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SUMMARY

This document reports the results of an analysis of various
electronic design configurations for a mini-potentiostat to be used
in corrosion research. A candidate circuit design is described and

its operation is compared with that of other units.

The work is being supported by the Naval Air Systems Command
and by NSWC Independent Research funds.

The work is being reviewed by Dr. C. Robert Crowe, Metallic
Materials Branch.

. R. DIXON
By direction

NTIS

boc 8.
MANND!ND
I8 ICAY Iy

RV

DISIRETiow ey RBLATY pnps




NSWC/WOL TR 78-129

PREFACE

This interim report describes an analysis of mini-potentiostat
design configurations. A particular model, utilizing modern opera-
tional amplifier components, was found to be economical while per-
forming adequately under simulated corrosion experiments.

The authors wish to acknowledge Mr. Donald Brickerd for his aid
in constructing the model DH Potentiostat, and to Dr. C. Robert Crowe
and to Mr. Hampton DeJarnette for their constructive comments in
discussions.
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INTRODUCTION

The goal of the present research was to design a mini-
potentiostat suitable for corrosion studies. Specific experimental
requirements were to be met using a device built from state-of-the-
art components which would be economical and show long term elec-
tronic stability.

For more than thirty-five years, electronic devices, now known
as potentiostats, have been utilized in controlled studies of
electrochemical phenomena. A potentiostat is designed to maintain
a precisely controlled potential across electrochemical cell elec-
trodes. Since the applied voltage is different from that found at
steady state between the dissimilar electrodes in a given medium, a
current flow is impressed upon the system. In a corrosion study,
for example, a material to be studied can be made more anodic than
is natural and a controlled corrosion rate can be maintained. The
importance of precise voltage regulation is apparent as the electrode
potential is directly related to the thermodynamic AG (change in
Gibbs free energy) associated with the electrochemical reaction to
be studied. This must remain constant throughout the experimentation
for obtaining meaningful data. In a similar fashion, a material to
be studied can be made more cathodic and, thus, current is forced
into it, providing protection from the corrosive environs. An
excelleni review of the functions of a potentiostat is given by
Gileadi.

The dynamic and electrically sensitive nature of an electro-
chemical cell requires that the addition of an electronic control
circuit must not disturb the ongoing chemical phenomena. As a
result, a third electrode, electrically isolated from the working
cell is used as the standard reference voltage. It is the voltage
difference between the reference electrode and the working elec-
trode which is to be controlled. A control range of -6 volts to
+6 volts is regarded as sufficient for most corrosion experiments.
The second electrode in what has been called the working cell,
denoted the counter or auxiliary electrode, acts as a source or sink
of current required to maintain the set potential between working
and reference.

The reference electrode could be "polarized" by external
currents inadvertently introduced into the system (on the order of
nanotﬂperes). Therefore, a device with very high input impedance
(>10 ohms) is required. At the onset of phenomena such as pitting
or crevice corrosion, large changes in electrochemical potential
are known to occur. It is important, therefore, that the
potentiostat maintain its voltage control over a wide range of both
steady and transient conditions. This translates, electronically,
into the ability of the device to function over many orders of
magnitude of output current flowing between the working and counter
electrodes. Ultimately, the limitations of the potentiostat in
current capacity will limit the size of the test specimen (larger
specimen area, larger current).

)
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Ideally, operational amplifiers (op-amps) should provide a
convenient mechanism for the voltage control required. A good review
of the fundamental work on sinelified design §YP°' utilizing early
op~amps is given by Schroeder. It was shown™ that among the many
basic configurations in which to arrange the necessary electronic
components no simplified circuit would meet all the reguirements of
a potentiostat. The work of the present, then, becomes an optimiza-
tion for specific experimental requirements using state-of-the-art
electronic components.

Since no simple circuits can perform the total range of electro-
chemical experiments adequately, and since the market for such
instrumentation is limited, multipurpose expensive commercial units
using complex circuitry have become the norm for a corrosion
laboratory. The added expense becomes a problem when there is a need
to perform long term or multi-specimen experiments.

This paper discusses a mini-potentiostat design which will
provide an alternative.

I.” Gileadi, E. et al, Interfacial Electrochemistry (Addison~Wesley,
1975), pp. 151-205.

2. Schroeder, R. R., "Operational Amplifier Instruments for
Electrochemistry," Computers in‘phemistr¥ and Instrumentation
Vol. 2, Ch. 10 (Marcel Dekker, Inc., 1972), pp. - "

3. Schwarz, W. M. and Shain, I., Analytical Chemistry, Vol. 35,
1963, p. 1770.
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POTENTIOSTAT DESIGN (DH MODEL)

The ultimate specification to be met by the mini-potentiostat
was defined as its capability to maintain an error in set potential
(i.e. the difference between a dialed-in desired potential between
working and reference and that actually measured) of less than one
millivolt while handling output currents of up to one ampere. There-
fore, the primary experiment performed for the evaluation of design
options was a check of the voltage regulation between v _(that which
was set) and v, (that which was measured across a variaBle resistive
load used as a’cell analog). [Av = vo-vL;iioutput current)

The DH Potentiostat, shown schematically in Figure 1, consists
of several subsections. The operational amplifiers incorporated in
the circuit perform three distinct functions. They serve as a voltage
follower, a summer, and as a current to voltage converter.

Operational amplifier Ul, and its associated components, are used
to convert the current flowing through the working electrode to a
voltage, which is read from a voltmeter. This amplifier must be
capable of sinking up to one ampere of current, per the specifications
cited earlier. The LHO021CK op-amp was chosen as its capacity is
larger than that of more conventional op-amps and its price is not
prohibitive. Other, more expensive components are available, and
might be utilized to adapt the current design for higher current out-
put experiments. The resistor network connected to the non-inverting
input is used to cancel the input offset voltage to obtain accurate
current readings. The two 0.5Q resistors act as current limiters to
protect the operational amplifier from shorts on the output. The
feedback resistor a 1Q 1% component, enables the current to be read
on any voltmeter as:
Vout Fflin®

The voltage followers provide a very high input impedance (>10
ohms) to minimize loading. National Semiconductor LM310 devices
perform this function. U3 is used to eliminate loading of the
reference electrode. U2 isolates the set potentiometer from the
summer. These two voltage followers are required for isolation of
one part of the circuit from the rest of the circuitry to help attain
good performance.

10

The CA3160 amplifier is used to sum the voltage inputs to the
potentiostat. The reference to working electrode potential is
compared to the set voltage by summing. The op-amp changes the
circuit conditions so that the respective magnitudes are exactly

al. An auxiliary input is provided for use with special voltage
orms which the experimenter might wish to impress upon the

Ag electrode. A potentiometer is provided to null out the
of ...t voltage of the summer in combination with U5, the LH0021CK
current booster (one potentiometer corrects two op-amp set points).

e
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The current booster circuit is used to drive large currents
through the experimental cell. It is a high power operational
amplifier (LHOO021CK) connected as a voltage follower. This con-
figuration sacrifices voltage gain for low output impedance and high
input impedance. Low output impedance is very important in the
previously discussed applications where excellent voltage regulation
is required. The effective output impedance is divided by a factor

ofs { (Spen loop gain

closed loop gSIH) + 1}

The closed loop gain equals unity in a voltage follower, so the out-
put impedance is greatly reduced, minimizing output voltage changes
with current fluctuations.

The first model of the DH Potentiostat was constructed in a
3" x 4" x 5" box with an attached heat sink to mount the power op-amps.
A photograph of the assembled unit is included in the report as
Figure 2. If the device is used at maximum current (one amp) and at
a low set potential, the LH0021lCK's must dissipate approximately
14 watts each. A large heat sink is, therefore, required. Numerous
binding posts facilitate connection of the mini-potentiostat to the
experimental apparatus. The power supply connections, meter outputs,
electrode connections, auxiliary power outputs, and sweep input
connections are available. An external sweep module can be con-
structed to plug into the external power and sweep binding posts.

The desired voltage input is set by turning the potential set
knob until the required value is read on the meter connected to the
"potential"” binding posts. These posts are internally connected to
the working electrode and the output of the voltage follower
associated with the reference electrode.

An important concern is the stability of the potentiostat with
time and temperature. Although no tests have yet been run on
component aging, the specifications of the devices indicate drifts
on the order of 10 microvolts per week. Presently there is some
instability with continuous operation at high currents (> 500 ma).
It is believed the difficulty arises because of the temperature
rise of the LHO021CK operational amplifiers. If the high currents
are momentary (<1 sec) as expected in the experiments, there is no
problem. If continuous operatior at high current is required, the

most obvious solutions are the use of a larger heat sink or a fan.
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FIGURE2 PHOTOGRAPHS OF A MODEL DH POTENTIOSTAT (FRONT, SIDE VIEWS)
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CISCUSSION

The DH Potentiostat was compared with several other circuits
for evaluation. The first design evaluated was a unit produced by
Engelhard Industries known as a Capac Polaristat. The application
of the unit, as described by the manufacturer, is "“the study and
application of automatically controlled impressed current cathodic
protection." The unit was marketed in a metal cylinder, 6 inches
long, 1 5/16 inch in diameter, adaptable to an auto battery as a
power supply for the current required to provide cathodic protection.
Since the components of the Polaristat were encased and since
Engelhard had stopped producing the units, a schematic was obtained
and a circuit of the same design was constructed. This schematic is
shown in Figure 3.

The voltage regulation obtained using this design was extremely
poor. It was suspected that since this unit was based on a differen-
tial amplifier, it was of great importance to match the field effect
transistors which control the two legs of the differential to keep
the voltages and currents balanced in each leg. Another drawback
to this kind of design is that it is not adaptable for both anodic
and cathodic control.

Since a fundamental principle underlying operational amplifier
performance is their ability to hold voltages at the plus and minus
inputs nearly equal, a few configurations were attempted using a
single op-amp. The set voltage was entered at the plus input of
the amplifier, while the minus input was associated with the
potential across the load. Two of the variations attempted utilized
high input impedance RCA type CA3160 operational amplifiers connected
with high gain power transistors to the output for current boosting.
These variations were designated "Darlington" and "Emitter Follower."
Figure 4 is a schematic representation of these designs.

The voltage regulation of these units met the specification
cited earlier for output current up to approximately forty milli-
amperes. This was a significant improvement over the differential
amplifier and instilled hope for success.

The authors became aware of work being done by Mansfeld et al4 to
design an inexpensive potentiostat. At about the same time, op-amps
capable of sinking one ampere were ordered, with an eye toward
meeting the specification cited earlier. It was hoped that high in-
put impedance amplifiers could be found, but, none would deliver one
ampere. Therefore, buffer stages utilizing National Semiconductor
LM310 integrated circuits with high input impedance would be needed.

4. Mansfeld, F. and Inman, R. V., Proceedings NACE Corrosion/78
Houston, Paper Number 168.

11
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“DARLINGTON"
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v —
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——

FIGURE4 SCHEMATICS OF THE “DARLINGTON" AND “EMITTER FOLLOWER" OPTIONS
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Figure 5 is a schematic diagram of the Mansfeld Potentiostat.
The DH Potentiostat (developed at NSWC) was illustrated previously
in Figure 1. Both units were built and tested witl good results.
The Mansfeld circuit utilizes LH0044 low noise op~amps with power
transistors wired to their output for current boosting. The DH
circuit uses LH0021 op-amps (one ampere capability), eliminating the
need for additional high gain transistors. Both units require
buffering to minimize input currents through the reference electrode.

The data for the voltage error (Av) plotted against output
current (i) for the options illustrated in Figures 1,4, and 5 is
presented in Figure 6. There is good correlation in the data to
indicate a linear relationship between Av and i. At 500 ma, Av
(Mansfeld) = 9 millivolts, independent of the set voltage, v_, whereas
Av (DH) = 4 millivolts, also, independent of v_. The DH Pot&ntiostat
has a one millivolt error associated with its Set potential at
approximately 150 ma; the Mansfeld unit, at around 80 ma. The data
indicates that the DH unit is better suited to high current operation.
At low current (the order of 20 ma), both units remained in specifi-
cation (less than one millivolt error).

In addition, data was taken across a resistive load using a
Princeton Applied Research (PAR) 173 commercial potentiostat. Only
after adapting the unit by shortening its standard leads was a 1 mv
error specification obtained; as is, the unit performed comparably
to the DH Potentiostat. The maximum output current, that is, the
current at which regulation is totally lost, was found to be 600 ma,
for the Mansfeld unit, and one ampere for both the DH and PAR units.

In addition, all units were tested with a pulse generator to
test the response time in a shift of output current (analogous to a
quick lowering of the effective electrochemical cell resistance, as
is known to occur upon pit initiation). All responded well with the
stable current at 50 ma and pulsed current of 500 ma. The response
times were approximately 30 microseconds for all units. The errors
in the set potential were identical to those measured at steady
state current of 500 ma.

It is presently felt that the improvement of the DH model can
be attributed not only to the larger capacity operational amplifiers,
but to the lower effective output resistance which exists in the DH
unit (0.009 ohms as opposed to 0.020 ohms). This allows the unit
to track more accurately, as was grossly exhibited in the shortening
of the electrode leads on the commercial PAR unit.

Table 1 lists the components reaquired to construct both the

Mansfeld and the DH Potentiostats. At the time of this report, the
retail cost of the parts for each unit is similar.

14
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Table 1
PARTS LIST
r MANSFELD DH
Retail Retail
. No. Component Price No. Component Price

2 LHOQ44BH $36.90 2 LH0021CK $38.20
2 2N4922 1.70 2 LM310 5.20
2 2N4918 1.66 1 CA3160AE 3.25
2z LM310 5.20 2 1KQ multiturn pot. 2.00
2 LM103H 14.40 1 100KQ multiturn pot. 1.00
3 200KQ 1% resistors 3.00 1 20KQ multiturn pot. 1.00
2 10KQ pot. 4.00 1 20KQ 10 turn pot. 6.25
1 SOKQ pot. 2.00 4 210KQ 1% resistor 4.00
1 1KQ multiturn pot. 1.00 2 3900 % watt 15
2 2KQ % watt resistors 1B 1 69.8KQ 1% resistor 1.00
2 4.7KQ % watt resistors .15 1 100KQ .10
1 10pF capacitor .30 1 1009 .10
4 .5Q 1 watt resistor 1.00

1 12 1 watt 1% resistor 1.08

2 .003uF capacitor .30

1 330pF capacitor .15

2 6.2v 1N4735 zener diode 2.50

17
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CONCLUSIONS

1. The DH design option is a viable alternative to the investment
in expensive commercial potentiostats for use in corrosion research.

2. It is the only state-of-the-art mini-potentiostat known to reg-
ulate while supplying or sinking 1 ampere of current. (For a :
cost factor of two increase, it is presently believed that this unit

could handle up to 5 amperes, momentarily, and 2 amperes,
continuously.)

! 3. The data indicates that satisfactory regulation at higher current

, levels (>200 ma) leads to better regulation at small output currents
(Av vs. i linear). It is, therefore, concluded that circuits with
large current capacity are desireable.

RECOMMENDATION FOR FUTURE WORK !

i
o

Attempts at a comparison of the DH Potentiostat with commercial
units under laboratory conditions will be made. Measurements of
pit propagation rates in aluminum will form the first test case.

18
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