REPORT NO. CG-D-75-77

CH

MD A 0 611

00

COST EFFECTIVENESS STUDY OF WASTEWATER MANAGEMENT SYSTEMS FOR SELECTED U.S. COAST GUARD VESSELS Volume III - Installation Analysis Part 5 - WHITE SAGE (133')

> Sidney Orbach BRADFORD NATIONAL CORPORATION 1700 Broadway New York, N.Y. 10019

February 1977

101 NOV

2004 0317 006

78 11 06 086

FINAL REPORT

Boewment is evallable to the U. S. public through the National Technical Information Service, Springfield, Virginia 22161

FERMANEN FOR

NE PROBABLE OF TRANSFER THE FREE

BEST AVAILABLE COPY

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof.

The United States Government does not endorse products or manufacturers. Trade or manufacturers' names appear herein solely because they are considered essential to the object of this report.

The contents of this report do not necessarily reflect the official view or policy of the U.S. Coast Guard and do not constitute a standard, specification, or regulation.

BEST AVAILABLE COPY

. Report No.		
· NEPOT NU.	2. Government Accession No.	3. Recipiont's Catalog No.
CG-D-75-77		
. Title and Subtitle	/	5. Report Date
COST EFFECTIVENESS STUDY O	F WASTEWATER MANAGEMENT	February 1977
SYSTEMS FOR SELECTED U.S. C	COAST GUARD VESSELS	6. Performing Organization Code
Volume III - Installation Analysis		
Part 5 _ WHITE SAGE (133')		8. Performing Organization Report No.
Sidney Orbach		
Performing Organization Name and	Address	10. Work Unit No. (TRAIS)
RADFORD NATIONAL CORPORA 1700 Broadway	11014	11. Centrect or Grant Ne.
New York, N.Y. 10019	•	DOT-CG-52180-A
		13. Type of Report and Pariod Covered
2. Sponsoring Agency Name and Addre)63	
J.S. Dept, of Transportation		FINAL REPORT
J.S. Coast Guard, Office of Rese	arch and Development	
Washington, D.C. 20590		14. Sponsoring Agency Code
		G-DOE-1/TP54
6. Abstract	. Volume III has been published in size	
Each of the 18 candidate Each of the 18 candidate vas analyzed for installation aboa ieveloped: vessel conditions inclu	wastewater Management System (WM and the WHITE SAGE (WLM - 544). The Iding locations of black water (sewage	is) configurations developed in Volume (iv)
Each of the 18 candidate vas analyzed for installation aboa ieveloped: vessel conditions inclu- vater (galley and turbid) waste so viable candidate systems based or vastewater (or sludge) holding tar	wastewater Management System (WM and the WHITE SAGE (WLM - 544). Th ading locations of black water (sewage urces, vessel/resources capacities and a instailation guidelines and assumption as capacities which can be fitted, insta	IS) configurations developed in Volume IV ne following information was and garbage grinder slurry) and gray estimated usage rates, determination of n developed in Volume IV black and gray

¥. ¥m

「「「「「「「「」」」」

「「大学生」を

朝たちたえます

のためます

教学部

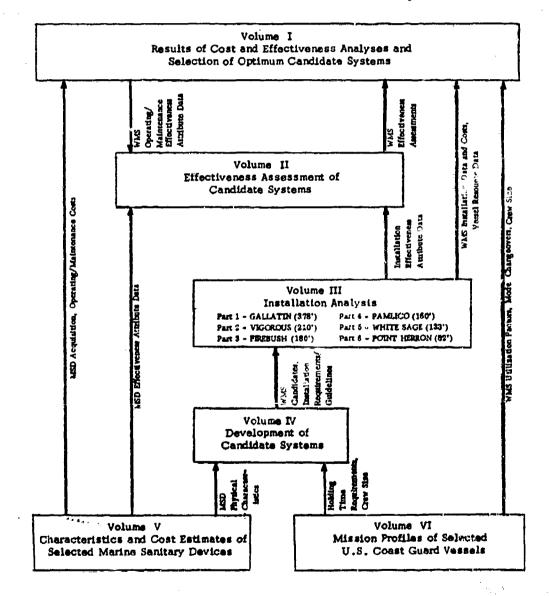
17. Key Words Emission Standards Wastewate Installation Analysis System Marine Sanitary Devices MSD Pollution Abatement	r Management 3	18. Distribution Statement Document is available National Technical Inf Virginia 22161	-	÷
19. Security Classif. (of this report)	20. Security Cles	sail. (of this page)	21. No. of Pages	22. Prico
UNCLASSIFIED	UNCLAS	SSIFIED	159	
Ferm DOT # 1700.7 (8-72)	Kyproduction of co	mploted page outhorized		036

4

COST EFFECTIVENESS STUDY OF WASTEWATER MANAGEMENT SYSTEMS FOR SELECTED U.S. COAST GUARD VESSELS Volume III AInstallation Analysis . Part 5 WHITE SAGE (133') **家族教育者的男子 医加多斯氏结肠性的 人名英尔尔茨 新国的 和此的 和此之人,所以此时的称为这一个来来的不能** Sidney/Orbach ILIP BRADFORD NATIONAL CORPORATION 110 127 1700 Broadway New York, N.Y. 10019 1526 February 1977 D-75-77-vol-3-pt-FINAL REPORT . For U.S. Dept. of Transportation U.S. Coast Guard Office of Research and Development Washington, D.C. 20590 Contract No. DOT-CG-5218g-A 928 410 set

ACKNOWLEDGEMENTS

This study was conducted under the technical direction of Mr. Thomas S. Scarano of the Office of Research and Development, U.S. Coast Guard. Mr. Scarano and Lt. Ed Magsig of the Office of Engineering made available the vessel plans and provided valuable assistance in the formulation of the guidelines and assumptions governing this installation analysis.


The installation analysis was performed in consultation with George G. Sharp, Inc., 100 Church Street, New York, N.Y. 10007.

The cooperation and assistance of the officers of U.S. Coast Guard Cutter WHITE SAGE (WLM-544) in scheduling the shipcheck and providing the requested vessel data is greatly appreciated.

ACCESSION for Te Section B.1 Section N" IS 000 ם יטייוייינייי \$ 1 105 10 BISTING TELLAVAL MANTE COSS

PREFACE

The relationship among the volumes of the report is depicted below. This relationship does not convey all the information contained within each volume.

iv

1.10

T,1,

SUMMARY OF WMS INSTALLATION COSTS

Vessel: WHITE SAGE (133')

Coll/TransTreatment/DisposalCapacityLATIONSubsysSubsystemGGCOST(Black)BlackGrayGG1GravityHoldingHoldingCOST2Collect.TankTank1001003ChryslerHolding10013,1902Collect.TankTank1001003ChryslerHolding1001004GravityGrum FlowHolding4Collect.Thru+HldTkTank1004GravityGrum FlowHolding5GavityHoldirGrum Flow6GravityHoldirGrum Flow6GravityHoldirGrum Flow7GravityGrum FlowHolding7Collect.Tank1001001013, 10010013, 1009VacuumHoldingHolding10IncineratorHolding10010IncineratorHolding10IncineratorHolding10IncineratorGrum Flow11Evap.Tank10012HoldingGrum Flow13IncineratorGrum Flow14HoldingGrum Flow15GaTXHolding16GATXHolding17HoldingIncinerator18IncineratorHolding10Incinerator<		[:]	TYPE		Holding// INSTAL-					
Subsys Subsystem Subsystem <thsubsystem< th=""> <thsub< td=""><td></td><td>≈ Coll/Tra</td><td>the second s</td><td>the state of the second se</td><td></td><td></td><td></td><td>1</td></thsub<></thsubsystem<>		≈ Coll/Tra	the second s	the state of the second se				1		
1 Gravity Holding Holding 2 Oil Chrysler Holding 100 100 13, 190 2 Oil Chrysler Holding 100 100 13, 800 3 Chrysler Holding 100 100 13, 800 4 Gravity Grun Flow Holding 100 100 16, 800 4 Gravity Grun Flow Holding 100 100 17, 000 5 Grumman Grumman Flow Thru 100 100 12, 890 6 Gravity Holdir Grum Flow 100 100 15, 460 7 Gravity Grum Flow Holding 100 100 15, 460 7 Gravity Grum Flow Holding 100 100 13, 100 8 Grumman Flow Holding 100 100 13, 100 9 Vacuum Holding Holding 100 100 12, 730 10 Ifered) Tank Tank 100 100 1	18	Subsys			10-		11	/		
1 Gravity Holding Holding 2 Oil Chrysler Holding 100 100 13, 190 2 Oil Chrysler Holding 100 100 13, 800 3 Chrysler Holding 100 100 13, 800 4 Gravity Grun Flow Holding 100 100 16, 800 4 Gravity Grun Flow Holding 100 100 17, 000 5 Grunman Grumman Flow Thru 100 100 12, 890 6 Gravity Holdir Grum Flow 100 100 15, 460 7 Gravity Grum Flow Holding 100 100 15, 460 7 Gravity Grum Flow Holding 100 100 13, 100 8 Grumman Flow Holding 100 100 13, 100 9 Vacuum Holding Holding 100 100 12, 730 10 Ifered) Tank Tank 100 100 1	13	(Black)				5ি ই	~~	1		
Collect. Tank Tank 100 100 13, 190 2 Oil Chrysler Holding 100 100 13, 800 3 (Chrysler) Chrysler Holding 100 100 13, 800 3 (Chrysler) Chrysler Holding 100 100 16, 800 4 Gravity Grum Flow Holding 100 100 16, 800 4 Collect. Thru Hidtx Tank 100 100 17, 000 5 Grumman Grumman Flow Thru 100 100 12, 890 6 Gravity Grum Flow Holding 100 100 15, 460 7 Gravity Grum Flow Holding 100 100 13, 100 6 Gravity Grum Flow Holding 100 100 13, 100 7 Gravity Grum Flow Holding 100 100 12, 730 8 Grumman Holding <	Fi	Gravity	and the second se							
Oil Chrysler Holding 100 100 13,800 3 (Chrysler) Chrysler Holding 100 100 16,800 4 Gravity Grum Flow Holding 100 100 16,800 4 Gravity Grum Flow Holding 100 100 17,000 5 Grumman Grum Flow Tank 100 100 12,890 6 Gravity Holdir Grum Flow 100 100 15,460 7 Gravity Holdir Grum Flow Holding 100 100 13,100 6 Gravity Grum Flow Holding 100 100 13,100 7 Gravity Grum Flow Holding 100 100 12,980 6 Gravity Grum Flow Holding 100 100 13,100 9 Vacuum Holding Holding 100 100 12,2730 10 Incinerator				- 1	100	100	13,190			
Rectified I. $+$ Hid Ink Tank 100 100 13,800 3 (Chrysler Chrysler Holding 100 100 16,800 4 Gravity Grum Flow Holding 100 100 17,000 5 Grumman Grumman Flow Thru 100 100 12,890 6 Gravity Holdir Grum Flow Holding 100 100 15,460 7 Gravity Holdir Grum Flow Holding 100 100 13,100 6 Gravity Grum Flow Holding 100 100 13,100 7 Gravity Grum Flow Holding 100 100 13,100 8 Grumman Furut-Incin Tank 100 100 12,730 10 Incinerator Holding 100 100 12,730 10 Incinerator Holding 100 100 12,220 10 Incinerator Holding 100 100 12,220 12 Holding Grum Flow <td>2</td> <td></td> <td>Chrysler</td> <td>Holding</td> <td></td> <td></td> <td></td> <td></td>	2		Chrysler	Holding						
+ Incin. Tank. 100 100 16,800 4 Gravity Grum Flow Holding 100 17,000 5 Grumman) Grumman Flow Thru 100 100 12,890 6 Gravity Holdir Grum Flow 100 100 12,890 6 Gravity Holdir Grum Flow Holding 100 100 15,460 7 Gravity Grum Flow Holding 100 100 13,400 6 Grumman Flow Holding 100 100 13,100 7 Gravity Grumman Flow Thru + Incinerator 100 100 13,100 9 Vacuum Holding Holding 100 100 12,730 10 Incinerator Holding 100 100 12,220 11 Evap. Tank 100 100 12,220 12 Holding Grum Flow 100 100 12,220 12 Holding Grum Flow 100 100 10,600		Recircul.	+Hld Tnk	Tank	100	100	13,800			
+ Incin. Tank. 100 100 16,800 4 Gravity Grum Flow Holding 100 17,000 5 Grumman) Grumman Flow Thru 100 100 12,890 6 Gravity Holdir Grum Flow 100 100 12,890 6 Gravity Holdir Grum Flow Holding 100 100 15,460 7 Gravity Grum Flow Holding 100 100 13,400 6 Grumman Flow Holding 100 100 13,100 7 Gravity Grumman Flow Thru + Incinerator 100 100 13,100 9 Vacuum Holding Holding 100 100 12,730 10 Incinerator Holding 100 100 12,220 11 Evap. Tank 100 100 12,220 12 Holding Grum Flow 100 100 12,220 12 Holding Grum Flow 100 100 10,600	3	(Chrysler)	Chrysler	Holding						
Collect. Thru+HldTk Tank 100 100 17,000 S Grumman Grumman Flow Thru + Holding Tank 100 100 12,890 6 Gravity Holding Tank 100 100 15,460 7 Gravity Grum Flow Holding - 7 Gravity Grum Flow Holding - 8 Grumman Flow Holding - 9 Vacuum Grumman Flow Thru - - 9 Vacuum Holding Holding - 10 Ioci nerator 100 100 12,730 10 Inci nerator Holding - - 10 Inci nerator Holding - - 10 Inci nerator Thru + Hid Tnk 100 100 12,220 11 Evap. Tank 100 100 12,220 12 Holding Grum Flow - - - 13 Incinerator Thru + Hid Tnk 100 100 13,640	Ŭ		+Incin.		100	100	16,800			
Collect. Thru+HldTk Tank 100 100 17,000 S Grumman) Grumman Flow Thru + Holding Tank 100 100 12,890 6 Gravity Holdir~ Grum Flow 100 100 15,460 7 Gravity Grum Flow Holding 100 100 15,460 7 Gravity Grum Flow Holding 100 100 23,080 8 Grumman Flow Holding 100 100 13,100 9 Vacuum Holding Holding 100 100 12,730 10 Grumman Holding Holding 100 100 12,730 9 Vacuum Holding Tank 100 100 12,730 10 Inc:nerator Holding 100 100 12,220 11 Evap. Tank 100 100 12,220 12 Holding Grum Flow 100 10,600 13 Incinerator Grum Flow 100 10,600	4	Gravity	Grum Flow	Holding						
+ Holding Tank 100 100 12,890 6 Gravity Collect. Holdir Grum Flow 100 100 15,460 7 Gravity Collect. Grum Flow Holding 100 100 23,080 7 Gravity Collect. Grum Flow Holding 100 100 23,080 8 Grumman Finu+Encin Tank 100 100 13,100 9 Vacuum Collect. Tank Tank 100 100 12,730 10 Grumeator Holding Holding 100 100 12,730 11 GATX Holding Evap. Tank 100 100 12,220 12 Holding Grum Flow Tank 100 100 12,220 12 Holding Grum Flow Tank 100 100 13,640 13 Incinerator Grum Flow Thru + Hid Tnk 100 100 13,640 14 M/T Holding Holding 100 100 15,790		Collect.	Thru+HldTk	Tank	100	100	17,000			
+ Holding Tank 100 100 12,890 6 Gravity Collect. Holdir Grum Flow 100 100 15,460 7 Gravity Collect. Grum Flow Holding 100 100 23,080 7 Gravity Collect. Grum Flow Holding 100 100 23,080 8 Grumman Finu+Encin Tank 100 100 13,100 9 Vacuum Collect. Tank Tank 100 100 12,730 10 Grumeator Holding Holding 100 100 12,730 11 GATX Holding Evap. Tank 100 100 12,220 12 Holding Grum Flow Tank 100 100 12,220 12 Holding Grum Flow Tank 100 100 13,640 13 Incinerator Grum Flow Thru + Hid Tnk 100 100 13,640 14 M/T Holding Holding 100 100 15,790		(Grumman)	Grumman	Flow Thru						
6 Gravity Collect. Holdir- Tank Grum Flow Thru+HldTnk 100 100 15,460 7 Gravity Collect. Grum Flow Holding Holding 23,080 8 Grumman) Fhru+Incin Tank 100 100 23,080 9 Vacuum Collect. Grumman Flow Thru + Incinerator 100 100 13,100 9 Vacuum Collect. Holding Tank Tank 100 100 12,730 10 (Jered) Incinerator Holding Tank 100 100 12,730 11 GATX Holding Evap. Tank 100 100 12,220 12 Holding Tank Grum Flow Tank 100 100 12,220 12 Holding Tank Grum Flow Tank 100 100 13,640 13 Incinerator Grum Flow Thru+Hid Tnk 100 100 13,640 14 M/T Holding Pump Tank Tank 100 100 13,990 15 GaTX Holding Tank 100 100 15,790 16 G	3		+ Holdin	g Tank	100	100	12,890			
Collect. Tank Thru+HldTnk 100 100 15,460 7 Gravity Collect. Grum Flow Holding 100 100 23,080 8 Grumman Flow Thru+Incin Tank 100 100 23,080 8 Grumman Flow Thru+Incin Tank 100 100 13,100 9 Vacuum Collect. Tank Tank 100 100 12,730 10 Iocinerator Holding Collect. Tank Tank 100 100 12,730 10 Inc:nerator Holding Tank 100 100 16,300 11 GATX Holding Evap. Tank 100 100 12,220 12 Holding Tank Thru+Hld Tnk 100 100 12,220 13 Incinerator Grum Flow Thru+Hld Tnk 100 10,600 13 Incinerator Grum Flow Thru+Hld Tnk 100 10,600 14 M/T Holding Pump Tank Tank 100 10,930 15 GATX		Gravity	Holdir-	Grum Flow						
7 Gravity Collect. Grum Flow Thru+Incin. Tank 100 100 23,080 8 Grumman Flow Thru + Incinerator 100 100 13,100 9 Vacuum Collect. Holding Tank 100 100 13,100 9 Vacuum Collect. Holding Tank 100 100 12,730 10 Incinerator Holding Tank 100 100 12,730 10 Incinerator Holding Tank 100 100 16,300 11 Evap. Tank 100 100 12,220 12 Holding Evap. Tank 100 100 12,220 12 Holding Tank Thru+Hld Tnk 100 10,600 13 Incinerator Grum Flow Thru + Incin. 100 10,600 14 M/T Holding 100 100 13,640 14 M/T Holding 100 100 15,790 15 GATX Holding 100 100 15,790 16 Evap. Tank 100 100	0		Tank	Thru+HldTnk	100	100	15.460			
Collect. Thru+fr.cin/Tank 100 100 23,080 Grumman Grumman Flow Thru 100 100 13,100 9 Vacuum Holding Holding 100 100 13,100 9 Vacuum Holding Holding 100 100 12,730 10 Inc:nerator Holding Tank 100 100 12,730 10 Inc:nerator Holding Tank 100 100 16,300 11 GATX Holding Tank 100 100 16,300 11 GATX Holding Tank 100 100 12,220 12 Holding Grum Flow Tank 100 100 10,600 13 Incinerator Grum Flow Thru+Hid Tnk 100 100 13,640 14 M/T Holding Holding Tank 100 100 15,790 15 GaTX Holding Tank 100 100 15,790 16 GATX Holding Tank <t< td=""><td></td><td>Consider</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		Consider								
B Connect. Grumman Flow Thru 100 100 13,100 9 Vacuum Holding Holding 100 100 12,730 10 (Jered) Incinerator Holding 100 100 12,730 10 Incinerator Holding 100 100 12,730 10 Incinerator Holding 100 100 12,730 10 Incinerator Holding 100 100 12,730 11 GATX Holding 100 100 12,220 12 Holding Grum Flow 100 100 12,220 12 Holding Grum Flow 100 10,600 13 Incinerator Grum Flow 100 10,600 14 M/T Holding Holding 100 100 13,640 14 M/T Holding Holding 100 100 11,990 15 Collect. Incinerator Holding 100 100 15,790 16 GATX Holding	11		Thru+Incin	Tank	100	100	23.080			
8 (Grumman) + Incinerator 100 100 13,100 9 Vacuum Collect. Holding Tank Holding Tank 100 100 12,730 10 (Jered) Incinerator Holding Tank 100 100 12,730 11 GATX Holding Tank 100 100 16,300 11 GATX Holding Tank 100 100 12,220 12 Holding Tank Grum Flow Thru+Hld Tnk 100 100 10,600 13 Incinerator Grum Flow Thru+Hld Tnk 100 100 13,640 14 M/T Holding Pump Tank Tank 100 100 13,640 15 Collect. Incinerator Holding Tank 100 100 11,990 16 GATX Holding Evap. Tank 100 100 10,930 17 Tank Tholding Evap. Tank 100 100 10,970 18 Incinerator Grum Flow In		K ·	Chimmon							
S Collect. Tank Tank Tank 100 100 12,730 10 Incinerator Holding Tank 100 100 16,300 11 GATX Holding Tank 100 100 16,300 11 GATX Holding Tank 100 100 12,220 12 Holding Grum Flow 100 100 12,220 12 Holding Grum Flow 100 10,600 13 Incinerator Grum Flow 100 10,600 13 Incinerator Grum Flow 100 10,600 14 M/T Holding Holding 100 10,900 15 Collect. Incinerator Holding 100 10,930 16 GATX Holding 100 10,930 10,930 17 GATX Holding 100 10,970 10,970 18 Incinerator Grum Flow 100 10,970 10,970	8	(Grumman)	f		100	100	13,100			
Collect. Tank Tank Tank 100 100 12,730 10 Incinerator Holding Tank 100 100 16,300 11 GATX Holding Tank 100 100 16,300 11 Evap. Tank 100 100 12,220 12 Holding Grum Flow 100 10,600 13 Incinerator Grum Flow 100 10,600 14 M/T Holding Holding 100 100 13,640 14 M/T Holding Holding 100 100 13,640 14 M/T Holding Holding 100 100 13,640 14 M/T Holding Incinerator Holding 100 10,900 15 Collect. Incinerator Holding 100 10,930 16 GATX Holding 100 10,930 10,930 17 Tank Thru+Hid Tnk 100 10,970 10,970 18 Incinerator <td></td> <td>Vacuum</td> <td>Holding</td> <td>Holding</td> <td></td> <td></td> <td></td> <td></td>		Vacuum	Holding	Holding						
10 Incinerator Holding Tank 100 100 16,300 11 GATX Holding Evap. Tank 100 100 12,220 12 Holding Grum Flow Tank Thru+Hld Tnk 100 100 10,600 13 Incinerator Grum Flow Thru+Hld Tnk 100 100 13,640 14 M/T Holding Holding 100 100 13,640 14 M/T Holding Holding 100 100 13,640 14 M/T Holding Holding 100 100 13,640 15 Collect. Incinerator Holding 100 100 11,990 15 GATX Holding 100 100 15,790 16 Evap. Tank 100 100 10,930 17 Tank Thru+Hid Tnk 100 10,970 18 Incinerator Grum Flow 100 10,970	1	Collect.	Tank	Tank	100	100	12,730			
11 $GATX$ Holding 100 100 16, 300 11 $GATX$ Holding 100 100 12, 220 12 Holding $Grum$ Flow 100 100 12, 220 13 Holding $Grum$ Flow 100 100 10, 600 13 Incinerator $Grum$ Flow 100 100 13, 640 14 M/T Holding Holding 100 100 13, 640 14 M/T Holding Holding 100 100 13, 640 14 M/T Holding Holding 100 100 13, 640 15 Collect. Incinerator Holding 100 100 11, 990 15 Collect. Incinerator Holding 100 100 15, 790 16 Evap. Tank 100 100 10, 930 17 Holding Grum Flow 100 10, 970 18 Incinerator Grum Flow 100 10, 970	1.0	(Jered)	Inginorator	Holding						
I1 Evap. Tank 100 100 12,220 12 Holding Tank Grum Flow Thru + Hld Tnk 100 10,600 13 Incinerator Grum Flow Thru + Incin. 100 10,600 14 M/T Holding Holding 100 100 13,640 14 M/T Holding Holding 100 100 11,990 15 Collect. Incinerator Holding 100 100 15,790 16 GATX Holding Incinerator Tank 100 100 10,930 17 Holding Grum Flow Incinerator Grum Flow Incinerator 100 10,970 18 Incinerator Grum Flow Grum Flow Incinerator Incinerator	10		merator	Tank	100	100	16,300			
12 $Evap.$ Tank 100 100 12,220 Holding Grum Flow Tank 100 100 10,600 13 Incinerator Grum Flow 100 100 10,600 13 Incinerator Grum Flow 100 100 13,640 14 M/T Holding Holding 100 100 13,640 14 Pump Tank Tank 100 100 13,640 14 Pump Tank Tank 100 100 13,640 15 Collect. Incinerator Holding 100 100 11,990 15 GATX Holding 100 100 15,790 16 Evap. Tank 100 100 10,930 17 GATX Holding 100 100 10,970 18 Incinerator Grum Flow 100 10,970 10,970	 ,,		GATX	Holding						
12 Holding Tank Grum Flow Thru+Hld Tnk 100 100 10,600 13 Incinerator Grum Flow Thru+Incin. 100 10,600 13 Incinerator Grum Flow Thru+Incin. 100 10,600 14 M/T Holding 100 100 13,640 14 M/T Holding 100 100 13,640 14 Pump Tank Tank 100 100 13,640 15 Collect. Incinerator Holding 100 100 11,990 15 GATX Holding 100 100 15,790 16 Evap. Tank 100 100 10,930 17 Holding Grum Flow 100 10,970 18 Incinerator Grum Flow 100 10,970	111		Evap.	Tank	100	100	12,220			
Tank Thru+Hld Tnk 100 100 10,600 13 Incinerator Grum Flow 100 10,600 14 M/T Holding Holding 100 13,640 14 M/T Holding Holding 100 100 13,640 14 Pump Tank Tank 100 100 11,990 15 Collect. Incinerator Holding 100 100 15,790 16 GATX Holding 100 100 10,930 16 Evap. Tank 100 100 10,930 17 Tank Thru+Hid Tnk 100 10,970 18 Incinerator Grum Flow 100 10,970	1.0		Holding	Grum Flow						
13 Incinerator Grum Flow Thru + Incin. 100 100 13,640 14 M/T Holding Holding 100 100 11,990 14 Pump Tank Tank 100 100 11,990 15 Collect. (GATX) Incinerator Holding 100 100 15,790 16 GATX Holding 100 100 10,930 17 GATX Holding 100 100 10,930 18 Incinerator Grum Flow 100 10,970	112			Thru+Hld Tnk	100	100	10.600			
14 M/T Holding Holding Pump Tank Tank 100 100 11,990 15 Collect. Incinerator Holding 100 100 15,790 16 GATX Holding 100 100 10,930 16 GATX Holding 100 10,930 17 Tank Thru+Hid Trk 100 10,970 18 Incinerator Grum Flow 100 10,970	12		T							
14 M/T Holding Holding Pump Tank Tank 100 100 11,990 15 Collect. Incinerator Holding 100 100 15,790 16 GATX Holding 100 100 10,930 17 GATX Holding 100 10,930 18 Incinerator Grum Flow 100 10,970	13		incinerator	Thru + Incin.	100	100	13.640			
Pump Tank Tank 100 100 11,990 15 Collect. (GATX) Incinerator Holding Tank 100 100 15,790 16 GATX Holding Evap. Tank 100 100 10,930 17 Holding Grum Flow Tank Thru+Hid Tak 100 10,970 18 Incinerator Grum Flow Grum Flow Grum Flow Grum Flow	11	M/T	Holding	Holding		1				
15 Collect. (GATX) Incinerator Holding Tank 100 100 15,790 16 GATX Holding Evap. Tank 100 100 10,930 17 Holding Grum Flow Tank 100 10,930 18 Incinerator Grum Flow Grum Flow	1	llPump	Tank	Tank	100	100	11,990			
I6 Tank 100 100 15,790 16 GATX Holding 100 10,930 17 Tank 100 100 10,930 17 Tank Thru+Hid Trk 100 10,970 18 Incinerator Grum Flow 100 10,970	115	Collect.	Indinerator	Holding						
16GATX Evap.Holding Tank10010010,93017Holding TankGrum Flow Thru+Hid Tnk10010010,97018IncineratorGrum FlowGrum Flow10010,970	1	(GATX)	memerator	Tank	100	100	15.790			
Evap. Tank 100 100 10,930 17 Holding Grum Flow 100 10,970 18 Incinerator Grum Flow 100 10,970		11 1	GATX	Holding						
17Holding TankGrum Flow18IncineratorGrum Flow	110		· · ·		100	100	10,930			
Tank Thru+Hid Tnk 100 100 970 18 Incinerator Grum Flow	1]]	Holding			1	 			
18 Incinerator Grum Flow	μ,		Tank	Thru+Hid Tak	100	100	10,970			
Thru + Incin. 100 100 15.640	110			Course Blan						
		1	incinerator	Thru + Incin.	100	100	15,640			

ten di

N/A - Not a viable candidate system for this vessel.

	Symbol			.S .S	£	¥. 1	E			Ĵ	• 7	Ê	ł					8 :	£				II oz	ħ	F	8	Ē	R				۶			°r 22		۲ [₫]	
Measures	Te Find			inches inches	feet	spur A	-			trained inchas	territory contract	square miles	ecres					DUNCES	bornes	31401 14045			fluid ounces	Print.	5 Lineage	guiltons	cubic feel	CUMIC A BUDS				Fahrenhait	lamperature			160 200	- -2	
ions from Metric	Multiply by	LENGTH		0.0	3.3	23			AREA	0 16			2.5			MASS (weight)		0.035		-	ADD IN ME	1010	0.05	2.1	1.06	0.26	×.	2		TEMPERATURE (exact)		9./5 (then	(2) pee		386	10 1 120	20 1 40 60	;
	When Yes Keav		:	miltimaters centimaters	meters	maters			ł		TOUMPE TREATS	square kilometers	Nectares (10,000 m ²)			¥		E		104400 (1000) Samaal			millelitors	inters.	fitters .	liters	Cubic meters			TEMPE		Celsius	temperature		°F 32	10 0 140	a 0 04-	
	Symbol			£€.	E	e j	ī			Ĵ.	~E	<u>_</u> \$	2					a .	ģ.	-			Ē	_	-	-	Ē	E				ç			•	0 J	Ļġţ	
55 53 	2 1 		30	l et		* I	1	:1 	91 	- 	SI		•		(C 1		2 T	and the second se) -	6						9		5		•	3 				۳ 	
, '''' '	 .)	.	'I'		' ! '	' ' 1	I.	'1	. 1 .1.	' ' 	"	.1 .	 • } •	' ! '		' ' 5	' '	 '!'	.ı	' 'I 	. .1	 '!	' '		3	 '	'	']'	' '	' ' 2	 	"	11		' ' ' 1		 nche:	
	Symbol				Ē	£	E .	i			Ĩ.	Ĩε΄	'n Ì	5	ž			ç	ş	-			ĩŧ	Ē	Ē				. [°] e	Ē			ں ¢	,		1		
Measures	Te Find				Contumptors	C anti-meters	metters Å. lameters				Square centimeters	aquare meters	Square meters	bertarias				Sums	A I lograms	tonnes			mililiters	milisters	multilitiers.	it tars		11 Dates	Cubic meters	cubic maters			Celsius	temps (#flure			1014 See 103 104. P.O. 20.	
Appreximate Conversions to Metric Measures	Mathigh by		LENSTH		\$2.	8	2.0 1.6	<u>+</u>	AREA		6.5	60 '0				MASS (weight)		2	9	6.0	VOLUME		ŝ	15	8	77		9.6	0.03	0.7£	TEMBERATURE (access)		5-9 (after	subtracting	Ŕ		Catalog No. C13,10 296.	
Approximate Com	When You Knew				inches	Ĩ	v anda Teles				square inches	ingland fact	spreve vards			Ĩ		SHOWING	bounds	short tons (2000 lb)			tinespoon s	tablespoons	fluid ounces			Quilons	cubic feet	cubic yards	TEMOL		Fahranhait	tiamper ature			A 11 - A LIA INTERNATION OF DEPARTMENT CONTRACTION OF DEPARTMENT OF TAXAN	
	Synthe				Ŧ	£	s e			ŗ	<u>.</u>	F	27	ļ				2:	e				de se	ŧ,	3	u 1	1.2	ī	Ĩ.	Ţ								

METRIC CONVERSION FACTORS

r, Ölümli HÖTT ALAR KÖNNAL ARASSART. ÖLÜMAR

vi

出现 机运动

NEW COMPANY OF

2.05445

44

MANUTAN COMPANY

รัสวีที่มีสีมากการที่เกิดการสมบัตร

TABLE OF CONTENTS

	Page
ACKNOWLEDGEMENTS	iii
PREFACE	iv
SUMMARY OF WMS INSTALLATION COSTS	v
METRIC CONVERSION FACTORS	vi
INTRODUCTION	1
OBJECTIVES	1
ASSUMPTIONS	2
APPROACH	2
Preliminary Installation Analysis Shipchecks to Determine Viable Candidate Systems Installation Cost Analysis	2 2 3
LIMITATIONS	7
PERTINENT VESSEL INFORMATION	8
Shipcheck Observations of Existing Vessel Conditions Vessel Resources Location of Black Water Waste Sources Location of Gray Water Waste Sources Arrangement of Black and Gray Wastewater Sources	9 12 13 14 15
WMS EQUIPMENT REQUIREMENTS	17
WMS No. 1 - Discussion of Installation Based on Shipchecks Proposed WMS Equipment Arrangement WMS Installation Cost Estimates	18 20 22
WMS No. 2 - Discussion of Installation Based on Shipchecks Proposed WMS Equipment Arrangement WMS Installation Cost Estimates	23 25 27
WMS No. 3 - Discussion of Installation Based on Shipchecks Proposed WMS Equipment Arrangement WMS Installation Cost Estimates	28 31 33
WMS No. 4 - Discussion of Installation Based on Shipchecks Proposed WMS Equipment Arrangement WMS Installation Cost Estimates	34 36 37

vii

1.518.2

S. 1. 19.000

and the set states

e subs

TABLE OF CONTENTS (Cont'd)

		Page
	iscussion of Installation Based on Shipchecks oposed WMS Equipment Arrangement	38 40
	MS Installation Cost Estimates	41
Pr	iscussion of Installation Based on Shipchecks oposed WMS Equipment Arrangement MS Installation Cost Estimates	42 45 46
Pr	Iscussion of Installation oposed WMS Equipment Arrangement MS Installation Cost Estimates	47 50 52
Pr	Iscussion of Installation Based on Shipchecks oposed WMS Equipment Arrangement MS Installation Cost Estimates	53 55 57
Pr	Iscussion of Installation Based on Shipchecks oposed WMS Equipment Arrangement MS Installation Cost Estimates	58 60 62
Pr	Iscussion of Installation Based on Shipchecks oposed WMS Equipment Arrangement MS Installation Cost Estimates	63 65 67
Pr	iscussion of Installation Based on Shipchecks oposed WMS Equipment Arrangement MS Installation Cost Estimates	68 70 72
Pr	iscussion of Installation Based on Shipchecks oposed WMS Equipment Arrangement MS Installation Cost Estimates	73 75 77
Pr	iscussion of Installation Based on Shipchecks oposed WMS Equipment Arrangement	78 80 82
Pr	iscussion of Installation Based on Shipchecks oposed WMS Equipment Arrangement MS Installation Cost Estimates	83 85 87
Pr	iscussion of Installation Based on Shipchecks oposed WMS Equipment Arrangement MS Installation Cost Estimates	88 90 92
Pr	iscussion of Installation Based on Shipchecks oposed WMS Equipment Arrangement	93 95 97

فلأخرف والم

TABLE OF CONTENTS (Cont'd)

10

And

		Page
WMS No. 17 -	Discussion of Installation Based on Shipchecks Proposed WMS Equipment Arrangement WMS Installation Cost Estimates	100
WMS No. 18 -	Discussion of Installation Based on Shipchecks Proposed WMS Equipment Arrangement WMS Installation Cost Estimates	102 105 107
INSTALLATION	EFFECTIVENESS ATTRIBUTE DATA	108
CONCLUDING	REMARKS	118
APPENDIX A -	PRELIMINARY INSTALLATION AMALYSIS	A-1
	Summary of Preliminary Installation Analysis Results	A-2
	Pertinent Vessel Information	A-3
	Preliminary Installation Analysis of Individual Candidate Systems	A-5

INTRODUCTION

OBJECTIVES

このでのない、たんというないであっている

The objectives of the installation analysis are as follows:

- Development of pertinent vessel information necessary for the cost and effectiveness analyses, including the following:
 - .. Existing physical conditions aboard the vessel, especially in compartments where wastewater management system equipments may be installed.
 - . Existing wastewater management equipments/systems aboard the vessel (holding tanks, garbage grinders, sewage treatment systems, etc.).
 - .. Location of black and gray wastewater sources aboard the vessel.
 - •• Vessel resource capacities and estimated usage rates (prior to system installation).
- Selection of the viable candidate systems as determined on the basis of the feasibility of installation, using the governing installation guidelines and assumptions.
- Determination of the black/gray wastewater (or sludge) holding tank capacities which can be fitted.
- Development of installation cost estimates for each viable candidate system.
- Development of drawings showing the proposed arrangement of the wastewater management system equipments for each viable candidate as well as the arrangement of the black and gray wastewater sources on board the vessel.
- Development of installation related effectiveness attribute data.

ASSU MPTIONS

The pertinent assumptions and guidelines governing the installation analysis are presented in Volume IV of this report, along with the details of each of the 18 candidate wastewater management system concepts in r . Igurations suitable for each vessel included in this study.

APPROACH

The installation analysis was performed in three stages consisting of a preliminary installation analysis, a shipcheck to establish viable system/vessel combinations, and an installation cost analysis all of which are discussed below. Prior to this analysis, visits were made to a number of vessels to inspect installations of the wastewater management subsystems and equipments included in this study.

Preliminary Installation Analysis

The candidate ship's general arrangement drawings and piping diagrams as furnished by the U.S. Coast Guard were reviewed at length to determine existing conditions so that the WMS requirements delineated in Volume IV could be applied to the vessel and a preliminary installation analysis made prior to an actual visit to the ship. This approach was intended to maximize familiarity with the vessel and to determine any possible questionable areas of interest. Each system was investigated as to space requirements, possible equipment locations, relationship to ship's functions (operation, mission, fuel stowage, water capacity, support systems, etc.) and its relationship to the reportedly existing waste disposal system.

In order to obtain as accurate a picture as possible, arrangement drawings to scale were made from the ship's plans of the possible install_{ia}tion spaces and "dummy cut-outs" of WMS equipment (also to scale) were used to determine if a proposed arrangement was feasible and if any problems could be anticipated. The results of the preliminary installation analysis are presented in Appendix A.

Shipchecks To Determine Viable Candidate Systems

Upon completion of the preliminary installation analysis, a detailed shipcheck of the vessel was made. During this visit various factors bearing on the investigation were considered, e.g., support systems (compressed air, sanitary flushing medium, electrical power generation, salt water systems, fresh water systems, fuel oil systems, etc.), correlation between actual ship arrangement and that shown in ship's drawings furnished for the study, relationship of other ship's systems and equipment to the location and installation of WMS components to determine interferences and relocations, access for shipping WMS equipment aboard, removals, relocations, etc. The drawings prepared during the preliminary installation study were checked out and modified to reflect actual shipboard conditions.

The discussion of the shipcheck results presents a verbal picture of what conditions actually exist aboard the vessel and how these conditions affect the viability determination of each wastewater management system. The installation acceptance or rejection rationale for each candidate WMS is presented, complete with estimated tank sizes, equipment locations, possible space modifications, relocations, limitations, exclusions, and any other such considerations as may be necessary to obtain a lucid understanding of the situation.

Vessel rescurce capacities (including the source of fresh water) and estimates of usage rates (prior to WMS installation) were obtained from interviews with cognizant officers. The locations of all black water (sewage and garbage grinder slurry) and gray water (galley and turbid) waste sources were determined.

The shipcheck also provided the necessary information to determine the capacities (in gallons) of required black and gray wastewater (or sludge) holding tanks (not part of manufacturer supplied wastewater treatment equipment) which can be accommodated, as well as their configurations (heights). This information was used to determine the black and gray wastewater holding capacities of each viable candidate system (expressed as a percentage of the required holding time). These results are presented on the WMS Equipment Requirements form together with the other equipment types and quantities required in order to synthesize each viable candidate system on the vessel. This WMS Equipment Requirements form served as the starting point for the cost and effectiveness assessments of each viable candidate system.

Installation Cost Analysis

The following were generated as part of the installation cost analysis:

- WMS equipment arrangement drawings for each viable candidate system and arrangement drawings for the black and gray wastewater sources aboard the vessel.
- . Installation related effectiveness attribute data.
- . Installation cost estimates for each viable candidate system.

The starting point for the installation cost estimates was the condition of the vessel at the time of the shipcheck inspection. Each viable candidate system installation was then analyzed in terms of a fixed set of installation cost elements. The Installation Cost Estimate Form shown in Figure 1 was used to record the estimated requirements for each cost element and the associated cost was computed. Each installation cost element in Figure 1 is discussed below.

(a) <u>Piping</u> - Wherever possible and applicable, existing piping runs were retained for reuse as installed. Pertinent information contained in the available ship's piping plans was used insofar as practicable. New piping runs were estimated from these drawings and the system equipment arrangement drawing prepared.

For estimating purposes of this nature, it is usual marine practice to use a dollars per pound of material to be installed. Therefore, an estimated present-day price, including material and labor to install, was placed at \$4.50/lb.

For the sake of uniformity and simplification since the WMS evaluations are comparative, the piping material used is copper-nickel. It is recognized that most waste disposal piping systems under consideration in the U.S. Coast Guard vessels are of copper-nickel, although some PVC (plastic) piping and a small amount of steel is used. Since the established guidelines call for the principal piping (drainage) to be of copper-nickel it was considered that for the relatively small additional piping, such as vents the use of copper-nickel for all piping components would not adversely influence the overall results. Accordingly, the amounts of each size piping were estimated and a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(b) <u>Steel</u> - For this part of the cost estimate only the steel involved in the various shipyard supplied tanks is considered. Foundations are a separately treated item. For these tanks it was considered that one-quarter inch plate would be a good average thickness. Since the tanks would have to be structurally stiffened for proper support, a factor of 30% was added to the plate weight. The weight estimate was derived from the system guideline size requirements translated into configurations as shown on the equipment location and arrangement drawings.

For cost estimating of this nature, it is usual to apply a cost per pound figure. It was considered that a good current price of 0.55/lb. would cover material and labor for fabrication and placing on board. This does not include the cost of fixing the tanks permanently in place by welding. This is a separate consideration.

7.9

Contraction of the second s

WMS INSTALLATION COST ESTIMATES

NAMES OF A DESCRIPTION OF A DESCRIPTIONO مرور بر المرور . بالمراجعة المرور .

-

Vessel

WMS No.

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pij	ping ⁽¹⁾	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2)	
Ta	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4)	
Fo	undations	Founds	\$.92/Lb. (Materials and Labor)	(5)	
	ectric bles	Feet	\$ 2.00/Ft. (Materials and Labor)		
In: mc	scellaneous stallations (pumps, ptors, skid-mounted mponents, etc.)	Man- Hours	\$15.00/MH (Labor)		
de bu	cess Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)		
w	elding	Feet	\$ 6.00/Ft. (Materials and Labor)		
als	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)		
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)		
	Tota	l Installe	ation Cost (\$)		

(1) Copper-nickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plaza sesumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported,

(6) Based on an assumed cutting rate of 50 ft. /hr.

Figure 1

INSTALLATION COST ESTIMATE FORM

(c) Foundations - Supporting steel structure for all components of each WMS (tanks, pumps, MSD, incinerators, etc.) was estimated as approximately 10% of the weight which has to be carried. This is a usual rule of thumb for this type of installation. Fabrication and installation costs for material and labor were taken as \$0.92/lb. based on consideration of today's average costs. The weights were estimated from the tank configurations and contents as well as the component weights given in Volume IV.

(d) Electrical Power Cable - The amount of footage was estimated from the ship's arrangement plans and the WMS equipment arrangement drawings prepared, with allowances for the devious routings which could be encountered. Since ship alteration work is usually more complex than new construction, allowance as made for less installation per unit time. Therefore a cost of approximately \$2.00/ft. of cable was used to cover material and labor.

(e) <u>Miscellaneous Installations</u> - To cover the installation of various items such as pumps, motors, skid-mounted components, etc. where the activity centers principally around alignments and bolting in place, an estimate was made of the amount of time it would take to perform the tasks for each system installation, since the number and type of components varies. An estimated shipyard labor cost of approximately \$15 per manhour (MH) was considered representative.

(f) <u>Access Cuts</u> - In order to get material and components into the compartments where they would be fitted it could become necessary to temporarily cut the ship's hull, or deck plating or a bulkhead to provide passageway. The number of feet of cutting was estimated for each system installation based on the approximate size of the largest component anticipated. Estimated shipyard cost for such cutting is approximately \$1.00/ft.

(g) <u>Welding</u> - This consideration includes securing tanks and nonbolted items and welding back any plating temporarily cut to provide access. An estimate of the number of feet of welding was made for each item in each system and a cost factor of \$6.00/ft was considered satisfactory to cover material and labor.

(h) <u>Removals</u> - In cases where some existing equipment would have to be cut and removed from the vessel as no longer required, an estimate was made as to the approximate length of time it would take a team of two men to accomplish certain tasks. Estimated factors of \$50/hour for cutting (based cn an estimated cutting note of 50 ft/hour) and \$15/man-hour (MH) for miscellaneous handling labor were considered representative of such costs.

(i) Other Considerations - The installation cost estimates do not include some shipyard costs which yards to include as a matter of quotation to perform a certain ship modification. Such intangibles would include: cleaning and gas-freeing tanks, temporary removals or modifications to ducts, piping, electric cables, machinery, ship's outfit or furnishings, etc. and re-installation to existing state after the basic modification has been completed; cleaning, preparing and repainting the compartments and parts of the steel work distrubed, use of special rigging and shipyard lifting gear; and other work items which are part of a hipyard's everyday business and which are normal for them to price out.

If a complete ship alteration price is desired, it would involve drawing up a complete set of specification and drawings in sufficient detail for a shipyard's estimating department to analyze at length. If possible, yard personnel would prefer to visit the vessel for a more accurate cost estimate to eliminate or minimize costs which it could possibly have to absorb.

One of the most difficult factors to consider and which is not obvious but which is very much a determinant is the shipyard's workload or backlog. If there is a convenient "hole" in the yard's work schedule, the price could be made attractive since it would provide needed economic continuity for its work force and facilities. Certainly if there is little or no other work in the offing, the yard will be inclined to "buy" the job by bidding lower than it normally would.

Thus it can be seen that there will be additional costs to those detailed herein, if one is interested in a "finished product" price than a comparative estimate.

LIMITATIONS

The installation cost estimating procedures used are considered to be fairly general and applicable for study purposes of this type which places greater emphasis on relative cost among candidate systems rather than on the absolute cost for a given system. However, the installation cost estimates developed herein are based on specific vessel conditions, wastewater management system requirements and the governing installation guidelines and assumptions. Therefore, caution is advised in attempting to use these estimates directly for vessels and/or systems other than those specifically included in this study.

PERTINENT VESSEL INFORMATION

WHITE SAGE (133')

Vessel Characteriştics Data Class WLM - 544

. . .

White Summac (133') ClassTypeBuoy Tender (Coastal)Crew Size21Home PortWoods Hole, Mass.

1.2.1

 $\{ x_{i}, y_{i} \}$

SHIPCHECK CBSERVATIONS OF EXISTING VESSEL CONDITIONS

والمرافع فللمنافذ المتراجر المراجر

WHITE SAGE (133')

Crew 21 men

Waste Sources

Complete information on the sewage and gray water waste sources is contained in the tabulation sheets forming a part of these introductory remarks.

Existing Arrangement

The sanitary flushing system medium is salt water supplied by a pump/hydroneumatic tank arrangement.

The vessel's fresh water system is also supplied via a pump/ hydropneumatic tank arrangement.

Compressed air is supplied via the diesel engine starting air compressor and tank arrangement.

Fire protection is via the fire and bilge pump supply to the fire main and local approved type portable and semi-portable extinguishers.

The following waste management system is fitted aboard the vessel:

(a) A 25 gallon Galley Retention Tank with built-in liquid level controlled pump is located in the aft starboard corner of the Engine Room.

The tank normally receives drains from the Galley and its deck drains and pumps them to the 220 gallon Collection Tank in the forward port corner of the Engine Room.

Galley wastes can gravitate directly overboard independent of any other waste sources. This is done when the tank's pump needs maintenance.

(b) Drains from the drinking fountain on the Main Deck, Frame 14, go directly overboard.

(c) A 220 gallon Collection Tank is located on the port side of the Engine Room, near the forward bulkhead.

All wastes (other than the aforementioned drinking fountain) go to this Collection Tank via separate mains, i.e. the black water mains are separte from the gray water mains.

Although not current practice aboard this vessel, the turbid drains can bypass the 220 gallon Collection Tank a.d gravitate directly overboard in the Engine Room.

A pump near the tank discharges the mixed wastes forward to Hold No. 2 via a pipe tunnel running fore and aft through the lower portion of the port side fuel oil storage tank which is immediately forward of the Engine Room. Although this pump can discharge overboard or to the pierside connections, it normally discharges to the 810 gallon Retention Tank in the port aft corner of Hold No. 2.

(d) The 810 gallon Retention Tank in Hold No. 2 receives wastes only from the 220 gallon Collection Tank. A pump located just forward of the hold's aft bulkhead and to stbd of the vessel's centerline transfers the waste material to the overboard shell connection on the port side and to the port and stbd pierside connections on deck.

The ships refrigerated stores are located in a self-contained unit having five (5) upper and lower compartments and straddling the vessel's centerline along the forward bulkhead of Hold No. 2.

The dry stores are located in a wire mesh enclosure in the center of the hold.

The cargo boom hydraulic tank is located in the port aft corner of the hold.

The remainder of the hold is taken up by storage cabinets and racks,

Special Remarks

(1) The drawing used to study the "White Sage" are not in agreement with the actual vessel.

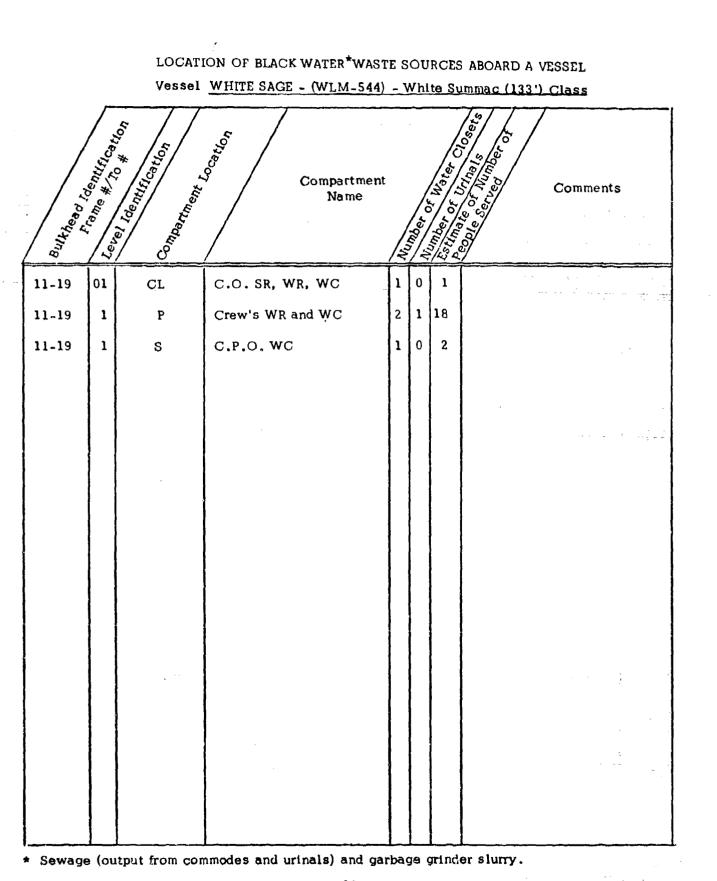
Dwg. 540 WAGL-0103-8 Booklet of General Drawings USCGC Whitebush, dated 5-30-74

is not applicable. The vessel itself is in possession of the correct drawing which is 544 WLM 0103 CGD1-1 Rev B, dated 12-15-75.

and the second second

Dwg. 540 WAGL-4000-1 Whitebush Engine Room Rearrangement-Elevation & Plan, dated 3-18-74

does not reflect the Engine Room arrangement of the "White Sage"

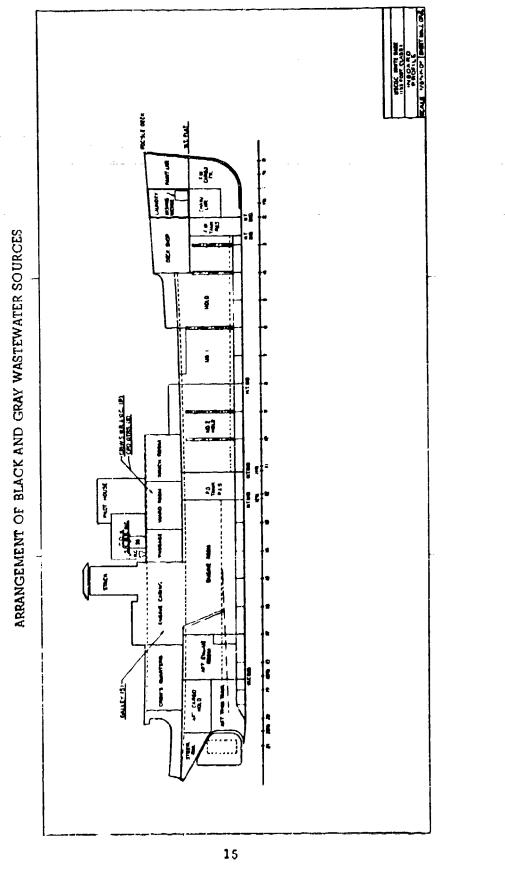

Dwg. 540 WAGL-4808-2 Secondary Drainage System Alterations Fleet, dated 8-9-71 مهالمط للبا فتح

closely reflects the 'White Sage" although the collection and retention tanks are located slightly off from the drawing dimensions. This did not impede its usage.

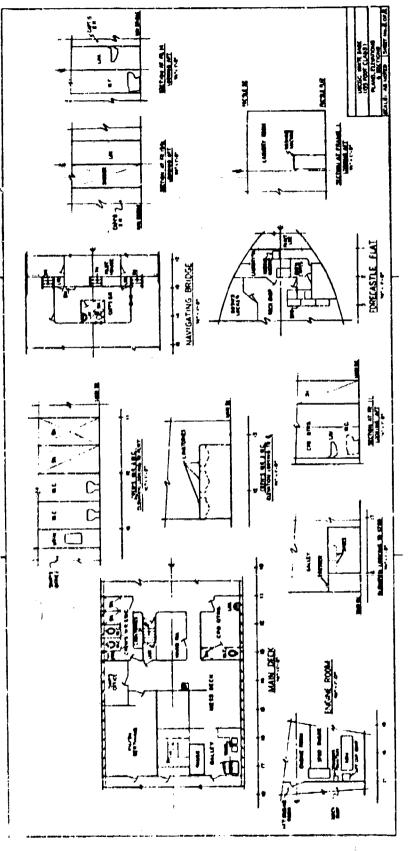
(2) It should be noted that the drawings indicate that some vessels of this class are fitted with a void space between the fuel oil storage tanks instead of a pipe tunnel through the port side of fuel oil tank. The void space would extend between the forward bulkhead of the Engine Room and the aft bulkhead of Hold No. 2. This void is significant in that it offers the solution to leading incinerator stacks in Hold No. 2 to the weather via the stack in the Engine Room. Under the guidelines for space utilization in this study, fuel oil storage tanks are not to be considered for modification. This deviation in class design will require special consideration and planning on how a stack can be run at the forward end of the vessel's house. The prime considerations involve cargo handling equipment, navigational aids, visibility from the bridge and smoke path from the top of the stack.

This discussion is given to highlight a certain aspect of the systems where incinerators can be located in Hold No. 2 and the viability of these systems as candidates depends on being able to satisfactorily provide a stack arrangement.

VESSEL RESOURCES	
VESSEL	· · · · ·
 Fresh Water Source of supply (i.e., storage tank, evaporator) Supplied from off shore source to (4) storage tanks 	KS.
b. Capacity (# of gais, cmc.) FORWARD PLAK TANK - 3216 gais. PORT V/TNG TANK - 167. AFTER PEAK TANK - 3500 gais. STARBOARD WING TANK - 167. c. Usage rate (# of gpd. em.) FRESH WATER - 135 gais. per day SALT WATER FOR FLUSHING - 16.5 per day	1675 gals. ANK - 1675 gals.
ty of 6432 ga	ls. = Total capacity = 12,864 gals. Average Underway Period = 285 gals.
Use S	
s Can	
 Compressed Air Compressed Air Compressed Air Compressed Air Compressed Air Controlled Air - 125psi (Seperatory - Units and Starting Engine Air Pressure - 250psi Controlled Air - 125psi (Seperatory - Units and Starting Engines: Pneumatic Tools: Air Horn; Air Driven Punps - Use and Starting Engines: Pneumatic Tools: Air Horn; Air Driven Punps - Use of hour compresson run per day or percentage of time 50-60% AVERAGE - Under way. 	(Seperate Systems)
 Capacity of Ventiation Air in CFM Supply Vents In Main Engine Room - Total of 4000 CFM; Exhaust Fan in Engine Room Supply & Exhaust In No. 2 Hold - 2360 CFM; Supply - After Bulkhd, 19 = 2200 CFM Location of incinerator for each system considered Present Stack: No. 2 Hold - 	t Engine Room - 1000 CFM = 2200 CFM Galley Hood - 100 CFM
5. Stup has only single desinage system.	


	LOCATION OF GRAY WATER [*] WASTE SOURCES ABOARD A VESSEL Vessel <u>WHITE SAGE - (WLM-544) - White Summac (133') Class</u>												
Bulhead Identifican	Level	Compartment Location	Compartment Name	Comments									
11-19	01	CL	C.O. WR	Shower (1)									
11-19	01	CL	C.O. WR	Lavatory (1)									
11-19	1	Р	Crew's WR	Showers (2)									
11-19	1	Р	Crew's WR	Lavatories (3)									
11-19	1	S	CPO WR	Shower (1)									
11-19	1	S	CPO WR	Lavatory (1)									
11-19	1	S	Ģalley	Sinks (2)	· · ·								
11-19	1	S	Galley	Dishwasher (1)									
11-19	1	S	Galley	Drain from Refrig. to Deck to CHT.									
11-19	1	S	Galley	Range Hood to CHT.									
17	1	S	Engine Room	Drinking Fountain Drain to Bilge	-								
14-15	1	CL	Main Deck	Drinking Fountain Drain to Bilge	v.								
1-4	1	CL	Laund ry	Washing Machine									
11-19	2	Р	Hold	Drain from Air Cond. Chiller									
8-11	2	Р	Hold	Drain from Refrig.									
17	2	S	Engine Room	Galley Ret. Tank - 25 Gal.									
12-19	2	Р	Engine Room	Collection Tank 220 Gal.									
8-11	2	CL	Hold No. 2	Reter fon Tank 8 1.									

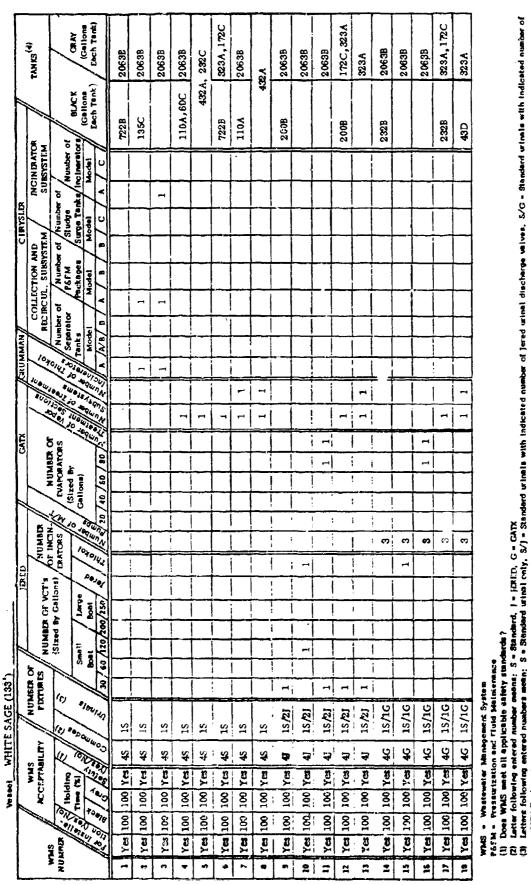
* Galley and turbid wastewater.


14

、 代育会長

.

والمحافظ والمحافظ والمحافظ



16

The second state of the se

Martin Laking

WMS LOUIPMENT REQUIREMENTS

Does WMS meet all applicable valety standards?

Letter following entered number means: S = Standard, J = JCN.[D, G = CATX Letters following entered numbers means: S = Standard urinsi cnty, S/J = Standard urinals with indicated number of Jered urinal discharge valves, S/G = Standard urinals with indicated

A = Influent Surge, B = Wastewater holding, C = Sludge holding, D = Intermediate tank not supplied with MSD. ÿ denotes tank Letter following entered gelionage Ş Amer XUND 3

number of

NOTE: WMS No. 18 - Intermediate tank used as influent surge tank. 5 Q 4 2, 9, 12 1, 5, 14 WINS No.

2'-0" | 6'-0" | 5'-0" 9-0-0 2.9° Tank Height 17

DISCUSSION OF INSTALLATION BASED ON SHIPCHECKS

Vessel: WHITE SAGE (133')

Galley/Turbid Holding Tank Discharge Pumps

WMS No. 1 Full Volume Flush Gravity Collection/Holding Tank for Black Water/Holding Tank for Gray Water

	Required	Approximate Dimensions (L x W x H)				
Sewage Holding Tank Galley/Turbid Holding Tank	722 gal. (97 cu. ft.) 2063 gal. (276 cu.ft.)	6' x 3' x 5' - 6" 7' x 6' x 7'				
Sewage Holding Tank Discharge Pumps	Two (2)					

Discussion

The system is considered to be a viable candidate.

Two (2)

The components would be located as follows:

(a) Sewage Holding Tank in the Engine Room, Port Side, Frame 14, just aft of location of existing collecting tank.

(b) Sewage Holding Tank Discharge Pumps (overboard/pierside) just forward of the tank.

(c) Galley/Turbid Holding Tank in Hold No. 2, Starboard side, in the location of the existing retention tank.

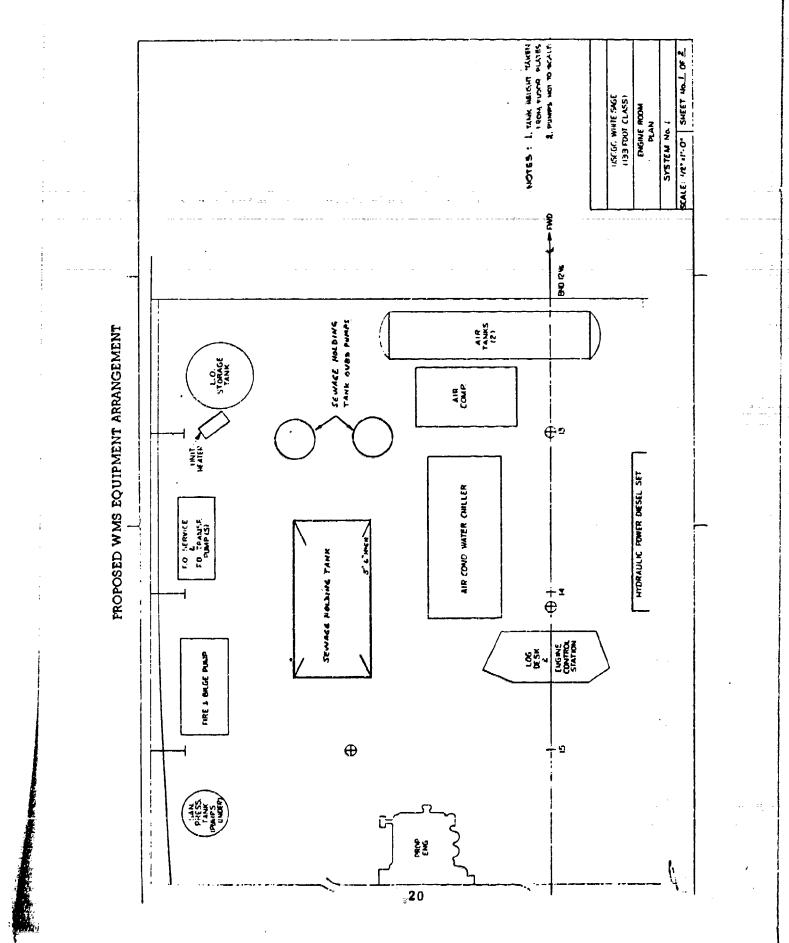
(d) Galley/Turbid Holding Tank Discharge Pumps (overboard/ pierside) just forward of the tank.

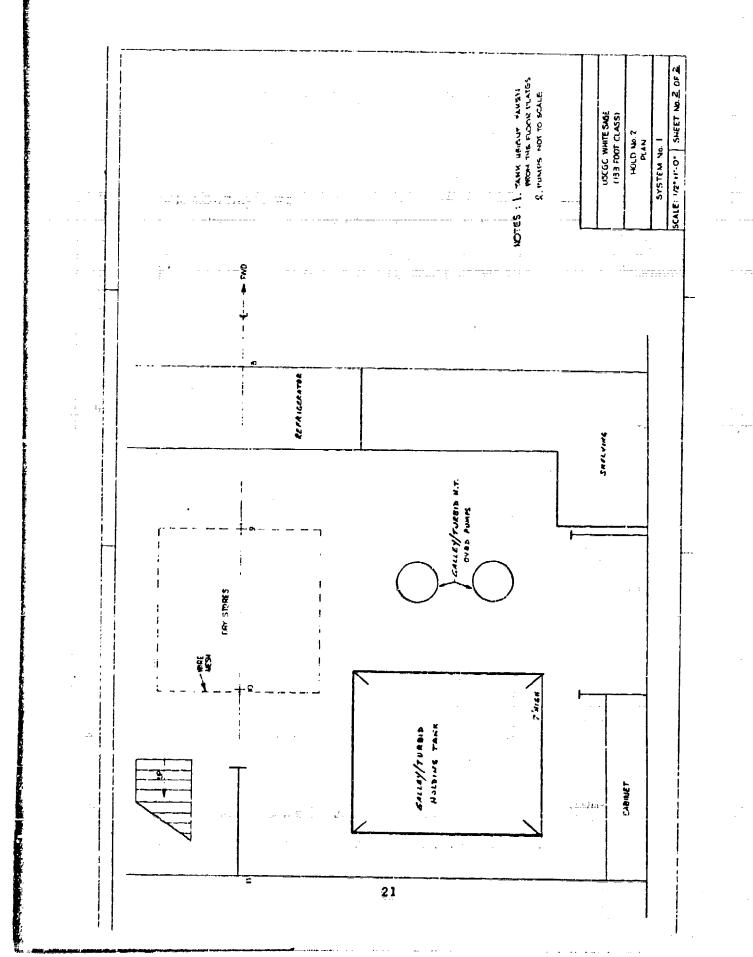
(e) The existing 25 gallon Galley Retention Tank located on the operating level of the Engine Room, in the aft Staboard corner, would be retained. The tank has a built-in liquid level controlled discharge pump.

Vessel: WHITE SAGE (133')

System No. 1 (Cont'd)

Drainage would be as follows:


(a) Sewage would drain by gravity to the Sewage Holding Tank. The tank discharge pumps' discharge line would be led to Hold No. 2 via the existing pipe tunnel passing through the lower inboard side of the Port Fuel Oil Tank. From there it would run to the existing overboard shell connection and to the existing weather deck discharge connections to pierside, port and starboard.


(b) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/Turbid Holding Tank in Hold No. 2 via a new pipe tunnel through the Port Fuel Oil Tank semilar to the existing one, but located through the upper part of the tank.

(c) Drain from the drinking fountain on the Main Deck, Frame 14, to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tank.

(d) Remaining Galley/Turbid drains would gravitate overboard and to the Holding Tank in Hold No. 2 via the new pipe tunnel indicated above. The tank discharge pumps would be capable of discharging the tank contents overboard and to pierside.

To accommodate the equipment in Hold No. 2, there may be minor modifications required to the shelving on the starboard side (along the shell of the vessel) and the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10).

WMS INSTALLATION COST ESTIMATES

Vessel WHITE SAGE (133')

WMS No. 1

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pij	ping ⁽¹⁾	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2) 1,105	4,568
Ta	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 5,340	2,937
Fo	undations	Pounds	\$.92/Ib. (Materials and Labor)	(5) 2,970	2, 733
	ectric ibles	Feet	\$ 2.00/Ft. (Materials and Labor)	250	500
In: mc Co	scellaneous stallations (pumps, ptors, skid-mounted mponents, etc.)	Man- Hours	\$15.00/MH (Labor)	35	525
de bu	cess Cuts (in hull, ck plating or ikhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)	50	50
W	elding	Feet	\$ 6.00/Ft. (Materials and Labor)	125	75 0
als	Cutting	Hours	\$50.00/Hr. (6) (Labor)	15	750
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
	Tota	l Installa	ition Cost (\$)		13,188

(1) Copper-mickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, em.

(3) One-quarter inch plate Assumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support,

(5) Estimated on the basis of 10% of the weight which has to be supported,

(6) Based on an assumed cutting rate of 50 ft. /hr.

DISCUSSION OF INSTALLATION BASED ON SHIPCHECKS

Vessel: WHITE SAGE (133')

WMS No. 2 Full Volume Flush Oil Recirculation and Gravity Collection/ Chrysler System with Sludge Holding Tank for Sewage/Holding Tank for Gray Water

	Required	Approximate Dimensions (L x W x H)	
Sewage Holding Tank Galley/Turbid Holding Tank	135 gal. (18 cu. ft.) 2063 gal. (276 cu. ft.)	2' x 3' x 3' 7' x 6' x 7'	
Chrysler Model and Quantity	One (1) Model A Separation Tank and One (1) Model A Pump and Fluid Maintenance Package		-
Sewage Holding Tank Discharge Pumps	Two (2)	· · · · · · · · · · · · · · · · · · ·	
Galley/Turbid Holding Tank Discharge Pumps	Two (2)		

Discussion

The system is considered to be a viable candidate.

The components would be located as follows:

(a) Sewage Holding Tank in the Engine Room, Port side, Frame 13, in place of the existing collecting tank.

(b) Sewage Holding Tank Discharge Pumps (overboard/pierside) just forward and outboard of the tank.

(c) Chrysler Separation Tank and Pump and Fluid Maintenance Package in the Engine Room, just aft of the Sewage Holding Tank.

(d) Galley/Turbid Holding Tank in Hold No. 2, Starboard side, in the location of the existing retention tank (Same as in System No. 1)

(e) Galley/Turbid Holding Tank Discharge Pumps (overboard/ pierside) just forward of the tank (Same as in System No. 1).

Vessel: WHITE SAGE (133')

System No. 2 (Cont'd)

(f) The existing 25 gallon Galley Retention Tank located on the operating level of the Engine Room, in the aft Starboard corner, would be retained. The tank has a built-in liquid level controlled discharge pump.

Drainage would be as follows:

(a) Sewage would drain by gravity to the Chrysler Separation

Tank.

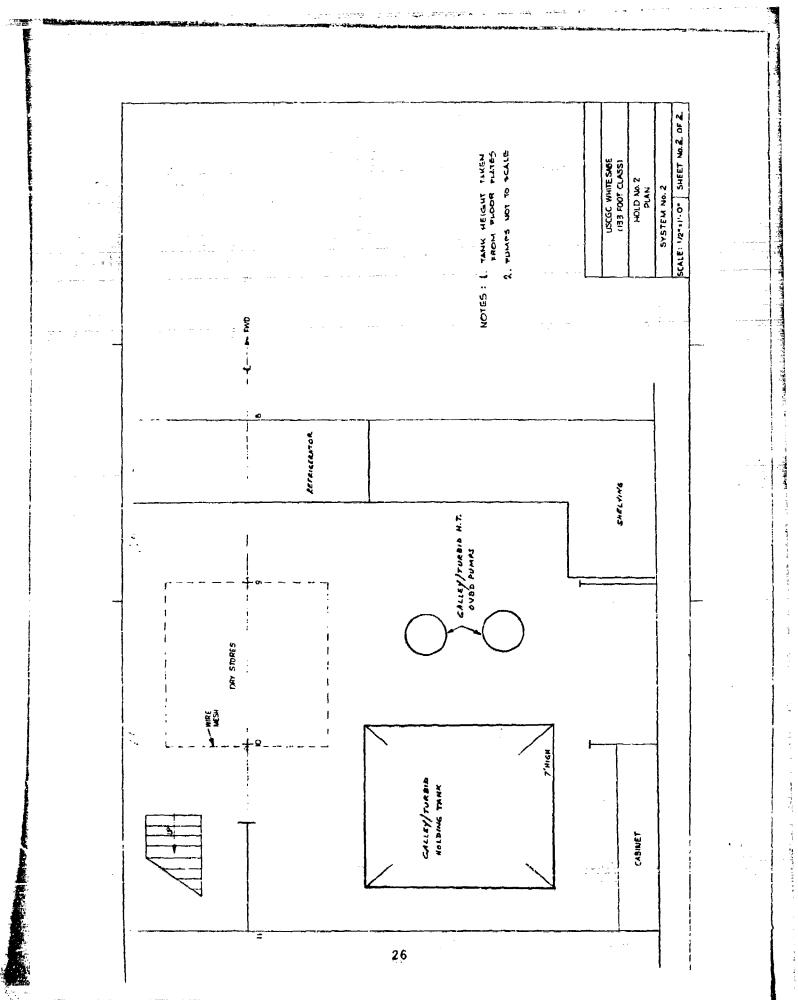
(b) The effluent from the Separation Tank would be pumped to the Sewage Holding Tank.

(c) The Sewage Holding Tank Discharge Pump piping would be led to Hold No. 2 via the existing pipe tunnel passing through the lower inboard side of the Port Fuel Oil Tank. From there it would run to the existing overboard shell connection and to the existing weather deck discharge connection to pierside, port and starboard.

(d) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/Turbid Holding Tank in Hold No. 2 via a new pipe tunnel through the Port Fuel Oil Tank similar to the existing one, but located through the upper part of the tank.

(c) Drains from the drinking fountain on the Main Deck, Frame 14, to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tank.

(f) Remaining Galley/Turbid drains would gravitate overboard and to the Holding Tank in Hold No. 2 via the new pipe tunnel indicated above. The tank discharge pumps would be capable of discharging the tank contents overboard and to pierside.


To accommodate the equipment in Hold No. 2, there may be minor modification required to the shelving on the starboard side (along the shell of the vessel) and the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10).

24

the second state of the provide state

NOTES : [. TANK HEIGHT TAKEN FROM THE FLOOR FLATES 2. PUMPS NOT TO SCALE . SCALE: I'R" I'- 0" SHEET HAL OF 2 USCIGU MANTE SAGE ENGINE ROOM SYSTEM No. 2 _*_÷ P Public BHD I2 W PROPOSED WMS EQUIPMENT ARRANGEMENT AIR TANKS (2) STORAGE COMP 1 4.64 SEWACE HOLDING TANK ¢⁰ HEATER Jeway gone MYDRAULIC POWER DIESEL SET AIR COND WATER CHILLER F.O. SERVICE L F.D TRANSF PUMP(S) CEMALTIN TANK + ₹ Ф ENGINE CONTROL STATION GIRE 1 BILE PULL ×2% ۳5% Part of Aus Maintguage Package , Ф 2 ENG PROP 25

. The subscription of ويعيالك المراكية والمناكر فأطلقا والمراجع والقاليات

M. 6 .

网络马尔马索尔

1.

14.17 46 48 49 7

· 是注意是自我的问题。

Vessel WHITE SAGE (133')

A CONTRACTOR OF THE OWNER OWNER

WMS No. 2

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pip	ping ⁽¹⁾	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2) 1,220	5,490
Ta	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 4,100	2,255
Fo	undations	Pounds	\$.92/Lb. (Materials and Labor)	(5) 3,160	2,908
-	ectric bles	Feet	\$ 2.00/Ft. (Materials and Labor)	300	600
In: mc co	scellaneous stallations (pumps, stors, skid-mounted mponents, etc.)	Man- Hours	\$15.00/MH (Labor)	35	525
de bu	cess Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)	50	50
w	elding	Feet	\$ 6.00/Ft. (Materials and Labor)	140	840
als	Cutting	Hours	\$50.00/Hr. () (Labor)	15	750
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
	Total Installation Cost (\$)				

(1) Copper-nickel assumed,

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plate assumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

- (5) Estimated on the basis of 10% of the weight which has to be supported.
- (6) Based on an assumed cutting rate of 50 ft. /hr.

Vessel: WHITE SAGE (133')

WMS No. 3 Full Volume Flush Oil Recirculation and Gravity Collection/ Chrysler System with Incinerator for Sewage/Holding Tank for Gray Water

	Required	Approximate Dimensions(L x W x H)
 Galley/Turbid Holding Tank Sludge Ejection Tank	2063 gal. (276 cu.ft.) 50 gal. (6.7 cu.ft.)	7 ' x 6' x 7' 24" dia. x 60" L
 Chrysler Model and Quantity	One (1) Model A Separation Tank and One (1) Model A Pump and Fluid Maintenance Package	
Incinerator Model and Quantity	One (1) - A	
Sludge Ejection Tank Transfer Pump	One (1)	
Sludge Ejection Tank Discharge Pump	One (1)	
Galley/Turbid Holding Tank Discharge Pumps	Two (2)	

Discussion

A DE CONTRA

The system is considered to be a viable candidate.

The components would be located as follows:

(a) Chrysler Pump and Fluid Maintenance Package, and Separation Tank followed by the Sludge Ejection Tank would be located in that order (fwd to aft) on the port side of the Engine Room, from the location of the existing collecting tank aft to the stanchion (Frames 13 to 15).

(b) The incinerator would be located in the Engine Room, port side, between Frames 14 and 15 just inboard of the ejection tank. Its stack would run inboard and up to the weather alongside the diesel engine exhaust pipes in the ship's stack.

System No. 3 (Cont'd)

(c) The Sludge Ejection Tank Pumps would be located in the Engine Room, just forward of the incinerator.

(d) The incinerator fuel tank could be located on the Engine Room forward bulkhead, port side.

(c) Galley/Turbid Holding Tank in Hold No. 2, Starboard side, in the location of the existing retention tank (Same as System Nos. 1 and 2).

(f) Galley/Turbid Holding Tank Discharge Pumps (overboard/ pierside) just forward of the tank (Same as System No3. 1 and 2).

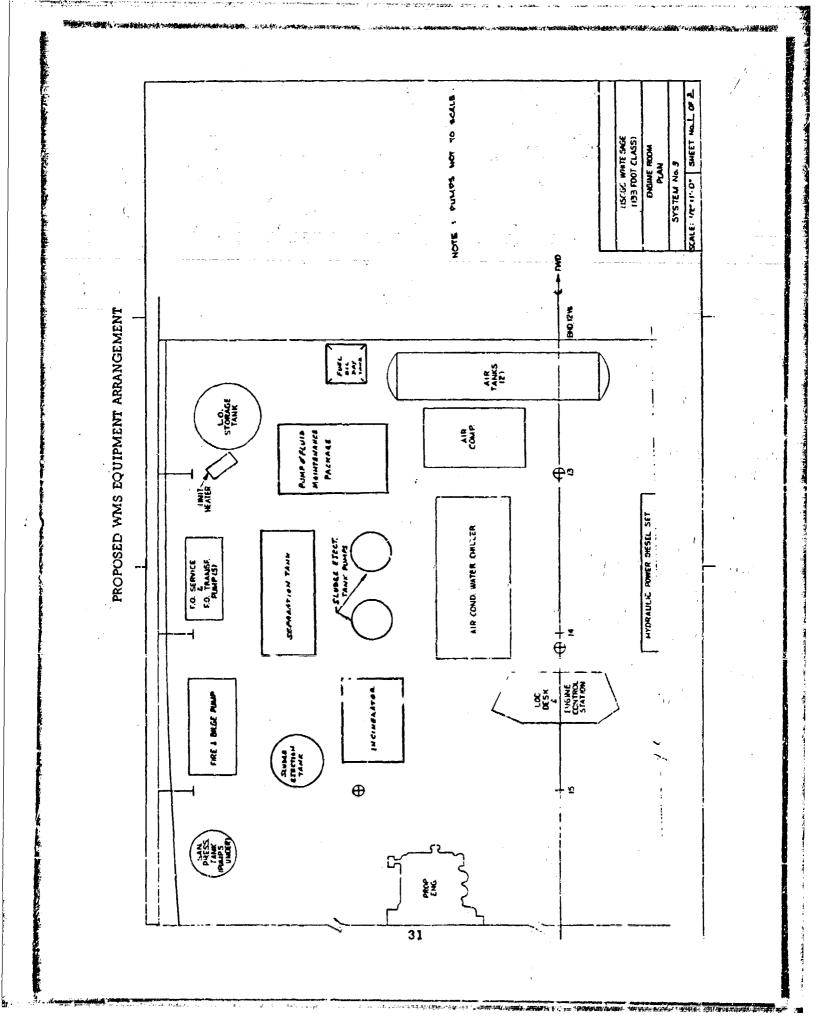
(g) The existing 25 gallon Galley Retention Tank located on the operating level of the Engine Room, in the aft Starboard corner would be retained. The tank has a built-in liquid level controlled discharge pump.

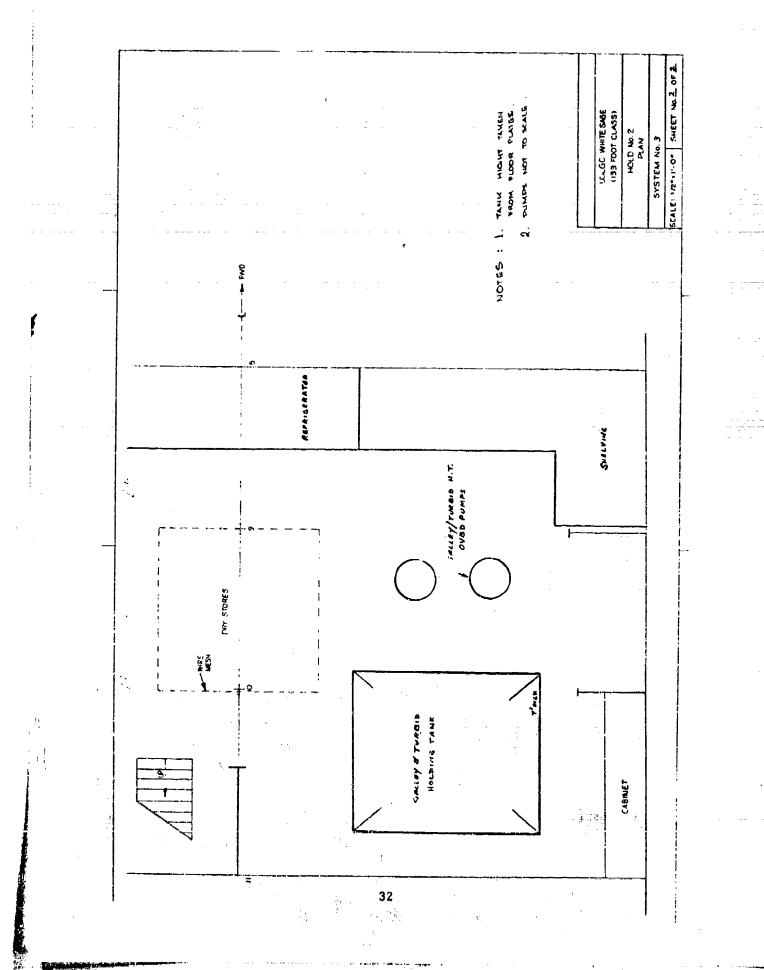
Drainage would be as follows:

(a) Sewage would drain by gravity to the (1 rysler Separation Tank and pass on to the incinerator via the Sludge Ejection Tank and the Transfer Pump.

(b) The Sludge Ejection Tank would be pumped overboard and to pierside via the tank's discharge pump. The discharge piping would be led to Hold No. 2 via the existing pipe tunnel through the Port Fuel Oil Tank and then to the ship's existing overboard and pierside connections.

(c) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/ Turbid Holding Tank in Hold No. 2 via a new pipe tunnel through the Port Fuel Oil Tank similar to the existing one, but located through the upper part of the tank.


(d) Drain from the drinking fountain on the Main Deck, Frame 14 to starboard of the ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tank.


System No. 3 (Cont'd)

(e) Remaining Galley/Turbid drains would gravitate overboard and to the Holding Tank in Hold No. 2 via the new pipe tunnel indicated above. The tank discharge pumps would be capable of discharging the tank contents overboard and to pierside.

To accommodate the equipment in Hold No. 2, there may be minor modifications required to the shelving on the starboard side (along the shell of the vessel) and the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10).

Due to the incinerator installation additional fire protection will have to be provided and the ventilation system will have to be modified.

an "Alige die mit die mees en leker weerste die die kerken waard wat in die sterre die die die die die die die Na u ed undina statistica da concerción de concerción de concerción de concerción de concerción de concerción de c

Vessel WHITE SAGE (133')

WMS No. 3

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pij	ping(1)	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2) 1,930	8,685
Та	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 4,360	2,398
Fo	undations	Pounds	\$.92/Ib. (Materials and Labor)	(5) 2,620	2,411
Ca	ectric ibles	Feet	\$ 2.00/Ft. (Materials and Labor)	350	700
In: mc co	scellaneous stallations (pumps, ptors, skid-mounted mponents, etc.)	Man- Hours	\$15.00/MH (Labor)	35	525
de bu	cess Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)	50	50
w	elding	Feet	\$ 6.00/Ft. (Materials and Labor)	150	900
als	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	750
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
	Tota	l Installe	ation Cost (\$)		16,794

(1) Copper-mickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(8) One-quarter inch plate assumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported,

(6) Based on an assumed cutting rate of 59 ft. /hr.

Vessel: WHITE SAGE (133')

WMS No. 4 Full Volume Flush Gravity Collection/Grumman Flow Through System with Sludge Holding Tank for Black Water/ Holding Tank for Gray Water

		Required	Approximat Dimensions(L x 1	
··· -	Sewage Influent Surge Tank Galley/Turbid Holding Tank Sludge Holding Tank	110 gal. (15 cu. ft.) 2063 gal. (276 cu.ft.) 60 gal. (8 cu. ft.)	2' x 2' x 4' 7' x 6' x 7' 2' x 2' x 2'	
	Grumman Unit without Incinerator	One (1)		
	Surge Tank Pumps	One (1)		
	Surge Tank Overboard Pump Sludge Transfer Pump	Two (2) One (1)	1 2 2	
	Galley/Turbid Holding Tank Discharge Pump	Two (2)		:

Discussion

The system is considered to be a viable candidate.

The components would be located as follows:

(a) The existing 25 gallon Galley Retention Tank located on the operating level of the Engine Room, in the aft starboard corner, would be retained. The tank has a built-in liquid level controlled discharge pump.

(b) Due to the lack of adequate space in the Engine Room and for a better piping arrangement, the Sewage Influent Surge Tank, Sludge Holding Tank, Grumman Unit and Galley/Turbid Holding Tank would all be located on the starboard side of Hold No. 2. The G/T Holding Tank would be located where the retention tank is fitted (Frames 10 - 11). The Grumman Unit would be located forward of the G/T Holding Tank, with the Sludge Holding Tank adjacent and outboard (Frames 8-9). The Influent Surge Tank would be located just forward of Bhd 11 and to Starboard of the ship's centerline (Frames 10 - 11) near the G/T Holding Tank.

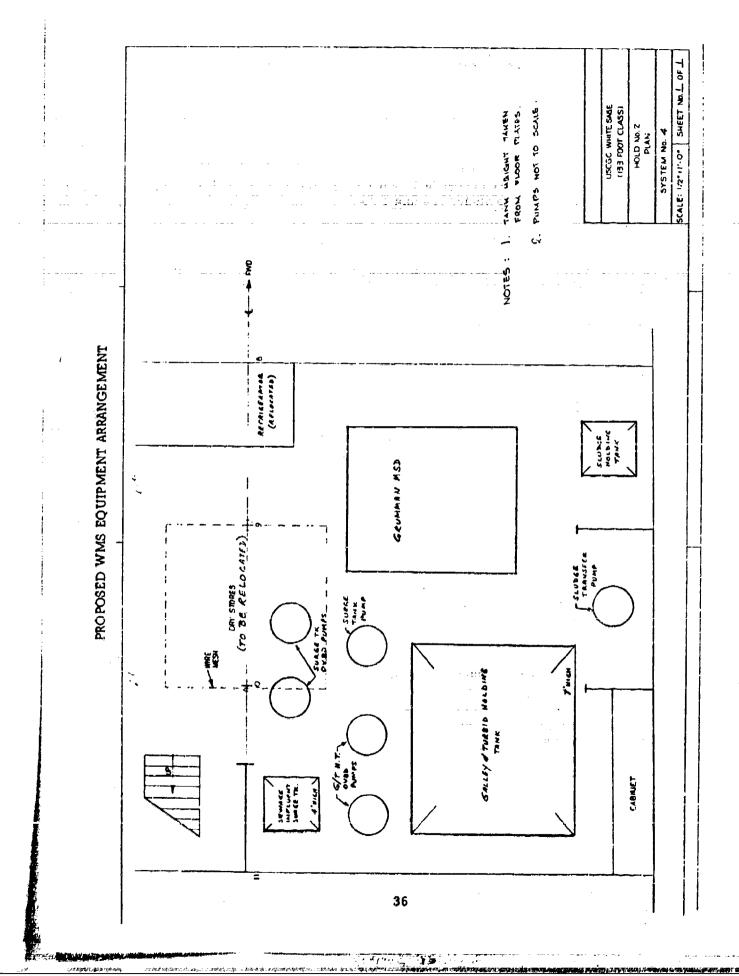
> e en la companya de <u>al antes de ser</u>ies. En la companya de la c

System No. 4 (Cont'd)

(c) The independent pumps associated with the tanks would be distributed in the area between Frames 9 - 10 1/2 Starboard of the ship's centerline and near the Sludge Holding Tank.

Drainage would be as follows:

(a) All drainage piping aft of Bhd No. 12, sewage as well as galley/turbid, would be led to Hold No. 2 via separate mains through a new pipe tunnel passing through the upper part of the Port Fuel Oil Tank (similar to the existing one which passes through the lower part of the tank).


(b) Sewage would gravitate to the Influent Surge Tank, from which it would be pumped by the Surge Tank Pump to the Grumman Feed Tank. The Surge Tank would be pumped overboard and to pierside via the tank's overboard pumps.

(c) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/Turbid Holding Tank in Hold No. 2 via the new pipe tunnel through the Port Fuel Oil Tank mentioned above.

(d) Drains from the drinking fountain on the Main Deck, Frame 14, to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tank.

(e) Remaining Galley/Turbid drains would gravitate overboard and to their Holding Tank in Hold No. 2 via the new pipe tunnel indicated above. The tank discharge pumps would be capable of discharging the tank contents overboard and to pierside.

To accommodate equipment locations the existing shelving arrangement along the starboard shell would have to be modified, the ship's dry stores enclosure would have to be relocated from the ship's centerline to some place on the Port side, and the ship's stores refrigerator would have to be moved slightly to Port to clear the Grumman unit. The refrigerator has its own two air-cooled compressors mounted on top of the refrigerator.

a a los a laboradores de la se

1.1

Vessel WHITE SAGE (133')

WMS No. 4

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)	
Pij	ping ⁽¹⁾	Pounds	\$ 4.30/Lb. (Materials and Labor)	(2) 1,830	8,235	
Та	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 4,395	2, 418	
Fo	undations	Pounds	\$.92/Lb. (Materials and Labor)	(5) 2,705	2, 489	
	ectric ibles	Feet	\$ 2.00/Ft. (Materials and Labor)	525	1,050	
In: mo co	scellaneous stallations (pumps, ptors, skid-mounted mponents, etc.)	Man- Hours	\$15.00/MH (Labor)	50	750	
đe bu	ce ss Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)	35	35	
w	elding	Feet	\$ 6.00/Ft. (Materials and Labor)	150	900	
als	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	750	
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375	
	Total Installation Cost (\$)					

(1) Copper-nickel assumed.

(3) One-quarter inch plate assumed.

- (5) Estimated on the basis of 10% of the weight which has to be supported.
- (6) Based on an assumed outting rate of 50 ft. /hr.

⁽²⁾ Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

⁽⁴⁾ Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

Vessel: WHITE SAGE (133')

WMS No. 5 Full Volume Flush Gravity Collection/Grumman Flow Through System with Sludge Holding Tank for Combined Black and Gray Waters

n. 19 g

······································	Required	Approximate Dimensions(L x W x H)	•
-	432 gal. (58 cu.ft.) 232 gal. (31 cu.ft.)	3' x 3' x 6' - 5" 3' x 2' x 5' - 6"	
Grumman Unit without Incinerator	One (1)		- - - - - -
Surge Tank Pump	One (1)		
Surge Tank Overboard Pump	Two (2)		-
Sludge Transfer Pump	One (1)	· · · · · · · · · · · · · · · · · · ·	

Discussion

The system is considered to be a viable candidate.

The components would be located as follows:

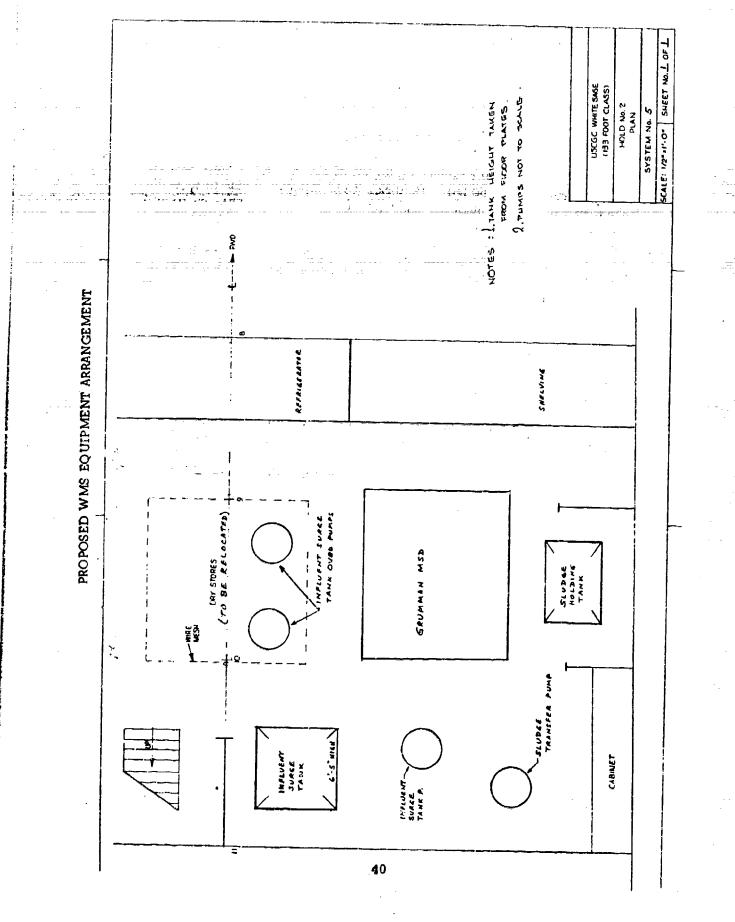
(a) The existing 25 gallon Galley Retention Tank located on the operating level of the Engine Room, in the aft Starboard corner, would be retained. The tank has a built-in liquid level controlled discharge pump.

(b) Due to the lack of adequate space in the Engine Room and for a better piping arrangement, the Sewage Influent Surge Tank, Sludge Holding Tank, and the Grumman Unit would all be located on the starboard side of Hold No. 2. The Grumman treatment sub-system would be located where the retention tank is presently fitted. The Sludge Holding Tank would be located just outboard of the Grumman unit. The influent surge tank would be located just forward of Bhd 11, to starboard of the ship's centerline.

(c) The independent pumps would be functionally located arround the Grumman unit and Surge Tank.

38

System No. 5 (Cont'd)


Drainage would be as follows:

(a) All drainage piping aft of Bhd No. 12, sewage as well as Galley/Turbid, would be led to Hold No. 2 via separate mains through a new pipe tunnel passing through the upper part of the Port Fuel Oil Tank (similar to the existing one which passes through the lower part of the tank).

(b) Sewage and Galley/Turbid drains would gravitate to the Influent Surge Tank, from which they would be pumped by the Surge Tank Pump to the Grumman Feed Tank. The Surge Tank would be pumped overboard and to pierside via the tank's overboard pumps.

(c) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Influent Surge Tank in Hold No. 2 via the new pipe tunnel through the Port Fuel Oil Tank mentioned above.

To accommodate the equipment in Hold No. 2, minor modifications will be required to the shelving on the starboard side (along the shell of the vessel) and the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10) will have to be moved further to Port.

× ...

للسلط الكميط

2.

Vessel WHITE SAGE (133')

WMS No. 5

بر یا دیک

Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Piping ⁽¹⁾	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2)	7,358
Tank Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 2,170	1,194
Foundations	Pounds	\$.92/Lb. (Materials and Labor)	(5) 1,120	1,031
Electric Cables	Feet	\$ 2.00/Ft. (Materials and Labor)	450	900
Miscellaneous Installations (pumps, motors, skid-mounted components, etc.)	Man- Hours	\$15.00/MH (Labor)	35	525
Access Cuts (in hull, deck plating or bulkhead to provide passageway)	Feet	\$ 1.00/Ft. (Labor)	35	35
Welding	Feet	\$ 6.00/Ft. (Materials and Labor)	120	720
Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	750
Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
Tota	il Installe	ntion Cost (\$)		12,888

(1) Copper-nickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.,

(3) One-quarter inch plate assumed.

(4) Endmate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported.

(6) Based on an assumed cutting rate of 50 ft. /hr.

41

1.5

Vessel: WHITE SAGE (133')

WMS No. 6 Full Volume Flush Gravity Collection/Holding Tank for Black Water/Grumman Flow Through System with Sludge Holding Tank for Gray Water

	Required	Approximate Dimensions(L x W x H)
G/T Influent Surge Tank	323 gal. (43 cu.ft.)	3'x 3'x 5'
Sewage Holding Tank Sludge Holding Tank Optional Combined Sewage/	722 gal. (97 cu.ft.) 172 gal. (23 cu.ft.)	4' x 4' x 6' 2'-6" x 2'-6" x 4'
Sludge Holding Tank	894 gal. (120 cu.ft.)	5' x 5' x 5'
Grumman Unit without Incinerator	One (1)	· · · · · ·
G/T Influent Surge Tank Pump	o One (1)	· ·
G/T Influent Surge Tank Transfer pump	One (1)	
Sewage Holding Tank Overboa Pump	ard Two (2)	
Sludge Holding Tank Transfer Pump	• · · ·	

Discussion

The system is considered to be a viable candidate.

The components would be located as follows:

(a) The existing 25 gallon Galley Collecting Tank located on the operating level of the Engine Room, in the aft Starboard corner, would be retained. The tank has a built-in liquid level controlled discharge pump.

(b) Due to the lack of adequate space in the Engine Room and for a better piping arrangement the remaining components would all be located on the starboard side of Hold No. 2. The G/T Influent Surge Tank would be fitted near the ship's centerline, just forward of Bhd No. 11. The Sewage Holding Tank would be located where the existing retention

System No. 6 (Cont'd)

tank is fitted. The Grumann treatment subsystem would be fitted forward (Frames 9-10) with the Sludge Holding Tank forward and outboard.

The Optional Combined Sewage/Sludge Holding Tank can be located in place of the Sewage Holding Tank.

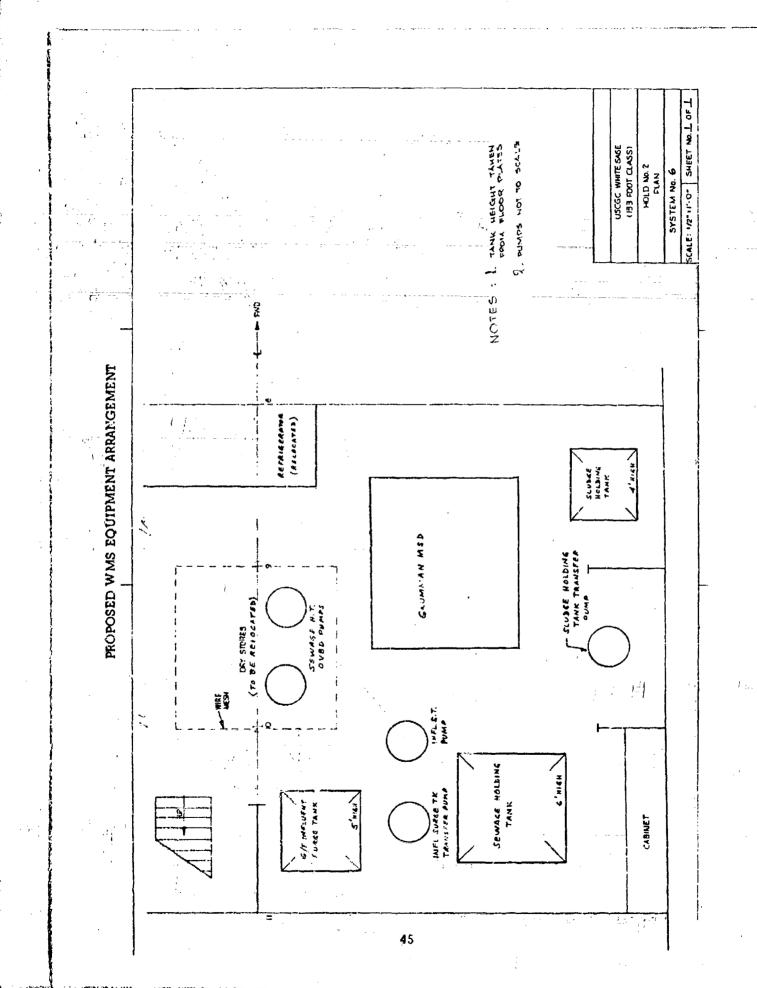
(c) The independent pumps associated with the tanks would be distributed functionally near the equipment served.

Drainage would be as follows:

(a) All drainage piping aft of Bhd No. 12, sewage as well as galley/t urbid, would be led to Hold No. 2 via separate mains through a new pipe tunnel passing through the upper part of the Port Fuel Oil Tank (similar to the existing one which passes through the lower port of the tank).

(b) Sewage would gravitate to the Sewage Holding Tark from which it would be pumped overboard or to pierside by the tank's overboard discharge pumps.

(c) The Sludge Holding Tank Transfer Pump would transfer effluent from the tank to the Sewage Holding Tank for discharge overboard and to pierside via the Sewage Holding Tank Overboard Pumps.


(d) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/Turbid Influent Surge Tank in Hold No. 2 via the new pipe tunnel through the Port Fuel Oil Tank mentioned above.

(e) Drain from the drinking fountain on the Main Deck, Frame 14 to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tank.

(f) Remaining Galley/Turbid drains would gravitute overboard and to the G/T influent Surge Tank in Hold No. 2 via the new pipe tunnel indicated above. The tank transfer pump would discharge the tank contents to the Sewage Holding Tank for discharge overboard and to pierside,

System No. 6 (Cont'd)

To accommodate equipment locations the existing shelving arrangement along the starboard shell would have to be modified, the ship's dry stores enclosure would have to be relocated from the ship's centerline to some place on the Port side, and the ship's stores refrigerator along the forward bulkhead would have to be moved to Port to clear the Grumman unit. The reisigerator has its own two air-cooled compressors mounted on top of the refrigerator.

Statistics of the second

Vessel WHITE SAGE (133')

WMS No. _6

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)	
Pir	bing ⁽¹⁾	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2) 1,830	8,235	
Ta	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 3, 445	1,895	
Fo	undations	Pounds	\$.92/Lb. (Materials and Labor)	(5) 1,760	1,620	
	ectric bles	Feet	\$ 2.00/Ft. (Materials and Labor)	450	900	
In: mc	scellaneous stallations (pumps, otors, skid-mounted mponents, etc.)	Man- Hours	\$15.00/MH (Labor)	50	750	
de bu	cess Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)	35	35	
w	elding	Feet	\$ 6.00/Ft. (Materials and Labor)	150	900	
als	Cutting	Hours	\$50,00/Hr. ⁽⁶⁾ (Labor)	15	75 0	
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375	
	Total Installation Cost (\$)					

(1) Copper-mickel assumed.

Contractory designation

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plate assumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported.

(6) Based on an assumed cutting rate of 50 ft. /hr.

Vessel: WHITE SAGE (133')

WMS No. 7 Full Volume Flush Gravity Collection/Grumman Flow Through System with Sludge Incinerator for Black Water/Holding Tank for Gray Water

			Approximate Dimensions(L x W x H)
	Galley/Turbid Holding Tank Sewage Influent Surge Tank Fuel Oil Day Tank	2063 gal. (276 cu.ft.) -110 gal. (15 cu. ft.) 25 gal. (3.3 cu. ft.)	7'x 6'x 7' 2'x 2'x 4' 1'-6"x 1'-6"x 1'-6"
	Grumman Unit with Incinerator	One (1) with One (1) Thiokol Incinerator	
	Influent Surge Tank Pump	One (1)	
• _ 4	Influent Surge Tank Overboard Pump	Two (2)	
:	Galley/Turbid Holding Tank Overboard Pump	Two (2)	

Discussion

The system is a viable candidate with certain considerations.

The components would be located as follows:

(a) The existing 25 gallon Galley Retention Tank located on the operating level of the Engine Room, in the aft Starboard corner, would be retained. The tank has a built-in liquid level controlled discharge pump.

(b) The Sewage Influent Surge Tank, Surge Tank Pump, and the tank's overboard pumps would be located in the Engine Room, Port side in place of the existing collecting tank.

(c) The Galley/Turbid Holding Tank would be fitted in Hold No. 2 where the existing retention tank is located. The Grumman MSD with the incinerator would be located just forward of the G/T Holding Tank; the Fuel Oil Day Tank would be located in the Starboard aft corner of the hold near the G/T Holding Tank.

47

1.3

System No. 7 (Cont'd)

(d) The G/T Holding Tank pumps for overboard/pierside discharge would be located inboard of the tank.

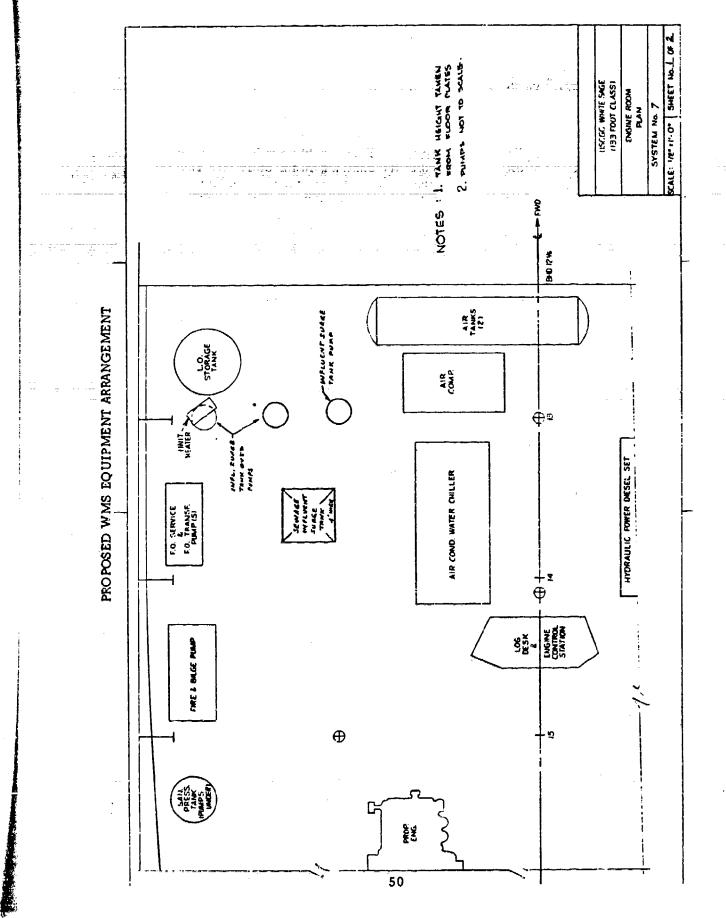
(e) In view of the arrangement of the vessel as described in the discussion of existing conditions at the beginning of this section, the incinerator stack run to the weather seems to be severely limited. The only apparent solution is to run it up through the Main Deck alongside the port or starboard sheer leg of the cargo boom tripod support structure. The structure legs begin near the overhead in Hold No. 2. Care would have to be exercised due to tight house access arrangements on the Main Deck and the navigational and operations clearance needed.

Drainage would be as follows:

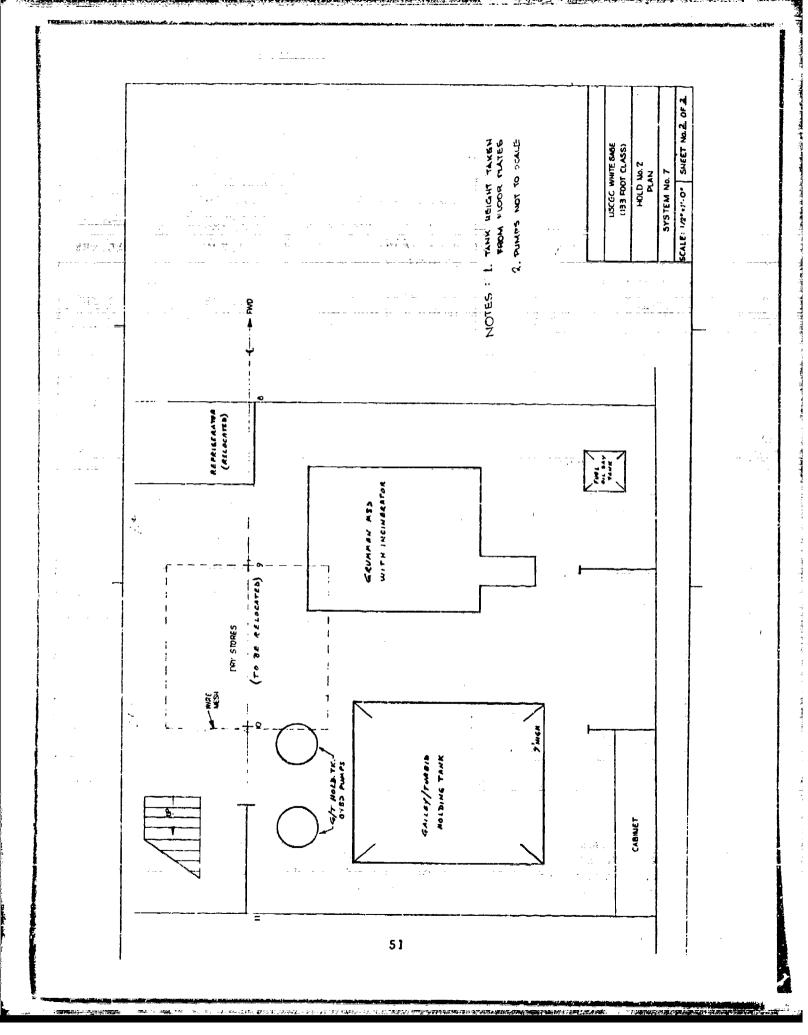
(a) Sewage would gravitate to the Sewage Influent Surge tank in the Engine Room from which it would be pumped to the Grumman feed tank by the surge tank pump. The surge tank would be pumped overboard or to pierside by the tank's overboard pumps. The Surge tank pump and the tank overboard/ pierside discharge pump would discharge via the existing pipe tunnel through the lower part of the Port Fuel Oil Tank.

(b) Galley and Turbid drainage piping aft of Bhd No. 12 would be led to the G/T Holding Tank in Hold No. 2 through a new pipe tunnel passing through the upper part of the Port Fuel Oil Tank (similar to the existing one which passes through the lower part of the tank).

(c) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/Turbid Holding Tank in Hold No. 2 via the aforementioned new pipe tunnel through the Port Fuel Oil Tank.


(d) Drains from the drinking fountain on the Main Deck, Frame 14, to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tank.

(e) Remaining Galley/Turbid drains would gravitate overboard and to the Holding Tank in Hold No. 2 directly. The tank discharge pumps would be capable of discharging the tank contents overboard and to pierside.


System No. 7 (Cont'd)

To accommodate the equipment in Hold No. 2, minor modifications would be required to the shelving on the starboard side (along the shell of the vessel); the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10) would have to be moved to port of the ship's centerline; the ship's stores refrigerator along the forward bulkhead would have to be moved to port to clear the Grumman unit. The refrigerator has its own two air "cooled compressors mounted on top of the refrigerator.

Due to the incinerator installation additional fire protection will have to be provided and the ventilation system for Hold No. 2 will have to be modified.

tion in the second

Vessel WHITE SAGE (133')

WMS No. 7

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pi	ping ⁽¹⁾	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2) 3,775	16,988
Та	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 2,525	1,389
Fo	oundations	Pounds	\$.92/Lb. (Materials and Labor)	(5) 1,505	1,385
Ca	ectric ables	Feet	\$ 2.00/Ft. (Materials and Labor)	375	750
In mo cc	iscellaneous stallations (pumps, otors, skid-mounted omponents, etc.)	Man- Hours	\$15.00/MH (Labor)	40	600
de bu	ccess Cuts (in hull, eck plating or ulkhead to provide assageway)	Feet	\$ 1.00/Ft. (Labor)	35	35
w	elding	Feet	\$ 6.00/Ft. (Materials and Labor)	135	810
als	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	750
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
	Total Installation Cost (\$)				

(1) Copper-nickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plate assumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported.

بلاجهما بالتاب

(6) Based on an assumed cutting rate of 50 ft. /hr.

C-1 Decimentation Contraction

Vessel: WHITE SAGE (133')

WMS No. 8 Full Volume Flush Gravity Collection/Grumman Flow Through System with Sludge Incinerator for Combined Black and Gray Waters

	Required	Approximate Dimensions (L x W x H	<u>ک</u>
Influent Surge Tank Fuel Oil Day Tank	432 gal. (58 cu. ft.) 25 gal. (3.3 cu. ft.)	3'-9" x 4' x 4' 1'-6" x 1'-6" x 1'-6"	
Grumman Units with Incinerators	One (1) with One (1) Thiokol Incin	er ator	
Influent Surge Tank Pump	One (1)		
Influent Surge Tank Overboard Pumps	Two (2)		

Discussion

The system is a viable candidate with certain considerations.

The system is very similar to System No. 7 except that the Galley/Turbid Holding Tank and its overboard/pierside discharge pumps have been deleted.

The components would be located as follows:

(a) The existing 25 gallon Galley Retention Tank located on the operating level of the Engine Room, in the aft Starboard corner, would be retained. The tank has a built-in liquid level controlled discharge pump.

(b) The Influent Surge Tank, Surge Tank Pump, and the tank's overboard pumps would be located in the Engine Room, Port side in place of the existing collecting tank.

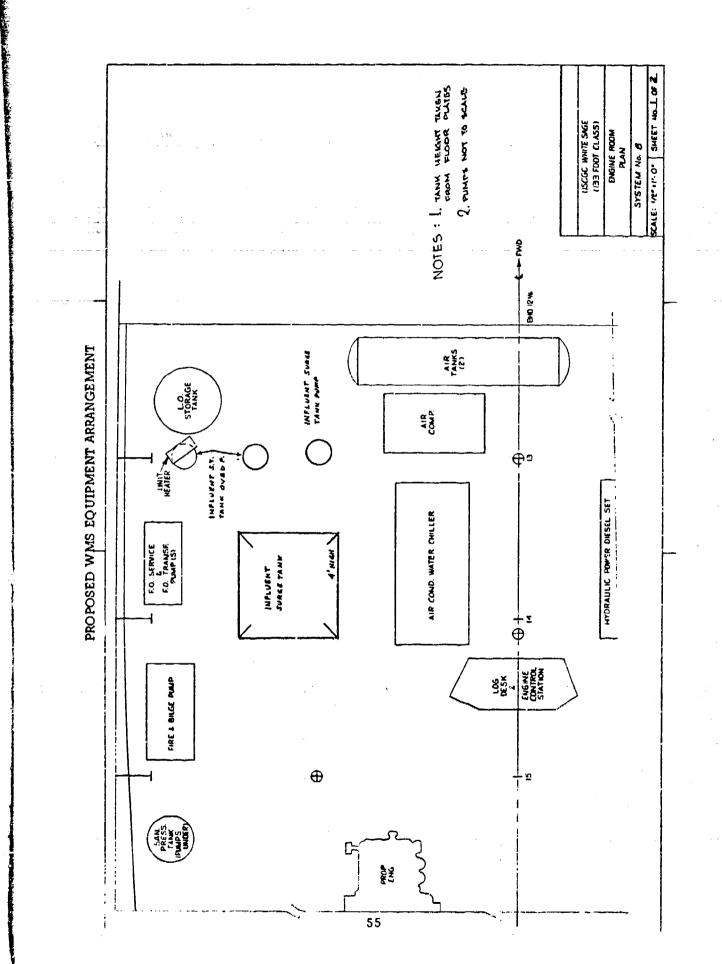
(c) The Grumman MSD with the incinerator would be located in Hold No. 2 in place of the existing retention tank.

System No. 8 (Cont'd)

The Course of the Section

(d) In view of the arrangement of the vessel as described in the discussion of existing conditions at the beginning of this section, the incinerator stack run to the weather seems to be severly limited. The only apparent solution is to run it up through the Main Deck alongside the port or starboard sheer leg of the cargo boom tripod support structure. The structure legs begin near the overhead in Hold No. 2. Care would have to be exercised due to tight house access arrangements on the Main Deck and the navigational and operational clearances needed.

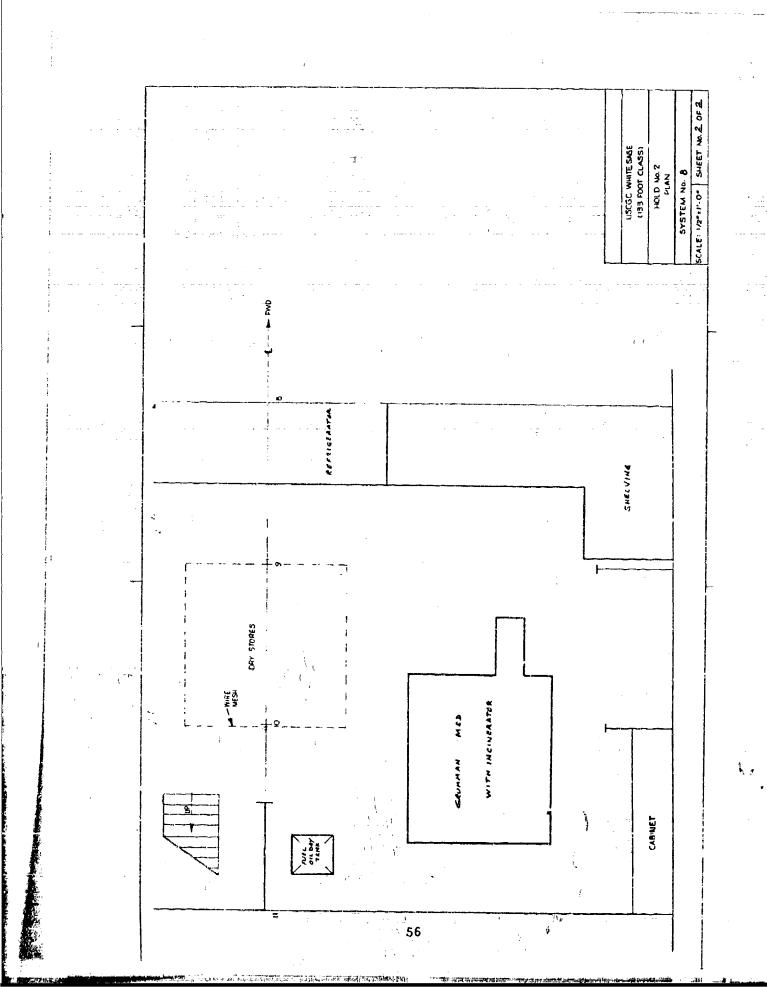
Drainage would be as follows:


(a) Sewage and Galley/Turbid water would go to the Influent Surge Tank from which it would be pumped by the surge tank pump to the Grumman feed tank via the existing pipe tunnel through the Port Fuel Oil Tank. The Influent Surge Tank overboard pump would discharge overboard/ pierside via the same pipe tunnel to the existing connections.

(b) The effluent from the existing 25 gallon Galley Sink/deck drain collecting tank would be pumped to the influent surge tank.

(c) Drains from the drinking fountain on the Main Deck, Frame 14, would have to be re-routed to drain into the 25 gallon collecting tank.

To accommodate the equipment in Hold No. 2, shelving may have to be modified and the wire mesh enclosure for ship's dry stores may have to be moved to port.


Due to the incinerator installation additional fire protection will have to be provided and the ventilation system for Hold No. 2 will have to be modified.

بالمعالم المعالم المعا معالم المعالم ا

كتأسيطمني والشابين

والمناطعة مستقر فستندف

ه م م م م م

THE LAND

Vessel WHITE SAGE (133')

WMS No. 8

.西藏區

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Piping ⁽¹⁾		Pounds	\$ 4.50/Lb. (Materials and Labor)	(4)	8,438
Tank Steel ⁽³⁾		Pounas	\$.55/lb. (Materials and Labor)	(4)	779
Foundations		Pounds	S .92/Lb. (Materials and Labor)	1,005	925
Electric Cables		Feet	\$ 2.00/Ft. (Materials and Labor)	225	450
Miscellaneous Installations (pumps, motors, skid-mounted components, etc.)		Man- Hours	\$15.00/MH (Labor)	35	525
Access Cuts (in hull, deck plating or bulkhead to provide passageway)		Feøt	\$ 1.00/Ft. (Labor)	50	60
Welding		Feøt	\$ 6.00/Ft. (Materials and Labor)	135	BIO
Removals	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	750
	Other (miscelleneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
Total Installation Cost (\$)					13,102

(1) Copper-sickel assumed.

د تشمې د ۲۰۰ ، ۲۰۱۰ د د د موسواله وسور د مع<u>تو ور</u>ه ۱

1.10

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down idents, sto.

(3) One-quarter inch plane assumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) But rated on the basis of 10% of the weight which has to be supported.

(6) Based on an assumed cutting rate of 50 ft. /hr,

4.44

1.

Vessel: WHITE SAGE (133')

WMS No. 9 JERED Reduced Volume Flush Vacuum Collection/Holding Tank for Concentrated Black Water/Holding Tank

for Gray Water

	Required	Approximate Dimensions(L x W x H)
Vacuum Collection Tank	30 gal, (4.4 cu.ft.)	16" dia. x 38" H
Sanicary Holding Tank	200 gai. (27 cu.ft.)	3' x 3' x 3'
Galley/Turbid Holding Tank	2063 gal, (276 cu.ft.)	7 ' x 6 ' x 7'

Sanitary Holding Tank Overboard Puraps

Two (2)

Galley/Turbid Holding Tank Overboard Pumps

Two (2)

Discussion

The system is considered to be a viable candidate.

A fresh water sanitary flushing system would be required.

The components would be located as follows:

(a) The Vacuum Collection Tank and its pumps would be located in the Engine Room, port side, where the existing collection tank is fitted.

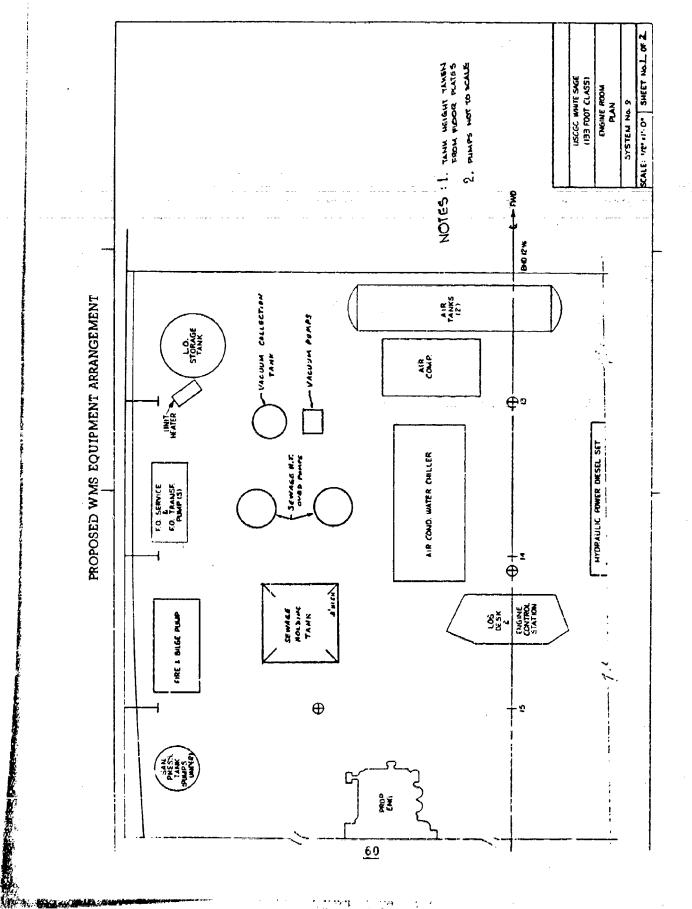
(b) The Sanitary Holding Tank and its overboard pumps would be located just aft of the vacuum collection tank.

(c) The Galley/Turbid Holding Tank and its overboard discharge pumps would be located in Hold No. 2 in place of the existing retention tank.

(d) The existing 25 gailon Galley Repention Tank located on the operating level of the Engine Room in the aft Starboard corner, would be retained. The rank has a built-in liquid level controlled discharge pump.

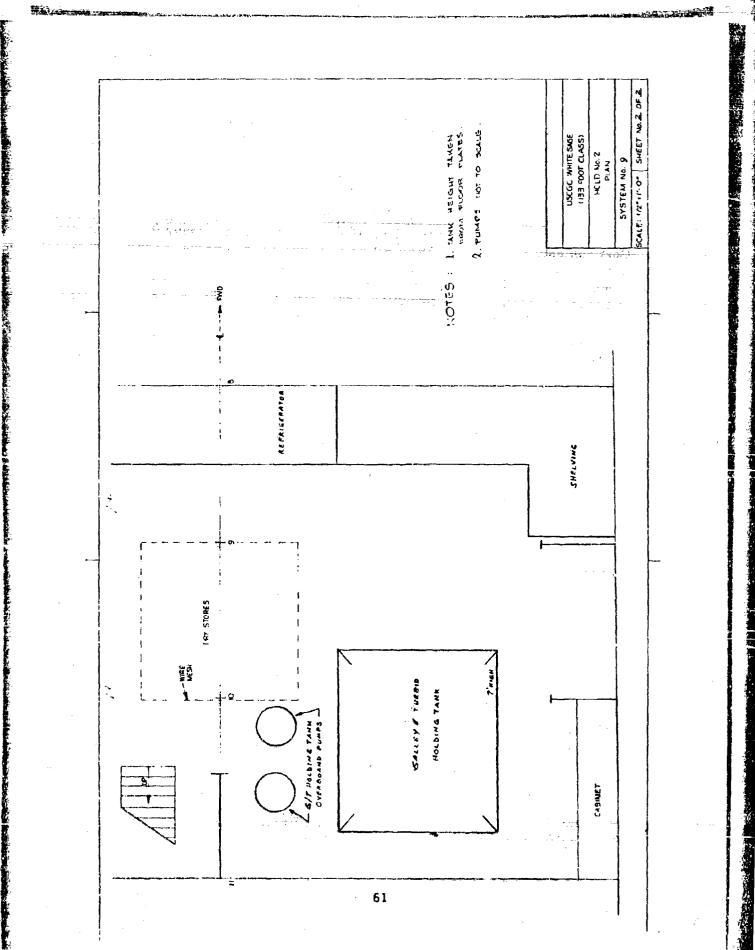
System No. 9 (Cont'd)

Drainage would be as follows:


(a) Sewage would be collected in the Vacuum Collection Tank and transfered to the Sanitary Holding Tank. The holding tank discharge pump's discharge line would be led to Hold No. 2 via the existing pipe tunnel passing through the lower inboard side of the Port Fuel Oil Tank. From there it would run to the existing overboard shell connection and to the existing weather deck discharge connections to pierside, port and starboard.

(b) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/Turbid Holding Tank in Hold No. 2 via a new pipe tunnel through the Port Fuel Oil Tank similar to the existing one, but located through the upper part of the tank.

(c) Drain from the drinking fountain on the Main Deck, Frame 14, to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallor retention tank.


(d) Remaining Galley/Turbid drains would gravitate overboard and to the Holding Tank in Hold No. 2 via the new pipe tunnel indicated above. The tank discharge pump would be capable of discharging the tank contents overboard and to pierside.

To accommodate the equipment in Hold No. 2, there may be minor modifications required to the shelving on the starboard side (along the shell of the vessel) and the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10).

anga si saya Saya si saya ; •••

7

Ń

Vessel WHITE SAGE (133')

WMS No. 9

COMPLETE SEC.

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pir	bing ⁽¹⁾	Pounds	<pre>\$ 4.50/Ib. (Materials and Labor)</pre>	(2)	5,040
Ta	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 4, 260	2,343
Fo	undations	Pounds	\$.92/Ib. (Materials and Labor)	(5) 2,425	2,231
	ectric bles	Feet	\$ 2.00/Ft. (Materials and Labor)	300	600
Ins mo	scellaneous stallations (pumps, stors, skid-mounted mponents, etc.)	Man- Hours	\$15.00/MH (Labor)	35	52 8
de bu	cess Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.90/ft. (Labor)	50	5G
we	elding	Feet	\$ 6.00/Ft. (Materials and Labor)	135	810
als	Cutting	Hours	\$50.00/Hr. (^e) (Labor)	15	75 0
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
	Total Installation Cost (\$)				

(1) Copper-pickel assumed.

اطته ومعطرة فنا

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plate assumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported.

(6) Based on an assumed cutting rate of 50 ft. /hr.

THE AND MY STATE AND AND A STATE OF STATE

and same de

DISCUSSION OF INSTALLATION BASED ON SHIPCHECKS

Vessel: WHITE SAGE (133')

WMS No. 10 JERED Reduced Volume Flush Vacuum Collection/Incinerator for Concentrated Black Water/Holding Tank for Gray Water

		Required	Approximate Dimensions (L x W x H)
· · · ·	Vacuum Collection Tank Galley/Turbid Holding Tank Incinerator Feed Tank (Sludge)	120 gal. (18 cu. ft.) 2063 gal. (276 cu. ft.) 50 gal. (6.5 cu. ft.)	2' dia. x 5'-9" L 7' x 6' x 7' 2'-6" x 1' x 2'-7"
Ť	Fuel Oil Day Tank	22 gal. (3.0 cu.ft.)	1'-6" x 1'-6" x 1'-6"
	Incinerator	One (1) Thiokol	

Vacuum Collection Tank Over-	144 B
board Pump	One (1)

G/T Holding Tank Overboard Pump Two (2)

Discussion

The system is considered to be a viable candidate.

A fresh water sanitary flushing system will be required.

The components would be located as follows:

(a) The Vacuum Collection Tank and its pumps would be located in the Engine Room, port side, where the existing collection tank is fitted.

(b) The incinerator and blower would be fitted aft of the VCT.

The fuel oil day tank would be located on the Engine Room forward bulkhead near the VCT.

The incinerator stack would go up the ship's stack alongside the diesel engine exhausts.

(c) The Galley/Turbid Holding Tank would be located in Hold No. 2 in place of the existing retention tank. Its overboard pumps would be located inboard of the tank.

(d) The existing 25 gallon Galley Retention Tank (with internal sump pump) located in the starboard aft corner of the Engine Room would be retained.

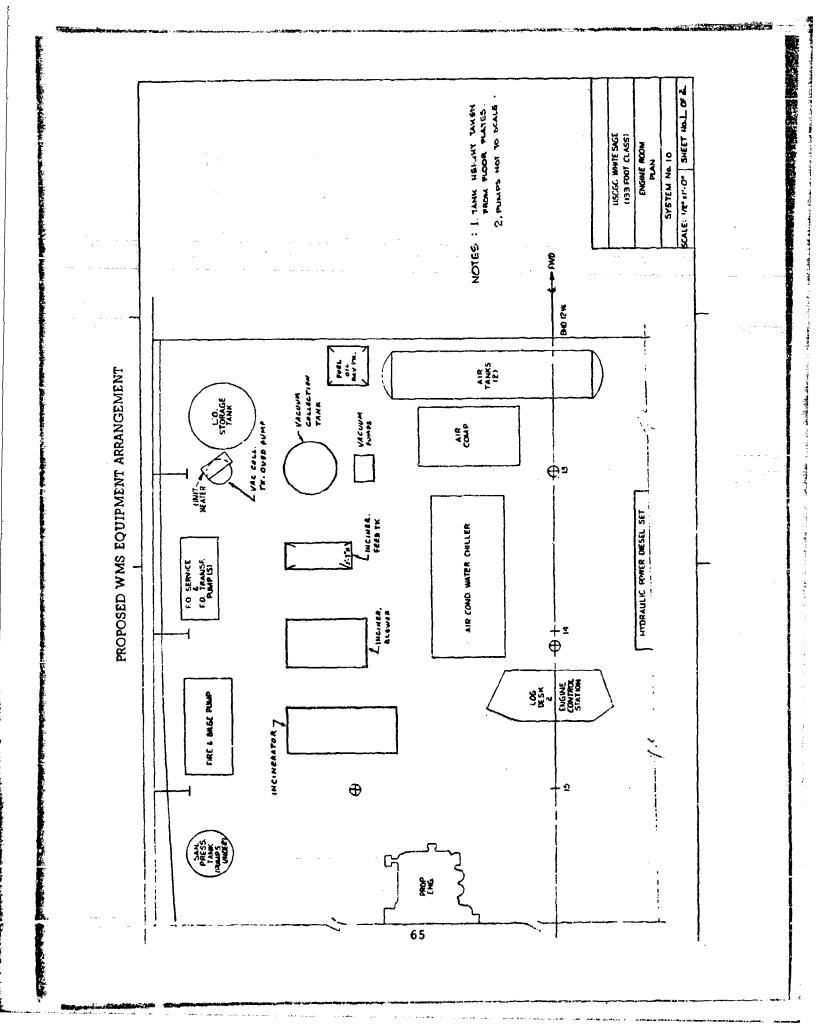
Vessel: WHITE SAGE (133')

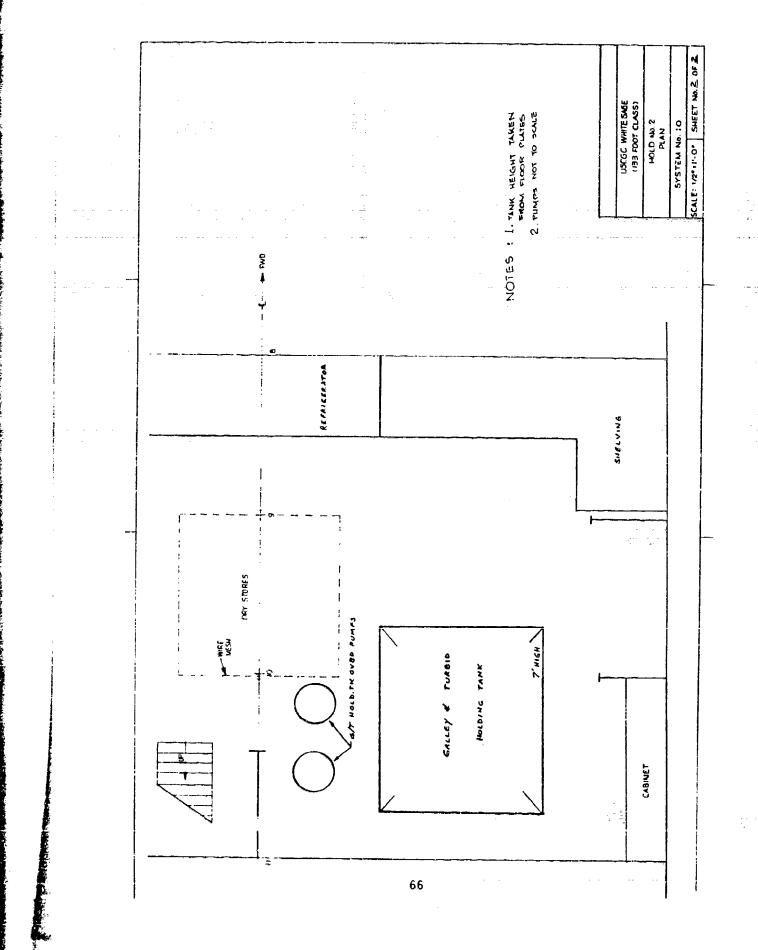
System No. 10 (Cont'd)

Drainage would be as follows:

(a) Sewage would be collected in the Vacuum Collection Tank (VCT) and transferred to the incinerator via the feed (Sludge) tank.

(b) The VCT would be pumped overboard and pierside by its overboard pump via the existing pipe tunnel through the lower part of the Port Fuel Oil Tank to the existing connections in Hold No. 2.


(c) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/Turbid Holding Tank in Hold No. 2 via a new pipe tunnel through the Port Fuel Oil Tank similar to the existing one, but located through the upper part of the tank.


(d) Drain from the drinking fountain on the Main Deck, Frame 14, to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tank.

(e) Remaining Galley/Turbid drains would gravitate overboard and to the Holding Tank in Hold No. 2 via the new pipe tunnel indicated above. The tank discharge pump would be capable of discharging the tank contents overboard and to pierside.

To accommodate the equipment in Hold No. 2, there may be minor modifications required to the shelving on the starboard side (along the shell of the vessel) and the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10).

64

A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL PROPERTY AND A REAL PROPERTY A REAL

Vessel WHITE SAGE (133')

WMS No. 10

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pij	ping ⁽¹⁾	Pounds	\$ 4.57/Lb. (Materials and Labor)	(2) 2,025	9,113
Та	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 3,780	2,079
Fo	undations	Pounds	\$.92/Lb. (Materials and Labor)	(5) 2,457	2,277
Ca	ectric ables	Feet	\$ 2.00/Ft. (Materials and Labor)	250	500
In: mo co	scellaneous stallations (pumps, otors, skid-mounted mponénts, etc.)	Man- Hours	\$15.00/MH (Labor)	25	375
de bu	cess Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)	50	50
w	elding	Feet	\$ 6.00/Ft. (Materials and Labor)	130	780
als	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	750
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
Total Installation Cost (\$)					16,299

(1) Copper-nickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plate assumed,

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) fstimated on the basis of 10% of the weight which has to be supported.

(6) Based of an assumed cutting rate of 50 ft. /hr.

DISCUSSION OF INSTALLATION BASED ON SHIPCHECKS

Vessel: WHITE SAGE (133')

WMS No. 11 JERED Reduced Volume Flush Vacuum Collection/GATX Evaporator for Concentrated Black Water/Holding Tank for Gray Water

		Required	Approximate Dimensions (L x W x H)
· · · · · · · · · · · · · · · · · · ·	Vacuum Collection Tank Galley/Turbid Holding Tank	30 gal. (4.4 cu. ft.) 2063 gal. (276 cu.ft.)	16" dia. x 38" L 7' x 6' x 7'
	Evaporator (GATX)	One (1) - 80 gal.	

Evaporator (GATX) Catalytic Oxidizer Galley/Turbid Holding Tank Overboard Pumps

Two (2)

One (1)

Discussion

The system is considered to be a viable candidate.

A fresh water sanitary flushing system would be required,

The equipment would be located as follows:

(a) The Vacuum Collection Tank and its pumps would be located in the Engine Room, port side, where the existing collection tank is fitted.

(b) The GATX Evaporator would be located just aft of the VCT.

in a state state state

(c) The existing 25 gallon Galley Collecting Tank located in the starboard aft corner of the Engine Room would be retained. The tank has a built-in liquid level controlled discharge pump.

(d) The Galley/Turbio Holding Tank would be located in Hold No. 2 in place of the existing retention tank. Its overboard pumps would be located inboard of the tank.

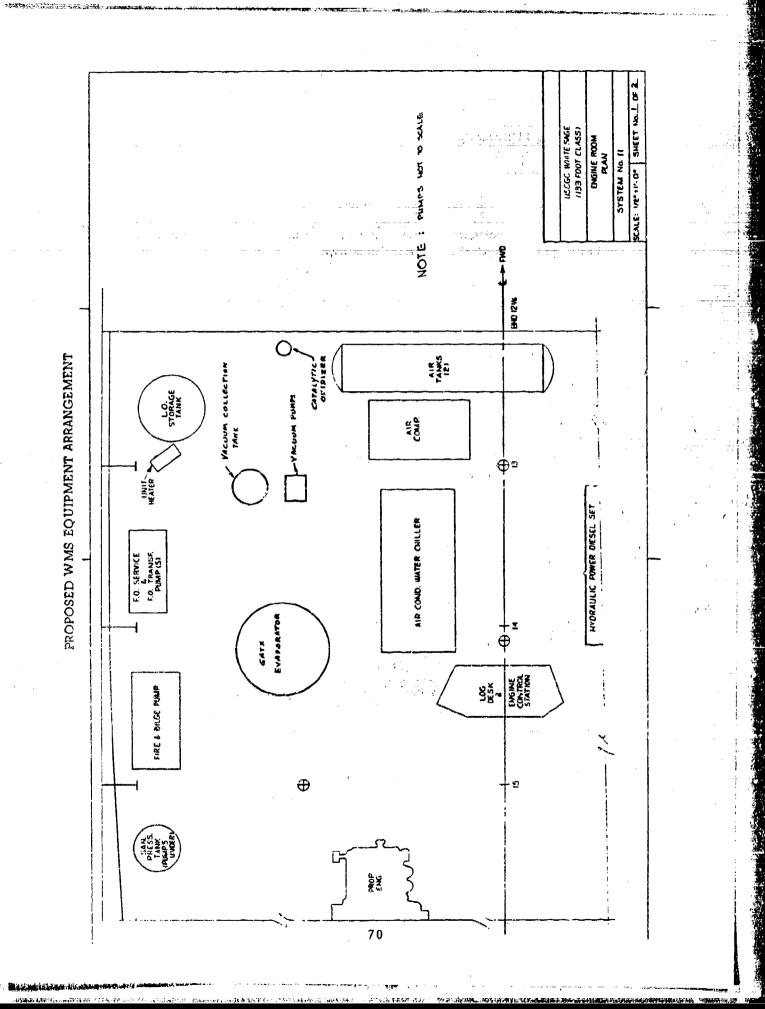
Vessel: WHITE SAGE (133')

System No. 11 (Cont'd)

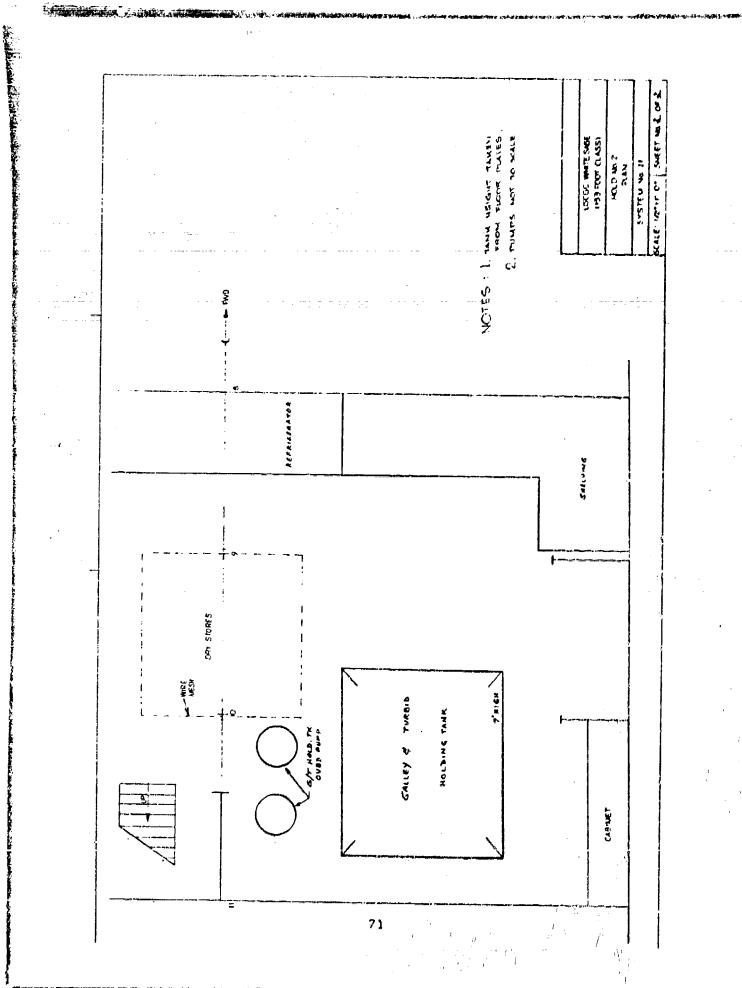
Drainage would be as follows:

(a) Sewage would be collected in the Vacuum Collection Tank (VCT) and transferred to the evaporator.

(b) The pumps forming a part of the VCT assembly would discharge the sewage overboard or pierside via the existing pipe tunnel passing through the lower part of the Port Fuel Oil Tank to the existing connections in Hold No. 2.


(c) Sludge from the evaporator would be pumped overboard/ pierside by its own pump via the same route as for the VCT.

(d) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/Turbid Holding Tank in Hold No. 2 via a new pipe tunnel through the Port Fuel Oil Tank similar to the existing one, but located through the upper part of the tank.


(e) Drain from the drinking fountain on the Main Deck, Frame 14, to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tauk.

(f) Remaining Galley/Turbid drains would gravitate overboard and to the Holding Tank in Hold No. 2 via the new pipe tunnel indicated above. The tank discharge pumps would be capable of discharging the tank contents overboard and to pierside.

To accommodate the equipment in Hold No. 2, there may be minor modifications required to the shelving on the starboard side (along the shell of the vessel) and the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10).

1. J. J.

Contraction and a second science of the

"Men er førsteralakset fålt der pletterelter, som av skålt skål dena sålt skål det at skolardet skolo.

NASS CONTRACTOR OF MARY

and the second second

Vescel WHITE SAGE (133')

WMS No. 11

/1:54	Installation Cost Element	Unít	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pij	ping ⁽¹⁾	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2)	5,760
Τ'n	nk Stool ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4)	1,947
Го	undations	Pounds	\$.92/1b. (Materials and Labor)	(⁵) 2,340	2,153
	nctric Ibles	Foot	\$ 2.00/1"L. (Motorials and Labor)	200	400
In MG CO	scallengous stallations (pumps, ptors, skid-mounted mponents, otc.)	Man- Hours	\$15.00/MH (Iabur)	20	300
de bu	coss Cuts (in hull, ck plating or Ikhaad to provide ssageway)	1'001	\$ 1,00/Гс. (Глбог)	\$1)	60
W	olding	Foot	\$ 6.00/I't. (Materials and Labor)	U U	480
41	Cutting	Кощь	\$30.00/11, (4 (Labor)	25	750
Sterrals	Othur (nitece))onsous tiandling)	Mon- Houre	\$15.00/ <u>M11</u> (Lalor)	25	375
	Total Installation Cost (6)				

(1) Carples -the hel serviced.

(2) Entimete inclusion a factor of 60% added to allow for valves, flatgere. Atdage, take down joins, etc.,

(1) the quarter links place any rod,

(4) Entimate the line was a factor of 60% added to allow the required structural reffering by proper support.

(b) fintmand up the bests of 11 f of the weight which has to be supported,

(6) Bound on All appelling overhing into of \$4 K. An.

DISCUSSION OF INSTALLATION BASED ON SHIPCHECKS

Vessel: WHITE SAGE (133')

WMS No. 12 JERED Reduced Volume Flush Vacuum Collection/Holding Tank for Concentrated Black Water/Grumman Flow Through System with Sludge Holding Tank for Gray Water

	Required	Approximate Dimensions (L x W x H)
Galley/Turbid Influent Surge		
Tank	322 gal. (43 cu. ft.)	3'-6" dia. x 5' H
Sludge Holding Tank	172 gel. (23 cu. it.)	2'-6" x 2'-6" x 4'
Sewage Vacuum Collection		
Tank	30 gal. (4.4 cu. ft.)	
Sewage Holding Tank	200 gal. (27 cu. ft.)	3" x 3" x 3'
Grumman Unit without Incinerator	One (1)	
Sewage Holding Tank Over- board Pumps	Two (2)	
Sludge Holding Tank Transfer Pump	One (1)	
Influent Surge Tank Transfer Pump	Onc (1)	
Influent Surge Tank Pump	One (1)	

Discussion

The system is considered to be a viable candidate.

A fresh water sanitary flushing system will be required.

The components would be located as follows:

(a) The Galley/Turbid Influent Surge Tank and its pumps would be knowled in the Engine Room, port side, in place of the existing collection cank.

(b) The Vacuum Collection Tank and pumps would be located aft of the G/T Holding Tank.

Vessel: WHITE SAGE (133')

System No. 12 (Cont'd)

(c) The Sewage Holding Tank would be located aft of the VCT. The tank overboard pumps would be located forward and inboard of the Sewage Holding Tank.

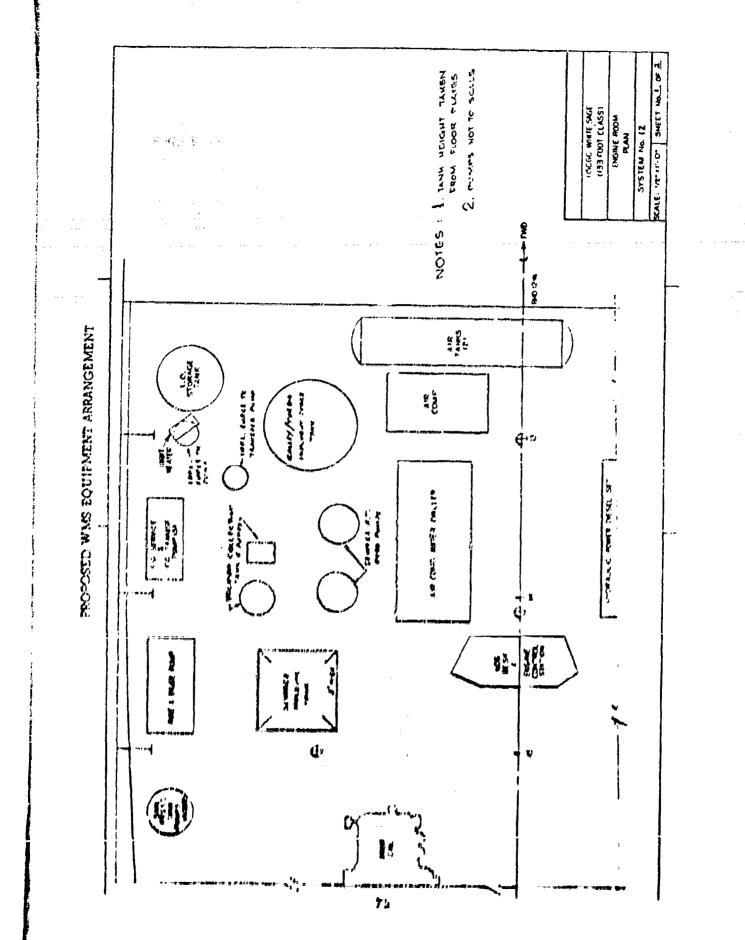
(d) The existing 25 gallon Galley Retention Tank located in the starboard aft corner of the Engine Room would be retained. The tank has a built-in liquid level controlled discharge pump.

(e) The Grumman MSD, Sludge Holding Tank and its transfer pump would be located in Hold No. 2 in place of the existing retention tank.

Drainage would be as follows:

(a) Sewage would be collected in the Vacuum Collection Tank and transferred to the Sewage Holding Tank which would be pumped overboard or to piezside by the overboard pumps via the existing pipe tunnel through the Port Fuel Oil Tank to Hold No. 2 and then overboard using the existing connections.

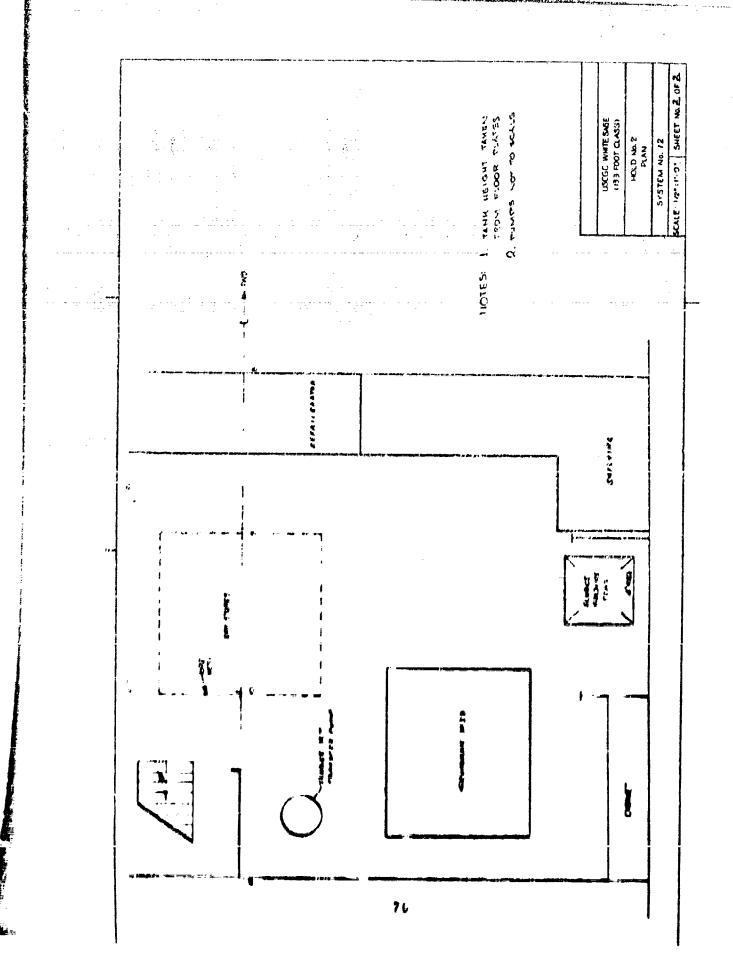
(b) The 25 gallon Galley Retention Tank would discharge to the G/T Influent Surge Tank. The remaining G/T drains would gravitate to the tank. All gray water would also be capable of being discharged or gravitated overboard.


(c) Drains from the drinking fountain on the Main Deck, Frame 14, would have to be re-routed to the 25 galion retention tank.

(d) The Surge Tank Transfer Pump would pump from the tank to the Sewage Holding Tank for discharge overboard or to pierside.

(e) The Surge Tank Pump would discharge to the Grumman Feed Tank in Hold No. 2 via the aforementioned existing pipe tunnel.

(f) The Sludge Holding Tank would be pumped back to the Sewage Holding Fank for off-loading via the aforementioned existing pipe tunnel.


To accommodate the equipment in Hold No. 2 the shelving along the starboard side would require modification as well as the wire mesh dry stores enclosure on the ship's centerline.

مدهانية من است 2 حمارية أن معتقفة تواقع من من عمر المسطولية التركيمية والتركيمية والتركيم والتركيم والتركيم

مالغا والمالية والمستحدث

ىسىغۇرە دەۋىيە بىرىدە بىرىكى يەيرىدۇكىمىغۇ 19**8 دىلەرۋە**

it water that the second states

- ,

Vessel WHITE SAGE (133')

WMS No. 12

W. MOLDAN, N. BALAN

,

「いいやいいない」というという

ことにとれていいないないないで、 たいていたいで、ころのちょうちょう

1000	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pij	ping ⁽¹⁾	Pourvis	\$ 4.50/Lb. (Materials and Labor)	(2)	5,175
Ta	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 2, 410	1,326
Po	undations	Founds	© .92/1b. (Materials and labor)	(ð) 1,235	1,137
Çŧ	octric bjos	Feat	S 2.00/Ft. (Motorials and Labor)	- 325	650
T.1. mc	scalianeous stallations (pumps, storn, skid-mounted mponents, etc.)	Man- Hourg	\$15.00/MII (IAbor)	40	¢ 0ŋ
de bu	cess Cuts (in hu)), ok plating or ikhead to provide seegeway)	Fant	\$ 1.00/1%. (Indor)	49	4.D
W	olding	Feet	8 6.00/Pt. (Materials and Labor)	¥Ú	540
ra is	Čutting	flour /	\$46.007Ht. ⁽⁴⁾ (LADar)	15	75 ()
ROCT	Other (miscollaneous handling)	Mari- Hourt	616.00/MH (TAbal)	25	375
	Totol Installation Cost (5)				

()) Capper-Liebel admined.

(P) technics factures a factor of Dirs added to allow for valver, flanger, fitting, take down fating, etc.

(2) this squarter lines plate accurate.

(4) Valmana ranuados a fautor of 80% added to allow for required errorburd of floring he jurgest payment,

• • •

(a) Emiriand us the base of 10% of the widght which has to be supported.

(9) David ou an anytuod sutting rate of \$9 ft, fly,

1.

AL B. Ji.

DISCUSSION OF INSTALLATION BASED ON SHIPCHECKS

Vessel: WHITE SAGE (133')

WMS No. 13 JERED Reduced Volume Flush Vacuum Collection/Grumman Flow Through System for Gray Water/Incinerator for both Concentrated Black Water and Gray Water Sludge

·····		Required	Approximate Dimensions (L x W	<u>х H)</u>
	Gallcy/Turbid Surge Tank Vacuum Collection Tank Fucl Oil Day Tank	323 gal. (43 cu.ft.) 30 gal. (4.4 cu. ft.) 40 gal. (5.3 cu. ft.)	3'-6" dia. x 5' 16" dia. x 38" 2' x 2' x 1'-6"	H
	Grumman Unit with Incinerator	Onc (1) with Onc (1) Thiokol Incl	incrator	
I	Galley/Turbid Surge Tank Overboard Pump	Onc (1)		· · ,
:	G/T Surge Tank Pump	One (1)		

Discussion

The system is a viable candidate with certain considerations,

A fresh water sanitary flushing system would be required,

The componenets would be located as followr:

(a) The Galley/Turbid Surge Fank would be located in the Engine Reom, Fort aide, in place of the existing collection tank. The tank averboard pumps would be fined outboard of the tank.

(b) The Vacuum Collection Tank and its pumps would be Incated just aft of the G/T Surge Tank.

78

(c) The existing 25 gallon Gulley Retention Track located in the aft Starbourd corner of the Regino Room would be retained. The tank has a built in Hund level controlled discharge pump.

Vessel: WHITE SAGE (133')

System No. 13 (Cont'd)

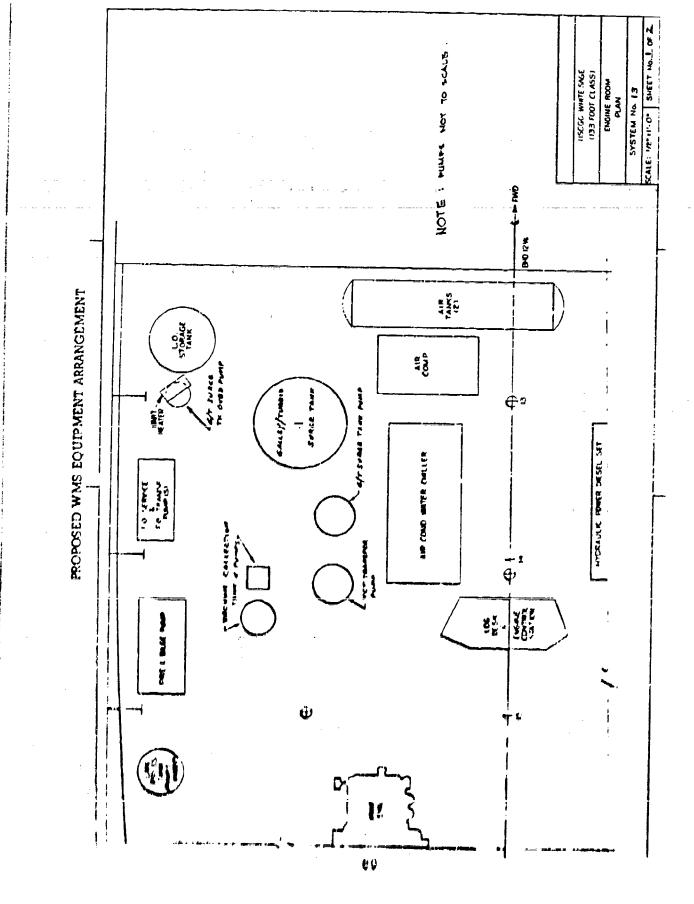
(c) The Grumman MSD with the incinerator would be located on the Starboard side of Hold No. 2 in place of the existing retention tank.

(e) In view of the arrangement of the vessel as described in the discussion of existing conditions at the beginning of this section, the incinerator stack run to the weather seems to be severely limited. The only apparent solution is to run it up through the Main Deck alongside the port or starboard sheer leg of the cargo boom tripod support structure. The structure legs begin near the overhead in Hold No. 2. Care would have to be exercised due to tight house access arrangements on the Main Deck and the navigational and operational clearances needed.

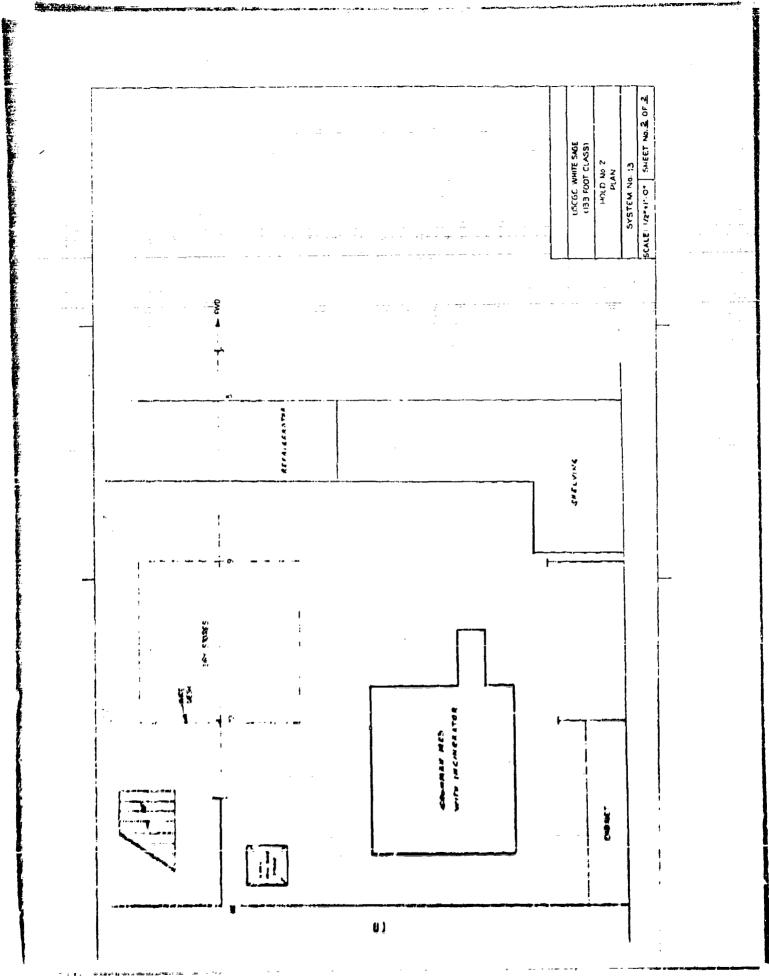
Drainage would be as follows:

(a) Sewage would be collected in the Vacuum Collecting Tank for cransfer to the Grumman Sludge Feed Tank or to overboard and pierside. Piping from the VCT pumps would pass into Hold No. 2 via the existing pipe tunnel through the lower part of the Port Fuel Oil Tank. The existing overboard and pierside connections would be re-used.

(b) The existing 25 gallon Galley Retention Tank would discharge into the G/T Influent Surge Tank. Remaining G/T drains would gravitate to the surge tank.


(c) Drain from the drinking fountain on the Main Deck, Frame 14, would have to be re-routed to the 25 galion retention tank.

(d) The G/T Surge Tank Pump would discharge to the Grumman feed tank via the aforementioned pipe tunnel to Hold No. 2.


The C/T Surge Tank Overboard Pump would discharge via the same pipe tunnel to Hold No. 2 and then to the existing overboard and pierside connections.

I) accommodate the equipment in Hold Mo. 2, the shelving along the starboard shell will have to be modified and the ship's stores wire mesh enclosure on the centerline moved to port.

Due to the incinerator installation additional fire protection will have to be provided and the ventilation system for Hold No. 2 will have to be modified.

at and to be able to a second to the second of the

Vessel WHITE SAGE (133')

WMS No. 13

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Piŗ	ping (1)	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2) 2,130	9,585
Ta	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 1,255	691
Fo	undations	Pounds	\$.92/Lb. (Materials and Labor)	(5) 950	874
	ectric bles	Feet	\$ 2.00/Ft. (Materials and Labor)	200	400
Ins mc co	scellaneous stallations (pumps, otors, skid-mounted mconents, etc.)	Man- Hours	\$15.00/MH (Labor)	25	375
de bu	cess Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)	50	50
w	elding	Feet	\$ 6.00/Ft. (Materials and Labor)	90	540
als	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	750
Removals	Other (miscellaneous handling)	Man Hours	\$15.00/MH (Labor)	25	375
Total Installation Cost (\$)				13,640	

(1) Copper-mickel assumed,

(2) Estimate includer a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(9) One-quarter inch place assumed,

(4) Betimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported.

(6) Based on an assumed outting rate of 50 ft. Au.

1.1

A DEPARTMENT

DISCUSSION OF INSTALLATION BASED ON SHIPCHECKS

Vessel: WHITE SAGE (133')

WMS No. 14 GATX Reduced Volume Flush M/T Pump Collection/Holding Tank for Concentrated Black Water/Holding Tank for Gray Water

Approximate Required Dimensions (L x W x H) Sewage Holding Tank 232 gal. (31 cu. ft.) 2' x 3' x 5'-6" Galley/Turbid Holding Tank 2063 gal. (276 cu. ft.) 7'x 6'x 7' Sewage Holding Tank Discharge Pumps Two (2) Galley Turbid Holding Tank Discharge Pumps Two (2) Macerator/Transfer Pumps

lacussion

The system is considered to be a viable candidate.

Three (3)

A fresh water sanitary flushing system would be required.

The components would be located as follows:

(a) Sewage Holding Tank in the Engine Room, Port Side, Frame 14, just aft of location of existing collecting tank.

(b) Sewage Holding Tank Discharge Pumps (overboard/pierside) just fwd of the tank.

(c) Galley/Turbid Holding Tank in Hold No. 2, Starboard side, in the location of the existing retention tank,

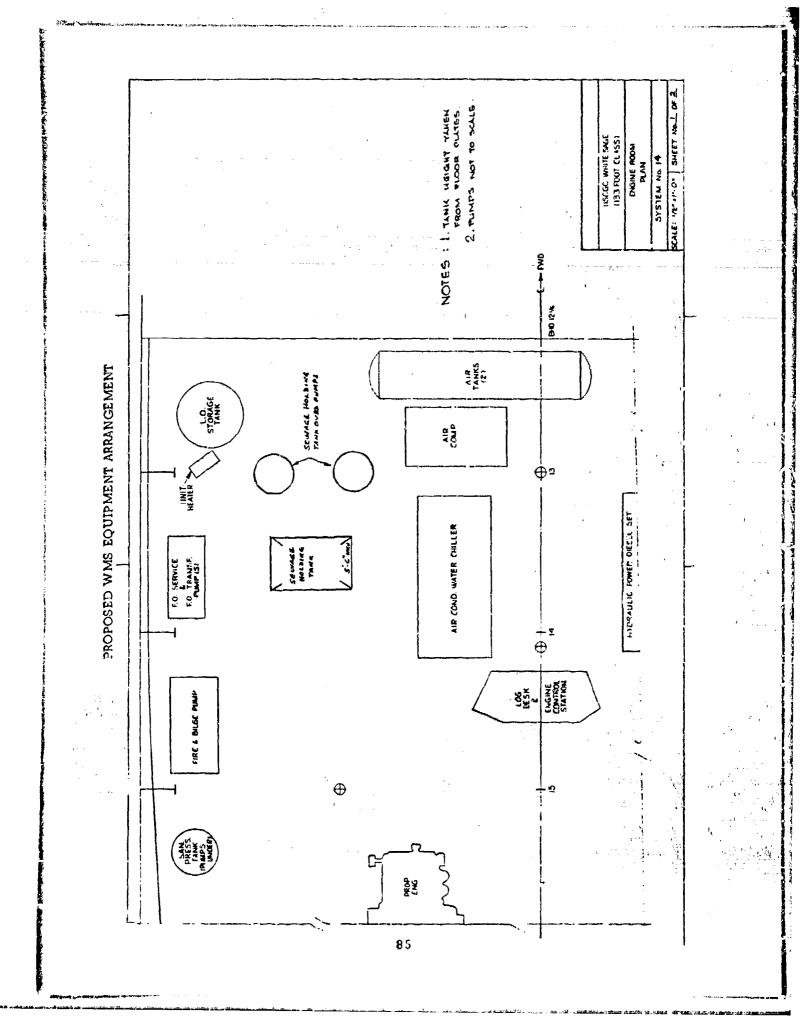
(d) Galley/Turbid Holding Tank Discharge Pumps (overboard/ pierside) just forward of the tank,

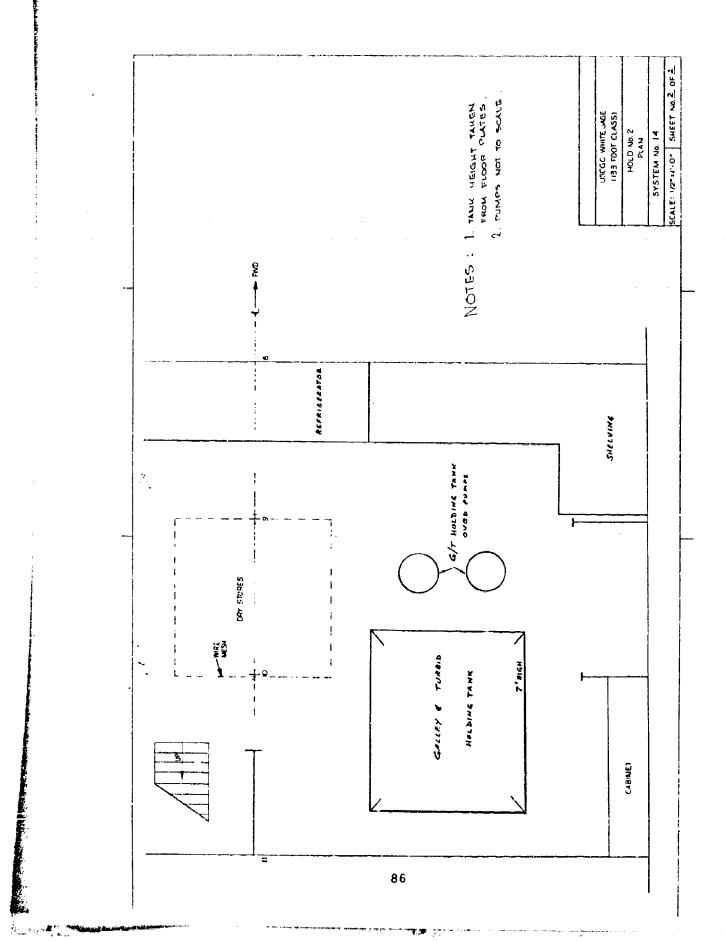
Vessel: WHITE SAGE (133')

System No. 14 (Cont'd)

(e) The existing 25 gallon Galley Retention Tank located on the operating level of the Engine Room, in the aft Starboard corner, would be retained. The tank has a built-in liquid level controlled discharge pump.

Drainage would be as follows:


(a) Sewage would be pumped to the Sewage Holding Tank by macerator/transfer pumps. The tank discharge pump's discharge line would be led to Hold N_0 . 2 via the existing pipe tunnel passing through the lower inboard side of the Port Fuel Oil Tank. From there it would run to the existing overboard shell connection and to the existing weather deck discharge connections to pierside, port and starboard.


(b) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/Turbid Holding Tank in Hold No. 2 via a new pipe tunnel through the Port Fuel Oil Tank similar to the existing one, but located through the upper part of the tank.

(c) Drains from the drinking fountain on the Main Deck, Frame 14 to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tank.

(d) Remaining Galley/Turbid drains would gravitate overboard and to the Holding Tank in Hold No. 2 via the new pipe tunnel indicated above. The tank discharge pump would be capable of discharging the tank contents overboard and to pierside.

To accommodate the equipment in Hold No. 2, there may be minor modifications required to the shelving on the starboard side (along the shell of the vessel) and the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10).

1997 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 - 1998 -

IN DEPARTMENT OF THE PRODUCTION OF THE SECTION OF THE REPORT OF THE REPORT OF THE DEPARTMENT OF THE PRODUCT OF T

Vessel WHITE SAGE (133')

WMS No. 14

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pi	ping(1)	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2)	4,500
Ta	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 4, 430	2,437
Fc	oundations	Pounds	\$.92/Lb. (Materials and Labor)	(5) 2,475	2,277
	ectric ables	Feet	\$ 2.00/Ft. (Materials and Labor)	250	500
In mo co	iscellaneous stallations (pumps, ptors, skid-mounted pmponents, etc.)	Man- Hours	\$15.00/MH (Labor)	35	525
de bu	cess Cuts (in hull, ick plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)	50	50
w	elding	Feet	<pre>\$ 6.00/Ft. (Materials and Labor)</pre>	95	570
als	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	7 50
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
	Total Installation Cost (\$)				

(1) Copper-nickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plate assumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported.

(6) Based on an assumed cutting rate of 50 ft. /hr.

DISCUSSION OF INSTALLATION BASED ON SHIPCHECKS

Vessel: WHITE SAGE (133')

WMS No. 15 GATX Reduced Volume Flush M/T Pump Collection/Incinerator for Concentrated Black Water/Holding Tank for Gray Water

	Required	Approximate Dimensions (L x W x H)
Incinerator Feed Tank Galley/Turbid Holding Tank	50 gal. (6.7 cu. ft.) 2063 gal. (276 cu. ft.)	2'-6'' x 1' x 2'-7'' 7' x 6' x 7'
Fuel Oil Day Tank	22 gal. (3 cu. ft.)	1'-6" x 1'-6" x 1'-6"
Incinerator	One (1) Thiokol	
Incinerator Feed Fump	One (1)	
Incinerator Feed Tank		
Overboard Pump	One (1)	
Galley/Turbid Holding Tank		
Overboard Pump	Two (2)	

Discussion

Macerator/Transfer Pumps

The system is considered to be a viable candidate.

Three (3)

A fresh water sanitary flushing system would be required.

The components ould be located as follows:

(a) The Incinerator Feed Tank and feed pump would be located in the Engine Room, port side, where the existing collection tank is fitted.

(b) The incinerator and blower would be located aft of the Incinerator Feed Tank.

The fuel oil day tank would be located on the Engine Room forward bulkhead near the feed tank.

The incinerator stack would go up the ship's stack alongside the diesel engine exhausts.

Vessel: WHITE SAGE (133)

System No. 15 (Cont'd)

(c) The existing 25 gallon Galley Retention Tank located in the starboard aft corner of the Engine Room would be retained. The tank has a built-in liquid level controlled discharge pump.

(d) The Galley/Turbid Holding Tank and its discharge pumps would be located in Hold No. 2 in place of the existing retention tank.

Drainage would be as follows:

(a) Sewage would be pumped by the macerator/transfer pumps to the Incinerator Feed Tank and fed to the incinerator.

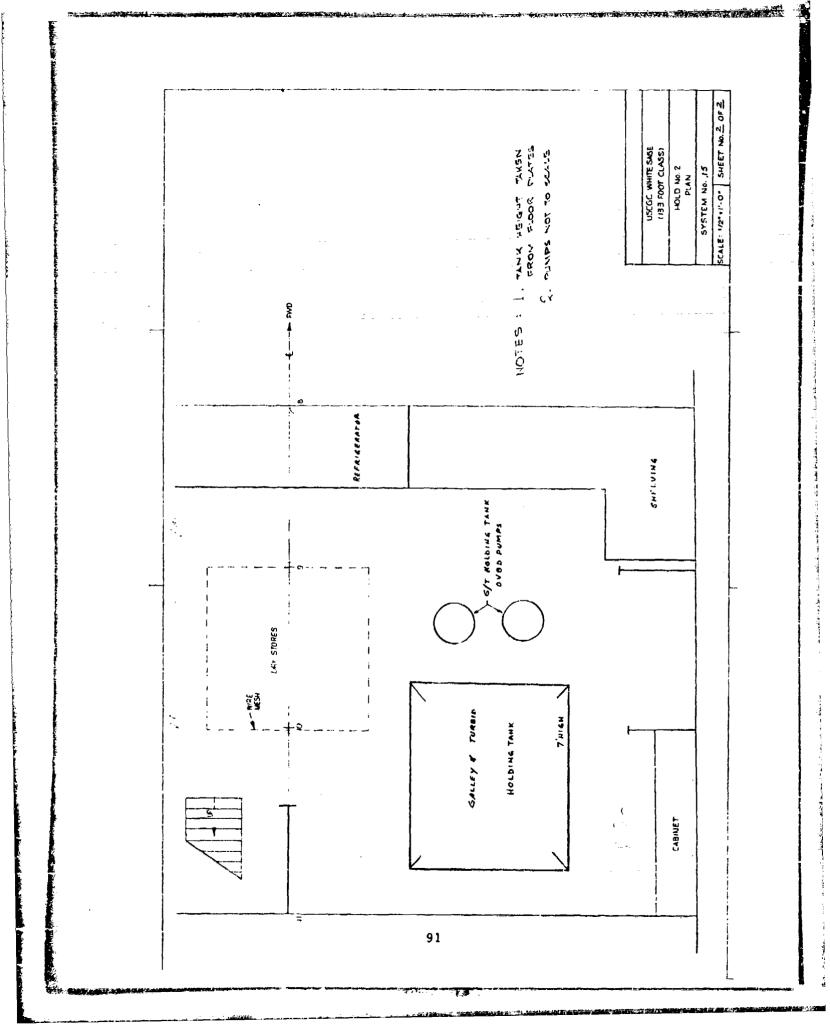
(b) The Incinerator Feed Tank would be pumped overboard and pierside by its overboard pump via the existing pipe tunnel through the lower part of the Port Fuel Oil Tank to the existing connections in Hold No. 2.

(c) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/ Turbid Holding Tank in Hold No. 2 via a new pipe tunnel through the Port Fuel Oil Tank similar to the existing one, but located through the upper part of the tank.

(d) Drains from the drinking fountain on the Main Deck, Frame 14, to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tank.

(e) Remaining Galley/Turbid drains would gravitate overboard and to the Holding Tank in Hold No. 2 via the new pipe tunnel indicated above. The tank discharge pump would be capable of discharging the tank contents overboard and to pierside.

To accommodate the equipment in Hold No. 2, there may be minor modifications required to the shelving on the starboard side (along the shell of the vessel) and the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10).


2. PUMPS NOT TO SCALE SCALE: I'M" +I'-O" SHEET NO L OF 2 NOTES : L. TANK HIGHT TAKEN LISCIGC WHITE SAGE ENGINE ROOM SYSTEM No. 15 24 B+0 12 % Ţ No. No. AIR TANKS (2) FEED TANK FRED PUMP STORAGE COMP FRED TANK FRED TANK OVER PURP ¢₽ HEATER Lincinedand Browen HYDRAULIC POWER DESEL SET AIR COND. WATER CHILLER F.O. SERVICE E.O. TRANSE PLANE +⁼ ₽ THE CHBRATHAN LOG DESK RESK CONTROL FIRE & BNGE PUMP 4 Ð 2 SAN TANKSS TANKSS С Prop No 90

(1) 小学生にある「「「「」」

Short of the second of the second second

States of the state of the state of the

PROPOSED W MS EQUIPMENT ARRANGEMENT

Vessel WHITE SAGE (133')

WMS No. 15

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Piping ⁽¹⁾		Pounds	<pre>\$ 4.50/Lb. (Materials and Labor)</pre>	(2) 1,875	8,438
Та	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 4,035	2,220
Fo	undations	Pounds	\$.92/Lb. (Materials and Labor)	(5) 2,390	2,199
Electric Cables		Feet	\$ 2.00/Ft. (Materials and Labor)	300	600
In: mc CO	scellaneous stallations (pumps, stors, skid-mounted mponents, etc.)	Man- Hours	\$15.00/MH (Labor)	25	3 75
de bu	cess Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)	50	50
w	elding	Feet	\$ 6.00/Ft. (Materials and Labor)	130	780
Removals	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	750
	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	3 75
	Total Installation Cost (\$)				

(1) Copper-nickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plate assumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported.

(6) Based on an assumed cutting rate of 50 ft. /hr.

92

DISCUSSION OF INSTALLATION BASED ON SHIPCHECKS

Vessel: WHITE SAGE (133')

WMS No. 16 GATX Reduced Volume Flush M/T Pump Collection/GATX Evaporator for Concentrated Black Water/Holding Tank for Gray Water

	Required	Approximate Dimensions (L x W x H)
Galley/Turbid Holding Tank	2063 gal. (276 cu.ft.)	
Evaporator (GATX) Catalytic Oxidizer	One (1) - 80 gal, One (1)	
Galley/Turbid Holding Tank Overboard Pumps	Two (2)	
Macerator/Transfer Pumps	Three (3)	

Discussion

The system is considered to be a viable candidate.

A fresh water sanitary flushing system would be required.

The equipment would be located as follows:

(a) The GATX Evaporator and its catalytic oxidizer would be located in the Engine Room, Port side, in place of the existing collecting tank.

(b) The existing 25 gallon Galley Retention Tank located in the starboard aft corner of the Engine Room would be retained. The tank has a built-in liquid level controlled discharge pump.

(c) The Galley/Turbid Holding Tank would be located in Hold No. 2 in place of the existing retention tank. Its overboard pumps would be located inboard of the tank.

Drainage would be as follows:

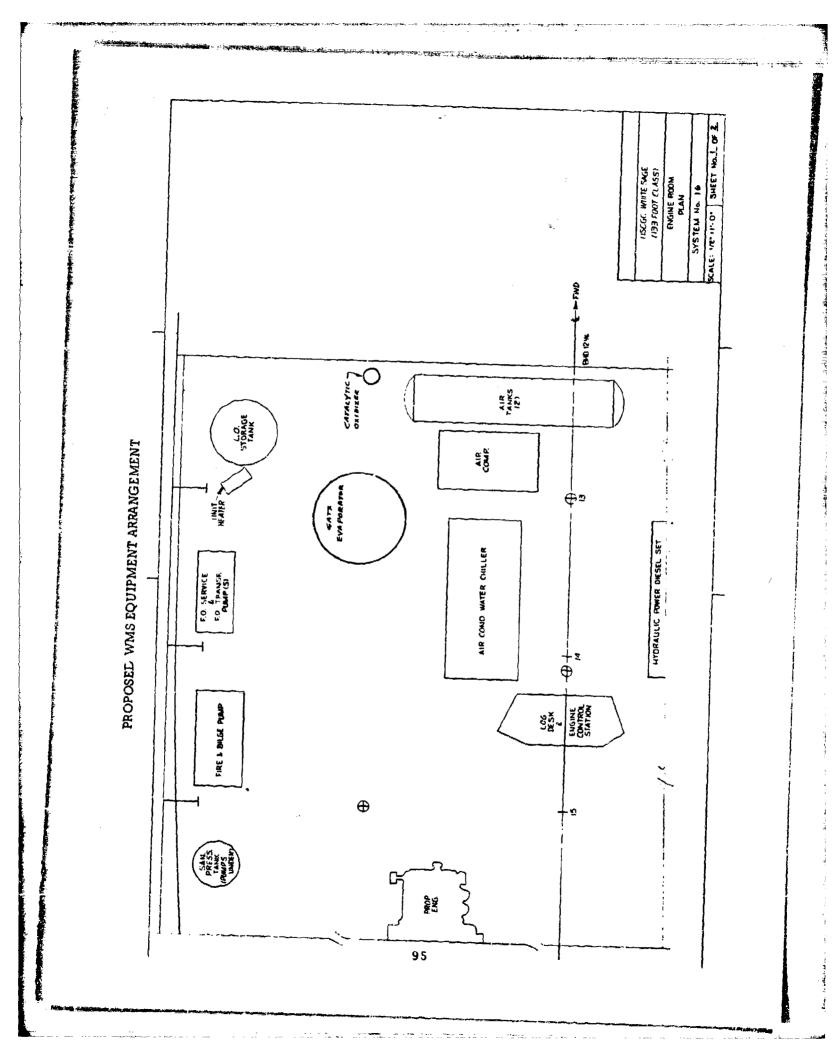
(a) Sewage would be collected and discharged to the evaporator by macerator/transfer pumps.

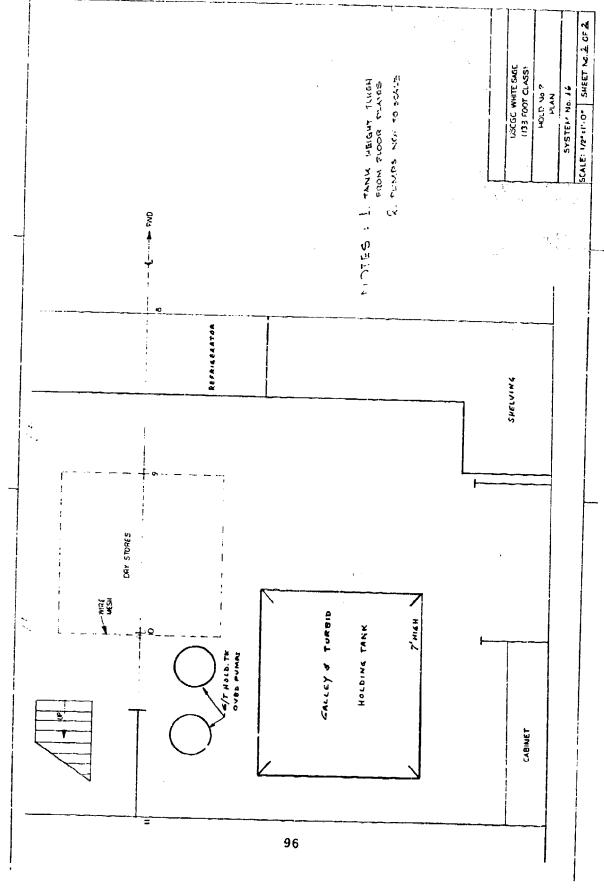
Vessel: WHITE SAGE (133')

System No. 16 (Cont'd)

(b) The macerator/transfer pumps would also be capable of discharging directly overboard or to pierside via existing connections.

(c) Sludge from the evaporator would be pumped overboard by the evaporator's sludge pump.


(d) The overboard and pierside discharge piping would pass from the Engine Room to Hold No. 2 via the existing pipe tunnel in the lower part of the Port Fuel Oil Tank.


(c) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/Turbid Holding Tank in Hold No. 2 via a new pipe tunnel through the Port Fuel Oil Tank similar to the existing one, but located through the upper part of the tank.

(f) Drains from the drinking fountain on the Main Deck, Frame 14, to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tank.

(g) Remaining Galley/Turbid drains would gravitate overboard and to the Holding Tank in Hold No. 2 via the new pipe tunnel indicated above. The tank discharge pump would be capable of discharging the tank contents overboard and to pierside.

To accommodate the equipment in Hold No. 2, there may be minor modifications required to the shelving on the starboard side (along the shell of the vessel) and the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10).

of the second second

日本シャー

1.1.1.1

adds and the second

N. Salasta

「「「「「「「「「」」」」

Vessel WHITE SAGE (133')

WMS Nc. 16

「

Installation Cost Element		Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Piping ⁽¹⁾		Pounds	<pre>\$ 4.50/Lb. (Materials and Labor)</pre>	(2)	4,500
Tank Steel ⁽³⁾		Pounds	\$.55/Lb. (Materials and Labor)	(4) 3,540	1,947
Foundations		Pounds	\$.92/Lb. (Materials and Labor)	(5) 2,305	2,121
Electric Cables		Feet	\$ 2.00/Ft. (Materials and Labor)	200	400
Miscellaneous Installations (pumps, motors, skid-mounted components, etc.)		Man- Hours	\$15.00/MH (Labor)	20	300
Access Cuts (in hull, deck plating or bulkhead to provide passageway)		Feet	\$ 1.00/Ft. (Labor)	50	50
Welding		Feet	\$ 6.00/Ft. (Materials and Labor)	80	480
Removals	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	750
	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
	Total Installation Cost (\$)				

(1) Copper-nickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plate assumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported.

(6) Based on an assumed cutting rate of 50 ft. /hr.

DISCUSSION OF INSTALLATION BASED ON SHIPCHECKS

Vessel: WHITE SAGE (133')

WMS No. 17 GATX Reduced Volume Flush M/T Pump Collection/Holding Tank for Concentrated Black Water/Grumman Flow Through System with Sludge Holding Tank for Gray Water

	Required	Approximate Dimensions ($L \times W \times H$)
Sewage Holding Tank Galley/Turbid Influent Surge Tank Siudge Holding Tank	232 gal. (31 cu.ft.) 323 gal. (43 cu.ft.) 172 gal. (23 cu.ft.)	2'-6" x 2'-6" x 5' 3' x 3' x 5' 2'-6" x 2'-6" x 4'
Grumman Unit without Incinerator	One (1)	
Sewage Holding Tank Overboard Pumps	Two (2)	
Sludge Tank Transfer Pump	One (1)	· · · · · · · · · · · · · · · · · · ·
Influent Surge Tank Pumps	Two (2)	, ,
Macerator/Transfer Pumps	Three (3)	

Discussion

The system is considered to be a viable candidate.

A fresh water sanitary flushing system will be required.

The existing 25 gallon Calley Retention Tank in the starboard corner of the Engine Room would be retained. The tank has a built-in level controlled discharge pump.

Components would be located in Hold No. 2 as follows:

(a) The Sewage Holding Tank would be just forward of Bhd No. 11, to starboard of the ship's centerline.

(b) The Galley/Turbid Influent Surge Tank would be in place of the existing retention tank.

System No. 17 (Cont'd)

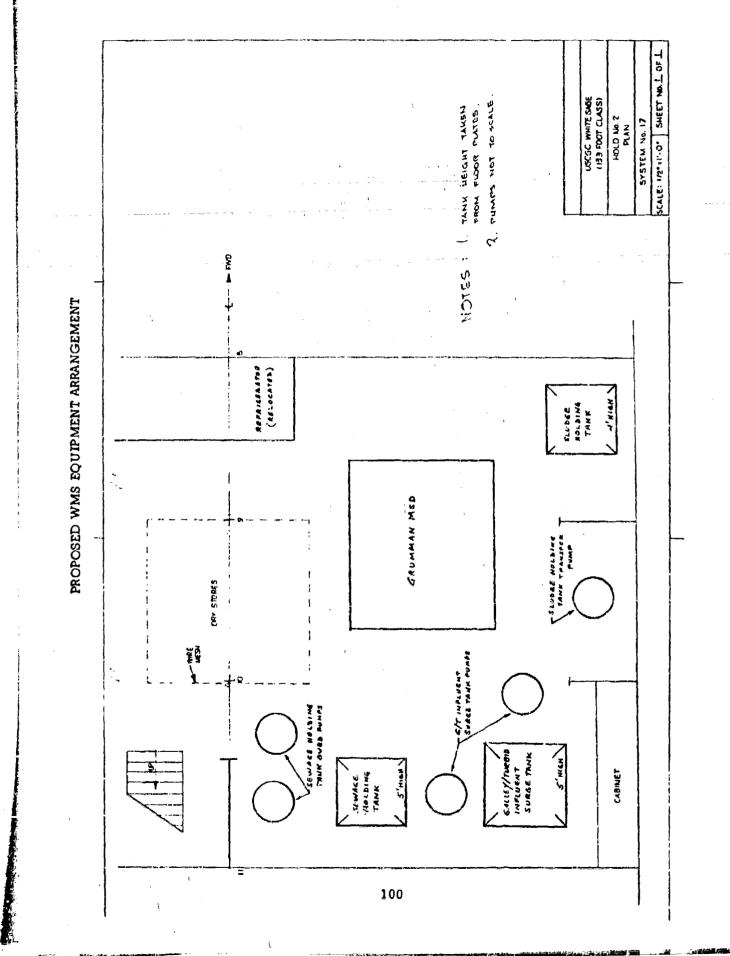
(c) The Grumman MSD and Sludge Holding Tank would be forward of the Galley/Turbid Influent Surge Tank.

(d) Independent pumps would be grouped near the equipment

served,

Drainage would be as follows:

(a) Sewage would be pumped by the macerator/transfer pumps to the Sewage Holding Tank in Hold No. 2. The sewage main would be led to Hold No. 2 via a new pipe tunnel (similar to the existing) passing through the upper inboard side of the Port Fuel Oil Tank. From there it would run to the existing overboard shell connection and to the existing weather deck dischargo connection to pierside, port and starboard.


(b) Existing galley sink and deck drains would continue to drain to the 25 gallon retention tank from which they would be pumped to the Galley/ Turbid Influent Surge Tank Hold No. 2 via the new pipe tunnel mentioned above.

(c) drains from the drinking fountain on the Main Deck Frame 14, to starboard of ship's centerline would have to be re-routed to drain into the existing 25 gallon retention tank.

(d) Remaining Galley/Turbid drains would gravitate overboard and to the Influent Surge Tank in Hold No. 2 via the new pipe tunnel indicated above. One tank transfer pump would discharge to the Sewage Holding Tank, the other would discharge to the Grumman Feed Tank.

(e) The Sludge Holding Tank Transfer Pump would discharge to the Sewage Holding Tank for discharge overboard and to pierside.

To accommodate the equipment in Hold No. 2, there may be minor modifications required to the shelving on the starboard side (along the shell of the vessel) and the wire mesh enclosure for the ship's dry stores on the centerline of the vessel (between Frames 9 and 10). The ship stores refrigerator will have to be moved slightly to port.

WMS INSTALLATION COST ESTIMATES

and a second state of the second s Second s

Vessel WHITE SAGE (133')

WMS No. 17

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pip	bing (1)	Pounds	\$ 4.50/Ib. (Materials and Labor)	(2)	5,378
Та	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 2,585	1,422
Fo	undations	Pounds	\$.92/Lb. (Materials and Labor)	(5) 1,280	1,178
	actric bles	Feet	\$ 2.00/Ft. (Materials and Labor)	3 75	750
In: mc co	scellaneous stallations (pumps, stors, skid-mounted mponents, etc.)	Man- Hours	\$15.00/MH (Labor)	40	600
de bu	cess Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)	35	35
w	elding	Feet	\$ 6.00/Ft. (Materials and Labor)	80	480
als	Cuiting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	750
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
	Tota	l Installa	stion Cost (\$)		10, 968

(1) Copper-nickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plate assumed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported,

(6) Based on an assumed cutting race of 50 ft. /hr.

DISCUSSION OF INSTALLATION BASED ON SHIPCHECKS

Vessel: WHITE SAGE (133')

WMS No. 18 GATX Reduced Volume Flush M/T Pump Collection/Grumman Flow Through System for Gray Water/Incincerator for both Concentrated Black Water and Gray Water Sludge

	Required	Approximate Dimensions (L x W x H)
Sewage Surge Tank Galley/Turbid Surge Tank Fuel Oil Day Tank	43 gal. (5.7 cu.ft.) 323 gal. (43 cu.ft.) 22 gal. (3 cu. ft.)	18" dia. x 48" H 3' x 3' x 5' 1'-6" x 1'-6" x 1'-6"
Grumman Unit with Incinerator	One (1) with One (1) Thiokol	Incinerator
Sewage Surge Tank Transfer Pump	One (1)	- 4 . '
Sewage Surge Tank Over- board Pump	One (1)	
Galley/Turbid Surge Tank P	ump One (1)	
Galley/Turbid Surge Tank Overboard Pump	One (1)	·····
Macerator/Transfer Pump	Three (3)	· · · · · · · · · · · · · · · · · · ·

Discussion

The system is a viable candidate with certain considerations.

A fresh water sanitary flushing system would be required,

The components would be located as follows:

(a) The Galley/Turbid Surge Tank and the Sewage Surge Tank would be located in the Engine Room, Port side, in place of the existing collecting tank. Their associated transfer and overboard pumps would be located aft of each tank.

System No. 18 (Cont'd)

CARDING THE STATE

(b) The existing 25 gallon Galley Retention Tank located in the aft Starboard corner of the Engine Room would be retained. The tank has a built-in liquid level controlled pump.

(c) The Grumman MSD with the incinerator would be located on the Starboard side of Hold No. 2 in place of the existing retention tank.

(d) In view of the arrangement of the vessel as described in the discussion of existing conditions at the beginning of this section, the incinerator stack run to the weather seems to be severely limited. The only apparent solution is to run it up through the Main Deck alongside the port or starboard sheer leg of the cargo boom tripod support structure. The structure legs begin near the overhead in Hold No. 2. Carge would have to be exercised due to tight house access arrangements on the Main Deck and the navigational and operational clearances needed.

Drainage would be as follows:

(a) Sewage would be collected and pumped to the Sewage Surge Tank by the macerator/transfer pumps. The transfer pump would discharge the tank contents to the Grumman Sludge Feed Tank. The overboard pump would discharge overboard and to pierside via the existing connections. Both discharge lines would go to Hold No. 2 via the existing pipe tunnel through the lower part of the Port Fuel Oil Tank.

(b) The existing 25 gallon Galley Retention Tank would discharge to the G/T influent Surge Tank. Remaining G/T drains would gravitate to the surge tank.

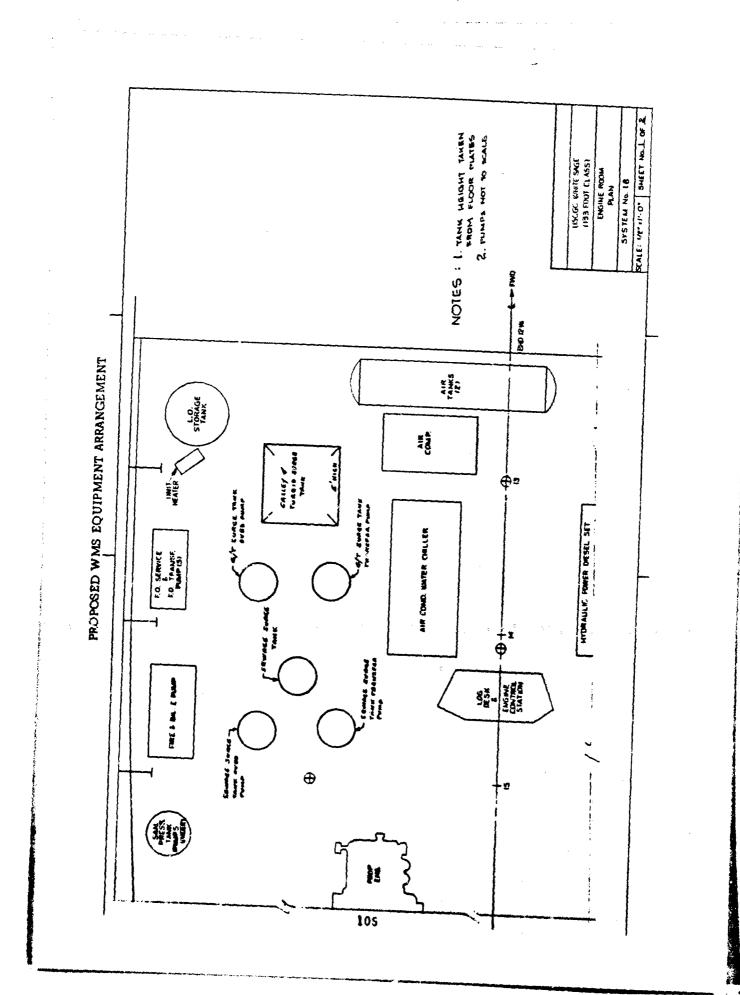
(c) Drains from the drinking fountain on the Main Deck, Frame 14, would have to be re-routed to the 25 gallon retention tank.

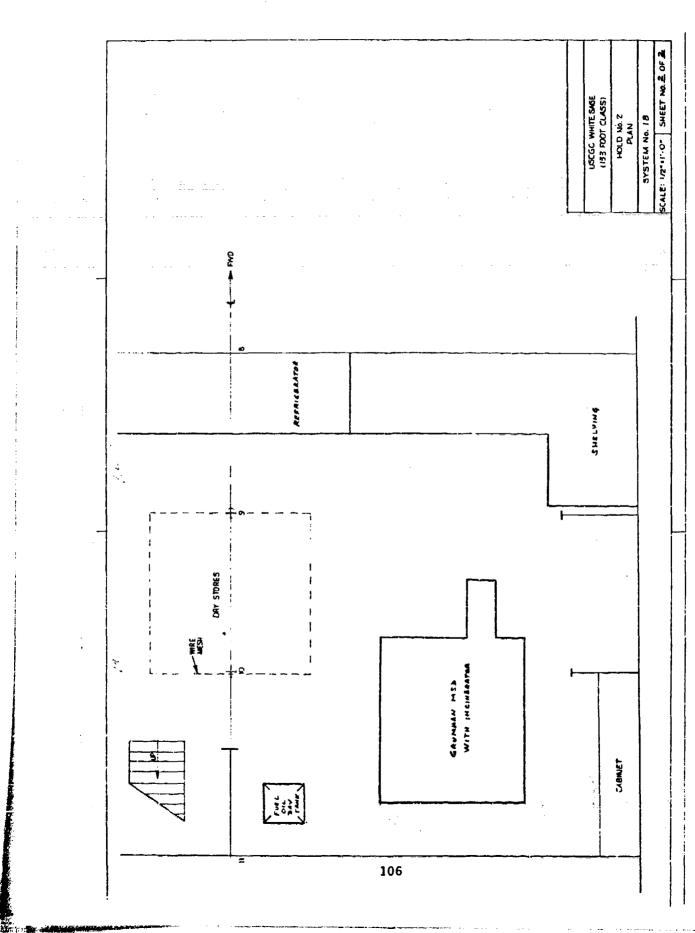
(d) The G/T Surge Tank Pump would discharge to the Grumman Feed Tank via the aforementioned pipe tunnel to Hold No. 2.

System No. 18 (Cont'd)

Stand Stand

The G/T Surge Tank Overboard Pump would discharge via the same pipe tunnel to Hold No. 2 and then to the existing overboard and pierside connections.


To accommodate the equipment in Hold No. 2, the shelving along the starboard shell will have to be modified and the ship's stores wire mesh enclosure on the centerline moved to port.


Due to the incinerator installation, additional fire protection will have to be provided and the ventilation system for Hold No. 2 will have to be modified.

i

104

1.20

「御酒町御田田」まです」にはたいいます。

WMS INSTALLATION COST ESTIMATES

ALC: NO WE WANT

10. 动脉、动脉、动脉、

Vessel WHITE SAGE (133')

WMS No. 18

11 - A.

	Installation Cost Element	Unit	Assumed Unit Cost	Quantity Required (estimated number of units)	Cost (\$)
Pir	ping ⁽¹⁾	Pounds	\$ 4.50/Lb. (Materials and Labor)	(2) 2,460	11,070
Та	nk Steel ⁽³⁾	Pounds	\$.55/Lb. (Materials and Labor)	(4) 1,540	847
Fo	undations	Pounds	\$.92/Lb. (Materials and Labor)	(5) 990	911
Ca	ectric bles	Feet	\$ 2.00/Ft. (Materials and Labor)	275	550
Ins mc	scellaneous stallations (pumps, tors, skid-mounted mponents, etc.)	Man- Hours	\$15.00/MH (Labor)	40	600
de bu	cess Cuts (in hull, ck plating or lkhead to provide ssageway)	Feet	\$ 1.00/Ft. (Labor)	50	50
We	əlding	Feet	\$ 6.00/Ft. (Materials and Labor)	80	480
als	Cutting	Hours	\$50.00/Hr. ⁽⁶⁾ (Labor)	15	7 50
Removals	Other (miscellaneous handling)	Man- Hours	\$15.00/MH (Labor)	25	375
	Tota	l Installa	ation Cost (\$)		15,633

(1) Copper-mickel assumed.

(2) Estimate includes a factor of 50% added to allow for valves, flanges, fittings, take-down joints, etc.

(3) One-quarter inch plate sammed.

(4) Estimate includes a factor of 30% added to allow for required structural stiffening for proper support.

(5) Estimated on the basis of 10% of the weight which has to be supported,

(6) Based on an assumed cutting rate of 50 ft. /hr.

107

Vessel WHITE SAGE (133')

Sheet 1 of 10

M/E I - ADAPTABILITY FOR SHIPBOARD INSTALLATION

	hact	M/E I - ADAPTABILITY FOR SHIPBOARD INSTALLATION																
Factor	Subtaction in the second	/				INS	STALL	ATIO	NCH	ARAC	TERI	STIC						
111	Requi (a) A (b) V	red bla Actual o VMS m	apacit arginal	y of Wi ly suita	MS equ ible for	als or e vessel or vessel	xceeds (has 95	require -99% o	id capa f requi	city for red cap	t vessel acity).	•						
wms #	1																	
Data	а	a	A	a	a	a	a	2	a	a	4	a	۵				۵	
112	(a) / (b) \	Required gray water handling capacity for vessel versus actual capacity of WMS (a) Actual capacity of WMS equals or exceeds required capacity for vessel. (b) WMS marginally suitable for vessel (has 95-99% of required capacity). (c) WMS capacity insufficient for vessel (less than 95% of required capacity). 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18																
₩MS #	1	2	3	4	5	6	7	8	9	10	11	-12	13	14	15	16	17	18
Data	a																	
	(a) 1 (b) 5 (c) 1	Extent of additional support systems or equipment required to accommodate WMS ⁽¹⁾ (a) No additional support systems or equipments required. (b) Some additional support systems or equipments required. (c) Many additional support systems or equipments required. (3) (1) Examples:. Firefighting system must be installed with incinerator Bilge alarm required if large tank is installed above bilge Compressor required on vessels that do not already have one Detectors of toxic or noxious gases should be installed with any system that, as an inherent design feature, uses such gases in processing wastes. (2) Need for support system/equipment does not significantly reduce WMS suitability for on-board installation. (3) Suitability of WMS for installation on vessel significantly reduced.																
WMS #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Data	b	Ь	Ь	Ь	b	Ь	b	Ь	b	Ь	Ь	b	Ь	Ь	b	Ъ	Ь	b
21	 Extent of fixture modifications required for WMS installation (2) No fixtures need modification or replacement. (b) Some fixtures need modification or replacement. (c) All commodes need replacement and modification of urinal-associated equipment (e.g., urinal discharge valves) is required. (d) All fixtures need replacement or modification (e.g., replacement or commodes and urinal flushometers). (e) All fixtures need replacement or modification and each fixture has additional hookup requirements associated with it. 																	
WMS #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Data					4				c	c	c	c	c	e	e	e	e	e

108

Vessel WHITE SAGE (133')

7

Sheet 2 of 10

I - ADAPTABILITY FOR SHIPBOARD INSTALLATION (Cont'd) M/È INSTALLATION CHARACTERISTIC 22 Extent of flush medium supply modifications required for WMS installation (a) Existing flush medium is used. (b) WMS requires conversion of flush medium to potable water. (c) WMS requires conversion of flush medium to recirculating non-aqueous medium. (d) WMS requires conversion of frush medium to salt water. (3)⁽¹⁾ Conversion to salt water requires pump re-sizing, tapping into the sea-chest and provision for its corrosive properties. For PAMLICO, salt water would be used if the drain system were converted to a standard flush system (C.G. supplied information). WMS # 16 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 18 17 Data с ь Ь а с a a a 2 а ь ь ь Ъ Ь b Ъ b Hookup requirements⁽¹⁾ for WMS Collection/Transport subsystem installation 231 (a) No additional hookup requirements beyond existing ones. (b) Requires piping for recirculation of flush medium (in existing gravity drain system). (c) Special and centralized Collection/Transport subsystem required. (d) Special and non-centralized Collection/Transport subsystem required (includes conversion from reduced flush vacuum collection to a standard gravity drain system, with or without recirculation). (1) Drain piping; electric cables connecting commode, M/T pump and control papel in GATX, but not in JERED, etc. ₩.º.1S # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 Data Ь ъ с đ đ đ d a a я c c c c Routing flexibility for drain piping modifications $^{(1)}$ associated with WMS Collection/Transport subsystem installation⁽²⁾ 232 (a) Routing is highly flexible.⁽³⁾ (b) Routing is moderately flexible, with some restrictions. (c) Routing is highly inflexible. ⁽¹⁾ Of the three relevant categories of routing of lines (piping, ventilation, electrical), piping is the most important for assessing use of WMS installation. (2) Notes: . With gravity drainage, lines must always slope downward and require venting. . Smaller size lines are inherently more flexible. . With the pump or vacuum Collection/Transport subsystem, sharp bends, rises and long runs can be accommodated in piping. (3) In all cases, WMS installation is to be considered from the point of view of mc diffications required to existing conditions. WAIS # 1 2 3 5 ጽ 8 9 10 11 12 18 13 14 15 16 17 Data а a а ۵ a b b ь ь Ь b b Ь ь b

arto, 1 (120)

167日年月1日,天子田王王帝国王人、田口曰李南

THE REPORT OF A DESCRIPTION OF A DESCRIP

Vessel WHITE SAGE (133')

Sheet 3 of 10

-1

	15ubbel	, șt		M/	Έ	I - AI	CAPTA	BILI	ry fo	R SH	IPBO/	NRD I	NSTA	LLAT	ION (Cont	'd)	
Facto						IN	ISTAL	LATIC	ON C	HARA	CTER	ISTIC						
223	Spac (a) (b) (c)	No add Some a Large a	itional Idditior Imount	space i ial space of addi	require te requi itional s in GA	llection d. ⁽¹⁾ ired. ⁽²⁾ space r TX; or ED; or 1	equired small i	Influen	t surge	tank.		ady in:	stalled.			- <u>-</u>		
WMS #	1	2	3	4	5	6	1	8	9	10	11	12	13	14	15	16	17	18
Data	A	ь	Ь	a	a	a	a	a	a	Ь	b	b	Ь	a	a	a		a
234	(a) (b) (c)	Degree Degree Degree	of mad of mod of mod	lularity lularity lularity that do	of sub of sub of sub	Transpo system system system urrently ion (as p	aids in results results have a	install in some in mod WMS.	ation o e (mini erate d a high	f C/T s mal) di ifficult degree	ubsyste fficulty y in ins	m. 1 in ins tallatio	on of C	/T subi n instal	system.	•		egree
₩ ? ⁄IS #	1	2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18																
Data	a	a	a	a	a	a	a	a	a	a	a	a	a	A	a	2	a	a
235	(a) (b)	No veni Few vei	is are re nts are	equired require	other d in ad	ection/ than the dition t	e existing to the e	ng vent xisting	S. Vents,	installa	tion							_
WA1S #	1	2	3	4	5	£	7	â	9	10	11	12	13	14	15	16	17	18
Data	a	Ь	Ь	a	a	a	Ь	ь	Ь	ь	Ь	b	b	a	a	a		4
241	 Space requirements for WMS waste Treatment/Disposal subsystem installation (a) Volume required is minimal and dimensions⁽¹⁾ of equipment present no problems in fitting equipment into available compartment space. (b) Volume required is moderate and dimensions⁽¹⁾ of equipment present no problems in fitting equipment into available compartment space. (c) Volume and dimension⁽¹⁾ of equipment do present problem in fitting equipment into available compartment space. (d) Large volume required and dimension⁽¹⁾ of equipment do present problem in fitting equipment into available compartment space. (e) Volume required and dimension⁽¹⁾ of equipment do present problem in fitting equipment into available compartment space. (f) The two main factors are (i) deck area required and (ii) height r fred. 																	
WMS #	1	2	з	4	5	6	7	8	9	10		12	13	14	15	16	17	18
Data	A	b	b	ь	a	b	Ь	ь	4	b	Ь	b	ь ь	b	b	b	b	b
									110									<u></u>

¥,>

a istar kalin

计算机 机管理子

A STREET BELLEVILLE STREET BALLEN

WMS INSTALLATION EFFECTIVENESS ATTRIBUTE DAT	WMS	INSTALLATION	EFFECTIVENESS	ATTRIBUTE	DAT
--	-----	--------------	----------------------	-----------	-----

na sena dan ang mang se para se kuma sa bahar sa pasaya n

Coloring and the second second second

Linia and the second is

/

2.2.2

v., 177 -168), '

ACT OF A STREET, SALES

行動を見た市山

		Vessel <u>WHITE SAGE (133')</u> Sheet 4 of 10																										
	Subtaction in the second	5	,		/E	I - A	DAPT	ABIL		OR SI	HIPBC	ARD	INST	ALLA	TION	(Cor	nt'd)	j										
101	(540-10) (540-10)												<u> </u>															
(30,1)											ACTE																	
242	(a) (b)	Pipes, o Pipes, o	ducts a ducts a	nd/or c nd/or c	able re able re	5 waste equirem equirem equirem	ients ar	e minii e mode	mal. rate.	subsyste	em insta	allatior	L	-		p==												
		٥v	rerboard	fuel oil d discha on, etc	arge ur	n water, ne, etc.	coolin ; elect	ig wate tric cal	r, com oles for	pressed power	air, in supply.	terconr remot	ecting contr	remote ol pane	ely loc. els, etc	ated eq	uipme ding for	nt,										
WMS #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18										
Data	a	Ь	ь	b	b	Ь	b	ь	b	Ь	Ь	b	Ь	Ь	Ь	b	Ъ	Ь										
	(a) (b) (c)	 begree of modularity of WMS waste Treatment/Disposal (as it affects installation)⁽¹⁾ a) Degree of modularity of subsystem aids in installation of T/D subsystem. b) Degree of modularity of subsystem results in some (minimal) difficulty in installation of T/D subsystem. c) Degree of modularity of subsystem results in moderate difficulty in installation of T/D subsystem. 																										
WMS #	1	Decendanzation of components may require additional nookups and piping tails.																										
Data	a '	┉┦╴╧╺╄╼╌╍╀╍╍╍╊╍┉╍╊╍┉╾╊╼┉╾╊╼┉╼╂╍╌╌┨╌╌╻┨╶╌╌╂╶╌╾╊╌╍╍╊╍┉╍╊╍┉╍╂╍┉═┨																										
244	(a) (b)	Vent requirements for WMS waste Treatment/Disposal subsystem installation ⁽¹⁾ (a) No vents are required. (b) Vents are required. (1) (1) (1) (1) (1) (2) (3) (3) (3) (3) (4) (4) (5) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5																										
WA-1S #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18										
Data	A	Ь	Ь	Ъ	ь	b	b	ь	b	b	Ъ	Ь	b	b	ь	ь	<u>۲</u>	ь										
245	(a) (b) (c) (d)	 Exhaust stack requirements for WMS waste Treatment/Disposal subsystem installation⁽¹⁾ (a) Exhaust not required. (b) Exhaust required, size of stack relatively small and stack <u>can</u> be run via existing ship's stack enclosure (fiddley). (c) Exhaust required, size of stack relatively large and stack <u>can</u> be run via existing ship's stack enclosure. (d) Exhaust required, size of stack relatively small and stack <u>cannot</u> be run via existing ship's stack enclosure. (e) Exhaust required, size of stack relatively large and stack <u>cannot</u> be run via existing ship's stack enclosure. (f) Notes: Electric incinerator requires small (2") exhaust. Fuel incinerator requires large (10") exhaust. 																										
WMS #	1	2 3 4 5 5 7 8 9 10 11 12 13 14 15 16 17 18																										
WMD #	<u> </u>	<u> </u>		<u> </u>	8	5	1	8	9	10	11	12	13	14	15	16												

Sheet 5 of 10 Vessel WHITE SAGE (133') I - ADAPTABILITY FOR SHIPBOARD INSTALLATION (Cont'd) M/E INSTALLATION CHARACTERISTIC Ease of installing WMS support equipment⁽¹⁾ 25 (a) No support equipment required. (b) Some surport equipment required but easy to install. (c) Much support equipment required and difficult to install. (1) Examples: . Firefighting system must be installed with incinerator. Bilge alarm required if large tank is installed above bilge. Compressor required on vessels that do not already have one. Detectors of toxic or noxious gases should be installed with any system that, as an inherent design feature, uses such gases in processing wastes. waas i 1 2 3 5 6 7 x 9 16 11 12 13 14 15 16 17 18 Data b b h Ъ h ь Ь ь ь ь ь ь Ь ь h ь b b Ease of compensating for added weight of WMS 26 (a) No or minimal compensation for added weight required, (b) Moderate compensation for added weight required. Extensive compensation for added weight required. (C) WMS # 1 2 Б 6 7 8 9 10 11 12 14 16 18 3 4 13 15 17 Data 8 ٩ ъ 2 a а A a a a 2 4 a 8 . a . Sment of SHIPALTS (permanent modifications) required for WMS installation⁽¹⁾ 271 No SHIPALTS required. (2) Minor SHIPALTS required. **(b)** Extent of SHIPALTS required is moderate. (C) Extensive SHIPALTS required. (đ) (1) Foundations, enlarged doors/hatches, increased capacity requirements for air compressor, etc. \<u>\\\</u>S# 2 8 10 12 1 3 4 5 6 4 ģ 11 13 14 15 16 17 18 Data ъ Ь b ь с ь ь c c c c Ъ ħ ħ ħ С Extent of temporary modification⁽¹⁾ required for WMS installation 272 (a) No temporary modifications required, (b) Temporary modifications required are minor. (c) Extent of temporary modifications required are moderate. (d) Temporary modifications required are extensive. (1) Curting access openings, etc. WAS # 1 2 3 4 5 6 8 9 10 11 12 14 15 16 7 13 17 18 Data ŧ, c b ь ċ С c с c С c ь С b С ¢ С с 112

Vessel WHITE SAGE (133') Sheet 6 of 10 M/E I - ADAPTABILITY FOR SHIPBOARD INSTALLATION (Cont'd) INSTALLATION CHARACTERISTIC Effect of WMS on vessel stability (a) No effect on existing stability characteristics of vessel. (b) Some effect on existing stability characteristics of vessel, easily compensated for. Severe effect on existing stability characteristics of vessel, compensation required extensive modifications to vessel (C) (e.g., no tankage in Point Herron). WMS / Data a a a a a . а . a a a . . Effect of WMS on vessel trim and list (a) No effect on trim or on list, (b) Some easily compensated for effect on trim or list. (c) Compensation for effect on trim or List requires extensive modification to vessel. WMS # g Data a . a Ъ Ь ъ Ъ a ħ . Effect of WMS on normal range of vessel Vessel resource capacity and usage rates. WMS # Data Presented on Venci Resource Data Sheet -Degree of space trade-off/reallocation required for WMS installation (a) No space trade-off/reallocation required. (b) Minimal degree of space trade-off/reallocation required. Moderate degree of space trade-off/reallocation required. (C) (d) High degree of space trade-off/reallocation required. wms # Data M/E **II - PERPORMANCE** PERFORMANCE CHARACTERISTIC WMS per capita wet weight $(1b)^{(1)} - W_i$ (1) Drain piping material is assumed to be copper-nickel (Cu-Ni). WAS # Data

WMS INSTALLATION EFFECTIVENESS ATTRIBUTE DATA Vessel WHITE SAGE (133') Sheet 7 of 10 M/E II - PERFOR MANCE (Cont'd) PERFORMANCE CHARACTERISTIC WMS per capita volume $(ft^3)^{(1)} - V_f$ (1) Volumes are calculated as follows: . Fixture volumes are calculated using smallest space envelopes. . Pipe volume is the volume of a square tube with side = outside diameter of pipe. . Other equipment: Deck area: smallest rectangle enclosing all equipment in a single package plus extra dimension area required for operation and maintenance. Height: either maximum height of equipment, or full compartment height, if space above package is not usable for any other purposes. VN1S # G 89, 7 100, 7 103, 8 109, 6 92, 2 Data 117.1 137. 3 89. 7 103. 9 97, 9 91.4 98.9 80, 6 77, 7 86.3 71.6 116.6 88.9 Adequacy of WMS black water holding times HT_{b} - % of required black water holding time met by WMS⁽¹⁾ (1) A WMS which employs an incinerator is considered to meet 100% of the required holding time. The holding time of a WMS which employs a holding tank (for wastewater or sludge) is determined by the ratio of available tank capacity to required capacity. w∿(S # Data Adequacy of WMS gray water holding times $HT_g = \%$ of required gray water holding time met by WMS⁽¹⁾ (1) A WMS which employs an incinerator is considered to meet 100% of the required holding time. The holding time of a WMS which employs a holding tank (for wastewater or sludge) is determined by the ratio of available tank capacity to required capacity. wMS i ĩ Data Effect of peak hydraulic loads in black water stream on WMS performance GIST_h - % of required Grumman (or other) influent surge tank capacity in black water stream net by installation. WMS # -1 Data -----~ ---Effect of peak hydraulic loads in gray water stream on WMS performance GIST_g = % of required Grumman influent surge rank capacity in gray water stream met by installation. wMS ⊭ Data Ability of black water portion of WMS to handle additional personnel (on a long-term baris) HTCb - % of required black water (or sludge) holding tank capacity met by installation. WMS # Data **.** . • -... •• -... ~ -....

			۱							ENES	S ATI	RIBU	IE D	ATA	0	A	• • •	
		~ \$//	<i>,</i>		ssel	WH	ITE S	AGE ([133-]	<u> </u>	<u> </u>				5	neet	8 of	10
	Support	\mathbb{Z}				[M/E		PERI	FORM	IANC	E (Co	nt'd)		<u> </u>			
Facto							PERI	FORM		E CH	ARAC	TERIS	TIC			_		
32	Apili	ty of gi	-	-					-			ong ter Installa)				
vis #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
ata	100	10 0	100	100	100	100	100		100	100	100	100		100	100	100	100	
							M/B	л з	/ - PI	RSO	NNEL	SAFE	TY					
		SAFETY CHARACTERISTIC																
21	Haza	rd of e	xplosiv	e poten	tial for	operau	or/main	ntainer	due to	inhere	nt WMS	6 design	•			<u> </u>		
	<u>1 - 1</u>	stallat	ion ind	x (for	personn	el safei	ty)											
												y porti- portion			-14			
												portion						-4.
AS	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
ata		2	4			a	с	с		a	a		с		Ь		4	с
		m1 ^f #	uniad u	e mater	Nal for	operate	- Imali	ntalnee	due to	nmand	ural en	ne leave		failure	e of W			
	<u>I - L</u> (a) (b)	nstallat Likelih Likelih	ion indi	ex (for hazardo hazardo	personn xus situ xus situ	el safei ation is ation is	ty) not inc increa	creased sed due	due to to pro	locati ximity	on of any	ny porti portion	on of V	/ MS. 15 to w	orking	o: bert	v	ea.
	<u>I - L</u> (a) (b)	nstallat Likelih Likelih Likelih	ion ind	ex (for hazardo hazardo hazardo	personn xus situ xus situ xus situ	el safe ation is ation is ation is	not increa increa	creased sed due sed due	due to to pro to pro	locario ximity ximity	on of any of any of any	ny porti portion portion	on of V of WA	/MS. 1S to w 1S to fi	orking iel stor	or bert Age are		
MS #	<u>I - L</u> (a) (b) (c)	nstallat Likelih Likelih	ion indi	ex (for hazardo hazardo	personn xus situ xus situ	el safei ation is ation is	ty) not inc increa	creased sed due	due to to pro	locati ximity	on of any	ny porti portion	on of V	/ MS. 15 to w	orking	o: bert	v	ea. 18 c
MS # Data	<u>I - L</u> (a) (b) (c) <u>1</u> a	Likelih Likelih Likelih Likelih	ion ind ood of ood of ood of 3 a	ex (for hazardo hazardo hazardo 4 a	personn ous situ ous situ ous situ 5 a	el safe ation is ation is ation is 6	ty) not increa increa 7 c	creased sed due sed due 8 c	due to to pro to pro 9 a	location ximity ximity 10 a	on of an of any of any 11	ny porti portion portion	on of V of WN of WN 13	/MS. 1S to w 1S to fi	orking iel stor 15	or bert Age are		18
MS # Data	<u>I - L</u> (a) (b) (c) <u>1</u> <u>a</u> Haza	atallat Likelih Likelih Likelih Likelih Likelih Likelih	ion ind ood of ood of ood of a a tre igni	ex (for hazardo hazardo hazardo hazardo tion por	personn ous situ ous situ ous situ 5 a tenrial	el safe ation is ation is ation is 6 a due to	not inc increa increa increa 7 c	creased sed due sed due 8 c	due to to pro to pro 9 a	location ximity ximity 10 a	on of an of any of any 11	ny porti portion portion	on of V of WN of WN 13	/MS. 1S to w 1S to fi	orking iel stor 15	or bert Age are		18
MS #	<u>I - L</u> (a) (b) (c) <u>1</u> <u>a</u> Haza <u>I - L</u> (a)	a Likelih Likelih Likelih Likelih a a a a a Likelih	ion ind ood of ood of 3 a irc igni ion ind nood of	ex (for hazardo hazardo hazardo tion por ex (for hazard	personn ous situ ous situ ous situ a tential personi	el safe ation is ation is ation is ation is 6 a due to rel safe sation i	ty) not increa increa 7 c inheren ty) s not in	creased sed due sed due 8 c c t WMS	due to to pro to pro 9 a design d due to	locati- ximity ximity 10 a	on of any of any 11 A	ny portion portion 12 a	on of WA of WA 13 c	VMS. IS to w IS to fi 14 a WMS.	orking sel stor 15 b	or bert age are 16	17 a	18 c
MS # Data	<u>I - L</u> (a) (b) (c) <u>1</u> <u>a</u> Haza <u>I - L</u> (a) (b)	nstallat Likelih Likelih 2 a urd of fi Likelih Likelih Likelih	tion ind tood of tood of 3 a tre igni tion ind tood of tood of	ex (for hazardo hazardo hazardo d tion por ex (for hazard hazard	personn ous situ ous situ 5 a tential personn ous situ ous situ	cl safe ation is ation fis ation fis 6 a due to rel safe sation fis	by) not increa increa 7 c inheren by) s not in s increa	creased sed due sed due c c t WMS creased ased du	due to to pro 9 a design d due to pro	location ximity ximity 10 a b location	on of any of any 11 a lon of a r of any	ny portion portion 12 a ny port	ion of Wh of Wh 13 c 10n of n of Wh	VMS. IS to w IS to fi 14 a WMS. VIS to v	orking tel stor 15 b	or bert age are 16 a	thing a	18 c
MS# Data 31	<u>I - L</u> (a) (b) (c) 1 <u>a</u> Haza <u>I - L</u> (a) (b) (c)	a a a a a a a a a a a a a a a a a a a	ion ind ood of iood of 3 a ire igni ion ind iood of iood of	ex (for hazardo hazardo 4 4 tion por ex (for hazard hazard hazard	personn ous situ ous situ 5 a tential personn ous situ ous situ	cl safe ation is ation is ation for a due to rel safe ration for ration for ration for	by) not increa increa increa 7 c inheren 5 y) s not in s increa s increa	creased sed due 8 c c t WMS creased ased du	due to to pro 9 a design d due to e to pro	location ximity 10 a b location ximity ximity	on of any of any 11 a lon of a r of any	ny portion portion 12 a ny port portion portion portion	ion of W of WA 13 c ion of n of WA	WMS. IS to fi 14 a WMS. MS to f	orking 15 b vorking uel sto	or bert age are 16 a or ber	thing a ca.	18 c
MS # Data 31 MS #	<u>I - L</u> (a) (b) (c) 1 <u>a</u> Haza <u>I - L</u> (a) (b) (c)	nstallat Likelih Likelih 2 a urd of fi Likelih Likelih Likelih	tion ind tood of tood of 3 a tre igni tion ind tood of tood of	ex (for hazardo hazardo hazardo d tion por ex (for hazard hazard	personn ous situ ous situ 5 a tential personn ous situ ous situ	cl safe ation is ation fis ation fis 6 a due to rel safe sation fis	by) not increa increa 7 c inheren by) s not in s increa	creased sed due sed due c c t WMS creased ased du	due to to pro 9 a design d due to	location ximity ximity 10 a b location	on of any of any 11 a lon of a y of any	ny portion portion 12 a ny port	ion of Wh of Wh 13 c 10n of n of Wh	VMS. IS to w IS to fi 14 a WMS. VIS to v	orking iel stor 15 b	or bert age are 16 a	thing a	18 c
MS # Data 31 MS # Data	<u>I - L</u> (a) (b) (c) <u>1</u> a Haza <u>I - L</u> (a) (b) (c) <u>1</u> a	estallat Likelih Likelih Likelih Likelih Likelih Likelih Likelih Likelih Likelih	ion ind ood of ood of 3 a irc igni ion ind nood of 3 a a	ex (for hazardo hazardo hazardo 4 a tion por cx (for hazard hazard hazard 4 a	personn ous situ ous situ 5 a tential personn ous situ ous situ 5 a	el safe ation is ation is ation is 6 a due to rel safe ration i ration i ation i	by) not increasing incr	creased sed due sed due c c t WMS creased du sed du sed du g g c c	due to to pro 9 a design d due to e to pro 9 9 a	location ximity ximity 10 a b location posimity 10 a	on of any of any 11 a lon of a r of any 11 a	ny portion portion 12 a ny port portion portion 12 a	ion of W of WA 13 c 10n of WA n of WA 13 c	WMS. 15 to ft 14 a WMS. VIS to V VIS to f 14	orking iel stor 15 b vorking iuel sto	or bert age are 16 a or ber rage ar	a. 17 a thing a ca. 17	18 c
Data 31	I - L (a) (b) (c) 1 a Hazza I - L (a) (b) (c) 1 a Hazza Hazza Hazza Hazza Hazza Hazza	It ke lih Like lih	ion ind ood of ood of 3 a ire igni ion ind nood of a a ire igni inod of a a ire igni	ex (for hazardo hazardo hazardo hazardo cx (for hazard hazard hazard hazard hazard hazard hazard tion po	personn ous situ ous situ 5 a tential personn ous situ ous situ ous situ ous situ a tential	cl safe ation is ation is ation is ation is due to rel safe sation i sation i sation i sation i	by) not increa increa increa inheren (y) s not in s not in s increa 7 c 7 c 7 c r r c proced	creased sed due sed due c c t WMS creased du sed du sed du g g c c	due to to pro 9 a design d due to e to pro 9 9 a	location ximity ximity 10 a b location posimity 10 a	on of any of any 11 a lon of a r of any 11 a	ny portion portion 12 a ny port portion portion 12	ion of W of WA 13 c 10n of WA n of WA 13 c	WMS. 15 to ft 14 a WMS. VIS to V VIS to f 14	orking iel stor 15 b vorking iuel sto	or bert age are 16 a or ber rage ar	a. 17 a thing a ca. 17	18 c
∧15 # Data 31 ∧∕∕5 # Data	<u>I - L</u> (a) (b) (c) <u>1</u> a Haza <u>I - L</u> (a) (b) (c) <u>1</u> a Haza (b) (c) <u>1</u> a	nstallat Likelih Likelih Likelih Likelih Likelih Likelih Likelih Likelih Likelih Likelih Likelih Likelih	ion ind ood of ood of 3 a ire igni ion ind a ire igni a inod of a a ire igni a inod of a inod of a inod of a inod of inod of ind inod of inod inod inod inod inod of inod of inod inod inod inod inod inod inod inod	ex (for hazardo hazardo hazardo 4 a tion por hazard hazard hazard hazard tion por ex (for ex (for	personn pus situ pus situ 5 a tendal personu 5 cendal personu	cl safe ation is ation is ation is 6 a due to rel safe sation i sation i sation i sation i ation i sation i sation i	Sy) not increa increa increa 7 c inheren (y) s not increa s not increa s not increa r c r c proced ty)	creased sed due sed due c c t WMS creased du sed du sed du sed du sed du	due to to pro 9 a design d due to e to pro 9 9 a rons/equ	location ximity ximity 10 a bolocation ximity 10 a ipment	on of any of any 11 a lon of a r of any 11 a t failure	ny portion portion 12 a ny portion portion portion 12 a es of W	ion of White	WMS. 15 to w 15 to ft 14 wMS. WMS. VIS to w VIS to f 14 a	orking iel stor 15 b vorking iuel sto	or bert age are 16 a or ber rage ar	a. 17 a thing a ca. 17	18 c
 ∧15 # Data 31 ∧∧∧5 # Data 	I - L (a) (b) (c) 1 a Hazza I - L (a) (b) (c) 1 a Hazza I - L (a) (b) (c) 1 (a) (b) (c)	It ke lih Like lih	ion ind ood of ood of 3 a ire igni ion ind nood of 3 a ire igni ion of a a ire igni ion of a a ire igni ion of a a i a i a i a i a i a i a i a i a i a	ex (for hazardo hazardo hazardo 4 a tion por cx (for hazard 4 tion po ex (for hazardo hazardo hazardo hazardo hazardo	personn pus situ pus situ 5 a tential personn ous situ 5 a tential personn ous situ 5 a	cl safe ation is ation is ation is ation is due to rel safe sation i ation is ation is ation is	by) not inc increa increa 7 c inheren 52) s not increa s not increa 7 c 7 c 7 c procedu ty) not inc increa	creased sed due sed due c c t WMS c c sed du sed du sed du sed du c c c c c c c c c c c c c c c c c c c	due to to pro 9 a design d due to e to pro 9 a sons/equ due to pro	location ximity ximity 10 a b location ximity 10 a location ximity	on of any of any 11 a lon of a of any 11 a t failure on of any	ny portion portion 12 a ny port portion portion 12 a	ion of W of WA 13 c 10n of WA n of WA 13 c MS. on of W	WMS. IS to file IA WMS. VMS. IS to W S to W	orking tel stor 15 b vorking uel sto 15 b orking	or bert age are 16 a or ber 16 a or bert	thing a ca.	18 c
VMS# Data 31 VMS# Data	I - L (a) (b) (c) 1 a Hazza I - L (a) (b) (c) 1 a Hazza I - L (a) (b) (c) (c) (c)	It ke lih Like lih	ion ind ood of ood of 3 a ire igni ion ind nood of 3 a ire igni ion of a a ire igni ion of a a ire igni ion of a a i a i a i a i a i a i a i a i a i a	ex (for hazardo hazardo hazardo 4 a tion por cx (for hazard 4 tion po ex (for hazardo hazardo hazardo hazardo hazardo	personn pus situ pus situ 5 a tential personn ous situ 5 a tential personn ous situ 5 a	cl safe ation is ation is ation is ation is due to rel safe sation i ation is ation is ation is	by) not inc increa increa 7 c inheren 52) s not increa s not increa 7 c 7 c 7 c procedu ty) not inc increa	creased sed due sed due c c t WMS c c sed du sed du sed du sed du c c c c c c c c c c c c c c c c c c c	due to to pro 9 a design d due to e to pro 9 a sons/equ due to pro	location ximity ximity 10 a b location ximity 10 a location ximity	on of any of any 11 a lon of a of any 11 a t failure on of any	ny portion portion 12 a ny port portion 12 a es of W ny portion	ion of W of WA 13 c 10n of WA n of WA 13 c MS. on of W	WMS. IS to file IA WMS. VMS. IS to W S to W	orking tel stor 15 b vorking uel sto 15 b orking	or bert age are 16 a or ber 16 a or bert	thing a ca.	18 c

MACHER # 44 44

こころのなどのないでいているというろうともの いまろうち

1

CONTRACTOR OF THE

للعملية الترابية والمستحدين والمراجع والمرابع والمتحدين التركيم والمرابع والمستحدين والمحافية والمحافظة والمحديد والمنافع والمحافظة والمحاف

متدالعان للمحالم فالمغاطية فتنشز تعايشات النقطان فالقالمية

ملمانا وديليك الكريمي يتخري المعالية إنجابها للقائد

115

. . .

				Ve	essel	WH	IITE S	SAGE	(133')					Sł	eet	9 of	10
	and lacto	\$,				M/E	v	- HA	BITAB	ILITY	,						
Facily	SUP 10:					н	ABITA	BILIT	ү СН	ARAC	TERIS	STIC						
41	Heat ; <u>I - Io</u> (a) L (b) L	generat staliati ocation ocation	on inde 1 of Wi 1 of Wi	ux (for 1 MS is no MS is 11	neat) ot likel kely to	y to rai raise h	se heat eat lev	el due	due to j to prox	proximi imity t	ity to w o world							
₩MIS #	1	2	3	4	อี	6	7	8	9	10	11	12	13	14	15	16	17	18
Data	a	a	b	a	a	a	Ь	ь	a	b		2	Ь	a	b		8	b
Ð	<u>I - In</u> (a) I (b) I	stallati Locatio Locatio	on inde n of W n of W	MS is n MS is n MS is li	heat) ot like ikely u	ly to ra o raise i /adjace	ise hea neat le	t level vel due	due to to pro:	proxim cimity :	ity to v to work	vorlding	; and be	erthing			- · · · · · · · ·	
WMS #	1	(1) For operator/maintainer/adjacent berthing and working areas. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18																
Data	a	┉╅┅═╪══╪┿┉┉╪┉┉╪┉┉╪┈┉┾┈┉┾┈╼┾┈╦┼┈┽╴╶┼╴╴┼╴╶┼╴╶																
5	<u>1 - in</u> (a) (b)	stallati Locatio Locatio	on Inde n of W n of W	MS is n MS is n MS is 1	noise) ot like ikely ta	hity of V ly to ra o raise 1 /adjace	ise nois noise le	ie levei ivel du	e to pro	oximity	to wor	workin king ar	g and b ad berth	erthing ing are	arcas, as,			
1v7.15 #	1	2	13	4	5	6	7	8	9	10	11	12	13	1 14	15	16	17	18
Data				A							•			4				6
6	Vibration levels for nearby personnel ⁽¹⁾ produced by WMS machinery <u>I - Installation index (for vibration)</u> (a) Location of WMS is not likely to raise vibration level due to proximity to working and berthing areas. (b) Location of WMS is likely to raise vibration level due to proximity to working and berthing areas. (c) Location of WMS is likely to raise vibration level due to proximity to working and berthing areas. (c) Location of WMS is likely to raise vibration level due to proximity to working and berthing areas.																	
WAS #	the same set of the same set o	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Data		4					4					a						Ь
f																سپانته، :		- 1

116

Garage at All State

				_V€	ssel	WI	HITE S	SAGE	(133)					Sł	reet	10 of	10
	Cupiter.	×					M	I/E	VI -	RELI	ABILI	TY						
Pacing State							REL	IABIL	ITY C	HARA	CTER		2					
22	Exter	nt of W		ufigurat ent requ		lundanc	у		-							-		-
WMS#	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Data					- Pr	esented	on WN	is Equi	pment I	esourc	es Data	Form						
		M/E VII - MAINTAINABILITY MAINTAINABILITY CHARACTERISTIC																
131	Accessibility of replaceable WMS components <u>I - Installation index (for accessibility)</u> (a) High degree of physical clearance around WMS equipment. (b) Moderate degree of clearance around WMS equipment. (c) Very tight, i.e., very little clearance around WMS equipment.																	
₩MS #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Data		Ь	с	b		4		A	A	с	a	ь	a	a	ъ	a	b	Ь

. 117

بيريد ريبيه مصبه بريوه م

ŧ

.

WHITE SAGE (133')

CONCLUDING REMARKS

The following are points of consideration and observation relevant to this vessel, some of which have been included in the shipcheck observations, and are reiterated for emphasis and convenience.

(a) The vessel is presently fitted with a CHT system, components of which occupy space in the Engine Room and in Hold No. 2 just forward of the Engine Room. The piping runs and space for equipment locations are convenient and well arranged for the most part with separate black and gray water mains lending themselves readily adaptable to the WMS configurations studied.

(b) Possibly the only major problem for which there is no readily apparent solution is the manner in which incinerator stacks can be led to the weather when the arrangement does not permit them to go up via the Engine Room fidley along with the existing diesel exhaust piping. The general arrangement of the ship seemingly precludes the possibility of making these runs due to interference with cargo handling equipment, navigational aids, visibility from the bridge and the undesirable path the smoke could take from the top of the incinerator stack.

(c) Present waste disposal system equipment in the Engine Room offer no apparent problem into removals. In Hold No. 2 however, the 810 gallon retention tank installation is quite substantial with a very large supporting foundation. This would require a large amount of labor and cutting up to remove from the vessel.

(d) The ship's dry stores in Hold No. 2 are contained in an expanded metal enclosure on the ship's centerline. This would have to be relocated, most likely to the port side of the vessel.

(e) The ship's stores refrigerator is a free-standing self-contained unit in Hold No. 2. For some proposed WMS installations the refrigerator would have to be shifted to port to provide more space for system components. This would involve foundation extension.

(f) Most of the remaing existing equipment on Hold No. 2 involves storage shelving and miscellaneous cabinetry which should offer no real problem. There is ample space in the hold for relocation.

A 14 ...

WHITE SAGE (133')

(g) In order to pass piping between the Engine Room and Hold No. 2, another pipe tunnel through the port side fuel oil tank would be required, similar to the one already existing for this purpose. This would involve tank washing and gas freeing before any hot work can be done.

(h) The ship is outfitted with the required support systems, flushing water, fuel, compressed air, etc. It would be required that for some WMS proposals the present salt water flushing system be changed over to fresh water.

(i) Existing piping runs and connections lend themselves readily to reuse for many of the WMS proposals.

(j) For systems involving installation of incinerators, the existing ventilation system would have to be studied for adequacy.

The same would apply to the fire extinguishing apparatus.

(k) Access cuts for shipping WMS components would have to be made in the deck head or in the ship's side.

(1) There are no ballasting provisions per se aboard the vessel. Therfore any weight compensations required would have to be at the expense of on-board existing material.

APPENDIX A

PRELIMINARY INSTALLATION ANALYSIS

WHITE SAGE (133')

Æ.

Vessel Characteristics	Data
Class	WLM - 544 White Summac (133') Class
Туре	Buoy Tender (Coastal)
Crew Size	21
Home Port	Woods Hole, Mass.

A-1

SUMMARY OF PRELIMINARY INSTALLATION ANALYSIS RESULTS WHITE SAGE (133')

	of Type Syst				
	< Coll/Tra		nt/Disposal	ACCEPTABILITY	
1	Subsys		system	FOR	
15	(Black)	Black	Gray /	INSTALLATION(1)	
F	Gravity	Holding	Holding		
1	Collect.	Tank	Tank	Yes	
		Chrysler	Holding		
2	Oil Recircul.	+ Hld Tr.k	Tank	Yes	
3	(Cnrysler)	Chrysler	Holding		
1		+Incin.	Tank	Yes	
	Gravity	Grum Flow	Holding		
1 1	Collect.	Thru+HldTk	Tank	Yes	
	(Grumman)	Grumman	Flow Thru		
_		+ Holding Tank		Yes	
6	Gravity	Holding	Grum Flow		
Ľ	Collect.	Tank	Thru+HldTnk	Yes	
	Gravity	Grum Flow	Holding		
11	Collect.	Thru+Incin		Yes	
	(Grumman)	+ Incinerator			
1 1	ľ			Yes	
9	Vacuum	Holding	Holding		
	Collect.	Tank(2)	Tank	Yes	
10	(Jered)	Incinerator	Holding		
11			Tank	Yes	
111		GATX	Holding		
1-1		Evap.	Tank	Yes	
12		Holding	Grum Flow	1	
		Tank(3)	Thru+Hld Tnk	Yes	
13		Incinerator	Grum Flow Thru + Incin.		
\square			firu + incin.	Yes	
14	M/T	Holding	Holding	Vee	
	Pump	Tank	Tank	Yes	
15	Collect.	Incinerator	Holaing	Voc	
	(GATX)			Yes	
16		GATX	Holding	Yes	
		Evap.	Tank Grum Flow	102	
17		Holding		Yes	
		Tank	Thru+Hld Tnk	100	
18		Incinerator	Grum Flow	Yes	
F	L	<u>L</u>	Thru + Incin.	100	

(1) Based on:

. Information contained in available vessel plans,

. WMS installation requirements,

. WMS installation criteria and guidelines.

(2) Two subchoices available for WMS No. 9 as follows:

- . 9a Concentrated black water transferred from VCT to holding tank (acceptable for all vessels).
- . 9b Concennated black water held in VCT (acceptable for Point Herron only).

(3) Two subchoices available for WMS No. 12 as follows:

- . 12a Concentrated black water transferred from VCT to holding tank (acceptable for all vessels).
- . 12b Concentrated black water held in VCT (acceptable for Point Herron only).

PERTINENT VESSEL INFORMATION

WHITE SAGE (133')

Crew: 21 men

Sanitary Fixtures: 4 Waterclosets, 1 Urinal, 4 showers, 5 lavatories

Existing Arrangement:

MARTIN CAR

- -(a) One (1) 25 gallon Galley Retention Tank in aft Machinery Compartment receives drainage from galley sinks, galley deck drain and drinking fountain.
- (b) Galley drains can discharge overboard via gravity or drain to the Galley Retention Tank. The tank can pumpout to a 220 gallon Collection Tank in the Engine Room.
- (c) The 220 gallon Collection Tank also receives all Sewage and turbid drains via separate piping systems. The turbid drain system can also discharge directly overboard.
- (d) The 220 gallon Collection Tank can pumpout to a 810 gallon Retention Tank located in Hold No. 2 Storeroom, forward of the Engine Room. It can also pumpout overboard or to the deck discharge connections.
- (e) The 810 gallon Retention Tank receives only the 220 gallon Collection Tank pumpout. It can pumpout to the deck discharge connections or directly overboard.
- (f) The Retention and Collection Tank pump piping is so arranged that either pump can serve either tank, thereby providing a standby pump for each tank.

Note:

The drawings of the existing ship that were provided to accomplish this work are contradictory regarding the location of the Collection and Retention Tanks and other items of machinery:

(1)	540 WAGL - 4808-2	Secondary Drainage System Alterations Fleet - Dated 8-9-71
(2)	540 WAGL ~ 0103-8	Booklet of General Drawings U.S.C.G.C. Whitebush - Dated 5-30-74
(3)	540 WAGL - 4000-1	Whitebush Engine Room Rearrangement - Elevation & Plan - Dated 3-18-74

Existing Arrangement (Cont'd)

Drawing (1) locates the collecting and retention tanks a considerable distance from the location shown on drawings (2) and (3). In view of the fact that drawing (1) is a piping system installation plan that involves the tanks and is intended as a Fleet Alteration, it was decided to use this drawing as applicable to the Whitesage. Further, drawings (2) and (3) apply specifically to the Whitebush which is not the subject ship in this discussion. As a result of the above, the conclusions that are arrived in the following discussions must be considered with somewhat below average accuracy.

A-4

Anna Constant in the

and Standing Contractory

PRELIMINARY INSTALLATION ANALYSIS OF INDIVIDUAL CANDIDATE SYSTEMS

Vessel: WHITE SAGE (133')

WMS No. 1 Full Volume Flush Gravity Collection/Holding Tank for Black Water/Holding Tank for Gray Water

Required

Sewage Holding Tank Galley/Turbid Holding Tank Discharge Pumps (4) 722 gal. (97 cu. ft.) 2,063 gal. (276 cu. ft.) 10 - 30 gpm

Discussion

The system installation appears to be acceptable as follows:

It is advisable to locate two pumps and a Sewage Holding Tank in the location presently occupied by the Collecting Tank in the Engine Room with very minor rearrangement of existing equipment. Very minor modifications in the sewage and garbage grinder piping will be necessary.

A Galley/Turbid Holding Tank and two pumps could be located in the area presently occupied by the existing Retention Tank in the Hold No. 2 storeroom with very minor rearrangement of the space.

It will be necessary to run the Galley/Turbid piping mains from the Engine Room to the Hold No. 2 storeroom area in order to connect to the G/T Holding tank. This piping can run through a void space separating the Fresh Water and Fuel Oil Tanks (if fitted) or through a pipe tunnel in the Fuel Oil Tank,

The 25 gal. Galley Drain Tank should remain in use and the pump piping revised to discharge to the G/T Holding Tank in Hold No. 2. The single drinking fountain (Frames 14/15) discharging overboard should be reconnected to drain to the gravity G/T drain line to the G/T Holding Tank. The overboard discharge is to be blanked off.

Existing overboard discharge connections and deck discharge connections can be retained for use with the new installation.

WMS No. 2 Full Volume Flush Oil Recirculation and Gravity Collection/ Chrysler System with Sludge Holding Tank for Sewage/Holding Tank for Gray Water

Required

Sewage Holding Tank Galley/Turbid Holding Tank Discharge Pumps (4) 135 gal. (18 cu. ft.) 2,063 gal. (276 cu. ft.) 10 - 30 gpm.

Chrysler Model and Quantity

Model A One (1)

Discussion

The system installation is acceptable subject to the following:

The Galley/Turbid Holding Tank plus two discharge pumps can be located in the area presently occupied by the existing Retention. Tank in the Hold No. 2 storeroom with very minor rearrangement of existing equipment.

The Sewage Holding Tank with two discharge pumps, Separation Unit and the Pressurization and Fluid Package can be located in the area presently occupied by the existing Collecting Tank in the Engine Room and in the area inboard of the boiler and fire & bilge pump on the port side.

This arrangement will require the routing of the Galley/Turbid piping mains from the Engine Room to the Hold No. 2 storeroom area in order to connect to the new G/T Holding Tank. The piping can run through a void space separating the Fresh Water and Fuel Oil Tanks (if fitted) or through a pipe tunnel in the Fuel Oil Tank.

The 25 gal. Galley Drain Tank should remain in use and the pump piping revised to discharge to the G/T Holding Tank in Hold No. 2. The single drinking fountain (Frames 14/15) discharging overboard should be reconnected to drain to the gravity G/T drain line to the G/T Holding Tank. This overboard discharge is to be blanked off.

The existing overboard discharge shell connections and deck discharge connections can be retained for use with the new installation.

WMS No. 3 Full Volume Flush Oil Recirculation and Gravity Collection/ Chrysler System with Incinerator for Sewage/Holding Tank for Gray Water

Required

-10 - 30 gpm

,063 gal. (276 cu. ft.) 50 gal. (6.7 cu. ft.)

Galley/Turbid Holding Tank Sludge Ejection Tank Discharge Pumps (4)

Chrysler Model and Quantity Model A Incinerator Model and Quantity Model A

One (1) One (1)

Discussion

The system installation appears to be acceptable as follows:

The Galley/Turbid Holding Tank plus two discharge pumps could be loca: d in the space presently occupied by the existing Retention Tank in the Hold No. 2 storeroom with possible minor rearrangement of existing equipment.

The Separation Unit Pressurization and Fluid Package and the Sludge Ejection Tank can be located in the Engine Room in the area presently occupied by the existing Collecting Tank and in the area inboard of the boiler and fire & bilge pump on the port side.

The Incinerator can be located on or near the centerline at Frame 15 under the casing opening in order to facilitate routing the incinerator stack up the stack along with the diesel engine exhaust pipes.

This arrangement will necessitate the running of the Galley/Turbid piping mains from the Engine Room to the Hold No. 2 storeroom area in order to connect to the new G/T Holding Tank. The piping can be run through a void space between the Fresh Water and Fuel Oil Tanks (if fitted) or through a pipe tunnel in the Fuel Oil Tank.

The 25 gal. Galley Drain Tank should remain in use and the pump piping revised to discharge to the G/T Holding Tank in Hold No. 2. The single drinking fountain (Frames 14/15) discharging overboard should be reconnected to drain to the gravity G/T drain line to the G/T Holding Tank. The overboard discharge can be blanked off.

Existing overboard discharge shell connections and deck discharge connections can be retained for use with the new installation.

WMS No. 4 Full Volume Flush Gravity Collection/Grumman Flow Through System with Sludge Holding Tank for Black Water/ Holding Tank for Gray Water

Required

Sewage Influent Surge Tank Galley/Turbid Holding Tank Sludge Holding Tank Discharge Pumps (4) 110 gal. (15 cu. ft.) 2,063 gal. (276 cu. ft.) 60 gal. (8 cu. ft.) 10 - 30 gpm

Grumman Unit

One (1)

Discussion

The system installation is acceptable as follows:

It appears that the Sewage Influent Surge Tank and the Sludge Holding Tank plus four discharge pumps can be located in the space presently occupied by the existing Collecting Tank in the Engine Room with some minor equipment relocation.

The Grumman Unit can be located in the Engine Room on the port side of the center line between frames 14 and 15. The stack can run up the machinery casing. This will require the relocation of the Log Desk and Telephone Booth plus other minor items of machinery and possibly the Air Cond. Water Chiller.

The Galley/Turbid Holding Tank plus two discharge pumps can be located in the area presently occupied by the existing Retention Tank in the Hold No. 2 storeroom with possible minor rearrangement of existing equipment.

An alternative location for the Grunn on unit is the Hold No. 2 Storeroom area near the G/T Holding Tank, thereby placing all treatment equipment in the same vicinity.

This will require the extension of the Galley/Turbid piping mains from the Engine Room to the Hold No. 2 Storeroom area in order to connect to the G/T Holding Tank. The G/T piping can be run through a void space between the Fresh Water and Fuel Oil Tanks (if fitted) or through a pipe tunnel in the Fuel Oil Tank.

The 25 gal. Galley Drain Tank should remain in use and the pump piping revised to discharge to the G/T Holding Tank in Hold No. 2. The single drinking fountain (Frames 14/15) discharging overboard should be reconnected to drain to the gravity G/T drain line to the G/T Holding Tank. The overboard discharge could be blanked off.

A-8

System No. 4 (Cont'd)

The existing overboard discharge deck and shell connections can remain for use in the new installation.

. . .

121

WMS No. 5 Full Volume Flush Gravity Collection/Grumman Flow Through System with Sludge Holding Tank for Combined Black and Gray Waters

Required

Sludge Holding Tank Influent Surge Tank Discharge Pumps (4) 232 gal. (31 cu. ft.) 432 gal. (58 cu. ft.) 10 - 30 gpm

Grumman Unit

One (1)

Discussion

The system installation appears to be acceptable as described in the following:

The Sludge Holding Tank and the Influent Surge Tank plus pumps can be located in the area presently occupied by the existing Collecting Tank in the Engine Room. Minor rearrangement of equipment may be required for this installation.

The Grumman Unit can be located in the Engine Room port side near the centerline between frames 14 and 15. This location will require the relocation of the Log Desk and Telephone Booth plus other minor machinery items.

Fewer items of existing equipment will require relocation if the Influent Surge Tank is install d in the area presently occupied by the Retention Tank in the Hold No. 2 Storeroom area. This will require the extension of the combined waste piping mains from the Engine Room to the Hold No. 2 Storeroom area via a pipe tunnel or through a void space, if fitted.

An alternate location for the Grumman Unit and the Sludge Holding Tank is the Hold No. 2 Storeroom in the general area presently occupied by the Retention Tank. This location can accommodate all the required components thereby having all treatment equipment together in Hold No. 2. Minor modifications will be necessary to the space.

System No. 5 (Cont'd)

The 25 gal. Golley Drain Tank should remain in use and the pump piping revised to discharge to the Influent Surge Tank. The single drinking fountain (Frames 14/15) discharging overboard should be reconnected to drain to the gravity G/T drain line to the Influent Surge Tank. The overboard discharge would be blanked off.

Existing deck and shell overboard discharge connections can remain for use with the new equipment.

A-11

Starte De Las

See 1

. N. 1

WMS No. 6 Full Volume Flush Gravity Collection/Holding Tank for Black Water/Grumman Flow Through System with Sludge Holding Tank for Gray Water

	Required
Influent Surge Tank	323 gal. (43 cu. ft.)
Sludge Holding Tank	172 gal. (23 cu. ft.)
Sewage Holding Tank	722 gal. (97 cu. ft.)
Optional Comb. Sewage/Slu	idge Holding
Tank	894 gal. (120 cu. ft.)
Discharge Pumps (4)	10 - 30 gpm

Grumman Unit

One (1)

Description

The system installation appears to be acceptable as described in the following:

Although it is possible to locate the Grumman Unit in the Engine Room between frames 14 and 15, port side near centerline, it may be advisable to locate this unit and the Sludge Holding Tank $(2.5 \times 2.5 \times 4' \text{ H})$ in the Hold No. 2 Storeroom area in the location of the present Retention Tank because the size of the associated tanks makes it impossible to locate all equipment in the Engine Room without considerable rearrangement.

The Influent Surge Tank $(3'W \times 3'L \times 5'H)$ and the Sewage Holding Tank or the Optional Combined Holding Tank can be located in the Engine Room in the area presently occupied by the existing Collecting Tank. It may be necessary to relocate the Log Desk and Telephone Booth. As an alternate the tanks can be located in Hold No. 2 Storeroom area thereby keeping all related equipment in the same space. Only minor rearrangement of the existing space will be required.

The 25 gal. Galley Drain Tank could remain in use and the pump piping revised to discharge to the Influent Surge Tank in Hold No. 2. The single drinking fountain (Frames 14/15) discharging overboard should be reconnected to drain to the gravity G/T drain line to the influent Surge Tank. The overboard discharge is to be blanked off.

Existing shell and deck discharge connections can remain for use with the new equipment.

WMS No. 7 Full Volume Flush Gravity Collection/Grumman Flow Through System with Sludge Incinerator for Black Water/Holding Tank for Gray Water

Galley/Turbid Holding Tank Sewage Influent Surge Tank Fuel Oil Day Tank Discharge Pumps (4)

2,063 gal. (276 cu. ft.) 110 gal. (15 cu. ft.) 25 gal. (3.3 cu. ft.) 10 - 30 gpm

Required

Grumman Unit Thiokol Incinerator

One (1) One (1)

8757443843,845,846, 4884 428

Discussion

「古殿」を引きたいからいが

The system installation appears to be acceptable subject to certain limitations as follows:

The Galley/Turbid Holding Tank can be located in the Hold No. 2 Storeroom area in the space presently occupied by the existing Retention Tank with very minor rearrangement of the space.

The Grumman MSD fitted with an Incinerator can be installed in the Engine Room between frames No. 14 and 15 port side near the centerline. The incinerator stack can be led up the machinery casing along with the existing diesel engine exhaust pipes. This location will require the rearrangement of the Log Desk and Telephone Booth and perhaps the Air Conditioning Water Chiller.

The Sewage Influent Surge Tank can be located in the Engine Room in the area presently occupied by the Collecting Tank. The Incinerator Fuel Tank can be located in the overhead in the same area.

This arrangement will require that the Galley/Turbid main be routed to the No. 2 Hold Storeroom area via the void space between Fuel Oil and Fresh Water Tanks (if fitted) or through a pipe tunnel in the Fuel Oil Tank.

aan, daladki ii maa mahayin shirin kanakana kanakan shirin takan ka

Vessel: WHITE SAGE (133') System No. 7 (Cont'd)

.

The 25 gal. Galley Drain Tank should remain in use and the pump piping revised to discharge to the G/T Holding Tank in Hold No. 2. The single drinking fountain (Frames 14/15) discharging overboard should be reconnected to drain to the gravity G/T drain line to the G/T Holding Tank. This overboard discharge is to be blanked off.

The existing shell and deck connections can remain for use with the new installation.

and the second second

ing and the

میترون میکند. او هارچه اور او میکند او ک

7. . .

.

A-14

WMS No. 8 Full Volume Flush Gravity Collection/Grumman Flow Through System with Sludge Incinerator for Combined Black and Gray Waters

Required

	Construction of the second second second second	
Influent Surge Tank	432 gal.	(58 cu. ft.)
Fuel Oil Day Tank	25 gal.	(3.3 cu. ft.)
Discharge Pumps (4)	10 - 30 g	pn · · · ·

Grumman Unit Thiokol Incinerator One (1) One (1)

Discussion

The system installation is acceptable within the following limitations:

The Influent Surge Tank can be located in the area presently occupied by the existing Collecting Tank in the Engine Room.

The Grumman Unit with the Thiokol Incinerator can be located in the Engine Room between Frames No. 14 and 15, Port Side near the centerline. This will require the relocation of the Telephone Booth, Log Desk and probably the Air Conditioning Water Chiller.

The Fuel Oil Day Tank can be located overhead near the Grumman Unit.

The incinerator stack can be led up the machinery casing along with the existing diesel engine exhaust pipes.

The 25 gal. Galley Drain Tank should remain in use and the pump piping revised to discharge to the Influent Surge Tank in Hold No. 2. The single drinking fountain (Frames 14/15) discharging overboard should be reconnected to drain to the gravity G/T drain line to the Influent Surge Tank. This overboard discharge is to be blanked off.

The existing overboard discharge shell and deck connections can remain for use with the new installation.

WMS No. 9 JERED Reduced Volume Flush Vacuum Collection/Holding Tank for Concentrated Black Water/Holding Tank for Gray Water

Vacuum Collection Tank	30 gal.	(4.4 cu. ft.)
Sewage Holding Tank	200 gal.	(27 cu. ft.)
Galley/Turbid Holding Tar	nk 2063 gal.	(276 cu. ft.)

Required

Discussion

The system installation appear to be acceptable subject to certain limitations.

Reuse of existing piping arrangement should be considered. A fresh water flushing system is required for this system.

The Vacuum Collection Tank, its vacuum equipment, Sewage Holding Tank and sewage overboard pumps can be located in the Engine Room in the area where the existing Collecting Tank is presently installed.

The Galley/Turbid Holding Tank and overboard pumps can be located in the Hold No. 2 Storeroom area where the Retention Tank is presently installed.

Minor rearrangements of existing equipment may be necessary in both compartments.

The Galley/Turbid drains in the Engine Room must be manifolded and led to the G/T Holding Tank via a pipe tunnel through the fuel oil tanks or the void space (depending on the vessel's arrangement) between the Engine Room and Hold No. 2.

It is recommended that the galley and turbid drains aft of Frame 17 continue to utilize the existing 25 gallon collecting tank and pump. This must be rearranged to discharge forward to the new G/T Holding Tank in Hold No. 2. The single drinking fountain drain between Frames 14 and 15 must be tied in to the gravity system going forward instead of retaining its own independent overboard discharge. This overboard connection could be blanked off.

System No. 9 (Cont'd)

The existing pipe tunnel between the Engine Room and Hold No. 2 could be retained for sewage transfer to the existing overboard discharge connection in Hold No. 2 or to the existing pierside deck connection.

Existing overboard discharge connections and deck discharge connections can be retained for use with the new installation.

1 1. : 41

÷

· . .

and the second second

a na shekara na Na tarkara sa sa sa sa gara tarkara ni Kaliman 🕮 ni 🖬 🔐

A-17

.

an a strate

وتواليا والتراجي المتحاد وتحج

a second seco

. . ..

WMS No. 10 JERED Reduced Volume Flush Vacuum Collection/Incinerator for Concentrated Black Water/Holding Tank for Gray Water

Required

Vacuum Collection Tank Galley/Turbid Holding Tank Incinerator Feed Tank (Sludge) Fuel Oil Day Tank 120 gal. (18 cu. ft.) 2063 gal. (276 cu. ft.) 50 gal. (6.5 cu. ft.) 22 gal. (3.0 cu. ft.)

Incinerator

One (1) Thiokol

Discussion

The system installation appears to the acceptable subject to certain limitations.

Reuse of existing piping arrangements should be considered. A fresh water sanitary flushing system is required.

The Vacuum Collection Tank, vacuum equipment and overboard discharge pump could be located in the Engine Room in the area where the existing Collecting Tank is fitted. The Incinerator, its feed (sludge) tank, blower, fuel tank, controls, etc. would be located just aft of the Vacuum Collection Tank. The incinerator stack can be run to the weather alongside the exhausts from the existing diesel engines up the machinery casing.

The Galley/Turbid Holding Tank and its overboard pumps would be located in the Hold No. 2 Storeroom area where the present Retention Tank is installed.

Minor rearrangements of existing spaces and machinery may be necessary in both compartments to accommodate the new units.

The existing 25 gallon Galley Drain Tank should remain in use and the pump discharge piping revised to discharge to the Galley/Turbid Holding Tank in Hold No. 2. The single drinking fountain drain between Frames 14 and 15 should be connected to the gravity Galley/Turbid drain running to the G/T Holding Tank and the independent overboard discharge disconnected and blanked off.

VESSEL: WHITE SAGE (133')

J

System No. 10 (Cont'd)

The existing pipe tunnel between the Engine Room and Hold No. 2 would be used for the piping necessary to pump out the Vacuum Collection Tank.

The existing overboard shell and deck connections should be retained for use with the new system.

The G/T drain main in the Engine Room should be run to the G/T Holding Tank in Hold No. 2 via the pipe tunnel.

WMS No. 11 JERED Reduced Volume Flush Vacuum Collection/GATX Evaporator for Concentrated Black Water/Holding Tank for Gray Water

Vacuum Collection Tank Galley/Turbid Holding T			۰ ۱	30 gal. (4.4 cu. ft.) 2063 ga. (276 cu. ft.)	
Evaporator (GATX) Catalytic Oxidizer	• • • • •	2 	5	One (1) - 80 gal. One (1)	

Required

Discussion

The system installation appears to be acceptable as follows:

Reuse of existing piping arrangements would have to be considered. A fresh water sanitary flushing system is required with this system.

The Vacuum Collection Tank, Evaporator and Catalytic Oxidizer can be located in the area presently occupied by the Collection Tank in the Engine Room.

The Galley/Turbid Holding Tank could be located in the Hold No. 2 Storeroom area presently occupied by the Retention Tank.

The existing 25 gallon Galley Drain Tank should remain in use and the pump piping revised to discharge to the Galley/Turbid Holding Tank in Hold No. 2. The single drinking fountain discharging overboard at frames 14/15 should be reconnected to the gravity G/T drain to the G/T Holding Tank. The overboard discharge should be blanked off.

Existing overboard shell and pierside dec' connections should remain for use by the new system.

The pipe tunnel between Engine Room and Hold No. 2 would be used for the piping necessary to pump out the Vacuum Collection Tank.

The G/T drain main in the Engine Room should be run to the G/T Holding Tank in Hold No. 2 via the pipe tunnel.

WMS No. 12 JERED Reduced Volume Flush Vacuum Collection/Holding Tank for Concentrated Black Water/Grumman Flow Through System with Sludge Holding Tank for Gray Water

	法保护 网络马拉马马	1999 y C. A. C. Article and C. A. Article and C. Ar
G/T Influent Surge Tank	323 g	al. (43 cu. ft.)
Sludge Holding Tank		al. (23 cu. ft.
Sewage Vacuum Collection 'fan	k 30 g	al. (4.4 cu. ft.)
Sewage Holding Tank		al. (27 cu. ft.)

Grumman Unit

One (1)

Required

Discussion

The system installation appears to be acceptable subject to certain limitations.

Reuse of existing piping arrangements would have to be considered. A fresh water sanitary flushing system would be required.

The Vacuum Collection Tank, Vacuum equipment, Sewage Holding Tank and sewage overboard pumps could be located in the Engine Room in the area where the existing Collecting Tank is fitted.

The Galley/Turbid Influent Surge Tank and its pump would be located just aft of the aforementioned sewage equipment, also in the Engine Room. This will require minor rearrangement of existing equipment.

The Grumman MSD, Sludge Holding Tank (and its discharge pump) could be located in the Hold No. 2 Storeroom area in where the existing Retention Tank is fitted. Some rearrangement of this compartment may be necessary.

The existing 25 gallon Galley Drain Tank should remain in use and discharge to the Influent Surge Tank. The single drinking fountain drain between Frames 14 and 15 should be connected to the gravity G/T drain to the Influent Surge tank and the independent overboard connection disconnected and blanked off.

n airte fi Seo na Si

System No. 12 (Cont'd)

The pipe tunnel between the Engine Room and Hold No. 2 would be used to transfer wastes from the Sludge Holding Tank to the Sewage Holding Tank (for pierside discharge) and from the Sewage Holding Tank to overboard and pierside discharge.

Existing overboard discharge connections and deck discharge connections could be retained for use with the new installation.

WMS No. 13 JERED Reduced Volume Flush Vacuum Collection/Grumman Flow Through System for Gray Water/Incinerator for both Concentrated Black Water and Gray Water Sludge

	Required		
Galley/Turbid Surge Tank	323 gal. (43 cu. ft.)		
Vacuum Collection Tank	30 gal. (4.4 cu. ft.)		
Fuel Oil Day Tank	40 gal. (5.3 cu. ft.)		
Grumman Unit	One (1)		
Incinerator One (1) Th			

Discussion

The system installation appears acceptable as follows:

Reuse of existing piping arrangements would have to be considered. A fresh water sanitary flushing system would be required for this system.

The Vacuum Collection Tank and vacuum equipment would be located in the Engine Room in the area where the existing 220 gallon Collecting Tank is fitted. The Galley/Turbid Surge Tank and its pump would be located just aft of the Vacuum Collection Tank and equipment. This may require some relocation of existing equipment.

There are two possible locations to be considered for the location of the Grumman MSD and its incinerator. One location would be in the Engine Room just aft of the Vacuum Collection arrangement near the centerline, with its stack going to the weather alongside the existing diesel engine exhausts. The other location would be in Hold No. 2 in the place occupied by the 810 gallon Retention Tank in the storeroom area, with the Incinerator stack running to the weather alongside the kingpost.

There would be some equipment relocations to be considered.

The existing pipe tunnel between the Engine Room and Hold No. 2 would be used for piping runs to overboard and pierside connections and the Grumman MSD, if located in Hold No. 2.

Vessel: WHITE SAGE (133') System No. 13 (Cont'd)

The existing 25 gallon Galley Drain Tank will remain in use with the pump discharge piping revised to connect to the G/T Surge Tank. The single drinking fountain at frames 14/15 would be reconnected to the gravity G/T drain to the G/T Surge Tank. The overboard discharge should be blanked off.

Existing overboard discharge connections and deck discharge connections could be retained for use with the new installation.

A-24

X# .

WMS No. 14 GATX Reduced Volume Flush M/T Pump Collection/Holding Tank for Concentrated Black Water/Holding Tank for Gray Water

Required

Galley/Turbid Holding Tank Sewage Holding Tank Discharge Pumps (4) 2,063 gal. (276 cu. ft.) 232 gal. (31 cu. ft.) 10 - 30 gpm

Discussion

The system installation appears to be acceptable as follows:

Reuse of existing piping arrangements should be considered. A fresh water flushing system is required for this system.

The Galley/Turbid Holding Tank could be located in the Hold No. 2 Storeroom area in the space presently occupied by the Retention Tank.

The Sewage Holding Tank can be located in the Engine Room in the space now occupied by the Collection Tank.

The existing pipe tunnel between the Engine Room and Hold No. 2 would be used for piping runs to overboard and pierside connections and from G/T Holding Tank to the Sewage Holding Tank.

The existing 25 gallon Galley Drain Tank will remain in use with the pump discharge piping revised to connect to the G/T Holding Tank. The single drinking fountain at frames 14/15 would be reconnected to the gravity G/T drain to the G/T Holding Tank. The overboard discharge should be blanked off.

Existing overboard discharge connections and deck discharge connections could be retained for use with the new installation.

WMS No. 15 GATX Reduced Volume Flush M/T Pump Collection/Incinerator for Concentrated Black Water/Holding Tank for Gray Water

Required

Galley/Turbid Holding Tank Incinerator Feed Tank Fuel Oil Day Tank 2,063 gal. (276 cu. ft.) 50 gal. (6.7 cu. ft.) 22 gal. (3 cu. ft.)

Incinerator

One (1) Thiokol

Discussion

The system installation appears to be acceptable subject to the following:

Reuse of existing piping arrangements should be considered. A fresh water flushing system is required for this system.

The Galley/Turbid Holding Tank can be located in the Hold No. 2 Storeroom area where the existing Retention Tank is located. Minor space rearrangement may be necessary.

The Incinerator, Fuel Oil Day Tank and Incinerator Feed Tank can be installed in the area presently occupied by the Collecting Tank in the Engine Room. Minor equipment rearrangement may be required. Stack can run up the casing.

The pipe tunnel between the Engine Room and Hold No. 2 would be used for piping runs to overboard and pierside connections.

The existing 25 gallon Galley Drain Tank will remain in use with the pump discharge piping revised to connect to the G/T Holding Tank. The single drinking fountain at frames 14/15 would be reconnected to the gravity G/T drain to the G/T Holding Tank. The overboard discharge should be blanked off.

Existing overboard discharge connections and deck discharge connections could be retained for use with the new installation.

WMS No. 16 GATX Reduced Volume Flush M/T Pump Collection/GATX Evaporator for Concentrated Black Water/Holding Tank for Gray Water

Required

Galley/Turbid Holding Tank

2,063 gal. (276 cu. ft.)

Catalytic Oxidizer Evaporator (GATX) Discharge Pumps (4) Macerator/Transfer Pumps (2) One (1) One (1) 80 gal. 10 - 30 gpm

Discussion

The system installation appears to be acceptable within certain limitations:

Reuse of existing piping arrangement should be considered. A fresh water flushing system is required for this system.

The Galley/Turbid Holding Tank and pumps can be located in the Hold No. 2 Storeroom area to replace the existing Retention Tank. Minor space rearrangement may be necessary.

The Evaporator, Catalytic Oxidizer and pumps can be installed in the Engine Room in the area where the existing Collecting Tank is located. Minor machinery rearrangement may be required.

The existing pipe tunnel between the Engine Room and Hold No. 2 would be used for piping runs to overboard and pierside connections.

The existing 25 gallon Galley Drain Tank will remain in use with the pump discharge piping revised to connect to the G/T Holding Tank. The overboard discharge should be blanked off.

Existing overboard discharge connections and deck discharge connections could be retained for use with the new installation,

WMS No. 17 GATX Reduced Volume Flush M/T Pump Collection/Holding Tank for Concentrated Black Water/Grumman Flow Through System with Sludge Holding Tank for Gray Water

e ne ne esta esta esta esta esta esta esta est	Required	Required		
Sewage Holding Tan	nk			
Influent Surge Tank	323 gal. (43 cu. ft.)			
Sludge Holding Tanl	k 172 gal. (23 cu. ft.)			
Grumman Unit	One (1)			
Macerator/Transfe	er Pumps (2)			
Discharge Pumps (4	4) 10 - 30 gpm			

Discussion

The system installation appears to be acceptable within certain limitations and alternatives:

Reuse of existing piping arrangement should be considered. A fresh water flushing system is required for this system.

In view of the close piping interconnection between the components, and the fact that pierside discharge is via Hold No. 2, it appears advisable to locate the Grumman Unit. Sludge Holding Tank, Sewage Holding Tank and Influent Surge Tank in the Hold No. 2 Storeroom area presently occupied by the Retention Tank. This will probably require minor rearrangement of the space.

An alternate is to locate the Sewage Holding Tank in the Engine Room in the space now filled by the Collection Tank. This will, however, require extra lengths of piping between Hold No. 2 and the Engine Room for Sludge Tank discharge and Influent Tank discharge to the Sewage Tank and Sewage Tank discharge to pierside connections.

The Galley/Turbid drain main in the Engine Room must be led to the Influent Surge Tank in Hold No. 2 via a pipe tunnel through the fuel oil tanks or tne void space between the fresh water tanks and the fuel oil tanks (if fitted).

Style and the second

The existing 25 gallon Galley Drain Tank will remain in use with the pump discharge piping revised to connect to the G/T Surge Tank. The single drinking fountain at frames 14/15 would be reconnected to the gravity G/T drain to the G/T Surge Tank. The overboard discharge should be blanked off.

and a second second

「「「「「「「「「」」」」

Existing overboard discharge connections and deck discharge connections could be retained for use with the new installation.

WMS No. 18 GATX Reduced Volume Flush M/T Pump Collection/Grumman Flow Through System for Gray Water/Incincerator for both Concentrated Black Water and Gray Water Sludge

	 	Ree	quired
Sewage Surge Tan			(5.7 cu. ft.)
Galley/Turbid Sur Fuel Oil Day Tank	ورياسية والمراجع	323 gal.	(43 cu. ft.)
		An Bort	-

Grumman UnitOne (1)IncineratorOne (1) Thiokol

Discussion

11111

The system installation appears to be acceptable as follows:

Reuse of existing piping arrangement should be considered. A fresh water flushing system is required for this system.

The Galley/Turbid Surge Tank and the Sewage Surge Tank can be located in the Engine Room in the space now occupied by the Collecting Tank.

The Grumman Unit, Incinerator and Fuel Oil Day Tank can be located in the Engine Room between Frames 14 and 15, port side near the centerline. This will require the relocation of the Log Desk, Telephone Booth and possibly the Air Conditioning Water Chiller. The incinerator stack could run up the casing to the weather with the existing Diesel engine exhaust piping. In this arrangement, the pipe tunnel between the Engine Room and Hold No. 2 would be used for piping runs to overboard and pierside connections.

An alternate would be to locate the Grumman Unit, Incinerator and Fuel Oil Day Tank in the Hold No. 2 Storeroom area in the space now occupied by the Retention Tank. The stack could be led up the side of the kingpost up to the towing light.

In this arrangement the pipe tunnel would be used for overboard and pierside discharge piping plus feed piping to the Grumman Unit.

Vessel: WHITE SAGE (133') System No. 18 (Cont'd)

Possibly the best arrangement is to locate all of the equipment in the Hold No. 2 Storeroom area. In this arrangement the separate Sewage and G/T mains must be led from the Engine Room to the Hold No. 2 Storeroom area via the pipe tunnel.

The existing 25 gallon Galley Drain Tank will remain in use with the pump discharge piping revised to connect to the G/T Surge Tank. The single drinking fountain at frames 14/15 would be reconnected to the gravity G/T drain to the G/T Surge Tank. The overboard discharge should be blanked off.

Existing overboard discharge connections and deck discharge connections could be retained for use with the new installation.

• U.S.G.P.O. 727-078/1302-1638