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ABSTRACT

The two-way flexural behavior of steol-&ackireinforéed con-
crete slabs is examined and the feasibility of considering two-way
action in the design of such slabs is discussed. An elastically
orthotropic finite élement model with uniform thickness is developed
which simulates the behavior of a structurally orthotropic steel-
deck-reinforced concrete slab. The model development is based upon
appropriate modifications to the elasticity constants and to the
thickness of the plate bending element included in the SAP IV(l)
finite element program. The linear, elastic, uncracked behavior of
a typical steel-deck-reinforced concrete slab is examined utilizing
the elastically orthotropic model; and, the resulting deflections
and moments are observed to conform with theoretical results and
with a more sophisticated structurally orthotropic model. The
elastically orthotropic finite element model is also correlated with
previously tested steel-deck-reinforced concrete slabs and the
results predicted by a finite element analysis are found to conform

with the actual test results in the uncracked region.

The results of a limited parametric study, which coasiders
the relative effects of aspect ratio, rib span direction, and edge
support conditions on two-way flexural behavior, are presented.
Deflections and bending moments for two-way flexural action are
compared with similar values for one-way bending and an expression

is proposed for computing an optimum aspect ratio for a given ortho-

tropic steel-deck-reinforced concrete slab.

R s ket




Although the analysis in this report is based upon several simpli-
fying assumptions, the two-way design of steel-deck-reinforced concrete

slabs is nevertheless found to be a feasible and potentially advantageous

concept.
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1. INTRODUCTION

Cold-formed steel decking, as shown in Fig.-1(a), is extensively

A
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- ' utilized in the construction of floor systems for steel framed buildings

and often serves the dual function of providing forming for concrete

i i during slab construction and positive reinforcement for the floor slab
un&er service conditions. In addition to simplifying forming aad

4 ! reducing reinforcing steel, such a floor system also provides a safe

working platform during construction; can easily accommodate pre-

engineered raceways for electrical, communications, and air distribution

systems; and, upon completion, presents a finished underside with no

e e 3

visible cracks. However, steel-deck-reinforced concrete slab systems ;t

; are generally heavier and thicker than alternate floor systems, such as

flat plate concrete slabs (Fig. 1(b)), and despite numerous advantages,
their general application is often limited by both technical and
economic considerations. Such limitations are directly linked to the
method of one-way flexural analysis utilized in the coaventioanal
design of steel-deck-reinforced concrete floor systems. Reinforced
concrete floor slabs, on the other hand, are routinely analyzed as
two-way flexural systems to achieve overall economy of design. The

two-way flexural behavior of steel-deck-reinforced concrete slabs will

be examined in this report and the feasibility of designing such slabs

to take advantage of two-way flexural action will be discussed.
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1.1 Current Practice

Although steel deck floor systems generally -result in a
thicker "floor sandwich'" than flat plate concrete floor systems,
they are usually much easier to install, and, in particular, they
provide additional flexibility for the installation of under-floor
utility systems. Consequently, steel-deck-reinforced concrete floor
systems can often be economically utilized in-commerical facilities,
office buildings, or hospitals. However, they are less economical
for residential facilities such as apartment buildings, hotels, or
dormitories which have fixed interior partitions and do not depend
upon the floor system for installation of utility lines. The
overall cost of high-rise buildings is particularly sensitive to the
overall thickness of the '"floor sandwich' and facilities which do
not require mechanized or electrified floor systems can often be
more economically constructed utilizing precast concrete floor

panels or flat plate concrete slabs.

Steel decking is ofter utilized strictly as stay-in-place
forming material and alternate reinforcing is provided for the
concrete slab. Steel-deck reinforced concrete floor slabs, however,
are composite structural systems which achieve satisfactory composite
action by developing positive interlocking between the steel deck
and the concrete. Steel decks are currently manufactured which
utilize various patterns of embossments to mechanically transfer
horizontal shear and to prevent vertical separation between the deck

and the concrete. The load carrying capacities of such composite
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" ly based upon one-way bending of simple span slabs. However, a

other criteria such as shear-boad failure, allowable deck stresses

sections are normally established through proprietary performance

tests conducted by the various manufacturers, and design is general-

flexural mode of failure is rarely achieved for typical sections

spanning moderate (6-12 ft) lengths, and design is often governed by

during construction, or acceptable deflections during coamstruction or

service loading. Additionally, the thickness of steel deck floor

systems may also be governed by required fire resistance ratings.

The various steel-deck manufacturers generally recommend maximum
one-way spans in the range of 15 feet for steel-deck-reinforced con-
crete slabs. However, spans of 6-10 feet are more commoaly utilized
so as to obviate the need for expensive temporary shoring and to
minimize the depth of supporting members. As mentioned earlier, a
steel deck floor system, with fts associated beam/joist framing system
will generally result in a relatively thicker "floor sandwich' than a
concrete flat plate or pre-cast floor system. However, in commercial
facilities requiring extensive underfloor utility systems and mechanized
or electrified floors, cellular steel deck, in particular, can provide an B
alternative, economically feasible floor system when constructed com-

positely with the coacrete slab.




1.2 Curreant Research

Extensive research on steel-deck-reinforced concrete slabs
.subjected to one-way bending has been conducted at Iowa State Univer-

(2,3,4,5)  7egt results have

sity by Ekberg, Schuster, and Porter.
indicated that the shear-bond failure mode is predominant over the
flexural failure mode, particularly in shorter spans; and, it has
therefore been recommended that ;;ch a failure mode should be a

primary design consideration. Shear-bond failure was classified as

a brittle type of failure characterized by the formation of an approx-
imately diagonal crack (resulting from excessive principal tension
stresses) which resulted in end slip and a loss of bond between the
steel deck and the concrete. It was observed that shear-bond capacity
increased with an increase in depth, a decrease in shear span, or an
increase in the compressive strength of concrete. An ultimate streangth
design procedure, which incorporates a specified testing program to

establish shear-bond capacity, was proposed for steel-deck reinforced

concrete slabs subjected to one-way bending.

Limited research has also been conducted by Porter and Ekberg(6)

on the behavior of steel-deck-reinforced concrete slabs subjected to
two-way bending. Five simply supported slabs (12 ft x 16 ft) with
varying section properties and with ribs spanning 12 feet were sub-

jected to four concentrated loads near the center span region, and

failure mode, cracking pattern and end reactions were observed. All

five slabs failed ultimately by a shear-bond type of failure, character-

ized by horizontal end slippage accompanied by the development of




diagonal cracks. End slippage was similar to that experienced in

one-way slab tests, however no end slip was observed along the edges

transverse to the span of the steel deck ribs.

Although none of the five slabs failed by extensive yielding of
the steel deck, some limited yielding of the steel deck did occur in
the central regions near the concentrated load points. Measured end
reactions indicated that about 78% of the total applied load during the
initial load applications was transmitted in the strong direction.
However, near ultimate load, one-way bending was predominate and 977%
of the total force was carried in the strong direction. Maximum edge
reactions in the weak direction usually occurred when the live load

was 50% of the ultimate load or at approximately the working load level.

(6)

Porter recommended that analysis of steel-deck-reinforced
concrete slabs subjected to two-way bending consider only the section
above the deck corrugations as effective for transverse flexural action.
Moreover, he suggested that only supplementary steel in the transverse
direction be considered for computing flexural capacity and that aany
contribution from the steel deck should be neglected. Porter observed
that a slab which had 6x12 DOxD4 WWF placed directly on top of the
steel decking had a higher ultimate load than slabs without such rein-
forcement. It is quite possible that supplementary transverse rein-
forcement increases both shear bond and transverse flexural capacity
and thus increases the overal 1 ultimate capacity of a two-way steel-

deck-reinforced concrete slab. Porter's results are discussed further

in Art. 4.4.
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1.3 Purpose and Scope

The desired failure mode of any reinforced concrete structural
system is a flexural failure of an under-reinforced cross section.
Sfcel-dcck-re;nforced concrete slab sections commonly utilized in
building construction will predominantly experience shear bond failure
or excessive deflections prior to reaching their ultimate flexural
capacity. Consequently, such sections actually fail prematurely, thus
lowering allowable loadings or reducing allowable span lengths. If all
factors which precipitate failure prior to the achievement of ultimate
flexural capacity could be controlled and a flexural failure realized,
steel decking could be more efficiently utilized as reinforcement for
concrete floor slabs. Moreover, the relative economic benefits of
steel-deck-reinforced concrete floor slabs could be significantly

improved if such slabs were designed as two-way flexural systems.

An elastically orthotropic finite element model with constant
thickness will be developed to facilitate the analysis of structurally
orthotropic steel-deck-reinforced concrete slabs. The elastically
orthotropic model will be compared with theoretical results, with a
more refined structurally orthotropic finite element model, and with
one-way and two-way, test results as compiled by Ekberg, Schuster, and
Porter.(z’s) Once validated, the finite element model will be utilized
to conduct a limited parametric study in which the relative effects
of aspect ratio, rib span direction, and edge support condition will be

examined. The general feasibility of designing steel-deck-reinforced

concrete slabs as two-way flexural systems will be discussed;

i
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however, it is recognized that much more intensive analytical studies
as well as extensive laboratory tests are necessary to confirm the
findings of this prclininarf research. In effect, this report serves
as a '"ground level" feasibility study on the two-way flexural behavior

of steel-deck-reinforced concrete slabs.

1.4 Assumptions

The limited scope of this investigation is unavoidably con-
strained by several basic assumptions. Such assumptions will
necessitate careful interpretation of the findings of this study,
but will not invalidate their basic significance. In general, all
analyses have been performed on the basis of linear elastic behavior
of an uncracked cross section. More specifically it has been
assumed that:

a. Aditional transverse and longitudinal reinforcement will be
added to the cross section as required to maintain the same
relative uncracked stiffnesses subsequent to cracking as well
as to satisfactorily resist two-way bending moments.

b. Shear bond failure can be prevented prior to flexural failure
by modifying the steel deck profile (embossments), by adding
specialized shear connectors, by applying special adhesive
coatings, or by some other acceptable technique.

c. Excessive deflections and/or construction loadings can be
economically coantrolled by improved shoring techniques, by
two-way flexural action of the steel deck alone, by pre-cast

construction or by other suitable techniques.

- S N tvp—
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2. FINITE ELEMENT MODEL DEVELOPMENT

The SAP IV(}) finite element computer program provides
several -alternative methods for modeling a steel-deck-reinforced

concrete slab subjected to distributed or concentrated loads perpen-

dicular to the plane in which it lies. The plate bending element provides

the most convenient and efficient method for analyzing isotropic
plate bending problems and can readily be adapted to elastically
orthotropic problems by properly populating the plane stress material

elasticity matrix given as follows:

T Cxx ny xs €xx
[ - C (o} 2.1
yy Xy Yy ys yy
Txs cxs ys ny ny
E
where, cxx - ny = i:;;
vE
ny - T::F
2.2
Cop “ 0y = 0
E
Cey * 201+

for the case of isotropic plate bending.

In isotropic or elastically orthotropic plate bending problems,
the finite element is given a specified uniform thickness and appro-
priate rigidity factors are computed utilizing the specified elasticity
constants. However, a structurally orthotropic steel-deck reinforced

concrete slab, with typical cross section as shown in Fig. l(a)(7),

10




can not be modeled as conveniently using plate bending elements. On
the other hand, however, alternative models utilizing more sophisti-
cated elements become maore complex as well as exponentially more
expensive. Consequently, elasticity parameters were developed which
_permitted the modeling of a structurally orthotropic plate as an
elastically orthotropic plate with an equivalent uniform thickness,
and analytical results were compared with results gere rated by a more

sophisticated finite element model as well as with theoretical and

test results.

2.1 Orthotropic Plate Theory

For engineering appliéatiens, an orthotropic plate is defined(s)
as a plate having different bending stiffnesses (D = EI) in two ortho-
gonal directions X and Y in the plane of the plate. The variation in
bending stiffness may result either from different moduli of elasti-
city Ex and Ey in two orthogonal directions, as in the case of natural-
ly or elastically orthotropic plates, or from different moments of
inertia Ix and Iy per unit width, as in the case of technically or

structurally orthotropic plates.

Huber's general differential equation for the bending of an

orthotropic plate is expressed as followl:(s)
*w d*w fw
st;;-+ ZHa?-a?--l- D%;r q(x,y) 2.3
where 2ZH=Dv +Dv +40D 2.4
Xy yx xy

The quantities Dx and Dy are termed the flexural rigidities of the

plate while D:§ represents the torsional rigidity of the plate. The
11
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value of 2H from Eq. 2.4 is termed the effective torsional rigidity

of the orthotropic plate.

In general terms, Eq. 2.3 relates the plate's deflection

A A S NGRS o A s S

surface w(x,y) to a given load distribution q(x,y). To apply the
solution of Eq. 2.3 to engineering problems, it is necessary to
cvaluatclpropcr values for the constants Dx’ Dy, ny, Vs and vy.
For an elastically orthotropic slab of uniform thickness (h), the
constants are defined as follows:
E_b°
D, = I

x ( ~vxvy)

E_b°

P, S 2.5
y 12(1-vxvy)

D

6. W
ny R

Exy = Eyvx (from Betti's reciprocal theorem)

Y

The values of the moduli of elasticity Ex and Ey and the corresponding
Poisson's constants Vg and vy are usually known for a given elastically
orthotropic material. However, the value of the shear modulus ny,which
is encountered in the expression for the torsional rigidity ny, and which

consequently also influences the effective torsional rigidity H, is

usually unknown.

An approximate value of the effective torsional rigidity can

be theoretically expressed by the equation,(s)

n-n;b; 2.6

12




if an analogy is drawn with the expression for the twisting moment
of an isotropic plate utilizing D = /b;ﬁy and v = [VxTy as repre-
sentive ;middle values" of the bend;ng rigidity and Poisson's con-
stant., This approximation is valid only if the orthotrqpic plate
satisfies the following conditions:

a. uniform thickness

b. purely elastic deformations

c. relatively small deformationms.
Because such assumptions are not actually satisfied in reality,
particularly for a structurally orthotropic plate, it has been
suggested(s) that the value of H should be reduced by a coefficient

of torsionmal rigidity vy, so that

H=Y /DD 2.7
Xy
where ¥ < 1 and normally varies between 0.3 and 0.5.

A proper theoretical expression for ny is particularly
important when modeling a structurally orthotropic plate as an
equivalent elastically orthotropic plate for a finite element analysis.
Szilard(g) suggests that ny for an orthotropic material can be

approximately expressed as follows:

/EE

x
ny i 2(l+7vxv ) 28

y

or ifE ~E ~E
x y

E

ny ~ 5?T;73'3'7 2.9

Xy

13
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In discussing structurally orthotropic.steel bridge deck

(8)

systems, Troitsky suggests that ny be expressed as follows:

E E
G - ‘iv
xy Ex + (L+2vx)Ey

2.10

but recommends that a direct test be conducted to obtain a ‘more re-

liable value for G .
xy

The expressions for bending rigidity given in Eq. 2.5 must also
be modified for structually orthotropic plates. For a slab reinforced
on one side by a set of equidistant ribs, Timoshenko(lo) suggests that

bending rigidities can be approximated by the following expressions:

E a_h®
B 2(a -t ©) 2.1
D -a—I- 2.12
ol

if the effect of transverse contraction is neglected (i.e., vx = vy =

v = 0). Dx represents the effective weak direction rigidity transverse
to the ribs, while Dy represents the strong direction rigidity parallel
to the ribs. I is the moment of inertia of a T-section of width as

and ¢ = 3. The constants a., h, H, and t are defined in Fig. 2 for

H L
a typical steel-deck-reinforced concrete slab cross section.

It is obvious from the foregoing discussion that orthotropic
plate bending theory provides, at best, only an approximate solution
for structurally orthotropic slabs with unsymmetrical ribs. Neverthe-
less, orthotropic plate bending theory will be applied in the develop-

ment of elasticity parameters for a finite element model in an attempt to

14
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provide a comparably accurate finite element solution for a structurally

sk

orthotropic steel-deck-reinforced concrete slab,

2.2 Alternative Models

The finite element model was developed by considering the typical
cross section shown in Fig. 2 spanning a 16 ft x 16 ft panel with four
simply supported edges. A representative section of the actual struc-
turally orthotropic slab is illustrated in Fig. 3(a). The models shown
in Figs. 3(b) and (c) would provide lower and upper bound solutions for
two-way flexure of the slab. The uniform thickness of such a model
would facilitate finite element discretization, however, the effects
of the steel plate must necessarily be considered by utilizing an
equivalent uniform model thickness, based upon the cross section's
transformed moment of inertia. The actual results obtained from such
an analysis would be relatively insignificant despite the fact that

they would bound the correct solution.

Figure 4 illustrates a rather sophisticated finite element
discretization utilizing 8-node bricks to model the concrete, and
plate bending elements to model the steel deck. While such a model
should provide excellent results, its complexity and expense degrade
its usefulness for general application. A comparison between this

model and the elastically orthotropic model is presented in Art. 4.2.

Modeling the structurally orthotropic slab as an isotropic plate

supported by beams representing the ribs would provide still




another alternative. However, correctly modeling torsional rigidity

witn such a discretization could prove quite difficult. 1In the final
analysis, the most efficient and effective model is one in which plate
bending elements alone are utilized with appropriately modified elasticity
constants and a specified equivalent unifom.thickness . Such amodel simulates
the behavior of & structurally orthotropic slab by that of an equivalent

elastically orthotropic slab of uniform thickness.

2.3 Model Parameters

The modeling of a structurally orthotropic slab by an elas-
tically orthotropic slab of uniform thickness was accomplished as
follows:

a. The uncracked moment of inertia (Iy) per unit width was com-

puted in the strong direction utilizing the transformed area

concept to incorporate the effect of the steel deck
b. The uncracked moment of ipertia (Ix) per unit width was com-
puted in the weak direction neglecting any contribution from

the steel deck or from the ribs

¢. An effective moment of inertia (Ixe) per unit width was defined
for the weak direction; Ixe coasiders the effect of the ribs
by utilizing Tinoshanko's(lo) expression for the weak direction

bending rigidity (Eq. 2.1l1):

a_h®

K Ixo S 12(:1-:- t) 2.13

d. The modulus of elasticity of concrete, Ec, was modified by the

following expressions to simulate orthotropic elasticity:

16
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I
E = -Iie (E,) 2.14
* :

I

e

Ey I (Ec) 2.15
xe

e. Poisson's ratio for concrete (vc) was modified as follows:

xe
N (vc) 2.16

y

Ix
Vo= (y ) 2.17
y ‘ Ixe c

so as to maintain the equality vE = yE = y E
Xy y x cc

f. Orthotropic elasticity constants were computed as follows

utilizing E , E, v _and v _:
> SN R y

C = x 2.18
x=x l1-wwv
x'y
E
s 2.19
¥y l1-vwv
X
V\)\JEE
By R 2.20
xy Vs
E E
G £ 2.3

-
xy Ex + (142 \ax)Ey
g. An equivalent uniform slab thickness was computed as follows:

t =«3/17 1 2.21

17




{ In general terms, this modeling technique simulates structural
orthotropy by proportionately increasing the modulus of elasticity of

concrete to reflect effective moments of inertia in the strong and weak

direction, while incorporating an equivalent uniform thickness. This
technique does, however, possess one inconsistency in that the simulated
bending rigidity in the weak direction is relatively higher than would
be theoretically deduced. This results from the fact that both the
moment of inertia and the modulus of elasticity in the weak direction
are increased resulting in a relatively higher increase in rigidity

in the model's weak direction as compared to its strong direction. The

significance of this inconsistency is discussed later.

Troitsky's value for ny (Eq. 2.10) was selected because of
its general applicability to structurally orthotropic slabs and
because of the good correlation which it produced with both theoreti-

cal solutions and test results.

Uncracked section properties and material properties for the
typical section utilized in the model's development are listed in Table
1. The computation of model parameters is included in Appendix A, and

the final elastically orthotropic slab model is illustrated in Fig. 3(d).

18
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3. ORTHOTROPIC PLATE ANALYSIS

For the case of a uniformly loaded, simply supported rectangular
orthotropic plate, Eq. 2.3 can be solved utilizing the Navier
methcd.(m) This solution expresses the plate's deflection surface

in terms of a double trigonometric series:

sin 5’:‘—- sin oy

A9 qo b
e ) T B n)
m=1,3,5... n=1,3,5... & x o9 5 y

Tabularized solutions are available for Eq. 3.1 for the particular case
of H -./5;5;. Although such a case is normally representative of
elastically orthotropic plates, such as two-wa& reinforced concrete
slabs, it will nevertheless be applied to a structurally orthotropic
steel-deck-reinforced concrete slab utilizing the elasticity constants

computed for the finite element modcl parameters.

3.1 Governing Equations

For the case in which H = /5x5y, the deflection and the
bending moments at the center of an orthotropic plate can be expressed
by the following equations:

@ q, b*

D
b 4

3.2

W=

19
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g /D q &
M =(g, +p, ==X [E)2 3.4
vy ( 1 2 cxx Dy) ]
where «, 91,<and Bz are numerical coefficients given in Table 2 and

D $ )
¢-§‘,/51 3.5
x

If the effect of transverse coatraction is neglected ny

becomes equal to zero and Eqs. 2.1l and 2.12 can be directly applied
to calculate Dx and D . However, transverse contraction is considered

by the finite element analysis and consequently a more appropriate

comparison should be achieved by modifying Dx and Dy as follows:

E a1h°
T TN NAD G e i
D n-——,E—L—- 3.7
y * T~

A sample computation of theorrtical deflections and moments
is included in Appendix B for a simply supported, 16 ft square,
orthotropic plate subjected to a uniform load of .00l ksi (144 psf).
The typical cross section shown in Fig. 2 and the total load o .001 ksi,
which i{s in thenormal working load range, were used for all computa-

tions.
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3.2 Summary of Results

The results of theoretical deflection and moment computations
for various aspect ratios are listed in Table 3. The comparison of
these results wich values predicted by the finite element model is
presented later; however, it 1s important to note that the theoretical
re;ulta are in themselves approximate in nature. Although they are
assumed to be the '"exact'" values for model validation, the significance
of minor discrepancies must be evaluated with consideration given to

the possibility of error in the theoretical values.




4. MODEL VALIDATION

Several approaches were taken to confirm the validity of
the finite element model as well as to ascertain the degree of
discretization necessary to achieve results with acceptable accuracy.
Model validation included a convergence study, comparison with an
alternate, more sophisticated model, comparison with theoretical
results, and comparison with test results. In all instances the

model was observed to have an acceptable degree of accuracy.

4.1 Convergence Study

Figure 5 illustrates the typical slab discretization utilized
during development of the model parameters. Quarter symmetry was
utilized and the degrees of freedom at the boundaries were set
equivalent to those of simply supported edges. The discretization
in Fig. 5 includes 81 nodal points and 64-12 inch square, elastically
orthotropic plate bending elements of uniform thickness. In addition
to the discretization shown in Fig. 5, a coarser mesh (16 elements -
24 inches square) and a finer mesh (256 elements - 6 inches square)

were utilized in the coavergence study.

Figure 6 shows excellent convergence towards the ''exact"
center deflection as computed in Appendix B. As evidenced in
Fig. 6, the finite element model is "stiffer" than the theoretical
slab and the computed deflections are actually lower bound values,
This 1s as would be expected since SAP IV type VI plate bending
(L)

elements are conformable elements.
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Similarly, Fig. 7 shows very good convergence towards the
"exact" strong axis moment. Convergence is also obtained in the weak
direction; however, it is quite apparent that the "exact" value for
the weak axis moment is strongly influenced by the degree of transverse

contraction assumed in the theoretical analysis.

For the purposes of this report, it was determined that the
accuracy of the mesh illustrated in Fig. 5 was adequate, and that the
utilization of the finer mesh (at over 3 times the cost) was not
necessary. All subsequent studies are conducted utilizing 12 inch

squire elements.

4.2 Comparison with Alternate Model

A comparison was made between a 12 inch square elastically
orthotropic plate bending element and the structurally orthotropic
finite element model shown in Fig. 4 primarily to determine the

accuracy of the assumed expression for ny (Eq. 2.10).

The structurally orthotropic model was composed of 8-node

bricks, which represented the coacrete, and isotropic plate bending

elements, which represented the steel deck. The elastically ortho-

tropic model was defined by the elasticity parameters and equivalent

thickness computed in Appendix A. A 12-inch squaremodule of each type was

simply supported at three of its corners while a unit load was

; applied at the fourth corner. The elastically orthotropic element had

a corner deflection of 0.0024166 inches while the structurally ortho-

tropic model had a corresponding deflection of 0.0024145 inches. The
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resulting error is less than 0.1% and is entirely acceptable. This com-
parison supports the validity of the assumed expressioa for ny as

well as the overall adequacy of the elastically orthotropic model.

The cost associated with the more sophisticated 8-node brick
model was approximately ten times that of the elastically orthotropic
plate bending model. This observation further supports the selection

of the elastically orthotropic plate bending model.

4.3 Comparison with Theoretical Results

The theoretical analysis of simply supported, uniformly
loaded, rectangular orthotropic plates is discussed in Art. 3 and
sample computations are included in Appendix B. Theoretical deflec-
tions and moments were similarly calculated for various aspects ratios
and are summarized in Table 3 along with corresponding values
computed by a SAP IV finite element analysis utilizing the elastical-
ly orthotropic model previously discussed. (The parametric study,
which considers the relative effects of aspect ratio, is discussed in detail
in Art. S). The tabulated values show excelleant agreement for de-
flections and stroag axis moments; however the correlation is less
than satisfactory for weak axis moments. Moreover, it is apparent
that the correlation becomes increasingly worse as the weak direction
span increases. However, it is afno observed that at some aspect ratio

(between 1.33 and 1.00) an exact correlation is achieved.

If an alternate theoretical analysis is made which neglects the

effect of transverse contractions as related to weak direction moments
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(L.e., v = 0), the correlation between the finite element and the theore-
tical analysis greatly improves, particularly at lgrgcr aspect ratios.

This observation is noted in Table 3 and seems to indicate that the

relative effect of transverse contraction varies with aspect ratio and

has a much more significant effect on the weak direction moments than

on either the center deflections or the strong direction bending
moments. The cunsistency of all other results indicates that the

weak direction moments computed by the finite element analysis are

"more correct" than the approximate theoretical values. This observation
is based upon the assumption that the relative significance of transverse
contraction will be appropriately considered by the numerical finite element

solution for a particular aspect ratio. The theoretical solution, on the 3

other hand, is directly tied to an assumed degree of transverse contraction,

and does not necessarily apply "exactly" to a structurally orthotropic plate.

4.4 Comparison with Test Results

Although this investigation was primarily analytical in nature
an effort was made to correlate results predicted by the finite ele-
ment model with available test results for steel-deck-reinforced

concrete slabs.

Figure 8 i{llustrates actual results obtained by Schuster and Ekbcrg(z)
during one of their numerous tests on steel-deck-reinforced concrete
slabs subjected to one-way bending. The test specimen was modelad
utilizing the parameters previously discussed and the analytical

results were also plotted in Fig. 8. An additional analysis was
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conducted utilizing the theoretical cracked moment of inertia for I ;
computing Ix based upon the cracked slab thickness; and letting
I‘. - Ix‘ The plotted results indicate excellent correlation in the

uncracked region and emphasize the effect of cracking and subsequent

shear bond failure on the load carrying capacity of the slab.

Figure 9 compares the predicated and actual behavior of one

(6)

of Porter and Ekberg's steel-deck-reinforced slabs subjectéd to
two-way bending. The particular slab shown had no supplementary rein-
forcement and was simply supported on all four edges. The predicted
and actual load vs. deflection curves show excellent agreement in the
uncracked region of the fnitial load cycle. However, the effects of
cracking are once again apparent in the final load cycle. Predicted

deflections are actually lower bound values in the uncracked region

as was indicated by the convergence study discussed earlier.
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5. PARAMETRIC STUDY

VA limited parametric study was conducted utilizing the pre-
viously discussed finite element model to examine the effects of
various aspect ratios on the two-way flexural behavior of steel-deck-
reinforced concréte slabs. The relative span lengths for the strong
versus the weak direction of the orthotropic slab were of particular
interest. Steel-deck-reinforced concrete slabs, when constructed as
one-way systems, routinely have their ribs spaaning the shorter
direction, and current research(s) into two-way behavior has
generally followed this practice. In addition to aspect ratio,

simply supported and fixed edge boundary conditions were examined.

5.1 Purpose and Scope

The relative distribution of bending moments and stresses in
the two orthogonal directions correspoanding to the strong and weak
axes of a steel-deck-reinforced concrete slab is a function of aspect

ratio, edge boundary conditions and the section and material properties

of the particular slab in question. A finite element parametric

study was conducted to quantify the effects of aspect ratio as well

as the effect of simply supported versus fixed edge boundary conditioams.

A typical steel-deck reinforced concrete slab section (Fig. 2)
was selected and a finite element analysis was performed for each of
the slab aspect ratios shown in Fig. 10. The relative span lengths

were chosen so as to represent typical spans utilized in one-way steel

deck-reinforced concrete slab coastruction as well as to represent
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typical spans for alternate floor systems constructed of reinforced

or precast concrete.

It is hypothesized that the optimum aspect ratio for a steel-
deck-reinforced concrete slab is one in which the maximum concrete
compressive stresses are equal in the main orthogonal directions of
the slab. An expression for optimum alpéct ratio is developed, based
upoa uncracked, elastic behavior, and is compared with the results of

the parametric study.

5.2 Results

Deflection and moment coefficients are compared with slab aspect
ratio in Figs. 11 and 12 respectively. Nondimeasionalized coeffi-
cients for deflections and moments were developed based upon the
corresponding expressions for one-way flexural behavior. In general

terms, the coefficients are defined as follows:

384 A EI _

DEFLECTION COEFFICIENT = Y § LT
where A = center deflection; and
MOMENT COEFFICIENT = = = 5.2

where M and L correspond to the appropriate weak or strong direction
values. As shown in Figs. 1l and 12, the slab ribs span in the "b"
direction (strong direction), and an aspect ratio of zero corresponds
to one-way bending. For aspect ratios less than one the ribs span

in the short direction and coaversely, the ribs span in the long direc-

tion for aspect ratios greater than one.
! 28
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Figure 1l indicates that for a given span "b", a significant
reduction in maximum deflection can be realized by considering the
effects of two-way flexural action, particularly in the case of
simply supported edges. Although such reduction is more pronounced
for the larger aspect ratifos, a 25% reduction in maximum deflections
is predicted for a simply supported slab with a 0.75 aspect ratio.

A 12'x16' slab with ribs spanning 12 feet, as shown in Fig. 10, has
an aspect ratio of 0.75 and is a typical panel used in current designs;
however, the added benefit of two-way flexural action is generally

neglected when computing the deflection of such a slab.

If an isotropic slab were considered, the plots of weak and
strong axis moment coefficients shown in Fig. 12 would intersect at
an aspect ratio of 1.0,and for the case of simple supports the
maximum biaxial compressive stress would be balanced at the ceater.
Assuming that an optimum two-way steel-deck-reinforced concrete slab
design will also attempt to balance the maximum biaxial compressive
stress in the concrete, an expression for the optimum aspect ratio

was derived in Appendix C.and is expressed as follows:

Beee =32 62)

vhere u__ and b oy refer to the moment coefficients for the respective
strong and weak direction moments. A trial and error solution for
(%)opt utilizing values plotted in Fig. 12 is also shown in

Appendix C for the simply supported case. Asimilar solution for fixed

edges would require optimization with respect to either positive or

negative bending moments.
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The optimum aspect ratio for the simply supported case for the
section shown in Fig. 2 was found to be approximately l.l. This value L

indicates that steel-deck-reinforced concrete slabs subjected to two-way

bending respond more efficiently if their aspect ratio is greater than
one; that is if the ribs lpnd in the longer direction. As mentioned
previously, it is current practice to generally design steel-deck-rein-

forced concrete slabs as simple, one-way spans with the ribs spanning

the short direction. The potential advantages of utilizing two-way
P . simple or continuous spans are quite appareant from the comparisons

illustrated in Fig. 12.




6. CONCLUSIONS AND RECOMMENDATIONS

The concept of designing steel-deck-reinforced concrete slabs
as two-way flexural systems is technically feasible and suggests

strong potential for significant economic advantages. 'Although this

conclusion is drawn based upon a simplistic uncracked, linear elastic
analysis, it is reasonable to assume that the same behavioral trends
will éersist in the cracked region and that the two-way steel-deck-
reinforced concrete slab will performed consistently better than its
one-way counterpart. Although Porter(s) observed predominately one-
way action of two-way steel-deck-reinforced concrete slabs at ultimate
load, significant two-way action was observed at working load levels
despite cracking of the slab cross section. Such behavior suggests
the possibility of developing working stress design procedures
utilizing linear elastic analysis of the cracked cross section at

the working load level. Such analysis techniques are curreantly i
utilized in the lesign of one-way steel-deck-reinforced concrete slab
systems. However, two-way design of such slab systems will necessarily

require the utilization of supplementary reinforcement transverse and

(6)

possibly parallel to the steel deck ribs. As Porter observed, such
reinforcement, placed directly on the steel deck resulted in increased
ultimate capacity when the slab was subjected to two-way bending. Supple-
mentary reinforcemeat is required not only to resist bending moments,

but also to maintain the same relative stiffness between the weak and

strong axes of the cracked and uncracked cross section of the steel- !

deck-reinforced concrete slab.




As discussed in the parametric study, a two-vay steel-deck rein-
forced slab will perform more efficiently if the ribs span in the
longer direction. This observation and the theoretical prediction
for optimum aspect ratio must necessarily be confirmed by actual

experimentation.

The elastically orthotropic finite element model was found to
perform both effectively and efficiently with a relatively coarse
discretization. However, the model was particularly sensitive to
the expression utilized for the orthotropic shear modulus ny and
actual testing is required to further validate all model parameters.
As mentioned in Art. 2.3, the model includes an "artificially high"
bending rigidity in the weak direction; however, correlation with
theoretical and experimental results supports the validity of the
parameters which contribute to the model's weak direction bending

ridigidy.

The difficulties associated with premature shear bond failure
as well as the structural adequacy of the steel-decking during the
construction phase must necessarily be considered in any refined
development of the concept of designing steel-deck-reinforced concrete
slabs as two-way flexural systems. The relative shear-bond and
flexural behavior of interior versus exterior floor panels in a

general two-way framing scheme would be of particular interest.

Although the full benefits of two-way flexural behavior may

be significantly limited by various physical or practical constraints,




the relative advantages of two-way versus one-way design of steel-

deck-reinforced concrete slabs are quite apparent. Moreover, the
increased efficicncy of a two-way steel-deck-reinforced concrete
siab, combined with the other numerous advantugeslinherent in this
construction system, will significantly enhance its acceptability for

utilization in multiunit residential facilities.

A considerable amoﬁnt of additional research is required before
a generally acceptable two-way design procedure could be promulgated.
The analytical techniques developed in this report must be validated
against specific test results and refined as necessary. A full scale
testing program, which parallels and expands upon the parametric
study included in this report, is also imperative. In particular, the

following parameters should be examined:

a. Concrete weight and strength

b. Steel deck cross section and embossment pattern
c. Slab and deck thickness

d. Boundary conditioas

e. Aspect ratio, span length, and rib direction

f. Loading

g. Supplementary reinforcement

The required amount of supplementary reinforcement will significantly
effect both the technical and economic feasibility of fully developing
two-way flexural action, and should receive careful attention during

the testing phase. Additionally, trial designs should be prepared for

various sections and general economic comparisons should be made with
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alternate floor systems of equivalent capacity to ascertain both the
physical and economical efficiency of a steel-deck-reinforcement concrete

slab.

Composite structural systems, in general, offer increased load
carrying efficiency by utilizing each component materiai in its most
effective manner and to its fullest potential. The steel-deck-rein-
forced concrete slab is currently under-utilized as a structural sys-
tem; however, a much greater efficiency could be achieved by fully
investigating and eventually taking advantage of two-way flexural

behavior.
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7. NOMENCIATURE

plane stress elasticity constants

flexural rigidity constants

torsional rigidity constant

modulus of elasticity (concrete; steel)

orthotropic modulus of elasticity

orthotropic shear modulus

effective torsional rigidity constant; total steel-deck-
reinforced slab depth |

transformed uncracked moment of inertia

transformed uncracked strong axis moment of intertia

per unit width

 uncracked weak axis moment of inertia per unit width of

slab of depth h

effective uncracked weak axis moment of inertia per uait
width

span length

moment per unit width

center moments per unit width for simply supported edges
center moments per unit width for fixed edges

edge moments per unit width for fixed edges
elastic section modulus
simple support

weak direction span

modular width of steel-deck-reinforced concrete slab section
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b/a

£ .8
cx’"cy

u.u,x.uyy

VyV _,V

VsV

strong direction span

aspect ratio

concrete stress

ultimate concrete strength

yield stress of steel

total depth of concrete above steel deck ribs
uniform load distribution (plate bending equations)
rib thickness

effective uniform thickness of the elastically ortho-
tropic slab model

thickness of the steel deck

deflection surface; uniform load per unit area
weight of concrete

global coordinate axes

center deflection

finite summation

ratio of h/H; deflection coefficient for orthotropic
plate bending

moment coefficients for orthotropic plate bending
coefficient of torsional rigidity

shear strain

deflection coefficient

linear strain

moment coefficients

Poisson's ratio (concrete; steel)

orthotropic Poisson ratios
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cn.ayy normal stress

O shear stress (equals 1'xy for an orthotropic plate with

principal axes of orthotropy coinciding with the x and y

axes of the local coocrdinate system)
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Table 1 Section and Material Properties

Property Value
I 278.7 in*
xy 23.2 in*/in
I 3.57 in*/in
X
I 4.63 in*/in
Xxe
sy 7.864 in®/in
S, 2.427 10*/in
£ 3000 psi
v, 150 pef
E, 3320 ksi
) 0.2
c
£ 36 ksi
y
E, 29,500 ksi
v 0.3
s
t 0.0359 in (20 gage)
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Table 2 Constants for a Simply Suggorted'Roctangular
Orthotropic Plate with H .my

(10)

1.0 0.00407 0.0368 0.0368
1.1 0.00488 0.0359 0.0477
1.2 0.00565 0.0344 0.0524
1.3 0.00639 0.0324 0.0597
1.4 0.00709 0.0303 0.0665
1.5 0.00772 0.0280 0.0728
1.6 0.00831 0.0257 0.0785
17 0.00884 0.0235 0.0837
1.8 0.00932 0.0214 0.0884
1.9 0.00974 0.0191 0.0929
2.0 0.01013 0.0174 0.0964
2.5 0.01150 0.0099 0.1100
3.0 0.01223 0.0055 0.1172
4.0 0.01282 0.0015 0.1230
5.0 0.01297 0.0004 0.1245
- 0.01302 0.0000 0.1250
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(d) Slab Model - Elastically Orthotropic

Fig. 3 Model Development
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43 - Nodal Points
|12 - 8-Node Bricks (concrete)

I2 - Plate Bending Elements (steel deck)

Fig. 4 Structnrally Orthotropic Finite Element Model
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Load vs. Centerline Deflection
Schuster & Ekberg Beam 8I16-70-19-19SG
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Fig. 8 : cé-parilon of Model and Test Ruulta (One-way Bending)
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Load vs. Center Deflection

Porter & Ekberg Two-Way Slab No.3
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Fig. 9 Comparison of Model and Test Results (Two-way Bending)
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52




384 AEI

. Y
Q | Q |
N N
N N
s 1/ b N b
b ud b i
N N
AARRRAY ———
4 3
A = Center Deflection
§ Deflection Coeff. = giA—E;dB
wb¢
3
Simple Supports
- — « Fixed Edges
@
2
2 e
| e e - -
e -
E ~
oSk ek
. ~
. \\ -~
i ] | | | A
(o) 0.5 1.0 1.9 20 2.5

ASPECT RATIO (b/a)

—~————a sre e —————— it o ——— e ——— i

~ Fig. 11 Deflection Coefficient vs. Aspect Ratio

53




vi

a a :
MSS MCFI
" P
o’l3 —MCS SS ‘ \\\t\\\ _ﬁo“s
L I - 3 R
0.12 31 = b | —f——nCE —for
ol 3 g —oui
XX
010l Mxx & Myy Are @ Moments o
M
Moment Coeff. 2 ——= =
0.09 sl 0.09
M
0.08 008
xfos 0.07 0.07 >l
> 3 i-I 3
006 0.06
0.05 005
0.04 0.04
0.03 0.03
0.02 0.02
0.01 Q.01
o} 0S5 10 .5 2.0

ASPECT RATIO (b/a)

Fig. 12 Moment Coefficients vs. Aspect Ratio
(Simple Support & Fixed Edges)

54




o 4 g

M AR 4 3 AR bt b3 1.

APPENDICES

10.

55




A: COMP ION OF MODEL PARAMETERS

: I, = 3.57 in*/in

23.2 in*/1in

]
[}

33(§c)1‘5 /T = 3320 kst

v = 0,2 (assumed)

s 12(3.5)° . ?
. 12(al-t-apt) 73,5\ = 4.63 in"/in |

12(12-3( 22} (3))

E --I-“-‘i(z y = 2:83 3320) = 4306 kst
e 3.57 s

1
E, =L E) = 23.2 3320) = 16636 ksi

"B g e
5 -' Ixe (v) =283 47y = 0.0399
e .
. -_15.(\,).2:2.7.(02).-01542
y I ¢! T 5.63 .

Xxe

E, 4306

Cx * T, = 15.0399(,1542) ~ 4333 ksi

BT N |
yy = T, " T-.0399(. 1542)

& AT EE, o (013477 (0.0399) (16636) (4306
xy l-v_v 1-,0399(.1542)

= 16739 ksi

Xy

668 ksi
ny' 8

S——
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< . R 4306(16636

4306 + ((1+2(.0399)) (16636)

- et
xy E‘ + (1+2vx) Ey
G‘y = 3217 ksi

t, - ‘./T!‘Ix. = 3/17(4.63) = 3.816 in.
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i § APPENDIX B: COMPUTATION OF THEORETICAL DEFLECTIONS AND MOMENTS

a=bw= 16 ft = 192 in. (simply supported edges)
: , g - C.001 ksi (144 psf)

? Co ™ 4333 kst E=E_ = 3320 ksi
i C . = 16739 kst v, = 0.0399
Cyy = 668 kst v, = 0.1542

E o, 3320 (12) (3.5)

- 2 | - <3
x  (1-v;7)(12)(a)-t+a"t) (1-0.1542’)(12)(12-34-(3—52) )

15761 in-kip

EI 3320 (278.7
Tl 3Yta Y - o
Dy - (I'Vx )(.1) (1-.03997) (12) 77230 in-kip

] ‘.34/_1.£24 7230
b Dx 192 ~415761

¢ = 1,488

o
[}

From Table 1: a = 0.007644

31 = 0.028276

Bz = 0.072044

a q b* "
e3> _0.007644 (,001) (192
Dy 77230

w = 0.1345 ia.

c
M= (8, + ® cfi*/—%)‘o .
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(o 072044 + 0. 028276(12339 1;§2°) .001 (192)

Mix,f 2W748 1nfkip/in

c D o
B /.&) ol
; Rl D ¢
=< 'y
668 \ [15761\ .001 (192)*
(o 028276 + 0.072044(335%) [53722) -2

M__ = 0.825 in-kip/in
b

Note: If transverse contractions are neglected (vx = vy = ny = 0),
deflections and moments are similarly computed as follows:
w= 0.1361 in

N 2.684 in-kip/in

M__ = 0.688 in-kip/in
7Y
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APPENDIX C: OPTIMUM ASPECT RATIO (see Fig. 12)

For uncracked, linear elastic behavior:

M M
L -sﬂ £ = ?"-"- (1)
x o d y
Let £ = £ . therefore
cx ey
M. M
—_ o XX (2)
S S
x y
From Eq. 5.2:
M=, wl? (3
TR X TR B
Therefore -lé;- - —""-S—- (%)
x Y
After simplification:
b Sy (4
a/opt Sx b

A trial and error soiution for the optimum aspect ratio for a
rectangular, simply supported slab with typical section as shown in

Fig. 2 is included hereafter:

]
b . [1.864 Ezz)
a 427
X

%%
Xy . (b2 (5)
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P e =
Vit

: By Mx
Aspect Ratio Computed from Computed from
(b/a) Eq. (5) Fig. 12
1.00 0.309 0.262
2.00 1.235 4.114
1.50 0.694 1.310
1.33 0.594 0.825
1.25 0.482 0.660
1.10 0.373 0.377

(%)opc Wikl
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