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PROPAGATION OF ONE-DIMENSIONAL WAVES IN
INHOMOGENEOUS ELASTIC MEDIA

Henry F. Cooper, Jr.
AIR FORCE WEAPONS LABORATORY
Kirtland Air Force Base, New Mexico

Abstract: Formal progressing wave expansions are applied to problems
involving one-dimensional wave propagation through inhomogenous elastic
media. Expansions for the stress and particle velocity are obtained in
addition to the expansion for the particle displacement which is a special

case of previous results. Although one-dimensional problems could be

solved with the previously reported asymptotic methods, it is more con-
venient to use the expansion in terms of the stresses to cvnlu"afe the
expansion coefficients. Thc.proceduu is illustrated by solving several
problm in layered and nonlayered inhomogeneous media where the compressional

wave apocd is subject to power and exponential variations with diaunco.
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1. INTRODUCTION

In recent years, the techniques of geometrical optics have been
generalized to treat the electromagnetic wave equations, th|c acoustic
wave equatione, the elastic wave equations, and the viscoelastic wave
equations, chiefly by workers at the Courant Institute o!-hMtiul

Sciences. The method was originally applied by Lupsbugg [13] for time
periodic waves in the form of an asymptotic expansion in inverse powers

of the frequency to show that the leading term of such an expansion for
the electromagnetic wave equations is, in fact, the geometrical optics
solution. It was shown by several authors [3, 7, 8, 10, 11] that

subsequent terms give corrections to the geometrical theory. The method
vas generalized by Friedlander (3] to treat progressing wave forms.

In this form the method is a convenient tool in studying the propagation
of discontinuities. -

Karal and Keller (5] extended the method to treat genmeral progressing
waves in inhomogensous elastic media. In their analysis, the formulation
was in terms of displacements and displacement potentials. For certain
problems, it would be more convenient to have the formulation in terms

of velocities or stresses. Hence, for the one-dimensional case, these
results are presented here, and the method is demonstrated by making use
of the stress formulation.
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It should be pointh out that, while the procedure is formal, the
results for the leading term are consistent ‘with those obtained by the
theory of weak solutions and ‘othu' more fundamental means. For a more
complete discussion of these methods see Keller [6] and references
contained therein.

After the technique is developed, one-dimensional waves that propagate
into an inhomogeneous elastic medium of comstant density but varying

compressional wave speed are studied. It is expected that these results
may be useful for studying a surface generated wave ds it propagates

downward into the near surface regions of the earth's crust. Related
problems, solved by different techniques, have been recently treated by
Lindholm and Doshi [12), Whittier [15], Paytom [13]. Other related
references sre contained in these papers.

The method for treating interfaces between different inhomogeneous
media is then presented. As an example case, the method is nppligd to
treat an 1nhono_g¢ncouc iayer overlying a homogeneous half space, where

~

a step pressure is applied to the free surface.

2. FORMULATION
The one-dimensional equation of motion for a linear elastic

continuum, assuming small strains, is

o . s»(x)lltt = p(x)vt (1)




e ]

where o, p, u, and v = u, are stress (positive in tenaion)ﬁ-dehsity.

particle displacement, and particle velocity; where x and f denote
spatial position and time; and where a subscripted variable denotes
partial differentiation with respect to that variable. Hooke's law

for elastic media is given by

g = E(x) u (2)

vhere E is the modulus of elasticity. The variables p(x) and E(x)
are assumed to be continuous, differentiable functions of x. Taking

the partial derivative of (2) with respect to t, we obtain
o, = E(x) .y (3)

Hence, the equations for one-dimensional elastic wave propagation in
terms of displacements, velocities, and stresses are given by combining

(1), (2), and (3) as
(E u,)x =pu,. s %)

(E v*): PV (5)
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-1 -1
(o o‘)x «E 0o, ° (6)

We now assume that the displacement, velocity, and stress solutions

may be represented by

u ano Un(x) fn(t-S(:)) ’ (€))
v ~n-2-0 v, (x) £ (t-5(x)) > €))
0 ano rn(x) fn(t-S(x)) . (9)

The fn's are related [3] by

Rt SO (10)

vhere the prime denotes total differentiation with respect to
the “argument. In this manner, all of the £ 's may be related to
fo (called the waveform) by successive integrations. For example, if

!o is the Heaviside step function, H(t), then

n
£ - 1‘—;%)— H(t-S) - (1)




f Note that fo vanishes for negative argument, i.e., in front of the
wavefront whose equation is given by t = S(x), where S(x) is called
the phase function. For this case, note that the coefficients Un vn or

Pn are the jump conditions for the displacement, velocity, or stress

and their derivatives across the wavefront. It is assumed that Un
»

Vu, and Pn are identically zero for n < O,

M
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From the relationships in (2), (3), (7), and (9) with the
definition v = Uy, it may be shown that the coefficients in the displace- |

ment, velocity, and stress series are related by

U =V, » 12)
rn - lz(u;l - 8'U t‘_._1) 5 (13)
B =RV, ~ BN (14)




3. SOLUTION
Consider the displacement solution first. If (7) is substituted

into (4), then

i (s - o) U2, , - [288'U_" + (BS'" + E'S)U) £,

+ [!Un" + n'un'] fn} A - (15)

Since Dn = 0 for n < 0, the summations may be changed so that each

term is in the form of a coefficient times fn' Then, because fn is

related to fo as illustrated by (11) and because of the arbitrariness

of fo, each coefficient may be equated to zero; hence
s'z_ e 0 ' oo (K] gt
((s")% Pl U 4 - 2ES'U ' - (ES'' + E'S') U

"y e
+EU 4 E'TL =0 . (16)

Setting n = -1, noting that U‘ = 0 for n < 0, and requiring without
loss of generality that U, ¥ 0, we obtain

(8")2 = p/E = ™2 an




which may be recognized as the eiconal equation of gemoetrical optics

where c(x) is the wave speed. Hence,

x
{
: = dx ]
: S(x) =S ¢ I Y13 (18) i
b
‘ ; where § = S(x) is the initial value of the phase function, i.e., its
value at x = x. In (18), the plus sign is taken for waves which propagate

in the positive x direction and the minus sign for waves which propagate é
in the negative x direction. Substituting (18) into (16), we obtain a

linear first order ordinary differential equation whose solution is

: x ;
3 p(x)c(x) ’Qgrzcgrz
Un(r) Un ¥ 3Ty + 1 An_l(t) olaSata) dt (19)

where

$1 d

- e ! .
Ah—l 2pc dx (EU n-l) (20)

In a similar manner, the solution for the coefficients of (8) i

and (9) are




| ™

and

{ wvhere

o X
V(x) =V E?;Eﬁ; + I ) ‘{gﬁt)eﬂtz dt
. . p(x)e(x 2o 5 p(x)c(x)
x
(21)
By~ 4+ L 4 BV ), (22)

x
P_(x) 'P x)c(x + I Cc._ .(t) ggxgcixz dt
n n n-1
PEE® Vo0
(23)
cC.,= e e (24)
ma " thy & [ n;l] .

In the above expressions, the + signs are associated with waves propagating

in the +x directions.




4. EXAMPLE PROBLEMS FOR INHOMOGENEOUS HALF-SPACES

Consider the half-space x > 1, defined by the properties E = E(x)
and p = p = constant, initially at rest. For t > 0, a pressure is applied
to the surface x = 1 so that o(l,t) is known. The solution will first
be obtained for a step pressure input and Duhamel's theorem will be
applied to obtain the solution for a general input pressure function.

Thus, from (9)

o(l,e) ~ ] P (1) £ (¢-5) = -H(t) (25)
n=0

where bars indicate that the variables are evaluated at x = x = 1 and

H(t) is the Heaviside step function. Thus,

in --1 , n=0 ,

=0 n>0andn<0 |
§=0 , |
£ = H(E) (26) %




The phase function S is then determined from (18) and the general fn
is obtained from (11). Since the density will be constant in the

example cases, cn__1 from (24) reduces to

e

1
c ol c(x) P""

i (27)

n-1

Case I. c(x) = ¢ x2¢; p=p

=24

In this case, E=5 c'x  and C _, = ox . From (18), it

may be shown that

r

sx) =x 0 %1, . a ¢ % i
c(1l - 2a)
-%logx - a--;- . (28)

c

From (23), (25), and (27), it may be shown by induction that if a ¢ %—

0 1
P = <* 2 x(Zc-ll.)j - ad ¥y (29)

150 “1n

Substituting (29) into (23) and simplifying, we obtain

11




- -EA a + 2a- - -a + {(2a-1 l1<jz<n,
Ja = 2 “4-1, n-1 3(2a-1) ¥
_.§ a + - - -a + §{(2a~ §=0,n>0,
2 321 Ay-1,0-1 3 (201 g
- -] , j=n=0,
=0 , j<Oorj>n,

wvhere Aj £ Ajn' Ifas= é-. it may again be shown by induction that
1

n
Fo VX Jzo Ayn(los 2, sey - (31)
where

c 1 :
a2 U+ A ) a1 8T8, 0] (25350

=0, <0 n>00rj>n,

=-l, j=n=0, (32)

All possible values of a have been included in the above results.

In particular, the case a = 1 ig of interest because it may be shown from

o




(30) that AOO = -1 and Ajn = 0 for all other values of j and n. Hence,

the series terminates after a single term,
o=-xH[t-(x-1) /€x] , a=1, (33)

which may be shown to be the exact solution for this case. Note, in
this case, that the stress is unbounded for increasing x, and that, for
ct > 1, 0 = -x since (x-1)/x < 1 for all positive x. That the stress
should grow without bound is non-physical. However, we note that the
assumption ¢ = Exz is also non-physical for unbounded x. Hence, if the
model ¢ = Exz is realistic for x <L < ®, it is expected that the
solution (30) is applicable for x S L < =,

From the above results, it is seen that the stress amplitude may
either increase or decrease with increasing x depending on the value of
a. In the case a = 0, the above results reduce to the homogeneous
elastic case where the stress level is independent of the distance
traveled. For a > 0, the stress level increases and for a < 0, the stress

level decreases with increasing x.
Case II. c = ¢ exp{2B8(x~1)}, p=p

In this case, E = p g exp {48(x-1)} and Co1 "% exp {28(x-1)}

"
Pn_1 .

From (18), it may be shown that
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S(x) = 1-exp (-28(x-1)} (34)

28¢c :

i

S e

From (23), (25), and (27), it may be shown by induction that

P = exp {8(x-1)} )
3=0

Ajn exp {283(x-1)} . (35)

Substituting (35) into (23) and aimplifying, we obtain

3 ..
(24-1)" c 8
S 1,02 » 1=3zm
-n 2
-C 2“1
- A j=0,n>0>
Tl Ty 3-1, n-1»
= =] ’ . j=n=0 .
-0 ’ J<Oorj>n, (36)

Again, the above solution reduces to the limiting homogeneous elastic

case for 8 = 0. As x increases, the stress grows if 8 > 0 and attenuates

if 8 < 0.
In the above examples, the response vas determined for a step

input compressive stress at x = 1, The stress solution has the form

14




le e —
.
§ o .

[ 3

-« n
o ™ 20 (o LE=S@L e - 500 (37)
n=
vhere P n(x) is given by (29), (31), or (35) snd S(x) is given by (28)
or (34). In general, the solution for an arbitrary boundary stress

o(1,t) may be determined from Duhamel's theorem

t d0,(7)

0

5. REFLECTION AND TRANSMISSION OF WAVES AT AN INTERFACE
Consider a stress wave, traveling in the direction of increasing
x in a medium "a," incident at an interface, x = x, between medium
"a" and medium "b." Let the compressional wave speed and density of
the two media be denoted by Car S e’ and Ppe It is assumed that

& vave is transmitted and a wave is reflected. Due to the linearity

of the equations, the stress field can be obtained by superposition.

The boundary conditions at the interface require that 3. = g, and

b

;‘ = v, Assume that

o, .nzo Py, £, (£ -8) *;Zo Py £, (8 -8, ,

op =) Py £ (t-8y, (39)

15
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“" ) Yo fp fe =8y @ ) Voo £ (-5

n=0 n=0
ao
we ] v o -6 . (40)
n=0
A i
Where the subscripts, 1 = 1, 2, 3, denote the incident, reflected, and

transmitted waves respectively. Since the form for all of the waves is

that represented in the previous sections, the solution is known providing

the initial values, Si. P are known. It is assumed that the

in’ vin’
incoming wave has been defined by the methods of the previous section.
Hence, S, and iln are known.

From (14) and (17) it can be deduced that

pev, = 1 §=1,2,3, (41)

3 gn " Fyn-)

(42)

and S’ = ¢! for the outgoing waves and s' = —¢”! for incoming wave.

Note that F is a function of the coefficients Pk where k < n-1.

j,n-1
In particular, (41) yields the well known result from the conservation of

momentum across a steadily moving discontinuity, Pjo - -oclvjol .




When equations (39)-(42) are combined with the boundary conditions,

%, " 9% and Va = Vo Ve find that

8§, =§5,=5,, 43)
and

F2n b 1—,3:1 5 -iln >

o W e i * ¥y, )
where

T=p, c. /by ¢ . (45) 1
Hence:

T e ” AR N
Pt 0 " P T an T T Pyl G0,

| (46) !
5 R e A S R R o
P3n [2Pln Fl,n-1 2,n-1 3,n-1




Thus, since S, and ;'n are known, the initial values at the interface

1 1

(x = ;) are determined and the procedures of the preceding section may

be applied to obtain the formal solution. One should be careful to

choose the proper sign in (18), (20), (22), and (24) so that the direction

of propagation is accounted for. It will be noted that the above results
g reduce to the limiting homogeneous elastic results in the proper way. f

h One interesting result from (46) is that, in the limiting case ;

=F ¥

of t = 1, there is no reflected wave only if ?& a-1
9

2,0-1 = F3,0-1
for all n > 1. Thus, even though the impedance is continuous at x it is

still possible that a wave will be reflected if the impedance of medium b

varies in a different manner than that of medium a. Note that, in the

case Pa E; = ;L :; » the reflected wave has no discontinuity since
F&O = 0. Rather, its amplitude increases from zero at the front in a
manner which depends on the functions representing the impedance in

media a and b. This general result was pointed out for a particular case

by Payton [13].

As an example case, consider that for 1 < x < X1, P = pand c = Exz
vhere ¢ = c at x = 1. For x > x, let ¢ = cxi and p = p . Thus, the
interface is between an inhomogeneous layer overlying a homogeneous

elastic half space. Further, the impedance is continuous at the




interface.

surface x = 1.

The incident stress wave is given by (33).

Consider the result when a step pressure is applied at the

The stress

field is given by the first of (39) in the layer and by the second of

(39) in the half space.

This solution will apply until the time that

the reflected wave reaches the surface x = 1, At x = X1 the phase

functions are

and from (18)

x, (1 + x) -2x
S, w

s cx, x
cx,

It may be shown from (41) and (46) that, since PlO = -x and Pln =0

forn > 0, Fay =0 forn2 0; ¥

for n 2 1; and

Py = =(-cx, /D)%%,
=0 §
Py, * -(-Ex1/2)“x1 <
- -‘1 ’
= 0 8

(47)
xi ~2x1 + x
s3 & SR — (48)
€ Xy
a“0forn21; Py =Py =F, ./2
n21
ng0
n>1 (49)
n=20
n<oO
19
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Thus, the solution is determined by substitution of (48) and (49)
into (39). As was pointed out previously this solution is applicable
only until the time that the reflected wave strikes the surface x = 1,

At this point the procedure may be repeated for that boundary and so on.

6. SUMMARY

A formal procedure for obtaining solutions for one-dimensional

wave propagation in inhomogeneous elastic media has been presented
and applied to two general cases. There is no proof that the
resulting expansions are convergent to the exact solution; however,
in all cases where exact solutions are known and where the technique
has been applied, it has been found that the correct asymptotic

solutions have been given. In one of the example cases treated here, i

the series terminated and a closed-form exact solution was obtained.
The method of treating a single interface between different
inhomogeneous media was presented in detail. Multiple interfaces may
be treated in exactly the same way. One interesting result was that
reflected waves may be generated in the case of an incident wave at
the point where two different inhomogeneous media are joined even

though the impedances at the interface are matched.

20




(1]

(2]

(3]

(4]
(5]

(6]

The method, while tedious, is direct and involves only ordinary

differentiation, integration, and algebra. The terms of the series
are evaluated recursively once the initial vglu.t of the coefficients
and the phase function (the barred variables) are known. These initial
values are determined from application of the boundary conditions

in a straight forward manner.
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