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PROPAGATION OF ONE DIMENSIONAL WAVES IN

INROMOCENEOIJS ELASTIC MEDIA

Henry F. Cooper , Jr.
AIR FORCE WEAPONS LABORATORY

Kirt land Air Force Base , New Mexico

Abstract: Formal progr .ssing wave expansions are applied to probls.s

k:. involving one—dimensional wave propagation through inhomogenous elastic

media. Expansions for the stress and particle velocity are obtained in

addition to the expansion for the particle displacement which is a special
I

case of previous results . Although one—d imensional problems could be

q solved with the previously reported asymptotic methods , it is more con-

venient to use the expansion in terms of the stresses to evaluite the

expansion coefficients Th. procedure is illustrated by solving several

problems in layered and nonlayered inhoinogeneous media Where the compreesional

wave speed is subject to power and exponential variations with distance.
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In recent years , the techniques of geometrical optics ha,. been

generalized to treat the .lectro~sg~.tic wave equations , the acoustic

• wave equations , the elastic wave equations, end the viscoslastic wave

equations , chiefly by workers at the Coursut Institut e of Mathematical

Sciences . The method was originally applisd by ~~~~~~~ 113) for time
periodic waves in the form of an uy.ptotic expansion in inverse p~ ,ers

of the frequency to show that the leading term of such en exp~~~ion for

the electromagnetic wave equations is, in fact , the gns.strical optics

solution. It was shown by several autho rs (3 , 7 , 8, 10, 111 that

subsequent terms givs corrections to the geometrical theory. The method

was generalized by 
~~~~~~~ 

(3) to treat progressing wave forms.

In this form the method is a convenient tool In studying the propagation

of discontinuities .

~~~ and 
~~~~ 

(51 extended the method to treat general progressing

waves In inho.ogsusous elastic media. In their anal ysis, the formulation

was In terms of displacements end displacement potentials. For certain

problems , it would be more convsnisnt to have the formulation in terms

of velocitiss or stresses . Rence , for the one—dimensional case, these

~ssults are presented hare , and the method is demonstrated by making use
of th . stres s formulatiqn.
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It should be pointed out that, while the procedure is formal , the

results for the leading ter m are consistent with those obtained by the

theory of weak solutions and other more fundamental means • For a more

complete discussion of thes. methods see !!Z. [6] and references

contained therein.

After the technique is developed, one—dimensional wavss that propagate

into an inhcmogenaous slastic mediwe of constant density but varying

compre ssion,], wave speed are studied. It is expected that these results
may be useful for studying a surface generated wave 4. it propagates

downward into the near surface regions of the earth ’s crust. Related

problems, solved by different techni ques , have been recentl y treated by

Lindholm and ~~g~j  [12] , Whittier [15] , Payton [13] . Other related

references are contained in these paper s.

• The method for treating interfaces between different inho.ogsneous

media i. then presented, As an example case, the method is applied to

treat an inhomogeneous layer overlying a homogeneous half space, where

a step pressure is applied to the free surface.

2. FORMULATION

The one—dimensional equation of motion for a linear elastic

continume, assoming small strains, is

— P (x)u
~~ 

a P (x)v~ (1)
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where a , p~ u , and v ~ u~ are stress (positive in tension),1 dásity,

particle displacement , and particle velocity; where x and denote

spatial position and time; and where a subscripted variable denotes

partial differentiation with respect to that variable. Booke’s law

• for elastic media is given by

aaE (x)ux 
(2)

where E is the modulus of elasticity. The variables p(x) and E(x)

are assumed to be continuous, differentiable functions of x. Taki ng

the partial derivative of (2) with respect to t , we obtain

I
Hence, the equations for one—dimensional elastic wave propagation in

terms of displacements, velocities, and stresses are given by combining

(1) , (2) , and (3) as

( E u
~
)
~ Putt ‘ 

(4)

(Evx)x
ap v

tt ‘
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(~~l~,) — E l 
~~ (6)

We now assume that the displacemen t , velocity , and stress solutions

may be represented by

u 
~~~~~~ 

U~ (x) f~ (t~S~~~~ (7)

a

• v ~~
. ~ V (x) f~ (t_ S(x)) , (8)
n—O

a ) P (x) f~(t—S x)) . (9)
n—O

The f~~s are related (3] by

a f~4 (10)

wher, the prime denotes total differentiation with respect to

the argument. In this manner , all ot the ft ’s may be related to

(called the waveform ) by successive integrations. For example, if

f0 is the Reaviside step function, H(t), then

f a (t1)° H(t—S) • (11)

5 
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Note that f0 vanishes for negative argument , i.e., in front of the

wavefront whose equation is given by t — S(x), where 5(x) is called

the phase function. For this case , note that the coefficients U V ora , a

~~ are the jump conditions for the displacement , velocity, or stress

and their derivatives across the wavef rout. It is assumed that U~

~~ and P~ are identically zero for a < 0.

From the relationships in (2), (3), (7), and (9) with the

def inition v — u
~
, it may be shown that the coefficients in the displace-

ment, velocity, and stress series are related by

— Va_i , (12)

— E(U~ S’U~~1) , (13)

P — E(V~~1 S’V ) (14)

6 
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3. SOLUTION

Consider the displacement solution first. If (7) is substituted

into (4), then

n~O 
U(s’)~E — p 1 U~f~~.2 — (2Es ’u~’ + (ES’’ + E’$’)u ]

+ (EU ” + VU ’] — 0 . (15)

Since U~ — 0 for a ‘ 0, the sumsations may be changed so that each

term is in the form of a coefficient times f~ . Then , because is

related to as illustrated by (11) and because of the arbitrariness

of f~, each coefficient may be equated to zero; hence

((S’) 2E — p 1 U~~1 — 2ES’U~’ — (ES’’ + E’S’) U~

+ EU~.1 + E’U~ .1 — 0 . (16)

Setting a — —1, noting that U~ — 0 for a < 0, and requiring without
loss of generality that U0 ,1 0, we obtain

($IP)2 — — c~2 (17)
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which may be recognized as the ciconal equation of gemoetrical optics

where c(x) is the wave speed . Hence,

S(x) — ~ * J ~ 
(18)

I
where ~ S(i) is the initial value of the phase function, i.e., its

value at x — i. In (18) , the pius sign is taken for waves which propagate

in the positive x direction and the minus sign for waves which propagate

in the negative x direction. Substituting (18) into (16), we obtain a

linear first order ordinary differential equation whose solution is

Un(lr) — Un ~~~~~~~~ + A~_1(~) 19t~C~r~ di (19)

• 

• 

where

• 
An_i — 

~~~ ~~~~
- (EU ’~~1) • (20)

I
In a similar manner , the solution for the coefficients of (8)

and (9) are

8
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V (X) 
~~~~~ ~J~(i)~(i) + J S~~1(t) Jø(r)c(t) dr

~~p (x)e(x) 
_ ~~p (x)c(x)x

(21)

where

B~_~ 
a ,_j  L (EV~~1) , (22)

• — 2pc dx

and

P (x) —• ~~ 
________  + c~_],(T) ~~p(x~c~x) di

(23)

where

Cal + ~~ 4_ (24)

In the above expressions, the + signs are associated with waves propagati ng

• in the 4% directions .

I
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4, EX~~~LE P1~OBLEMS FOR INWR4OCENEOUS HALF—SPACES
- 

Consider the half—space x > 1, defined by the properties F — E(x)

- 
. and p — — constant, initially at rest. For t > O,•a pressure is applied

-

• to the surface x — 1 so that a(1,t) is known. The solution will first

be obtained for * step pressure input and Duhamel ’s theorem will be

applied to obtain the solution for a general input pressure function.

Thus , from (9)

o(1,t) ~
. 

) ~~(1) f~(t4
) — .—R(t (25)

naO

where bars indicate that the variables are evaluated at x — — 1 and

H(c) is the Heaviaide step function. Thus,

• ~~ — - 1  , n 0  ,

• a
U

— O  , n > O a n d n < O

‘

— 11(t) • (26)
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Th~ phase function S is then determined from (18) and the general f~

is obtained from (11). Since the density will be constant in the

example cases, C~_1 f rom (24) reduces to

I

C~_1 — 
~~
- c(x) P’’1 . (27)

Case I. c (x) — ~ x2°; p —

In this case, E — ~ c
2x~~ and C — ~x

2
~ P’’1. From (18), itn 2

may be shown that

S(x) — ~
_2ci + 1_~ ~

— 2u)

1 1— — l og x  , . (28)
C

From (23) , (25), and (27) , it may be shown by induction that if a

— x°~~0 ~~~ ~~~~
2°—1

~~~ 
a (29)

Substituting (29) into (23) and simplifying , we obtain

11
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~1

A .~~~ A Ici + 2a—3 ) (f—1)1E—a + 1(2a—~~fl i c < a
jn 2 j— l, n—i j (2a—1) ‘ — —

— 
(a + (2e—l)U—1)1(—s + 1(2a—l)1 j — 0, a

r 2 j .ul,n—2 j(2u—l)

— — 1 , 3 — n — O ,

— O  , j O o r j > n ,

where ~~~ A~~. If a — ~~, it may again be shown by induction that

A~~(los x)~ , a — - ~~ -, (31)

where

A
m 

- ~ ((3 + 1) A
3 + 1, a - 1 

- ~~~~ A
3_ 1, ELi’ , 

1 ~ 3 a

• — 0 , 3 0 ,n ’Oor j’n ,

—— 1, j — n — 0 .  (32)

£11 possible values of a have been included in the above results .

In part icular , the case a — 1 is of interest because it may be shown from

12
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(30) that A00 — —l and ~~ — 0 fQr all other values of 3 and n. Hence ,

the series terminates after a single term,

a — —x H [t — (x—l) /~x] , a — 1, (33)

which may be shown to be the exact solution for this case. Note, in

this case, that the stress is unbounded for increasing x , and that , for

> 1, a — —x since (x—l)/x < 1 for all positive x. That the stress

should grow without bound is non—physical. However, we note that the

assumption c — ~x
2 is also non—physical for unbounded x. Hence, if the

model c — is realistic for x c L < , it is expected that the

solution (30) is applicable for x i L c a ,

From the above results, it is seen that the stress amplitude may

either increase or decrease with increasing x depending on the value of

a. In the case a — 0, the above results reduce to the homogeneous

elastic case where the stress level is independent of the distance

traveled. For a > 0, the stress level increases and for a < 0 , the stress

level decreases with increasing x.

Case II. C — C exp(26(x—l)}, p — ~

In this case, E — ~ ~2 ,
~~

, (4B(x— l) } and Ca_i — asp (28(z—l)}

• 
P1 ’~ . From (18), it may be shown that

13
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5(x) — ~~ 
— axs (—28(x i)} 

. (34)
28c

From (23) , (25) , and (27), it may be shown by induction that

a
• 

. p~ — asp (8(x—1)} 
! 

A4n exp {283(x—l) } .
• j_o J

Substituting (35) into (23) and simplifying , we obtain

Aja
_ (2l_tj

~~
C$ Aj_l,a_l , l~~~J~~~n

— k~L (21~~~l) B A3_ 1 , n—i ’ 3 — 0, n > 0’

— — 1 ‘ • j — n — O

— O  ‘ j < O o r j > n  . (36)

Again, the above solution reduces to the limiting homogeneous elastic

case for B — 0. As x increases, the stress grows if B > 0 and attenuates

if B < 0.

In the above examples, the response was determined for a step

input coepres.ive stress at x — 1. The stress solution has the form

• 14 
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__________

°~ 
“ ~ P (X) [t — S(x)1 

~ It — 5 (x) ] (37)
n—O

where Pn(x) is given by (29), (31), or (35) and S(x) is given by (28)

or (34). In general, the solution for an arbitrary boundary stress J• a(1, t) may be determined from Duh .l ‘s theorem

,t aa0(r)
a — 

J 
a(l, t — r) dr .  (38)

0

5. REFLECTION AND TJAJSMISSION OP WAVES AT AN INTERFACE

Consider a stress wave , traveling in the direction of increasing

x in a medium “a,” incident at an interface, x — , bstveen medium

“a” and medium ‘b. ” Let the compress ional wave speed and density of

the two media be denoted by ca, %‘ 0a’ ~~ 0b It is assumed that

a way, is transmitted and a wave is reflected. Due to the linearity

of the equations, the stress field can be obtained by superposition.

The boundary conditions at the interface require that 
~a 

— b and

‘a 
— Assume that

a~ u
~~~ 

p
1~ ~n 

Ct - S1) n~O ~2n f~ —

• ab
a
n~O

P3n fn (
t _ S

3) , (39)

• 13
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V — 

~ 
“in f~ (t — S1

) + ~ V2 f~ (t — S
2

)

n0 na0

• V
b 

— 
n~O 

V3 f~ (t 
— S3) . (40)

• Where the subscripts, i — 1, 2, 3, denote the incident, reflected, and

transmitted waves respectively. Since the form for all of the waves is

that represented in the previous sections, the solution is known providing

the initial values, 
~~~

, 
~~~~~~ ~

, are known. It is assumed that the

incoming wave has been defined by the methods of the previous section.

Hence, S, and 
~ln are known.

From (14) and (17) it can be deduced that

9CV
3~ 

— (—l )~~ (P
3

~~~ — F3,~~~_1
) 3 — 1,2,3 , (41)

where 
~Ln- 1 

pc2 V
~,n_l 

(42)

and S ’ — c 1 for the outgoing waves and S’ — —c~~ for incoming wave.

Note that F is a function of the coefficients P where k ~ n—i.J,n—l k

In particular, (41) yields the veil known result from the conservation of

momentum across a steadily moving discontinuity, P~ — —pcIV
3~ I.

16
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When equations (39)— (42) are combined with the boundary conditions,

~ —~~~ and ,we find thata b a b

(43)

and

~ —~~ —— P , • -

2n 3n in

~ +~~~ —~~~ —~~ +~~ +~~~ (44)2n 3n in i,n—l 2,n—1 3,n—i,

where

— 

~a 
C /Pb ~~ . (45)

Hence:

~2n 
— L (i—~) 

~ln — Fj,~_i + 72,n—l + r ~3,n—l1 
(1 + r)

(46)

— [2~ 
— Pi n—i + 72 n—l + r 

~3,n—i
1 (1 +

3n in

17
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Thus , since S1 and 1’ln are known, the initial values at the interface

(x — x) are determined and the procedures of the preceding section may

be applied to obtain the formal solution . One should be caref ul to

choose the proper sign in (18) , (20) , (22) , and (24) so that the direction

of propagation is accounted for. It will be noted that the above results

reduce to the limiting homogeneous elastic results in the proper way.

One interesting result from (46) is that, in the limiting case

— of r — 1, there is no reflected wave only if F — F — P1 ,n—l 2 ,n—l 3 ,n—l

for all n > 1. Thus, even though the impedance is continuous at x it is

still possible that a wave will be reflected if the impedance of medium b

varies in a different manner than that of medium a. Note that, in the

case 0a Ca — 

~b % 
, the reflected wave has no discontinuity since

P20 — 0. Rather, its amplitude increases from zero at the front in a

manner which depends on the functions representing the impedance in

media a and b. This general result was pointed out for a particular case

by Payton (13].

As an example case , consider that for 1 c X C x1, p — p and c —

where~~~— c a t x - l .  F o r x >x 1 1etc_c4
an dp _ ~~~. Thus , the

interface is between an inhomogeneous layer overlying a homogeneous

elastic half space. Further, the impedanc. is continuous at the

18
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interf ace. Consider the result when a step pressure is applied at the

surface x — 1. The incident stress wave is given by (33). The stress

field is given by the first of (39) in the layer and by the second of
• (39) in the half space. This solution will apply until the tim. that

the reflected wave reaches the surface x — 1. At x — x1, the phase

functions are

*1—i
(47)

cx1

and from (18)

x1(l+x ) -2x x~~-2x1 +x

— ; s3~~ — 2 (48)
c x 1 x c x 1

It may be shown from (41) and (46) that , since P10 — —x and 
~~~~~ 

— 0

for a > 0 , F3n — 0 for a ~ 0; r , ~~ 0 for n ~ ~ ~2n 
— T’3n — P2n_l/2

for n ~ 1; and

1’2n — _ (_~X1/2)
nX , a ~ 1

, n~~~0

1’3n — ~(_~~~/2)n,1 , n ~ 1 (49)

, n — 0

, n 0

•,

•

~~~- ~~~~— ~~~
• - - • --- -•~~~~~~~~

•
~~~~~- •~~~ •~~~~



Thus , the solution is determined by substitution of (48) and (49)

into (39). As was pointed out previously this solution is applicable

only until the time that the reflected wave strikes the surface x — 1.

At this point the procedure may be repeated for that boundary and so on.

6. SUMMARY

A formal procedure for obtaining solutions for one—dimensional

wave propagation In inhomogeneous elastic media has been presented

and Applied to two- - general. cases. There is no proof that~the

resulting expansions are convergent to the exact solution; however,

in all cases where exact solutions are known and where the technique

has been applied, it has been found that the correct asymptotic

solutions have been given. In one of the example cases treated here,
- •  

the series terminated and a closed—form exact solution was obtained .

The method of treating a single interface between different

• ~. inhomogeneous media was presented in detail. Multiple - interfaces may

be treated in exactly the same way. One interesting result was that

• reflected waves may be generated in the case of an incident wave at

the point where two different iaha.ogeneous media are joined even

though the impedances at the interface are matched.

20
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The method , while tedious , is direct and involves only ordinary

• differentiation , integration , and algebra . The terms of the series

are evaluated recursively once the initial values of the coeff icients

and the phase function (the barred variables) are known . These initial

• values are determined from application- of the boundary conditions

in a straight forward manner.
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