AD=A061 067 NAVAL POSTGRADUATE SCHOOL MONTEREY CALIF F/76 12/1
. ANALYTICAL HAZARD REPRESENTATIONS FOR USE IN RELIABILITY: MORTA==ETC(U)
SEP 78 M ACAR .

. NL

UNCLASSIFIED

END

DATE
FILMED

=-79

boc




ADA0 61067

_—

DDG FILE C

@I

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THESIS

ANALYTICAL JAZARD REPRESENTATIONS

FOR {SE IN
[l}ELIABILITY, lORTALITY AND %IMULATION §TUDIES \}
o oY (@) Mactecf €hecis)\
- HAENTRT R

(0] "ﬁﬁétgf;/Ac§: #, = |
(7)o | (1] 8 |

Thesis Advisor: D.P. Gaver

Approved for public release; distribution unlimited.

b

e S

78 10 SY 051




SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

: | INSTRUCTIONS

i REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM |
| N REFSRY NUNSUR [a'. GOVT ACCUSSION »o.1 T RECIPIENT'S CATALOO NUMBER |
' 4. TITLE (and Subtitle) 5. TYPK OF REPORT & PERIOO COVERED

Master's Thesis
September 1978
§. PERFORMING ORC, AKPORT NUMBER

Y. QU'NOWQ) v N NT NUM o)

Mustafa Acar

Analytical Hazard Representations for Use in
Reliability, Mortality and Simulation Studj.?

T PERFORMING ORGANIZATION NAME AND ADORESS W
Naval Postgraduate School /

Monterey, California 93940

11, CONTROLLING QFFICE NAME AND ADDRESS 12. AEPORT DATE

Naval Postgraduate School 5 s.‘: ‘::’:‘:“1:78
Monterey, California 93940 .

) NAME § A 17 T from Centrelling Office) | 18. SECURITY CLASS. (of thie repert)

Naval Postgraduate School Unclassified

Monterey, California 93940 wmm

IT6. DISTRIBUTION STATEMENT (of thia Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the sbatract entered in Block 20, I ditferent frem Repert)

P s
18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse side il necscsary and Identily by bleek number)

i § Reliability, Failure rate, Bath tub hazard, Hazard function, Mortality,
b Nonlinear least-squares, Simulation.

e

i & . 20. ABSTRACT (Continue on reveree olde If necseeary and identify by deck number)

.__-——-jP A variety of simple analytical models for increasing, decreasing and

ath t.u.b"i“c'ypn failure rates are discussed. The purpose of this thesis
is to develop analytical hazard representations for use in reliability
'3 and maintainability studies, and to evaluate them in use for data analysis.
i Verification of the model was accomplished by computer simulation. They
1 were applied to humen mortality and other failure time data.4\

Ay, o

—

FORM
DD (jan 73 1473  coimion oF 1 nov 68 18 oesOLETR

i e e i 1 seCURITY CLARIIFIGATION OF YIS PAGE (When Dote Bntered)

[} | b Y

7R 10 oU ‘

A ——— — T e —




Approved for public release; distribution unlimited.

ANALYTICAL HAZARD REPRESENTATIONS
FOR USE 1IN
RELIABILITY, MORTALITY AND SIMULATION STUDIES

by

Mustafa Acar
Lieutenant, Junior Grade, Turkish Navy

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN OPERATIONS RESEARCH

from the
NAVAL POSTGRADUATE SCHOOL
September 1978

Author: %

Approved by: _.C&z_aﬂ_ﬁém_r
hesis Advisor




ABSTRACT

A variety of simple analytical models for increasing,
decreasing and "bath tub"-type failure rates are discussed. '
The purpose of this thesis is to develop analytical hazard :

representations for use in reliability and maintainability

studies, and to evaluate them in use for data analysis.
Verification of the model was accomplished by computer simu-

lation. They were applied to human mortality and other

failure time Adata.
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I. INTRODUCTION AND SUMMARY

A. INTRODUCTION

The failure rate function, or hazard function (hazard
for short) may be described as the conditional probability
of an equipment's failing at operating age t, having sur-
vived to that age. The reliabilities of a variety of elec-
tronic and mechanical items are conveniently and naturally
described in terms of the appropriate hazard function, and
so is the longevity of human beings. The term force of
mortality replaces hazard in the latter context.

This paper is devoted to a study of several simple
analytical representations for hazard functions. These
representations are in turn based upon representations of
random variables having certain required properties, in
terms of others having familiar distributions--in particular
the exponential. Similar ideas are due to Tukey ([l1], and
recently have been examined by Parzen (2]. The hazard
representations proposed are quite expeditiously used in
simulation studies, e.g. of system reliability or avail-
ability in terms of component lifetimes. They may also be
used in data analysis studies, in order to parsimoniously
describe data sets in terms of perturbations of convenient
and familiar standard distributions. Their use in data
analysis and simulation is also described in Gaver, Laven-

berg, and Price [3], and in Gaver and Chu [4].




B. SYSTEM FAILURE PATTERNS

It is plausible to think that the time series of fail-

ures in a system may involve these stages.

Early failures. There may be a relatively large number

of failures soon after a system is introduced because of

design defects, prodaction errors, or errors stemming from
maintenance personnel inexperience. This situation is
characterized by a hazard function that is initially large,
but that decreases with time. "Infant mortality" is in

evidence.

Random Failures. Following the early failure period

there may be a period during which failures occur at an
essentially constant rate for a rather prolonged time.
During this period the hazard function is nearly constant,
so the times between failures are close to being exponen-
tially distributed. The effect of age or wearout is not

yet apparent.

Wearout Failures. Eventually following the period

during which a constant hazard is evident there is likely
to be a period of ever-increasing failure rate caused by

wearout of system components.

A graphical representation of a hazard function that

exhibits the behavior described is given below. Note that

it has the legendary "bath tub" shape.
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Some comments on the above follow:

The term "failure" may refer tc an event that is

%. analogous to human death, after which the entire system

is replaced. On the other hand repair or component replace-

ment may occur after failure: the system is only repaired,

not eqtitely replaced. In the former case, a hazard func-
tion of the kind depicted in Figure 1 applies to each system
event ("death"); when the system is installed (or is born),
that hazard operates starting from scratch at t = 0 until
system failure (human death, for instance), after which a
similar hazard goes into effect, starting once again from
zero. In the latter case, in which repair of a component
occurs, a hazard function like that of Figure 1 applies at

t = 0, but after the first event ("failure") at t a re-

1
pair action is accomplished. The same hazard operates for

t 2 t;, until the next event at t, > t,, and so on. Inter-

X
mediate situations may be envisioned, in which after event

n at t, the hazard governing system failure n+l starts

- ¥
at tn Tn' O € ¢ ¢ tn'

n
Although there is reason to assume that hazards some-
what like that of Figure 1 occur in general for systems,

the possibility exists that the system hazard is "bumpy"

because wearout failures of components or subsystems may
well occur at intermediate times.

b - If the theory is applied to systems with little or no
wearout propensity, as should be the case when dealing with

computer software modules, then the hazard function may

e
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é well exhibit the initial falloff of Figure 1 but not the
rise at later times. 1In fact, a constant decline as bugs
are found and removed could be (optimistically) anticipated
for software. The right-hand side of the bath tub vanishes,

and the picture is that of a ski slope.

——_—
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II. ANALYTICAL HAZARD REPRESENTATIONS

A. MODELS FOR THE HAZARD FUNCTION
In this section mathematical models are presented for
the failure rate or hazard function. Recall that the hazard

may be defined as follows.

Definition. Suppose that the time to failure, X, is a
random variable with distribution function F(x), where
F(0) = 0; the latter possesses the density function £(x),
f(x) = dF/dx, such that for any positive x,

X
F(x) -g fly) dy . (2.1)

Then the hazard function, or failure rate at age x, is

given by

h(x) = T‘E'(T-‘X‘)GET ) (2.2)

The interpretation of h(x)dx is that it is the con-
ditional probability of failure in the interval (x, x+dx),
given that there has been no failure up to age X.

Express the hazard as
h(x) = Iﬁglg%gr
dF
h(x)dx = =7 = - d{logll - F(x)]} ,

it then follows after integration that

12




X
F(x) = 1 - oxp[-(f) h(y)dy] . (2.3)

Thus if the hazard is specified, sc is the distribution
function, and conversely.

Note that if

h(x) = A >0, 0 < x

then
AX 0

F(x) =1=~e " , < x, (2.4)

so a constant hazard function implies the exponential dis-
tribution of the random variable X, and conversely.
Obviously a constant hazard representation does not
describe the bath tub hazard shape of Figure 1, nor does it
represent a situation in which hazards decline, possibly
because design defects or "bugs" are occasionally removed.
Here are two hazard representations likely to be useful for

such purposes.

1. A Bath Tub Model

Define the random variable 2 in terms of X, X

being exponentially distributed with mean x'l, as follows:

Z = G(X) = XL(X)R(X)

or (2.5)
= X¢(X), ¢(X) = L(X)R(X)

where
a) L(x) 1is concave in X, L(0) < 1, L(»~) = 1,

b) R(x) is convex in x, R(0) = 1, R(0) > R(w).

gy




Then the hazard of Z may be made to exhibit a bath tub

shape, as in Figure 1, by proper choice of the functions L

and R.

Example. Suppose
L(x) = I_%£E§ a>0, 0<x
(2.6)
1
St v o SR AELR

Clearly,

ax 1 ax X

2= xLiX)R(X) = X pifm * T 02" T oo T T0:

is a monotonically increasing function of x. Furthermore,
choose o large (e.g. a = 10) and 8 small (e.g. 8 = 10”3
Then it is intuitively clear that (i) small x-values
transform into even smaller z-values, e.g. Xx = 1 corre-
sponds to z = 0.91 and x = 2 corresponds to z = 1.90,
but (ii) this effect dwindles as x increases, so x = 10
corresponds to 2 = 9.8 and x = 50 to 2z = 47.5 and the
z-values closely resemble the x's percentage-wise, but
(iii) as x increases still further the 2z's do not follow
suit: x = 103 corresponds to 2z = 500. This suggests
that if x is a value assumed by X, that 2 shares the
properties of X in mid-range, i.e. for intermediate
x-values, but differs from X by having a disproportionate

probability of assuming small values (near zero), or large

values (near, but less than, 1/8). Thus the hazard of

14
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Z will appear to be a "bath tubbed" version of X,

particularly if X is exponential.
We focus attention on the representation (2.6) in what
follows, mainly for analytical and computational convenience.

Of course there are many other possibilities, such as

L(x) =1 - e ¢X

(2.7)
R(x) = e'&‘;
these latter may be adjusted to provide sharper-edged tubs
than can (2.6), but iteration of (2.6) may be induced to

accomplish the same purpose.

2. A Decreasing Failure Rate Model

Define the random variable W in terms of X, X

again being exponential with parameter Ay

W = XT(X) (2.8)

where T(x) is an increasing function of x, L(0) = 1.
Then the hazard may be made to exhibit a decreasing

behavior.

Example. Suppose

T(x) = 1 + cx , c >0, 0< x. (2.9)
Then
z = x(1 + cx) (2.10)

is monotonic, and small x-values lead to comparable z-values




(especially when ¢ is small), but larger x-values are
"amplified" by 1 + cx to yield increasingly large z-values.
Attention will be focused upon (2.9), although other
possibilities exist that accomplish the same purpose, namely
that of lengthening the right tail of the distribution of
X (simulating outliers, for instance) while leaving the

body of the distribution virtually unchanged.

B. MATHEMATICAL PROPERTIES OF THE "BATH TUB" HAZARD MODEL
Various analytical properties of the previously described

models will now be recorded. These provide useful insights

into the behavior of the random variables 2 and the under-

lying (generating) variables X.

1. Monotonicity; Quantiles

It is convenient to focus on monotonic increasing

transformations, i.e. if

z = G(2) = z2¢(2) (2.10)

then in order that the above function be monotonically in-
creasing, dz/dx > 0. Observe that logarithmic differen-
tiation of (2.10) provides

dz _ dx . ¢'(x)

s x . dx (2.11)

and thus dz/dx > 0 if and only if

1 '(x)
= & 23%?7 >0 (2.12)

T T T s W T g




Alternatively, the condition is, in terms of L(x) and
R(x),

1 L' (x) R' (x)
xt*To t X

>0 (2.13)
It is easily seen that the important example (2.6),

ax . 1
¢(x) = v " T Bx ¢

yields a monotonic relationship between 2z and x. The

fact that this transformation can be easily and explicitly

inverted (solved for x in terms of 2z) will be exploited
subsequently.

Of course if 2(x) is monotonically increasing then so
is x(z), the inverse function. The events (2 £ z) and

(X < x(z)) are equivalent, and so

P{Z2 < z} = P{X < x(2)} , (2.14)

from which it follows that if xp x(p) 1is the p+100%

quantile of X, i.e.

P{X< x(p} =p , (2.15)

P{2 < z(p)} = P{2Z ¢ z(x(p))} =p (2.16)

and so z(p), the p+100% guantile of 2 is simply obtained
from

z(p) = x(p) ¢(x(p)) = x(p) L(x(p)) R(x(p)) (2.17)

In other words we very easily translate from (points on)




the inverse distribution of X to the inverse distribution

of Z. Explicit representation of the distribution of 2

is however, not often easily possible.

2. Hazard and Density Function Relationships

In order to investigate the relationship between
the hazards of 2 and X, begin by writing
x(p)
P = Fy(x(p)) = 1 - exp[- g h, (u)du] (2.18)

or
x(p)

/ h (u)du = - 2n(1l-p)
0

Now differentiate with respect to p to find

dx(p) 1
h, (x(p)) SEBL = o (2.19)
or
(x(p) = gy + s = £(x(p)) ¢ 5 (2.20)
X ) Ip T “x I-p ;

here hx and fx are the hazard and density functions of
the r.v. X. The relationship (2.20) holds for any distri-
bution, of course.

Differentiation of (2.5) reveals the connection between

h, and h*. From (2.11)

4
dz (p) o 1 '(x(p)) | dx(p)
P St [xfpi i x(p ‘} dp AEaaR)

= [0(x(p)) + x(p) o' (x(p))] LR




From (4.11), applied now to the z-hazard, there results

1 1 :
hﬂz@ﬂ"h;f@ﬂ*WU“m)+x@)¢(anl, (2.22)

so

(2.23)

1
hp(2(p)) = b, (x(P)) STetEIT + x(p) ¢ (x(B))

Multiplication of both sides by 1l-p then shows, in view

of (4.11), that the density functions are similarly related:

1
£,(z(p)) = £, (x(P)) FrTET+Fx(B) " (x(B)T °

Example.
X is exponential()i). Then

A

Y CI I M EIR) (5. 4%)

hz(x(p)) =

Now use the specific ¢(x) of (2.6):

ax 1

¢x) = % T ¥ Px

or, in terms of logarithms,

tn ¢(x) = &n ax - n(l + ax) - 2n(l + Bx) ,

1o

!v§x) e IR PRy o 1l - aBx (2.25)
o (x X 1l + ax 1l + Bx x(1l + ax) (1 + Bx)' ?

o(x) + x0' (x) = ¢(x) [(12++a§$(; E)gx)] ;o (2.26)

finally




2 2
(1 + ax(p)) 1 + Bx(p))
hz(z(p)) = 23ETBT-TTE:’TELT_FT'iTETT_ (2.27)

Although this expression is not quite explicit, qualitative
properties of hz can be deduced from it.

If p+0, x(p) = - & 2n(l-p) + 0, and hence
X

1
h,(z(p)) ~ To x(p)" (2.28)
or
A
1i h = 2.29
p:l(\) x(p) h,(z(p)) TS ( )

Since for p + 0,

z(p) ~ axz(p)

and hence
x(p) ~ [z(p)/a]}/? (2. 30)
there results
h,(z(p)) ~ A
. 20z(p) 1% /3
24 lim vZTp) h,(z(p)) = A (2.31)

p*O 27Q

This shows that hz(z) t+ « ags z +» 0, creating the left-
hand end of the bath tub of Figure 1l.
If p+1l, x(p) ¢+ =, and z(p) ¢+ 1/B so

- B

ag” x" (p)
hz(z(p)) ~ A —Ta—n?—

or

20
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2
1 Q
lim : h, (z(p)) -lxa—g—g (2.32)

p+> [x(p)
For p~+1
L o fa + B}
1l - 8z(p) aB  x(p) (2.33)
sSo
a + B8 1
and thus
8 1
h_(z(p)) ~x(°‘ s ) (2.35)
z ] {1 - 82{2

Once again it appears that the hazard rises rapidly, this

time as x(p) *+ = and z(p) ¢ B'l; the other end of the

bath tub is thus fashioned.

1 1

If p=1-e -, then x(p) = A . Then

2 2
h,(z(1 - e™)) = AL+ o/A] (1 + B/A" (5. 36)
a/X [2 + (a + B)/A]

The bath tub effect is presumably achieved by choosing «a
large and 8 small. Let a +0 and B8 + 0 independently
in (2.36); it is clear that the limiting value of the

hazard is A. This indicates that the hazard is (approxi-
mately) A for middling values of z.

3. An Explicit Formula for a Hazard

The expression (2.6) leads to the relationship

2
& ax” (p)
= {p) (1 + ax(p)) (1 + 8x(p)) W

21
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and the latter may be explicitly inverted by solving a

quadratic eqguation. The result is

(a+B)z(p) + \/(a+3)2 zr(p) + 4z(p) a(l-Bz(p))

x(p) = Za (1 = Bz (p)) (%430

Now ; direct differentiation of this expression and invo-

cation of (2.20) produces the expression

hz(z)

A B{(a+8)z + V(a+8)%z° + 4az(l-B2)
a(l=-g2 1l - Bz

+ (a + B)

& {(a-B)zz + 2a} \/(a+8)zzz + 4az(1-82)
(a + B)%2° + daz(l - B82z)

(2.39)

This form, while explicit, provides no particularly useful
insights; the bath tub end shapes already noted in (2.31)
and (2.35) can be deduced directly from (2.39).

Some graphical plots of hz are presented below. They
illustrate the behavior of the present hazard representation
in a more understandable fashion than does the formula

itself.

4. An Explicit Formula for the Failure Time Distribution

Because x and 2z are monotonically related

through (2.37) we have

22




P{2 < z}

e _ (a+B)z + V(a+B) “2° + 4az(1-Bz) |
Pl"i" Ta(l = Bz)
‘ (a+B)z + V(a+B)°z® + daz(l -~ Bz) l
= 1 - exp l-A 75l = BZ) (2.40)

Again the explicit formula seems unproductive of insights.

C. MATHEMATICAL PROPERTIES OF THE DECREASING FAILURE
RATE MODEL

1. The Hazard Behavior

The expression (2.23) can be applied to deduce the
hazard function of the representation (2.8), advertised to

produce a decreasing failure rate. There we specified

dp(x) = T(x) =1 + ¢cx , (2.41)

and thus, from (2.23)

A A

B (WR)) = TTsaxten + x(pe - T+ Zex(pr  (2+4)
Qualitative properties follow easily.
If p+ 0, x(p) + 0, and
h,(w(p)) ~ . (2.43)

Thus the hazard is approximately 1\ for small z.

If p+ 1, x(p) ¢+ =, and

wip) ~ elx(p)1?

SC




A
e -
2/cw(p)

which clearly decreases, as claimed. It may be inferred

h,(w(p)) ~ (2.45)

that the distribution of W appears nearly exponential,
but possesses an extraordinarily long right tail--possibly

the result of outliers.

2. Explicit Formulas for the Hazard and the

Distribution Function

Direct solution of the guadratic equation

w=x(1 + cx) = x + cx2

presents

s g
x(p) = azx I;‘;zpj i (2.46)

which, when differentiated, leads to

1
Bt & sl v, Ca)
- : (2.47)
VI + ZCW
The distribution function is
P{W < w} =P xg_x-'I*gg""’I}
(2.48)
=1 - exp{ =\ [ I+ lgz - l]€

This distribution bears a close family resemblance to tHe
Weibull distribution 1 - F(w) = exp{-kv/w}, especially for

large (right tail) values of w.

24
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D. AN ALTERNATIVE "BATHTUB" HAZARD REPRESENTATION

The simple parametric model (2.6) leading to a bathtub-
shaped hazard is by no means the only possibility. We next
describe another simple approach. It is that of defining
a hazard function having an appx.ropriate shape, and then
deducing the corresponding distribution function, and a
procedure for sampling from it, rather than prbceeding in
reverse order, as before.

Let the hazard be of the form
h(z) = g(z) +<++ k(2) , (2.49)

where g(z) > 0 is a decreasing function of 2z such that
lim, _ _ g(2) =0, and k(z) is an increasing function of z,

such that (preferably) k(0) = 0 and k(x) = «. Such a

function can yield a bathtubbed hazard.

Exg_n}gle.
A
h(z) = S Bz + A\ (2.50)

A, B, a, A all positive.
Clearly, (2.50) has a generally "bath tub-like" appear-

ance, since

h'(z) = - .___A__? + 3 (2.51)
(z + a)
if
- % +B <0, then h'(0) < 0 (2.52)
while for
Sl
z D> 2, * § o (2.53)
h(z) > 0.




petailed behavior is adjustable by choice of the

parameters. Now the distribution function of time to

failure, 2, is obtained from (2.50) ¢

P{2 > z} exp{- [f) h(x)dxi

e |
= exp %- / (e * B+ A)dx}

0
- [ A n(l + %)'+ % z2 + xz]}
A

= exp ‘l
pt o L Gl
. 5 2 (2.54)
where 5
= a
Fl(z) = ( a + z)
52(2) = exp (- g 22) (2.55)

53(2) e

All of the above are recognized as being the complements of
distribution functions. In effect, the distribution of 2

is that of the minimum of three independent random variables:

p{(z > z} = P{xl > z}-P{x2 > z}-P{x3 > g}, (2.56)
26
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X, having the distribution F, =1 - F, (i=1,2,3).

i i
This fact leads directly to an easy procedure for simulation
of 2 Dby simply obtaining the smallest from among the
realization of xl, xz, and x3. The advantage of the pre-
vious method, based on (2.6) for instance, is that only one
realization-~-that of an exponential in that specific example
-~leads to the realization of 2. This is not only computa-
tionally attractive, but seems to facilitate the application

of such Monte Carla variance reduction techniques as control

and antithetic variables, cf., Hnmmersiey and Handscomb (5].
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III. OBTAINING SPECIFIED HAZARD BEHAVIOR

BY SIMPLE SAMPLING

The development of the last section illustrates one
manner in which hazard behavior may be conveniently repre-
sented and siimulated. We now show how such behavior may
alternatively be obtained by simple simulation, i.e. from
one realization of a basic (possibly exponential) random
variable.

Refer to (2.5), in which

Z = G(X) (3.1)

and, if G(+) is monotonically increasing,

z(p) = G(x(p)) . i (3.2)

z(p) and x(p) being the p+1l00% percentiles of Z and X,
respectively. Then the counterpart to (2.23) that-results

from differentiation of (3.2) is the expression

1 1
hz(z(P)) = hx(x(P)) MEIR = hx(X(p)) 1=/ (3.3)

Consequently, if one specifies hz(z) as a suitable func-
tion of the "time" 2z, and specifies the distribution of
the stochastic variable X--and hence its hazard, hx--there

results a differential equation for z(x) = G(x):

dz
hz(z) = - hx(x) : (3.4)

integration then provides the desired transformation, G. 1In

other words, we seek 2z(x) satisfying
28
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z X
g h,(u)du = é h (v)av ,

which can sometimes be carried out in a useful closed form.

(3.5)

Example 3.1. Refer to the example of Section II, wherein

h is given by the expression (2.50) and we assume that X

is exponential, so hx is constant. Then in order to deter-

mine G(x) = z(x), solve the equation

. %
é [E‘%—E + Bu + A] du = [ dv
0
or

A Wn(l + %) + g 22 + A2 = X

Closed-form solution of this expression for 2z in terms of

X is of course impossible. One possible approach is purely

(3.6)

numerical: find an approximate solution, zo(x), e.g. the

appropriate solution of the quadratic

% zz + A2 = X

(3.7)

and then correct the result by a few Newton-Raphson itera-

tions. In other words, put

A+ sz + 2Bx

5 il i i =

now apply Newton to obtain an improved sclution

A Wn(l+ zl/a)

2y(x) = 2y - IVAFREIVED TAED

29
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which will be feasible if 0 < z,. The process can be
iterated (the numerator will change after the first iter-
ation). 1If one wishes to use this model it may actually be

desirable to start by solving

g 22 + (A + %)z -x=0 (3.10)

for zl, in which case the numerator will not be as shown in

(3.9); convergence may be more rapid.

Example 3.2. Change the hazard representation of the previous

example as follows: let

A

hz(u) = + Bu + A; (A, a, B, A > 0) (3.11)
(v + a)
then
" Az B _2
f hz(u)du = m + -2- 2 + Az (3.12)

0

Now it is necessary to solve

ETE—%EET e g £% & Aaowm x i (3.13)

i.e., the cubic

§z3+[a§-+xlzz+[§+ax-x1z-ax-o, (3.14)

which can be carried out, at least formally, in closed form.
Cace again an iterative solution that begins by dropping the
cubic term, solving the resulting quadratic for zl(x), and
then continuing along the Newton-Raphson road may be
successful. Further investigations of these ideas should

be conducted.
30




IV. COMPUTER SIMULATION AND ESTIMATION PROCEDURE

A. SIMULATION AND NUMERICAL RESULTS

In previous chapters an analytical model was described
for the failure rate function; useful foémulas were also
derived from the model (2.39) and (2.40). Before the model
is used in realistic situations, it will be convenient to

build a computer simulation model for model validation.

1. Algorithm

First a very basic simulation model was built for
determining the general shape of the failure rate function
associated with parameters o, 8 and A. In the simulation
model, « was selected to be 1.0 and 2.0, B was selected to
be 0.05, 0.01, 0.005, 0.001 and ) was selected to be 0.1.
These values were picked arbitrarily, it is only stipulated
that o is always greater than 8. The general algorithm
of the simulation model is shown in Fig. 2.

The hazard function is calculated according to the
model (2.37) and the system logic function (2.40). The

results were shown in Fig. 3 and Fig. 4.

2. Some Comments

These simulation results show that:
a. Parameter a is effective when 2z values relatively
have small values. That is, it influences the early

failure period.

31
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START

INITIAL VALUES OF
PARAMETERS

GENERATING RANDOM NUM.
FROM EXPONENTIAL
DISTRIBUTION

GETTING Z VALUES
Z2=G(X)

GETTING FAILURE RATE
FUNCTION

PLOTTING Z vs FAILURE
RATE FUNCTION

Fig. 2. Basic Algorithm.
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b. Parameter B8 is effective on the relatively bigger =z

values. That is, it describes wearout failures.

c. Parameter )\ has little effect on the shape of the
curve; it is a scale factor.

d. The last important observation is that the 2z values

are limited by the parameter 8 such that:
z £ %
When 2z equals 1/8, hz(z) goes to infinity.
B. EMPIRICAL DENSITY FUNCTION AND ESTIMATION PROCEDURE
In this section, an estimation procedure for parameters

a, B, )\ is defined and the procedure of finding the

empirical density function is described.

1. Empirical Density Function

Suppose that Ni' N, & and NO are defined as

follows:

Ni = the frequency of data points for each time interval
between a; and bi for i equals 1,2,3,...,k.

N = the total number of failures where,

k
N = N,
121 .

A = the length of each interval

A = bi - ai




N, = the total number of survivors by the beginning of

0
each interval which can be shown as follows:

N if § =]
N. =
9 i-1
N- ) N, % g S T SR,
j=1 J
where Z;:i Ny is the number of failures before
i=l

interval i, or N - zj-l Ny is the number of

failures after interval 1i.

% - hz(z) is defined as the density function of
hazard, then the relationship between the frequences of the
failure data and density function of hazard can be given

as follows:

b,
1

Ny x Ny ¢+ [ h(z)az (4.1)
|

where i =1,2,3,...,k and a; = (i-1)4, bi = 3iA., At this
point some approximation can be made in expression (4.1),

such that
-y
£ h,(z)dz 3 (b; - a;)*h (i(b; = a;)) (4.2)
i
for small values of A = b-a. Then this approximation (4.2)

is substituted in the expression (4.1), it turns out as

follows:

N. = A*Ny h,(ia) (4.3)

0
or
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5 N,
h, (i8) = o=x - O A (4.4)
0

for the general case, it will be:

(

N,
;3 for i =1
h, (i4) = ¢ (4.5)
N i
i-1 ‘A
\ (N=- | N.) for 4= 2,3:...
j=1 J

The expression (4.5) will be used in the calculation of
an empirical hazard function and also used in the proposed

estimation procedure.

2. Estimation Procedure for Model Parameters

Two approaches can be used for this problem. The
first idea is to use the relationship between a sample pth
percentile and the related probability of the pth percentile.
A subsequent idea is to approach the problem as a nonlinear
least square estimation problem for o, B8, A: pick a, B
A so that the values obtained minimize the sum of squared

errors in an objective function.

a. 3-Percentile Approach

Suppose Px(x) is the cumulative probability
function of the exponential distribution. The pth percentile

x(p) 1is equal to the value such that:

p = Fylx(p) = 1 - e X(P) (4.6)




Then
-l 1
x(p) = F “(p) = - T An(l-p) (4.7)

where 1\ > 0.
If z(p) is defined to be the pth percentile
in the bathtub model (2.37) then =z(p) and x(p) have a

definite relationship with expression such that:

z(p) = axz(p)
(T + ax(p)) (1 + Bx(p))

by substituting (4.7),

or

& ta/2%) e2(p)
z(p) 4{1 2 %-e(p)}{ o % e(p)} (4.9)

where ¢€(p) = - n(l-p).

In the last equation (4.9), there are three un-
known variables which are a, B8, A. If three independent
equations associated with expression (4.9) are defined,
clearly, they can be solved for the unknown parameters.
Actually, this can be easily done, for using different values

of percentiles such that:
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(u/xz)ez(p )

z(Pl) =

{1 + e (P) } { e(Pl)}

(a/xz)ez(Pz)

z(Pz) {l +-%-e(P2)} {1 + % e(Pz);i
g (a/Az)eZ(P3)
i {1 +—(;-‘-E(P3)}{l+%-e(l’3)}

where z(Pi) and e(Pi) are the known values associated
with Pi' Actually, to get the percentile values, two kinds
of approaches can be made. First they can be computed
directly from data using the simple statistics method, such
as  zy, is (approximately) z(i/(n+l)). Second they can
be computed from the empirical density function. Generally
the choice depends on the form of the data that are avail-
able.

To decide for the effectiveness of this type of
estimation, another basic computer simulation is made by
modifying the first computer simulation algorithm. This
algorithm is shown in Fig. 5.

The simulation was run four hundred times and
in each run the sample size was assumed to be n = 50.
Initially the parameters o, 8 and A were taken to be,
respectively, 1.0, 0.05 and 0.1. The percentiles P,/ Py
and P3 were used in each run such that 0.1, 0.5 and 0.3

respectively. The estimation results are shown in Table I.




st S g s b

START

SELECTION OF DIFFRENT
VALUES OF PARAMETERS

GENERATING RANDOM NUM.
FROM EXPONENTIAL
DISTRIBUTION
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FIND EMPIRICAL DENSITY
FOR HAZARD,ESTIMATE
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Fig.5.Simulation algoritm for estimation procedure
and emprical density function.




As can be seen, the estimated parameters a, B8,
A have quite different values in all runs. To judge their
sampling distributions, histograms were drawn separately;
Figures 6, 7 and 8 are the histograms of the estimated
values of o, B8, A, respectively.

It is suggested by Figures 6 and 7 for A and 8,
that normality may be assumed with sample means 0.9246,
0.05488 and sample variances 0.001065, 0.0002246, respec-
tively. Their mean, median, trimean and midmean are pretty
close ta each other. But, in the case of a, the histogram
(Fig. 8) is a quite different picture which looks something
like an exponential distribution instead of normal distri-
bution. The reason is clear, because the negative values
of estimated a were not taken into account. They are

physically infeasible.

b. Nonlinear Least Squares Approach

The least squares criterion used here can be

stated formally and generally as follows:

N -~
minimize ] (Y, - Yi)z (4.10)
i=l

where N is the number of observations, Yi is the fitted
value of Yi' In this case, expression (4.10) can be re-

written as follows

N
A 2

min iZl(zi - zi(a.s.x)} (4.11)
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TABLE I

COMPUTER SIMULATION RESULTS FOR ESTIMATION PROCEDURE

Sample size

Value of parameters a, B,

n = 50;

Number of Total Runs m= 400;

A Introduced: a=1, B8=0.05, A=0.1l.

Number of
Runs A a 8
1 0.0858 2.2255 0.0549
2 0.06591 1.2745 0.0779
3 0.08381 9.498 0.0688
4 0.0881 0.9304 0.039
5 0.1286 3.7429 0.0498
6 0.0883 2.114 0.069
7 0.0785 2.8281 0.0593
8 0.0945 0.4073 0.0584
9 0.089 0.3833 0.0452
10 0.1344 1.33%1 0.0426
31 0.0677 0.2111 0.0729
12 0.1304 2.4871 0.0512
19 0.0714 0.3311 0.0623
14 0.069 0.3547 0.0657
15 0.0775 0.4813 i - B
16 0.1618 2.7416 0.027
17 0.0827 0.927 0.0705
18 0.0816 1.1663 0.0836
19 0.0515 0.3777 0.0775
20 0.1089 1.6439 0.0522
21 0.0767 0.8667 0.0605
22 0.0499 0.3414 0.0748
23 0.0569 0.2118 0.0608
24 0.0648 0.2689 0.0715
a5 0.1415 2.1178 0.0518
26 0.1636 1.3635 0.0186
27 0.0947 6.101 0.0664

P



TABLE I Cont.

Number of
Runs A a 8
28 0.1063 0.5235 0.0623
29 0.0825 2.6602 0.059
30 0.13 0.3412 0.0303
31 0.817 0.24 0.0685
32 0.0843 0.4377 0.0393
33 0.1445 4.6941 0.0442
34 0.0737 0.2956 0.0665
35 0.045 0.1372 0.0646
36 0.1108 1.1026 0.0427
37 0.1277 1.091 0.052
38 0.0514 0.1362 0.062
39 0.1165 0.6794 0.0469
40 0.0954 3.7845 0.0587
41 0.0563 0.4123 0.0738
42 0.0684 0.2903 0.0574
43 0.1263 2.059 0.0357
44 0.1335 7.1595 0.0226
45 0.0708 0.465 0.063
46 0.0872 2.164 0.0657
47 0.0834 0.3568 0.0567
48 0.0429 0.127 0.0694
49 0.0428 0.1295 0.0639
50 0.0834 0.6807 0.0489
51 0.1141 1.5349 0.0566
52 0.1057 1.1757 0.0441
53 0.1104 5.0692 0.0433
54 0.1426 0.8845 0.0244
55 0.1084 0.5775 0.0505
56 0.1048 1.8399 0.0562
57 0.0561 0.3197 0.0643
58 0.0607 0.4564 0.0607
59 0.0724 0.3133 0.0551




TABLE I Cont.

Number of
Runs A V] B
60 0.0957 0.9584 0.0557
61 0.0804 0.7378 0.0423
62 0.0888 0.1718 0.0393
63 0.064 0.3779 0.9543
64 0.0324 0.2202 0.0791
65 0.0695 0.2428 0.0564
66 0.0903 6.4194 0.0542
67 0.0741 0.4118 0.0718
68 0.0462 0.167 0.0671
69 0.0805 1.0279 0.0662
70 0.0469 0.2157 0.0693
71 0.0487 0.2457 0.0688
72 0.0682 1.1847 0.0665
73 0.0538 0.1964 0.0573
74 0.1516 2.099 0.0352
75 0.0763 0.3067 0.0679
76 0.0558 1.5589 0.079
77 0.0463 0.2252 0.0612
78 0.095 5.6243 0.0627
79 0.1903 6.0 0.0604
80 0.0822 0.9989 0.0738
81l 0.066 0.3422 0.0926
82 0.0784 0.3336 0.0517
83 0.0499 0.1453 0.062
84 0.0667 0.1357 0.064
85 0.0431 0.0761 0.0568
86 0.1485 6.1674 0.0262
87 0.1154 1.0451 0.0476
88 0.0043 0.3493 0 0648
89 0.0983 1.3101 0.0422
90 0.138 6.7408 0.0443

e




TABLE I Cont.

Number of

Runs A (o] B

91 0.1117 0.7281 0.058

92 0.065 0.4284 0.0482
93 0.0638 1.2754 0.0611
94 0.1603 1.003 0.0302
95 0.0436 0.1647 0.085

96 0.0905 6.2455 0.0703
97 0.1309 1.4348 0.0431
98 0.0787 0.5245 0.0686
99 0.1927 7.801 0.009

100 0.0683 0.525 0.0698
101 0.1163 1.7146 0.0355
102 0.1005 1.5795 0.0463
103 0.1492 1.5169 0.0465
104 0.1511 2.7243 0.318

105 0.0823 0.1634 0.0438
106 0.1493 6.9467 0.0437
107 0.1185 9.4492 0.0603
108 0.1039 0.589 0.0406
109 0.0832 0.3935 0.0612
110 0.059 0.145 0.0508
111 0.133 8.6071 0.0397
112 0.0877 0.4751 0.0448
113 0.0772 0.2752 0.0624
114 0.0659 0.4782 0.0583
115 0.0796 0.2978 0.0537
116 0.1128 1.668 0.0601
117 0.0974 1.2931 0.0515
118 0.1105 0.3394 0.0468
119 0.1216 1.0529 0.0655
120 0.1046 2.0384 0.0591
121 0.128 3.2468 0.0405




TABLE I Cont.

Number of

Runs A Q 8
122 0.0818 1.092 0.0584
123 0.0924 2.4295 0.0439
124 0.0732 0.1916 0.0495
125 0.1284 1.8515 0.0407
126 0.1376 2.6651 0.0282
127 0.0877 7.8429 0.0703
128 0.0865 1.1942 0.0438
129 0.1404 2.8991 0.0326
130 0.0452 0.0978 0.0663
131 0.0928 3.0463 0.0471
132 0.0668 0.4602 0.1551
133 0.2089 0.7373 0.0119
134 0.0946 0.4011 0.038
135 0.1352 l.2162 0.0284
136 0.0597 0.2241 0.0539
137 0.106 1.7821 0.0354
138 0.0508 0.2689 0.0596
139 0.0522 0.1244 0.055
140 0.104 0.8464 0.0603
141 0.1002 0.817 0.0711
142 0.0692 1.4214 0.0744
143 0.0995 0.5442 0.0435
144 0.0697 0.4966 0.0487
145 0.0737 0.8995 0.0708
146 0.059 0.2998 0.0654
147 0.1235 1.1251 0.045
148 0.1023 0.615 0.0349
149 0.1 0.9087 0.0466
150 0.1242 2.9267 0.0356
151 0.0966 0.4989 0.0616
152 0.0913 2.5416 0.0638
153 0.1301 1.3897 0.0434




TABLE I Cont.

Number of
Runs A o B
154 0.1033 2.0535 0.0466
1556 0.0638 0.2219 0.0594
156 0.1408 3.6331 0.0434
157 0.1311 4.9526 0.0495
158 0.0608 0.469 0.0462
159 0.0574 0.5886 0.0723
160 0.0998 4.912 0.0554
161 0.1114 0.4898 0.0363
162 0.0415 0.1827 0.0854
163 0.1586 7.3257 0.0397
164 c.0723 0.9055 0.0637
165 0.0984 1.1521 0.0675
166 0.1011 2.1535 0.0573
167 0.093 4.8488 0.0555
168 0.1141 4.2636 0.0443
169 0.1953 4.6512 0.0452
170 0.0568 0.8364 0.07099
171 0.0927 5.1303 0.068
172 0.0632 0.7399 0.069
173 0.0536 0.2732 0.07138
174 0.1033 0.9515 0.0787
175 0.0633 1.6597 0.0791
176 0.1414 1.2547 0.0318
177 0.1089 4.1786 0.051
178 0.1165 0.5441 0.0432
179 0.1731 4.2913 0.0192
180 0.0679 0.1064 0.0451
181 0.1682 3.1417 0.0332
182 0.0868 0.6399 0.0685
183 0.0807 1.046 0.0607
184 0.0778 1.185 0.0694

e




TABLE I Cont.

Number of

Runs A a 8
185 0.0769 0.1999 0.0009
186 0.0396 0.1194 0.064
187 0.1012 0.499 0.485
188 0.1389 9.7085 0.0334
189 0.0665 1.1661 0.0599
190 0.0471 0.1374 0.0643
191 0.1316 4.1676 0.0259
192 0.0687 0.6692 0.0928
193 0.0866 0.5419 0.0484
194 0.0966 1.579 0.0524
195 0.0773 1.0102 0.0668
196 0.1076 0.7413 0.0704
197 0.0857 0.8715 0.0548
198 0.0803 1.110 0.0549
199 0.052 0.1396 0.0598
200 0.0757 0.9558 0.0622
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The goal is to choose values a, 8 and A which minimize
the expression (4.1l). In the linear case, this can be done
using elementary calculus by taking the partial derivatives
with respect to a, B and )\ , setting each of them equal
to zero and solving the resulting linear equations (Normal
equations). But the present problem is different because
the expression (4.11l) is highly nonlinear in the parameters,
and indefinite in terms of convexity. This is why a non-
linear programming technigue is used.

There are a few general approaches to the solu-
tion of the nonlinear estimation problem. One of them is
the direct optimization approach.

Specifically, equation (4.9) is considered as

follows:
olozez(p)
SO {1+ pze(pTTfl + p3e(§)} (4.12)
where
1
i S 1
Q
i R
- B
o B

In equation (4.12), z(p) and e(p) are known values, CY

are unknown variables. If it is rewritten as the sum of

squared errors the objective function will be:

N 09,2 (B)) g

g(P,) - ) (4.13)
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Now nonlinear optimization problems can be stated such that

g 2 2
N ‘ Py PoE“(P,)

Min ] lZ(Pi) T+, (P (T + 3 (BT |

i=1

Subject to

In order to perform the optimization, i.e. to
solve this nonlinear optimization problem, the GRG package
(Generalized Reduced Gradient) [6] was used; it is very
convenient for this case. Ten runs were made with five
different initial points, both with analytically computed
derivatives and with numerically computed derivatives. The
first four initial points were selected arbitrarily. The

last one was picked such that:

1
pl-'x-

4
0y = —b) (4.14)

A

% (50)

p3s-—.¢———
A

where z(l) is the smallest number in the sample, z(SO)

is the largest number in the sample, and )\ is the natural

~

logarithm of p = 0.5 divided by the median of the sample.
Initial points are shown in Table II.
The optimization results of a, 8, and o

associated with Pyr Py and are tabulated in

°3
Table III and Table IV, respectively.'




o s
A

51 : As it is seen from Tables III and IV, the program
Fi was terminated at different optimal points. Because the |

objective function is highly nonlinear and apparently in-

definite (neither convex nor concave), it may sometimes

have stopped at a local minimum rather than at a global

i optimum point. But if the results are compared to the
: J-percentile results, the noniinear least square estimates
% show much greater accuracy and seem more consistent.

d TABLE II
INITIAL GUESS POINTS

% ; ‘ * of

Points Y Py Py

| I 50.0 2.0 30.0

! 11 10.0 10.0 0.5

: 111 80.0 80.0 5.0

; v 1.0 1.0 1.0

fl v According to the eg. (4.14)
|

?
?
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Actual values

TABLE IV
A=0.1, a=1.0, B = 0.05

a B8
# of | Initial
Runs Point A B A B A B

I 0.1202|0.1203(343.512 | 676.800/0.0400|0.0400

II 0.1199]10.1203129.591 | 968.150{0.0401]0.040..

1 III 0.1168|0.1203 8.898 p506.926 0.0409|0.0400
Iv 0.1158]0.1204 6.577 | 874.957]|0.0412|0.0385

Vv 0.1203)0.1201 4.182 | 955.629/0.0400{0.0401

I 0.0984)0.0863 7.534 1.297(0.0478{0.0510

1I 0.0865]0.0863 1.306 1.296|0.0509|0.0510

2 III 0.0977]0.0863 6.158 1.297]10.0480/0.0510
v 0.07980.0863 0.810 1.292]0.0527}0.0511

v 0.0500(0.0863 0.154 1.296{0.0583{0.0511

I 0.1390(0.1434 8.123) 392.550/0.0343/0.0331

II 0.1430({0.1434{138.531 {1520.067{0.0332/0.0332

3 III 0.1440(0.1436{204.078 |1465.586(0.0328{0.0330
v 0.1434|0.1433(414.903(1177.650{0.0331({0.0332

v 0.0438(0.1434 0.055 (2056.280|0.0515{0.0331

13 0.0878(0.0843 0.118 0.107{0.0394{0.0397

) i 0.0890/|0.0873 0.123 0.116{0.0392{0.0393

4 III 0.0891|0.0856 0.123 0.111{0.0393{0.0395
Iv 0.08700.0829 0.115 0.103{0.0394{0.0398

v 0.0899|0.0860 0.125 0.112]/0.0390{0.0394

I 0.0507(0.0508 4.944 0.509|/0.0530{0.0775

II 0.0695|0.0509 0.847 0.513j0.0988{0.0775

5 III 0.0692]0.0508 3.882 0.508/0.0749|/0.0775
IV 0.0540(0.0508 0.826 0.509/0.0717/0.9775

\'4 0.0676 |0.0507 0.672 0.506}0.1034/0.0776




TABLE IV Cont.

# of { Initial .
Runs Point A B A B A B
I 0.1384]0.0994 9.072 0.570|0.0494|0.0591
II 0.1019]0.0996 0.628 0.576)0.0585/0.0590
6 III 0.136310.0998 6.105 0.579(0.0499|0.0589
Iv 0.1079]|0.0998 0.810 0.582({0.057110.0590
v 0.1272(0.0994 2,439 0.57110.0525{0.0590
I 0.1158{0.0738 6.780 0.301{0.0405{0.0502
II 0.0755|0.0738 0.324 0.301(0.0496|0.0502
7 III 0.0752]0.0743 0.319 0.309(0.0499(0.0501
v 0.0757]|0.0739 0.328 0.308|0.0499|0.0501
v 0.1188|0.0738 | 28.839 0.301(0.0397]0.0502
I 0.0753)0.0748 7.325 5.783|0.0645|0.0631
II 0.0739/0.0740 4.647 4.763]0.0634/0.0634
8 I1X 0.0735{0.0735 4.219 4.22110.0635|0.0635
Iv 0.0737|0.0741 4.361 4.831(0.0634(0.0633
v 0.0170/0.0010 0.033 0.0008{0.0724|0.0634
I 0.1257(0.1252 | 11.646 9.302(0.0275{0.0276
1l 0.1252]0.1253 | 10.181 9.37410.0275{0.0275
9 III 0.1240]0.1246 6.983 8.598(0.0278|0.0278
Iv 0.1254]0.1254 | 11.010 10.296 |0.0276|0.0275
v 0.1017)0.1255 0.754 10.4070.0330{0.0275
I 0.1387|0.1438 5.688 25.17010.0326]0.0313
II 0.144110.1428 28.830 | 29.290)0.0312}0.0310
10 III 0.1400|0.1440 6.290 | 27.747(0.0326]0.0313
Iv 0.1437]0.1441 21.370 | 26.590(0.0313{0.0312
v 0.1415(0.1427 10.030 | 14.610)0.0310]0.0316

60




C. TEST PROCEDURE FOR PARAMETERS

In order to determine whether the model reasonably fits
the data a simple test procedure is applied. It is to
exhibit the simple comparison of the actual points 2z (P)

and the estimated values E(Pi, using the estimated

parameters.
Basically z(P) can be obtained as follows:
A 1
x(p) = - = ¢n(l-p) (4.15)
A

Then if it is substituted in expression (2.37), z(P) will

be

ax? (p)

zZ(P) = — g
(1L + ax(P)) (1 + gx(P))

(4.16)

In equation (4.16), all variables are known so estimated
quantiles can be easily obtained.

In Fig. 9 actual values and estimated values are plotted.
Also Fig. 10 displays residuals, which are the difference

between actual and estimated values.
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V. NUMERICAL APPLICATIONS TO TWO SETS

OF REAL DATA

In this section the two failure data sets studied come
from these sources: Oral irrigator [7] and human life [8].
They are used for numerical examples in that these data are

fitted using the model (2.6).

A. ORAL IRRIGATOR

The data used was obtained from the Commun. Statist.-
Theor. meth., Colvert and Bordman [7]. The data was col-
lected such that 100 oral irrigators were placed on the test
was terminated at 700 time units. During the life test, 98
oral irrigators failed; another 2 oral irrigators survived.
The ordered observed times to failure of the oral irrigators
is tabulated in Table V.

Using the data of Table V, the parameters a, 8, and )\
are estimated by means of the 3-percentile approach. To
demonstrate the differences between estimated values,
various different combinations of p values ware used. The
results are shown in Table VI.

Examination of Table VI indicates that the 3-percentile
approach may produce estimates having great differences for
different percentile values, except here in the case of the
first two combinations. Also the first two estimations seem
to have accepatable limiting age. Moreoever, the last two

combinations do not fit well, as judged from the residuals.
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TABLE V

TIME TO FAILURE OF ORAL IRRIGATORS

1.75 7.02 7.58 9.76 15.02 15.57
17.39 19.55 22.47 23.24 23.96 25.05
32.44 36.87 42.76 43.14 46.95 56.33
58.99 59.08 60.37 61.01 77.86 86.45
88.50 103.06 104.34 105. 85 117.46 | 120.11

122.28 122.61 129.31 130.42 137.57 | 142.27

142.98 148.29 150.79 151.21 155.62 | 157.93

160.72 169.79 186.26 197.60 224.83 | 233.64

242.07 256.86 260.77 261.68 277.99 | 283.95

288.94 295.48 314.76 316.06 332.07 | 339.46

362.61 369.47 370.74 491.06 403.39 | 414.78

426.71 459.62 455.84 457.94 466.61 | 468.64

469.09 476. 42 481.41 481.82 488.15 | 490.06

493.67 494.38 503. 72 508.93 509.01 | 418.32

532.29 534.62 545.23 547.41 558.41 | 571.10

585.52 589.11 592.93 607.15 623.15 | 647.91

TABLE VI
ESTIMATED VALUES OF a, 8, A BY USING 3-PERCENTILE

P, | Py | Py X a 8 1/8

d F 8] 0.00153 | 0.00634 | 0.001028 972.76

25 | .5 | .9 0.00158 | 0.00710 | 0.001018 982.31

.1 | .5 | .75 | 0.00239 | 0.01835 | 0.000228 | 4385.96

.25 | .5 | .75 | 0.00273 | 0.04514 | 0.000077 | 12987.01




Next the nonlinear optimization approach was applied to

estimate parameters a, B and A associated with Pyr Py
and Py both using the derivative and without derivative by
taking into account 98 ordered values. The results are

tabulated in Tables VII and VIII for Pye Py and A

3
a, B respectively. Some initial points in Table II are
used. Table VII indicates that the estimates obtained from
the nonlinear estimation method are more consistent than
those from the 3-percentile approach. Also, the boundary
points, 1/8, seem reasonable. Finally, comparison of the
actual values of z(p) and estimated values of zZ(p) indi-
cate that the fitting is reasonable. The residuals of

fitted model and the comparison of the actual and estimated

values are plotted in Fig. 1l and Fig. 12.

B. HUMAN LIFE (MORTALITY) DATA

The data used in this example was obtained from the
1969-71 life table [8] for white females in the United States.
The table has been prepared from a history of 100,000 persons:
the number of surviving, and the number dying has been given

for each age interval. Look at Table IX.

1. Estimation by Using 3-Percentile Approach

The life data is first fitted to the model (2.37)
'by using the 3~-percentile approach. Certain pth percentile
values are selected and used in the estimation process.
These results are tabulated in Table X. Investigation of

the last eight combinations of percentiles in these tables
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indicates that the limiting age, 1/8, is approximately 110,
which is reasonable. However, the first combination of
percentiles gives a good fit in terms of the sum of the
squared errors. But for these limiting age is reduced to
about 95 years. This apparently means that the fit of the
model does not represent the age above 95. Thus it can

be said that there is a trade-off between 1/8 and the sum
of squared errors. The present model simply does not seem

to fit the mortality data very well.

2. Estimation By Using Nonlinear Least Squares, and

Application of a Nonlinear Programming Algorithm

In the previous section we discussed the fact that
one of the problems encountered in the 3-percentile estima-
tion procedure was the high uncertainty of fitting, as
measure by the sum of squared errors. In order to reduce
this variability, a nonlinear estimation process is applied.
Previously it was noted that the GRG package can be used
with analytically computed derivatives and without
derivatives. If it is used with analytically computed
derivatives, it is necessary to provide another subprogram
by the user. Otherwise the GRG package will provide the
derivative, computed numerically and automatically.

The derivative of the objective function (4.13) is

the normal equations such that

70
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TABLE IX
MORTALITY DATA FOR WHITE FEMALES, 1969-71
Time # of # of Time # of # of
Interval Survivors Dying Interval Survivors Dying
0- 1 100,000 1532 27-28 97,165 70
1- 2 99,468 100 28-29 97,095 73
2- 3 98,368 65 29-30 97,022 77
3- 4 98,303 54 30-31 96,945 8l
4- 5 98,249 46 31-32 96,864 87
5- 6 98,203 39 32-33 96,777 93
6- 7 98,164 35 33-34 96,684 101
7- 8 98,129 32 34-35 96,583 109
8- 9 98,097 29 35-36 96,474 118
9-10 98,068 26 36-37 96,356 128
10-11 98,042 24 37-38 96,228 141
11-12 98,018 24 38-39 96,087 153
12-13 97,994 25 39-40 95,932 170
13-14 97,969 30 40-41 95,762 185
14-15 97,939 37 41-42 95,577 201
15-16 97,902 45 42-43 95,376 220
16-17 97,857 54 43-44 95,156 242
17-18 97,803 60 44-45 94,914 263
18-19 97,743 62 45-46 94,649 291
19-20 97,681 63 46-47 94,358 al?
20-21 97,618 63 47-48 94,041 344
21-22 97,555 63 48-49 93,697 372
22-23 97,492 63 49-50 93,325 401
23-24 97,429 64 50-51 92,924 433
24-25 97,365 66 51-52 92,491 469
25-26 97,299 66 52-53 92,022 506
26-27 97,233 68 53-54 91,516 546
71
R— p— ’




TABLE IX Cont.

Time # of # of Time # of # of
Interval | Survivors Dying Interval | Survivors Dying
54-55 90,970 587 82- 83 41,215 3,586
55-56 ‘90,383 632 83- 84 32,629 3,589
56-57 89,751 680 84- 85 34,040 3,550
57-58 89,071 730 85~ 86 30,490 3,495
58-59 88,341 781 | 86~ 87 26,995 3,425
59-60 87,560 834 87- 88 23,570 3,286
60-61 86,726 911 88- 89 20,284 3,072
61-62 85,835 953 89- 90 17,212 2,806
62-63 84,882 1,022 | 90- 91 14,406 2,531
63-64 83,860 1,098 91- 92 11,875 2,262
64-65 82,762 1,183 92- 93 9,613 1,982
65-66 81,579 1,275 93- 94 7,631 1,694
66-67 80,304 1,375 94~ 95 5,937 1,411
67-68 78,929 1,486 95- 96 4,526 1,145
68-69 77,443 1,607 96- 97 3,381 905
69-70 75,836 1,735 97- 98 2,476 696
70-71 74,101 1,862 98-~ 99 1,780 524
71-72 72,239 1,993 99-100 1,256 384
72-73 70,246 2,141 |100-101 872 277
73-74 68,105 2,312 |101-102 595 195
74-75 65,793 2,503 |102-103 400 135
75=76 63,290 2,693 |103-104 265 92
76-77 60,597 2,872 |104-105 173 61
77-78 57,725 3,039 |105-106 112 41
78-79 54,686 3,187 [106-107 71 26
79-80 51,499 3,317 |107-108 45 17
80-81 48,182 3,434 (108-~109 28 11
81-82 44,748 3,533 {109-110 17 6
72




ESTIMATED VALUES OF «a,

3-PERCENTILE APPROACH

TABLE X

8, A FOR MORTALITY DATA USING

Percentile A o g n
Values A o B 1/8
22 56 92 0.000674 0.1190 0.010550 94.7
20 56 92 0.000550 0.0404 0.010520 95.0
17 56 932 0.000508 0.0302 0.010550 94.7
16 56 92 0.000440 0.0199 0.010550 94.7
17 56 109 0.000862 0.1676 0.009069 110.2
18 56 109 0.000886 0.2389 0.009068 110.2
19 56 109 0.000908 0.3708 0.009067 110.2
17 56 110 0.000876 0.1805 0.008991 111.2
18 56 110 0.000899 9.2613 0.008989 111.2
19 56 110 0.000920 0.4188 0.008988 111.2
20 56 110 0.000941 0.9070 0.008988 111.2
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N is 110 in the case of human mortality data.

The results of estimation were shown in Tables XI
and XII for Py and a, B, A respectively. Also Fig. 13
and Fig. 14 demonstrate the actual and estimated values and
residuals of fitting.

Examination of Table XI and Table XII indicates
that the objective function values (the sum of the squared
errors) of the fitting are smaller than the objection func-

tion values of 3-percentile approach. Also the estimated
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parameter values B and A associated with Py and P3

are very close to each other. But estimated values of a
show considerable difference for the various initial values.
However, there are two important facts to notice. First,
when a increases significantly, the objective function
values remain almost constant. That is, it is not effected
significantly on the objective function values in this case.
Second, this analytical model (2.6) does not represent
deaths beyond the age 95. However, modifications can be
made in the model (2.6) for this kind of difficulty. Some

ideas will be discussed in a later section.

3. Model Modifications

In the previous section it was noted that the model
(2.6) has relatively great errors and does not accurately
describe probability of death at age greater than 95 in the
human life example. This means that the hazard function
hz(z) increases too rapidly in the wearout period. If it
is possible to slow the rate of increase of hazard perhaps a
better result can be obtained.

In Section II, it was stated that the function

R(x) describes the wearout period in bath tub type curves:
1
MmarE o

If a new parameter, Yy, is defined which is between
0 and 1 and R'(x) is now defined to be the yth power of

R(x):




1

R'(x) = ’
(L +8x)"

B>0, 0<yY<1 (4.20)

then R'(x) will provide for a slowly increasing, rather
than rapidly'increasing, in wearout period. With this

revision the model (2.6) now becomes

2 = G(x) = xL(x)°*R'(x) (4.21)

or 5
z = % (4.22)
(L + ax) (1 + 8x)Y

where a >0, 8 >0 and 0 < y < 1.

However, after we put another variable in the model,
it will be too difficult to handle in the previous estimation
technique for obtaining values of the parameters a, B8, A
and Yy because of nonlinearity and indefiniteness of the
expression (4.22).

For this reason, Yy will be assumed constant in the
previous estimation procedure. Then it will be computa-
tionally convenient. Actually, the estimation procedure
does not require any change. The nonlinear least square
estimation approach will simply be used for different values
of y. Table XIII and Fig. 15 demonstrate the parameters
estimated and the resulting objective function values. From
Table XIII, it can be easily seen that the new result has a
smaller sum of squared errors. The best value of Y seems

to be near 0.95.
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Prr=m——

] TABLE XIII
ESTIMATION VALUES OF a, 8, A
USING CONSTANT vy

|1

i r of Objective

; un LY A o 8 Value
1 1.000 0.000834 0.42950 0.01029 4,335.89
2 0.97 0.000512 0.04051 0.01182 3,119.85
3 0.95 0.000363 0.01928 0.01314 2,494.10
4 0.93 0.000740 1.06371 0.01352 2,999.11
5 0.90 0.000685 1.81283 0.01554 3,267.47
6 0.85 0.000592 5.74169 0.02031 5,099.37
7 0.7 0.000319 3.17467 0.04580 15,310.06




i T

C. CONCLUSIONS

Simple analytical hazard models have been developed
and fitted to situations (data) that exhibit bath tub
shaped hazard functions. That is, failure rates may be
high at early ages (“infant mortality"), constant at
intermediate ages, and high again for later ages ("wearout").
The procedure emphasizes representations of the inverse
distribution function; simulation is thus facilitated.

The failure time distributions so derived should be
useful in analyzing maintenance and replacement policies.

A least squares technique for fitting the hazard models

to data are suggested and applied.
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