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Abstract

Let X be a discrete random variable the set of possible values (finite

or infinite) of which can be arranged as an increasing sequence of real numbers

a1 
< a~ < a3 < ... . In particular, a~ could be equal to i for all i. Let

X. < X < ... < X denote the order statistics in a random sample of size nin— 2n— — nn

drawn from the distribution of X, where n is a fixed integer > 2. Then, we show

that for some arbitrarily fixed k(2 < k < n), independence of the event

and is equivalent to X being either degenerate or geometric. We

also show that the montonicity in i of P(X~~.X1 f X1~ Ca
~} is equivalent to X

having the IFR (DFR) property. Let a
i~
i and G(i)—P(X>i), i~l,2 We prove

that the independence of {X2n
_X
in C B) and 

X
1 

for all i is equivalent to

X being geometric,where B—{m} (B—{in ,m+1,.. .} ),  provided G(i)a.,q
i 1

, l<i(m+2

(l<i<m+l), w h e r e O < q < l .

1. Introduction.

Several contributions have been made to characterizing the geometric

distribution using order statistics. Ferguson (1965) has shown that the

independence of the smallest observation and the sample range in a random sample

of size 2 drawn from a non—degenerate discrete population implies and is implied

by the discrete distribution being geometric. If the underlying distribution is

that of an unbounded lattice variate, Srivastava (1974) has shown that Xin and

the event {x1~ — ... — X~~} are independent if and only if the distribution is

geometric, where X
~r~ 

denotes the ith smallest order statistic in a random

sample of size n (i—1 ,...,n). Galambos (1975) has extended Srivastava’s 
-_______

result to the situation where the set of possible values of the discrete random
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variable (finite or infinite) can be arranged in an increasing sequence (i.e.

the set of possible values need not be of the form {ct+8i, i—l,2,.. . ,~#o}. The

main theme of our paper is to generalize the existing results in two directions:

(i) For some arbitrarily fixed lc(2 < k < n) the independence of and

{X
k~~

X
J } should suffice to characterize the geometric distribution. (ii) For

a1—i, the independence of X
1~ 

and {X
2~—X1~~m}. 

or and {X2n~Xi~~m} for

some fixed m>l should suffice to characterize the geometric distribution. In

addition, nionotonicity of P(X~~~
X
i~

IXi~~
ai
) in i for some arbitrarily fixed

k can be employed to characterize the discrete IFR (DIR) distributions.

2. Notation and Definitions.

The random variables X, < X < ... < X denote the order statisticsin— 2n— — nfl
corresponding to the n i.i.d. random variable Xl~

_ •
~
Xn• We denote by N the

set of the natural numbers and by I a segment of N, where by a segment we mean

that either I — N, or I — {iEN: i < r} for some rcN.

The sequence of real numbers {a~: iCI} is said to be strictly increasing

i f a1 < a ~~when i < J ~~ i~icI.

Throughout this paper “increasing ” is used in place of “nondecreas ing”

and “decreasing” is used in place of “nonincreasing”.

Definition 2.1. Let X be a discrete random variable the set of possible values

of which can be represented by a strictly increasing sequence of real numbers

{a~: id ). Let C(i)ii.P(X>a~ ) ,  id. Then X is said to have increasing

(decreasing) failure rate distribution (denoted by IFR (DIR) distribution),

if G(i+l)/G(i) decreases (increases) in I c I.

Definition 2.2.  Let X be a discrete random variable the set of possible

values of which can be represented by a strictly increasing infinite sequence

of real number a1 < a2 < .... Let G(i)—P(X)a1
), i—l,2 The random variable

X is said to be geometric if G(i).’q
1
~~, 1—1,2,..., where 0 < q < 1.
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3. Main Results.

Let XL, X2, . . . ,  X , n>2 be independent and identically distributed (i.i.d.)

discrete random variables. Assume that the set of possible values of X1 
can be

represented by a strictly increasing sequence of real numbers {a1
: Ic!) . In

particular, a~ could be equal to I for all 1.

The following Lemma gives a characterization of degenerate random variables

and is useful in proving Theorem 3.1.

Lemma 3.1. Let X
1 
be a discrete random variable. Then X,1 is degenerate if

and only if P(X1 —X.~~)—l , where k is an arbitrarily fixed postive integer

(2<k<n).

Proof. If X
1 
is degenerate then trivially P(Xin X

~~
)U11l* Now assume that X1 

is

non—degenerate. Then there exists two real numbers b1, b2 such that

P(X1—b1) > 0  and P(X1—b 2 ) > 0 , where , without loss of generality, we assume

that b1 < b 2. Now, P
~
Xlfl

,LXkfl
} > P{X1 —b 1, XZn — X

3 
— ... = X~~=b 2} > 0,

therefore P~X1~~X,~~} < 1 which completes the proof.

Remark 3.1. It should be noted that the conclusion of Lemma 3.1 remains valid

even if X1 is an arbitrary random variable.

We are ready to state and prove the main results.

Theorem 3.1. Let X.1~ be a discrete random variable the set of possible values

of which can be represented by a strictly increasing sequence of real numbers

{a 1: id ). Let.k be an arbitrarily fixed positive integer (2’k< n). Then X
1~

is independent of the event {Xlfl=Xkn
} if and only if X1 is degenerate or

P(X 1>a~ )—q 11, ial ,2 , . . . ,  where 0 < q < 1.

Proof. First observe that if X1 is degenerate or if P (X>a~ )’.q1
~~~, i 1 ,2 , . . . ,

then in either case is independent of the event ~x1~—x.~ }. Next , in order

to prove the converse, let G(i) — P(X> a~ ). By hypothesis we have
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~~n~~ 1n’ Xi.n~~ i) — P(X
~~~

Xin) P(X in ai). Writing P(X1~~ X~~~ a~ )

— E ~~~~~~~~~~~~~~~~~~~~~~~~~~~ and setting j’—n—j we are led to the
j~ k

following equa t ion :

j,_O j ln

for all id . (3.1)

Now either I — {icN: i<r} for some rcN or I—N. In case I — (icN: i<r}

for some rEN , then setting i—r in (3.1) we obtain

— P(X
1 —X,~~)G’1(r) where G(r) > 0.

Hence we must have P(X
1~

—X.~~)~l, which by Lemma 3.1 implies that is

degenerate. Next, assume that I—N. Dividing both sides in (3.1) by G~~(i)

and letting q(i) — G(i+1)/G(i) we have

n—k
E (n)Eq(i)]i [l_q (i)]n_i}(l..(q(i)ln)

_l
.P(x X, ),j in tcn

for i’.l,2 (3.2)

Notice that 0 < q(i) < 1. Let be a binomial random variable with parameters

(n , q ( i ) ) ,  1—1,2,..., then the numerator of L.LS. of (3.2) is P(YiIn—k). Since

P(Y~ < n—k) — l—P(Yi > n—k+l) k (~~) fq( i)u (l—tl) du, the L.H.S. of (3.2)

can be written as {k ~~ 
j~
_q(i)~

k_i (l...~)
n_k 

dt}/(l—q~(i)). Nov since the

R.R.S. of (3.2) is free of i the L.H.S. is constant in i—l,2,3 Now let

f (x)  — {k (~~) ;i—x~
k—l 

(l— t)’~~ dt}/ (i—x~
’), 0 < x < 1. (3.3)

Differentiating with respect to x we have

f’(x) {k(~ )x1
~

tC 
[nx

k
~~ f~~~t~~

1 (l~t)~’~~ dt — (l_x)k 1 (l_xn)]}(l_xn)
2
.

To show that f’(x) < 0, 0 < x < 1, we first observe that 

~~—-.—— -
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k—l 
J~~ xtk

~
l(l...t)n

~
kdt _ (j _~ )k 1 (1_~ fl ) 

.~~. 
f
l_x (l~~)

n_k
d~~(lX

n
)l

n—k+l 
[nx — (n—k+l)—(k—l)x 1.

Now, let g(x) — nx’~~ — (n—k+1) — (k—l)x11
. Since g(O) < 0, g(l) — 0 and

g’(x) — n(k_l)x
k_2

(l_x
fl_
~~~) > 0 for 0 < x < 1 it follows that g(x) < 0 for

0 < x < 1.

Consequently f’(x) < 0, 0 < x < 1 which implies that f(x) is strictly

decreasing. This together with (3.2) implies that q(i) is constant for

1—1,2 Let q(i) — q where 0 < q < 1. It follows that G(i) —

1—1,2,..., which completes the proof of the theorem.

The following is an easy corollary 2 Theorem 3.1:

Corollary 3.1.1. Let X
1 
be as in Theorem 3.1. The X

1~ 
is independent of the

event {X
~n 

> Xin} if and only if X1 is degenerate or P(X1>a1) —

i’1,2,..., O < q < l .

Proof. The proof follows immediately by observing that the event > x~~
}

is the complement of the event {X
1~ 

—

Remark 3.1.1. Theorem 3.1 states that X1~ and {x1 — ... — X.K
} are

independent if and only if X
1
has geometric distribution or X is degenerate.

In particular, when k—n. Theorem 3.1 conincides with Galambos’ (1975) result.

Our next theorem gives a characterization of the discrete IFR (DIR)

distributions in terms of the montonicity in i of P(Xl~~
Xk lXl aj). Such

a characterization will be useful in constructing statistical tests for such

classes of life distributions.

Theorem 3.2. Let X1 be as in Theorem 3.1. Then X,~ has IFR (DFR) distribution

if and only if P{Xlflu X kflIXlfl~
aj} increases (decreases) in i, where again

2 1 k I a is an arbitrarily fixed integer.

j
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Proof. As in the proof of Theorem 3.1 we have

P{X1~—X.~~lX~1
aaj} — {k (~~) u

i_q(i)
t
k_l 

(l—t)~~
’ dt}(l—q~ (i))

1
, id

where q(i) — G(i+l)/G(i) id. {Notice that G(i) > 0 for id ). Again let

f(x) — {k (~~) t~~
x
~
k4 (l_~)

n_k 
dt}(l—x~)~

1
, 0 $ x < 1. We have shown in

the proof of Theorem 3.1 that f(x) is strictly decreasing in x. Consequently

P{L
l
aX
k IXl~~

aj} increases (decreases) in i if and only if G(i+l)/G(i)

decreases (increases) in i, which completes the proof.

Remark 3.2.1. One may give the following intuitive explanation of Theorem

3.2. If X
1 
has an increasing failure rate then as the given value of X

1~

gets larger, the values of X~,...X are more likely to be “close” to one

another. Consequently the probability of ties among X1n~ *•• ~
Xnn gets higher.

Similar intuitive explanations of Theorem 3.1 can be given that is based on

the “lack of memory” property of the geometric distribution.

Let be as in Theorem 3.1, and assume that ~~~~ id. Then for k—2,

Theorem 3.1 can be stated as follows: X,1~ is independent of {x —X,1 0}

if and only if X,~ is degenerate or P(X1>i) — q
i_l

, 1—1 ,2,..., 

2n n

One might ask whether the event {X2n~
.X
in

11O} can be replaced by the event

~n~~ln~~~ 
or {X2~

_X
1~~

m} where in > 0? The following theorem gives an

affirmative answer provided we assume some boundary conditions (which

automatically rule out the possibility of X1 being degenerate).

Theorem 3.3. Let X
1 
be a discrete random variable the set of possible values

of which is I. Let G(i) — P(X>i), id , and in > 1 be arbitrarily fixed

positive integer. Then

(i) G(i) — q~~
1 
1 1 i $ m+2 0 < q < 1 and X11~ is independent of the

event {X2~
—X
1~’m} 

if and only if G(i) — q
11

, i l ,2,3 

(ii) G(i) — q
i l  

i 
~ 
1 
~ 
m+l, 0 < q < 1, and X~~ is independent of the

event ~X2~—X11~~n} if and only if G(l) — q
i~~ , i—l,2 
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Proof. We provide the proof for (ii) only , since (i) can be proved in a

similar fashion. By the independence assumption we have

P(X2n
_X
i~~

m IXin~
i) is free of i, where id . (3.4)

Now

P(X
2~

—X
1 >mIX1

i)[P(X
2~~tn+i ,X1 

>i)—P(X2~~m+i ,X1 
>i-4-l) 1/ (P(X1~~i—P(X1 >i+l)]

= (nG
U_l
(i+m)[G(i)_Q(i+l)])/(G

t1
(i)_G

t1
(i+l)).

Setting ial and using (3.4) we have

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
(3.5)

By the boundary conditions the L.H.S. of (3.5) is equal to

(n q~~
_i
~m[1_ qJ)/(1_qn)~ Substituting in (3.5) and using induction we

obtain G(i) = q11
, i—l,2,..., i.e. X.~ is geometric and the proof is now

complete

Remark 3.3.1. Notice that results (i) and (ii) in Theorem 3.3 have different

sets of boundary conditions. A].~o notice that for m’~l, (ii) is subsumed by

Corollary 3.1.1 with k 2  and a
1 i.
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