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Abstract

Let X be a discrete random variable the set of possible values (finite
or infinite) of which can be arranged as an increasing sequence of real numbers

a, < a, < a, < ... . In particular, a, could be equal to i for all i. Let

i
T in e s xnn denote the order statistics in a random sample of size n
drawn from the distribution of X, where n is a fixed integer > 2. Then, we show

that for some arbitrarily fixed k(2 < k < n), independence of the event

{an = xln} and Xln is equivalent to X being either degenerate or geometric. We
also show that the montonicity in i of P{an-xlnlxln-ai} is equivalent to X

having the IFR (DFR) property. Let ai-i and G(1)=P(X>i), i=1,2,.... We prove

that the independence of {x2n'x1n € B} and X, for all i is equivalent to

i-1

1n

X being geometric,where B={m} (B={m,m+l,...}), provided G(i)=q~ ~, 1<i<m+2

(1<i<m+l), where 0 < q < 1.

1. Introduction.

Several contributions have been made to characterizing the geometric
distribution using order statistics. Ferguson (1965) has shown that the
independence of the smallest observation and the sample range in a random sample
of size 2 drawn from a non-degenerate discrete population implies and is implied

by the discrete distribution being geometric. If the underlying distribution is

that of an unbounded lattice variate, Srivastava (1974) has shown that xln and

the event {xln - .., = xnn} are independent if and only if the distribution is ﬁ
geometric, where xin denotes the ith smallest order statistic in a random ; . g'

sample of size n (i=1,...,n). Galambos (1975) has extended Srivastava's

result to the situation where the set of possible values of the discrete random
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variable (finite or infinite) can be arranged in an increasing sequence (i.e.

the set of possible values need not be of the form {o+fi, i=1,2,...,B8#0}. The

main theme of our paper is to generalize the existing results in two directions:
(1) For some arbitrarily fixed k(2 < k < n) the independence of X, and
{an-xln} should suffice to characterize the geometric distribution. (ii) For
a;=i, the independence of X, and {X2n-xln=m}, or X, and {XZn-XIBZp} for
some fixed m>1 should suffice to characterize the geometric distribution. In

addition, monotonicity of P(xin=x1n|x1n=ai) in i for some arbitrarily fixed

k can be employed to characterize the discrete IFR (DFR) distributionms.

2. Notation and Definitions.

The random variables x1 <X, <...<X denote the order statistics
n— 2n — — "nn
corresponding to the n i.i.d. random variable X ,...,xn. We denote by N the
set of the natural numbers and by I a segment of N, where by a segment we mean
that either I = N, or I = {ieN: i < r} for some reN.
The sequence of real numbers {31: ieI} is said to be strictly increasing

if a, < a, when 1 < j, 1,jel.

3

Throughout this paper "increasing'" is used in place of "nondecreasing"

and "decreasing" is used in place of “nonincreasing".

Definition 2.1. Let X be a discrete random variable the set of possible values

of which can be represented by a strictly increasing sequence of real numbers
{a;: 4eI}. Let G(1)=P(X>a,), 1i€I. Then X is said to have increasing
(decreasing) failure rate distribution (denoted by IFR (DFR) distribution),

if G(i+l1)/G(1) decreases (increases) in i € I.

Definition 2.2. Let X be a discrete random variable the set of possible

values of which can be represented by a strictly increasing infinite sequence

of real number a; < a, € seve  LEt G(i)-P(ngi), i=1,2,.... The random variable

X is said to be geometric if G(i)-qi~1, i=1,2,..., where 0 < q < 1.

o AR i £k 4




3. Main Results.

Let Xl, Xz, A xn, n>2 be independent and identically distributed (i.i.d.)
discrete random variables. Assume that the set of possible values of Xl can be
represented by a strictly increasing sequence of real numbers {ai: ie1}. In
particular, a; could be equal to i for all i.

The following Lemma gives a characterization of degenerate random variables

and is useful in proving Theorem 3.1.

Lemma 3.1. Let Xl be a discrete random variable. Then Xl is degenerate if
and only if P(Xln=xkn)-1, where k is an arbitrarily fixed postive integer

(2<k<n).

Proof. If Xl is degenerate then trivially P(Xln-xkn)-l. Now assume that Xl is
non-degenerate. Then there exists two real numbers bl’ b2 such that
P(Xl-bl) >0 and P(Xl-bz) > 0, where, without loss of generality, we assume

that by <b,. Now, P{X; #X_} > P{X, =b,, X, =X, =...=X =b,}>0,

3n
therefore P{xln'xkn} < 1 which completes the proof.
Remark 3.1. It should be noted that the conclusion of Lemma 3.1 remains valid
even if Xl is an arbitrary random variable.

We are ready to state and prove the main results.

Theorem 3.1. Let X1 be a discrete random variable the set of possible values
of which can be represented by a strictly increasing sequence of real numbers
{ai: i€I}. Let k be an arbitrarily fixed positive integer (2<<n). Then X
is independent of the event {xln-xkn} if and only if Xl is degenerate or

P(Xlzﬁi)-qi'l, i=1,2,..., where 0 < q < 1.

Proof. First observe that if Xl is degenerate or if P(ngi)-qi-l, el 2 vuny

then in either case is independent of the event {X. =X }. Next, in order
n n “kn

to prove the converse, let G(i) = P(xzpi). By hypothesis we have




S T

P(Xkn xln xln 1) = P(an-xln) P(Xl =3 ) Writing P(Xln-xkn-ai)

- 5 k j)[G(i)-G(i+l)]J[c(1+1)]“ j, and setting j'=n-j we are led to the

following equation:
n-k
Tk Go e (o= 1™ e =% ) (P @)-c (@],

for all iel. (3.1)
Now either I = {ieN: 1i<r} for some reN or I=N. In case I = {ieN: i<r}
for some reN, then setting i=r in (3.1) we obtain
*(r) = (X, =X )G (r) where G(r) > 0.
Hence we must have P(xln-xkn)-l, which by Lemma 3.1 implies that Xl is
degenerate. Next, assume that I=N. Dividing both sides in (3.1) by ¢t (1)

and letting q(i) = G(i+1)/G(1i) we have

.

{jfz P law P a1 a-taw M =x ),

for i=1,2,.... (3.2)

Notice that 0 < q(1) < 1. Let Yi be a binomial random variable with parameters
(m, q(1)), i=1,2,..., thén the numerator of L.H.S. of (3.2) is P(Yiﬁp-k)- Since
P(Y; < n-k) = 1-P(Y, > n-k+l) = k (k) i (1) R 1) “l4u, the L.H.S. of (3.2)
can be written as {k (k) fé-q(i)tk = 1-t)*" - dt}/ (1-q"(1)). Now since the
R.H.S. of (3.2) is free of i the L.H.S. is constant in i=1,2,3,.... Now let

1- -X, k-1

£) = {k Q) fy A=) ey, 0 <x <1, (3.3)

Differentiating with respect to x we have
£ 00 = (k@ @ 2 @0 ae - a0 a1 a7

To show that f'(x) < 0, 0 < x < 1, we first observe that




L A7 o)™ K ae - -0 ™ < @0 P A a0 ae- 0]
k-1
= o) oKL (asier) - (k=151
Now, let g(x) = nxk-l - (n~k+1) - (k-l)xn. Since g(0) < 0, g(1) = O and

g'(x) = n(k-l)xk-z(l-xn-k+1

) >0 for 0 < x <1 it follows that g(x) < O for
0 <x<1. ;
Consequently f'(x) < 0, 0 < x < 1 which implies that f(x) is strictly
decreasing. This together with (3.2) implies that q(i) is constant for
i=1,2,.... Let q(i) = q where 0 < q < 1. It follows that G(i) = qi-l,
i=1,2,..., which completes the proof of the theorem.
The following is an easy corollary 2 Theorem 3.1:

Corollary 3.1.1. Let Xl be as in Theorem 3.1. The x1n is independent of the

i-1
event {xkn > xln} if and only if X1 is degenerate or P(xlzgi) =q 5

i=1,2,..., 0 < q < 1.

Proof. The proof follows immediately by observing that the event {Xk“ > xin}

is the complement of the event {xln = an}.

Remark 3.1.1. Theorem 3.1 states that X, and {xln _ SO an} are

independent if and only if’xlhas geometric distribution or X is degenerate.

In particular, when k=n. Theorem 3.1 conincides with Galambos' (1975) result.
Our next theorem gives a characterization of the discrete IFR (DFR)

distributions in terms of the montonicity in i of P{xln-xkn‘xin-ai . Such

a characterization will be useful in constructing statistical tests for such

classes of life distributions.

Theorem 3.2. Let X1 be as in Theorem 3.1. Then Xl has IFR (DFR) distribution

if and only 1if P{x1n-xkn|x1n-ai} increases (decreases) in i, where again

2 <k <n is an arbitrarily fixed integer.




Proof. As in the proof of Theorem 3.1 we have
J= -

Py mag} = 6 Q) TV
where q(i) = G(i+1)/G(1) ieI. {Notice that G(i) > O for icI}. Again let

A-£)""% de1-a"@"r, tel

f(x) = {k (:) f%_xtk-l (l-t)n_k dt}(l-xn)-l, 0 <x<1. We have shown in
the prcof of Theorem 3.1 that f(x) is strictly decreasing in x. Consequently
P{xln-xknlxln-ai} increases (decreases) in i if and only if G(i+1)/G(i)

decreases (increases) in i, which completes the proof.

Remark 3.2.1. One may give the following intuitive explanation of Theorem
3.2, 1If X1 has an increasing failure rate then as the given value of Xln
gets larger, the values of 1(1,...}(.n are more likely to be '"close'" to one
another. Consequently the probability of ties among X n""’xnn gets higher.
Similar intuitive explanations of Theorem 3.1 can be given that is based on |

the "lack of memory" property of the geometric distribution.

Let X1 be as in Theorem 3.1, and assume that a

i-i’ ieI. Then for k=2,
Theorem 3.1 can be stated as follows: xln is independent of {XZn—Xlnso} |
if and only if Xl is degenerate or P(xlzi) = qi-l, w102, .00y O < q < 1.
One might ask whether the event {x2n-xln-o} can be replaced by the event ;

{in-xln-m} or {XZn-Xanp} where m > 0? The following theorem gives an
affirmative answer provided we assume some boundary conditions (which

automatically rule out the possibility of Xl'being degenerate).

Theorem 3.3. Let Xl be a discrete random variable the set of possible values

of which is I. Let G(i) = P(X>1), 1€I, and m > 1 be arbitrarily fixed

positive integer. Then

i-1

(1) G{H) = q 1<1<m20<q<1andX i is independent of the

1
event {xzﬂ-xln-m} if and only if G(i) = qi-l, 81,253 5005

i-1

(i1) G(1) = ¢q = y 1<1<ml, 0 <q<1, and xln is independent of the

i-1
event {x2n-x nzp} if and only if G(i) = q° ~, i=1,2,....

1
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Proof. We provide the proof for (ii) only, since (i) can be proved in a

similar fashion. By the independence assumption we have

P(x2n-x1n3plxln-i) is free of i, where icl. (3.4)
Now
P(X, -X, >m|X, =1)=[P(X, >wHi,X; >1)-P(X, >w+i,X; >i+1)]/[P(X; >i-P(X; >i+1)]

= (6" L (14m) [G(1)-6(1+1) 1)/ (6™ (1)-6" (1+1)).
Setting i=1 and using (3.4) we have

(6™} (14m) [6(1)-6(2) 1)/ (6™ (1)-G™(2) )= (6" L (44m) [G(1)-G (1+1) 1)/ (6™ (1)-C™ (4+1))
(3.5)
By the boundary conditions the L.H.S. of (3.5) is equal to

(n q(n-l)m[l-q])/(l-qn). Substituting in (3.5) and using induction we

i-1

obtain G(i) = q s ImE 2 oy Tee. X1 is geometric and the proof is now

complete .

Remark 3.3.1. Notice that results (i) and (ii) in Theorem 3.3 have different
sets of boundary conditions. Also notice that for m=1, (ii) is subsumed by

Corollary 3.1.1 with k=2 and ai-i.
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