

AD AO 61 088 Ш

.

-

AFGL-TR-78-0155 ENVIRONMENTAL RESEARCH PAPERS, No. 636

F

Steady-State Multi-Ion Disturbed D-Region Model

WILLIAM SWIDER CAROL I. FOLEY

15 June 1978

This research has been funded in part by the Defense Nuclear Agency (DNA) under subtask S99QAXHD028, Work Unit 46 entitled "Theoretical Investiga-tions of Disturbed Ionospheres."

78 10 27

PROJECT DO28 AERONOMY DIVISION AIR FORCE GEOPHYSICS LABORATORY

HANSCOM AFB, MASSACHUSETTS 01731

AIR FORCE SYSTEMS COMMAND, USAF

This report has been reviewed by the ESD Information Office (OI) and is releasable to the National Technical Information Service (NTIS).

This technical report has been reviewed and is approved for publication.

FOR THE COMMANDER

teworl **Chief Scientist**

Qualified requestors may obtain additional copies from the Defense Documentation Center. All others should apply to the National Technical Information Service.

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)	
REPORT DOCUMENTATION PAGE	BEAD INSTRUCTIONS
NEI UNI DUCUMENTATION TAGE	BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVT ACCESSION N	NO. 3. RECIPIENT'S CATALOG NUMBER
AFGL-TR-78-0155	
A TITLE (and Subtilia)	5. TYPE OF REPORT & PERIOD COVERED
STEADY-STATE MULTI-ION	Scientific Intonim
DISTURBED D-REGION MODEL	Scientific. Interim.
DISTORBED D-REGION MODELL	6. PERFORMING ORG. REPORT NUMBER
and the second	ERP NO. 050
7. AUTHOR(a)	8. CONTRACT OF GRANT NUMBER(*)
William Swider Carol I. Foley	
9. PERFORMING ORGANIZATION NAME AND ADDRESS	10. PROGRAM ELEMENT, PROJECT, TASK
Air Force Geophysics Laboratory (LKD)	62704H IN ALOI
Hanscom AFB	D028CD01
Massachusetts 01731	Bridgesti C
11. CONTROLLING OFFICE NAME AND ADDRESS	12. REPORT DATE
Air Force Geophysics Laboratory (LKD)	15 June 1978
Hanscom AFB	45
Massachusetts 01731	(a) 15. SECURITY CLASS. (of this report)
14. MONITORING AGENCY NAME & ADDRESS(11 different from Controlling Office	
	Unclassified
	154. DECLASSIFICATION DOWN GRADING
	SCHEDULE
16. DISTRIBUTION STATEMENT (of this Report)	
	S99QAXH
Approved for public release; distribution unlimi	ited.
(12)45 p. (
T. DISTRIBUTION STATEMENT (of the abstract entered in Block 20. If differen	i from Report)
(14) AFGL-TR-7	8-0155. AFGL-ERP-636
(I) Aron-Inc.	
	·
18. SUPPLEMENTARY NOTES	e Defense Nuclear Agency
(DNA) under gubtack S990AXHD028. Work Unit	10 antitled IITheometical
(DIAA) under Sublask Soboartinbese, work onte	46 entitled Theoretical
Investigations of Disturbed Ionospheres.	46 entitled Theoretical
Investigations of Disturbed Ionospheres.	46 entitled Theoretical
Investigations of Disturbed Ionospheres. *Boston College	aber)
Investigations of Disturbed Ionospheres." * Boston College 19. KEY WORDS (Continue on reverse side "increasing and identify by block num D-region ionization	45 entitled Incoretical
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse aids '' necessary and identify by block num D-region ionization Solar proton event (SPE)	antal research Papers.
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse side '' necessary and identify by block num D-region ionization Solar proton event (SPE) Disturbed D-region Environme	ental research papers,
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse side '' necessary and identify by block num D-region ionization Solar proton event (SPE) Disturbed D-region D-region model	ental research papers,
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse side '' necessary and identify by block num D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event	ental research papers,
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse alde "necessary and identify by block num D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event 20. Approximate on reverse alde if necessary and identify by block num	ental research papers,
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse alde "necessary and identify by block num D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event 20. Abtract (Continue on reverse alde if necessary and identify by block num A model with 78 reactions involving 21 pos	ental research papers, mber) itive ions and 8 negative ions under steady-state conditions.
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse alde "necessary and identify by block num D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event 20. ADTRACT (Continue on reverse alde it necessary and identify by block num A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model cap and the star for the 2 to 5 Novem	ental research papers, mber) itive ions and 8 negative ions under steady-state conditions. ber 1969 and 3 to 11 August1972
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse aide "inscessory and identify by block num D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event 20. A TRACT (Continue on reverse aide if necessary and identify by block num A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model examples are given for the 2 to 5 Norman for	ental research papers, inter;
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse side "inscessory and identify by block num D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event 20. A react (Continue on reverse side if necessary and identify by block num A model with 78 reactions involving 21 poss has been developed for the disturbed D-region Model examples are given for the 2 to 5 Novem solar proton events. The computer program for	ental research papers, inter;
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse side '' necessary and identify by block num D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event 20. A react (Continue on reverse side if necessary and identify by block num A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix.	ental research papers, inter;
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse side "inscessory and identify by block num D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event 20. ArrACT (Continue on reverse side it necessary and identify by block num A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix.	ental research papers, mber) mitive ions and 8 negative ions under steady-state conditions. her 1969 and 3 to 11 August1972 or the model is given in the
Investigations of Disturbed Ionospheres. *Boston College 19. KEY WORDS (Continue on reverse elde "necessary and identify by block num D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event 20. ArrAct (Continue on reverse elde if necessary and identify by block num A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix.	ental research papers, mber) mitive ions and 8 negative ions under steady-state conditions. mber 1969 and 3 to 11 August1972 or the model is given in the
Investigations of Disturbed Ionospheres. *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event 20. Arract (Continue on reverse side it necessary and identify by block num A model with 78 reactions involving 21 pos has been developed for the disturbed D-region to Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix.	ental research papers, "ber" intive ions and 8 negative ions under steady-state conditions. uber 1969 and 3 to 11 August1972 or the model is given in the
Investigations of Disturbed Ionospheres. *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College *Boston Continue on reverse side '' necessary and identify by block num D-region model Polar cap absorption (PCA) event Polar cap absorption (PCA) event *A model with 78 reactions involving 21 pos has been developed for the disturbed D-region to Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix. *DD * 1AN 73 1473 EDITION OF ' NOV 65 IS OBSOLETE	ental research papers, "ber" intive ions and 8 negative ions under steady-state conditions. uber 1969 and 3 to 11 August1972 or the model is given in the Unclassified
Investigations of Disturbed Ionospheres. *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College *D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event 20. ArrACT (Continue on reverse side if necessary and identify by block num A model with 78 reactions involving 21 pos has been developed for the disturbed D-region to Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix. DD * JAN 73 1473 EDITION OF ' NOV 65 IS OBSOLETE SECURITY	ental research papers, "ber" intive ions and 8 negative ions under steady-state conditions. uber 1969 and 3 to 11 August1972 or the model is given in the Unclassified CLASSIFICATION OF THIS PAGE (When Date Entered)
Investigations of Disturbed Ionospheres. *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College *D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event Polar cap absorption (PCA) event 20. All FRACT (Continue on reverse side if necessary and identify by block num A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix. DD * JAN 73 1473 EDITION OF ' NOV 65 IS OBSOLETE SECURITY	46 entitled Theoretical mean ental research papers, intive ions and 8 negative ions under steady-state conditions. ther 1969 and 3 to 11 August1972 or the model is given in the Unclassified CLASSIFICATION OF THIS PAGE (When Data Entered)
Investigations of Disturbed Ionospheres. *Boston College *Boston College *Boston College *Boston College *Boston College D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event *Boston Continue on reverse side if necessary and identify by block num A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix. DD roam 1473 EDITION OF 'NOV 65 IS OBSOLETE SECURITY	45 entitled Theoretical mber) ental research papers, mber) itive ions and 8 negative ions under steady-state conditions. aber 1969 and 3 to 11 August1972 or the model is given in the Unclassified CLASSIFICATION OF THIS PAGE (When Data Entered)
Investigations of Disturbed Ionospheres. *Boston College *Boston College *Boston College *Boston College *Boston College D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event *A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix. DD * JAN 73 1473 EDITION OF * NOV 65 IS OBSOLETE SECURITY	45 entitled Theoretical mber) ental research papers, mber) itive ions and 8 negative ions under steady-state conditions. aber 1969 and 3 to 11 August1972 or the model is given in the Unclassified CLASSIFICATION OF THIS PAGE (When Data Entered)
Investigations of Disturbed Ionospheres. *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event *A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix. DD *ORM* 1473 EDITION OF ' NOV 65 IS OBSOLETE SECURITY	45 entitled Theoretical mber) ental research papers, theory intive ions and 8 negative ions under steady-state conditions. ther 1969 and 3 to 11 August1972 or the model is given in the Unclassified CLASSIFICATION OF THIS PAGE (When Date Entered)
Investigations of Disturbed Ionospheres. *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College D-region ionization Solar proton event (SPE) Disturbed D-region D-region model Polar cap absorption (PCA) event *A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix. DD * JAN 73 1473 EDITION OF ' NOV 65 IS OBSOLETE SECURITY	45 entitled Theoretical mber) ental research papers, ther) offive ions and 8 negative ions under steady-state conditions. ther 1969 and 3 to 11 August1972 or the model is given in the Unclassified CLASSIFICATION OF THIS PAGE (When Date Entered)
Investigations of Disturbed Ionospheres. *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College D-region ionization D-region model Polar cap absorption (PCA) event * Moreact (Continue on reverse side if necessary and identify by block num A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix. DD * JAN 73 1473 EDITION OF ' NOV 65 IS OBSOLETE SECURITY	45 entitled Theoretical mber) ental research papers, ther) offive ions and 8 negative ions under steady-state conditions. ther 1969 and 3 to 11 August1972 or the model is given in the Unclassified CLASSIFICATION OF THIS PAGE (When Date Entered)
Investigations of Disturbed Ionospheres. *Boston College *Boston College *Boston College *Boston College *Boston College *Boston College D-region ionization D-region model Polar cap absorption (PCA) event *A model with 78 reactions involving 21 pos has been developed for the disturbed D-region Model examples are given for the 2 to 5 Novem solar proton events. The computer program for Appendix. DD * JAN 73 1473 EDITION OF ' NOV 65 IS OBSOLETE SECURITY	45 entitled Theoretical (mber) ental research papers, (mber) offive ions and 8 negative ions under steady-state conditions. (mber 1969 and 3 to 11 August1972) or the model is given in the Unclassified CLASSIFICATION OF THIS PAGE (When Date Entered)

LEVEL

MEESSIO	l ter
ette	White Section
100	Bett Section
GEANXOON	
JUSTIFICA	TION
DISTRIBU	TION/AVAILABILITY COPES
Biet	
eist.	AVAIL and/or SPERIAL
Nst.	AVAIL BRO/W SPENIAL
A A	AVAIL BRO/OF BPEBIAL

Contents

1.	INTRODUCTION	5
2.	OUTLINE OF MODEL	6
3.	NUMERICAL EXAMPLE: 2 Novem	ber 1969 SPE 10
4.	NUMERICAL EXAMPLE: Nighttime	e 19
5.	NUMERICAL EXAMPLE: August 1	972 SPE 24
RE	FERENCES	29
AP	PENDIX A: Steady-State Multi-Ion Di Model Program	sturbed D-Region 31

Illustrations

1.	Measured and Computed Electron Concentrations for Rocket B-4 Launched at 2110 UT, 2 November 1969	12
2.	Principal Positive Ions Computed (Table 3) for Rocket B-4	13
3.	Principal Negative Ions Computed (Table 3) for Rocket B-4	13
4.	Principal Positive Ions Computed (Table 5) for 0605 UT, 3 November 1969, the Time of Launch for Black Brant Rocket 17.758	19
5.	Principal Negative Ions Computed (Table 5) for 0605 UT, 3 November 1969	20

Tables

1.	Positive Ion Reactions	45000	8
2.	Negative Ion Reactions		10
3.	Complete Printout of Calculations for 2100 UT, 2 November 1969		14
4.	Same as for Table 3 Except k_{43} as in Table 1		17
5.	Complete Printout of Calculations for 0605 UT, 3 November 1969		21
6.	Complete Printout of Calculations for 1508 UT, 4 August 1972		26

4

Steady-State Multi-Ion Disturbed D-Region Model

1. INTRODUCTION

Previously¹ we described a model for the nighttime disturbed D-region which treated negative ions in a highly simplified manner. Good agreement was attained² between the model and the nighttime observations of 3 November 1969 at Ft. Churchill, Canada, during a solar proton event (SPE). More recently, by incorporating the latest negative ion chemistry, exclusive of hydration processes, we have found³ that good agreement can be obtained between our latest model and the three daytime observations of 2, 3, and 4 November 1969 for this same event and location. In this report we document the new program which includes not only a more satisfactory treatment of negative ions, but also includes some new positive ion chemistry involving NO⁴ ions. We also provide here the numerical results obtained in applying this program to the solar proton events of 2 to 5 November 1969 and 3 to 11 August 1972.

(Received for publication 14 June 1978)

1. Swider, W., and Foley, C.I. (1975) Computer Program for the Disturbed Steady-State Nighttime D-region, AFCRL-TR-75-0150.

 Swider, W., and Narcisi, R.S. (1975) A study of the nighttime D-region during a PCA event, J. Geophys. Res. 80:655-664.

3. Swider, W., Keneshea, T.J., and Foley, C.I. (1978) An SPE-disturbed D-region model, Planet. Space Sci. 26:

2. OUTLINE OF MODEL

The computer program is reproduced in Appendix A. All photorates in this code are multiplied by DD which is set to 1 for daytime and 0 for nighttime.

The iterative scheme developed to solve for all species concentrations is similar to that derived before. ¹ The present scheme is more complex; two initial concentrations are now needed, one for electrons and one for the positive ion sum. Using the initial concentrations for electrons [e], and the positive ion sum, SP, the individual negative ions are determined and then summed, the sum denoted by NSUM. Then the positive ions are individually calculated and summed, PSUM. A new $[e] = {\text{previous } [e] + \text{PSUM}/(1+\lambda)}/2$, where $\lambda = \text{NSUM}/\text{previous } [e]$, and a new $\text{SP} = {\text{previous } [e] + \text{NSUM} + \text{PSUM}}/2$ are then determined. This sequence is repeated until PSUM agrees with NSUM + [e] to some desired precision, usually ± 1 percent. In the examples to be shown later, not more than 9 iterations were required at any particular altitude (40-90 km) in order to attain this criterion.

Initial daytime electron concentrations were obtained from

 $[e] = (q/SI)^{1/2}$ (1) L 189

where $SI=\psi$ represents values for the effective electron loss coefficient as determined⁴ for the 2 to 5 November 1969 SPE. The number following the equation number in the text, as L 189 above, means that Eq. (1) is or begins on line 189 of the program. Initial nighttime electron concentrations were estimated, as before,¹ from the equation⁵

$$[e] = \left| (L(A)/2\alpha_D)^2 + q/\alpha_D \right|^{1/2} - L(A)/2\alpha_D$$
(2) L 191

where $\alpha^{}_{\rm D}$ is the mean dissociative recombination coefficient and

$$L(A) = k_{61}[O_2]^2 + k_{62}[O_2] [N_2]$$
(3) L 187

is the loss rate (sec⁻¹) of electrons by attachment to O_2 with O_2 and N_2 as third bodies. The reaction rates and rate coefficients are listed later, the subscripts for k referring to the processes are as numbered in that listing

Swider, W., and Dean, W.A. (1975) Effective electron loss coefficient of the disturbed daytime D-region, J. Geophys. Res. 80:1815-1819.

Swider, W., Narcisi, R.S., Keneshea, T.J., and Ulwick, J.C. (1971) Electron loss during a nighttime PCA event, J. Geophys. Res. 76:4691-4694.

Initial total positive ion concentrations were determined from the expression

$$SP = \left\{ q \left(\frac{5[O]}{\alpha_D} + \frac{[O_3]}{\alpha_i} \right) \right/ (5[O] + [O_3]) \right\}^{1/2}$$
(4) L193

where α_i is the mean ion-ion recombination coefficient. The multiplicative factor for [O], somewhat arbitrary, was selected after some trial runs as a factor for improving SP vis-a-vis the final calculated positive ion sum. Equation (4) simplifies to the familiar expressions $(q/\alpha_D)^{1/2}$ at high D-region altitudes where $[O] >> [O_3]$ and $(q/\alpha_i)^{1/2}$ at low D-region altitudes where $([O_3] >> [O]$. Values chosen for α_D and α_i were 4×10^{-7} cm³/sec (L 73) and 6×10^{-8} cm³/sec (L 74) respectively. The former value was selected as that typical for a mixture of NO⁺ and O₂⁺ ions at D-region temperatures, whereas the latter value is based upon laboratory measurements by Smith et al.⁶ The fact that all ion-ion recombination coefficients were set at 6×10^{-8} cm³/sec in this program is in accord with the laboratory work. However, this constraint is not a necessary one in the operation of this program; one α_i being required only for initial SP.

The positive ion equations are similar to those listed before except that changes have been made because of our inclusion of photodissociation processes for O_4^+ and O_2^+ (H₂O) ions and by our addition of the ions NO⁺ (N₂), NO⁺ (H₂O) (N₂), NO⁺ (H₂O)(CO₂), NO⁺ (2H₂O) (N₂) and NO⁺ (2H₂O) (CO₂). The list of positive ion reactions, numbered 4 through 52 in Table 1 for the 21 positive ions considered, is fairly complete. Rate coefficients are generally from the same sources already identified.^{2,3} Rates for photodissociation processes 4 and 5 in Table 1 are from Vanderhoff and Niles,⁷ while the rate coefficient k₄₃ was taken from the work of Johnsen et al.⁸ Rate coefficients for reactions 45 and 48 were set equal to that for k₄₃. The rate coefficient k₅₁ is based⁹ upon parameters measured by Johnsen et al.⁸ High rate coefficients for processes 44, 46, 47, 49 and 50 were chosen in accordance with the fact that they are all "switching" reactions. Computation of the individual positive ions begins with O_2^+ (PION 4, J), line 204 of the program and is completed by line 257 with PION (24, J) = H₉O₄⁺. Thus, this rather extensive list of positive ions (21) requires only 53 lines in the computer program.

88 10 - 27 044

Smith, D., Adams, N.G., and Church, M.J. (1976) Mutual neutralization rates of ionospherically important ions, <u>Planet. Space Sci.</u> 24:697-703.

^{7.} Vanderhoff, J.A., and Niles, F.E. (1976) Recent development in measurements of photodissociation for atmospheric positive ions, EOS, 57:303.

Johnsen, R., Huang, C.-M., and Biondi, M.A. (1975) The formation and breakup of NO⁺·N₂ clusters in N₂ at low temperatures, <u>J. Chem Phys.</u> 63:3374-3378.

Heimerl, J. M. (1976) Values for Selected Collisional Dissociation Rate Coefficients of Positive Clustered Ions, BRL-IMR-499.

										A	В	D
4	04+ +	HJ			=	02+	+	02		3.00E-01		
5	02+.420 +	HV			=	02+	+	H20		6.00E-01		
5	02+ +	NO			=	NO+	+	02		4.50E-10		
7	02+ +	50	+	20	=	04+	+	02		3.90E-30	-3.2	
8	04+ +	0			=	02+	+	03		3.00E-18		
9	04+ +	H20			=	02+H20	+	02		1.50E-09		
10	02+H20 +	H20			=	H30+0H	+	02		1.00E-09		
11	02+H20 +	H20			=	H30+	+	OH +	02	2.00E-10		
12	H 30+0H +	HSO			=	H502+	+	OH		1.40E-09		
13	H30+ +	N2	+	N2	=	H30+.N2	+	N2		1.40E-30	-2.0	Contractor (
14	H30+.N2 +	COS			=	H30+.C02	+	NZ		1.00E-09		
15	H30+.C02 +	HZO			=	H502+	+	COZ		1.00E-10		
15	H502+ +	C02	+	M	=	H502+.C02	+	M		3. 00E- 30		
11	H 502+ . CU2+	H20			=	H703+	•	COZ		1.00E-10		
15	H 30+ +	HZO	+	4	=	H502+	+	M		3.50E-27	-3.0	
13	H502+ +	H20	*		-	H703+	•	M		2. 2UE-27	-3.0	
20	H/U3+ +	120	*		=	H904+	1			2. 305-27	-3.0	
21	NU+ +	602	•	NZ	-	NU+GU2	:	N2		3. UUE=29	-2.0	
27	NO+602 +	120		42	-	NUT120		102		3. UUE-10	-1. 7	
20	NO+ (H20) 24	120	-	NO	-	NO+(H20)2		N2		1 505-27	-4.7	
25	NO+ (+20)2+	420	•	12	-	HZOZA		HN02		7.005-14	-4. /	
25	NO4 A	F			-	N	-	0		6. DOE-07	-1.0	
27	0.24	5			-	0	1	0		2.005-07	-1.0	
28	044 4	F			-	02	-	02		2.00F-06	-1.0	
29	024.420 +	F			=	02		H20		2.00E-06		
30	H30+.0H +	F			=	2820				2.00E-06		
31	H30+ +	E			=	H2	•	OH		1.005-05		
32	H502+ +	E			=	H20	+	H2 +	OH	2.00E-06		
33	H703+ +	E			=	2820	+	H2 +	OH	4.00E-06		
34	H904+ +	E			=	3H20	+	H2 +	OH	5.00E-06		
35	H30+.N2 +	E			=	H	+	H20 +	NZ	2.00E-06		
36	H30+.C02 +	E			=	H	+	H20 +	C02	2.00E-06		STATISTICS.
37	H502+.C02+	E			=	H	+	2H20+	C 02	3.20E-06		
38	N0+.C02 +	E			=	NO	+	C02		1.50E-06		
39	N0+H20 +	E			=	ND	+	H20		1.50E-06		
40	NO+ (H20)2+	E			=	NO	+	2H2D		3.00E-06		
41	NO+ (H20) 3+	E			=	NO	+	3420		4.50E-06		
42	04+ +	M			=	02+	+	02	+H	3.30E-06	-4.0-	5.03E+03
43	NO+ +	NS	+	N2	=	ND+.N2	+	N2		2.00E-31	-4.4	
44	N0+.N2 +	C05			=	N0+.C02	+	N2		2.00E-09	0.0	
45	N0+.H20 +	NZ	+	NZ	=	NO+HZON2	+	NZ		2. 00E-31	-4.4	
46	NOTH20N2 +	002			=	N0+H20C02	+	NZ		2.00E-09	0.0	
41	NO+H20002+	120			-	NU+.2H20	-	102		2.005-74	0.0	
48	NU+ . 2H20 +	NZ	•	NZ	-	NU+2H2UN2	+	NZ		2.001-31	-4.4	
69	NOA 2H20CO2	A H2	0		-	NOT 212000	-	C02		2.005-09	0.0	NR ALCONT
51	NO4 N2	N2			-	NDA		N2 A	N2	1.005-09		2.105.07
52	H904+ +	M			=	H703+	+	H20 +	M	1.20E-01	-4.0-	8.80E+ 03

Table 1. Positive Ion Reactions. Units for photo-processes, two-body and three-body processes are sec⁻¹, cm³/sec and cm⁶/sec, respectively. The various process coefficients, $\kappa = A (T/300)^{B} e^{D}/T$, are presented in the format A B D

Eight negative ions are included in this program, O_2^- , O_4^- , CO_4^- , CO_3^- , O_3^- , O_3

Profiles of neutrals O, O_2 , O_3 , $O_2({}^1\Delta)$, N_2 , CO_2 , H_2O , NO and NO_2 plus temperature were required inputs to the computations. Total concentrations, [M], and temperatures T, were taken from CIRA^{*} 1972 for the appropriate month and latitude with $N_2 = 0.7808$ [M], $O_2 = 0.2095$ [M] and $CO_2 = 3 \times 10^{-7}$ [M]. Water vapor concentrations, $[H_2O]$ were set at 10^{-6} [M]. The choices for the other minor neutrals are described elsewhere.³ Each output gives a complete account of all the neutral concentrations utilized. The daytime and nighttime minor neutral concentrations used in the computations will be presented in typical printouts for daytime and nighttime situations.

* COSPAR International Reference Atmosphere.

Ferguson, E. E. (1975) in <u>Atmospheres of Earth and the Planets</u> (Ed. B. M. McCormac) Reidel, Dordrecht, Holland, pp 197-210.

^{11.} Ferguson, E. E. (1977) Paper presented at IAGA meeting in Seattle, Washington,

^{12.} Peterson, J. R., Cosby, P. C., and Moseley, J. T. (1977) Photo-destruction of atmospheric negative and positive ions, Space Res. 17:243-246.

^{13.} Niles, F.E. (1976) private communication.

_		and the second				
				A	В	D
60	02-	+ 03 = 03-	02	5.00E-10		
51	02	+ E + 02 = 02-	02	1.40E-29	-1.0	-6.00E+02
62	02	+ E + N2 = 02-	N2	1.00E-31		
63	02-	+ 0 = 03	E	1.50E-10		
64	02-	+ 0 = 0-	02	1.50E-10		
65	02-	+ 02(10) = 02	02 + E	2.00E-10		
65	02-	+ 02 + 32 = 04-	· 02	3.50E-31	-1.0	
67	04-	+ CO2 = CO4-	02	4.30E-10		
68	C04-	+ 03 = 03-	CO2 + 02	1.30E-10		
69	C 04 -	+ N3 = N03-	+ CO2	4.80E-11		
70	C04-	+ 0 = 03-	F 02	1.50E-10		
71	03-	+ 0 = 02-	· 02	3.20E-10		
72	0 3-	+ CO2 = CD3-	02	5.50E-10		
73	C03-	+ 0 = 02-	C02	1.10E-10		
74	C 03-	+ NO = NO2-	C02	1.10E-11		
75	C03-	+ NO2 = NO3-	C02	2.00E-10		
75	N02-	+ 03 = NO3-	02	9.00E-11		
77	0-	+ 02 + 02 = 03 - 4	02	1.10E-30	-1.0	
78	0-	+ 0 = 02	E	2.00E-18		
79	0-	+ 02(10) = 03	E	3.00E-10		
80	0-	+ 03 = 03-	• 0	4.40E-10		
81	0-	+ 03 = 02-	• 02	4.40E-10		
91	02-	+ HV = 02	E	6.50E-01		
92	0-	+ HV = 0 +	• E	2.80E+00		
93	C 04-	+ HV = CD2 +	• 02 + E	6.00E-01		
94	C 03-	+ HV = CD2 4	• 0-	4.00E-01		
95	N02-	+ HV = ND2	E	6.00E-02		
96	N 03-	+ HV = NO2-	• 0	6.00E-02		
97	N03-	+ HV = ND	02 + E	4.40E-03		

Table 2. Negative Ion Reactions. Units and format are as for Table 1

3. NUMERICAL EXAMPLE: 2 November 1969 SPE

Table 3 is a typical printout. It was generated specifically for the ionization production rate associated with the daytime electron SPE concentrations measured ¹⁴ on 2 November 1969, Flight B4 at Ft. Churchill, Canada. Photodetachment/ photodissociation rates $k_{91} - k_{97}$ have been doubled to improve the agreement between the data and the computations. The agreement is quite good, as seen in Figure 1. The results obtained with the "normal" Table 2 values for $k_{91} - k_{97}$ are discussed elsewhere³ in conjunction with the doubled rates. The rate coefficient k_{43} has been set to 0 in this example because NO⁺ otherwise seemed to fall off faster with decreasing altitude than the data for this event admit. ¹⁵ This NO⁺ behavior is shown in Figure 2 which is a plot of the principal positive ions listed in Table 3.

^{14.} Dean, W.A. (1972) in Proc. COSPAR Symp. on SPE of Nov. 1969, AFCRL-72-0474, pp 291-306.

Narcisi, R.S., Philbrick, C.R., Thomas, D.M., Bailey, A.D., Wlodyka, L.E., Baker, D., Federico, G., Wlodyka, R., and Gardner, M.E. (1972) in Proc. COSPAR Symp. on SPE of Nov. 1969, AFCRL-72-0474, pp 421-432.

Also shown in Figure 2 is an NO⁺ profile obtained with $k_{43} \neq 0$, specifically, the the value given in Table 1. The output associated with $k_{43} \neq 0$ is given in Table 4 minus the first part of the output which is the same as that for Table 3. The electron concentrations are somewhat higher for the first case, the greatest difference being near 78-80 km. This is because with $k_{43} \neq 0$, $O_2 + /NO^+$ is higher at 80 km and O_9^+ has a lower dissociative recombination coefficient, twice that of NO⁺ (as adopted here, Table 1). In other words, for the same ionization production rate the electron concentration will be a factor $(2)^{1/2}$ greater if only O_2^+ ions are present as compared to solely NO⁺ ions. Slightly lower electron concentrations are encountered near 75 km for the $k_{43} \neq 0$ case because conversion of NO⁺ to oxonium ions leads to slightly higher electron loss since the latter ions have greater dissociative recombination coefficients than NO⁺ (Table 1). Below 75 km, there is virtually no difference in [e] for the two cases, because NO⁺ contributes very little to the ion chemistry in either case. In fact, since O_2^+ is the precursor ion for the SPE situation, the choice of k_{43} is rather moot. Furthermore, inclusion of collisional breakup expressions for ions like NO^+ (N₂)(CO₂), would probably increase the NO⁺ concentrations for the $k_{43} \neq 0$ case and further cloud the issue as to the role of NO⁺ clustering in the D-region under SPE conditions. Another important factor not to be forgotten in regards to the NO⁺ distribution is the fact that it depends strongly on the NO profile chosen. The NO profile selected is based in part upon its compatibility with the data² and is probably the strongest reason why our results should not be construed as giving a major clue as to the role of NO⁺ clusters in the D-region.

Vanderhoff and Niles report⁷ that the photodissociation of oxonium is negligible considering the small cross-sections for the process. On the other hand, photodissociation cross-sections for O_4^+ , $O_2^+(H_2O)$, and $O_2^+(CO_2)$ are large. ¹⁶ We have included the recommended photodissociation rates for the first two species; processes 4 and 5 in Table 1. The inclusion of these rates had the effect of lowering the crossover point between the simple ions (NO^+, O_2^+) and the oxonium ions by about 2 km. Thus, the effect is not a major one. A negligible further change in crossover point altitude was found when these rates were doubled to account roughly for scattered and reflected light as has been done for the rates $k_{91} - k_{97}$. Photo-dissociation of $O_2^+(CO_2)$ is not significant in the D-region because this species is not produced effectively at these altitudes.

Moseley, J.T., Cosby, P.C., and Peterson, J.R. (1977) Laboratory measurements of photodissociation and photodetachment cross-sections of atmospheric ions, <u>EOS</u> 58:698.

Although the daytime electron concentrations for 3 and 4 November 1969, besides the 2 November 1969 case shown here agree satisfactorily with the data, ³ it should not be assumed that the negative ion problem is settled. The hydration of negative ions has been ignored (Figure 3), and this is undoubtedly unrealistic. The agreement noted therefore, only implies that the negative ion chemistry is satisfactory in regards to the electron distribution in daytime. Thus, negative ions like NO_2 and NO_3 that appear to have negligible photodetachment rates, may be hydrated to an important extent but have no impact upon the electron chemistry because electrons are presumably even less readily detached from NO, hydrates. Formation of CO_3^{-} (H₂O) has been shown³ to be unimportant in the daytime because the photodestruction rate is large. Even sunset does not appear to be influenced³ by the omission of hydration processes, but sunrise is another matter. The major reason for a poor match³ of the November 1969 SPE sunrise data with time-dependent calculations using the same chemistry as here is quite likely due to the considerable hydration of negative ions that occurs unhindered by photodissociation processes at night.

Figure 1. Measured and Computed Electron Concentrations for Rocket B-4 Launched at 2110 UT, 2 November 1969. The solar zenith angle was 83.2°. The computed electron concentrations are from Table 4

Figure 2. Principal Positive Ions Computed (Table 3) for Rocket B-4. Dashed curve from Table 4

Table 3. Complete Printout of Calculations for 2110 UT, 2 November 1969. The first three sets of altitude listings give temperature (°K) and assumed (neutral) and calculated electron and ion concentrations in units of cm⁻³. The last set of altitude listings shows parameters described in Section 2. Outline of Model such as L(A), Eq. (2) of text, λ , and $Q/[e]^2$, where Q is the ionization production rate, cm⁻³ sec⁻¹. (k_{43} set to zero)

	0												_		_		_	_		_			_	_		 			_	_	_	_			_		_		_		_			_						
	3 201 10 2	TEND		2.416.02	2.466+02	2.51E+02	2.5AF+12	2.58E+02	2.57E+02	2.54E+02	2.50E+02	2.456+02	2.426+02	2.37E+02	2. 246+02	2.255+02	2.226+02	2.195+02	2.166+02	2.136+02	2.116+02	2.105+02	2.095.02	2. 195.02	2.116+02	-103-	6.87E+04	6.10E+04	5.01E+04	3.866+04	2.84E+04	2.055+04	1. 225404	3.356+03	1.275+03	4.31E+02	1.406+02	4.14E+01	1.105+01	3.12F+00	1 246-04	8.77E-02	2.00E-02	2.99E-03	1.456-04	6.77E-06	1.11E-06	2.195-01	00-310-6	1.966-00
N.1111100 O.2 O.2 <tho.2< th=""> O.2 <tho.2< th=""> <tho.2<< td=""><th>Pul</th><td></td><td></td><td>5.605+16</td><td>4.20E+16</td><td>3.10:+16</td><td>1 - 775+16</td><td>1.356+16</td><td>1.055+16</td><td>8.00E+15</td><td>6.405+15</td><td>4.975+15</td><td>3.905+15</td><td>3.00=+15</td><td>1.755415</td><td>1.315+15</td><td>9.905+14</td><td>7.505+14</td><td>5.60E+14</td><td>4.205+14</td><td>3. UUE + 14</td><td>*I+=02-2</td><td>1</td><td>1</td><td>6.125+13</td><td>-20N</td><td>1.055+02</td><td>1.74E+02</td><td>2.46E+02</td><td>3.32.402</td><td>4.37E+02</td><td>5.025+02</td><td>6. 985 4 0 2</td><td>4.6 1E+02</td><td>2.93€+02</td><td>1.585+02</td><td>7.87E+01</td><td>3. 345+01</td><td>1.175+01</td><td>1.645+00</td><td>5. 265-01</td><td>1.615-01</td><td>4. 24E-02</td><td>7.81E-03</td><td>4.97E-04</td><td>3.16E-05</td><td>6.57E-05</td><td>1.74-46</td><td>1 1 2 2 4 2 4 4 7 4</td><td>1.1011</td></tho.2<<></tho.2<></tho.2<>	Pul			5.605+16	4.20E+16	3.10:+16	1 - 775+16	1.356+16	1.055+16	8.00E+15	6.405+15	4.975+15	3.905+15	3.00=+15	1.755415	1.315+15	9.905+14	7.505+14	5.60E+14	4.205+14	3. UUE + 14	*I+=02-2	1	1	6.125+13	-20N	1.055+02	1.74E+02	2.46E+02	3.32.402	4.37E+02	5.025+02	6. 985 4 0 2	4.6 1E+02	2.93€+02	1.585+02	7.87E+01	3. 345+01	1.175+01	1.645+00	5. 265-01	1.615-01	4. 24E-02	7.81E-03	4.97E-04	3.16E-05	6.57E-05	1.74-46	1 1 2 2 4 2 4 4 7 4	1.1011
ALTITUDE O O O O O O O V11 10 <	00 1110	C UN	200	6-00E+07	2.00E+07	7.005+06	8.00F+05	3.006+05	1.10E+05	4.0 0E+04	1-70E+04	7.00E+03	3.205+03	1 . 5 UE +0 3	4.60F+02	2.505+02	1.50F+62	9.00E+01	•	•••					•••				.265+01	-97 E + 02	.04E+02	20+323	1045404	· 095 + 03	· 025+03	. 00E + 02		- 90E + 02	- 775 + 02	59F + 02	14740	.485+01		.205+01	.13E+00	.415+00	10-345-01	10-10-	10-114.	20-319.
ALTITUDE 0 02 02 02 02 02 ALTITUDE 0 02 02 02 02 02 V.2. 1.406 0 02 02 02 02 V.2. 1.406 0 02 02 02 02 02 V.2. 1.406 0 02 02 02 02 02 02 V.2. 1.406 0 02 </td <th>1010 I 100</th> <td>101100</td> <td>101130</td> <td>1.506+10</td> <td>1.70E+10</td> <td>1-90E+10</td> <td>1-905+10</td> <td>1.60E+10</td> <td>1.40E+10</td> <td>1.10E+10</td> <td>9.00E+09</td> <td>6.90E+09</td> <td>60+301.4</td> <td>3.+0E+09</td> <td>1-605+09</td> <td>1.10E+09</td> <td>7.00E+08</td> <td>4.705+08</td> <td>3.30E+08</td> <td>2.50E+08</td> <td>2.000-00</td> <td>3. UUE + UB</td> <td></td> <td>00 + 3 nn • 1</td> <td>7.005+08</td> <td>3- 0</td> <td>26E+04 6</td> <td>92E+04 2</td> <td>03E+04 8</td> <td>94E+04 1</td> <td>286+04 4</td> <td></td> <td></td> <td>256+04 1</td> <td>94E+04 1</td> <td>06E+04 9</td> <td>456+03 7</td> <td>#3E+03 5</td> <td>256+02 4</td> <td>54F+02 1</td> <td></td> <td>83E+01 5</td> <td>50E+00 3</td> <td>15E+60 2</td> <td>026-02 9</td> <td>55E-03 2</td> <td>12E-03 8</td> <td>59E-U4 3</td> <td>1 CD-304</td> <td>356-05 0</td>	1010 I 100	101100	101130	1.506+10	1.70E+10	1-90E+10	1-905+10	1.60E+10	1.40E+10	1.10E+10	9.00E+09	6.90E+09	60+301.4	3.+0E+09	1-605+09	1.10E+09	7.00E+08	4.705+08	3.30E+08	2.50E+08	2.000-00	3. UUE + UB		00 + 3 nn • 1	7.005+08	3- 0	26E+04 6	92E+04 2	03E+04 8	94E+04 1	286+04 4			256+04 1	94E+04 1	06E+04 9	456+03 7	#3E+03 5	256+02 4	54F+02 1		83E+01 5	50E+00 3	15E+60 2	026-02 9	55E-03 2	12E-03 8	59E-U4 3	1 CD-304	356-05 0
ALTITION: 0	he occurs	120		5-605+10	4 .2 0E+10	3-106+10	1-775+10	1.35E+10	1.05E+10	6.00E+09	6 .4 0E +09	**97E+09	5 • 90E • 00	2.25F+09	1.755+09	1.31E+09	9.90E+08	7.50E+08	5.60E+08	**20E+08	5. 101 - 10	2 2 UE + UB		00+303•1	6-12F+07	8	76-01 1.	3E+00 2.	5E+00 5.	+E+00 6.	BE +01 8.	55 401 8.		95 +01 3.	1E+01 1.	4E+00 1.	9E+00 5.	95 +00 2.	0E +00 9.	6 - U1 1.		75-02 1.	15-02 5.	25-02 1.	7E-03 8.	703 5.	35-94 1.	· · · · · · · · · · · · · · · · · · ·		• T
ALTITUDE 0 03 N2 03 N2 N0 ALTITUDE 0 0.03 N2 0.03 N2 N0 N0 V20 1.0461409 0.0404115 1.5506111 0.376415 0.006400 0.006400 V40 2.201409 0.496415 0.006410 1.3026115 0.006400 0.006400 50 2.201409 0.496415 0.006410 1.006400 0.006400 0.006400 0.006400 51 2.201409 0.0064145 1.006400 0.006415 0.006416 0.006400 0.006400 51 0.006400 1.006415 1.006400 0.006415 0.006416 0.006400 0.006400 51 0.006400		5.03		1. 686+13	1.26E+13	9.306+12	5.316+12	4. 05E+12	3.15E+12	2.40E+12	1.925+12	1.495+12	1.176+12	9. 005 + 11 6. 755 + 11	5. 255 + 11	3.935+11	2.975+11	2.255+11	1. 685+11	1. 266+11		11.10.9	11. 300 · ·	11. 100 °C	1.845+1]	- 50	E+01 5.5	F+01 1.1	E+02 4.4	E+02 8.9	E+03 1.4				E+03 1.3	6.8 50+3	C+03 2.5	1.02 3.1	E+02 1.6	7 · 0 · 0 · · ·		1.6 00+1	F-01 4.6	E-01 2.0	5-03 5.3	E-04 1.4	E-05 6.3	1.0 00-1		
ALTITUDE 0 02 03 N2 ALTITUDE 1.000000000000000000000000000000000000		-		8.00E+08	6.00E+08	4.40E+08	2.405.00	1.705+08	1.306+08	1.00E+08	7.305+07	5.70E.07	+.70E+07	3.50F+07	3.20F+07	2.90E+07	2.706+07	2.50E+07	2.50E+07	2.506+07	104306.7		10-300-2		*******	-+00	-31 1.96	-01 8.38	-01 2.56	+00 6.31	+30 1.35			• 60 3.66	+60 3.21	+ CO 2.13	+00 1.27	+C0 6.37	+00 2.53	101 11 11		-02 4.06	-02 9.88	-63 1.49	-04 6.94	-94 2.81	-05 3.06	10. · · · · ·	C+ 0 0 + 0	GC 1 10-
ALTITUDE 0 02 03 ALTITUDE 1.406:409 1.176:416 2.506:409 1.406:415 5.906:411 Val. 1.606:409 1.406:415 5.906:411 5.906:411 Val. 1.606:409 1.406:415 5.906:411 5.906:410 52.506:409 1.406:415 5.906:411 5.906:410 5.906:410 53.356:409 5.906:409 1.606:411 5.906:409 5.906:409 56.3 3.506:409 1.716:414 5.006:409 57.3 3.506:409 1.366:41 5.006:409 58.3 3.506:409 1.366:41 5.006:409 59.3 5.906:409 1.776:414 5.006:409 59.3 5.906:409 1.776:414 5.006:407 59.3 5.906:409 1.776:414 5.006:407 70.3 3.506:409 1.776:414 5.006:407 70.3 3.506:409 1.776:414 5.006:407 71.4 3.506:409 1.776:414 3.706:407 71.4 3.506:409 1.776:414 3.706:407 71.4 3.506:409	2	CN		4. 37 E+16	3. 29E+15	2.42E+16	1.356+16	1.05E+16	8.20E+15	6.25E+15	5.00E+15	5.852+15	3.056+15	1.755+15	1.375+15	1.02E+15	7.736+14	5.85E+14	4.37E+14	3. 29 6+ 14	2. 34E + 14	1.755+14	1.07541	C1121C-6	6.78E+13	-+0	11 1.155	11 3.87F.	12 9.63F	12 1.965	3.42E	13 5.33E	7.265	13 6.67E	13 5.87E	13 4.49E	3.196	13 1.95E	1.02E			2 4.63E	1. 755	11 5.38E	1 9.15E	10 1.405	10 3.42E		1 3.13C	216.6 2
ALTITUOE 0 2.2012.0105.019 4.0. 1.005.019 4.0. 1.005.019 4.0. 2.2012.019 4.0. 2.2014.01 4.0. 2.2014.01 4.0. 2.2014.01 4.0. 2.2014.01 4.0. 2.2014.01 4.0. 4.0. 4.0. 4.0. 4.0. 4.0. 4.0	1 1 1 1 2	11		2.50E+11	1.50E+11	6.80E+10	2.80F+10	1.50E+10	8.70E+09	5 . 00E +09	2.80E+09	1.60E+09	9.00E+08	7. ADE +0.6	1 - 70F+CA	1 - 10E + 50	7.00E+67	4.70E+07	3.305+07	2.506+07	10+ 300 · 2				7.006+07	-20	1.02E+0	4.66E+0	1.59E+0	4.43E+0	1.06E+	2.1/E.	2. 07640	5.93E+0	6.42E+0	6.19E+0	5.55E+0	4. 34E+0	2.946+0	1.255+0	7.14540	3.836+0	1.89E+0	7.64E+0	1.80E+0	3.735+0	1.25E+0		0 246-0	4. CHE-U
ALTITUDE 0 ALTITUDE 0 440. 1.90E 409 440. 1.90E 409 52. 35.90E 409 52. 35.60E 409 52. 35.60E 409 52. 35.60E 409 52. 35.60E 409 54. 3.56E 409 54. 3.56E 409 54. 3.56E 409 54. 3.56E 409 54. 3.56E 409 76. 3.66E 409 76. 3.56E 409 76. 3.56E 409 76. 1.56E 401 76. 1.57E 401 77. 1.56E 401 76. 1.57E 401 77. 1.57E 401 70. 1		20		1.176+16	6.80E+15	6.496+15	3. 716+15	2.83E+15	2.20E+15	1. 68E+15	1.346+15	1.046+15	8.17E+14	6. 715+14	1.675+1 W	2. 746+14	2.07E+14	1.576+14	1.176+16	8. 80E+12	6. 29E+13	4.01E+13		CI4316	1.286+13	NSUM	8.155+04	9. 06E+04	1. C1E+05	1.106+05	1.156+05	1.116.05	A DAFE AND	4.735+04	3.175+04	2. 04F+04	1.335+04	8. CBE +-03	4.555+03	1.617+03	. 757 402	4.615+02	2.305+02	9.975+01	2.735+01	6. 155 + 00	2.115+00	In-114-0	3.075-01	10-46-1
ALTITUDE 100 100 100 100 100 100 100 10				1. 405 +09	1.80E+09	2. 205+09	60+-06-2	3. 105+09	3. 305+09	3.501+09	3.601+09	3. 60: +09	3. 60 + 09	3.500+19	1. 101 - 100	3. 00: + 39	3.005+09	3.405+09	+ • 505 + 00	60+300 .6	3. 001 + 10	9. 001 + 10	11	11	3. 20F + 11		4.65E+00	1.726+01	5.43E+ 01	1.536+02	4.31E+02	204316.6	C. 115.03	5.976+03	8 .46E+03	1.145+04	1.395+04	1.600+04	1.755+04	1.975.04	1.755404	1.736+04	1.816+04	2.17E+04	2.836+04	3.205+04	3.375+04	3.406.04	5.74:+U+	3. 556+ 04
	1 .hr (/11)	AL TT TIME				.99	.05	52.	- *5	.95	. 95	.09	.29			10.	12.		76.	.81		.26			.00	ALTITUDE	.04	+2+		.91	. 84			-95	- 95	.09	52.	. 45	-95	.00		74.	76.	18.	.0.	.2.				

	Fable 3.	Complete	Printout o	f Calculat	tions for	2110 UT,	2 Novembe	er 1969	(Cont)	
ALTITUDE	02+	04+	02+++20	H30+ .0H	H30+	2N . + C 8H	H30+ C02	H502+	H50+.302	+0N
	10-305-1	0.175.00	5.69E+00	C. 785400		2.011-03	1.822+00	1.135+01	· · · · · · · · · · · · · · · · · · ·	10-310-9
	1.525+00	9.245+00	1.146+01	A.15FPC0	4. 265-02	20-22-24	2.275+11	10+16-19	2.525+61	1.495+00
.9,	5.216+00	1.576+01	1.936+01	1.385+61	1.025-01	1.285-02	3.946+01	1.605+02	4.465+01	0.39E+00
	1.576+01	2.665+01	3. 25E+01	2.32E+01	2,385-01	2.167-02	6.45E+01	3.775+02	7.775+01	1.98E+01
. 95	3.9+5+01	4.155+01	5. 06E+01	3.615+01	4.935-01	3. 365-02	1.005+02	7.815+02	1.245+02	4.16E+01
.25	7.675+01	6.195+01	7.45E+01	5.32E+61	9.525-01	4. 34 0 2	1.47E+02	1.505+03	1.805+02	8.10E+01
	1.235+02	8.265+01	9.856+01	7.035+51	1.615+00	6.535-02	1.946+02	2.495+03	2.32E+02	1.386+02
	1.755+02	1.106+02	1.236+02	9.215+11	2.705+00	9. 56 - 02	2.52E+02	4.05E+03	2.845+02	2.325+02
	20.1241 0	1. 355 -02	1.5/5.02	1.1/2.2	3.96:+00	1	3.036+02	5.65=+03	3.115+02	3. 37E+ 02
	2 000000	1.11.10	1.996+02	1.586+36	0. 475 . 00	10-192.1	3.6/E+U2	7.85E+US	5.256+02	5.10E.02
	3.435+02	2.525+02	2.6AE+02	1.905+62	1. 305+01	10-10-11	4. A1F+02	9.05:404	3.1 UE+UC	1.066+03
66.	4.335+02	3. 055+02	3.096+02	2.195+22	1.927 + 01	2.045-01	5.296+02	1.275+04	2.056+02	1.515+03
. 83	5.165+02	3. 625+02	3.475+02	2.445+52	2. 565+01	2. 295 -01	5.69E+02	1.296+04	1.51E+02	1.966+03
.01	7.22:+02	4.335+02	3.85E+02	2.706+02	3.835+01	2. 5301	5.946+02	1.22 + 04	9.93E+01	2.60E+03
72.	1.005+03	4.996+02	3.996+02	2.785+02	5.085+01	2.615-01	5.795+02	1.07E+04	6.1 (E+01	3.186+03
. 42	1.555+03	5.775+02	4.23E+02	2.936+02	6.875+01	2.755-11	5.655+02	9.155+03	3.565+01	3.985+03
76.	2.95E+03	7.085+02	4.555+02	3.115+62	9.485+01	1016.2	5.30E+02	7.125+03	1.76E+01	5.39E+03
18.	7.005+03	7.535+02	4.17E+02	2.775+52	1.095+02	2.5701	3.80E+02	4.015+03	5.71E+00	8.256+03
.06	10+367-1	3. 385 -02	1.495+02	9.375+61	4.847+01	8.345-02	8.55E+01	7.185+02	4.756-01	1.22E+04
.24	1.735+04	7.996+01	2.84E+01	1.68E+C1	1.07:+01	1.365-02	1.05E+01	8.405+01	2.94E-02	1.385+04
	1.855+04	2.695+01	7.51E+03	4.12E+00	3.045+00	2.955-03	1.645+00	1.40E+01	2.615-03	1.516+04
.96	1.786+04	1. 005 + 01	2. 225 + 00	1.126+00	8.86-01	6. 225 -04	2.765-01	2.77E+00	2.93E-04	1.6666+04
	10.22.1	00+=10.*	6.65E-01	3.005-11	2.385-01	1.185-04	3-856-02	5.165-01	50-328-2	1.805+04
.06	1.635+04	1.595+00	1.97E-01	7.685-62	5.735-02	2.015-05	4.785-03	9. 30E -02	2.625-06	1.906:04
ALTITURE	202 * 0N	C21.+0N	N0+.H20.N2	N0+420.C02	N0+.2H20	SN02H5.+CN	N0+2H20302	N0+.3H20	H703+	+ +06H
· · · ·	1.055+00	1.916-02	8.6AE-04	2.60E-01	1.916-02	8. 555 -04	2.60E-01	7.495+00	3.716+03	7.77E+04
.2.	1.795+00	4.975-02	1.486-03	4.445-51	4.95E-02	1. 485 -03	4.43E-01	1.285+01	1.266+04	1.795+04
	3. 07 - + 00	1.245-01	2.546-03	1	1.24E-01	2. 535-03	7.58E-01	2.195+01	3.100+04	7.016+04
•••	00 + 322 • 6	3.135-01	4. 37E-03	1.30E+00	3. 125 - 01	4. 305 -03	1.296+00	3.725+01	5.96E+04	4.98E+04
	0.12.0.0	In-100-1		5.202.2	r.655-01	7. 512-03	2.195.00	6. 50E + 01	8. 375+04	3.045+04
	10.200 2	1. 335 . 00	1. 725-02	0.+11+00	1. 555 + 00	1.152-02	3.455+00	10+306.6	+0+3/2·6	1. 175.04
	2.765+01	5. 425 +00	20-316-02		00+ 10+ S	20-30-0	5. 826400	1 025 4 02		7.846.07
56.	3.636+01	6.675+90	3.006-02	0043E6-8	A. A25 + 0.0	2.985-02	A.93F+00	2.45=+02	4.175+04	5.90E+03
.85	4.355+01	1.245+01	3.59E-02	1.08E+11	1.235+01	3. 565 -02	1.07E+01	2.03E+02	2.746+04	5.14E+03
.05	5.30E+01	1.735+01	4.376-02	1.315+01	1.765+01	4. 325-02	1.295+01	3.245+02	1.705+04	4.495+03
52.	6.126+01	2.475+01	5.04E-02	1. 506+01	2.435+01	50-35E.4	1.47E+01	3.46E+02	1.1 2.04	3.04E+03
	7.026+01	3. 355 + 01	5.756-02	1.725+01	3.26E+01	5.516-02	1.66E+01	3.57E+02	7.15E+03	2.00E+03
.90	1.725.01	10+325+01	6.236-02	1.87E+61	4. 34E+01	6. 13: -02	1.785+01	3.425+02	4.5 CE+03	9.546+02
	8.11E.01	5.51:+01	6.556-02	1.946+01	5.195+01	6.17F-02	1.81E+01	3.135+02	2.985+03	4.67E+02
	10.1.1.1.	10-316-0	6.55E-02	1.925+01	6. 296+01	20-346-05	1.735+01	2.635+02	1. 785+03	1.735+02
74.	101392.7	101212-1	5.555-UC	1. 616414	10+160.9	20-312-6	1.906401	2.035.000	1.0 46403	0.32E.UI
16.	1.4554.0	10.151.1		1.110.1	10.24.	20-124.4	1022201	20 - 100 0	20.101.0	10.300.3
78.	1.365+01	1.355+02	5.196-02	1.710111	10+10+ 4	3. 105-02	1.0765+00	10 + 10 - 4	6. 965 +01	7.255-01
.00	8.06F+01	1.275+62	3.635-02	0.4225.0	10.12.4.4		2.935+00	10.10.10.	5. 745 + 00	2. 785-02
52.	6. 06E+ 01	8.715+01	1.675-02	4-635+00	1.645+01	3. 525 -03	7.965-01	2-235+00	4.765-01	9.666-04
	4.295+61	5.195+01	8.265-03	1.886+60	5.225+00	8.315-04	1.696-01	3.37F-C1	4.566-02	4.71E-05
.94	3.095+01	3. 665 +01	3.65E-03	1:-599-1	1.655+00	1.975-04	3.596-02	5.365-02	5.165-03	2.93E-06
.8.	10.3.6.1	1.485+01	1.246-03	2-305-51	3.635-01	3. 345-05	4.736-03	5.045-03	3. 895-04	1.095-07
.0.	1.215+01	6. 665 • 60	3.85E-04	6.235-12	7.116-02	4.145-16	5.39E-04	4.13F-04	2.81E-05	3.91E-09

Table 3. Complete Printout of Calculations for 2110 UT, 2 November 1969 (Cont)

	11	ANEMAJ	2310	PSu	NS UN+ E	[4T. SP	SP	INT. E		
.00	+.51E+02	1.755+64	1.846+01	8.14:+14	8.15:+04	8.13:+14	0.15E+ C4	6. 325 + 00	4. 66E+00	4.00E+02
.2.5	2.505+02	5.265+03	1.695+00	9.055+54	9.065+04	9.025+94	9.06E+04	2.045+01	1.725+01	5.00E+02
	1.445+02	1.865+03	2.176-01	1.010+35	1.015+05	1. 315 +05	1.016+05	6.53E+01	5.436+01	6.40E+02
.94	10+2+01	6. 895 +02	3.156-02	1.10E+C5	1.165+05	1.10F+05	1.106+05	2.005+02	1.595+02	A.00E+02
	4.50E+01	2.665+02	5.396-03	1.155+35	1.15:+05	1.185 +35	1.156+05	6.325+02	4. 3 1E+02	1.00E+03
50.	2.705+01	1.115+02	1. 21E-03	1.126+35	1.12:+05	1.195 +05	1.12E+05	1.535+03	9.97E+02	1.20E+03
32.	1.575+01	4.425+01	3.026-04	40+364.6	9.55:+04	1.135 +05	9.53E+04	2.82:+03	2.11E+03	1.355+03
54.	9.435+00	1.895+01	1.025-04	7.325+04	7. 33: +04	1.015+05	7.336+04	4.465+03	3.695+03	1.396+03
.95	5.42E+00	7.925+00	3.91 6-05	5.325+54	5. 325 + 04	8.36E+04	5.32E+04	5.695+03	5.97E+03	1.795+03
.8.5	3.415+02	3.74:+03	1.896-05	4.01E+04	4. 015 + J4	7.71E+04	4.016+04	9.195+03	8.46E+03	1.35E+03
60.	2.01E+00	1.855+00	1.016-05	3.176+64	3.185+04	40+ 366 · 9	3.186+04	1.22E+04	1.146+04	1.30E+03
52.	1.22E+ 60	9.635-01	6.31E-06	2.716+54	2.71:+04	6.17E+04	2.70E+04	1.37E+04	1. 30E+04	1.20E+03
54.	7.04E-01	5.045-01	4.276-05	2.425+04	2.41:+04	5. 54E+04	2.416+04	1.56E+04	1.60E+04	1.106+03
56.	3.855-01	2.596-01	3.126-05	2.226+64	2.21:+04	5.11E+04	2.21E+04	1.716+04	1.756+04	9.60E+02
.85	2.256-01	1.555-01	2.556-06	2.036+04	2.115+04	4.74F +04	2.11E+04	1.88:+04	1.82E+04	8.50E+02
70.	1.265-01	8.83E-02	2.17E-06	1.986+04	1. 985 + 04	4.33E +04	1.98E+04	2.00E+04	1.825+04	7.20E+02
72.	7.066-02	5. 60F-02	1.89E-06	1.83E+64	1.845+04	3.96E+04	1.84E+04	2.00E+04	1.75E+04	5.00E+02
74.	3.936-02	2.675-02	1.64E-06	1.765+34	1.77:+04	3. 53E+04	1.77E+04	2.02E+ 0	1.735+04	4.90E+02
76.	2.136-02	1.275-02	1. 34E-06	1.82E+64	1. 645 + 04	3. 335 +0+	1.846+04	2.24E+04	1.01E+04	4.405+02
18.	1.206-02	4.60E-03	9.036-07	2.16E+04	2. 16:+04	3. 26E +04	2.186+04	2.56E+04	2.175+04	4.256+02
.06	6.05 E-03	9.436-04	5.036-07	2.885+64	2.895+04	3.245+04	2.69E+04	2.96E+04	2.895+04	4.20E+02
.20	3.236-03	1.926-04	4.306-07	3.215+04	3.205+04	3. 325 +0+	3.32E+0+	3.205+04	3.200+04	\$.40E+02
.46	1.706-03	6.255-05	4.226-07	3.375+64	3. 375+04	3. 465 +04	3.376+04	3.555+04	3.37E+04	4.80E+02
86.	9.55E-04	2.436-05	4.276-07	3.456+84	3.465+04	3.575+04	3.466+04	3.87E+ 04	3.465+04	5.10E+02
.86	40-346-4	1. 031-05	4. 31 E-07	3.536+64	3.545+04	3.67E+04	3.546+04	4.11E+04	3.546+04	5.40E+02
.06	2.52:-04	4.465-05	4.356-07	3.536+64	3. 556+04	3.716+04	3.556+04	4-28E+04	3.556+04	5.50E+02

Table 4. Same as for Table 3 Except k₄₃ as in Table 1. The first set of altitude listings is omitted since it is the <u>same as for Table 3</u>

ALTITURE	¥	HOSH .	-20	-+0	-+00	- 10	-co3-	-	- 206			
.0.	4.665+00	8.15E+04	1.025+01	1.167-01	1.96:+01	5. 57E-01	1.266+04	6.64E+00	1.05E+02	6.87E+04		
.2.	1.726+01	9.066.04	4.65E+01	3.076-01	8. 38E + 01	1. 53E +00	2.926+04	2.61E+01	1.746+02	6.10E+04		
;	5.435+01	1.01E+05	1.586+02	9.635-01	2.565+02	4. +5F +00	5.03E+04	0.26E+01	2.466+02	5.01E+04		
.9.	1.536+02	1.105 .05	4.436+02	1.956+00	6. 315+02	0.94 - +00	40+346-9	1.97:+ 02	3. 326+02	3.665+04		
	4.31E+02	1.156+05	1.066+03	3.425+00	1.355+03	1.685 +01	8.286+04	4.04E+02	4.376+02	2.845+04		
- 05	20+316.6	1.116+05	2.17E+03	5. 33E+00	2.595+03	2. 06: +11	80+30+ 0+	0.77E+UZ	20+329.5	2.056+04		
-25	2.112.03	9. 346 +04	3.746+03	6.92E+00	3.96:+03	2. 375 +01	1.146+94	20+395-6	6.335+02	1.276+04		
	3.695+03	6.96E+01	\$0+326-4	1.255+00	SD+ 365	2.156 .01	9.136+04	1-075+05	5.976+02	1.226+03		
	504364.6	10.22.1.	50+326*6	0.00000	20 4 1 9 2 0 2 1 0	1. 795 -01	* 0436340 ·	10.10.1	201210.0	3.375.03		
	SD+3+++ 8	3.161 -04	6.40E+03	5.855+00	3. 205 + 0.5	1. 501 +01	1.946.04	1.016+03	20.326.2	1.275+03		
	1.135+84	2. 63E +0+	Se+341.0	DD - 104 - 4	CO + = 11 - 2	8. 545 +00	1.105.01	20 + 266 - 0	1.975.00	204302**		
	1.375.04	1. 315 - 04	50-30C-03	0042.1.C	C		CD4300.0			1. 205-02		
	1. 555+04	1.95E+05	4.28E+03	1.936+00	0.272+02	3.145.00	2.395.03	20 + 119 - 6	3. 296+01	10+300.4		
	1.716+04	SD- 27	2. 566+03	18-3/8-6	2. 465 4 02	1. 506 +00	20-316-02	20 + 168 * 0	10.100.1	10+320-1		
	1.772.00	C. 111 . US	1. 475.43	19-365-6	1. 201 - 0.	10-1-1-1	201210-0	201210-2				
	1. 756+04	1. 535 + 03	1.196+03	2.475-01	2.926+01	10-11-	1.496+92	1.516+00	1. 505 . 00	1.012.00		
.21	1.645+04	8. 18E+02	6.69E+02	1.055-01	1. 285 + 01	1. 3ZE -01	10+390.4	8.58E+01	10-326-41	5.01E-01		
	1.596+04	** 245 + 02	3.52E+02	4.316-62	3.735+00	20-366.9	1.665+01	10+3+0.0	1.48E-01	8.08E-02		
16.	1.62€+04	2.055+02	1.69E+02	1.575-62	8.845-01	4.135-02	4.92E+00	3.02E+01	3. 8 CE - 02	1-80E-02		
18.	1.92E+04	8.81E+01	6.75E+01	4.755-33	1.32:-01	1. 795-02	1.02E+00	1.945+01	6.925-03	2.65E-03		
.06	2.665+04	2.515+01	1.666 +01	8.43E-04	6.39E-03	4.945-03	7.386-02	8-41E+00	4. 59E-04	1.336-04		
.24	3.065+04	5.87E+00	3.56E+00	1.335-04	2.68E-04	1.416-03	5.30E-03	2.30E+08	3.046-05	90-364-9		
	3.295+04	2.05E+00	1.226+00	3.336-05	2.975-05	6.74E-04	1.096-03	8.30E-01	6.40E-06	1-085-06		
.96.	3.406+04	8.27E-01	4.866-01	9.975-06	4.595-06	3. 69 04	2.55E-04	3.41E-01	1.685-05	2.756-07		
.96.	7 51E+04	3.625-01	2.12E-01	3.102-36	8.36E-07	1.555-04	7.40E-05	1.50E-01	5.415-07	9.00E-08		
.06	34E+04	1.586-01	9.205-02	9-536-67	1.555-07	4.685-05	1.35E-05	6.58E-02	1.11E-07	1.56E-08		
ALTETUDE	02+	•+0	02+*+20	H30+.J4	H30+	SN.+CEH	H30+ •C02	H502+	H50++302	+0+	5N.+ON	
.04	1.336-01	3.17E+00	3.93E+00	2.815+00	7.375-03	2. 61E-03	7.82E+00	1.13E+01	7.746+00	9.71E-02	7.346-04	
.24	4.83E-01	5.40E+00	6.69E+30	4.75E+00	1.80E-02	P. 645-03	1.336+01	2.795+01	1.406+01	2.70E-01	1.22E-03	
	1.596+00	9. 24E+00	1.146+01	8.155+00	4.265-02	7.575-03	2.27E+01	6.66E+01	2.526+01	7.096-01	2.04E-03	
.94	5.212+00	1.57E+01	1.93E+01	1.386+61	1.02E-01	1. 285-02	3.84E+01	1.605+02	4.46E+01	1.67E+00	3.39E-03	
.0.	1.57E+01	2.66E+01	3.25E+01	2.32E+61	2.385-01	2.165-02	6.45E+01	3.775+02	7.77E+01	4.75E+00	5.64E-03	
-05	3.946+01	4.165+01	.5. 06E+01	3.612+61	4.935-01	3.36E-02	1.006+02	7.81E+02	1.246+02	1.056+01	8.75E-03	
52.	7.67E+01	6.196+01	7.456+01	5.32E+01	9.525-01	4. 34E-02	1.476+02	1.50E+03	1.805+02	2.04E+01	1.306-02	
54.	1.235+02	8.266+01	9.856+01	7.03E+51	1.615+00	6.535-02	1.946+02	2.495+03	2.325+02	3.42E+01	1.74E-02	
.95	1.756+02	1.106+02	1.235+02	9.216+21	2.705+00	8. 565-92	2.526+02	4.05E+03	2. 845+02	5.49E+01	2.346-02	
	2.0.3 2.0.2	1. 355+02	1.576+02	1.126+02	3. 96- + 10	1.041-11	3.036+02	5.65E+ US	3.11E+02	10+304-1	2.072-02	
	2.376+02	1.715+02	1.94E+02	1.385+02	6.055+00	1.2801	3.67E+02	7. 83E+ 03	3. 266+02	1.045+02	3.645-02	
- 25	2.995+02	2.065+02	2.275+02	1.616+32	8. 815 + 00	1.505-01	4.205+02	9-885+03	3.116+02	1.436+02	4.355-02	
	20 + 3 + 4 + 6	20+325*2	2.665+02	1.906+02	1.305+01	1.7811	4.81E+02	1.101.1	2. 1 IE + UZ	1.916+02	20-362.6	
		3.055.00	3. 49E+UZ	264-201-2	1. 436 + 01	10-340.2	2.2.2.2.00	1. 295 - 04	201020	20.304 .		
	7.215.02	3. 525 + 02	3.436+02	2.4564.12	Z. 665 + U1	2.50:-01	5.045402	1. 275 + 04	1. 065402	5.545+02	8.555-UC	
			2002000		10.10.0				1000 100 T	201311.3	0.515-02	
	575403	5. 415402	4. 266+02	2.065412	1012110	10-101 - 0	S.ASEAD2	T-DAF+ DA	10+12 0 *O	8-84F+02	1.1AF-01	
16.	2.996+03	7.185+02	4.675+02	3.175+1.2	9.67 + 01	10-126.2	5.646+02	8-11E+03	2.126+01	1.526+03	1.716-01	
78.	7.195+03	7.795+02	4.305+02	2.855+62	1.13-+02	2.585-01	4.205+02	4.735+03	7.275+00	3.326+03	3.14E-01	
.06	1.536+04	3.496+92	1.556+02	9.815+11	5.005+01	8.765-02	9.476+01	8.195+02	5.76E-01	7.486+03	5-485-01	
52.	1.836+04	8.146+01	2.90E+01	1.735+61	1.115+01	1.415-02	1.126+11	10+300.6	3.305-02	1.045+04	5.836-01	
	1.87E+04	2.725+01	7.61E+00	4.215+00	3.125+00	2.325-03	1.726+00	1.475+01	2.61E-03	1.296+04	10-344.5	
96.	1.80E+04	1.615+01	2.23E+00	1.145+00	9.025-01	6. 335-04	2.855-01	2.965+00	3.075-04	1.526+04	4.82E-01	
	1.736+04	4.025+00	6.71E-01	3.036-31	2.405-01	1.205-04	3.926-02	5.245-01	2.895-05	1.726+04	3.766-01	
.06	1.63E+04	1.6JE+00	1.976-01	7.715-02	5. 765 - 02	2.0205	4.835-03	9.385-82	2.655-06	1.665+04	2.78E-01	

- 2
-
1
5
-
1
-
0
-
0
-
್
-
-
2
U
0
*1
-
-
+
C
-
- Q
C
~
1.
(r
~
ς.
0
-
-
-
-
1
r
-
*
C
.~
-
1.2.2
U
-
- (1
0
2
2
5
~
J.
22
+
-
٩
4
ale
hle
ahle
ahle
Table
Table
Table

		<i>саасаса</i> рыкыкыныкыкысарыкыкы ш н н
	H = 100 H = 1000 H = 10000	$\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $
	H703+ 1.25603 3.16600 5.36606 0.36606 0.37600 0.37600 0.37600 0.37600 0.17600 0.17600 0.17600 1.75600 1.75600 1.75600 1.75600 1.75600 1.75600 1.75600 1.75600 1.75600 1.75600 1.75600 1.75600 1.75600 1.75600 1.76600 1.75600 1.76600 1.75600 1.76600 1.75600 1.76600 1.75600 1.76600 1.756000 1.756000 1.756000000000000000000000000000000000000	E 6 6 6 6 6 6 6 6 6 6 6 6 6
(Cont)	2 N03420 2.199540 2.199540 5.312540 6.312540 6.312540 9.92540 1.195640 3.361540 1.195640 3.361540 3.561540 3.571540 3.571540 3.571540 3.575400 3.575400000000000000000000000000000000000	INT. E 2.5351501 2.5351501 5.3251501 5.325160 5.325160 1.553503 1.553503 1.553503 1.553503 1.55160 1.55160 1.157600 1.157600 1.256500 2.266500 2.266500 2.266500 2.266500 2.2565000 2.2565000 2.2565000 2.2565000 2.256000 2.256000 2.256000 2.256000 2.256000 2.256000 2.256000 2.256000 2.256000 2.256000 2.256000 2.256000 2.256000 2.256000 2.2560000 2.2560000 2.2560000 2.25600000 2.25600000 2.25600000000000000000000000000000000000
in Table 1	N N 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	SP 9.15 11.10 11.10 10.16 11.10 10.16 11.10 10.16 10.16 10.16 11.0
ot k ₄₃ as i	N. 9. 420 N. 9.	I NT. STATE CONTRACT OF CONTRA
e 3 Excep	M0 * 7 H2 1.911 - 7 H2 1.911 - 102 1.245 - 012 1.245 - 013 1.125 - 013 1.125 - 013 1.255 - 013 1.125 - 013 1.125 - 013 1.125 - 013 1.121 - 123 1.121 - 121 1.121 - 121 1.121 - 121 1.121 - 121 1.121 - 121 1.121 - 121 1.121	MSUME E 0.157 + 05 + 05 + 05 + 05 + 05 + 05 + 05 +
s for Tabl	N00+423.002 2.656-01 1.306+01 1.306+01 1.306+01 3.466+01 5.366+00 5.366+01 1.366+01 1.366+01 1.366+01 1.366+01 1.366+01 1.366+01 1.366+01 2.376+0100+000+000+000+000+000+000+000+000+0	PSUM 9.146705 9.146705 11.125705 11.125705 11.125705 11.125705 11.125705 11.125705 11.155705 11.
Same as	N0++H20+H2 8-656-05 2-546-03 2-546-03 2-546-03 4-356-02 1-156-02 1-156-02 1-156-02 3-356-02 3-356-02 3-356-02 3-356-02 4-466-02 2-346-01 1-546-02 9-026-02 9-026-02 9-026-02 1-154-01 1-15	Q/F**2 1.966+01 2.176-01 2.176-01 3.366-02 3.376-02 3.386-02 3.366-02 1.026-02 3.3926-05 4.476-05 2.466-05 2.466-05 2.466-05 2.466-05 2.466-05 4.456-05 5.936-05 5.956-05 5.956-05 5.956-05 5.956-05 5.956-05 5.95
Table 4.	N0+	LA MOD A 1. 755 40 1. 866 403 2. 865 403 2. 865 403 1. 966 403 1. 966 403 1. 966 403 1. 115 402 1. 955 401 1. 555 40
	N0*	La
	ALTTI UJE 40. 40. 40. 40. 50. 50. 50. 50. 50. 50. 50. 5	LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTT LTTTT LTTTT LTTTT LTTTT LTTTT LTTTT LTTTT LTTTTT LTTTTT LTTTTT LTTTTT LTTTTTT LTTTTTTTT

4. NUMERICAL EXAMPLE: Nighttime

Table 5 contains charged particle concentrations appropriate to SPE conditions during the night of 3 November 1969 at Ft. Churchill, Canada. The ionization production rates, principal constituents, and temperatures are identical to those used in our report¹ dealing with a model for the nighttime steady-state disturbed D-region. Our current, more advanced model results are not extremely different in regards to [e] as compared to our previous effort. The major difference, a somewhat lower [e] now in the 80-65 km region is actually in better accord with the data. The results in Table 5 were obtained with $k_{43} \neq 0$. Uncertainties in the NO⁺ chemistry and the chosen NO profile notwithstanding, it still is worthwhile to point out that the calculations accomplished with the Table 1 value for k_{43} resulted in an NO⁺ concentration at 70 km of 2×10^2 cm⁻³, far below the value in Table 5 which is in good agreement with the data.² The major positive ions are plotted in Figure 4. Below about 60-65 km, the positive ions are in thermodynamic equilibrium.

Figure 4. Principal Positive Ions Computed (Table 5) for 0605 UT, 3 November 1969, the Time of Launch for Black Brant Rocket 17.758

The negative ion populations (Figure 5) are, undoubtedly, as noted earlier, subject to considerable hydration at night. This possibility has little impact on [e] unless the hydrated negative ions have much different ion-ion recombination rates with oxonium ions than do the parent, unhydrated ions. The little experimental evidence in this regard does not favor this possibility which is attested to by the rather good agreement attained between model and data for [e].

Table 5. Complete Printout of Calculations for 0605 UT, 3 November 1969. See Table 3 caption for further description of the table. Rate coefficient $k_{1,2}$, was set to zero

ALTI TUDE		02	03	42	ON	C 02	HEO	011100	200		TENP
	1. 605+00	1. 606+16	4.50E+11	5.966+16	2.005+00	2.296413	7.635+10		1.005+09	7.635+16	2. 556+0
	004 100 · C	1.1.1.1.		1. 246446		1.265 415	01-306-1		6-00F+0A	4. 205 + 16	2.466+0
	1 905 90					CT 100 1		:.			
	6. to 7 + 0.0	4-82F+15	5. 006+10	1. 50F+15	1. DOFeD3	6. 90F +17	2.30F+10		3.20F+0A	2.305+16	2.55F+0
50.	1.005+01	3. 716+15	3.105+10	1.395+15	5.00F+03	5.315+12	1.775+10		2.40E+08	1.77: +16	2.585+0
52.	1.50F+01	2.435+15	2 - 206 +1 0	1.055+16	2.00F+04	4. 05F+12	1.355+10		1.70E+0A	1.355+16	2.586+0
54.	2.405+01	2.206+15	1 - 306 +10	8.20E+15	3.00F+04	3.156+17	1.055+10		1.305+08	1.055+16	2.57E+0
56.	3.75=+01	1. 68F+13	9.005+09	6.236+15	3.006+05	2.405+12	9.00E+09		1.00E+08	6.00E+15	2.546+0
. 95	6.105+01	1.366+15	60+309-9	5.006+15	7.005+05	1.926+12	6.40F+09		7.306+07	6.405+15	2.50E+0
.06	1.005+02	1.046+15	5-206+09	3.835+15	1.705+06	1.496+12	975 + 09		5.706+07	4. 57:+15	2.45E+0
52.	2.402+02	A. 175+16	60+90E+4	3. 056+15	+ . 00E+ 46	1.175+12	3.90E+09		4.705+07	3.90E+15	2.425+0
	6. 205 +02	6. 29F+14	4.30E+C9	2.346+15	7.005+06	9.00F+11	3.006+09		4.005+07	3.005+15	2.37E+0
.96	2.10 +03	4.71E+14	4.10E+09	1.766+15	1.306+07	6.755+11	2.255+09		2.605+07	2.255+15	2 . 33E+0
.05	1. 00:+04	3.675+14	2.70E+09	1.376+15	1.906+07	5.256+11	1.756+09		1.806+07	1.75:+15	2.28E+0
10.	3.00:+34	2.746+14	3.306+09	1.026+15	2.205+07	3. 935 + 11	1.316+09		1.006+07	1.316+15	2.25E+0
72.	3. 00: +05	2.07E+14	3.006+99	7.736+14	2.40E+07	2.975+11	9.90E+08		5.00E+06	9.905+14	2.22E+0
74.	3.00F+06	1. 576+14	2.90E+09	5.856+14	2.60E+07	2.255+11	7.50E+08		2.00E+06	7.505+14	2.19E+0
76.	6.00=+07	1.176+14	2.50E+09	4.37E+14	2.505+07	1.686+11	5.505+08		3.005+05	5.60E+14	2.156+0
78.	1. 505+09	8. 80F+13	8.00E+08	3. 29 6+14	2.506+07	1. 266+11	4.20E+08		3.00E+04	4.205+14	2.13E+0
90.	1- 805 +10	6. 29E+13.	2.00E+07	2.346+14	2.605+07	9.005+11	3.005+08		1.00E+02	3. 00E+14	2.11E+0
.29	9. 605+10	4.61F+13	3.00E+07	1.725+14	2.705+07	6.606+13	2.20E+08			2.20E+14	2.10E+0
.46	1.500+11	3.355+13	5.006+07	1.255+14	3.005+07	4. BDE+11	1.505+08			1.605+14	2.09E+0
.96.	2.20: +11	2.516+13	7.605+07	3.375+13	3.505+07	3.60F+11	1.205+08			1.205+14	2.09E+0
	2.70-+11	1.405+13	9 - ONF + 67	6.715+13	4.00F+07	2.5AF+11	6 -50F +07			8-605+13	2.10F+0
	2. 205 411		7 00E 407		1 COLORAD	THE FEE	1 1 2 5 4 7			1112113	2.11640
•••	11. 203 .0	1.302.1		*******		1. 046 11		;	:	CT. 337.0	
TTUDE	w	MSN	-20	- *0	-t03	- 10		-6	-0	N02-	-EON
40.	4.225-01	5.63F+04	5.60E-0	1 6.505	-03 1.09	1E+00 1.5	-1E-02 9.	34E+02	1.11F-13	5.07E-10	5.53E+0
42.	9-196-01	6.195+04	1.24E+0	0 1.03E	-02 2.29	16+00 2.4	95-02 1.	\$0E+03	7.31E-13	6.18E-09	6.05E+0
. **	1.736+00	6.56E+04	2.33E+0	0 1.46E	-02 4.09	5 + 00 3. 7	725-02 2.	0.05.03	3.805-12	6.785-08	6.35E+0
.94	3.496+03	6.835 +04	4.546+0	0 2.00F	-02 7.00	F+00 5.4	7F-02 3.	046+03	2.005-11	8.44E-07	6.53E+0
	6.667+00	7.075+04	A. 6AF + 0		1.24	101 7.3	105-02	10+101	1-075-10	1.075-05	6-535+0
20.	1.175+01	7.265404	1.505+0	TARE I	-02 2.04	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10-101 P.	046+03	5-01E-10	1.195-04	6-656+0
52.	1.995+11	7.20F+04	2.18F+0	1 4.085	-02 2.48	1.1 1.4	0F-01 8.	116+03	1.666-09	9.005-04	6.38E+0
54.	4.575+01	8-48-+04	5- 106+0	7.665	.6.2 5.94	F+01 2.4	-1 10-36t	396+04	1.045-08	1.175-02	7-086+0
-95	8.29F+01	A.645+04	1+340-1	-10.9	1. 1. 1. 1. 1.	F+01 3.	10-101	786+04	3-855-08	7.20E-02	6.85E+0
SA.	1.255402	A.45404	1 . 056+0	0.60F	02 0.18	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	10-101	166404	1-175-07	2.7AF-01	6-235+0
-05	1.975+02	A. 045+04	1.296+0	- d. 17-	-C2 8.78	101 4.1	1001	425+04	3-196-07	9.555-01	5.65F+0
.24	3 . 05 - + 02	7.825+04	1.395+0	2 7. 95F	-62 6.36	F+01 5.1	765-01 2.	616+04	9-675-07	2.635+00	5-186+0
	4.73F+02	7. 396 4-04	1-456+0	2 6. 5 ME		1.4 11 6.7	10-101	66F+04	3-105-06	5. 235+00	6-72F+0
	7.425402	6. 705 4 0 M	1.22640	2 4.46F	102 2.44		0111 2.	OFF ALL	1.047-05	1.1 35+01	TARFAD
	0.735402	6. 055 + 0F	1.17540	1.206.	1.12			GAFADA	5.07F-05	1.755+01	T. DEF+0
	1. 335403	6. 325 A 04	1. DEELO					156404	1.555-04	2. 54F401	2.15F+0
		· • • • • • • • •						205404		1 1 1 1 1 1 1	1.305.1
74.	2. 54F+ 03	1.065+06	7.64540				10-101 3.	1 26+04	1-375-02	3. 3AF+01	8-34F+0
14										1 6 25 4 0 1	4.23540
		101302 C						215402	0.001.00	4. 9 75 ADD	1 OFFAD
	2. DUE + 0 +	1 065-01	2 36640					115-01	1. 645 4 04	2. 265-02	5-07E-0
	2 4364 04	10-30C .C						10-300	10 - 22 - C	2.405-04	1.325-0
		1.525 UU	0.505-0	101.1 0 010				175-04	7.105-01	5.025-05	1.715-0
	2.546+04	1.000 - U		1 7 645				016-04	2.755-01	9. 80F-06	
	2.535404	2. 70E-04		3 266				201-102	1.165-01	2.565-06	1.445-0
.00	2.515+04	1.155-01	6. SAF-0	. 82F.			0 50-21	91-120	4.935-02	6- 305 - 07	2-80F-0

	Table 5.	Complete	Printout	of Calcula	tions for	0605 UT.	3 Novem	ber 1969	(Cont)	
ALTITUDE	02+	++0	02+*H20	H30+.3H	H30+	H3 0+ . N2	H30+ .CO2	H502+	H50+.302	+04
.0,	6.51E-02	1.495+00	1.87E+00	1.336+00	3. 505 - 03	1. 245-03	3.716+00	5.36E+00	3.685+00	2.85E-01
.2.	2.236-01	2.465+00	3. 086+00	2.20E+C0	8.285-13	2.045-03	6.12E+00	1.285+01	6.465+00	6.73E-01
	6.33E-01	3.695+00	4.61E+00	3.295+00	1.725-02	3.065-03	9.166+00	2.695+01	1.025+01	1.40E+00
9	1.735+00	00+32+*S	6. 77E+00	4.84E+CU	3.57E-U2	50- 36t .4	1.356+01	10+329*5	1.575+01	2.90E+00
	nn+329**	00- 220 · J		0.995.00	1.100-04		11.346.1	1.1.1.1.1.1	10.326.01	0.036+00
	10.37.	10. 200 .1	1.766+01	1.256461	10-36-01	1.175-02	10436401	2. 57 5 4 02	3. 395+01	1.976+01
	10.705.01	2.565 -01	1.206+01	2.286+01	5.215-01	2.125-02	6- 33F+01	A. 215 + 02	7.7 76401	4. 226 + A1
	104249-5	3.546+01	4-476+01	3.196+01	9.355-01	2.975-02	8-84E+01	1.455+03	1.045+02	7.566+01
58.	6.556+01	10- 366 -4	5.496+01	3.926+61	1. 395 + 00	3. 545-02	1.086+02	2.12:+03	1. 21E+02	1.12E+02
.09	10+364-1	5.546+01	6.92E+01	4.94E+01	2.175+00	4. 59F-02	1.36E+02	3.245+03	1.436+02	1.74E+02
52.	1.00E+02	7.165+01	8.97E+01	6.40E+31	3.495+00	5. 355-02	1.76E+02	5.065+03	1.756+02	2.78E+02
	1.216+02	9.475+01	1.196+02	8.43E+ G1	5.735+00	7.935-02	2.31E+02	7.905+03	2.09E+02	4.52E+02
.99	1.605+02	1.246+02	1.556+02	1.115+02	9.69E+00	1.035-01	3.01E+02	1.23E+04	2.426+02	7.54E+02
68.	1.805+02	1. 51:+02	1.896+02	1.35E+02	1.45:+01	1.25E-01	3.646+02	1.666 + 04	2.525+02	1.11E+03
20.	2.51E+02	1.905+02	2.37E+02	1.695+52	2.36:+01	1.57:-01	4.496+02	2.24 - + 04	2.495+02	1.75E+03
72.	3. 356+02	2.295+02	2.85E+02	2.035+02	3.665+01	1. 38E-01	5.30E+02	2.615+04	2.14E+02	2.57E+03
74.	4.525+02	2.766+02	3.426+02	2.435+02	5.64:+01	2.265-01	6.16E+02	2.70F+04	1.6 CE+02	3.65E+03
16.	6.356+02	3.345+02	4.12E+02	2.916+02	8.80E+01	2.705-01	7.006+02	2.44 - + 04	9. 98E+01	4.88E+03
78.	1.275+03	3.895+02	4.61E+02	3.156+62	1.245+02	2. 335-01	5.37E+02	7.44 = + 03	1.396+01	4.44E+03
.96.	7.316+03	2.735+02	3.076+02	2.00E+02	1.055+02	1.905-01	2.32E+02	2.24E+03	1.9 E+00	9.03E+03
.28	1.246+04	5.605+01	5.89E+01	3.62E+01	2.365+01	3.025-02	2.77E+01	2.35E+02	1.01E-01	1.21E+04
. 46	1.235+04	1.80E+01	1.785+01	1.046+01	8.06E+00	7.555-03	5.42E+00	4.725+01	1.126-02	1.30E+04
.96.	1.1. 1.04	6.365+00	5.87E+00	3.225+50	2,775+00	1.955-03	1.12E+00	1.09E+01	1.52E-03	1.40E+04
	1.035+04	2.415+00	2.025+00	1.01E+ 60	9.075-01	4.525-04	1.97E-01	2.445+00	1.82E-04	1.47E+04
.04	9.535+03	9.355-01	6.94E-01	3.136-01	2.695-01	9.455-05	3.08E-02	5.385-01	2.105-05	1.55E+04
ALTTUDE	40+-372	00+*+0N	N0+-H20.N2	200-C2++0N	N0 +. 2 H20	5N0 2H2 . + CN	N0+2H20302	N0+.3H20	H703+	+9064
.0.	4. 94F-01	9.07F-03	4-12F-04	1.245-21	9.045-03	4.107-04	1.23E-01	3.556+00	2.566+03	5.375+06
.2.	1.21E-01	2.285-02	+0-362-9	2.045-01	2.275-02	6.77E-04	2.03E-01	5.865+00	8.57E+03	5.32E+0+
	1.235+00	4.975-02	1.026-03	3.055-31	4.955-02	1.315-03	3.046-01	8.765+00	2. 0 0E+04	4.53E+04
	1.415+00	1.047-01	1.435-03	4.495-01	1.065-01	1.495-03	4.46E-01	1.295+01	3.705+04	3-095+04
	2.61 5+00	2.265-01	2.166-03	6-47F-51	2.255-01	2.156-03	6.44E-01	1.966+01	5.135+04	1-876+04
50.	3.615+00	4.27=-01	2.996-03	8.955-01	4. 265-01	2.975-03	8-92E-01	2.57E+01	6. 08E+04	1.15F+04
52.	4.685+00	7.275-01	3.876-03	1.155+60	7.24F-01	3.9603	1.166+00	3.335+01	6. 24E+04	9.03E+03
.45	0.455+00	1.665 + 03	7.025-03	2.105+30	1.665+00	6. 99E-03	2.10E+00	6.01E+01	7.426+04	9.49E+03
.96.	1.196.01	2.895+00	9.73E-03	2.945+60	2.685+00	9.755-03	2.92E+00	8.365+01	7.396+04	1.06E+04
58.	1.456+01	4.125+00	1.25E-02	3.59E+ CO	4.10E+00	1.196-02	3.57E+00	1.02E+02	6.82E+04	1.34E+04
·05	1.825+01	00+:60 .9	1.50E-02	4.50E+00	6.07E+00	1.4902	4.48E+00	1.27E+02	5.92E+04	1.80E+04
. 52.	2.335+01	00+35+°0	1.936-02	5.785+00	9.415+00	1.325-02	5.75E+00	1.62E+02	5. 33E+ 04	1.93E+04
	3.045+01	1.466+01	2.51E-02	7.52E+00	1.456+01	2. 505-02	7.486+00	2.09 . + 02	4.195+04	2.31E+04
.99	3.9+E+01	2. 34E + 01	3.25E-02	9.73E+00	2. 325 + 01	20- 22.5	9.65E+00	20+ 299 .2	3. 22E+0+	2.16E+04
.85	4.705+01	3. 255+01	3.876-02	1.165+11	3. 225 + 01	3. 335 -02	1.15E+01	3.11E+02	2.315+04	1.91E+04
	10+369.5	10+366-4	4.67E-02	1.406+01	10+10	20109-1	1.586+01	3.60=+02	1. 785+04	1.095+04
.21	10+11+9	10 + 305 + 01	20-32.4	1. 585.01	10+100.0	20-201.0	1.536+01	20 + 10 - 5	1. 252.04	4.13E+03
2	10+360-1	9.436+01	5.745-02	1.716+51	9. UIE + UI	20-191.5	1.055+01	3.13: +02	1.52E+03	1.546+03
	10+221	1.196+06	20-321 C	1. / 10. 40	1.035404	20- 202 - 6	1.22511	3.1U= + UZ		3.916+06
	10.30	10.12	20-202-02		1011104		1 101-00	Th. 200 C	1.710.00	
	10.114.9	1.1.1.1.1	3. 30E-UC	9.10C. UN	101346.4	1. 815-02	0.035700	Th. 200 -	101342	1.676-01
	101260-C	4. 09F 4.01	21-240-2	0.45F+00	. 245 + 00	EU-162.1	2.916-01	7.535-01		0-21E-04
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	CA-311-6		00 - 103 - 0	10-375 T	7-145-02	10-32-11	2. 2 ME - 0.2	20-312-3
	1042201	104270.0		1.625-04	7.425-01	6. 215-05	1.125-02	1.645-02	2.1 35-03	8. 365-07
	1.215+01	0. 305 + 00	1.075-04	1012-01	1.625-01	0. 435-06	1-476-03	1-575-03	1.955-04	TAFF-DA

Table 5. Complete Printout of Calculations for 0605 UT, 3 November 1969 (Cont)

E = 04 5.555 = 01 4.225 = 01 E = 04 5.555 = 01 4.225 = 01 F = 04 5.955 = 01 4.25 = 01 F = 04 7.075 = 01 5.955 = 01 F = 04 7.075 = 01 1.175 = 01 F = 04 7.265 = 01 1.175 = 01 F = 04 7.265 = 01 1.175 = 01 F = 04 7.265 = 01 1.175 = 01 F = 04 7.265 = 01 1.175 = 01 F = 04 7.265 = 01 1.175 = 01 F = 04 7.265 = 01 1.175 = 01 F = 04 7.265 = 01 1.175 = 01 F = 04 7.265 = 01 1.135 = 01 F = 04 7.355 = 01 1.275 = 01 F = 04 7.355 = 01 1.275 = 01 F = 04 7.355 = 01 1.255 = 01 F = 04 2.555 = 01 2.555 = 01 F = 04 2.555 = 01 2.555 = 01 F = 04 2.555 = 01 2.555 = 01 F = 04 2.555 = 01 2.555 = 01
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
556 + 04 5,566 + 04 1,705 + 04 5,666 + 04 075 + 04 7,075 + 04 5,666 + 04 075 + 04 7,075 + 04 5,666 + 04 075 + 04 7,075 + 04 5,666 + 04 075 + 04 7,075 + 04 5,666 + 04 075 + 04 7,075 + 04 1,075 + 01 075 + 04 0,496 + 04 1,015 + 01 075 + 04 0,496 + 04 1,015 + 01 075 + 04 0,496 + 04 1,016 + 04 075 + 04 0,496 + 04 1,016 + 03 075 + 04 7,595 + 04 5,755 + 02 075 + 04 7,595 + 04 5,755 + 02 075 + 04 7,595 + 04 5,755 + 02 075 + 04 7,595 + 04 5,356 + 03 075 + 04 7,595 + 04 5,356 + 03 075 + 04 1,565 + 04 1,566 + 04 075 + 04 2,356 + 04 1,256 + 03 075 + 04 2,356 + 04 1,256 + 04 075 + 04 2,565 + 04 2,565 + 04 085 + 04 2,556 + 04 2,555 + 04 </td
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
306 +94 7.266.04 1.435 +01 576 +04 7.206.04 1.435 +01 595 +04 8.466.04 8.456 +01 595 +04 8.466.04 8.456 +01 595 +04 8.466.04 1.336 +02 755 +04 7.935 +01 8.914 +01 755 +04 8.466 +01 1.336 +02 755 +04 7.935 +01 3.452 +02 755 +04 7.935 +01 3.452 +02 755 +04 5.466 +01 1.925 +03 756 +04 5.466 +01 1.926 +03 757 +04 5.466 +01 1.926 +03 756 +04 5.466 +01 1.926 +03 756 +04 5.726 +01 1.926 +03 756 +04 3.726 +04 2.956 +04 756 +04 2.956 +04 2.956 +04 666 +04 2.556 +04 2.966 +04 656 +04 2.556 +04 2.966 +04 656 +04 2.556 +04 2.966 +04 656 +04 2.556 +04 2.965 +04 656 +04 2.556 +04 2.965 +04
777 704 7.202604 2.025 10 757 704 8.495 8.495 10 10 757 704 8.495 8.495 10 10 10 757 814 8.495 8.495 10 10 10 10 757 814 8.445 10 1.356 12 20 10 757 914 8.445 11 1.356 12 20 10 <
355 540 0.495 4.75 4.75 4.75 375 910 0.556 0.1 1.356 0.2 345 914 0.445 0.445 0.445 0.2 22 0.2 <
3375 -314 0.666F.0 b 0.916 0.916 -01 755 -04 0.0446F.0 b 0.916 -02 835 -04 7.937 -01 2.335 -02 916 -03 -04 7.937 -01 2.335 -02 916 -04 7.937 -04 5.946 -01 916 -04 5.466 -01 1.21 -03 916 -04 5.466 -01 1.946 -03 777 -04 5.466 -01 1.946 -03 775 -04 5.466 0.0 2.967 -03 012 -04 5.496 0.0 2.375 -04 956 -04 2.546 0.0 2.466 0.0 866 -04 2.546 0.0 2.466 0.0 866 -04 2.554 0.0 2.466 0.0 866 -04 2.554 0.0 2.466 0.0 866 -04 2.554 0.0 2.465 0.0 2.465 0.0 866 -04 2.554 0.0 2.465 0.0 2.46
35<
755 404 0.144E014 2.235 0.7 706 7.5935 0.0 3.3425 0.7 706 7.5935 0.0 5.3425 0.7 706 7.5935 0.0 5.3455 0.0 715 10 7.5935 0.0 5.3455 0.0 715 10 5.3466 0.0 1.217 0.0 717 10 5.3466 0.0 1.217 0.0 717 5.406 1.935 306 0.3 306 0.0 716 0.0 4.0 3.735 0.0 0.226 0.0 716 0.0 2.016 1.556 0.0 2.016 0.0 717 0.0 2.016 1.556 0.0 2.056 0.0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
51:040 6.16600 1.946.01 1.946.01 77:040 5.046.01 3.306.403 3306.403 11:040 4.03500 5.046.01 3.306.403 11:040 4.03500 5.046.01 3.306.403 11:040 4.03500 5.046.01 5.26.403 11:040 4.266.01 1.526.404 5.266.404 11:050 4.266.01 1.526.404 5.266.404 11:060 2.016.010 2.356.010 2.356.404 11:060 2.554.010 2.466.604 2.466.604 11:060 2.554.010 2.565.406 5.655.406 10:07 2.554.010 2.565.704 2.655.406
$\begin{array}{cccccccccccccccccccccccccccccccccccc$
11:00 0.000 0.000 0.00000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.00
566 404 4.266 04 6.245 403 455 404 4.266 04 6.245 403 455 404 1.256 404 1.225 404 455 404 1.456 404 1.225 404 695 404 2.495 404 2.495 404 695 404 2.554 404 2.495 404 695 404 2.554 704 2.455 404 695 404 2.555 104 2.555 404
J2E +04 3.73E+04 1.22E+04 AE=04 1.55E+04 1.52E+04 AE=04 2.55E+04 1.54E+04 AE=04 2.49E+04 2.32E+04 BE=04 2.49E+04 2.32E+04 BE=04 2.55E+04 2.45E+04 BE=04 2.55E+04 2.45E+04 BE=04 2.55E+014 2.45E+04 BE=04 2.55E+014 2.45E+04 BE=04 2.55E+014 2.45E+04
426+04 1.566+04 1.546+04 699+04 2.9145+04 2.046+64 699+04 2.4096+04 2.046+64 699+04 2.5540+04 2.402+04 699+04 2.5540+04 2.455+04 699+04 2.5540+04 2.655+04
695 +014 2.4016 +014 2.4046 + 64 695 +014 2.496 + 104 2.4226 + 014 695 +014 2.496 + 014 2.492 + 014 695 +014 2.554 + 014 2.453 + 014 695 +014 2.555 + 014 2.453 + 014
69E+014 2-49E+014 2-32E+014 69E+014 2-54E+014 2-49E+014 69E+014 2-54E+014 2-49E+014 69E+014 2-55E+014 2-63E+014
69f+04 2.54f+04 2.49f+04 69f+04 2.54f+04 2.58f+04 69f+04 2.53f+04 2.58f+04
695+04 2.546+04 2.585+04 695+04 2.536+04 2.635+04
695 +04 2.53E+04 2.63E+04
69E +04 2.51E+04 2.66E+04

5. NUMERICAL EXAMPLE: August 1972 SPE

The final example presented (Table 6) is for one instance during the 3 to 11 August 1972 SPE. The temperature, T, and total molecular concentration, [M] are for 1 August, 65° N, being interpolated from the CIRA 1972 models for 60° N and 70° N on 1 August. The ionization production rates are those for 1508 UT on 4 August. ¹⁷ Computed [e] agrees very well with data taken by the Chatanika backscatter radar at 62 km. However, above this altitude the model predicts electron concentrations 2 to 3 times greater than those reported. ¹⁷ The situation is more serious below 62 km where model electron concentrations fall off more rapidly with decreasing altitude than do the data, the lowest altitude (50 km) measurement being 1×10^4 cm⁻³ whereas we compute 2.5×10^3 cm⁻³ (Table 6).

The disagreement is disappointing in view of the good results obtained with the model and the 2 to 5 November 1969 SPE. However, different seasonal factors may influence the important minor neutral species in such a way as to account for the differences. Note that we have used the same minor neutral concentrations O, O_3 , NO, NO₂ and O_2 (¹ Δ) as previously, but N₂, O₂, CO₂ and H₂O have changed since they are multiples of [M] which has been altered. We have suggested ¹⁸ that higher H₂O concentrations, say 10 ppmv, near the 80 km region would improve the model/data agreement considerably. The rationale for higher H₂O is that noctilucentclouds are prevalent in the high latitude summer mesosphere. The situation near 50 km is much more serious since the discrepancy is nearly an order of magnitude. A higher O3, and hence O concentration would help alleviate the problem, but in fact there is evidence¹⁹ that O, may have declined during this event due to the enhanced formation of NO resulting from proton ionization processes. A decrease in O2, and therefore O, not to mention an increase of NO, and hence NO2, NO2, would tend to make matters worse, if anything. The precision of the electron concentrations measured by the Chatanika radar below 60 km should be considered also. It may be that the [e] values have an important systematic error with decreasing altitude below 60 km. We note that no data is given below 50 km indicating that this is the last acceptable data point. Deterioration of the [e]-measurement may be setting in at a somewhat higher altitude. The Chatanika radar has been able to make D-region measurements only during this rather intense SPE.

Reagan, J. B., and Watt, T. M. (1976) Simultaneous satellite and radar studies of the D-region ionosphere during the intense solar particle events of August 1972, <u>J. Geophys. Res</u>. <u>81</u>:4579-4596.

Swider, W., and Foley, C.I. (1977) The influence of minor atmospheric constituents on the electron loss rates of the August 4-11, 1972 and November 2-5 1969, solar proton events, EOS, 58:465.

Heath, D.F., Krueger, A.J., and Crutzen, P.J. (1971) Solar proton event: Influence on stratospheric ozone, <u>Science</u> 197:886-839.

Reagan and Watt¹⁷ claimed that ψ (or SI, see Eq. (1)) for this event agreed with the results⁴ for the 2 to 5 November 1969 SPE. However, the events were not normalized in terms of their appropriate T and [M] values. The ψ curves for the two events thus agree well, save for the 80-km region problem, only if T and [M] for the August 1972 SPE was similar to that for the 2 to 5 November 1969 event. This possibility appears to be remote. The 1 November 60° N CIRA 1972 T and [M] values used for the November SPE are corroborated by experimental²⁰ evidence.

 Faire, A. C., and Murphy, E. A. (1972) in Proc. COSPAR Symp. on SPE of Nov. 1969, AFCRL-72-0474, pp 445-455. Table 6. Complete Printout of Calculations for 1508 UT, 4 August 19A2. See Table 3 caption for further description of the table Bate coefficient by more set to zero. The solar zenith and e was 79 5°

Was (9. 3-	TEND	8 9.265+16 2.61E+02	7 6.90E+16 2.65E+02	7 5.40E+16 2.72E+02	6 2 205416 2.775402	5 2-525+16 2-785+02	5 2.00E+16 2.77E+02	5 1.55E+16 2.75E+02	4 1.25E+16 2.71E+02	4 9.80E+15 2.66E+02	3 7.82E+15 2.60E+02	3 6.30E+15 2.53E+02	3 4.905+15 2.455+02	2 3. 80E+15 2. 37E+02	Z 3.00E+15 Z.28E+0Z	2 2.515+15 2.155+02	1 1. TOFAIR 1. 075402	1 DICATE 1 875402	7 405444 1 775403	5-255+14 1-666+02	1.60E416 1.58E402	2.405+14 1.535+02	1. 605+14 1.516+02	1.005+14 1.52E+02	6.395+13 1.556+02	N02- N03-	6.33E+02 3.66E+05	7.54E+02 2.14E+05	8.31E+02 1.28E+05	9.54E+02 8.16E+04	1.146+03 5.466+04	1.41E+03 3.92E+U4	1.000-100 2.0700	1 2012 1 2012 1 2014 10	1.54F403 6.57F403	1.125+03 3.145+03	7.296+02 1.795+03	3.885+02 5.385+02	1.765+02 1.925+02	8.126+01 7.656+01	3.23E+01 2.78E+01	1.085+01 8.625+00	3.04E+00 2.23E+00	7.87E-01 5.31E-01	1.096-01 6.236-02	5.47E-03 2.54E-03	2.58E-04 9.35E-05	3. 356-05 8.865-06	5.53E-06 1.20E-06	
r zenitn angi	DELIDI NOS	.00E+10 2.00E+	.50E+10 6.00E+	-70E+10 2.00F+	- 305 + 10 7. 40E +	-90E+10 9.00E+	.60E+10 3.00E+	.40E+10 1.10E+	.10E+10 4.00F+	.00E+09 1.70E+	.80E+09 7.00F+	.70E+09 3.20E+	.+05+04 1.60E+		+10+10 * 60+10+	.1UE+09 2.50E+	ZAFAR 3. AREA			.00E+C8 0.		00F+08 0.	.00E+08 0.	.00E+C8 0.	.106+00 0.	6	E+05 1+53E+02	E+ 05 3.89E+02	E+05 7.40E+02	E+05 1.275+03	E+05 2.04F+03	E+05 3.09E+03	10110 **I01+03	CH12 C-341412	E+05 5-21E+03	E+04 5.03E+03	E+04 4.57E+03	E+04 3.33E+03	E+0+ 3.04E+03	E+03 2-19E+03	E+03 1.38E+03	E+02 8.08E+02	E+02 4.51E+02	E+01 2.60E+02	E+01 1.31E+02	E-01 4.43E+01	E-02 1.085+01	E-03 2.93E+00	E-04 8.56E-01	
ro. The sola	H20	13 9.26E+10 1.	13 6.90E+10 1.	13 5.40E+10 1	12 4.20F+10 1	12 2.526+10 1	12 2.00E+10 1	12 1.555+10 1	12 1.256+10 1	12 9.90E+09 9.	12 7.82E+09 6.	12 6.305+09 4	12 4.90F+09 3	12 5.80E+09 2	1 5°000 +00 1	11 2.51E+U9 1	1 1 20E 400 P	1 000 00 1 11		11 5.25F+08 2.	11 3 FOF + DA 3	11 2.40F+08 5.	10 1.605+08 7.	10 1.00E+08 9.	13 6.385+07 7.	03- C03-	1.335+01 3.361	2.565+01 4.74	3. 375 +01 5.461	5. 51E +01 5.68	7.22E +01 5.56	8. 31E +01 5.03	9. 57E +01 4. 61	7.545 401 2.211	5.70F+01 1.37H	15E +01 8.45E	2.935+01 4.911	1. 76E +01 2.52	1.)1E+01 1.161	5.76E+00 5.41	3.05E+00 2.28	1.45E+00 8.17	6.50E-01 2.52	2. 39E-11 7.41	1.045-01 1.234	2.42E-02 7.26	5. 30E -03 3.991	5-155-03 5-461	7.44E-04 8.37	
vas set to ze	10 CO2	00E+09 2.78E+1	.00E+08 2.07E+	. 00E+08 1.62E+	2014-00 I. COL+	40E+08 7.56E+1	70E+08 6.00F+	.30F+08 4.65E+	.00E+08 3.75E+	.30E+07 2.94E+1	.70E+07 2.35E+1	.70E+07 1.89E+	.00E+07 1.47E+	50E+07 1.14E+	-20E+U7 9.00F+	705-07 5 955+	505407 3.9054		505+07 2.225+1	60F+07 1.58F+1	705+07 1.08F+1	00F+07 7.20F+1	50E+07 4.80E+1	00E+07 3.00E+1	50E+07 1.91E+1	C04-	1 6.795+02 1	1 1.78E+03	1 3.75E+03	7.385+03	1. 375+04	2. 32F+04	3. 61E + U +	- 10-192 - 0 F	3.567+04	2.715+04	1.87:+04	1.085+04	5.335+0.3	2.63:+03	1.145+03	4.01F+02	1.115+02	2.805+01 2	3.315+00	3 1.31F-01 2	5 4.47E-03	3.235-04	Z-87E-05	
filcient k43 w	N CN	1 7.236+16 1.	1 5.33E+16 8.	1 4.22E+16 5.	0 3.6556+16 4.	1.976+16 2.	0 1.55E+15 1.	9 1.21E+15 1.	9 9.755+15 1.	9 7.656+15 7.	9 6.11F+15 5.	8 4.92E+15 4.	3.83E+15 4.	2.97E+15 5.	2.54E+15 5.	1.50E+15 7.	1.026415 2.	T. BIEALL 2	C TREATE 2	4.10F+16 2.	7 2.81E414 2.	7 1.87F+14 3.	1.25E+14 3.	7.81E+13 %.	· • . 95 E+13 4.	- 40	1+02 3.37E+00	E+02 6.69E+00	E+03 1.10E+01	10+369-1 E0+3	E+03 2.43E+01	10+ 3.37E+01	10-10-10-10-10-10-10-10-10-10-10-10-10-1		+04 4.23F+11	+0+ 3.66E+C1	+04 2.92E+01	10+340*2 40+3	1.27E+01	1+04 7.64E+00	00+360** +0+3	E+03 1.89E+00	E+03 7.43E-01	10-361-5 E+03	C+02 6.80E-02	E+01 9.90E+03	C+01 1.35E-03	+00 2.41E-04	+00 4.68E-05	
e. Nate coe	03	ME+16 4.50E+1	1+305.16 2.50E+1	13E+16 1.50E+1	11E+15. 5.60E+1	86+15 2.80E+1	1+30E+1 -50E+1	75E+15. 8.70E+0	52E+15 5.00E+0	15E+15 2.80E+0	F+E+15. 1.60E+0	S2E+15 5.00E+0	13E+15 5.00E+0	ME+14 2.5UE+0	1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.	75414 1.1UE+U	706416 6.70640		10000 1000000	0E+14 2.00E+0	46+13 7.00F+6	36+13 5.006+0	156+13 7.00E+0	0+303.9.61+30	4E+13 7.00E+01	-20 HOS	.045+05 2.666	1.92F+05 7.19	BIE+05 1.55		5.33E+05 5.71	1.041 - 405 1.04	1.001 1.001	10-10-10-10-10-10-10-10-10-10-10-10-10-1	196+05 3.266	.555+05 3.416	. 07E+05 3.28E	-94E+04 2.86E	· 255+04 2.22E	.67E+04 1.63t		. 305+03 6.256	1.975+03 3.15t	. 825+03 1.466	. 025+02 4.556	. 335+02 0.76	.755+01 1.676	.246+00 4.306	.105+00 1.245	
n of the tabl	0 02	1.00:+09 1.9	1.405+09 1.4	1.805+09 1.1	2.50E+19 6.9	2.90:+09 5.2	3. 105+09 4.1	3.30:+09 3.2	3.50:+09 2.6	3.605+09 2.0	3.60:+09 1.6	3.60:+09 1.3	3.50:+09 1.0	5. 201+00 L.	3.30 +14 9.2	2. 4 PU- 100 - 2	1. 401 - 100 - 7 - 7	+ - En: + 10 2. +	0. Mit + MO + 1	3.005+10 1.1	9. 00: +10 7.5	1.50:+11 5.0	2.20:+11 3.3	2.705+11 2.1	3.20:+11 1.3	2	8.54E+01 7	1.895+02 6	3.495+02 6	6.596+02 6	1.225+03 6	2.522+03 5		1. 2654.04	1.AAFADA 2	2.57E+04 1	3.206+04 1	4.04E+04 6	* +0+=+2.**	5.14E+04 2	5.42E+04 1	5.51E+04 8	5. 55 5+ 04 3	5.4.E+04 1	5.51E+04 6	6.665+04 1	8.40E+04 2	1 10+361.0	8.206+04 2	
descriptio	AL LT TUDE	.0.	. 24	3		.05	52.	54.	-95	. 05	·05	52.								.06			.96		.06	ALTITUSE	.0.	.2.	;	.94	.94	.05			54.	.09	.25	54.	.99	.8c	.92	12.	74.	16.	78.	.0.	.24		-92	

Table 6. Complete Printout of Calculations for 1508 UT, 4 August 1972 (Cont)

ALTITUDE	02+	++0	02++H20	H30+.3H	H30+	SN.+C EH	H30+ .302	H502+	H50+.302	+0N
.0.	4.315+01	1.955+02	2.436+02	1.736+02	4.635-01	1.515-01	4.81E+02	7.405+02	6.14E+02	3.79E+01
.24	9.915+01	2.565+02	3.196+02	2.275+32	8. 385-01	2.115-01	6.29E+02	1.355+03	8.31E+02	6.91E+01
	2.50E+02	3.225.+02	3.986+02	2.845+02	1.41E+00	2.645-01	7.87E+02	2.295+03	1.10E+03	1.185+02
.94	4.85E+02	4.035+02	4.97E+02	3.556+02	Z. 32E+00	3. 306 -01	9.406+02	3. 755 + 63	1.406+03	1.96E+02
	8.60E+02	4.956+02	6.09E+02	4.346+02	3. 675 + 00	4.046-01	1.20E+03	5.915+03	1.735+03	3.135+02
20.	1.51E+03	6. 255 +02	7.656+02	5.465+12	6. 085+ 00	5. 086-01	1.705411	9. 745 + 03	2.176403	7.955+02
	20+320-0	0.065402	1.106+03	7.816.02	1. 287 + 01	10-12.2.2	20126101	2.155+04	2.964403	1.215+03
	3.305+03	1.045-03	1.256+03	8.915+02	10+-00-1	8. 30F -01	2.415+03	2.865+04	3.076+03	1.6665+03
58.	3.525+03	1.216+03	1.436+03	1.026+03	2.675+01	9.475-01	2.706+03	3.77	3.095+03	2.29E+03
.09	3.375+03	1.375+03	1.60E+03	1.136+03	3.575+01	1. 366 +00	2.956+03	4.57E+04	2.665+03	3.01E+03
.29	2.736+03	1.475+03	1.69E+03	1.196+03	4.43:+01	1.125+00	3.01E+03	10+ 16 . 1	2.395+03	3.65E+03
. 49	2.335+03	1.655+03	1.856+03	1.316+03	5.865+01	1. 236 +00	3.136+03	5.166+04	1.745+03	4.67E+03
.96.	1.946+03	1.826+03	1.986+03	1.395+33	7.555+01	1. 315 +00	3.12E+03	******	1.196+03	5.71E+03
58.	1.576+03	2. 03E+03	2.12E+03	1.496+03	9.465+01	1. 405 +00	3.116+03	4.535+04	7.87E+02	6.68E+03
70.	1.435+03	2. 345+03	2.33E+03	1.615+53	1.235+02	1.545+00	3.136+03	4.115+04	4.87E+02	7.85E+03
12.	1.566+03	2.756+03	2.57E+03	1.765+03	1.61E+02	1. 59F +00	3.106+03	3.625+04	2.845+02	9.88E+03
74.	2.295+03	3. 395+03	2.91E+03	1.955+23	2.21:+02	1. 30E+00	3.07E+03	3.165+04	1.565+02	1.00E+04
76.	3.596+03	** 05E+03	3.16E+03	2.10E+C3	2.79:+02	2.045+00	2.93E+03	2.725+04	8.91E+01	1.05E+04
78.	8.455+03	4. 84E + 03	3.36E+03	2.17E+03	3.535+02	2.14F +00	2.57E+03	2.09E+04	4.125+01	1.15E+04
.06	3.15 5+04	4.62E+03	2.67E+03	1.61E+83	3. 335 + 0 2	1.625 +00	1.38E+03	9.196+03	8.58E+00	1.45E+04
\$2.	6.176+04	1.81F+03	8.16E+02	4.375+02	1.215+02	4.465-01	2.36E+02	1.35E+03	5.16E-01	1.705+04
. 48	6.525+04	5.785+02	1.976+02	9.33E+01	3.43:+01	8. 37F-02	3.33E+01	1. 88 . + 02	3. 3 0E - 02	1.82E+04
.96.	6.152+04	1.735+02	4. 35E+01	1.80E+01	8.255+00	1.485-02	3.946+00	2.495+01	2.06E-03	1.98E+04
.88.	5.73E+04	5.05E+01	8.63E+00	2.895+60	1.535+00	1.595-03	3.00E-01	2.57E+00	8. 77E-05	2.145+04
.04	5.37E+04	1.535+01	1.766+00	4.60E-C1	2.4801	1.575-04	1.99E-02	2.665-01	3.845-06	2.31E+04
ALTITUDE	N0+.332	02H.+ 0N	N0+.H20.N2	N0+420.C02	N0+.2H20	2N0 2H2 + CN	N0+2H20202	NO+. 3H20	H703+	++06H
.0.	6.51E+01	1.555+00	5.396-02	1.626+01	1. 555 + 00	5.375-02	1.61E+01	4.62E+ 02	4.17E+05	2.83E+05
42.	8.535+01	2.935+00	7.166-02	2.135+01	2.925+00	7.07F-02	2.12F+01	6.07E+02	5. 265+05	1.62E+05
.44.	1.035+02	5.335+00	9.00E-02	2.70E+01	5. 315+00	8. 375-02	2.69E+01	7.685+02	6.1CE+05	6.43E+ G%
.94	1.375+02	9. 07E+00	1.146-01	3.416+61	9.042+00.6	1.135-01	3.39E+01	9.65E+02	6.15E+05	3.58E+04
.8.	1.705+02	1.485+01	1.41E-01	4.22E+01	1.475+01	1.405-01	4.20E+01	1.195+03	5.95E+05	2.18E+04
50.	2.175+02	2.51E+01	1.80E-01	5.386+51	2.505+01	1.795-01	5.36E+01	1.51E+03	5.47E+05	1.37E+04
52.	2.61E+02	3.745+01	2.16E-01	6.47E+01	3.725+01	2.155-01	6.43E+01	1.795+03	4.74E+05	1.05E+04
	3.135+02	5.615+01	2.596-01	7.756+01	5.572+01	2.575-01	7.71E+01	2.11E+03	3.665+05	7.85E+03
.95	3.54 E+ 02	7.37E+01	2.93E-01	8.77E+01	7.32E+01	2.315-01	8.69E+01	2.31F+03	2.71E+05	7.395+03
58.	3.996+02	9.72F+01	3.256-01	9.82E+01	9.625+01	3.255-01	9.70E+01	2.456+03	1.745+05	6.675+03
.09	4.355+02	1.205.402	5. 596-01	1.07E+02	1.192 + 42	5. 5.5 - UI	1.056402	2	1.056+05	0-136+03
.29	4.45E+02	1.365+02	3.6/E-01	1.096+02	1. 335 + 0 2	10-266.5	1.07E+02	20+262+23	0.31E+04	1.101+03
	4. 515+ UZ	1. 765 402	3.855-UI	1.145402	1.675 +02	3.655-01	1.065407	1.705+03	3. CCE + 0 4	1-465403
	4.635402	1.845+02	3.75F-01	1.105+02	1.715+02	3. 505-01	1.016+02	1-385+03	1.075+04	1.745+03
76.	4.505+02	1.895+02	3.616-01	1.055+02	1.715+02	3. 285-01	9.34E+01	1.075+03	6.195+03	7.216+02
72.	195+02	1.825 . 02	3. 326-01	9.516+01	1.60 + 02	2.915-01	8.15E+01	7.795+02	3.675+03	2.855+02
74.	3.765+02	1.746+02	2.92E-01	8.245+01	1.456+02	2.4311	6.66E+01	5.145+02	2.04E+03	1.016+02
76.	3.295+02	1.545+02	2.50E-01	6.945+01	1.22E+02	1. 985-01	5.296+01	3.405+02	1.23E+03	4.295+01
78.	2.80E+02	1.356+02	2.06E-01	5.57E+01	9.745+01	1.495-01	3.836+01	1.925+02	5.99E+02	1.335+01
.06	2.53E+02	1.195+02	1.716-01	4.32E+C1	6.955+01	1.605-01	2.34E+01	7.405+01	1.346+02	1.50E+00
.2.	1.82E+02	8.346+01	1.02E-01	2.27E+01	3.185+01	3. 305-02	7.68E+00	1.405+01	8. 89F+00	4.32E-02
. 46	1.156+02	5. 20F+01	4.90E-02	0 0+309 °6	1.195+01	1.125 -02	1.87F+00	2. 30E + 00	6.44E-01	1.52E-03
86.	10+325+01	2.955+01	1.956-02	3.336+00	3.487+00	2. 315 -03	3.236-01	2.795-01	4. 31E-02	4-85E-05
	3	1.214+01	*******	10-169-9	10-341-01	2. 195 - U.	2.255-00	1. 125-06	1.000-100	1. 395-UT
- 10-	I.DICTUL	4. CDC + UU	1.005-00	Torrant	20-211.6	1. 357 - US	1.075-03	-D - 101	0.1 0C-U7	1.00-100-1

Table 6. Complete Printout of Calculations for 1508 UT, 4 August 1972 (Cont)

ALTIT UDE	11	LAMBDA	2	MSd	MSUN+E	147. SP	SP	INT. E		0
.04	7.48:+02	8.256+03	4.11E+00	7.046+95	7.056+05	7. 04E +05	7.066+05	10+301.5	8.546+01	3.00E+04
42.	4.22E+02	3. 68E+03	8.29E-01	6.92E+45	6.925+05	6. 31E +05	6.92E+05	1. 56E + 02	1. 885+02	2.93E+04
. **	2.655+02	1. 965+03	2.355-01	6.81E+65	6. 81E + 05	6. 765 +05	6.81E+05	4.38E+02	3.485+02	2.88E+0
.94	1.625+02	1.016+03	6.47E-02	6.60E+05	6.6JE+05	6. 305 +0 5	6.63E+05	1.186+03	6.58E+02	2.80F+0
	1.015+02	5.17E+02	1.80E-02	6.30E+05	6. 34E+05	6.11E+05	6.32E+05	3. 295 + 03	1.226+03	2.706+04
.05	5.905+01	2.315+02	4.10E-03	5.80E+05	5.835+05	5. 355 +05	5.82E+05	7.145+03	2.525+03	2.60E+0
52.	3.716+01	1-106+02	1.17E-03	5.11E+05	5.125+05	4.95E+05	5.11E+05	1.21E+04	4.61E+03	2.48E+0
- 45	2.215+01	4.90E+01	3.366-04	4.10E+05	4.135+05	4.12E+05	4.126+05	1.815+04	8.27E+03	2.30E+0
-95	1.425+01	2.50E+01	1.366-04	3.245+05	3. 245+05	3. 465 +05	3.246+05	2.225+04	1.25€+04	2.12E+0
58.	8.55E+03	1.166+01	5. 34E-05	2.37E+05	2.385+05	2.39F +05	2.386+05	3.+55+04	1.895+04	1.90E+0
.05	5.315+00	6.02E+00	2.566-05	1.80E+05	1.815+05	2. 49E +05	1.816+05	40+304.4	2.57E+04	1.70E+0
62.	3.355+00	3.355+00	1.41E-05	1.396+05	1.405+05	2.155+05	1.406+05	4.765+04	3.2 05+04	1.456+0
. 49	1.956+00	1.72E+00	7.666-05	1.105+35	1.10 ⁵ + 05	1. 30F +05	1.106+05	5.27F+04	4. 04E+04	1.25E+0
66.	1.135+03	8.965-01	4.67E-05	8.93E+54	9. 00E + 0 4	1. 596 +05	\$ 0+366.8	5.64E+04	4.74E+04	1.05E+0
. 89	6.71E-01	5.195-01	3.416-06	7.756+04	7.805+04	1. 54E+05	7.805+04	6.12F+04	5.14E+04	0+300.6
.01	3.756-01	2.895-01	2.666-06	6.94E+04	6.98E+04	1.426+05	6.98E+04	6.58E+04	5.42E+04	7.80E+0
72.	2.00E-01	1.515-01	2.21 E-05	6.30E+04	6. 34F + 04	1. 31F +05	6.34E+04	6. 80E+04	5.51E+04	6.70F+0
	1.036-01	7.166-02	1.926-06	5.91E+04	5.95E+04	1. 22E +05	5.95E+04	7.01E+04	5. 55E+ 04	5.90E+0
76.	5.62E-02	3.355-02	1.756-06	5.62E+04	5.635+04	1.145+05	5.63E+04	7.59F+04	5.44E+04	5.20E+0
18.	2.82E-02	1. 09E-02	1.52E-06	5.56E+04	5.575+04	1.075+05	5.57E+04	8.41E+04	5.51E+04	4.50E+0
.00	1.285-02	1. 996-03	9.476-07	6.66E+04	6.67E+04	1.03F+05	6.67E+04	9.35E+04	6.66E+04	4.20E+0
.26	5.51E-03	3.295-04	5.53E-07	8.33E+04	8.40E+04	9. 386 +04	9 . 40E+04	9.52E+04	8.4 CE+04	3.906+0
.46	2.326-03	8.535-05	10-366-4	8.47E+04	8.495+04	9. 49E +04	9.49E+04	9.735+04	8.49E+04	3.60F+0
.96.	1.01E-03	2.576-05	4.996-07	8.17E+04	8. 20E+04	9.15F +04	8.20E+04	9.93E+ 04	8.2 CE+04	3.356+0
.98	3.985-04	8.31E-06	5.01E-07	7.885+04	7.93:+0+	9. 98E +04	7.936+04	9.92F+04	7.935+04	3.15E+0
	and a state of the second									

References

- 1. Swider, W., and Foley, C.I. (1975) Computer Program for the Disturbed Steady-State Nighttime D-Region, AFCRL-TR-75-0150.
- 2. Swider, W., and Narcisi, R.S. (1975) A study of the nighttime D-region during a PCA event, J. Geophys. Res. 80:655-664.
- Swider, W., Keneshea, T.J., and Foley, C.I. (1978) An SPE-disturbed D-region model, <u>Planet. Space Sci.</u> 26:
- 4. Swider, W., and Dean, W.A. (1975) Effective electron loss coefficient of the disturbed daytime D-region, J. Geophys. Res. <u>80</u>:1815-1819.
- Swider, W., Narcisi, R.S., Keneshea, T.J., and Ulwick, J.C. (1971) Electron loss during a nighttime PCA event, <u>J. Geophys. Res.</u> 76:4691-4694.
- Smith, D., Adams, N.G., and Church, M.J. (1976) Mutual neutralization rates of ionospherically important ions, <u>Planet. Space Sci.</u> 24:697-703.
- 7. Vanderhoff, J.A., and Niles, F.E. (1976) Recent development in measurements of photodissociation for atmospheric positive ions, EOS, 57:303.
- Johnsen, R., Huang, C.-M., and Biondi, M.A. (1975) The formation and breakup of NO⁺·N₂ clusters in N₂ at low temperatures, <u>J. Chem. Phys.</u> 63:3374-3378.
- 9. Heimerl, J. M. (1976) Values for Selected Collisional Dissociation Rate Coefficients of Positive Clustered Ions, BRL-IMR-499.
- Ferguson, E. E. (1975) in <u>Atmospheres of Earth and the Planets</u> (Ed. B. M. McCormac) Reidel, Dordrecht, Holland, pp 197-210.
- 11. Ferguson, E.E. (1977) Paper presented at IAGA meeting in Seattle, Washington.
- 12. Peterson, J. R., Cosby, P. C., and Moseley, J. T. (1977) Photo-destruction of atmospheric negative and positive ions, <u>Space Res.</u> 17:243-246.
- 13. Niles, F.E. (1976) private communication.
- 14. Dean, W.A. (1972) in Proc. COSPAR Symp. on SPE of Nov. 1969, AFCRL-72-0474, pp 291-306.

References

- Narcisi, R.S., Philbrick, C.R., Thomas, D.M., Bailey, A.D., Włodyka, L.E., Baker, D., Federico, G., Włodyka, R., and Gardner, M.E. (1972) in Proc. COSPAR Symp. on SPE of Nov. 1969, AFCRL-72-0474, pp 421-432.
- Moseley, J. T., Cosby, P. C., and Peterson, J. R. (1977) Laboratory measurements of photodissociation and photodetachment cross-sections of atmospheric ions, <u>EOS</u> 58:698.
- Reagan, J. B., and Watt, T. M. (1976) Simultaneous satellite and radar studies of the D-region ionosphere during the intense solar particle events of August 1972, J. Geophys. Res. 81:4579-4596.
- Swider, W., and Foley, C.I. (1977) The influence of minor atmospheric constituents on the electron loss rates of the August 4-11, 1972 and November 2-5, 1969, solar proton events, EOS, 58:465.
- Heath, D.F., Krueger, A.J., and Crutzen, P.J. (1971) Solar proton event: Influence on stratospheric Ozone, <u>Science</u> 197:886-889.
- Faire, A.C., and Murphy, E.A. (1972) in Proc. COSPAR Symp. on SPE of Nov. 1969, AFCRL-72-0474, pp 445-455.

Appendix A

Steady-State Multi-Ion Disturbed D-Region Model Program (Subroutine Initial, which contains input profiles of Q, M, T, minor neutrals and SI, has been omitted.)

```
40 - 90 KM IN INCREMENTS OF 2
 5
    C
     C
            78 REACTIONS
     C
            PROGRAM DREGION(INPUT=65,00TPUT=65,TAPE15=65,TAPE2)
            COMMON NEUT (9, 26), TEMP (26), M (26), Z(26), Q(26), SI (26)
10
            DIMENSION NION(8,26), NSPECI(8), PION(30,26), ((100), ESAVE(26)
                        , ISPECI(30), INEUT(9), A(100), B(100), D(100), IREAC(100),
JDUM(26), ITER(26), REAC(6)
           2
            DIMENSION ICJEFF (26) ,EINT(26), SPINT(26), ICO. (2), EVENT(2)
            REAL N, K, NEUT, NION
INTEGER WATER, TPF, PCA
15
            REAL' ICOEFF
            LOGICAL IONCF, DAY, FIRST, DIAGNOS
                                       ,104 INT. SP
            DATA ICOL/104 INT. E
20
     3
            NALT=NUMBER OF ALTITUDES, ISTART IS INDEX ) STARTING ALTITUDE,
            NELE=NUMBER OF ELEMENTS IN PION ARRAY TO BE COMPUTED
     C
     C
            NELE=30
25
            FIRST=.TRUE.
     0
            READ IN COMPUTER RUN OPTIONS
     C
     C
            READ 72, ISTART, NALT
        72 FORMAT (215)
30
            IF(EOF(5LINPUT)) 99,73
        73 READ 69, SET, ISET
        69 FORMAT (A10, 15)
            PRINT 69, SET
        74 READ 70, DAY, WATER, TPF, PCA, IONCF, DIAJNOS, CRIT, OD, EVENT (1), EVENT (2)
35
        70 FORMAT(1L2,3A2,2L2,2F5.0,2A10)
IF(E.OF(5LINPUT)) 99,71
        71 PRINT 67, DAY, WATER, TPF, PCA, IONCF, OD, CRIT, EVENT(1), EVENT(2)
67 FORMAT(* DAY=*, L2, * H2O=*, A2, * TPF=*, A2, * PCA=*, A2, * IONCF=*, L2,
1 * OD=*, F5.0* CRITERIA=*, F5.0* PERCENT*,
40
                     1*
                         *,2A10)
           2
    30
            DETERMINE SPECIE PROFILES AND OTHER PARAMETERS WHICH DECRIBE THIS
            COMPUTER RUN - FOUND IN SUBROUTINE INITIAL
    C
45
            CALLI INITIAL(DAY, WATER, TPF, PCA)
     C
        PRINT 75 ,Z(ESTART),Z(NALT)
75 FORMAT(5X,*ALTITUDE RANGE *, F5.0,* -*,F5.),* KN*)
            DD=0.
IF(DAY) DD=1.
50
                               NOS=VALT-ISTART+1
             IYES=0
                         $
            OD= OPTICAL DEPTH FACTOR
     C
55
     C
     00
            COMPUTE THE IONIZATION CREFFICIENTS FOR EACH ALTITUDE
            SIGMA=1.0E-20
            IF(IONCF) 7,9
```

60	7	DO & J=ISTART, NALT
		H=(3032•#TEMP(J))/((6370•/(6370•+Z(J)))##2)
		ICOEFF(J)=4.7E-07*EXP(-(NEUT(2.J)*H*SIGMA*0)))
		PTON $(30, J) = ICOEFF(J) * NEUT(5, J)$
	8	CONTINUE
65	•	60 10 15
0.5		INONET UTIL NOT BE SAMITED THES DIN
		NELE-20
	15	CONTINUE
		TODAY = 10H
70		RUNDY = DATE (TODAY)
		WRITE(?,150) RUNDY,SET
	150	FORMAT(1H1,15X, *RUN DATE, A10,15X, *REACTION SET OF, A10)
		ALPHAD= 4.0E-07
		ALPHAI=6.0E-08
75		TIME=10HDAY
		IF(.NOT. DAY) TIME=10HNI34T
		WRITE(2.151) ALPHAD. ALPHAT. TIME. HATER. TPF. P34. CRIT.
		$F J = NT (1) \cdot F J = NT (2)$
	151	FORMAT (54. # AD=# 19FA 1. # AT=# 19FA 1. 24. A10. * H20=* A2.
		+ TEMP+A2. + DCA-+A2. + COTTEDTA-+. OPES.0. + DEDCENT+.
00		
		IF(10NGF) 11,13
	11	WRITE(2, 12) 30,515M4
85	12	FORMAT(10X, *)PTICAL DEPT4 FACTOR = *, F5.2, * SIGMA = *, IPE3.1)
	13	NREAC=78
		IF(.NOT. FIRST) GO TO 19
		IF(PCA .EQ. 2HLO .OR. PCA .EQ. 2HHI) GO T) 18
		IF(PCA .EQ. 2H72) 36,37
90	36	READ 16, (Q(I), I=1,25)
	17	FORMAT(12F6.C)
	16	FORMAT (1P7E10.2)
		TE(EDE(51 TNPHT)) 99.18
	37	READ 17. (0(1), T=1.25)
	•••	
"		
	- 10	CONTINE
	-	STAR TH OUTWICHT BEACTIONS FOON TAREAS
	6	READ IN CHEMICAL REACTIONS FROM TAFEIS
100		DU ZU II=1, NKEAG
		READ(15,1) I, (REAG(L),L=1,6),A(I),B(I),U(I)
	1	FORMAT(14, A10, 2A5, 1X, A10, 2A6, 1PE9.2, 0PF5.1, 19E9.2)
		IREAC(II)=I
		IF(EOF(15)) 22,21
105	21	IF(TSET .EQ. 0) 30 FO 20
		WRITE(2,2) IREAC(I), (REAC(L), L=1,6), A(I), B(I), D(I)
	2	FORMAT (14, A10, 2A6, 14=, A10, 2A6, 1PE9.2, 0PF5.1, 1PE9.2)
	20	CONTINUE
		GO TO 19
110	22	NRFAC=I-1
	19	CONTINUE
	.,	WRITE(2.405) NREAC
		FORMATCH THE NUMBER OF REACTIONS THIS PUN F. TION

115		ISPECI IS A HOLLERITH ARRA Array (positive ion Array	Y CONTAINING	CHEMICAL SYMBOLS OF PION
120	,000	NSPECI IS HOLLERITH ARRAY NION ARRAY (NEGAT	CONTAINING C	HEMICAL SYMBOLS OF Y)
		ISPECI(1)=10HE ISPECI(2)=10HSP ISPECI(2)=10HSP	\$	NSPECI(1)=10H02- NSPECI(2)=10H04- NSPECI(3)=10H04-
125		ISPECI (4)=10H02+ ISPECI (5)=10H04+ ISPECI (5)=10H04+ ISPECI (5)=10H02+-H20	5	NSPECI (4) = 10H03- NSPECI (4) = 10H03- NSPECI (5) = 10H003- NSPECI (5) = 10H0-
130		ISPECI (7)=10HH30+.0H ISPECI (8)=10HH30+ ISPECI (8)=10HH30+.N2	5	NSPECI (7) = 10HN02- NSPECI (8) = 10HN03-
100		ISPECI (10) = 10HH 30+.302 ISPECI (11) = 10HH 50+. ISPECI (12) = 10HH50+.C02 ISPECI (12) = 10HH50+.C02		
135		ISPECI (14) = 10 HNO+ . N2 ISPECI (15) = 10 HNO+ . C32 ISPECI (16) = 10 HNO+ . H20 ISPECI (17) = 10 HNO+ . H20 . N2		
140		ISPECI (18) = 10 HNO + 20 . CO2 ISPECI (19) = 10 HNO + .2H 20 ISPECI (20) = 10 HNO + .2H 20 N2 ISPECI (21) = 10 HNO + .2H 20 CO2 ISPECI (22) = 10 HNO + .3H 20 ISPECI (22) = 10 HNO + .3H 20		
145		ISPECI (23) = 10 HH7/34 ISPECI (24) = 10 HH934+ ISPECI (25) = 10H LA ISPECI (26) = 10HLA4304 ISPECI (27) = 10HQ/E**2 ISPECI (28) = 11 HPSUM		
150	;	ISPECI (29) = 10HNSUM+E ISPECI (30) = 10H(NO) .I		
155	000	INEUT IS A HOLLERITH ARRAY Species	CONTAINING	CHENICAL SYMBOLS OF NEUTRAL
		INEUT(1)=10H0 INEUT(2)=10H02 INEUT(3)=10H03 INEUT(3)=10H03		
160		INEUT (5) = 10HN0 INEUT (5) = 10HC02 THEUT (7) = 10HC02		
		INEUT(8) = 10H02(1)) INEUT(9) = 10H02		
10>		IF(.NOT. DIAGNOS) GO TO 45 WRITE(2,271) (ISPECI(J),J= 1 ICOL(1	25,29),ICJL(),ISPECI(1)	2), I \$° ECT (2),
170	3	CONTINUE		
	5	ITER ARRAY OF NUMBER OF IT	ERATIONS TO	COMPUTE E
	C	JOUNSARRAY OF SWICHES INDI	CATING CRITE	RIA SATISFIED

175	2		
			DO 25 J=ISTART.NALT
			ITER(J)=0
		25	JOUN(J)=3H N)
	2		
100	-		DO LOOP 100 CALCULATES ALL THE POSITIVE TUNS
	-	50	DO 100 JETSTART. NALT
			IF(JOUN(J) .EQ. 3HYES) GO TO 100
			ITER(J) = ITER(J) +1
185			CALLI RATECN (K, A, B, D, IREAC, TEMP, J, NREAC)
			IF(ITER(J) .GT. 1) 30 TO 30
			PIOW(25, J) = NEUT(2, J) # (K(61) # NEUT(2, J) + K(62) # NEUT(4, J))
			IF(DAY) 51, 52
		51	PION(1, J) = SQRT(Q(J)/SI(J))
190			GO TO 53
		52	PION(1, J) = SQRT((PION(25, J)/(2. * ALPHAD))** 2+1(J)/ALPHAD)
		- 1	-PION(25, J)/(2.*ALPHAD)
		53	PION(2, J) = SQRT((Q(J) + (5, +NEUT(1, J)/ALPHAU+NEJ)(3, J)/ALPHAI))
		1	(5.*NEUT(1,J)+NEUT(3,J)))
195			EINT(J) = PION(1, J)
			SPINI(J)=PIUN(2,J)
		90	AISPEALPHAIPPIUN(2,)
			GALL REGION (DATANIN IN γ r r r r r r r r r r r r r r r r r r r
200			CON1-K(R) #NERT(1, 1) +K(Q) #NEUT(7, 1) +K(42) #N(1) +DD#K(4) +ATSN
			CON2 = K(7) + N E(0) + (2) + (1) +
			CONV=NEUT (7. J) + (K(10) + K(11)) + AISN+K(30) + PTON (1. J) + DD+K (5)
			GON5=DD*K(4)+(DD*K(5)*K(9)*NFUT(7,J)/CON4)
			PION(4, J) = ,9*D(J)/(ATSN+K(27)*PION(1, J)+CON2+K(6)*
205		1	NEUT (5, J) - (CON2* (K(8)*NEUT (1, J) + K(42)*H(J) + CON5)/
		1	(CON1+K(28)*PION(1,J))))
			PION (5, J)=PION (4, J)* (CON2/ (CON1+K (25) * PION (1, J)))
			PION(6, J)=PION(5, J) *K(9) *YEUT(7, J)/3 ON4
			PION(7, J)=K(10) *NEUT(7, J) * PION(6, J)/
210		1	(K(12)+NEUT(7, J)+AISN+K(30) PIDN(1, J))
			PION (8, J) = PION (6, J) * K(11) * NEUT (7, J) /
		1	(K(31) * PION(1,J) + K(18) * VEUT(7,J) * M(J) +
		i	2 K(13) *NEUT(4,J) ** 2+AISN)
			CON1=K(14) * NEUT(5, J)
215			CON2=K(32) + PION(1, J) + AISN
			PION(9,J) = (K(15) + NEUT(4,J) + NEUT(4,J) + PION(5,J))
		1	
			UN3=K(15)*NEUT(7)J)
220			PION(10, J) = (GON1 + PION(9, J)) / (GON3 + (30) + PION(1, J) + NI3N)
			PTOW(11, 0 + (PTON/7, 1) #K(12) #NEUT(7, 1) +K(18) #PTON(8, 1) #H20H14
			(K(32) PTON(1.J) +K(19) H20M1+ATSN+
		1	K(16) +NFUT(6.1) +N(1))
225			PION(12, J) = (K (16) + NEUT (6, J) + PION(11, J) + M(J)) /
		1	(K(37)*>[ON(1, J)+AISN+K(17)*NEUT(7, J))
			CON1=K(21) * NEUT(6, J) * NEUT(4, J)
			CON2=K(22) * NEUT(7, J)
			SQN2=NEUT(4,J)*NEUT(4,J)

230		PION(1'3, J)=(.1*Q(J)+K(6)*NEUT(5,J)*PION(4,J)+PION(30,J))/
		1 (K(26)*PION(1, J)*CON1+AISN
		2 +K(43) +S2N2-(K(43) +SQN2+NEUT(4,J) +K(51)/
		3 (K(44)*NEUT(6, J)+K(38)*PION(1, J)+AISN+K(51)*NEUT(4, J)))
		PION(14, J) = (K(43) * PION(13, J) * SQN2)/
235		1 (K(44)* NEUT(6, J) +K(38)*PION(1, J) +AISN* ((51)*NEUT(4, J))
		PTON(15.1) = (CON1+PTON(13.1) +K (44) *NEUT (6.1) *PTDN(14.1))/
		(CON2+K(3A) *PTON (1, J) +ATSN
		CON1 = K(23) + NEUT(7, J) + NEUT(5, J)
		PTON (15 - 1) = CON24 PTON (15 - 1) / (CON1+K(39) #PTON(1 - 1) + ATSN
240		+K (b 5) +S (b 2)
- +0		PTON(17, J) = (PTON(15, J) + K(45) + SON2)/
		1 (K(46) *NEUT(6, J) +K(40) PTON(1, J) +AT SN)
		PTOW(18.1) = (PTON(17.1) *K(55) *NEHT (6.1))/
		(((47) F)F)((7, 1)) + ((4n) F)((1, 1)) + ((4n) F)
245		CON2=((24) + NEUT(7, 1) + NEUT(5, 1)
243		0102-1124/ HED113/ 11451143/
	N	
		FINE U, J - (FINE 1, J) - KEEJ - SURCES
250		$ = \frac{1}{1} + \frac$
2.20		r(n(21)J) = (r(n(20)J) + ((7)) + n(0) + n(
		$P_1 \cup (22, J) = (J \cup (2, J)) = (J \cup (1, J)) + (J $
		1 (N(2)) NEUT() 3) VA(4) (1)
		$G = (N_1) + (T_1) + $
233		PIOW(23)JJ = (PIOW(11)JJ) * K(13) * n20n1*PIOW(22)JJ * K(23) * NEUT(7)JJ * (47) * NEUT(7) * (7
		PION(24, j) = (PION(2, j)) + (22) + (22) + (20) +
260		$P_1(n_1, 2, 3, 3) = P_1(n_1, 3, 3) / P_1(n_1, 3)$
200		$P_1(M_1(2), J) = Q_1(J)/P_1(M_1(J))^{-2}$
	. 100	
	:	IF(JUHF .EQ. 24 GU TU 126
265		CONDUTE THE SUM OF THE BOSTTINE TONS
203		COMPUTE THE SUM OF THE POSITIVE TONS
	6	DO 400 LETETADT MILT
270		
210		
	121	
		IF(ABS(1PIUN(29,J)/PIUN(20,J) .LE. GRIT JOUN(J)=SHES
215		IF(JDDN(J) .EQ. MYES) GD TO 119
		PION(2, J) = 57 (ESAVE(J) + PION(28, J) + PION(3, J))
	118	FINEL JJ- D' (EDAVEL J) TIUNCO, J/ /L OTFIUNCO, J//
	119	1765=1765+1
200		NUS=NUS-1
	120	CONTINUE
		IF (UIAGNOS) 40, 49
	40	J=LSTART
		WRITE(2,269) 7(J), (PION(I, J), I=25,29), SPINT(J), PION(2, J), EINT(J),

285		1	PION(1, J), ITER(J), JDUN(J)
			IF(ITER(J) .6E. 20) 125.50
		49	CONTINUE
	;		IF(ITER(ISTART) .EQ. 1) GO TO 122
			DO 125 J=ISTART, NALT
290			IF(JOUN(J) .EQ. 3H NO) 60 TO 50
		125	CONTINUE
			PRINT+, THE SCORE IS ",IVES," YES AND ",NOS, "NO"
		122	WRITE(2,200) (INEUT(I),I=1,9)
		200	FORMAT(/# ALTITUDE#,3X,9(A10),2X,#H+,9X,#TEMP#)
295			DO 235 J=ISTART, NALT
			WRITE(2,240) Z(J),(YEUT(I,J),I=1,9),M(J),TE4?(J)
		240	FORMAT(OPF10.0,11(1K,1PE9.2))
		235	CONTINUE
			WRITE(2,273) ISPECI(1),ISPECI(3),(NSPECI(J),J=1,8)
300		273	FORMAT(//# ALTITUDE #,2X,11(1X,A10))
			DO 272 J=ISTART, NALT
			WRITE(2,274) Z(J), PION(1,J),PION(3,J),(NION(I,J),I=1,8)
		274	FORMAT(F10.0,11(2X,1PE9.2))
		272	CONTINUE
305			IL=3
			D0 270 I=1,2
			IM=IL+1
			IL=IM+10
			1F(IL .GT. 24) IL=24
310			WRITE(2,273) (ISPECI(J),J=IM,IL)
			DO 276 J=ISTART, NALT
			WRITE(2,274) Z(J), (PION(N, J), N=IM,IL)
		276	CONTINUE
		270	CONTINUE
315			WRITE(2,271) (ISPECI(J), J=25,29), ICOL(27, ISPECI(27,
		2/1	PURMAIL//* ALILIUUE *, 28,9018,4107,28,940,74,54,108,7
			UO 275 JEISTARI, MALT
			$\mathbf{R}_{1} = \{2, 20, 3\} \mathcal{E}_{1} = \{3, 1\}, \{1, 1\}, \{1, 2\}, \{2, 3\}, \{3, 1\}, \{1, 3\}, \{$
320			
		209	FORMAI(UPF1U.0,10(2X,1PE9.2),2X,17)
		213	
	•		TTUTERIJIARI (CU. 1) UJ IU DU
1 25			CO TO 74
323		-	

SUBROUTINE NEGION

1		SUBRDUTINE NEGION(DAY,NION,K,LA,E,J,AISP,SU1)
	2	SUBPOLITING NEGTON COMPLETS THE CONCENTRATION OF NEGATIVE TONS
	G	SUBRUITINE REGION COMPONES THE CONCENTRATION OF REGRITAL IONS
5	C	NEGATIVE ION SPECIES ARE STORED IN ARRAY NION
	CIN	DEX NTION
	3	1 02-
	C	2 04-
10	-	3 004-
10	č	6 07-
		5 003-
	6	
	G	/ NO2-
15	3	8 NO3-
	C	
		COMMON NEUT(3,26)
		DIMENSION NION(8,26),K(100)
		REAL NION,K,LA,NEUT
20		LOSTCAL DAY
		IF(DAY) 1,2
		1 0=1
		GO TO 3
	:	2 D=0
25		3 0259=NEUT(2.J)*NEUT(2.J)
		X = K(77) + 0250 + K(80) + NFUT(3, 1)
		B=NFUT(1,.)) #(K(63)+((64))+K(65)#NFUT(8,.))+
		T-KITTA SACUTAL ANALIZA SACUTATE. 1) AKITE SACUTA. INADAKICA SATED
20		U-V/743 BUEINTIA, INAV 721 BUEINTIA, 41 ANTO
23		$W = V(T_1)^* NEUT(1_1)^T V(T_2)^* T_2U(T_0)^T V(T_0)^* $
		V-K(0) * NEUT(3) J*K(0) * NEUT(3) NEUT(3) * K(10)* NEUT(1) J*U*K(3)* ALSP
		U=K(/8) *NEUT(1,) + ++ U*K(92) +K(/9) *NEUT(8, J) + A15P
		$1 \qquad + K(61) - NEUT(3, J)$
		R=V*(U*W*T-D*K(94)*K(72)*4=U1(6,J)*K)
35		S=0252* (W+U+C(66)*K(70)*NEJT(1,J)+U*K(66)*K(58)*K(72)*
		1 VEUT(6,J)*NEUT(3,J)*V*K(64)*K(72)*K(77)*NEUT(1,J)*
		2 NEUT(6, J))
		3 + V*K(72) * NEUT(5, J) * NEUT(3, J) * (J*K(50) + K(64) * K(80) *
		4 NEUT(1, J))
40	;	
	C	NION(1, J)=02-
	3	
		NION(1,J)=(V+U+H+R+E+LA)/(R+B+V+U+H
		1 -J#R#K(66)#K(68)#K(71)#NEUT(1,J)#NEUT(3,J)#025Q-
45		2 V#R#K(64)#K(71)#K#NEUT(1, J)##2-
		3 S#V#WEUT (1, J)#(K(71)#X#3#K(94)+J#W#K(73))-
		4 U*R*V*K(60)*K(71)*NEUT(3,J)*NEUT(1,J)
		1 -WFVFK(64) *K(81) FNEUT(1,J) *NEUT(3, J)
		6 - (S*W*V*K(81)*NEUT(3,J)*D*K(94))/3)
50		
	ć	NTOH(2-1)=04-
	•	NTON/2 11-14/661 8025 08 NTON /4 111 /
55	3	
	C	NIUN(3, J)=CO4-
	C	
		NIUN (3, J)= (K(66)+025Q+NIUN (1, J))/
		1 (K(68) = NEUT(3, J) + K(69) = NEUT(5, J) + K(70) = NEUT(1, J)

SUBROUTINE RATECN

L		SUBROUTINE RATECH	(K, A, B, D, IREAC, TEMP, IALT, NREAC)
		DIMENSION K(1),A(1	1), B(1), D(1), IREAC(1), TEMP(1)
		REAL! K	
		DO 10 J=1,NREAC	
5		ID=IREAC(J)	
		K(IO) = A(ID) + (TEMP	(IALT)/300.) **8(ID) *EXP(D(ID)/TEMP(IALT))
	10	CONTINUE	
		RETURN	
		END	

DNA DISTRIBUTION LIST

Department of Defense

Director

Defense Advanced Research Projects Agency 1400 Wilson Boulevard Arlington, Virginia 22209

> 1 cy ATTN: TIO 1 cy ATTN: STO 1 cy ATTN: NRMO

Director Defense Communications Agency 8th Street and Courthouse Road Arlington, Virginia 22204

3 cys ATTN: MEECN Office

Defense Documentation Center Cameron Station Alexandria, Virignia 22314

12 cys ATTN: TC

Director Defense Nuclear Agency Washington, D. C. 20305

> 1 cy ATTN: STTL 1 cy ATTN: DDST 3 cys ATTN: RAAE 1 cy ATTN: RAEV

Joint Chiefs of Staff Department of Defense Washington, D. C. 20301

1 cy ATTN: J-6

Director National Security Agency Fort George G. Meade, Maryland 20755

2 cys ATTN: Technical Library

Under Secretary of Defense (Research and Engineering) Department of Defense Washington, D. C. 20301

41

2 cys ATTN: DDS&SS

(

Department of Commerce

U. S. Department of Commerce Office of Telecommunications Institute for Telecommunication Sciences National Telecommunications and Information Administration Boulder, Colorado 80303

2 cys ATTN: W. F. Utlaut

Department of the Army

... .

Commander/Director Atmospheric Sciences Laboratory U. S. Army Electronics Command White Sands Missile Range, New Mexico 88002

> 1 cy ATTN: DRSEL-BL-SY-S F. E. Niles

Director U.S. Army Ballistic Research Laboratories Aberdeen Proving Grounds, Maryland 21005

1 cy ATTN: George E. Keller

Commander U. S. Army Foreign Sciences and Technology Center 220 7th Street, N.E. Charlottesville, Virginia 22901

1 cy ATTN: Robert Jones

Department of the Navy

Chief of Naval Operations Department of the Navy Washington, D. C. 20350

> 1 cy ATTN: NOP 985 1 cy ATTN: NOP 094H

Chief of Naval Research Department of the Navy 800 North Quincy Street Arlington, Virginia 22217

> 1 cy ATTN: Code 465, R. G. Joiner 1 cy ATTN: Code 427, H. Mullaney

Commander Naval Electronic Systems Command Department of the Navy Washington, D. C. 20360

> 1 cy ATTN: PME-117 1 cy ATTN: PME-117T 1 cy ATTN: PME-117T 1 cy ATTN: PME-117-21 1 cy ATTN: PME-117-21A 1 cy ATTN: PME-117-22

Director

Naval Ocean Systems Center Electromagnetic Propagation Division 271 Gatalina Boulevard San Diego, California 92152

1 cy ATTN: Code 2200, W. F. Moler 1 cy ATTN: Code 2200, Ilan Rothmuller 1 cy ATTN: Code 2200, John Bickel

Director Naval Research Laboratory 4555 Overlook Avenue, S.M. Washington, D. C. 20375

> 1 cy ATTN: Code 7700, Timothy P. Coffey 1 cy ATTN: Code 7709, Wahab Ali 2 cys ATTN: Code 7750, John Davis 1 cy ATTN: Code 2627

Commander

Naval Surface Weapons Center (White Oak) Silver Spring, Maryland 20910

1 cy ATTN: Technical Library

Office of Naval Research Branch Office 1030 East Green Street Pasadena, California 91106

1 cy

Department of the Air Force

Commander Air Force Geophysical Laboratory, AFSC L. G. Hanscom Air Force Base, Massachusetts 01731

> 1 cy ATTN: OPR, James Ulwick 1 cy ATTN: LKB, W. Swider 1 cy ATTN: LKB, K. Champion

Director Air Force Technical Applications Center Patrick Air Force Base, Florida 32920

> 1 cy ATTN; TD 1 cy ATTN: HQ 1035th TCHOG/TFS

Department of Defense Contractors

General Electric Company TEMPO - Center for Advanced Studies 816 State Street Santa Barbara, California 93102

> 1 cy ATTN: Warren S. Knapp 1 cy ATTN: DASIAC

Lockheed Missiles and Space Company 3251 Hanover Street Palo Alto, California 94304

l cy ATTN: J. B. Reagan l cy ATTN: W. Imhof l cy ATTN: Martin Walt

Mission Research Corporation 735 State Street Santa Barbara, California 93101

> 1 cy ATTN: M. Scheibe 1 cy ATTN: D. Sowle

Pacific-Sierra Research Corporation 1456 Cloverfield Boulevard Santa Monica, California 90404

1 cy ATTN: E. C. Field

Pennsylvania State University Ionospheric Research Laboratory College of Engineering 318 Electrical Engineering - East Wing University Park, Pennsylvania 16802

1 cy	ATT:1:	John S. Hisbet
1 cy	ATTN:	Les Hale
1 cy	ATTN:	A. J. Ferraro
1 cv	ATTN:	H. S. Lee

44

R&D Associates 4640 Admiralty Way Marina Del Rey, California 90291

> 1 cy ATTN: R. Lelevier 1 cy ATTN: F. Gilmore 1 cy ATTN: R. Turco

*

The Rand Corporation 1700 Main Street Santa Monica, California 90406

1 cy ATTN: Cullen Crain

Professor Chalmers F. Sechrist 155 Electrical Engineering Building University of Illinois Urbana, Illinois 61801

1 cy ATTN: C. Sechrist

Stanford Research Institute 333 Ravenswood Avenue Menlo Park, California 94025

> 1 cy ATTN: Allen M. Peterson 1 cy ATTN: Ray L. Leadabrand