that executes either ABC or AC8. The latency
speacification for the new task should be chosen so that it will be satisfied it and
only If the original latency specifications are satisfled. These latency

specifications are satisfied if and only if:

1ag 2 ty*tg*(time lost to Interrupts) (4-13)

and

lac 2t ﬂc*(tlme lost to interrupts) (4-14)
The CPU time used by interrupting tasks will be identical for both the A2C and ACB
sequence, except It ABC Is executed, then 8 must be considered an interrupting

task In equation (4-14), and similarly for C and equation (4-13). Therefore:

and

lace * min(lae . Lap=tc) (4-18)
and we should choose the sequence that ylelds the greater latency.

Now consider a block diagram in which C has two predecessors A and 8. The
constraint paths for this block diagram are AC and BC. It Is also quite possible to
raceive a request for C while C is already raquested or suspended. However, If C
was first roquostod‘ by A, the additional request will always be from 8 and vice
versa. |f this occurs the logical thing to do Is to have C executed only once, but
In general the sequence AC will be executed whenever A Is requested and BC will

be requestaed whenever 8 Is requested.

It ls sufficlent to replace A, B, and C by two tasks whichk executed AC and SC

-66-

More Complex Task Relations Section 4.5.2

respectively, ignoring the possibility that at times C may not need to be executed
by one of the tasks. However, if no assignment of priorities Is found treating these
tasks as Independent, it is not necessarlly true that no such assignment would
exist if the common block C were handied more carefully. The difficulty is that the

worst case sequence of requests becomes harder to construct.

4.6.3: Combining Static and Dynamic Control Structures

Rather than having the processor idle when no tasks are requested, it may be
possible to have the processor executing a static control structure for some
portion of the block diagram. In this case we would consider the static control
structure to be the lowest priority task. There are no real-time specifications on
this task in the usual sense, although we must still guarantee the latencies in the
static control structure. This can be done by modifying the latency specifications
so that even when the maximum amount of CPU time is used by the dynamic tasks,
the static control structure still runs often enough.

Consider a latency specification 'I for c,. The blocks in CI must be executed
once in every interval of duration 'I' The trace of the processor is no longer

completely determined by the static control structure since the dynamically
scheduled tasks will lnte.rrupt the static control structure. However, the amount of
CPU time used by these tasks is known. Therefore, we need only choose new
latency specifications for the statically executed constraints according to the

following equation:

-87-

|
|
|
1
|

Ll oy P e e L o e R T A e 2 g ilbids

Combining Static and Dynamic Control Structures Section 4.6.3
; K

Where constraints 1 through k are executed by the static priority interrupt control

structure.

6: Multiple Processor Control Structures

So far we have only considered control structures using a single processor. This
chapter discusses some of the issues involved in making use of more than one
processor.

The first question to consider is how does using more than one processor
improve the real-time performance of a block diagram schema? For static control
structures, Implementing constraint paths as control structures on separate
processors improves both the latency performance and the bandwidth performance
by decreasing the weights of the critical windows and decreasing the weight of
the cycle. At the limit where each constraint path Is implemented on its own

processor, the latency performance for constraint i = C; Is 2|C;| and the
bandwidth performance is 1/|C, |.

Similarly for dynamic control structures, if each constraint path were implemented
on separate processors than each could run at the highest priority. The latency

performance would be |C ;| and the bandwidth performance would be 1/|C, |.

However, these figures are not the best achievable. Each processor could
execute only a single block, but then data must be transferred between
processors. The Interprocessor communication time may or may not be negligible
depending on how the processors are interconnected. If data Is transferred using
an asynchronous serial transmission protocol, then at 9600 baud it would take
about one millisecond to transfer one byte between processors. Data values are
likely to take from one to four bytes, and a few milliseconds is a comparatively
large time, even on relatively slow microcomputers. On the other hand, if the data
Is transmitted eight bits in parallel, the communication time may be negligible.

Even if the communication cost is negligible, executing a single block on each

processor does not Improve the latency performance when each processor is
-69-

Multiple Processor Control Structures Section §

running a static control structure. Consider the example shown in figure 5-1.

A simple multl-processor control structure
Figure 6-1

Assume processor one is executing A* and processor two is executing B'. The

latency from a to b is 2tA. If the processors were synchronized so that processor

two started executing B as soon as processor one finished executing A then the

latency from a to c would be ZtA +t8. The processors are not synchronized, but

the phase difference is cannot be more than the period of either cycle. Therefore,

| is Zt‘ +tB+mln(tA. tB). But then If ‘B is less than ‘A' i

a,c is 2‘A +2t8,

a,Cc

exactly the same as if processor one were executing (AB)'. What, if anything,
has been gained by using two processors? The latency performance has not been
improved, but the bandwidth performance has been Improved to

mln(1/t‘. 1/!8) =1/%;.

For the constraint C Rl P c,k the latency for the entire path is:
1

K k-1
Z e, |+le; |+ Z min(|c; |, |e; |) (6-1)
J=1 ’]l /4 J=1 l ‘j 'j+1

The first summation in (51) is the basic CPU time needed to execute the path.
The rest of (6-1) is the phase delay between processors.

If the interprocessor communication times were not negligible, they would

-70-

At 5 el o €0 5

Multiple Processor Control Structures Section 6

increase the phase delay between processors. Let /PCT Jj+1 be the

Interprocessor communication time between the processor where ¢, is executed

J
and the processor where c, is executed. equation (5-1) becomes:
J#1
2 1o, I+1c, 1+ % minclc, I, le, D+ E) (62
c +|c + min(|c; |, |c + IPCT 652
T LY R R RUTT R = R e

If processor two could be synchronized with processor one then the latency
performance could be improved even more. Notice that for processor two, link b is
an input link. However, the input signal at link b does pnot change continuously.
Therefore, processor two should synchronize with processor one by executing a
dynamic control structure. If processor two can keep up with processor one (i.e. if

tB < tA) then the latency performance would improve to 2t A +tB.

If processor two cannot keep up with processor one, the latency performance
depends on whether or not processor one synchronizes with processor two. We

will assume that requests for B occurring when B is executing are remembered and

therefore processor two Is executing B". I processor one does not wait for
processor one, the processors are essentially be executing static control
structures.

if processor one synchronizes with processor two by idling until processor two is

ready to accept the next request, processor one still executes A.. but 4 is

executed once every tB units instead of once every t‘ units. The latency

performance becomes 2'8"8' For the constraint c, oy gy it Is necessary
k

1

to synchronize all k processors so each processor will idle until the next processor

-71-

| L

Multiple Processor Control Structures Section 6

Is ready to accept a new request. Then the latency performance becomes:

k k
2max(|c;, |)+ Z |c, | (63)
J=r T =2 Y

J
The first term in (5-3) is the latency performance of the static control structure
running on the first processor when synchronized to the slowest block in the

constraint path. The bandwidth performance of the multi-processor control

structure is:

1 (64)

k
max(|c, |)
f=t j
If the Interprocessor communications costs are not negligible, equation (5-3)

becomes:

2751:0::,] [+ 1§2 loy, [+ E:('PCTLM) (5-6)

Notice that in general, implementing each constraint path on a separate
processor will improve both the bandwidth and latency performance of the control
structure. Splitting a constraint path across several processors may not improve
the latency performance, especially if the communication costs are not negligible.

However, this will improve the bandwidth performance.

6.1: Assigning Control Structures to Multiple Processors

If the real-time specifications do not exceed the bounds implied by the equations
derived in the previous section, then the specifications can be met by a control
structure which assigns one block per processor. Although one can ;rguo that

computers are cheap, and getting cheaper aill the time, they are not free.
-72-

Assigning Control Structures to Multiple Processors Section 6.1

Therefore, we are generally interested in finding a control structure that satisfies
the real-time specifications that uses a minimal number of processors.

Unfortunately, this problem Is computationally intractable. It has been shown
that the problem of minimizing the number of processors for a dynamic control
structure problem is NP-complete for the special case of independent tasks and
deadlines cainciding with the next request for each task [4]. Also, Al Mok has
discovered that the problem of minimizing the number of processors needed to
Implement a static control structure is also NP-complete [17].

On the other hand, experience with similar problems has shown that reasonable
heuristics may exist. Dhall's work shows that statically assigning independent
tasks to processors running an earliest deadline schedular is directly equivalent to
the bin-packing problem. Although this is an NP-complete problem, several heurlistics
are known that are sup-optimal by a bounded ratio. These algorithms are directly
applicable to the scheduling problem. Assigning tasks to processors running static
priority schedulers is not equivalent to the bin-packing problem, but Dhall has
established similar bounds for simple first-fit and next-fit algorithms.

Therefore, it is reasonable to expect that similar bounds could be derived for
algorithm that assigned constraints to processors using a first-fit or next-fit
strategy. Some other factors should affect the assignment of tasks to processors.
If the block diagram can be partitioned into disjoint subdiagrams, and the
subdiagrams assigned to processors as a unit then no interprocessor communication
Is needed. However, the bandwidth or latency specifications on a constraint path
may require that the blocks of the constraint path be split among several

processors.

.78

- —_—

Assigning Control Structures to Multiple Processors Section 6.1

6.2: Dynamic Assignment of Processors

It doesn't make sense to assign processors dynamically if each processor Is
running a static control structure. However, if the processors are running dynamic
control structures (i.e. if we have requests for tasks), then a control structure
might do better by not assigning a processor to a task until it requests service.
Unfortunately, there are no known algorithms for scheduling more than one
processor in an optimal manner in the sense that the earliest deadline scheduler is
optimal for a single processor. In fact, Mok has shown that such an algorithm must
have knowledge about future requests. Unfortunately, limitations on the set of
tasks that dynamic schedulers can guarantee to schedule to meet their deadlines
are comparable to the restrictions imposed by statically assigning tasks to

processors 1

1. See [16] p87.

-74-

6: Summary and Conclusions

We have presented a model for realtime computations that provides precise
definitions of reaktime performance. The model has the additional advantage of
atrongly corresponding to intuition. This makes the model ideal for defining the
semantics of a realtime programming language. The model also avoids close
assoclation with any implementation. Therefore, the model is applicable to a wide

variety of systems. Conversely, a language based on this model should be easily

Implementable in a wide variety of ways, without encountering features of the

model too finely tuned to a particular implementation.

Several strategies for implementing control structures for block diagram systems
were investigated. The first strategy was to find a static exacution order for the
blocks in the diagram. Control structures of this type have been somewhat ignored
for time critical applications. An important result is that any such control structure
could be represented as a finite cycle, although the bounds on the length of the

cycle are so large that explicit enumeration is impractical as a synthesis technique.

A branch-and-bound synthesis method was developed, but unfortunately it is also
Impractical for large problems. We suspect that the synthesis problem is NP-
complete (computationally intractable), but have not proved this conjecture. In any
case, we belleve it is more promising to investigate fast heuristic algorithms for
synthesizing static control structures.

The next general strategy Investigated made use of the fact that in many
applications the input values change at discrete times. Under this assumption,
block diagram schemata are closer to traditional models of real-time computations.
Previous research has found optimal schedulers for the special case of one
processor and independent tasks. However, simpler static priority schedulers had

been Ignored except for the special case of the latency specifications being

76

Summary and Conclusions Section 6

identical to the bandwidth period. We developed an efficient algorithm for assigning
priorities to independent tasks when the latency specification Is less than the
bandwidth period. The synthesis techniques were modified to construct control
structures for block diagram schemata in which the blocks were not independent.

Since the analysis of the real-time performance of block diagram schemata under
a static priority control structure is similar to the analysis of static priority
queueing systems, the priority assignment algorithm can also be applied to priority
queueing systems.

Finally, we discussed some of the issues that arise when more than one
processor is avallable to the control structure. The realktime performance of
multiprocessor control structures was analyzed, and absolute bounds on the real
time performance for a block diagram schema were derived. If the reattime
specifications can be met by a multiprocessor control structure, the objective
becomes minimizing the number of processors needed to Implement a feasible
control structure. Several special cases are known to be NP-complete, so the
general problem Is also NP-complete. However, there is reason to believe that
simple algorithms will produce control structures using a number of processors that
differs from the minimal number by a bounded factor, although no specific algorithms
were Investigated.

Future work should probably concentrate on either proving various synthesis
problems to be NP-complete or finding efficient algorithms. in the event the
problems are intractable, the performance of efficient heuristic algorithms should be
studied. Certainly any implementation of a practical language system based on

block diagram schemata should attempt to find and improve such heuristic methods.

-76-

Summary and Conclusions Section 6

A practical system should a!so attempt make use of more of the special cases for

which efficient algorithms are known.

[

(2]

(3]

(4]

(6]

(6]

(71

(8]

(el

[10]

(1]

2]

References

Appelbe, W.F. and Ito, M.R,, Scheduling Heuristics in a Multiprogramming
Environment, Research Report, Department of Computer Science and
Department of Electrical Engineering, University of British Columbia, Vancouver,
B.C., Canada, V6T 1WS5 (February 1977).

Dennis, J.B., First Version of a Data Flow Procedure Language, TM-81, Project
MAC, M.I.T., Cambridge MA, 02139 (May 1975).

Deriouzos, M.L., "Control Robotics: The Procedural Control of Physical
Processes", Proceedings of the IFIP Congress 1974, pp 807-813.

Dhall, S.K., Scheduling Periodic-Time-Critical Jobs on Single Processor and
Multiprocessor Computing Systems, UIUCDCS-R-77-859, Department of
Computer Sclence, University of lllinols at Urbana-Champaign, Urbana, llinois
(April 1977).

Fiala, E., Scheduling of Real-Time Processes in a Time-Shared Environment,
S.M. Thesis, M.I.T. Department of Electrical Engineering, Cambridge MA, 02139
(May 1968).

Geiger, S.P., A New language Approach to Computerized Process Control, S.M.
Thesis, M.I.T. Department of Electrical Engineering, Cambridge MA, 02139
(February 1974).

Gonzalez, M.J. Jr., "Deterministic Processor Scheduling", ACM Computing
Surveys, Vol. 9, No. 3, pp173-204 (September 1977).

Graham, R.L., "Bounds on Multiprocessing Anomalies and Related Packing
Algorithms", Spring Joint Computer Conference, 1972, pp206-217.

Hewitt, C. and Baker, H.,, "Laws for Communicating Parallel Processes", 1977
IFIP Congress Proceedings, pp987-992 (1977).

Ibaraki, T., "The Power of Dominance Relations in Branch-and-Bound
Algorithms", Journal of the ACM, Vol. 24, No. 2, pp264-279 (April 1977).

Kelly, J.L. Jr., Lochbaum, C. and Vyssotsky, V.A.,, "A Block Diagram Compiler",
Bell System Technical Journal, Vol. 40, No. 3, pp669-676 (May 1961).

Kieburtz, R.B. and Hennessy, J.L., "TOMAL A High Level Programming Language
for Microprocessor Process Control Applications", ACM S/GPLAN Notices, Vol.
11, No. 4, pp127-134 (April 1978).

References

[18] Kohler, W.H. and Steiglitz, K., "Characterization and Theoretical Comparison of
Branch-and-Bound Algorithms for Permutation Problems", Journal of the ACM,
Vol. 21, No. 1, pp140-158 (January 1874).

[14] Liu, C.L., and Layland, J.W., "Scheduling Algorithms for Multiprogramming in a
Hard-Real-Time Environment", Journal of the ACM, Vol. 20, No. 1, ppd6-61
(January 1973).

[15] Manacher, G.K., "Production and Stabilization of Real-Time Task Schedules",
Journal of the ACM, Vol. 14, No. 3, ppa39-465 (July 1967).

[16] Mok, A.K., Task Scheduling in the Control Robotics Environment, TM-77,
Laboratory for Computer Science, M.l.T., Cambridge MA, 02139 (September
1978).

[17] Mok, AK., private communication.

[18] Pershing, J.A. Jr., Design of a Domain Specific Meta-Compiler for Systems
Using Graphical Input as a Source Language, S.M. Thesis, M.|.T. Department of
Electrical Engineering and Computer Science, Cambridge MA, 02139 (January
1978).

[19] Real Time Disk Operating System User's Manual, 093-000076-01, Data
General Corporation, Southboro, MA (1972).

[20] RTX-16 Real Time Executive User's Manual, 88A0114A-E, General Automation,
Incorporated, Anaheim, CA (1972).

[21] Teixeira, T.J., High Level Language for Process Control, WP-7, Engineering
Robotics Group, Project MAC, M.I.T., Cambridge MA, 02139 (January 1976).

[22] Weng, K., Stream-Oriented Computation in Recursive Data Flow Schemas, TM-
68, Project Mac, M.I.T., Cambridge MA, 02139 (Cctober 19785).

S ——

OFFICIAL DISTRIBUTION LIST

Defense Documentation Center
Cameron Station
Alexandria, VA 22314

12 copies

Office of Naval Research
Information Systems Program
Code 437
Arlington, VA 22217

2 copies

Office of Naval Research
Branch Office/Boston
495 Summer Street
Boston, MA 02210

1 copy

Office of Naval Research
Branch Office/Chicago
536 South Clark Street
Chicago, IL 60605

1 copy

Office of Naval Research
Branch Office/Pasadena
1030 East Green Street
Pasadena, CA 91106

1 copy

New York Area Office
715 Broadway - 5th floor
New York, N. Y. 10003

1 copy

Naval Research Laboratory
Technical Information Division
Code 2627
Washington, D. C. 20375

6 copies

Assistant Chief for Technology
Office of Naval Research
Code 200
Arlington, VA 22217
1 copy

Miiew of Naval Research
e 5%
Ml dmgren, YA 22217

1 copy

Dr. A. L. Slafkosky
Scientific Advisor
Commandant of the Marine Corps
(COdL; RD-'].)
Washington, D. C. 20380
1 copy

Office of Naval Research
Code 458
Arlington, VA 22217

1 copy

Naval Electronics Lab Center
Advanced Software Technology
Division - Code 5200
San Diego, CA 92152

1 copy

Mr. E. H. Gleissner

Naval Ship Research & Development Center

Computation & Math Department
Bethesda, MD 20084
1 copy

Captain Grace M. Hopper
NAICOM/MIS Planning Branch
(OP-916D)
Office of Chief of Naval Operations
Washington, D. C. 20350

1 copy

Mr. Kin B. Thompson
Technical Director
Information Systems Division
(OP-91T)
Office of Chief of Naval Operations
Washington, D. C. 20350

1 copy

Captain Richard L. Martin, USN
Commanding Officer
USS Francis Marion (LPA-249)
FPO New York, N. Y. 09501

1 copy

