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ABSTRACT 

V

The two-way flexural behavior of steel-dack-reinforced con-

crete slabs is examined and the feasibility of consideri ng two-way

action in the design of such slabs is discussed. An elastically V

V 

- orthotropic finite element model with uniform thickness is developed

which simulates the behavior of a structurally orthotroptc steel-

desk-reinforced concrete slab. The model development is based upon

appropriate modifications to the elasticity constants and to the

thickness of the p late bending element included in the SAP

finite element program. The linear, elastic, uncracked behavior of

V a typical steel-deck-reinforced concrete slab is examined utilizing

the elastically orthotropic model; and, the resulting deflections

and moments are observed to conform with theoretical results and

with a more sophisticated structurally orthotropic model. The

elas tically orthotroptc finite e lement model is also correlated with

previously tested steel-deck-reinforced concrete slabs and the

results predicted by a finite element analysis are found to conform V

with the actual test results in the uncracked region.

The results of a limited parametric study, which considers

the relative effects of aspect ratio, rib span direction, and edge

support conditions on two-way flexural behavior, are presented .

Deflect ious and bending moments for two-way flexura l action are

compared with similar values for one-way bending and an expression

V is proposed for computing an optimum aspect ratio for a given ortho-

tropic steel-deck-reinforced concrete slab.
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Although the analysis in this report is based upon several simpli- -

fying assumptions, the two-way design of steel-deck-reinforced concrete -

slabs is nevertheless found to be a feasible and potentially advantageous

concept.

2
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1. INTRODUCTION

Cold-formed steel decking, as shown in Fig..l(a), is extensively

utilized in the construction of floor systems for steel framed buildings

and often serves the dual function of providing fo rming for concrete

dLrtag slab construction and positive reinforcement for the floor slab

under service conditions . In addition to simplifying forming a~d 
V

reducing reinforcing steel, such a f loor system also provides a safe

working platform during construction; can easily accommodate pre-

engineered raceways for electrical , communications , and air distribution

systems; and, upon completion, presents a finished underside with no

visible cracks. However, steel-deck-reinforced concrete slab systems

are generally heavier and thicker than alternate floor systems, such as

flat plate concrete slabs (Fig. 1(b)), and despite numerous advantages ,

their general application is often limited by both technical and

economic considerations. Such limitations are directly linked to the

method of one-way flexura]. analysis utilized in the conventional

design of steel-deck-reinforced concrete floor systems . Reinforced

concrete floor slabs, on the other hand, are routinely analyzed as

two-way flexural systems to achieve overall economy of design. The

two-way flexural behavior of steel-deck-reinforced concrete slabs will

be examined in this report and the feasibility of designing such slabs

to take advantage of two-way flexural action will be discussed .

V 
- 3
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1.1 Current Practice

Although stee l deck floor systems generally res ult in a

thicker “floor sandwich” than flat  plate concrete floor systems ,

V 
they are usually much easier to install, and, in par ticular , they

provide additional flexibility for the installation of under-floor

uti lity systems . Consequently , steel-deck-reinforced concrete floor

systems can often be economically utilized in commerical facilities,

office bui ldings , or hospitals . However , they are less eco nomical

for residential facilities such as apartment buildings , hotels , or

dormitories which have fixed interior partitions and do not depend

upon the floor system for installation of utility lines. The

overall cost of high-rise buildings is particularly sensitive to the

overall thickness of the “floor sandwich” and facilities which do

not req*.tire mechanized or electrified floor systems can often be

more economically constructed utilizing precast concrete floor

panels or flat plate concrete slabs .

Stee l decking is often utilized strictly as stay-in-p lace

forming material and alternate reinforcing is provided for the

concrete s lab . Steel-deck reinforced concrete floor s labs , however ,

are compos ite structural systems which achieve satisfactory composite

action by developing positive interlocking between the steel deck

and the concrete. Steel decks are currently manufactured which

utilize various patterns of embosstnenta to mechanically transfer

horizontal shear and to prevent vertical separatio n between the deck

and the concrete. The load carrying capacities of such composite

p 4
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sections are normally established through proprietary performance

tests conducted by the various manufacturers , and design is general-

• ly based upon one-way bending of simple span slabs. However, a

flexural mode of failure is rarely achieved for typical sections 
V

spanning moderate (6-12 f t )  lengths , and design is of ten governed by

other cr iteria such as shear-bond failure, allowable deck stresses

during construction, or acceptable deflections during construction or

= service loading. Additionally, the thickness of steel deck floor

systems may also be governed by required fire resistance ratings .

The various steel-deck manufacturers generally recosnend maximum

one—way spans in the range of 15 feet for steel-deck-reinforced con-

crete slabs. However, spans of 6-10 feet are more co only utilized

so as to obviate the need for expensive temporary shoring and to

minimize the depth of supporting members. As mentioned earlier, a

steel deck floor system, with its associated beam/joist framing system

will generally result in a relatively thicker “floor sandwich” than a

concrete fla t plate or pre-cast floor system . However, itt cotanercial

facilities requiring extensive underfloor utility systems and mechanized

or electrified floors , cellular steel deck , in particular , can provide an

alternative, economically feasible floor system when constructed corn-

positely with the concrete slab .

5
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1.2 Current Research

Extensive research on steel-deck-reinforced - concrete slabs

subjected to one-way bonding has been conducted at Iowa State Univer-

sity by Ekberg, Schuster, and Porter .~
2’3’4’5’ Test results have

indicated that the shear-bond failure mode is predominant over the

fl exural failure mode, particularly in shorter spans; and , it has

therefore been recoemeaded that such a failure node thould be a

primary design consideration. Shear-bond failure was classified as

= a brittle type of failure characterized by the formation of an appro x-

iinately diagonal crack (resulting from excessive principal tension

stresse s ) which resulted in end slip and a loss of bond between the

steel deck and the concrete. It was observed that shear-bond capacity

increased with an increase in depth , a decrease in shear span , or an

increase in the compressive strength of concrete. An ultimate strength

design procedure, which incorporates a specified testing program to

establish shear-bond capacity, was proposed for steel-deck reinforced

concrete s labs subjected to one-way bending .

Limited research has also been conducted by Porter and kberg~
6
~

on the behavior of steel-deck-reinforced concrete slabs subjected to

two-way bending . Five simply supported slabs (12 ft x 16 ft) with

varying section properties and with rib s spanning 12 feet were sub-

jected to four concentrated toads near the center span region, and

• failure node , cracking pattern and end reactions were observed . ALL

V five slabs failed ultimately by a shear-bond type of fai lure , character-

ized by horizontal end s lippage accompanied by the development of

—- V.-— 
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~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

~~~~~~ V
V 

V

diagonal cracks. End slippage was similar to that experienced in

one-way slab tests, however no end slip was observed along the edges 
V V

• transverse to the span of the steel deck ribs.

Although none of the five slabs failed by extensive yielding of

the steel deck, some limited yielding of the steel deck did occur in

the central regions near the concentrated load points. Measured end

reactions indicated that about 787. of the total applied load during the

initial load applications was transmitted in the strong direction.

However , near ultimate load, one-way bending was predominate and 97%

of the total force was carried in the strong direction. Max imum edge

reactions in the weak direction usually occurred when the live load

was 50% of the ultimate Load or at approximately the working toad Level.

- Porter ’6
~ recommended that analysis of steel-deck-reinforced

concrete slabs subjected to two-way bending consider only the section

above the deck corrugations as effective for transverse flexural action.

Moreover, he suggested that only supplementary steel in the transverse

direction be cons idered for computing f lexural  capacity and that any

contribution from the steel deck should be neglected. Porter observed

that a slab which had 6xl2 DOxD4 WWP p laced directly on top of the

steel decking had a higher ultimate load than slabs without such rein-

forcement. It is quit. possibl. that supplementary transverse rein-

forcement increases both shear bond and transverse flexural capacity

and thus increases the overall ultimate capacity of a two-way steel-

deck-reinforced concrete slab. Porter’s results are discussed further

in Art. 4.4.
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1.3 Purpose and Scope

The desired failure mode of any reinforced concrete structural

system is a flexural failure of an under-reinforced cross section.

Steel-deck-reinforced concrete slab sections commonly utilized in

building construction will predominantly experience shear bond failure

or excessive deflections prior to reaching their ultimate flexural

capacity. Consequently, such sections actually fail prematurely, thus

lowering allowable loadings or reducing allowable span lengths. If all

factors which precipitate failure prior to the achievement of ultimate

flexural capacity could be controlled and a flexural failure realized,

steel decking could be more efficiently utilized as reinforcement for

concrete floor slabs. Moreover, the relative economic benefits of

steel-deck-reinforced concrete floor slabs could be significantly

improved if such slabs were designed as two-way flexural sys tems.

An elastically orthotropic finite element model with constant

thickness will be developed to facilitate the analysis of structurally

orthotropic steel-deck-reinforced concrete slabs. The elastically

orthotropic model will be compar ed with theor etical results with a

more refined structurally orthotropic finite element model, and with

one-way and two-way, test results as compiled by Ekberg, Schuster, and

Porter .~
2’6

~ Once validated , the finite e lement model will be utilized

to conduct a limited parametric study in which the relative effects

of aspect ratio , rib span direction, and edge support condition will be

examined. The general feasibility of designing steel-deck-reinforced

concrete slabs as two-way flexural systems will be discussed ;

8
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however , it is recognized that much more intensive analytical studies

V 
as well as extensive laboratory tests are necessary to confirm the

findings of this preliminary research . In effect , this report serves

as a “ground leve l” feasibility stud y on the two-way flexural behavior

of steel-deck-reinforced concrete slabs.

1.4 Assumptions

The limited scope of this investigation is unavoidably con-

strained by several basic assumptions . Such assumptions will

necessitate careful interpretation of the findings of this study,

but will not invalidate their basic significance . In general, all

analyses have been performed on the bas is of linear elastic behavior

of an uncracked cross section . More specifically it has been

assumed that:

a. Mditional transverse and longitudinal reinforcement will be

added to the cross section as required to maintai n the same

relative .rncracked stiffnesses subsequent to cracking as well

as to satisfactorily resist two-way bending moments .

b. Shear bond failure can be prevented prior to flexural failure

V by modifying the steel deck profile (embossments), by addi ng

specialized shear connectors , by app lying special adhesive

coatinga, or by some other acceptable technique .

c. Excessive deflections and/or construction loadings can be

economically controlled by improved shoring techniques , by

V two-way flexural action of the steel deck alone , by pre-cast

construction or by other suitable techniques . =

-: 
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2. FINITE ELEMENT MODEL DEVEWPMENT

The SAP IV~
1
~ finite element computer program provides

several alternative methods for modeling a steel-deck-reinforced

concrete slab subjected to distributed or concentrated loads perpen-

dicular to the plane in which it lies . The plate bending element provides

- 
V the most convenient and efficient method for analyzing isotropic

plate bending problems and can readily be adapted to elastically V

orthoeropic problems by properly populating the plane stress material

elasticity matrix given as follows:

rc c c Icxy xs ~oc

— Ic c C c 2.1yy xy yy ys yy
1•xs LCxs Cy5 Gry

where , C — C —~~ yy l~ j

Cry 
— 1-?

2.2
C — C  — oxs ys

G E 
V

xy 2(1+~,) —

for the case of isotropic plate bending.

In isotropic or elastically orthotropic plate bending problems ,

the finit, element is given a specified uniform thickness and appro-

priate rigidity factors are computed utilizing the specified elasticity

constants . ifovever, a structurally orthotropic steel-deck reinforced

$ concrete slab , with typ ical cross section as shown in Fig .

_ _ _ _  V.V.V__

- -_ V -
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can not be modeled as conveniently using p late bending elements . On

the other hand, however, alternative models utilizing more sophisti- V

• cateci elements become mare complex as well as exponentially more

expens ive . Consequently, elasticity parameters were developed which

permitted the modeling of a structurally orthotropic plate as an

elastically orthotropic plate with an equivalent uniform thickness,

and analytical results were compared with results gere rated by a more

sophisticated finite element model as well as with theoretical and

test results. V

2.1 Orthotropic Plate Theory

V 
For engineering applications, an orthotropic plate is defined~

8
~

as a plate having different bending stiffnesses (D — LI) in two ortho-

gonal directions X and Y in the plane of the plate. The variation in

bending stiffness may result either from different moduli of elasti-

city E
~ 

and Ey in two orthogonal directions, as in the case of natural-

ly or elastically orthotropic plates, or from different moments of

inertia I~ and I~, per unit width, as in the case of technically or

structurally orthotropic plates. V

[ I

fluber’s general differential equation for the bending of an

- 
orthotx’opic p late is expressed as followe:~

8
~ V

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2.3

where 2H D v  + D v  + 4 D  2.4x y y x  xy

The quantities D and D
7 

are termed the flexural rigidities of the

plate while D repr,sents the torsiona l rigidity of the p late. Themy 11

— ~~~~~~~~~~~~~
—— ~~~~~~~~~~~~~~~~~ -V..i”- -
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V 
value of 2B from Eq. 2.4 is termed the effective torsional rigidity

of the orthotropic plate.

In general terms, Eq. 2.3 relates the plate’s deflection

surface w(x ,y ) to a given load distribution q(x y). To app ly the

solution of Eq. 2.3 to engineering problems , it is necessary to

evaluate proper values for the constants D , D , D
my~ 

v,~, and Vy •

For an elastically orthotropic slab of uniform thickness (h) , the

constants are defined as follows:

E h3
D —

E h3
2.5

y

G h3
D —my 12

E ‘v — E v (from Betti’s reciprocal theorem)
x y  y x

The values of the moduli of elasticity E and £ and the corresponding

Poisson’s constants and are usually known for a given elastically

orthotropic material. flowever, the value of the shear modulus Gmyi 
which

is encountered in the expression for the torsional rigidity D , and which

consequently also influences the effective torsional rigidity H, is

usually unknown.

An approximate value of the effective torsional rigidity can

V be theoretically expressed by the equation,

2.6

TIV I~~~~~~~~~~~~~~~~~~~
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V J
V if an analogy is drawn with the expression for the twisting moment V

of an isotropic plate utilizing D — and v as repre- V

- sentive “middle values” of the bending rigidity and Poisson’s con-

stant , This approximation is valid only if the orthotropic plate
- 

satisfies the following conditions: V 
—

a. uniform thickness

b. - purely elastic deformations

c. relatively small deformations.

Because such assumptions are not actually satisfied in reality ,

particularly for a structurally orthotropic plate, it has been

suggested~
8
~ that the value of H should be reduced by a coefficient

of torsional rigidity y, so that

2.7

where y < I and normally varies between 0.3 and 0.5.

A proper theoretical expression for G
ry 

is particularly

important when modeling a structurally orthotropic plate as an

equivalent elastically orthotropic plate for a finite element analysis.

Szilard ~
9
~ suggests that G

ry 
for an orthotropic material can be

approximately expressed as follows:

_ _  2
~ 

2(1*Iv~v~,) 
.8

• or if E ~~ E ~~E Vm y

- G ~ E 2.9
V my 2

~~~~
’
~x~
’y~

- 
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In discussing structurally ox’thotropicVsteel-bridge deck

I 
- 

systems, Troitsky~
8
~ suggests that G

ry
be expressed as follows:

G — X V  2 1 0my E~ + (l+2Vx)Ey

but reco~~ends that a direct test be conducted to obtain a more re- V

liab le value for C . -my

The expressions for bending rigidity given in Eq. 2.5 must also

be modified for structually orthotropic plates. For a slab reinforced

on one side by a set of equidistant ribs, Timoshenko~~°~ suggests that

bend ing rigidities can be approximated by the following expressions: =

D — 
E a 1h

3 
2.11x l2(a1-t4a~t)

D ‘ . -
~~
-

~ 2.12y a1

if the effect of transverse contraction is neg lected (i.e., ~ — — Vx y
v 0). D represents the effective weak direction rigidity transverse

to the ribs, while Dy represents the strong direction rigidity parallel

to the ribs . I is the moment of inertia of a T-sectio n of width a1,
V and a — ~~~. The constants a1, h , H, and t are defined in Fig. 2 for

a typical steel-deck-reinforced concrete slab cro&s section. V

It is obvious from the foregoing discussion that orthotropic

plate bending theory provides , at best , only an approximate solution

for structurally orthotropic slabs with unayuinetrical ribs. Neverthe- V V

less, orthotropic plate bending theory will be applied in the develop-

msnt of e1asti~- .ty parameters for a finite element model in an attempt to

14
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provide a comparably accurate finite element solution for a structurally

orthotropic steel-deck-reinforced concrete slab. 
-

2.2 Alternative Models

The finite element model was developed by considering the typical

cross section shown in Fig. 2 spanning a 16 ft x 16 ft panel with four

simply supported edges. A representative section of the actual struc-

turally orthotropic slab is illustrated in Fig. 3(a). The models shown

in Figs. 3(b) and Cc) would provide lower and upper bound solutions for

two-way flexure of the slab. The uniform thickness of such a model

would facilitate finite element discretization, however , the ef~!ects

of the steel plate must necessarily be considered by utilizing an

equivalent uniform model thickness, based upon the cross section’s

transformed moment of inertia. The actual results obtained from such

V an analys is would be relatively insignificant despite the fact that

they would bound the correct solution.

Figure 4 illustrates a rather sophisticated finite element

di cretization utilizing 8-node bricks to model the concrete, and

p late bending elements to model the steel deck. While such a model

should provide excellent results, its complexity and expense degrade

V its usefulness for general application. A comparison between this

model and the e lastically orthotropic model is presented in Art. 4.2.

Modeling the structural ly orthotropic slab as an isotropic plate

V 
supported by beams representing the r ibs would provide still

15
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another alternative. However , correctly modeling torsional rigidity

vitu such a diacretizatio n could prove quite difficult .  :~ the final

ana lysts, the most efficient and effective model is one in which plate

beading elements alone are utilized with appropriately modified elasticity

constants and a specified equivalent uniform thickness. Such a model simulates

the behavior of a structurally orthotropic slab by that of an equivalent

elastically orthot ropic slab of uniform thickness .

2.3 Model Parameters

The modeling of a structurally orthotropic slab by an elas-

tically orthotropic slab of uniform thickness was accomplished as

follows:

a. The uncracked moment of inertia (ly) per unit width was com-

puted in the strong direction utilizing the transformed area

concept to incorporate the effect of the steel deck

b. The uncracked moment of inertia 
~
‘X~ 

per unit width was com-

puted in the weak direction neglecting any contribution from

the steel deck or from the ribs

c. An effective moment of inertia 
~‘xe~ 

per unit width was defined

for the weak direction; I considers the effect of the ribs

by utilizing Timoshenko’s~~
0
~ expression for the weak direction

V 

bending rigidity (Eq. 2.11):

a
1
h3

• 1xe — l2(a1-t-a’t) 
2.13

• d. The modulus of elasticity of concrete , E , was modified by theC

following expressions to simulate orthotropic elasticity:

16
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(
E ._ ~!( E )  2.14x I C -

I
E — -—1- (E ) 2.1.5

V y I cme

e. Poisson’s ratio for concrete (~~~~~~)  was modified as follows:

— 

~
“

~~~~ 

2.16 
- 

V

— 

~t 2.17

so as to maintain the equality v E — 
~ , E v £ V

x y  y x  c c

f. Orthotropic elasticity constants were computed as follows

utili zing E , £ , ~ and ~im y  x y

E
V C — 2.18

~~ l - v ’.~x y

E
C — 2.19yy 1 - v

/v v E E
c — 2.20
my

E L
C

ry E
~ 
+ (1+2 v)E 2.21 V

g. An equ ivalent uniform slab thickness was computed as follows: 
V

t •3f12 L 2.21
‘V XC
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V

In general terms , this modeling technique simulates structural

V orthotropy by proportionately increasing the modulus of elasticity of V

concrete to reflect effective moments of inertia in the strong and weak

direction, while incorporating an equivalent uniform thi ckness . This 
- 

V

techn ique does, however , possess one incons istency in that the simulated

bending rigidity in the weak direction is relatively higher than would

be theoretically deduced . This results from the fact that both the 
V

moment of inertia and the modulus of elasticity in the weak direction

are increased resulting in a relatively higher increase In rigidity

in the model’s weak direction as compared to its strong direction. The

significance of this inconsistency is discussed later.

Troitsky’s value for G
ry 

(Eq. 2.10) was selected because of

its general applicability to structurally orthotropic slabs and

because of the good correlation which it produced with both theoreti-

cal solutions and test results.

Uncracked section properties and material properties for the

typical section utilized in the model’s development are listed in Table

1. The computation of model parameters is included in Appendix A, and

the final elastically orthotropic slab model is illustrated in Fig. 3(d).

V ~~~ VV ~~~~~~~~ ~~~~~~~~~~~ 
_-V

~~V V V _ ~~~~~~~~~~~~~~~ V__ V.
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3 ORTHOTROPIC PLATE ANALYSIS V

For the case of a uniformly loaded, simply upported rectangular

orthotropic p late, Eq. 2.3 can be solved utilizing the Navier

V V method.~~
0
~ This solution expresses the plate’s deflection surface

in terms of a double trigonometric series:

V l6q sin~~~~ sin~~~~o a b
~~~~~~~ L Li m’ 2s?c? n4 3.1

m’sl,3,5... n.l,3,5 ... mn(~~. D~ + 
~~~~~~~~~ 

H +~~r D7)

Tabularized solutions are available for Eq. 3.1 for the particular case

of H /DxDy~ 
Although such a case is normally representative of

elastically orthotropic plates, such as two-way reinforced concrete

slabs, it will nevertheless be applied to a structurally orthotropic

steel-deck-reinforced concrete slab utilizing the elasticity constants

computed for the finite element mod d parameters .

3.1 Governing Equations

For the case in which H — TDXDY
, the deflection and the

bending moments at the center of an orthotropic p late can be expressed

by the following equations :
V 

- aq 0 b’

~~~ D
7 

3.2

U I
19 -
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3 3

I I Mr,u ( S t + a z Zj
’

~~~~~~ 3.4

wher e 
~~~, 9~~~ , 

and a2 are numerical coefficients given in Table 2 and
rr V V

3.5
X

If the effect of transverse contraction is neglected Cmy
becomes equal to zero and Eqs . 2.11 and 2.12 can be directly applied

to calculate D and D . However, transverse contraction is consideredx y
by the finite element analysis and consequently a more appropriate

comparison should be achieved by modi fying D~ and as follows:

E a1h
3

— 
(1~~~~~~~ ’)(12)( t+~~~~~ t) 

3.6

E l  3 7y (l_v
~
’)(a1)

V 

A sample computation of theorv~tical deflections and momen ts V

is included in Append ix B for a simply supported , 16 ft square,

orthotropic plate subjected to a uniform load of .001 ku (144 psf).

The typical cross section shown in Fig . 2 and the tota lV load q ..OOl ksi,0 
V

which is in the normal working load range, were used for all computa-

• tions.
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3.2 S~~~arv of Results

The results of theoretical deflection and moment computations

for various aspect ratios are listed in Table 3. The comparison of

these rea~i Lts wich values predicted by the finite element model is

presented later; however, it is important to note that the theoretical

results are in themselves approximate in nature. Although they are

assumed to be the “ exact” values for model validation , the significance

of minor discrepancies must be evaluated with consideration given to

the possibility of error in the theoretical values.
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4. MODEL VALIDATION

Several approaches were taken to confirm the validity of

the finite element model as well as to ascertain the degree of V

discretization necessary to achieve results with acceptable accuracy.

Model validatio n included a convergence study, comparison with an V

V alternate , more sophisticated model, comparison with theoretical 
V

V 
results, and comparison with test results. In all instances the

• model was observed to have an acceptab le degree of accuracy.

I
4.1. Convergence Study

Figure 5 illustrates the typical slab discretization utilized

during development of the model parameters. Quarter symmetry was
I 

utilized and the degrees of freedom at the boundaries were set

V 
equivalent to those of simply supported edges. The discretization

in Fig. 5 includes 81 nodal points and 64-12 inch square, elastically

orthotropic plate bending elements of uniform thickness. In addition

to the discretization shown in Fig . 5, a coarser mesh (16 elements -

24 inches square ) and a finer mesh (256 elements - 6 inches square)

were utilized in the convergence study.

Figur e 6 shows excellent convergence towards the “ exact”

center deflection as computed in Append ix B. As evidenced in

Fig. 6 , the finite element model is “ stiffer ” than the theoretical 
V

V 

s lab and the computed deflection s ar. actually lower bound values .

V 
- This is as would be expected since SAP IV type Vt plate bending

elements are conformable •iements.11)

I ____ 
_ _ _  
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V 
V

‘VV Similar ly , Fig . 7 shows very good convergence towards the
V “exact” strong axis moment . Convergence is also obtained in the weak

direction; however, it is quite apparent that the “exact” value for

the weak axis moment is strongly influenced by the degree of transverse

contraction assumed in the theoretical analysis. 
V

For the purposes of this report, it was determined that the

accuracy of the mesh illustrated in Fig. 5 was adequate, and that the

utilization of the finer mesh (at over 3 times the cost) was not

necessary. All subsequent studies are conducted utilizing 12 inch

square elements.

4.2 Comparison with Alternate Model

A comparison was made between a 12 inch square elastically

orthotropic plate bending element and the structurally orthotropic

finite element model shown in Fig. 4 primarily to determine the

accuracy of the assumed expression for Gry 
(Eq. 2.10).

The structurally orthotropic model was composed of 8-node

bricks, which represented the concrete, and isotropic plate bending

elements, which represented the steel deck. The elastically ortho-

tropic model was defined by the elasticity parameters and equivalent

thickness computed in Appendix A. A 12-inch square module of each type was

simply supported at three of its corners while a unit load was

applied at the fourth corner . The elastically orthotropic element had

a corner deflection of 0.0024166 inches while the structurally ortho-
V 

- tropic model, had a corresponding deflection of 0.0024145 inches. The
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resulting error is less than 0.17. and is entirely acceptable. This com-

parison supports the validity of the assumed expression for as

well as the overall adequacy of the elastica lly orthotropic model.

The cost associated with the more sophisticated 8-node brick

model was approximately ten times that of the elastically orthotropic V

p late bending model. This observ~tioa further supports the selection

of the elastically orthotropic plate bending model.

4.3 Comparison with Theoretical Results

The theoretical analysis of simply supported, uniformly V

loaded, rectangular orthotropic plates is discussed in Art. 3 and

sample computations are included in Appendix B. Theoretical def lee-

tions and moments were similarly calculated for various aspects ratios

V and are summarized in Table 3 along with corresponding values

computed by a SAP IV finite element analysis utilizing the elastical- V

ly orthotropic model previously discussed. (The parametric study,

which considers the relative effects of aspect ratio , is discussed in detail

in Art. 5). The tabulated values show excellent agreement for de-

flections and strong axis moments; however the correlation is less

than satisfactory for weak axis moments. Moreover, it is apparent

that the correlation becomes increasingly worse as the weak direction

span incre ases . However , it is also observed that at some aspect ratio

(between 1.33 and 1.00) art exact correlation is achieved .

If an alternate theoretical analys is is made which neglects the

V effect of transverse contractions as related to weak direction moments

V 
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(i.e., v — 0), the correlation between the finite element and the theore-

tical ana lys is greatly improves , particularly at larger aspect ratios.

This observation is noted in Table 3 and seems to indicate that the V

V 

V 
relative effect of transverse contraction varies with aspect ratio and

V 
has a much more significant effect on the weak direction moments than

V V Ort either the center deflectio n.s or the strong direction bending

momen~~. The cunsistency of all other results indicates that the

weak direction moments computed by the finite element analysis are

“more correct” than the approximate theoretical values • This observation

is based upon the assumption that the relative significance of transverse

contraction will be appropriately considered by the numerical finite element

solution for a particular aspect ratio. The theoretical solution, on the

other hand, is directly tied to an assumed degree of transverse contraction,

and does not necessarily apply “exactly” to a structurally orthotropic plate.

4.4 Comparison with Test Results -

Although this investigation was primarily analytical in nature

an effort was made to correlate results predicted by the finite d c —

V ment model with avai lable tes t results for steel-deck-reinforced

concrete s labs .

Figur e 8 illustrates actual results obtained by Schuster and Ekberg~
2
~

during one of their numerous tests on steel-deck-reinforced concrete

slabs subjected to one-way bending. The test specimen was modeled

utilizing the parameters previously discussed and the analytical

results were also plotted in Fig. 8. An additional analysis was

L.  ~~~~~~~~~~~~~~~I~~V V V V T .  V1J ~~~~~~~ V~~~~~~~~ V V V V I~~~~~~~~ J:II ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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conducted utilizing the theoretical cracked moment of inertia for I;

computing I~ based upon the cracked slab thickness; and letting

I — I • The plotted results indicate excellent correlation in thexc x
uncracI~d region and emphasize the effect of cracking and subsequent

shear bortd failure on the load carrying capacity of the slab.

V Figure 9 compares the predicat~id and actual behavior of one

of Porter and kberg’s~
6
~ steel-deck-reinforced slabs subjected to

two-way bending. The particular slab shown had no supplementary rein-

forcement and was simply supported on all four edges. The predicted

and actual load vs. deflection curves show excellent agreement to the

uncracked region of the initial load cycle. However, the effects of

cracking are once again apparent tn the final load cycle. Predicted

deflections are actually lower bound values in the uncracked region

as was indicated by the convergence study discussed earlier.

_ _ _ _  

_ _ _ _  
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5. PARAMETRIC STtJDY

A limited parametric study was conducted utilizing the pre-

viouaty discussed finite element model to examine the effects of

various aspect ratios on the two-way flexural behavior of steel-deck-

reinforced concrete slabs. The rela tive span lengths for the stt~cig V

versus the weak direction of the orthotropic slab were of particular

V 
interest. Steel-deck-reinforced concrete slabs, when constructed as

one-way systems , routinely have their ribs spanning the shorter

direction, and current research~
6
~ into two-way behavior has

generally followed this practice. In addition to aspect ratio,

simply supported and fixed edge boundary conditions were examined.

5.1 Purpose and Scope

The relative distribution of bending moments and stresses in

the two orthogonal directions corresponding to the strong and weak

axes of a steel-deck-reinforced concrete slab is a functiort of aspect

ratio, edge boundary conditions and the section and eatexial properties

of the particular slab in question. A finite element parametric

study was conducted to quantify the effects of aspect ratio as well V

as the effect of simply supported versus fixed edge boundary conditions .

A typical steel-deck reinforced coci ’ete slab section (Pig. 2)

was selected and a finite element analys is was performed for each of

V the s lab aspect ratios shown in Fig. 10. The relativ, span lengths

• were chosen so as to represent typical spans utilized in one-way steel V

deck-reinforced concrete slab construction as well as to represent

• 27
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typical spans for alternate floor systems constructed of reinforced

V or precast concrete. V 

-

It is hypothesized that the optimum aspect ratio for a steel-

-
-

- . deck-reinforced concrete slab is one in which the maximum concrete

- 

V 

compressive stresses are equal in the main orthogona l directions of

the slab . An expression for optimum aspect ratio is developed, based

V upon uncracked, elastic behavior, and is compared with the results of

the parametric study .

5.2 Results

Deflection and moment coefficients are compared with slab aspect

ratio in Figs. 11 and 12 respectively. Nondimeasionalized coeffi-

cients for deflections and moments were developed based upon the

corresponding expressions for one-way flexural behavior. In general

terms, the coefficients are defined as follows: 
V

DEFLECTION COEFFICIENT 384 A E I  
— 6 5.1

where A — center deflection; and

MOMENT COEFFIC IENT - - 5.2

where N and L corresp ond to the appropriate weak or strong directio n

values . As shown in Figs . 11 and 12 , the s lab ribs span in the “b”

V direction (strong direction), and an aspect ratio of zero corresp onds V

to one-way bending. For aspect ratios less than one the ribs span

in the short direction and conversely , the ribs span in the tong direc-

tion for aspect ratios great.r than one .I V~ 

28

~

V V ~~~~~~~~~~~ - -~~~~~~ VV V -V V~~ VV VV ~~

- ~~~ VVL _ VV fl ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~~~~V - 
V



—-V

(

Figure 11 ind icates that for a given span “b”, a significant

reduction in maximum deflection can be realized by cons idering the

effects of two-way flexural action, particularly in the case of

simply supported edges. Although such reduction is more pronounced

for the larger aspect ratios , a 257. reduction in maximum deflection.s

is predicted for a simply supported stab with a 0.75 aspect ratio .

V A l2’x16’ slab with ribs spanning 12 fee; as shown in Fig. 10, has

act aspect ratio of 0.75 and is a typical panel used in current designs;

however, the added benefit of two-way flexural action is generally

V neglected when computing the deflection of such a slab.

If an isotropic slab were considered, the plots of weak and

strong axis moment coefficients shown in Fig. 12 would intersect at

an aspect ratio of 1.O,and for the case of simple supports the

maximum biaxial compressive stress would be balanced at the center.

Assuming that an optimum two-way steel-deck-reinforced concrete slab

design will also attempt to balanc e the maximum biaxial compressive

str ess in the concrete , art expression for the optimum aspect ratio

was derived in Appendix C.aod is expressed as follows:

(~\ _ I !~i !~zz’~ 5 3\a/opt Al S,~ ~~~~

where and refer to the moment coefficients for the respective

strong and weak direction moments. A trial and error solution for

V (
~~ utilizing values plotted in Fig . 12 is also shown inva/opt V

• App.ndix C for the simply supported case. A similar solution for fixed

edges would require optimization with respect to either positive or

negative bending moments .
29
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The optimum aspect ratio for the simply supported case for the

section shown to Fig. 2 was found to be approximatsly 11 . This value

indicates that steel-deck-reinforced concrete stabs subjected to two-way

bend ing resp ond more efficiently if their aspect ratio is greater than

one; that is if the ribs span in the longer direction. As men tioned

previously, it is current practice to generally design steel-deck-rein-

forced concrete slabs as simp le , one-wa y spans with the ribs spanning

the short direction. The potential advantages of utilizing two-way

V simple or continuous spans are quite apparent from the comparisons V

illustrated in Fig. 12.
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6. CONCLUSIONS AND RECOMMENDATIONS

The concept of designing steel-deck-reinforced concrete slabs

as two-way flexural systems is technically feasible and suggests

strong potential for significant economic advantages. Although this

conclusion is drawn based upon a simplistic urtcracked, linear elastic

analysis, it is reasonable to assume that the same behavioral trends

will persist in the cracked region and that the two-way steel-deck-

reinforced concrete slab will performed consistently better than its

one-way counterpart. Although Porter~
6
~ observed predominately one-

way action of two-way steel-deck-reinforced concrete slabs at ultimate

load, significant two-way action was observed at working load levels

despite cracking of the stab cross section. Such behavior suggests

the possibility of developing working stress design procedures

utilizing linear elastic analysis of the cracked cross section at

the working load level. Such analysis techniques we currently

utilized in the lesign of one-way steel-deck-reinforced concrete slab

systems. However , two-way design of such slab systems will necessarily V

requir e the utilization of supplementary reinforcement transverse and

possibly parallel to the stee l deck ribs . As Porter~
6
~ observed, such

reinforcement, placed directly on the steel deck resulted in increased

ultimate capacity when the s lab was subjected to two-way bending . Supp le-

mentary re iri forc emeit is required riot only to resist bending moments,

but also to maintain the same relative stiffness between the weak and

strong axes of the cracked and uncracked cross section of the steel-

deck-reinforced concrete slab.

_ V .  _ _ _
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As discussed in the parametric study, a two-way steel-deck rein-

forced slab will perform more efficiently if the ribs span in the

• longer direction. This observation and the theoretical prediction

for optimum aspect ratio must necessarily be confirmed by actual

experimentation.

The elastically orthotropic finite element model was found to

perform both effectively and efficiently with a relatively coarse

discretization. However, the model was particularly sensitive to

the expression utilized for the orthotropic shear modulus C and
xy

actual testing is required to further validate all model parameters.

As mentioned in Art. 2.3, the model includes an “artificially high”

bend ing r igidity in the weak direction; however, correlation with

theoretical and experimental results supports the validity of the

par ameters which contribute to the model’s weak direction bending

rid igidy.

The difficulties associated with premature shear bond failure

as well as the structural adequacy of the steel-decking during the

construction phase must necessarily be considered in any refined

development of the concept of designing steel-deck-reinforced concrete

slabs as two-way flexural systems. The relative shear-bond and V

flsxural behavior of interior versus exterior floor panels in a

general two—way framing scheme would be of particular interest.

Although the full benefits of two-way flexural behavior may
• be significantly limited by various physical or practical constraints ,
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the relative advantages of two-way versus one-way design of steel-

deck-reinforced concrete slabs are quite apparent. Moreover, the

increased efficiency of a two-way steel-deck-reinforced concrete

s lab , combined with the other numerous advantages inheren t iii this - 
V

construction system, will significantly enhance its acceptability for

utilization in multiunit residential facilities.

A considerable amount of additiona l research is required before

a a generally acceptable two-way design procedure could be pr omulgated .

The analytical technique s deve~oped in this report must be validated

against specific test results and refined as necessary. A full scale

testing program, which parallels and expands upon the parametric

study included in this report, is also imperative. In particular, the

following parameters should be examined:

a. Concrete weight and strength V

b. Steel deck cross section and embossment pattern

c. Slab and deck thickness

d. Boundary conditions

e. Aspect ratio, span length, and rib direction

f .  Loading

g. Supplementary reinforcement

V The required amount of supplementary reinforcement will significantly

effect both the technical and economic feasibility of fully developing

two-way flexura l action , and should receive careful attention during

the testing phase. Additionally, trial designs should be prepared for

various sections and general economic comparisons should be made with

33 -

— —- - V-  

~~~~

V-V ______

~~~~~

_ V V  _ _ _ _ _ _ _ _ _ _ _ _ _

~~~~~~

V

~~~

V V V —

TV. V-V - __~~ ~~~~~~~ — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- _ V~~~~~~~ V_ ~ VVV V ~~~~~~~~



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV~~~~~~~~~~~~~~~~~V~~~~~~~

~~~~~V alternate floor systems of equivalent capacity to ascertain both the

physical and economical efficiency of a steel-deck-reinforcement concrete

• slab.

V 

• Composite structural systems, in general , offer increased load

carrying efficiency by utilizing each component material itt its most

effective manner and to its fullest potential. The steel-deck-rein-

forced concrete slab is currently under-utilized as a structural sys-

tern; however, a much greater efficiency could be achieved by fully

investigatth* and eventually taking advantage of two-way flexural

behavior.

34 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - ~~V~~~~~~~~~ - V - V V V V V V - V - ------- —----~~~~~~

V. - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ VV ~~~_ -~~
-V 

~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - _ :- -V~~~~V



—. ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~

V — V - --- •~~~—~- •~ -‘.~~~~~~~~~~~~~~~~~~~~~ -- V f_ ~~~~~-V ~~~~~~~~~~~~~~~~ -

• 7 • NOMENCLATURE

V 
V C ,C ,C p lane stress elasticity constants

~~ yy zy
V D~DX~D

Y 
flexural rigidity constants

• 
torsional rigidity constant

E ,E C ,ES modulus of elasticity (concrete ; steel)

~x’~ y orthotropic modulus of elasticity

orthotropic shear modulus

H effective torsional rigidity constant; total steel-deck-

reinforced slab depth

I transformed uncracked moment of inertia

I transformed uncracked strong axis moment of intertiay
per unit width-

ix uncracked weak axis moment of inertia per unit width of

slab of depth h

I effective uncracked weak axis moment of inertia per unitxc
width

L span length

M~M~~~Myy moment per unit wtdth

center moments per uni t width for simply supported edges V

center moments per unit width for fixed edges

V ~~~~~~~ edge moments per unit width for fixed edges

elastic section modulus

SS simple support

a weak direction span

a 1 modular width of steel-deck-reinforced concrete slab section

1  

_ _ _ _ _ _ _ _ _ _ _ _  

V

IIp_ 
~~~~~~~~~~ — —V -I~~~~-~Vr ~

-
~~~~~~~~~~~~ V. - — V~~~~~ 

— — - ~~~~~~~~~~~~~~~~~~~~~~~~ - V__ __~~~~~ V V~~~~~~~ ~ V



_ _ _

b strong direction span

b/a aspect ratio V

• 
~cx’~cy 

concrete stress

f’ ultimate concrete strengthc

fy yield stress of steel

h total depth of concrete above steel deck ribs

q,q0 
uniform load distribution (plate bending equations)

t rib thickness

te 
effective uniform thickness of the elastically ortho-

tropic slab model

thickness of the steel deck

w deflection surface; uniform load per unit area V

w . weight of concrete

x,y global coordinate axes

A - center deflection

Z finite su~~ation

ratio of h/H; deflection coefficient for orthotropic

plate bending 
V

V 

~l’~ 2 
moment coefficients for orthotropic plate bending

V coefficient of torsional rigidity

V shear strain

6 deflection coefficient

linear strain

~~~~~~~~~~~~~~~~~~ 

mament coefficients

• v
~
v
~
,v5 Poisson ’s ratio (concrete; steel) V

orthotropic Poisson ratios -
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Vt

- normal stress

shear stress (equals i for an orthotropic plate with
w xs

principal axes of orthotropy coinciding with the x and y

V axes of the local coordinate system)

S

I

-~~ 
_flV.V ~~~~~-V~~~~ — ~~~~~~~~~ - - _V~ - 

~~~~~~~ -— - - ~~~~~~ — V—— V
- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~ V. -V ~V V~~~~~•.-V - V - V



— 
—‘- - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- — ----.

~~~

..—-- - s . - - - ~~~~~~~ -————-r--e V

(V 

- 

V

V 

8. TABLES

I

38 

V 

~~~~~~~~~~~~~~~~~~~~~~ 

_ _
V —- — 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ -V -V  



- V 
VV

~~~~~~~~ _ VV~ — --——-—--——-—-— - — V- ~~~~ V -

1’ 

- 

V

Table 1 Section and Material Properties

Property Value 
V

I 278.7 in’

I 23.2 in’/in

3.57 in’/in V

I 4.63 in’/inxc ______________________

S 7.864 in3/iny 
_ _ _ _ _ _ _ _ _ _ _ _

S 2.427 in3/in 
-x 

_ _ _ _ _ _ _ _ _ _ _

f~ 3000 psi

w~ l5O pcf V

E 3320 ksiC

0.2

f 36 ksjy _____________________________

E 29,500 ksi5 
_____________________________________

‘Is 0.3

0.0359 in (20 gage) V

S
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l_ V _ _ _~~~~ _ _  V V...V .. a, ,. S *JVV M..I-V?.V A_.&t— ~~VV4/__ *V V J _ _ _ V V

V Table 2 Constants for a Simply Supported Rectangular

Orthotropic Plate with H •/D D~~
10
~

e a 
~l

1.0 0.00407 0.0368. 0.0368

1.1 0.00488 0.0359 0.0477

1.2 0.00565 0.0344 0.0524

1.3 0.00639 0.0324 0.0597

1.4 0.00709 0.0303 0.0665

1.5 
— 

0.00772 0.0280 0.0728

1.6 0.00831 0.0257 0.0785

1.7 0.00884 0.0235 0.0837

1.8 0.00932 0.0214 0.0884

- 1.9 0.00974 0.0191 0.0929

2.0 0.01013 0.0174 0.0964 V

2.5 0.01150 0.0099 0.1100

3.0 0.01223 0.0055 0.1172 V

4.0 0.01282 0.0015 0.1230
V 

5.0 0.01297 0.0004 0.1245

• 0.01302 0.0000 0.1250
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Plan View Section

(b) Two-Way Flat Plate Concrete Slob

Fig. 1. Al ternate Conventional Floor Systems
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663.6k ci

I - (d) Slab Model - Elastically Orthotropic

- Fig. 3 Model Development V
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_____  ____
I0.135 —

(0~ “Exact ’~=0.I345” ..4~ —
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___  

2
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0.I34 —~~~~~~~~ 
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V

FulI Slab 
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Lii V

0.133 — V

w
C-)

‘I

0.132 —

0.131 —

0.130 I
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ELEMENT SIZE

Fig. 6 Convergence Study — Deflections
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Maximum Moments vs. Element Size
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Quarter Symmetry Used

2.80 — 9641 
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~~~~~~~~~~~~~~~~~~~~~~~~~~ 

— o.eo~~

2.70 — — 0.75

C V.’—

— . —.—-— 
~~~~~~~~~~~~~~~

2.65 - M~~~k Exac O688~~~~~~~~~~~~~~ 
0.70

( ,  :g~~)

2.60 — — 0.65
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Mweck

2.55 0.60 V
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ELE ENT SI Z E  
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Fig. 7 Convergence Study — Moments
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APPEND~ C A: C~ WUTATI0N OF MODEL PARM~~TERS

V 3.57 in4 /in

V 1
7 

— 23.2 in’/in V

— 33(W ) ‘3 /~~
. 

— 3320 kit 
V

V 

~
‘c • 0.2 (assumed)

3V 
— 

a1h 12(3.5) IXC 12( t~~~t) 
— 

l2(l2_3+(.~t~)
=
(3)) 

— 4.63 in u n  
-

• f (E )V — (3320) • 4306 kit

E
7 

~~~ 

(Eu) — (3320) - 16636 ksi
~~~ 

— (0.2) — 0.0399 
- 

V

V 

~~~ 
— (0.2) — 0.1.542

C~~ — 

~-:~7 1-.0399(.1542) 

— 

~~~~~~~~ ksi

C
17 

— 
1-v • 

1-.0~399(.1542) 
— 1.6739 ksi

_ /(0.1542)(0.039 )(l6636)(43Q~~ 

V

xy l-v~v7 
1-.0399(. 1542) V

Cr,R 6&8 kSi V
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E + (1+2v ) B — 
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APPEND~~ B; COMPUTATION OF THEORZTICAL DEFLECTIONS AND I4Q4ENTS

V a — b — 1.6 ft — 192 in. (simply supported edges )

— 0.001 kit (144 psf)

C • 4333 ks i E • E  — 3320 ksi
C

V 

C — 1.6739 kit — 0.0399
77 X

C — 668 kit — 0.1542xl I

B a1h 3320 (12) (3•5)3D — (1_v
7
d)(l2)(a1~t+~~t) (l-0.l3423)(12)(l2-3+(~~

.
~)(3))

D
~ 

1.5761 tn—kip

D
7 

— (]~
_v
:i) ( a i) — (1 0399~ )( l 2 ) — 77230 in-kip

•i4j~i .i 2~~4 /77230
b D 192 4 13761x

s•1.488 - -

Frog Table 1: ~ — 0.007644

— 0.028276

• 0.072044

— ~~ 
‘
~~~ 

b’ 
• 
0.007644 (.001) (192)’ 

V

D 77230

w — 0.1345 in. 
V

- 

V

_ _ _=~~~~~~~~~~ -VV.~~-V.-_-V— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~V V V~~~ - V V~~~~~~~~~~~~~~~~ 
V. -
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-
~~~

_ _  - -  --
V

— (0.072044 + O.028276( l~~~9)j~~~~?) 
.001 (192)

V M • 2.748 in-kip/in

C /~~~~~q a 2

— (0.028276 + 0.O72044(4~ 8
3)J ) 

.00].(i92)~ -

• 0.825 in-kip/in

Note : If transverse contractions are neglected (v — — C — 0),X I xl
deflections and moments are similarly computed as follows: 

V

w — 0.1361 in

— 2.684 in-kip/in

V N — 0.688 in-kip/in
77
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APPEND~~ C: OPTD(UM ASPECT RATIO (see Fig. 12)

For uncracked, linear elastic behavior: -

N N V

V f • _Iz f (1)
cx S cy Sx 7

V Let f — f  ; therefore V

CX Cy - V

M M
• .-~~~~ (2)

S S
x y V

From Eq. 5.2: V

M ”~~~w L~ (3)

~ w aa j ~~ 
w b 2

V Therefore - —

x y

After simplification:

Is  ~.j(.
~ 

• ,‘ _.z (_~z) 5 3a,opt v S ~- V x ~~~

A trial and error solution for the optimum aspect ratio for a

rectangular , simply supported slab with typical section as thown in

Fig. 2 is included hereafter:

~~~ _
a 112.427 \4~

(5) 
V
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V Aspect Ratio Computed from Computed from
(b/a) Eq. (5) Fig. 12

- 
1.00 0.309 0.262

V 2.00 1.235 4.114

V V 

1.50 0.694 1.310

- 1.33 0.594 0.825

1.25 0.482 0.660

V 1.10 0.373 0.377

.

1

~ 1 61

~~~~ 
-— V - V ~~~~~~~ V: I ± i~ 

_ _III~~V- -



F -

~~~ - -
~~
- 

*-V. _V.V.V. ~~~ V.~~~V. -VV-V.~~ -V ~~~~ — -‘- .~~~~~~~~~~

---V.- ~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~ V -— - —  V

11. REFERENCES

1. Bathe, IC. J., Wilson , B. L. and Peterson, F. E.
SAP IV A STRUCTURAL ANALYSIS PROGRAM FOR STATIC AND DYNAMIC
RESPONSE OF LINEAR SYSTEMS , University of California, Berke ley,
Revised , April 1974.

2. Schuster, B. N. and Ekbarg, C. E., Jr-.
C(~IMENT.ARY ON THE TENTATIVE RECO(~IENDATIONS FOR THE DES IGN OF
COLD-FORMED STEEL DECKING AS RE INFORCEMENT FOR CONCRETE FLOOR
StABS , Engineering Research Institute, Iowa State University,
Ames , August 1970. V

3. Schuster, R. N. $

C~ lP0SITE STEEL-DECK CONCRETE FLOOR SYST~~~ , Journal of the
Structural Division, AScE, Vol. 1.02 , No. S’~5, May 1976.

V 4. Porter, N. L. and Ekberg, C. E., Jr.
DESIGN REC~ NENDATIONS FOR STEEL DECK FLOOR SLABS, Journal of
the Structural Division, ASCE, Vol. 102, No. ST11, November 1976.

5. Porter, N. L. and Ekberg, C. E., Jr.
SHEAR- BOND ANALYS IS OF STEEL- DECK-REINFORCED S LABS, Journal
of the Structural Division, ASCE, Vol. 102, No. STI2, December V

1976.

6. Porter, N. L. and Ekberg, C. E., Jr.
BEHAVIOR OF STEEL-DECK-RE INFORCED StABS , Journal of the
Structural Division , ASCE, Vol. 102, No. ST3, March 1977.

7. H. H. Robertson Company
Q-FLOOR SYSTEMS : TEC~~ ICAL DATA GUIDE Q-I47TD-75 , Pittsburgh,

-P s. ,  January 1975 .

8. Troiteky, N. S.
ORT13~TR0PIC BRIDGES THEORY AND DESIGN, The James F. Lincoln V

Arc Welding Foundation, Cleveland, Oh., August 1967 .

9. Szilaxd, H.
THEORY AND ANALYSIS OF PLA TES , Prentice-Hall , Inc., New Jersey ,
1974.

10. Timoshenko, S. P. and Wotnowsky-Krieger, S.
THEORY OF PLATES AND SHELlS , 2nd Edition, McGraw-Hill, New

• York , 1959.

62

_______ —- V— - V ~V - V V _  _____________

~

VV_ .~~~VV. 7V. V.~~~~~~~~~V V . _ ~~ ~~~~~~~~~~~ ~~~~~~~ 
~~~~

V.=

~

V - - V.- --

~

- - - _ _ _ _ _ _ _ _ _ _ _ _ _  
V

-~~ ~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —---V—.- —


