
SCIEMATA . (U)REAL TIM€ CONTROL
NOOO1~ —T5—C—O66 j

UNCLASSIFIED MIT/LCS/TR

.R

- -
:

~~ LABOR ATORY FOR
~~ COM PUTER SCIENCE TECHNOLOGY

MIT/LCS/TR-204

REAL-TIME CONTROL
STRUCTUR ES FOR BLOCK

DIAGRAM SCHEMATA

o c ,

Thomas J . Teixeira

This research was supported by the Advanced Research
Projects Agency of the Department of Defense and was

monitored by the Office of Naval Research under
C..) contract no. N00014-75-C-0661
u_I

~Z ~hi~-’ ~~~~~~ - - ~~~~~~~~~~

*

U.. rr

545 TECHNOLOGY SQUARE , CAMBRIDGE , MASSACHUSETfS 02139

II- ~~ V~~~V V~~~ V & ~~1i ~~~~~~~~~~~~~~~~~~~~~

-~~~~ ~~~~~~~—~--~

—

~ I
SECURITY CLASSI FICATION OF THIS PAGE (1Th.n Pai. Ent.r .dJ

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
___ BEFORE_COMPLETING_FORMq REPpR~~NuMBE~ 2 5 Ac in~ ~ n a. e,.IE~~ T S CaT~~ -~~~ ~ UMSER

~~T/LCS/TR-~~~7 ‘~ p ‘s -Mes ;~ 1
“~~ ~~~~efl1.dP/RIOD COVEREDL~~ILI t.-—

14. S. Thesis - January 1978
~ea1—Time Control ~ tructures for ~1ock Diagram / S. PERFORMING ORG. REPORT NUMBER
Jchemata~~ 1’ MtT/LCS/TR-204
7. AuTIIOR(.) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ •. CONTRACT OR GRANT NUMDER(a)

Thomas k~Teixei~a 1~~ NØ~ 14-75-C-%~~~/
A REA S WORK UNIT NUMBERS

lIT/Laboratory for Computer Science
S. PERFORMING ORGANIZATION NAME AND ADDRESS ID. PROGRAM ELEMENT. PROJECT . TASK

545 Technology Square
Cambridge , MA 02139 ___________________________

Advanced Research Projects Agency Aug_tr $t78~
’7

I t . CONTROL.LI NGOFFICE NAME ANO ADDRESS

)eoartment of Defense iL uu..iii. arL4QQ Wilson o~~~~~rd
81lr.Llngton, _______________________________

SECURITY CLASS. (of his ,.por t)IS. MONITORING AGENCY NAME I ADORESS(II dlIl .r.nI horn ConI

)ff ice of Naval Research

Information Systems Program

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ nclassified~epartment of the Navy _____________________________
ISA. OECLA SSIFICATI ON/DOW NGRAO ING

SCHEDULE
krlington, VA 22217 _______________________________
IS. DISTRIBUTION STATEMENT (of his Ripen)

~pproved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of ffi . ab.ftace anI.r•d In Stock 20. ii dIff•ionf Iron. R.port)

IS. SUPPLEMENTARY NOTES

IS .  KEY WORDS (Conf lnu• en r*v.r.. aid. II n.c...ary and i d.nHIy by block numb.r)

real—time scheduling
)riority scheduling
deadline—driven scheduling

—~ oultiple processor real—time systems

~~~~~~ STRACT (Cen*Snu. on r.v.ra. aId. if n.cs...ry and fd.nff(y by block numb.r)

Block diagram schemata model computat ion systems in the context of an
external environment. The environment imposes various constraints on the real—timi
performance of any implementation of a block diagram schemata. The model is used
to provide precise definitions of real—time performance. The portion of the
implementation that affects the real—time performance is called the control
structure.

This research investigates several strategies for synthesizing control
structures to satisfy the external real—time specifications. The simnlest strate~ —

~~~~ ,

~~~ FORM
~~~ I JAN 73 1473 EDITION OF $ NOV SI IS OBSOLETE

.~~~~ • 
SECURITY CLASSI FICATION OF THIS PAGE (m.sn Dat•

qoq~~4L? 
~~

3 .U:’O~s ~~~



...
~~~~ 

.—•

~

-

~~

•

~~~~~~

C~~*UIF$CATIOW OF THIS PAsS(~~ an 0 .  ~~ 1uss4

~O. is to execute all the blocks in the diagram in some fixed order. Control
structures of this type have been somewhat ignored for time critical
applications. The synthesis problem is shown to be solvable in the sense
that acyclic control structure8 do not need to be considered . A branch—and—
bound synthesis algorithm is presented which requires exponential time in th~
worst case. Although no efficient synthesis algorithm was found , the
conjecture that the problem is NP—complete is not proved .

The other strategy for implementing control structures make use of the
fact that in some applications the input values change at discrete t imes.
Under this assumption, block diagram schemata are similar to traditiona l
models of real—time computations. An efficient algorithm for assigning fixed
priorities to independent tasks is presented that guarantees the real—time
specifications will be met. This algorithm relaxes previous restrictions
of the deadline for a task being coincident with its next request.

FInally, some of the issues involved with multiple processor control
structures are discussed , although no specific algorithms are investigated .

Nris
Doe

j ust, 
~~

ZTS’V~ ~~~
‘

DI~I

_ _ _ _ _  _ _

SECURITY  CLAS S IF ICAt ION OF tHIS PAG5(~~~on D .  ~~ lsri~ )

L L ‘—~~~~~‘~~~r~ . . ~~~~~~~ ~~~~~~~~~ 
—



w—~-. ~~~~~~~~~~~~~~~~~~~~ 
—- —

~~~

—,.- . - ,
-

M 1T/LC S/TR-204 I
REAL-TIME CONTROL STRUCTURES FOR BLOCK DIAGRAM SCHEMATA

by

Thomas Joseph Teixeira

August 1978

I

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambrldg. Massachusetts 02139

-.
~~~~~~~~~~~~~~~~~~ 

-
~
..



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ . -- --~-,—--~~~~~~ .-

REAL-TIME CONTROL STRUCTURES FOR BLOCK DIAGRAM SCHEMATA

by

Thomas Joseph Teixelra

This report is a minor revision of a thesis submitted to the Department of Electrical
Engineering and Computer Science on January 30, 1978 In partial fulfillment of the
requirements for the Degree of Master of Science.

ABSTRACT

Block diagram schemata model computation systems In the context of an
external environment. The environment imposes various constraints on the real-time
performance of any implementation of a block diagram schema. The model is used
to provide precise definitions of real-time performance. The portion of the
implementation that affects the real-time performance Is called the control
structure.

This research investigates several strategies for synthesizing control structures
to satisfy the external real-time specifications. The simplest strategy Is to
execute all the blocks in the diagram in some fixed order. Control structures of
this type have been somewhat ignored for time critical applIcations. The synthesis
problem is shown to be solvable in the sense that acyclic control structures do not
need to be considered. A branch-and-bound synthesis algorithm is presented which
requires exponential time In the worst case. Although no efficient synthesis
algorithm was found, the conjecture that the problem is NP-complete is not proved.

The other strategy for Implementing control structures makes use of the fact
that in some applications the Input values change at discrete times. Under this
assumption, block diagram schemata are similar to traditional models of real-time
computations. An efficient algorithm for assigning fixed priorities to Independent
tasks is presented that guarantees the real-time specifications will be met. This
algorithm relaxes previous restrictions of the deadline for a task being coincident
with Its next request.

Finally, some of the issues Involved with multiple processor control structures are
discussed, although no specific algorithms are Investigated.

Key Words and Phrases: real-time scheduling, i;riorlty scheduling, deadline-driven
scheduling, control structures

—.
~~~~~~~~

- --.-. --- . ...
~~~~

..
~~~~~~~~~~~~~~~~~~~~~~~~~~

Acknowl.dg.msnts

Steve Ward has been indispensable as an advisor In transforming my rather hazy

Ideas about real-time programming Into a workable research topic. His enthusiasm

kept this research progressing at many points when I was stuck or otherwise

sidetracked

Thanks are du. to John Pershing, Al Mok and Jay Wahid for their work in

providing a test bed for some of the ideas expressed In this thesis. Al Mok has

also been especially helpful with his knowledge about scheduling theory and

algorithms.

The entire Domain Specific Systems Research group has at some time

contributed to the computer facilities that made the actual production of this

document as well as th. research possible, especially John Pershing and Terry

Hay.s.

Finally, I wish to thank Giillan Teixelra for her ~motlonal and moral support

throughout the course of this research.

This research was supported by the Advanced Research Projects Agency of the

Department of D•tense and was monitored by the Offic e of Naval Research under

Contract Plo. P40001 4-75-C-0O61.

.3-

I . - - - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
-— -,..- . .



TabI. of Contents

I: Introduction 
- 

6.

1.1: Previous Work 6.
1.2: Statement of the Problem 10.
1.3: ThesIs Overview 11.

2: Block Diagram Schemata 13.

2.1: Real-Time Performance and Specifications 15.
2.2: Functionality of Blocks 18.
2.3: Example 21.

3: Static Control Structur.s 26.

3.1: Existence of Cyclic Control Structures 27.
3.2: Generating Real-Time Control Structures 33.
3.3: A Branch-and-Bound Method for Generating Control Structures 38.
3.3.1: Determining the Relative Frequency of Constraint Paths 38.
3.3.2: Strategies for Combining Solutions 40.
3.3.3: Performance of the Algorithm 45.
3.8.4: Speeding up the Algorithm 48.
3.3.5: PractIcal Experience 60.

3.4: HeurIstics for Generating Control Structures 52.

4: Static PriorIty Interrupt Control Structures 64.

4.1: Dynamic Control Structures 54.
4.2: Model for Ststic Interrupt Control Structures 55.
4.3: Assigning Priorities to Independent Tasks 60.
4.4: More Complex Models 62.
4.4.1: Scheduling Overhead 62.
4.4.2: Non-preemptive Control Structures 63.
4.4.3: Non-DIstinct Priorities 63.

4.6: Applications to the Control Structure Problem 64.
4.5.1: Chains of Independent Tasks 64.
4.6.2: More Complex Task Relations 65.
4.6.3: Combining Static and Dynamic Control Structures 67.

6: MultIple Processor Controi Structur.s 69.

5.1: Assigning Control Structures to Multiple Processors 72.
5.2: DynamIc Assignment of Processors 74.

I: Summary and Conclusions 75.

Reference . 78.

-4-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _-



- ~~~~~~ -~~~- -_ -.~ -.~w- , -~~~~~~~~~~~~~~~~~~ 
....—

~~ 
—fl- .-.—. - --. -

List of Figures

2-1: A block diagram schema requiring a multl processor control structure 17.
2-2: A Block Diagram Containing a Cycle 20.
2-3: Typical block diagram schema 21.
2-4: letencies for static control structures 22.
26: tat•ncl.s for dynamic control structures with static schedulers 24.

3-1: Typical Laxity Table 31.
3-2: Count.r Exampl. to Least Laxity Scheduling 37. h’ •
3-3: Block Diagram Where All Constraints Appear More Than Once 41.
3-4: R.giona of a Critical Window 46.
3-6: Count.r-Example to Slack as a Dominance Relation 46.

4-1: Counter-example to priority a I / latency 61.

5.1: A simple multi-processor control structure 70.

-6-

_ 
-—~~~~~~~~~~~~~~



___________ --.-—- — - .,,- -

Real-Tim. Control Structures for BlOCk Diagram Schemata

I Introduction

There are many applic ations for cotiputers where the real-time performance of

the program Is critical. ihese applications all involve aeyn4 hronous Interaction with

the external •nvironment and it is this envIronment that imposes the real-time

restrictions. For example, devic, drivers in operating systems must respond to

interrupts before the informatIon is lost. Another application Is In direct digital

• control and process monitoring.

However, moat high-level languages are not designed for producing time critical

programs. The languages allow the user to define appropriate functional and data

abstractions tor his probiem. but have no notion of real-time or asynchronous

interaction with the real world. Insteac . the user must design a control structure

for his problem suitable for a singis sequential process that will satisfy .li the

real-time constraints.

1.1: Previous Work

Many operating systems do have notions of real-time and external input and

output, but They are supported at a fairly low level (19, 20]. The application

program ty pically has to deal with priorities, setting real-time alarms, and responding

to interrupts. These actions may be ,~eces~a~y to satiety the constraints, but they

lo not bear a close relationship to the constraints. For example, It is seldom

abvlous what priorIty must he assigned to a task that must complete in ten

mlilla.conda and uses one millisecond of CPU time.

Early work on applications oriented real-time operating systems was done by

-6- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _


~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Previous Work Section 1.1

Fisia (6]. liala proposed a model of real-time processes che~4icterlzed by three

parameters per process.

( 1)  P1 the maximum CPU time used by process I.

(2) O~ the maximum delay allowed f rom the time process I requests service

to th. completion of servicing that request.

(3) T~ the minimum period between requests for process I.

Flaia proposes three ~cheduli ng algorithms for this model. The fi rst (and

sim plest ) executes the process that must complete the soonest. I.e. the process

with th . earliest deadline. This algorithm is optimal in the sens e that if any

schedule satisfies the deadline requirements for all the processes, so does the

earl iest deadline schedu le. However , this result is proved in the context of

process sw itching requiring negligible overhead.

fIai.’s second algorithm is a modification of the earlies t deadline scheduler that

minimizes the number of process switches while retaining the opt imallty condition of

the earliest deadline algorithm. This is accomplished by having the scheduler check

to see If the current process must be preempted when a process with an earlier

deadline requests serv ice. This Is done by simulating the action of the scheduler =

on the current requests. Unfortunately, this algorithm would require extensive

computation whenever a process requests serv ice. Accordingly , Fi&a’s third

algorithm pre- com putes a lower bound on the express ion required by the minimum

sw itching •lgodthm. With the lower bound , the extra com putat ion required by the

th ird algorithm requires an extra comparison at proce ss request time. The algorithm

is also optimal In the same sense and requIres less overhead than the sim pler

.7,.
I

_ _ _ _ _ _ _ _ _ _ _ _



Previous Work Section 1.1

earliest deadline algorithm.

However , Flala makes no attempt to integrate his model and scheduler into a

real-time language system One such approach is control robotics developed by

Dertouzos [3) and Geiger [6]. A control robotics program is organized as a set of

daomons which continuously monitor some condition and execute the body (a

corrective procedure) when the condition Is true. ‘The rnal-time specifications for a

deemon are the delay from when a condition becomes true to when the program

detects the condition (the recognition time) and the delay from detecting a

condItion and executing the body (the response time). Geiger’s implementation of

control robotics periodically samples the condition with a period slightly less than

the recognition time (the slightly higher rate will allow for preemption by other

daemon conditions). The daemon bodies are scheduled using an earliest deadline

scheduler.

One weakness of control robotics is that no guarantee of satisfying the real-time

constraints is made at compile time. This cot~ld be done If the user declared a

minimum period between executions of a daemon body and the complier determined

the computation time of the daemon bodies. Since it is Impossible to determine the

computation time for an arbitrary procedure, the compiler may require declarations

to determine the computation time.

A more substantial problem of Geiger’s implementation is the assumption that the

conditions for daemons are Independent of the execution of other daemon bodies.

therefore , complex structures of daemons whose conditions depend on variables

changed by other daemons could result in much unnecessary computation. All in all,

control robotics does not provide any more of a model for real-time programming

-8-

______________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _



- ~~~~~~~~~~~~~~~~~~ 
.‘,, - .- •

~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ 
.
~~~

.-..- ,•—— —•----,
~~~~~~~~~~~~~~~~~~~~~~ 

.

~

Previous Work Section 1.1

than Flala’s work beyond suggesting some syntax for identifyi~g tasks and

specifying their deadlines.

Another system that deals with real-time specifications at the user level Is

TOMAL (Task Oriented Microprocessor Language) [12]. On the surface TOMAL Is a

combination of a modern block structured programming language and a typical minl-

computer ‘real-time’ operating system. However, in addition to assigning static

priorities to tasks, a response time may be specified for a task. This response

time is similar to the recognition time for control robotics and specifies the maximum

delay between a request for a task activation and the initiation of that task.

Another feature of TOMAL is that Interrupt routines only request task activation and

do not respond to the Interrupt in any substantive way. This reduces the amount

of object code that does not run under the task scheduler and allows the TOMAL

system to check the consistency of the real-time constraints for the entire system.

However , TOMAL makes no attempt to verify real-time specifications on service

times for tasks.

Data flow schemata deserve mention as a real-time system since one proposed

applications is digital signal processing (2, 22]. It Is designed to facilitate highly

parallel computation and statements may be executed as soon as all their input

variables have been computed. if several statements are executable an arbitrary

statement is chosen. However, with the addition of real-time constraints to mediate

this decision, data flow would be a powerful real-time system. The other major =1
drawback of data-flow Is that is not suited for implementation on conventional 

‘

computer architectures.

-a-

—. —~~~~~~~~~~~~~ -— ~~~~~~~~~~~ - ‘. -
- 

~~~~~~~~~ . -... . ~~~~~~~ ~~~~~~~~~~~~~~~ -~~~~~~~~ - --
~~~~ 

-. —~~~



1.2: Statement of the Problem

The goal of this research Is to develop theory that is applicable to the

implementation of a programming system designed to the restricted domain of time-

critical applications. The main criterion of the suitability of the language to this

domaIn should be that small changes In the real-time specifications should result in

small, obvious changes in the source program. It is conceivable, and Indeed

desirable, that these changes could have a dramatic effect on the object program

produced. This reorganization of the object program is precisely the process that

should be automated.

Conventional languages already provide facilities for functional and data

abstraction, and numerous researchers are already working in this area. Therefore,

this research wIll focus on the global control structure for programs. This includes

issues such as the number of processors to use in an implementation, deciding

what interrupt structure (If any) is necessary, decomposing the program into tasks,

and assigning parameters required by the appropriate task scheduler.

Since normal language semantic issues are being avoided, the description of a

program can be made extremely simple. The intuitive model for a real-time program

Is that of continuous time analog block diagrams. The graph defines a precedence

relation among operators Identical to the data flow in the diagram. The program will

be specified as a directed graph of actions to be performed and their functional

dependence, with arcs of the graph representing data paths. The graph must be

acyclic since cycles in a block diagram represent feedback systems. Automatically

producing an object program that solves the feedback equation would require more

detailed semantics for the programs as well as other disciplines outside the scope

-1o~

• ~~~~~~~~~~~~~~ —.-- -. -



~~~~~~~~
-.

~~~~~~~~~~~~~~~~~~ 
- •.- -- 

- -
~~~

• - - - •
• ~~~~~~~~~~~~~~~~ ~~~

r

I
Statement of the Problem Section 1.2

of this research. However, In some special cases, cyc es can be handles by

rearranging the block diagram. A strict upper-bound must be placed on the

computation time required for each action. The real-time constraints specify upper

bounds of the propagation delays through the block diagram and of the bandwIdths

of the input and output signals.

• 1.3: ThesIs Overview

Chapter 2 develops the block diagram model of computation. The block diagram

model is a program schematic model similar to data flow. However, real-time and an

external environment are explicit in the model. In addition, the block diagram model

separates the data-flow of the schema from the control flow, which Is embodied in

the control structure. The control structure specifies the execution order of the

blocks at object time. The research problem may be formalized as finding control

structures for block diagram schemas which satisfy the given real-time

specifications. The major use of the model Is to define the semantics of the real-

time specifications.

Chapter 3 investigates various static control structures (control structures that

are independent of the data values at object time). Although static control

structures ma~ be used widely In specific applications (particularly In small,

dedicated systems such as those Implemented on microcomputers), they have been

• Ignored by designers of reel-time programming systems, mainly because their real-

time performance in the general case has not been studied.

Chapter 4 investigates extended semantics where the external inputs do not

change continuously . in this situation, a dynamic control structure may be used. A

-11-

• ~~~~ - • - • •
•
I

- —.- ~- ~~~~~~~~~~‘~~~~
‘.‘

~~~~ ‘- • • •~~~~~~~~ -~—~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘‘ —~~~~~
-r- —

~~

Thesis Overview Section 1.3

dynamic control structure Is a control structure that does depend on the data

values at object tIme. The chapter Investigates a subclass of dynamic control

structures, namely statie priority Interrupt control structures. The prototypical

example Is an interrupt system where the system does nothing until an Input

changes, although it includes systems without physical interrupts where the inputs

are sampled. The priorities are static as opposed to the earliest deadline

scheduler where the priority of a task Is a function of time.

• Chapter 5 discusses some of the issues that arise when more than one

processor is available for the implementation. The real-time performance of

multiprocessor systems are analyzed and the real-time performance of a block

• diagram schema is bounded. Some techniques for distributing the processing among

several processors are suggested, although specific algorithms are not studied.

-12-

• • -~~~~-- .- -~~~~~~~~~~



- ---- , ,-•--
~~~~~~~~

.--- -- --,-•
~~~

—--- -— --
~~~~

------- ---.
~
——•- - - -

~
--‘w

~~~--— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
• •

2: Block Diagram Schemata

Most models of computation do not capture the notion of a “real-time” system

which monitors continuously changing inputs from some external environment. Block

dIagram schemata model the external environment explicitly and recognize the

existence of real-time specifications placed by the environment on the computing

mechanism. They are based on the Intuitive model of the conventional analog block

diagram whose Inputs and outputs are changing continuously. An (m,n) block

diagram schema consists of an (mn) block diagram module, a control structure, a

configuration and an environment whIch manipulates the configuratIon

asynchronously with the control structure. Within the model, It is assumed that

values change continuously. Obviously, the computations cannot be performed

continuously on a digItal computer. The real-time specifications determine how

• i often the control structure must compute new values, as well as how fast it must

• compute them.

An (m,n) block diagram module Is a directed graph whose nodes are either

blocks or links. The terms predecessor and successor will be used with the

conventional definitions. Data is stored in the links while the blocks perform the

actual computation. Accordingly, only one arc may point to each link. The graph

must be proper In the sense that arcs may not point from links to links or from

blocks to blocks. Upper-case letters will be used to denote blocks and lower case

• letters to denote links. The predecessor of a link Is cailed the specifier of that

link and the successors of a link are called the watchers of the link. The

predecessors and successors of a block are called the Inputs and outputs of the

block respectively.

An (m,n) module has m lInks with no input arcs (Input links) and n links with no

output arcs (output links). The input links receive their values train an external,

-13-

• - 
- -~ -



- -
~~
- - -— —----•. .- -

~~
-—- ,-- .

Block Diagram Schemata Section 2

• continuous time function called the Input signal . The valises at the output links

define an external, continuous time function called the output signal.

The model assumes the existence of a global clock which defines the passage

of real time. Hewitt argues against the use of global clocks since they cannot be

• implemented in distributed systems (9]. While Hewitt’s objections against global
• clocks are valid, assigning times within Hewitt’s framework of local orderings would

be more complicated. This complexity Is unnecessary sInce the events being timed

are always ordered by one of Hewitt’s local orderings,

A configuration is an assignment of tokens to the links of a schema. The token

contains a value and a set of labels of the form (link , birth). These labels indicate

when the token arrived at the Input link link. Each link always contains some

token, since signals are always defined In a continuous time block diagram.

The computation of a block diagram schema Is described by a series of

• snapshots. A snapshot consists of a block diagram module and an associated

configuration. The Initial snapshot assigns null values to all tokens except for

tokens on the Input links of the schema which are assigned the current value of

the input signal. The label set of all links is Initialized to ( (link, 0)). The

computation proceeds from one snapshot to the next through the firing of blocks.

The control structure is the strategy for choosing which block to Ike next. The

fired block accesses the tokens on its Input links, and replaces the tokens on its

output li&is. The label set for the output token becomes the union of the old label

set of the token and the label sets that were assigned to the tokens on .11 the

input links of the block. The time in the label (l ,t)  for the link I at each Input arc

of the fired block is replaced by the label (I,tlme ), where time Ia the current

[ 

-14-



Block DIagram Schemata SectIon 2

contents of the global clock. This action occurs after any tokens have been

replaced on the output links, but the time for the new label sets is ImmedIately

after the input tokens were accessed. in addition, if I is an Input link, its value is

set to the current value of the input signal. The block need not replace any output

tokens. This differs from data flow since tokens are not removed from the input

links after a block is fired. The data flow restriction Is not appropriate since the

• value of a token is defined at all times.

The amount of computation time used by block A Is denoted t~ . if the control

structure fires block A on some processor at time t, that processor will complete

and replace the output tokens on that block by the time t+tA . The computation

times used will be upper bounds either computed by whatever language processor

is used to create the primitIve blocks or declared by the user.

2.1: Real-Time Performance and Specifications

A block diagram schema is an approximation to a continuous time block diagram.

There are many factors affecting the quality of the approximation. However, the

factors influenced by the control structure are how long the schema takes to

compute the values of output tokens from the input tokens, and how often It

performs these computations. The real-time specifications will place bounds on

these quantities. A control structure that satisfies all the real-time specifications is

called a feasible control structure.

The age of a token with respect to a link I at time f Is defined as t-t 0 it (I, t~ )

Is in the label set of the token, and undefined otherwise. The latency between

-18-

• •~~-. .. • - ---- ~~•. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -- . Li4



• Real-Time Performance and Specifications Section 2.1

links a end b is denoted and is the upper bound of the age at any time of

tokens at b with respect to lInk a. The user can speclty an upper bound on the

latency between two links. The first link will be an input link of the schema and

the second link will be an output link.

latency specifications can also be expressed in terms of continuous-time

functions:

~ ( t )  — F(a(t —A(t )), . ), A(t ) �l~~ (2-1)

Here ~ (t) is the function whose value Is the value of the token at link b at time t;

a(t ) Is the function whose value Is the signal at link a at time t; &(t ) corresponds

to the age of the tokens at link b. Notice that A(t ) is generally ~gt constant, but

• is bounded. The user knows how close £(t) must be to b(t) - F(a( t), .. ). Using

Information about the magnitude of P and a end their derivatives, the user can use

equation (2-1) to calculate the latency specifications necessary to achieve the

desired accuracy of

The other measure of real-time perfos mance is how often new values are

computed. The bandwidth from link a to link b (notation is the maximum rate

at which the control structure must compute new values at b from values at a. The

bandwidth specification is not easily expressible in terms of contInuous-time

functions. It may be thought of as a requIrement on how often the value of £(t )

must change.

The bandwidth specification may seem superTh.aous since the latency

specifications also Implies how often the value of £f t)  changes. However, It is

possible for a multiple processor control structure to exhibit bandwidth performance

-18- 

~~~~~~~~~~~~~~~~~~~~~~~ - •


-
~~~~~

- —
~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----- -- 

•
-

-

~~~ 

-

i
• Real-Time Performance and SpecificatIons Section 2.1

that exceeds the rate implIed by the latency specification. An example is shown in

figure 2-1.

a 

A 

b~~~ 

B 

c

>

• tA~~
l Omsec

— l omsec
Ba,c - 75/sec

- 4Omsec

A block diagram schema requiring a multi-processor control structure
Figure 2-1

irs this example, both A and B require ten milliseconds of computation time. A

single processor control structure that executes ABABAB can guarantee a

latency from a to c of forty mIllIseconds and a bandwidth from a to c of fifty per

second. However, if processor one executes MA and processor two

executes BBB • •  . , then the latency from a to b is still only forty milliseconds but

the bandwidth increases to one hundred.

• While the block diagram model Is useful for defining performance for real-time

programs, It does not yield many insights into the problem of synthesizing a feasible

control structure. The graph Itself resembles a partIal order on a set of tasks, but

the semantics of block diagram schemata are not as restrictive as this partial

order. In most schematic models, a teak must not be executed until all its

predecessors have been executed since (presumably) it would not have data

available at all its inputs. The block diagram model has no such restriction and as

-17-

• ___________ 
~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —— ~~~~~~~~ • —~~~~~~~

—
~~~~~~



________ • 
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~ •.

~~ ~~
— .,..——•••- - • -..—.

~~~ 

.—

~~

--,-.—.--

~

.——- .——,

~

•—. - -•••.— —••——• —•——... •—.-• .,— -

Real-Time Performance and Specifications Section 2.1

a result is able to execute som e parts of the schema more otten than other parts.

On the other hand, there are certain execution orders that can be ruled out

since they are obviously ir’~fflcient. For example, once a block has been fired, It

need not be fired again until one of its predecessors has been fired again since all

its Inputs will be unchanged. Therefore, it outputs will not change. Similarly, if no

successor of a block A is fired between firings of A, the rrevious execution of A

was unnecessary since no block looked at the previous values of the tokens on

the output links of A.

If these restrictions are combined, each firing of a block must be surrounded (in

time) by at least one predecessor and at least one successor. Equivalently, the

allowable execution sequences may be found by shuffling all the paths from an

Input link to an output link. These path, will be referred to as constraint paths or

just constraints.

• 2.2: Functionality of Blocks

The semantics of block diagram schemata make some useful block functions

awkward to implement. For example, a block that performs differentiation is

essential for applications In teal-time process monItoring and control. In classical

direct digItal control, the system Is discr.tlzed by sampling at some specIfic period.

Differentlators are replaced by unit delays and the feedback gains are adjusted

appropriately. This is possible only because the Inputs are sampled at a known

frequency.

in block diagram schemata there is no guar6ntee of periodic execution. The

bandwidth specIfications set a lower bound on how often a block must be
-18- 

-—-~~~.



. - • .
~~

••-.•-- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- -
— — — _

.- .

FunctionalIty of Blocks Section 2.2

executed and a different lower bound may be implied by the latency specifications.

They do not place any upper bound on how often the block Is executed.

Therefore, it is impossible to tell a p,ior/ when and how often a block will be

executed. This would seem to rule out any blocks that would require state

variables, but this is not true. A white noise generator could be Implemented using

a pseudo-random number generator. This would use a state variable, but it would

not run into any problems by not knowing how often it is executed. But most other

functions that need to produce or transform a time dependent sequence of values

will be impos sible to implement.

The only general solution to the problem is to have a real-time clock as part of

the system. Then a differentiation block could remember both its previous Input and

the time it was last executed and compute the obvious first order approximation.

The major difficulty is that the real-time clock would have to provide much finer

resolution than the 60 cycle clocks found in typical computer systems.

The user should be able to define his own time dependent functions since any

selection of primitive blocks will probably turn out to be too limited for iome

application. Therefore, it becomes necessary to provide some primitive blocks

which would probably lead to nonsensical programs If used carelessly. in particular,

if the user had a unit delay block and access to the real-time clock he could define

arbitrary approximations to diflerentiators, although undisciplined used of the unit

delay block would result in useless programs.

implementing integration would still be a problem since the block diagram for a

fkst order integrator would contain a cycle (see figure 2-2). The problem with

cycles Is that it Is unclear whether the cycle represents use of a state variable,

-19-

-, ~
-
~
---- -- —---..•

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-•------ • ---

~~~

-

~

-•-

~~~~~~~~~~~~~~~~ :-~~~~~ ~~~ -••g~~-’~ 
- 

~~~

Functionality of Blocks Section 2.2

as in data flow, or implied solution of simultaneous equations, as in continuous time

block diagrams. in the case of Int.grato,s It is clear that the cycle represents use

of a state variable, since the cycle contains a unit deiay block. in this case, the

cycle can be broken at the input to the delay block. The delay block Is treated as

a watcher of link e, even though it gets its input from link f . This transformation

alters the ordar in which the blocks are executed by changing the constraint

piths. Unit delays were handled by a similar transformation In &OOI (11], a

system for simulating discrete time block diagrams, and would be handled in the

same way by a programmer (21].

t ime

+a
C

0

d

f-w
b e

9
0

A Block Diagram Containing a Cycle
FIgure 2-2

-20-

~- -—- -
~~

•
~~~~~~



Example Section 2.3

2.3: Example

The interaction between the real-time specifications and the control structure

can be illustrated by a series of examples. In these examples the block diagram

module is left unchanged while the latency and bandwidth specifications are varied.

These variations will necessitate changes in the control structure used to

implement the block diagram schema. The block diagram module itself is shown in

figure 2-3.

b

tA lO

ta -S
tc — 10
to -S

Typical block diagram schema
FIgure 2-3

The simplest control structures to consider are cycles that repeatedly execute

the blocks in some fixed order. There 3! (
~~ 

6) ways of executing four blocks once

per cycle (ignoring starting transients). For a small example like this It is feasible

to enumerate all such cycles and test them to see If they satisfy the latency

-21-



-- -.—----

Example Section 2.3

constraints~ . All these control structures are indopendent of when new tokens

actually arrive. The worse-case assumption Is that a new token arrives immediately

after the previous token Is marked old. This assumption is used in calculating

worst-case latencles, which are shown In figure 24. Notice that although ABCD is

better than ACBD and ADBC is better than ADCB, there s no best control structure.

In tact, we can choose latency specifications such that only one of the control

structures will work. The first six control structures In figure 2-4 sample the inputs

once per cycle, I.e. once every 30 time units. However, If any of the bandwidths

Bac~ 
B

~~, 
or Bd f  is greater than 1/30 then some other control structure must be

used.

Control
Structure ‘a.c 1a,f d,f

ABCD 45 60 45
ACBO 55 60 50
ACDB 80 55 46
ADCB 60 46 60
ADBC 50 46 66
ABDC 46 50 60
ABDCD 50 65 50
ADBCD 55 50 50
ABCABD 40 65 75
ACDBCD 75 70 40
ADBADC 65 40 70

Latencies for static control structures
Figure 2-4

A slightly more complicated class of control structures is cycles whera sofia

blocks may be executed more than once. For example, the control structure

1. However, such an algorithm is not practical since the computation time taken by
such an algorithm would grow exponentially with the number of blocks.

-22-

~~~~~~~~~~~~ 
— --—~~~~~~~

Example Section 2.~

ABCABD has worst-case latencles as shown In figi re 2-4. T his control structure will

• satisfy its bandwidth constraints if B1c~
Is less than one every twenty time units

and B5~ and BØ f are less than one every forty-five time units.

The next class of control structures to consider are dynamic control structures

with static priority scheduling. ihese control structures make use of the current

environment to determine which blocks to fire next. The dynamic control structures

assume that the values of tokens at input links do not change continuously. When

the value of a token at an input link changes , a request is made for a set of tashs.

The request is serviced by firing a fixed sequence of blocks as specified by the

• task. Since the processor is generally busy when a request occurs, the requests

are remembered until the processor Is Idle, when one of the requested tasks Is

selected to be executed. Each task Is assigned an integer priority . The task with

the highest priority is servIced next. The scheduler is static since the priority for

a task Is always the same relative to other tasks. The earliest deadline scheduler

Is an example of a dynamic priority scheduler , since the priority of a task depends

on its current deadline. if the task being serviced can be temporarily suspended,

the control structure is preemptive.

A dynamic control structure need not be Interrupt driven. For example , the

control structure could sample the inputs between executing blocks. However,

preemptive control structures cannot be implemented wIthout lnterruputs.

• In the example of figure 2-3, there are many ways to construct tasks to be

requested by changing inputs. One such task system Is to fire ARD (or ADS) when

the value at a changes, and CD when the value at d changes. The worst case

occui s when the values at a and d change simultaneously. The iatencles for this

-23-

_ _ _ _ _ • •— ~~

.- ,
~
- •-

Example Section 2.3

case are shown In figure 2-5. These latencies can be sustained only if the

bandwidths at a and d are both less than once every 35 time units (otherwise the

control structure would fall behind). In a sustained worst case, new tokens arrive

once every 35 tIme units. A trace of block firings would seem to indicate that the

static control structure ABDCD is being executed, which has Istencies 15 to 20

units larger than those for the dynamic control structure. However, In the dynamic

case it is known exactly when the Input signal change. in particular, the processor

will be idle If more than 35 time units elapse between a change in input signals, so

the processor will be able to respond to a change immediately. In a static control

structure, the change would not be responded to until the control structure gets

around to it.

Task String
Priority ~ac I~~fl 1d, f

1 2
=

* ABO CD 30 35 15
ADS CD 36 30 15
CD ABD 16 20 35
CD ADS 20 16 35

Latencies for dynamic control structures with static schedulers
FIgure 2-5

-24-

-- - --.~~~~ -—•.—~~~~~~~~~~~~~~ -~~~~~—-~~

‘~~~~ ‘
-

~~~~~~~ ~~~~~~~~~~ ~~~~~~~ 
- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-- —--

~~~~~~~~ •~~~~~~~~~~~~ • ~~~~~~ 
-- —  -—---—-

~ 
--- — ---

~~
• - -

3t Stat ic Control Structures

The main function of the control structure in a schema is to specify when to lire

each block. If the control structure is independent of the configuration (i.e.

unaffected by changes made by the environment) it is a static control structure.

An example of a static control structure is a loop which fires all of the blocks in

the schema cyclically. Control structures which make use of configuration (e.g. via

• interrupts) are celled dynamic control structures.

The latency specIfication from a to b will be satisfied only it all the blocks along

all paths from a to b are fired at least once during each time interval of duration

b time units. Otherwise there would be time intervals longer th an I b when thea,

• a-label at b will not change and theretore the age with respect to a of the token at

b will be greater than ‘a bS  Similarly, the bandwidth specification tram a to b will be

satisfied If and only if the Interval between firing the blocks along the constraint

paths Is less then 1 /

• For single processor control structures It is possible to construct a trac. of the

blocks that are fired by the control structure. The trace Is a string over an

alphabet Z whose elements correspond to the blocks of the schema. Each element

A of 2 is assigned a weight (notation I~ ) equal to tA . The weight of a string is

defined to be the sum of the weight of Its elements. A string S 1 contains S2 It all

the elements of 
~2 app.ar in S 1 In the order they appear in S2. For example , the

string A8CDE contains th, string BD, even though BD Is not a substrlng of ABCD( .

Regular expressions will be used to denote sets of strings. In particular, it S is a

string, S~ denotes the set of strings S, SS, SSS, as well as the empty string.

It Is necessary to model intervals in continuous time of arbitrary origin and

duration , since th . latency specifications require j~ intervals of specific durati on to

-26-



-
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

•

Static Control Structures Section S

contain the corresponding constraint path. Therefore the weight of the initial and

final elements of a string may be counted at less than their nominal weights. For

example, If Ia i ‘ -

~~
- w (weighting

~
and a

*
at a 1 and Ia~ I), then

(a i - - a~] is a string of weIght less than w since both a 1 and a
*

are weIghted

at less than a 1 and I a~I. However, If the Initial cr final elements do not have

f ull weights, the may not be included as part of any contained string. Weighting

• these elements at less than their full values corresponds to shrinking an Interval of

size w in continuous time: if the interval starts after starts executing, then the

interval does not contain a 1 reading Its inputs. A string will be preceded by a

or followed by a ‘]‘ If the first or last element In the string Is weighted at less then

Its nominal value.

A single processor static control structure is completely specified by its trace,

which is determined at compile time (hence the name static control structure). The

real-time specifications on the control structure can be rephrased as constraints on

Its trace. In particular, the latency specification from a to b Is satisfied if and only

it all the constraint paths from a to b are contained in every substring in the trace

of weight 1a,b’ The bandwidth specIfication is satisfied if and only if the weight of

all subst rings between occurrences of the constraint paths are less than 1 /

At this point It Is possible to deal exclusively with the trace of the control

structure and the constraint paths. Constraint path I will be denoted C1 with

latency specification l~ and bandwidth specIfication B,. If C, is a path from a to b,

I, — ~~ and B~ - B.,b. It will also be necessary to deal wIth the tails of the

-26-

-
—•.*—~~~~~—-- - L

• .---- --
~~~~

---
~

--.--•-—- ----
~
----——-—-.-

~ ~~~~~~~~~~~~~ 
• * -  -•

Static Control Structures Section 3

constraint paths. if C1 — c ,, 1c, 2  ~~~~ where c,j eZ then the Jth tail of C1 Is

C1~ — C~ j C~ j~ 1 
. . .

Since the control structure must satisfy the real-time specifications for all time,

the trace corresponding to the control structuro will be a Infinitely long string.

Since the control structure can be Implemented only If the trace can be generated

• using a finite program, It would be very awkward if the only feasible control

• structures were acyclic. Fortunately, it can be proved that if any feasible control

structure exists, then there exists a feasIble control structure that fires the blocks

in some cyclic order.

3.1: Existence of Cyclic Control Structures

The theorem proved in this section can be stated as:
Suppose there exists a string w — a 1a2a3 • such that w satisfies
the real-tIme constraints. Then there also exists a finite string $ such that
the string 

~~

‘ also satisfies the real-time specifications.

This theorem will be proved usIng several lemmas.

Deflnition~ A critical window of a control structure w for the constraint C1 is a

substring ~ 
- a~ 

. ..  am of e that contains two occurrences of C,, but

[*~) contains no occurrences of C1.

The most critical window for C1 is the critical wIndow with the greatest
weight.

Lemma 3-1: The strIng e satisfies the latency specifications for C1 If and only if
I#~ I~~I, 

for the most critIcal wendow in v.

-27-



‘I!’

i

• Existence of Cyclic Control Structures Section 3.1

Proof;
only if; Assume ~ satisfies the real-time specifications. Then any substring
of c. of weight I~ contains C1. in particular, the substrlng

of weight I. must contain C1. Since (# j ] does not

contain C1, the substring [#~ of weIght ~ -., where s is arbitrarily sm~til
• contains one occurrence of C,. Therefore, 1* ,) � 1+., ø~~0.

jf~ 
Assume the most critical wIndow has weight greater than l~. Let y

be any substring of (# ,j where Iii - ~~~ exists since:

• I[*,]I —

Since is a critical window, then [# j ] contains no occurrences of C,.
But p Is a substring of (# j ] and also does not contain C,. Hence, ~ is a

substring of ~ of weight ~ that does not contain the constraint path.

• Therefore, e does not satisfy the latency specifications. U

Coroilarv Since contains two occurrences of C1, the period between
successive occurrences of C1 must be less than l~, - IC 1 I.

This lemma shows there Is a time limit between the starts of successive

occurrences of C1. The bandwidth specifications directly limit this interval.

Therefore, it will be assumed that the latency specifications are more severe than

the bandwidth specifications. If not, the latency specifications can be adjusted so

that:

l, �
j
1

.+1C
1 1

The time remaining until the start of the next appearance of a constraint path is

called the laxity of that constraint. Given a control structure, we can construct a

table of laxltIes for each position in the corresponding string w with the property

that the table entries are non-negative If and only If .. satisfies the latency

specifications. The only difficulty is in accurately determining the start of an

occurrence of a constraint string. This will be handled by keeping laxities for the
-28-

LA



-• .• • —r••-- 
~
-••,,- -•

~~--,~•‘~~~~..  —.v~--•—~--.—-~•. . —.  
~~~~~ 

-
~

—-
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~ 

-

~

------ — — -

Existence of Cyclic Control Structures Section 3.1

tails of the constraint strings. The true laxity for a string will be reflected in the

lax ities of its tails If the start of the constraint path is falsely identified.

An element of the table d[i ,J,A)  is the laxity for the path C,1 Just before is

fired. The table should be thought of as rectangular with columns labeled by

elements of w. The entries in the first column are:

d(i ,j , O) . I,— I C i ,j I (3-1)

since the constraint path C1 must occur by l~ - I C1~ I. The remaining columns can

be 1~led In by simple recursion rules.

It the next element in e Is not the same as the first element In a constraint

path , the laxity for that path decreases by the weight of that element:

•
*~~

c
,j

s3d(I,1,A+1] — d[/,j ,* 1 1 A I (3-2)

There are two possibilities if the next element In the solution Is the same as the

~ st element In a constraint path. If this 1* the start of an occurrence of a

constraint path, the laxity for the tail of that path should be no more than the

current laxity for the constraint path. It Is possible that the hail will already have

a more severe laxity since different constraint paths can have identical tails. In

addition , the laxity for the whole constraint path will become the original limit the

Instant after the firs t element appears. Therefore , the laxity becomes the original

laxity minus the weight of the first element.

• However, If is gg~ the start of an occurrence of C6 1 ,,  the laxity should

decrease by CA I. Fortunate ly, this problem wil l be handled automatical ly by

assuming that an occurrence of C1,1 starts whenever CA - Cj j .  If it is not pert of

• an occurrence of C1,1~ c,,1 will appear again before all of C6 1  appears. When this
-29-

— ~~~~~~~~~ • _ _ _ _ _ _ _ _ _



Existence of Cyclic Control Structures Section 3.1

happens, the laxity for C11~ 1 will have decreased by the amount the laxity for

C,,1 should have decreased If the start of the path had not been incorrectly

Identified. When c11 appears again, the laxity for C.1÷1 wIll be less than the

laxity for C,1. Therefore:

d(i , j+ 1 ,k +1] — min(d(l,j,Ic],d[!.j+1 ,A]— I a,~ I)

• 
6A~~i,j ~ d[/,jJi+1)— 1,— IC ,1 l— k ~~I

Equations (3-2) and (3-3) can be transformed to produce rules for computing the

R+1 st column of the laxity table from the kth column:

l,— I C ,,j I— Ia A I lfa k~
cI,J

d(i,j,A+ 1] — mln(d[ I ,j - 1 ,A] ,  d(I ,j ,R ] — I ak I) If ak~
clJ_ l  (3-4)

d(i,j,A]- Ia
* 

I If

As an example, figure 3-1 shows the laxity table for the control structure ABCD

and the block diagram module from figure 2-3.

In this table, the laxitIes at time 60 are identical to the laxities at time 30. The

next column In the table would be identical to the column at time 40. The rest of

the table becomes periodic, and all the entries are non-negative. The perlodlcity

allows us to erove that (ABCD )
W 

will satisfy the latency specifications for all time.

This is formalized in the following lemmas:

• Lemma 3-2; if:
V,,1 d(I,j, m]  ~ d’(I ,j,* ] and ak

then:

-30-

i • •~~~~~~~~~~~ •~~ • • • _ ____  •_ _ •~~~~~~~~~~~~



- • —,—--• -_,-~~~ ~~~~~~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~ _
~~~~~~ 

r~~~~~~~~~--

I
Existence of Cyclic Control Structures Section 3.1

A B C D A B C D A

—
(0) (10) fl~~

(26) (30) (40) j4~~ ~~~~ (60) j~9)
AB 30 20 15 5 0 20 16 5 0

B 40 30 35 25 20 0 35 25 20 . -

CD 30 20 15 20 15 5 0 20 16

0 40 30 25 16 36 25 20 0 35

AD 46 35 30 20 15 35
•

30 _ 20 15 . - .

O 65 45 40 30 50
-

15 10 0 50

I.

.

tA lO t B S t C l O t D 6

- 46
~CD ~~ ~AD - 60

Typical Laxity Table
Figure 3-1

V,1 d(I ,j ,m+1] � d ’[i ,j , A +l]

Proof: From case analysis of (3-4) and elementary alget.ra. U

Lemma 3-3: Let:

ak-i

-

It . — y satisfies the latency specifications and:
V,,1 d[I,J,k] — d(I ,j ,rn]

thn:

—e l
la
,
2

- ..

also satisfies the latency specifications.

Proof; Construct the laxity table ~~for w’:
V1,~ d(I,j, 0] — I, — I C,,, I — d(1,j, 0]

Since a 1 — a ’1, (3-4) leads to:

• -31-

—- -- ~~~~~~~~~~~~~ •- •~~••-~~~~~- •m~~~~• - .


~~~~~~~~~~~~~~~~~~~~~~~~~
•
~~

- ••- • • • •

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~~~~~~~~~~~~~
--•

~~~
- • • •-• “—- - --

~

• •

~~~~

Existence of Cyclic Control Structures Section 3.1

V,1 ~ (l ,j , 1] — d[I ,j , 1]

Similarly:

Vi,jj �md’tIti
~
I1 — d(I ,j ,I J�0 (3-5)

Therefore

V,,1 d’(l ,j .m] — d’(I ,j, k]

From lemma 3-2:

V1,1d’(I,J,m + l] � d’[S ,j, k+l]

— d (1,J,A+ i]�0

Similar reasoning will show:

V11d’(l ,J, 2m—A—1]~ d’(I,j ,m— i]

— d[6,j,m—1] �0

Now C 2m_ k - am , so lemma 3-2 still applies:

V,~~d’(i~i~2m—k i� d(I ,j ,m] � 0

Inductively:

V1 i ,�md(I ,j ,’~
m

~~
] � d[I ,J,I] � 0 (3-8)

• Combining (3-6) and (3-C):

V111d’[I ,J,I] � 0

Therefore, from lemma 3-1, w’ satisfies the latency specifications. •

Corollary: Let a - a 1 - . . *_i, ~
- CA - am_ i , and p — Cm - - . - If e —

satisfies all the latency specIfications and d[I ,j ,k] - d[I ,j,m) for some

• A(m, then ~~~~~

‘ also satisfies the latency specIfications. The proof Is by
induction. U

The main theorem can now be proved by showIng that any laxity table will have

duplicate columns and applying lemma 3-3:

Theorem 3-4: if any string e satisfies the latency specifications then there exists a
string of the form ~~

“ which also satisfies the latency specificatIons.

-32-

Existence of Cyclic Control Structures Section 3.1

Proof: Construct the laxity table for w. There are a finite number of
possibilities for each table entry since each entry is I. - I C. I minus a sum
of a finit e number of leA l’s. The number of different Id A l’s is limited by

the number of blocks In the block diagram schema. The number of terms in• the sum must be finite since each Ia
~ I

is greater than zero and the laxity
entry is also greater than or equal to zero. Therefore, the possibilitIes for
each column are limIted and eventually some column in the table will be
repeated and A and m satisfying the conditions of lemma 3-3 exist.

ApplyIng the corollary to lemma 3-3 says a solutIon of the form *0” exists.
However, d(l , j, 1) — I — IC ,,1 I

� d(I .j ,k) , for all k (the rules for fill ing in the
table never Increase the laxities except to set d(I .j, k] to l1-1C11 I.

Applying lemma 3-2 shows that 0” Is also a solutIon. U

The major Implication of this theorem is that only cyclic strings need to be

considered for static control structures. These strings can be enumerated, so the

problem of finding a static control structure is in principal solvable. Since the proof

also places an upper bound on the length of the cycle (equal to the total number of

possible laxltles at any positIon), so an algorIthm that generated all possible strings

would be effective in the sense that It would always halt In a finite amount of tIme.

However, it would require computation time that grows exponentially with the

complexIty of the schema, so the problem would be computatlonally intractable If

this were the only algorithm.

3.2: GeneratIng Real-Time Control Structures

The problem of generating a feasible control structure is a scheduling problem.

The problem is deterministic since the parameters of the problem are strictly

bounded as opposed to being unbounded random variables. A wide varieties of

special cases of the general scheduling problem have been studied, and some

results are surveyed by Gonzalez (7], though relatively little work has been done
.33.

-• •‘-----~~~ -- •~~~~~~~~~~~~~~~~~~ -•

_ _ _ _ _ V

Generating Real-TIme Control Structures Section 3.2

on scheduling in the presence of deadlines.

Gonzalez and Soh developed a simple algorithm that minimizes the number of

processors used to schedule Independent tasks. The tasks are statically assigned

to processors and always run to completion. The deadlines for each task

correspond to the period of the requests for that task and must be ‘~ power of

two. Their algorIthm is not optimal if the periods sie not a power of two and no

optimal algorIthm Is known, although several heuristic algorithms have been

Investigated.

Llu and Layland considered the problem of scheduling independent tasks on a

single processor (14]. Each task requests service periodically with a deadline for

service coinciding with the time for the next request. They present a method of

assigning static priorItIes to the tasks that will meet the deadlines If any static

assignment of priorIties will. In addition, they prove the schedule which executes

the task whose deadline Is earliest is optImal In the sense it will meet the

deadlines if any schedule will. They then prove rncessary and suflicient conditions

for a set of tasks to be scheduled by the earliest deadline (ED) algorithm to meet

all its deadlines, and conclude that ED algorithm allows 100% utilization of the

processor as opposed to figures as low as 70% for static priority algorithms.

Geiger extended the proof of the optimality of ED scheduling to Include the case

were the requests are not periodic (8]. Flala presented the same basic proof and

also derived necessary and sufficient conditions for the ED scheduler with a mix of

periodic and aperiodic tasks [5].

Mok Investigated scheduling Independent tasks on multiple identical processors

[IC). Mok shows that no optimal algorithm e’ists for this problem unless the

-34.

~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ - .~~ ~~~~~~~~



- -~~~~—— ~~-- - ---— - -~~~~~~~--—

Generating Real-Time Control Structures Section 3.2

deadlines, computation times and at least some future request times are known. An

algorithm related to the ED algorithm is presente~ which is shown to be optimal if

all requests are simultaneous. This algor thni executes those tasks with the least

laxity, where the laxity of a task i~ the deadline for the task minus its remaining

computation time. Unfortunately, both the least laxity and ED schedulers are shown

to be non-optimal even for tasks with periodic requests. however, the least laxIty

scheduler is optimal for periodIc deadlines where tasks may be executed at any

time (i.e. if the deadlines are coincident with the next request, the least laxity

scheduler Is optimal If It Is allowed to execute tasks before they have been

requested).

The problem of scheduling tasks related by a partial order on multiple identical

processors has been studied by Manacher [1 6]. Deadlines are specified for any or

all tasks In the system. Manacher’s algorithm derives deadlines for all tasks In the

system by using the observation that a task must complete executing in time to

allow Its successors to executed before their deadlines. The scheduler then

executes those tasks wIth the earliest deadlines that have had all their

predecessors executed. This algorithm is not optimal, and does not consider either

periodic requests or multiple start-times. However, it is a reasonable heuristic,

especially as the number of processors Increase.

Unfortunately, none of these results generalize to the static control structure

problem, even for a single processor, although control structures could be

constructed which would meet the conditions of the particular special case and

satisfy the real-time constraints. For example, If the block diagram consisted of

unconnected (Independent) blocks, the earliest deadline scheduler could be used

-35-



Generating Real-Time Control Structures Section 3.2

with task i being block I and the request period for each task being the minimum of

i1 / 2 and 1 / B~. The period between requests would have to be less than i~, / 2

since (in the absence of other information) it is possible for the task to be

executed immediately after one request and Immediately before the following

deadline. Lemma 3-1 says this time Interval must not be greater than I,.

On the other hand, thes~ heurIstIcs areliable to be overly restrictive, partIcularly

since they tend to deal with independent tasks. it would be possible to derive

Independent tasks from a block diagram schema by treating the constraint paths as

independent, but at the cost of Introducing new blocks and much unnecessary

computation. One promisIng approach for deriving a statIc control structure Is to

simulate some more general control structure until a cycle In the trace of that

control structure is found. An obvious choice of a more general control structure is

a least laxity scheduler (using laxIties as defined for block dIagram schema) which

follows the partial order for the tasks (blocks) based on the constraint paths.

More precisely, the scheduler would build a laxIty table, wIth starred entries

Indicating constraints strings which cannot be fired because of the partial order .

The scheduler chooses the first block of the unstarred constraint string with the

smallest laxity to head the next column. If two constraints have the same laxity,

either can be fired next. Figure 3-2 shows such a laxIty table for the block

diagram schema from figure 2-3 usIng the same latency specifications as figure 3-1.

At tIme 40, none of the latency specifications have been violated. However ,

since there are now two constraints with laxity 0, at least one entry In the next

column will be negative. By firing C at time 10, an additional request for C I.

-30-

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _



~~~~~~~~-~~ --—~~- - -.~~~~~~~~~~ - - - - .--~~~-—~~~- 

Generating Real-Time Control Structures Section 3.2

A C D B A
(O)~ 110) (20) ~25) 130) (40)

AS 30 “20 “10 “5 0 “20

B 40 30 20 15 36 0

CD 30 20 “20 15 10 0

0 40 30 20 35 30 20 ...
AD 45 “35 “25 20 15 “35

0 55 45 35 50 45

tA lO t 8 5 tC 1 O t D
(
~

l~~ - 45
~~~ 

- ~~~ 
~AD -

Counter-Example to Least Laxity Scheduling
Figure 3-2

created with deadline 50. In the control robotics environment, the existence of

this request makes scheduling Impossible. However , If B is fired and C is delayed

until time 15, the additional request also gets delayed to a point where It Is

possible to schedule all the requests. The least laxity algorithm simply does not

deal with interactions between requests and deadlines.

It Is Interesting to note that the least laxity scheduler fails for this even If the

constraInt path AD is Ignored. The remaining constraInt paths AB and CD are

independent, yet they cannot be scheduled using the ED algorithm using the worst-

case period of ~ / 2. If periods are kept at ~ - C. I,  the tasks still cannot be

scheduled by the ED scheduler If the individual blocks are scheduled separately.

The failure in this case can be vIewed as an inability of the ED scheduler to derive

the proper phase relation between the tasks.

The schedule shown In figure 3-3 is not the only least laxity schedule. For

example, at time 25 CD has the same laxIty as B and therefore C could be fired

Instead of B. However, the reader can ver ify that all the least laxity schedules for

-3?.

_______



.~~~~ - -~~~~~

Generating Rn 41-Time Control Structures Section 3.2

this ex ample fail to satisfy the latency specIfications.

3.3: A Rr~nch-and- Bound Method for Generating Control Structures

Rather than generating acyclic control structures and looking for a cycle, the

algorithm described In this section works by generating a cyclic control structure

that satisfies the real-time specifications for ont~ of the constraint paths. The

solutions for other constraints paths are combined to form a control structure that

satisfies all the real-time specifications. The basic semantics of firing blocks rules

out control structures that are not shuffles of the constraint paths since these

control structures perform redundant computations. Therefore, this algorithm should

not miss any solutions. There are two major problems that the algorithm has to

deal with: (1) How many times must each constraint path appear in one cycle of

the total control structure. (2) How should the constraints paths be combined into

one cycle.

3.3.1: DetermIning the Relative Frequency of Constraint Paths

The first atop in the algorithm Is to determine how many tImes each constraint

appears in one cycle of the total solution. Upper end tower bounds can be derived

from the length o~ the cycle and the basIc latency specification. Consider the

lower bound on the number of appearances of constraint I: let be the number of

appearance, of C1 in one cycle of the solution ..“ . let — 
~C1 

and c — w
~~~
.

Since the latency specification for C1 requires C1 to appear at least once every

-36-

- ~ -‘

.—~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
- -
~

~

~~
- -

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-

~
----— -- ~~~~~~~~~~~ 

‘- - - - --
~~~ ~~~

- - - —.- -, 1 ~~

DeterminIng the Relative Frequency of Constraint Paths Section ~~ I

time units:

A �- -
~~~

- (3 7)I I,-w~
This leaves c (the length of the cycle) to be determtnnd However, if C1 appears

A1 times:

c � A 1w, (3-8)

More precisely, the algorithm starts with the assumption (list each block and

constraint appears once and that c — TtA . ihis approximation is used to dorivo A1A

for all constraints in the schema. It any A1 increases, this is used to update the

minimum number of times each block in the constraint must appear , which in turn

may cause c to Increase. ThIs process contInues until all A 1 era consistent with c.

in practice , this only takes a few iterations.

Theorem 3-4 places an upper bound on the number of blocks In a cycle , but t his

bound is not directly applicable to th. branch and bound algorithm sinc, the

branch-and-bound algorithm does not try all cycles of a gIven length, An tipper

bound on the number of appearances of any constraint can be easily derIved if the

number of appearances of the other constraints is tiaki constant.

first, an upper bound on the length of a cycle can be derived by applying

squatlon 3•? to all constraints excep t constraint I. Then the mInimum weight of a

cycl, containing A, appearances of C1 nan be computed for all • J . i ot t ing Cm,,~

be the maximum allowed cycle weight and c be the minimum cycie weight (not

Including constraint I) , th. minImum weight of a cycle containing A 1 appearances of

-39.

- --~~~-~~
- 
,-~~ - - - ~-~~ ~~~~ - —  

-~~~~~~~~~~~~~~~~



- _
t~~~~

__
~-’~

’ _ ’ ’ 
~~~~~~ ~~~~~~~~~~~~~~~~~ —

Determining the Relative Frequency of Constraint Paths Section 3.3.1

C,is:

c + A 1w1 (3-9)

Therefore, the upper bound on A1 can be derIved by restricting the resultant cycle

weight to be less then

C -cmax (3-10)I

Th is ignores th e possibility of blocks in C, already appearing in the cycle as pert

of other constra ints. However, including more appearances of constraint I will

eventually cause the minimum cycle length to exceed c max .

This still does not bound the number of appearances for all constraints, since

constraint I can appear more often if constraint j appears more often, etc. Placing

an arbItrary bound on one constraint will also bound the number of appearances of

all other constraints. For example, requiring at least one constraInt to appear only

once places a fairly tight bound on all constraint. However, It Ia not true that a

solution of this type always exists. An example is shown in figure 3-3.

3.3.2: Strategies for Combining Solutions

Once the number of appearances par cycles of each constra int path is known,

the constraInt paths can be permuted to form a control structi re which satisfies all

the real-tim. specifications. Many of the techniques for improving the efficiency of

‘branch-and-bound’ optimization algorithms can be applied to this problem even

though it is not an optimization problem. An optimization problem seeks a

I

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



-;
~~----~~ - 

—. - -- - - - -,,-,. -- —
~
-

~ 
~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ — ~~ - —---,~--~-~~~~~~,---

Strategies for Combining Solutions Section 3.3.2

~JIJ a
4F]

~~~~~~~~~

tA t3 t~ — t0 — tf — tF - 1

~ 11

~~ ~ lb

1b,j ~
tc,j � 10

Control Structure: (ABFDECBFADEBFCF )~
Block Diagram Where All Constraints Appear More Than Once

Figure 33

permutation of n objects that maximizes an evaluation function f of th.

permutation.

A ‘branch-and-bound’ algorithm for this problem generates permutations tar a

-41-



Strategie i for Combining Solutions Section 3.3.”

subset of the objects and extends these permutations to larger subsets. The

permutations to the subsets are called part’aI solutions, and are arranged in a tree.

Nodes in the tree correspond to partial solutions and the descendents of a node

are the extensions of that partial solution. Branch-and-bound algorithms are often

more efflcient than direct enumeration since It Is often unnecessary to examine the

entire search tree. The key to pruning the search tree is the dominance relation

on nodes of the tree. The evaluation function f can be extended to arbItrary

nodes of the search tree by defining the value of a non-terminal node to be the

maximum value of its descendants. Then node A dominates node B if and only if

f (A)) f (8). The branch-and-bound algorithm may prune any subtree whose root

node is dominated by some node of the tree that has already been explored.

In general , the dominance relation for a particular optimization problem cannot be

computed without examining the entire tree. However, It is often easy to compute

some weaker relation. These weaker relations are usually referred to as

domInance relatIons In the lIterature, so we will use the term strong dominance

relatIon to refer to the dominance relation that relates A to B if and only If

f ( A ) ) f ( B).

Branch-and-bound algorithm vary in the order the tree Is searched and how the

dom inance relations used to prune the search tree. Kohler and Steigtitz classified

branch-and-bound algorithms and Initiated the theoretical study of dominance

relations (13]. They demonstrated the surprising result that pruning based on a

stronger dominance relation does not always improve the efficiency of th. algorithm.

However, Ibaraki showed that stronger dominar~ce relations do lead to more efficient

-42-

. ~~~~~ —- .- —, .— - -- — — 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-..—.—,
~~~~~~~~~ - - - --



-

Strategies for Combining Solutions Section 3.3.2

algorithms for several common classes of branch-and-bound algorithms [10].

Branch-and-bound algorithm as dofined by Kohler and Stelglltz also make use of a

function p that places a upper bound on the value of f at each node. If L is the

max imum f (A)  for 
~~*.f nodes A encountered, pruning sub-trees with g(A )~ L can

only improve the efficiency of the algorithm. However, the upper bound function

can also be viewed as a particular domInance relation.

The control structure problem as stated Is not an optimization problem. However,

It is still possible to define a dominance relation between nodes of the search tree:

node A strongly dominates node B unless 8 leads to a valid control structure and A

does not. Assuming the nodes at each level are generated In a random

(lexicographic) order, the best pruning for the algorithm to use Is to retain the node

at each level which dominates the other nodes, it this dominance relation can be

easily computed, the algorIthm can generate a valid control structure without

backtracking.

As a first step towards computing a dominance relation, define the s!acA for each

constraInt to be the difference between the latency requirement and the latency

actually achIeved by the control structure. The constraint with the least slack Is

the most critical constraint (MCC). The slack in the MCC could also be used as a

value function to be maximized. If no control structure satisfies the real-time

constraints, the control structure maximizing the slack it~ the MCC Is probably a

good ‘close’ solutIon. Also, the slacks may be used to evaluate any heuristic

algorithms for deriving control structures .

Th. latency achieved by a static control structure for a constraint C, is the

weight of the most critical window for C1. Adding a block to the cycl, of the

-43-

-. -.



Strategies for Combining Soiutions Section 3.3.2

control structure cannot increase any slacks since the weight of some critical

window will be increased. The only exception would be if the new block completes

an additional occurrence of some constraint path, thereby creating new critical

windows. This cannot happen if the blocks being added are elements of some

other constraint path, since no constraint path is contained in another constraint

path. Therefore, the MCC slack can be used as an upper bound function in a

branch-and-bound algorithm to maximize the MCC slack. Upper bound functions are

also often used to guide the search In branch-and-bound algorithms. For example,

the algorithm could always expand the node with the greatest upper bound.

If the slacks in each constraint are reduced by the same amount when a new

block is added to the cycle, then the partial solution with the greatest MCC slack

would be a dominant solution. Unfortunately, this is not generally the case.

Consider dividing a cycle a of the control structure into regions 4,~ and as

shown in figure 3-4. The 4 ,,~ regions contain one occurrence of C1, but [4 ]

contains no occurrence of C1. The critical windows of C,~ are 4, ,E~ ,•I I+~~~
.

I, Il ,~

Therefore, adding blocks to a region increases the weight of and adding

blocks to a •~,j region Increase the weight of 
~~~~~~~~ 

and
~~~~~~ Even If 

~~~ I

increases, the slack for C, will not decrease unless #
~ ~

— 4
~ ~

. The slacks, A

can not be used to compute a dominance relation since the interdependence of

constra nt path. may force new blocks to be added within the most critical window

of some constraint, while another solution wIth a smaller MCC slack might have a

crItical window of the right size In the right place.

-44-

- ‘ I
- . - -~~~~~~~~~~~~ - - -~~- -

_

-.“---
~
-——.--.--—_ .-‘ ..__.-- :—

—-.____• __ __.__-

~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~~~ ~~
-

~~~~

,.—_

~
-

~~~~~~~~~~~
— -_.--.-- - ---- - -

~~~~

Strategies for Combining Solutions Section 3.3.2

I~ ~i, 1
i, i ~I,l l,2 /,2 •j ,3

I~~~ 1,2

RegIons of a Critical Window
Figure 3-4

Keeping vectors of slacks for each constraint path does not correct the problem.

Consider the example shown of figure 3-3 with the latency specification as shown

in figure 3-5. it can be easily verified that (ADEFCADBC )
a 

Is a feasible control

structure for this schema. It Is also tt~e only feasible control structure1. AD and

CF must appear at least twice In one cycle of the solution. Figure 3-5 shows

slacks for this constraints for two partial control structures. The merging of

(ADAD)
~ 

and (CFCF )* that leads to the solution is (ADFCADFC )*. However, the

slacks for CF in (ADCFADCF )* are larger and the slacks for AD are the same , so

(ADCFADCF ) * would dominate (ADFCAOFC )~ even though It doesn’t lead to a

solution.

3.3.3: Performance of the Algorithm

Assume each constraint path contains an average of A blocks. The slack of a

constraint path in a trial cyclIc solution can be determined in at most A scans of

the Cycle. if there are n constraint paths there will be 0(M) scans of each trial

solution generated by the algorithm. The trial cycles will be 0(M) blocks long (this

1. This was verified by checking all cyclic control structures that might be
generated by a branch-and-bound algorithm assuming that the least critical
constraint only appears once per cycle.

-46-

- - ~~~~~ — .aci ,. ~~~â.a.M A ’~fl a . - ., - -



Performance of the Algorithm Section 3.3.3

� 7
� 14

1b,J S 12

5 10

Control Slack
Structure Constraint

AD CF AEF BF
AOFCADFC 1 2 - -
ADCFADCF 1 4 - -

Counter-Example to Slack as a Dominance Relation
Figure 3-6

ignores the possibIlity of a constraint appearing several times in one cycle). The

overall time complexity of the algorithm will be o(n2A 2
~ times the number of trial

cycles generated per problem.

Assume the trial cycle contains m 1 blocks and the next constraint path contains

m 2 blocks. There are (m 1+m 2-1 )t cycles contaIning all the blocks, but we are

only Interested in one of the m 1! permutations of the blocks in the old cycle, and

(m 2- 1)I permutations of the blocks In the new constraInt (I.e. we must consider

m 1 different phase relations of the two cycles). Therefore, the number of different

trail cycles generated .t this step Is:

(m 1+m 2— 1) l  Fm +m —1~
m 11(m2-1)l 

-rn 1 
~, 

m 1 ) 
(3-11)

Of course, If some blocks of the new constraint are already contained In the old

cycle, or if the next constraint appears more than once, not all of the generated

cycles will be distinct. However, It is rather difficult to avoid generating these



Performance of the Algorithm SectIon 3.3.3

cycles. There will be relatIvely little extra cost to the algorithm as long as it does

not Investigat, cycles that are identIcal to cycles that have already lead to

failures. Therefore, the number of trial cycles generated by the merging algorithm

when It finds a solution without backtracking Is approximately:

I A (k~~1) (3-12)
I -2

Equation (3-12) is okn~~~
1 ) since the binomial term In the sum Is o(nA) and there

are n terms.

If the merging algorithm f alls to find a solution, then it must have backtracked

through each trial solution and the total number of cycles generated is:

(1+A (2~~ 1)(1+ . (l+k (~~~~)) . . . ) (3-13)

which can be approximated:

n , ~11 A~~~~
l
) (3-14)

1-2

Equation (3-14) is o((Ank)1~
) or o(k t)nkhP) , and Is exponential In the number of

blocks in the schema. This Is a very loose upper bound and would only be

achieved if all generated solutions were plausible except when the last constraint

was being merged in, However, this bound is achievable li the first n-i constraint

path. had relatively larg, latency speclflc~tlons while the last constraint path had

relatIvely small latency specifications. This situation can be easily avoided by

starting with the path with th, smallest latency constraints relative to the weight

of the path.

- 

-47- 

—

~~~~~~~~ 

j
L~~

r~
.

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Performance of the Algorithm Section 3.3.3

3.3.4: SpeedIng up the Algorithm

ihere are many ways the average performance of the algorithm could br~
improved. For example, it we t1ad a tighter lower bound on the slack in the P4CC,

we could prune more subtrees. We can get a tighter bound by determining what

new blocks must be added to the control structure. Adding a new block always

increases the size of some critical window for a conattaint by at least the weight

of the block. Therefore, if the sum of the slacks for a constraint is less than the

total weight of blocks that must be added to the control structu re, at least one of

the critical windows for that path will exceed the latency specification for that

path. This tighter bound has no effect on the per formance if no backtracking is

necessa ry. However, If no solution is found, using the tighter bound is roughly

equivalent to reducing n, since fewer constraints need to be combined before the

control structure is recognized as infeasible.

NotIce that the performance of the algorithm would not be of polynomial

complexity even If there were a dominance relation that totally ordered the

possibiiltles at each level. The problem is that the number of partial solutions that

must be generated by a naive algorithm can grow exponentiaily with the complexity

of the schema. Therefore, finding a good dominance relation Is not as important as

finding a search functIon that generates nodes that are most likely to lead to a

solution first.

Since the weight of the critical wlndow~ Increase when new blocks are added,

we might try merging in new constraint paths su that no new blocks are added

b.fore trying more general mergings. This will improve the performance if the

solution is an extension of this type of merging, even if the algorithm must

-48-



Speeding up the Aigorithm Section 3.3.4

backtrack sInce fewer nodes are generated on that level. If the algorithm must

backtrack through ~JI the control structures of this type, the performance of the

algorithm Is somewhat worse. The effect of this heuristic may be approxImated by

reducing A, since the length of the strings merged Into the current control structure

will be reduced.

The other way of improving the performance of the algorithm is to reduce the

complexity of the problem. This can be done by replacing sub-graphs of the block

diagram module with new blocks. Whenever the new block Is fired, the blocks

comprising the subgraph replaced by the new block are fired in some fixed order.

This replacement can dramatically reduce A, and would improve both the best- and

worst-case performance. However, combInIng blocks in this way can result in a

schema which has no feasible control structures even though the original schema

does.

Since the process of generating a control structure can be so time consuming , it

would be extremely useful to quickly identify real-time specifications that are

impossible to satisfy. One way of doing this Is to compute the percentage of CPU

time required by each block. It the sum of this percentage over all blocks in the

schema Is greater than 100%, the latency specifications are obviously unsatisfiable.

The percentage of the CPU required by each block is easily computed: each

constraint C, must be executed at least once every I. - IC 1 I~~
. time units.

Therefore, each block c,1 in C, must be executed at least once every ~ - C1 I ~‘

time units and its corresponding CPU percentage Is:

-49-

- _ _- - _ _ _  _ _ _ _



~

Speeding up the Algorithm Section 3.3.4

,cIJ I (3— 15)

If an block appears in several constraints, its CPU percentage is the maximum of

the pertentage implied by each constraint the block appears in. Using the

maximum rather than the sum corresponds to assuming that each time the block Is

fired it will help satisfy 411 the constraints it appears In. Although this Is not

necessarily the case, it is a lower bound on the CPU usage.

Another quick test for unsatisfIable latency specifications is that the slack in

each latency specification must be larger than the computation time for all blocks

not contained in that constraint path. Otherwise, the ~ portion of some critical

window for that constraint will be too large (refer to figure 3-4).

3.3.6: PractIcal Experience

A branch-and-bound algorithm similar to the one described above has been

Implemented as part of a system for implementing continuous-time block dIag rams on

conventIonal micro-processors. The implementation runs on a PDP-i 1/70 under the

UNIX timesharing system. The block diagram Is described using an interactive

graphics editor developed by John PershIng [18]. The branch-and-bound algorithm

Is only responsible for choosing the order to execute the blocks. The object code

for the block diagram is produced by a separate program.

The program uses all of the heuristics mentioned above except It does not

combine sub-graphs into new blocks. The program is able to find control structures

to satisfy most latency specifications for small block diagrams using less than a

minute of CPU time. So tar, only one set of latency constraints has been found

_______________________________________________________________________________________________ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~ - .



Practical Experience Section 3.3.5

where a valid control structure oxists but no control structure was found by the

program (see figure 3-3). Some latency specifications require more time to find a

valid control structure.

In the dbsence of a fast optimal algorithm, it is preferable to have a fast

algorithm which yields ‘good’ control structures quickly. Heuristic algorithms are

generally evaluated one of two ways: one approach chooses a fixed algorithm and

derIves an upper (or lower) bound on how far the algorithm’s solution is from the

optimal solution. For example , Graham’s algorithm for scheduling lndepender~t tasks

on multiple processors executes tasks which require more processing time first.

The resulting schedule is no more than 4/ 3 times as long as the optimal schedule

[8).

The other approach develops a family of algorithms each requiring polynomIal

time. As the degree of the polynomial increases, the solutions found by the

programs are closer to optimal. The family of algorithms ~s monotonlc In the sense

that the an algorIthm taking more tIme never produces a poorer solution than one

taking less time. if the degree of the polynomial were Increased to infinity the

algorithm would be optimal. However , it would also no longer be polynom ially t ime

bounded. An example is a series of scheduling algorithms employing limited

Iookahead [1].

The second approach does not seem applicable to the control structure problem.

Limiting the breadth of back-tracking yields a family of exponential time algorithms

with the exponent increasIng with the amount of back-tracking. A family of

polynomIal algorithms would result if at most A blocks were merged at a time with

no backtracking. However, these algorithms are very unsatisfactory If any

-51- 

~~~~~~~~~~~~~~~ ~
-
~~

- - _ 1: -.-.- .-- -
~~ ‘ - - L

Practical Experience Section 3.3.6

constraint must appear more than once. If the number of blocks In the constraint

path Is less tha n A, than all blocks for the second (and subsequent) appearance of

the constraint will be merged coincident with the existing occurrences of those

blocks. if A Is Increased so this does not happen, the performance of the algorithm

Is only slIghtly better than the complete algorithm with no backtracking.

3.4: HeuristIcs for Generating Control Structures

Steve Ward has experimented with some quick, simple heuristics for generating

static control structures. Basically, the heur ist ic construc ts control struct ures of

the form (a$apal . . .)~ where a is the most critical constraint path and ~~, y , I, et

cetera are taken from the other constraint paths. More specifically, blocks from

the next most cr it ical constra int are added to ~ with the restriction that a~~a is

less than l
~
. It more blocks remain In the constraint they are added to y so that

ape Is less than I,. Once all constraints have been merged in this way, the

latency specIficatIons are checked. If they are all satisfied then the generated

string Is a feasible control structure.

The heuristic will also call itself using the current solution as a so the generated

solution may also be of the form:

((a$ai, •~~~) (~$~ y~~~. •) .. .)~
Since these heuristics construct a control struc ture rather than search for one,

they run very quickly. However, they also do not find solutions to a fairly large

number of latency specificatIons, even for simple block diagrams. Still these

heur ist ics are more att ract ive as a bas is for an approximate algorithm , not only

-62-


~~~~~~~~~~~~~~~~~~~~~~~ ‘ ‘ ~r t: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~
- ‘- 

-

Heuristics for Generating Control Structures Section 3.4

becaus. of their speed but also these heuristics could be extended to handle

particular styles of block diagrams as the process of constructing control

structures becomes better understood.

-53-



4: Static Priority Interrupt Control Structures

in some applications, the tokens at the Input links do ~ipt change continuously. If

the control stru cture can detect wh.~~ an input changes, the real-time performance

can bn Improved. Intuitively, this is possible since if no Inputs to a block have

changed, that block does not need to be executed. On the average, thl~ type of

control structure ought to do less computatIon and therefore ought to have better

real-time performance. On the other hand, better average performance does not

guarantee better worst-case performance and specific questions of performance

must be answered with respect to a particular model.

Although the prototypical example of a dynamic control structure is interrupt

driven, it is important  to realize that hardware Interrupts are not necessary. For

example, a control structure could sample the inputs until one or more inputs

change. Alter all the computation Initiated as a result of these changes had

completed, the control structure would continue to sample the Inputs. In general,

such a scheme would risk missing changes in the inputs. However, the control

structure can use the real-time specifications to guarantee this will not happen.

4.1: Dynamic Control Structures

Many of the strategies for scheduling independent tasks to satisfy real-time

constraints mentioned In the previous chapter use dynamic control structures. For

exam ple, Llu and Layland use statIc priority interrupts and consider the case (in our

terms) where the latency is equal to the period between requests (14]. They

consider the earliest deadlIne scheduler only in this context although the earliest

deadline sch.duie is optimal for any sequence of requests and deadlines, as

mentioned earlier.

G iven an optimal scheduler, is there any reason to consider a suboptlmal

-84- 

~~~~~~~~~~~ -.


- —
~

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~

Dynamic Control Structures Section 4.1

scheduler? Th. answer wIll be yes If a good suboptIma~ scheduler exists which

uses less resources than the optimal scheduler. The earliest deadline scheduler

needs to find the highest priority task to execute whenever a task completes

• (alternately it needs to Insert requests into the proper position in a task queue).

A static priority Interrupt control structure also needs to find the highest priority

task to execute. However, this is done in hardware by many exIsting computers,

including cu rent microcomputers. Also, the earliest deadline scheduler requires a

real-time clock to compute the deadlines for each task f rom the request time and

the latency specification. Therefore, static Interrupt control structures are

sufficiently simpler than a earliest deadline control structure to deserve further

consideration.

4.2: Model for Static Interrupt Control Structures

A static interrupt control structure associates a task with each block In the

diagram. Th* tasks are related by a precedence relation consistent wIth the block

diagram. Each task has a priority and may be /dle, active, or requested. The

priority may be thought of as an integer with numerically greater priorities being

better.

When an input changes , all tasks whose blocks are watchers of that Input

become requested. The control structures chooses the task with the highest

priority among the requested tasks. This task Is active until the block complete

•x.cutlng when all Its successor tasks become requested and the task itself

b comes Idle. if the control structure allows active tasks to be suspended while

another task is executed the control structure is call preemptive. OtherwIse it is
-86-  

—



Model for StatIc inter rupt Control Structures Section 4.2

non-preemptive. Unless otherwise noted control structures are assumed to be

preemptive.

The latency performance of any static Interrupt control structure can be

determined for each task by adding the computation time for that task to the

maximum computation time used by higher priorIty tasks while the task Is on the

— 
ready queue. The difficulty in this analysIs Is in determining how much computation

might be used by other tasks.

The simplest case to consider Is when all the tasks are independent (each task

consists of exactly one block). Each task I requires t1 units of computation; and

has priority p1. latency 5, and bandwidth B1. Without loss of generality, the tasks

can be numbered so that:

p1�p2�. . .

The overhead of associated with interrupts, selectIng a task for execution, etc.

will be Ignored for the time being. We shall also assume that all prIorities are

- 

- 

distinct.

The latency for task I when its inputs change discretely Is simply the maximum

elapsed time between a change in an input and the termInation of the task. This

must be less than I~ If the latency specIficatIon for task I Is satIsfied. The

Interpretation of the bandwidth specification is also simplified. instead of

specifying a minimum rate for ssmelina Inputs, the bandwidth specifies the maximum

rate at which an input changes.

The latency specIfication for task I will be satisfied if and only if the block for

task I can be completely executed during any time Interval of duration 5. During



‘~~~~~~~ :~ :-. 7 ~~~~~~~ — . - . - ~~~~~~~~~~ 

-. - — —

Model for Static interrupt Control Structures Section 4.2

thIs Interval, tasks with priority better than p, will also be run, and the amount of

CPU time used by higher priority tasks must be less than 5 - t1.

Notice that this model is equivalent to the model used by Fi&a. Flela’s P1

corresponds to t1, D, corresponds to 5, and T1 corresponds to 1/ B~. Therefore,

for a single processor we have the obvious restrictions:

(4-1)

and:

n
I B~t1 � 1 (4-2)

i— i  I

The summands in (4-2) are the fraction of CPU time used by task i. Obviously the

total fraction of the CPU used by all the tasks must be less than one. Equation

(4-1) can be derIved from (4-2).

Lemma 4-1: The amount of CPU time used by n independent tasks using a static
priority scheduler in a window of duration At does not depend on the
relative priorIty of the tasks.

- - Proof: The processor is always busy if some task Is requesting service.
Changing the priorIties of the tasks will never cause the processor to
remain idle when some task requests service, nor will It affect when the
tasks request service.

Since the control structure only executes a task if some input to the task

changes, task I cannot be executed more often than once every 1/b 1 time unIts.

Clearly, a task uses the maximum CPU time if any interval if It requests service at

this maxImum rate.

Assum. task I requests service at times 0, 1/B1, 2/B1, . , and let C1(t) be

the maximum amount of CPU time used by task I In the interval (0, t). The h ighest

-67-

_ _ _ _ _ _ _ _ _  _ _  _ _ _ _  ± ~~~~~~



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Model for Static Interrupt Control Structures Section 4.2

priority task (task 1) always starts executing immediately after It requests service

and executes for t 1 time units, so it will be executed
lait i

complete times in the

interval. Let r — t- be the amount of time at the end of the window after

the last request for task 1. Task 1 wIll be executing during the Interval (t -r, t)

since task 1 has the highest priority. However, If r) t 1, only t1 units of

computation will be used so:

C 1(t) — [BitJt i+~nIn(t i1 ,_ _ ! 1 ~~1)
The maximum amount of CPU time used by task 1 In the Interval (At, t+At) Is:

C 1 (t + A t) — C 1 (At) (4-4)

We will show that this is maximized when At — 0 by showing:

C 1(t+At)— C 1(At) �C 1(t)

or

C 1 (t At) — C i (°’ C 1 (At) (4.5)

Since the requests for task I occur with a regular period, C 1 (t) is also periodic.

In fact:

- C 1(t+1/B1) — C 1(t)+t 1 (4-6)

Therefore, we need only consider At between 0 and 1/Li, In which Case:

C 1(A t) — s nIn(t1, At) (4-7)

This Is the maximum amount of CPU time used by any interval of duration At

since the CPU time used cannot be greater than the duration of the interval nor

-68-

Model for Static Interrupt Control Structures Section 4.2

can it be greater than t 1 if the interval contains less than one period. Therefore,

the inequality In (4-5) holds since the left hand side is the amount of CPU time

used In an Interval of duration At starting at t.

The worst case for a set of tasks will occur when all tasks request service at

time 0 and continue requesting service at their respective maximum rates. This is

true since the highest priority task will use Its maximum amount of CPU time under

these conditions, and by lemma 4-1, any task can be made the highest priority task

without affecting the amount of CPU time used by the set of tasks.

Define C1(t) by:

C1(t)— [B ,tj t ,+mln (t,. ~~
_ t~1~i

)

The amount of CPU time used by tasks j and A is not necessarily C1(t) summed

over j and A. The difficulty is that if requests for tasks j and A occur sufficiently

near the end of the window and of each other then only the higher priority task win

actually be executed. Therefore, It Is necessary to determine a precIse schedule

for the interval from 0 to t. However, it we are only Interested in how much CPU

time is used In this interval, lemma 4-1 assures us that we may assign arbitrary

priorities to tasks j and A.

However, a sufficient condition for satisfying the latency specification for task I

is:

I—i
5 � t~+ I C ~(5) (4-8)

i— I .‘
This equation can be made more Intuitive If the time required by task j is

approximated by:
-69-

A - _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _- __

~

~~ ~~ ~~~~~~~~

Model for Static interrupt Control Structures Section 4.2

i,B~tj (4-9)

Then equation (4-2) becomes:

I—. ’� t1+i1 I B t (4-10)
i—i i i

This can be rewritten as:

t
-~~~~ I � I l

i -l et
i—I I i

The denominator in equation 4-1 1 represents the fraction of CPU time available to

task I. The effect of higher priority tasks Is equivalent to reducing the CPU speed.

4.3: AssIgning Priorities to independent Tasks

One of the weaknesses of tradItional real-time operating systems based on

static priorIty sch.dullng is that the system does not verify that the priorities

assigned by the user are consiste nt with his real-time specifications. Even if the

system checked these specIfications, the user still must assign priorities, which do

not have a simple relation to the real-tIme specificatIons. The obvious strategy of

assigning the highest priority to the task that requires the fastest response time

does not work. Consider the example in fIgure 4-1. Either task 1 or task 2 can

run at the best priority sInce 5 � t1. it p1 — 1/5, then p1) p2 and the the latency

for- task 2 is:

-60-

_ _ _ _ _ _ _ _ _ _ _ _ _ _

~ —--—_

Assigning Priorities to Independent Tasks Section 4.3

t2 +
L~2

Si]~~i
+ mln (t i. i2

EI::iI)
_ 1 2 +[i~ .J2+mIn (2 16_

[~~~j4)

- 1 2 +8 +ml n (2 ,0)

- 20
~ 2 ’ 16

However , the latency for task 1 If p2 > p1 is:

t 1 + 1u i s2J t 2 + mu1
~(t 2~

,~
_
[i1e~J)

— 2 + [-nj + mln(12 . 16-
1~~~~I24)

— 2+O+mln (12 ,16)

s l4 � i1~~
l6

t 1 — 2 B1 — 44
li=16

t2 -12
~~~~~~ 

$
~~~

Ie

Counter-example to priority s 1 / latency
Figure 4-1

- - The algorithm successively finds a task that can satis fy its latency

specifications while assigned the lowes t priority. if there are several such tasks,

choose one arbitraril y. ThIs task is assigned the lowest priorIty and removed from

th. set of tasks. Th. next task selected will be assigned a priority higher than all

previously assigned priorities but lower than all tasks still unassigned. This

continues until no task remains or no task can be found that can execute at a

U

-61-

— -- _ _

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ — —.,---—— _ _ - _
~~~~~~~~~~

-
~~,_

_
~~

—
~
--—._-_- 

~~~~
-‘-

~~~
— -—

~~
-—.

~~~~
- --.—

~~
-.-—-—.----,----

~~~~~~~ 

-

Assigning Priorities to independent Tasks Section 4.3

priority lower than .11 other tasks. in this case, no assignment of static prIorIties

will satisfy all the latency specifications using only one processor. This algorithm

will never make a bad choice. Consider the situation when one or more tasks

remain yet no task can be assigned the lowest priority. Any task that could

possibly run at a lower priority has already bean assigned a lower priority.

4.4: More Complex Models

The model for statIc Interrupt control structures made several simplifying

assumptions such as Ignoring scheduling overhead, assuming preemptive scheduling

and distinct priorities. The model can be easily changed to account for different

assumptions.

4.4.1: Scheduling Overhead

When a task requests service, the control structure must compare the priority of

the task with the priority of the currently executing task. If the priorIty of the

current task Is higher, then new request must be queued In some manner. When

any task completes execution, the control structure must select a new task to

execute. Also, switching the processor between tasks will generally Involve

setting up some processor registers. However, all of these act ions will occur for 
]

every instance of a task requesting service, so these overhead costs can be

Included In the maximum CPU time used by task I • t1. The basic algorithm of

find ing a task which can be assigned the worse priority while still satIsfying (4-6) j
Is sti ll correct.

-62-

- 
L



~ —~
-——

~ 
-~~~~~~~~~~

Scheduling Overhead Section 4.4.1

4.4.2: Non-preemptive Control Structures

if the currently executing task always runs to completion before a new task is

run, ther the latency specification for a task must be large enough to allow for any

task with worse priority to execute as well as the CPU time used by tasks with

better priority. Thus, (4-6) becomes:

I—I n
l1�t 1 + I C~(l.)+ max (t.) (4-12)

j — 1  ‘ ‘ j —I+ 1 I

Again, the assignment algorithm does not require any changes. This is obvious If

the algorithm finds a valid assignment of priorities, increasing the prIorIty of some

task relative to task I moves a task into the summation term in equation (4- 12).

Sinc e C1( t )  is greater than or equal to tj~ making this change can only Increase

the right hand side of (4-12).

4.4.3: Non-Distinct Priorities

For various reasons it may be desirable to assign several tasks identical

priorities. For example, the computer hardware may only support a limited number

of interrupt priorIt ies. Since the control structure Is free to execute any of the

requested tasks having the highest priority, all tasks having the same priority as

task I must be treated as If they had higher priorities when checking the latency

specificatIons. This assumes that the control structure only executes task I when

all other requested tasks have priorities strictly worse than p~.

However , this also makes the often unrealistic assumption that a task can be

preempted by a task with equal priority, If this is not the case It Is necessary to

-63-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~ L



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Non-Distinct Priorities Section 4.4.3

simulate the control structure on the worst case sequence of requests. it is not

sufficient to treat these tasks as if they had lower priority but are not preemptibie

since a pair of tasks can make a sequence of requests so that one of them

requests service again while the other is being executed. Therefore, the first task

can be executed twice while task i is waiting for service although task I is never

preempted.

4.6: Applications to the Control Structure Problem

Verifying the real-time performance of a static priority scheduler on more

complex task structures is a straightforward extension of the verification for

Independent tasks. A latency specification 5 is satisfied if and only if all blocks in

the constraint path can always be executed during any Interval of duration 5. it

becomes slightly more complex to compute the amount of CPU time used by higher

priority tasks since some tasks (blocks) will not be runnable when other tasks are

requested.

4.5.1: Chains of Independent Tasks

if no block appears in more than one constraint path, the constraint paths can

be treated as independent tasks. A task will never be interrupted by a request of

a predecessor If the real-time specifications are met since the period between

requests Is not less than the deadline for any one request.

The priority assignment problem would be very much more difficult If it were

necessary to consider assigning different priorities to individual blocks In a chain.

-64-

— ‘- - ~~~~~~~~ ~~~~~~~~~~~~ -=._-

— -
~ --

Chains of Independent Tasks Section 4.5.1

However , It does not make sense to assign lower priorities to some blocks in the

constraint path, since it makes no difference where In the chain higher priority

tasks are allowed to Interrupt. Therefore, all the tasks in the chain can be

assigned the same priority as the task In the chain with the least priority.

In the presence of overhead It is more efficient to create one ‘super-task’ that

executes all the blocks consecutively rather than incurring the overhead of a

request for each block in the chain. However, if the control structure is non-

preemptive it may be necessary to create several smaller ‘super-tasks’ to reduce

the amount of time that must be spent waiting for low priority tasks to complete.

Deciding how many tasks to create and how large to make them could be made on

the basis of how much CPU time needs to be freed up In order to find a task to

assign the currently worst priority.

4.6.2: More Complex Task Relations

There are fundamentally two ways different constraint paths can have a common

block: the common block can have more than one successor or it can have more

than one predecessor. We will first conslder the simplest example of each type of

interdependent constraInts.

Consider a block diagram in which block A has successors B and C. The

constraint paths for this diagram are 48 and AC. Since a request for 4 will always

cause requests for both B and C, BM - B~~ . Therefore, neither B nor C will be

interrupted by requests for A as long as the real-time specifications are met.

Now, if p8) then the sequence of blocks executed whenever A Is requested

-65-

- -—. -.-- —— ~,---,~—— - - - ~~~~~~~ - ‘--.- ‘-~~ — - ‘-—,-
-~~~~~

- -v--
.- ~~~~~~~~~ -

- -

More Complex Task Relation s Section 4.8.2

is ABC. Otherwise the sequence AC8 will be executed. We can therefore replace

the tasks 4, 8, and C by a task that executes either ABC or ACB. Th. latency

specification for the new task should be chosen so that it will be satisfied if and

• only If the original latency specifications are satisfied. Thea. latency

specifications are satisfied if and only it:

lAB ~ t4 +t8+(tlme lost to Interrupts) (4-13)

and

� t4 +t~ +(tlm. lost to Interrupts) (4- 14)

The CPU time used by interrupting tasks will be identIcal for both the ft~C and ACB

sequence, except it ABC is executed, then B must be considered an interrupting

task In equation (4-14), and similarly for C and equation (4- 13). Therefore:

1ABC - fnIn(IAB . i~~-t8) (4-15)

and

- mIn(l~~
, l

~~~’tc ) (4 16)

and we should choose the sequence that yields the greater latency.

Now consider a block diagram In which C has two predecessors A and 8. The

constraint paths for this block diagram are AC and AC. It is also quit. possible to

receive a request for C while C Is already requested or suspended. However, If C

was first requested by A, the additional request will always be from B and vice

versa. If this occurs the logical thing to do Is to have C executed only once, but

in general the sequence AC will be executed whenever A is requested and AC w ill

be requested whenever B Is r.quest.d

it is sufficient to replace A, 8, and C by two tasks which executed AC and ‘iC

-60-

_____ - 



—
~~~~~~

-
~~

—
~~~~~~ ________ ~~~~ 

-----— 
~~~~ ~~~~~~~~ 

-

More Complex Task Relations Section 4.5.2

respectively, ignorIng the possibilIty that at times C may not need to be executed

by one of the tasks. However, it no assignment of priorities is found treating these

tasks as independent, it is not necessarily true that ~~ such assignment would

exist If the common block C were handled more carefully. The difficulty is that the

worst case sequence of requests becomes harder to construct.

4.5.3: Combining Static and Dynamic Control Structures

Rather than having the processor Idle when no tasks are requested , It may be

possible to have the processor executing a static control structure for some

portion of the block diagram. In this case we would consider the static control

structure to be the lowest priority task. There are no real-time specifications on

this task in the usual sense, although we must still guarantee the iatencles in the

static control structure. This can be done by modifying the latency specificatIons

so that even when the maximum amount of CPU time Is used by the dynamic tasks,

the static control structure still runs often enough.

Consider a latency specification 5 for C1. The blocks in C1 must be executed

once In every interval of duration 5. The trace of the processor is no longer

completely determined by the static control structure since the dynamically

scheduled tasks will interrupt the static control structure. However, the amount of

CPU time used by these tasks Is known. Therefore, we need only choose new

latency specifications for the statically executed constraints according to the

following equation:

-6?-

I
_ _ _ _

------. - - -

-
~~~~-w~- -

~~~~~~
-- -‘

~~~- -.7-’-—— - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — — -- --‘—.- ‘—. -

Combining Static and Dynamic Control Structures Section 4.5.3

A
l,’~~l, — I C ,(5) (4 1 7)

1—1 ‘

Where constraints I through A are executed by the static priority interrupt control

structure.

-68-

-~~- - - ~~-- ---— -----—-


~~~~~~~
-
~~~~~~~~~

‘
~~

‘
~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

- — - — -

~~

-

~~~~~~~~~~~~~~~~~~~~~~~~~~

-

6: Multiple Processor Control Structures

So far we have only considered control structures using a single processor. This

chapter dIscusses some of the issues involved in making use of more than one

processor.

The first question to consider is how does using more than one processor

Improve the real-tIme performance of a block diagram schema? For stat ic control

structures, implementIng constraInt paths as control structures on separate

processors improves both the latency performance and the bandwidth performance

by decreasing the weights of the critical wIndows and decreas ing the weight of

the cycle. At the limit where each constraint path is implemented on its own

processor, the latency performance for constraint i = C1 is 21 C1 J and the

bandwidth performance Is 1/ IC, I-

Similarly for dynamic control structures, if each constraint path were implemented

on separate processors than each could run at the highest priority. The latency

performance would be IC, I and the ban dwidth performance would be 1 / IC, I•

However, these figures are not the best achievable. Each processor could

execute only a single block, but then data must be transferred between

processors. The Interprocessor communIcatIon time may or may not be negligible

depending on how the processors are interconnected. If data is transferred using

an asynchronous serial transmission protocol, then at Q600 baud it would take

about one millisecond to transfer one byte between processors. Data values are

likely to take from one to four bytes, and a few milliseconds is a comparatively

large time, even on relatively slow microcomputers. On the other hand, If the data

is transmitted eight bits in parallel, the communication time may be neglIgible.

Even If the communication cost is negligible, execut ing a sing le block on each

processor does not improve the latency performance when each processor is
-6Q-

~~~~~ - - -~~~ - .-i



- 
~~~~~~~~~~~~~~ ~

‘-
~-TI ‘- T ’ ~ ~~

— - — -——-—
~

Multiple Processor Control Structures Section 5

running a static control structure. Consider the example shown in figure 5-1.

a
fA

~~~b 4
~~~
J

A simple multi-processor control structure
Figure 5-1

Assume processor one Is executIng A~ and processor two Is executing B . The

latency from a to b Is 2t4. If the processors were synchronized so that processor

two started executing B as soon as processor one finished executing A then the

latency from a to c would be 2t4 +t8. The processors are not syn chronized, but

the phase difference is cannot be more than the period of either cycle. Therefore,

~~ is 2t4 + t8 + mln(tA, t8). But then if t8 is less than t4, ~~ is ~~4~~t8,

exactly the same as if processor one were executing (48)*• What , If anythIng ,

has been gained by using two processors? The latency performance has not been

improved, but the bandwidth performance has been improved to

mln(l/t4, l/t8)— i/tA .

For the constraint ~ C1 - c1 the latency for the entire path Is:
1 A

A A-i
I J + Jc~ 1~~

I mln(Jc 1 I , Ic1 I) (5-1)
i—i j 1 i— i j J+1

The first summation in (5.1) Is the basic CPU time needed to execute the path.

The rest of (51) is the phase delay between processors.

if the int.rprocessor communication times were not negligible, they would

Multiple Processor Control Structures Section 5

increase the phase delay between processors. Let lPCT11~ 1 be the

interprocessor communication time between the processor where c1 Is executed
j

and the processor where C, is executed. equation (5-1) becomes:
1+1

A A-i k-i
I Ic, + IC, + 1 mln(1c 1 ~

, ~c.
~
)+ I (1PCT I

~+~
) (5-2)

i—i 1 1 1—1 j li— i i_I
It processor two could be synchronized with processor one then the latency

performance could be Improved even more. Notice that for processor two, l ink b is

an Input link. However, the input signal at link b does
~~~ change continuously.

Theref ore, processor two should synchronize with processor one by executing a

dynamic control structure. If processor two can keep up wIth processor one (i.e. if

� t4 ) then the latency performance would improve to 2t4 +t8.

if processor two cannot keep up with processor one, the latency performance

depends on whether or not processor one synchronIzes with processor two. We

will assume that requests for B occurring when B Is executing are remembered and

therefore processor two is execut ing B ~. If processor one does not wait for

processor one, the processors are essentially be executing static control

structures.

If processor one synchronizes with processor two by idling until processor two is

ready to accept the next request, processor one still executes A~ , but A is

executed once every t8 units instead of once every t4 units. The latency

performance becomes 2t8+t8. For the constraint C, - C, C, it Is necessary
1 A

to synchronize all A processors so each processor will Idle until the next processor

-71-

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ - ---- -~~~~~— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

Multiple Processor Control Structures Section 5

is ready to accept a new request. Then the latency performance becomes:

k k
2max( I c1 J )  + I IC1 I (5,3)

i—i  j J—2 J

The first term In (5-3) is the latency performance of the static control structure

running on the first processor when synchronized to the slowest block In the

constraint path. The bandwidth performance of the multi-processor control

structure is:

k 
1 (5-4)

max(1c 1 I)
I—i .1

If the interprocessor communications costs are not negligible, equation (5-3)

becomes:

k k k-i
2m6x(Ici I)~ 

I Ic1 I + I (IPCT 1 
~~~~~ 

(5,5)
j—i j J— 2 J i— i

Notice that In general, implementing each constraint path on a separate

processor will improve both the bandwidth and latency performance of the control

structure. Splitting a constraint path across several processors may not Improve

the latency performance, especially if the communication costs are not neglIgible.

However, this will improve the bandwidth performance.

‘H

6.1: AssIgning Control Structures to Multiple Processors

If the real-tIme specificatIons do not exceed the bounds implied by the equations

derived in the previous section, then the specifications can be met by a contro l

structure which assigns one block per processor. Although one can argue that

computers are cheap, and getting cheaper all the time, they are not free.

- - ~~~~r ~~~~~~~~~ - - - - - - . - - -

Assigning Control Structures to Multiple Processors Section 5.1

Therefore, we are generally interested in finding a control structure that si’tlsfies

the real-time specifications that uses a minimal number of processors.

Unfortunately, this problem is computatlonaily intractable, It has been shown

that the problem of minimizing the number of processors for a dynamic control

structure problem is NP-complete for the special case of Independent tasks and

deadlines coinciding with the next request for each task t4]. Also, Al Mok has

discovered that the problem of minimizing the number of processors needed to

Implement a static control Structure Is also NP-complete [1 7].

On the other hand, experience wIth similar problems has shown that reasonable

heuristics may exist. Ohail’s work shows that statically assIgning independent

tasks to processors runn ing an earliest deadline scheduler is directly equivalent to

the bin-packing problem. Although this is an NP-complete problem, several heuristics

are known that are sup-optimal by a bounded ratio. These algorithms are directly

applicable to the scheduling problem. Assigning tasks to processors running static

priority schedulers Is not equivalent to the bin-packing problem, but DhaII has

established similar bounds for simple first-fit and next-fit algorithms.

Therefore, it Is reasonable to expect that similar bounds could he derived for

algorithm that assigned constraints to processors usIng a first-fit or next-fit

strategy. Some other factors should affect the assignment of tasks to processors.

if the block diagram can be partitioned into disjoint subdiagrams, and the

subdiagrems assigned to processors as a unit then no interprocessor communication

Is needed. However, the bandwidth or latency specifications on a constraint path

may require that the blocks of the constraint path be split among several

processors.

-73’


~~~~~~~~~~~~~~~~~~~~~~~~ T~ ”~

AssignIng Control Structures to Multiple Processors Section 5.1

6.2: Dynamic Assignment of Processors

- . 
It doesn’t make sense to assign processors dynamically if each processor Is

running a static control structure. However, if the processors are running dynamic

control structures (I.e. If wa have requests for tasks), then a control structure

might do better by not assigning a processor to a task until it requests service.

— 
- Unfortunately, there are no known algorithms for scheduling more than one

processor in an optimal manner in the sense that the earliest deadline scheduler is

optimal for a single processor. In fact, Mok has shown that such an algorithm must

have knowledge about future requests. Unfortunately, li mitations on the set of

tasks that dynamic schedulers can guarantee to schedule to meet theIr deadlines

are comparable to the restrictions Imposed by statically assigning tasks to

processors’, 
-

1. See (16] p87.

•74- 

~- - —- - - - - -  —-



6: Summary and Conclusions

We have presented a model for real-time computations that provides precise

definitions of real-time performance. The model has the additional advantage of

strongly corresponding to intuition. This makes the model ideal for defining the

semantics of a real-time programming language. The model also avoids close

association with any implementat ion. Therefore , the model Is applicable to a wide

variety of systems. Conversely , a language based on this model should be easily

implementable in a wide variety of ways, without encountering features of the

model too finely tuned to a particular implementation.

Several strategies for implementing control structures for block diagram systems

were investigated. The first strategy was to find a static execution order for the

blocks in the diagram. Control structures of this type have been somewhat ignored

for time critical applications. An important result is that any such control structure

could be represented as a finite cycle, aith~ugh the bounds on the length of the

cycl, are so large that explicit enumeration Is impractical as a synthesis technique.

A branch-and-bound synthesis method was developed, but unfortunately it is also

impractical for large problems. We suspect that the synthesis problem is NP-

complete (computationaily Intractable), but have not proved this conjecture. in any

case , we believe it Is more promising to Investigate fast heuristic algorithms for

synthesizing static control structures.

The next general strategy investigated made use of the fact that in many

applications the input values change at discrete times. Under this assumption,

block diagram schemata are closer to traditional models of real-time computations.

Pr vious research has found optimal schedulers for the special case of one

processor and independent tasks. However , simpler static priority schedulers had

been ignored except for the special case of the latency specifications being

-75.



— -

Summary and Conclusions Section 6

identical to the bandwidth period. We developed an efficient algorithm for assigning

priorities to lndep~ndent tasks when th, latency specification is less than the

bandwidth period. The synthesis techniques were modified to construct control
• structures for block diagram schemata in which the blocks were not Independent.

Since the analysis of the real-time performance of block diagram schemata under

a static priority control structure Is similar to the analysis of static priority

qu.ueing systems, the priority assignment algorithm can also be applied to priority

qu.u&ng systems.

Finally, we discussed some of the Issues that arise when more than one

processor is available to the control structure. The real-time performance of

multiprocessor control structures was analyzed, and absolute bound s on the real-

time performance for a block diagram schema were derived. If the real-time

specifications can be met by a multiprocessor control structure, the objective

becomes minimizing the number of processors needed to implement a feasible

control structure. Several special cases are known to be NP-complete, so the

general problem is also NP-complete. However, there Is reason to believe that

simple aigortthms will produce control structures using a number of processors that

dIffers from the minimal number by a bound ed factor, although no specIfic algorithms

were investigated.

Future work should probably concentrate on either proving various synthesis

problems to be NP-complete or lindlng efficient algorithms. in the event the

problems ~~ intractable, the performance of efficient heuristic algorithms should be

studied. Certainly any implementation of a practical language system based on

bloc k diagram schemata should attempt to find and improve such heuristic methods.

-76-

LA . ______________________



-~~~~~~~~~ Y~
_

Summary and Conclusions Section 6

A practical system should also attempt make use of more of the special cases for

which sffici.nt algorithms are known.

• 1  

—

TI . ~~~~~~~~~~~~~~~~~ • i• 
Li



— - - ~— —‘~~~

Ref erer ces

[1] Appelbe, W.F. and Ito, M.R., Scheduling Heuristics in a Multiprogramming
Environment , Research Report, Department of Computer Science and
Department of Electrical Engineering, University of British Columbia, Vancouve r,
B.C., Canada , V61 1W5 (February 197?).

(2] Dennis, J.B., First Version of a Data Flow Procedure Language, TM-61, Project
MAC, M.I.T., Cambridge MA, 02139 (May 1975).

(3] Dertouzos, M.L., “Control Robotics: The Procedural Control of Physical
- 

- Processes ”, Proceedings of the IFIP Congress 1974, pp 807-813.

[4] Dhall, S.K., Scheduling Periodic-Time-Critical Jobs on Single Processor and
Multiprocessor Computing Systems , UIUCDCS-R-77-859, Department of
Computer Science, University of lilinols at Urbana-Champaign, Urbana , Illinois
(April 1977).

[5] Flaia, E., Scheduling of Real-Time Processes In a Time-Shsre.~i Environment ,
SM. Thesis, M.I.T. Department of Electrical Engineering, Cambridue MA, 02139
(May 1968).

(6] Geiger, S.P., A New Language Approach to Computerized Process Control, SM.
Thesis, M.I.T. Department of Electrical Engineering, Cambridge MA, 02139
(February 1974).

(7] Gonzalez, M.J. Jr., “Deterministic Processor Scheduling”, ACM Computing
Surveys, Vol. 9, No. 3, ppll3-204 (September 1977).

[8] Graham, R.L., “Bounds on Multiprocessing Anomalies and Related Packing
Algorithms”, Spring Joint Computer Conference, 1972, pp205-21 7.

(9] Hewitt, C. and Baker, H., “Laws for Communicating Parallel Processes”, 1977
IFIP Congress Proceedings , pp987-992 (1977).

[10] lbaraki, T., “The Power of Dominance Relations in Branch-and-Bound
Algor ithms ”, Journal of the ACM , Vol. 24, Plo. 2, pp264-279 (April 1977).

[1 1] Kelly. J.L. Jr., Lochbaum, C. and Vyssotsky, V.A., “A Block Diagram Complier”,
Bell System TechnIcal Journal, Vol. 40, No. 3, pp669-678 (May 1961).

(12] Kieburtz, R.B. and Hennessy, 4.1., “lOYAL A High Level Programming Language
for Microprocessor Process Control Applications”, ACM SIGPL4N Notices, Vol.
11 , No. 4, pp127- 134 (AprIl 1976).

-78

——---- 
~-‘



References

(13] Kohier, W.H. and Steiglhtz, K., “Characterization and Theoretical Comparison of
Branch-and-Bound Algorithms for Permutation Problems”, Journal of the ACM,
Vol. 21, No. 1, ppl 40-1 56 (January 1974).

(14] Liu, C.L., and Layland, J.W., “Scheduling Algorithms for MuItiproç~ramm ing In a
Hard-Real-Time Environment”, Journal of the ACM , Vol. 20, No. 1, pp46-61• (January 1973).

(15] Manacher , G.K., “Production and Stabilization of Real-Time Task Schedules”,
Journal of the ACM, Vol. 14, No. 3, pp439-465 (July 1967).

(16] Mok, A.K., Task Scheduling In the Control Robot/cs Environment, TM-77,
Laboratory for Computer Science, M.I.T., Cambridge MA, 02139 (September
1976).

(17] Mok, A.K., private communication.

(18] Pershing, J.A. Jr., Design of a Domain Specific Mets-Compiler f or Systems
Using Graphical Input as a Source Language, S.M. Thesis, M.I.T. Department of
Electrical Engineering and Computer Science, Cambridge MA, 02139 (January
1978).

(19] Real Time Disk Operating System User ’s Manual, 093-000075-0 1, Data
General Corporation, Southboro, MA (1972).

(20] RTX- 16 Real Time Executive User’s Manual, 88A01 1 4A-E, Genera l Automat ion,
Incorporated, Anaheim, CA (1972).

(21] Teixelra, T.J., High Level Language for Process Control, WP-7, Engineering
Robotics Group, Project MAC, M.I.T., Cambridge MA, 02139 (January 1975).

(22] Weng, K., Stream-Oriented Computation in Recursive Data Flow Schemas, TM-
68, Project Mac, M.I.T., Cambridge MA, 02139 (October 1975).

.79..

V ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
—

~~~--~ - - V~~~~


-. -~—~~~~~~~~~~~~~~~~~~~~ V~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

r1

OFFICIAL DISTRI BUTION LIST

Defense Documentation Center Dr. A. L. Slafkosky
Cameron Station Scientific Advisor
Alexandria , VA 22314 Commandant of the Marine Corps

12 copies (Code: RD—i)
Was h ingto n , D. C. 20380

Office of Naval Research 1 copy
Information Systems Program
Code 437 Office of Naval Research
Arlington, VA 22217 Code 458

2 copies Arlington , VA 22217
i copy

Off ice of Naval Research
Branch Office/Boston Naval Electronics Lab Center
495 Summer Street Advanced Software Technology
Boston , MA 02210 Division — Code 5200

1 copy San Diego, CA 92152
i copy

Off ice of Naval Research
Branch Office/Chicago Mr .. E . N. Gleissner
536 South Clark Street Naval Ship Research & Development Center V

Chicago , IL 60605 Computation & Math Department
1 copy Bethesda , MD 20084

1 copy
Office of Naval Research
Branch Office/Pasadena Captain Grace M. Hopper
1030 East Green Street NAICOM/MIS Planning Branch
Pasadena , CA 91106 (0P—9]6D)

1 copy Off ice of Chief of Naval Operations
Washi ngto n , D. C. 20350

New York Area Office 1 copy
715 Broadway — 5th floor
New York , N. Y . 10003 Mr. Kin B. Thompson

1 copy Technical Director
Information Systems Division

Naval Research Laboratory (OP-9lT)
Technical Information Division Of f i ce of Chief of Naval Operations
Code 2627 Washington , D. C. 20350
~~shtng ton, D. C. 20375 1 copy

6 copies
Captain Richard L. Martin , USN

Aasistant Chief for Technology Commanding Officer
Office of Naval Research USS Francis Marion (LPA—249)
Code ZOO FPO New York , N. Y. 09501

—

*,)Ie~ton , VA 22217 1 copy
l copy

* ø i , . .1 Naval ft.uarch
-.4. ~%‘

- . ~~~~~~~ Vs U211

