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Abstract. Certain aspects of extromal theory for (a) stationary sequences and

• (b) continuous parameter stationary processes, are discussed in this paper. A

slightly modified form of a previously used dependence condition , leads to

simple proofs of some key results in extremal theory of stationary sequences.

Dependence conditions of a “weak mixing” type are introduced for continuous

parameter stationary processes and results of classical extreme value theory

extended to that context .

Introduction.

Even though its roots reach much further back into inathenatical antiquity,

the field of classical extreme value theory may be regarded as half a century

old - really beginning from the work of Frechet [8J, Fisher and Tippet [7),

and somewhat later given an extensive development by Gnedenko L9]. In particu-

lar, Gnedenko rigorously proved the central result that the only possible

nondegenerate limits of maxima of i.i.d. sequences (under linear normalizations)

are the three so called extreme value diatributione recognized earlier in (8)

and [7]. This result - stated explicitly in the next section - will be here

referred to as Gnedenko ’s Theorem.

In more recent years there has been a developing interest in extending the

results to include dependent sequences. Investigations have taken two main lines -

the extension of general theory to certain dependent sequences (beginning with
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the only work of Watson [16] under n-d.pend.nc., and Loynes [14) under strong

mixing assumptions), and the detailed theory (Berman Ll]) for stationary normal

sequences.

The general theory for stationary sequences has been further studied by a

number of authors under various dependence restrictions. In particular use has

been made of weak “distributional mixing conditions” suggested in [11).

Under these conditions it may be shown that not only does Gnedenko’s Theorem

still hold , but that in many cases the limiting law is the same as would

occur if the terms of the sequence were ii&dependent with the same marginal

distributions as the original sequence. Further, recent work of R. Davis ([4])

has made possible a yet more complete and satisfying statement of these results.

One of ihe purposes of the present paper is to show how a slight modification

of the previously used dependence restrictions, leads to very simple proofs for

these existing results. Thi s is described in Section 2.

Our main interest here, however , is to study the behavior of extremes of

continuous parameter stationary processes, which we shall do by relating to the

sequence case. A detailed theory is already in existence for stationary norma l

processes (involving many studies, begun by the work of Cramer [2],L3]), where

it is known that the so-called “double exponential” extremal limit applies.

Our object here is to determine circumstances under which extremal theory may

be extended to general continuous parameter stationary processes and in parti-

cular, to obtain a form of Gnedenko’s Theorem in that context.

These tasks are undertaken in Sections 3-5 where weak mixing conditions-

analogous to those for sequences - are defined and used. As will be seen, the

asymptotic form of the mean number ~(x) of upcrossings of a high level x per

un it time plays a central role in the discussion and , in particu lar , in

det.raining domains of attraction (replacing the tail l-F(x) of the marginal

distribution in the sequence case). We regard this as one of the most
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interesting consequences of the theory, and one of potential practical usefu l-

ness. At the same time this automatically restricts attention to cases for

which such means exist (excluding, for example, the more irregular ly behaved

stationary normal processes with infinite second spectral moments). It is

likely that the theory can be extended at the expense of complication (for

example by consideration of so-called “~-upcrossings”) but we do not do so here.

Finally we note that we have chosen particular dependence restrictions from

a variety of possible similar conditions. It is certainly possible that differ-

ent forms of these may prove preferable as the theory develops further.

1. Two Results from Classical Extreme Value Theory.

The field of classical extreme value theory deals substantially with

asymptotic distributional questions surrounding t4~ - maxU~11 F 2,...,~~) as n -.

where ~~~~~~~~~~~~~~~ are i.i.d. random variables (with common d.f. F). fhat is,

one is first interested in sequences {u~
} for which P {M~ < u~}converges to a

limit as n + 
~~~. In this i.i.d. situation it is almost trivial to show that if

(1.1) n(.l - F(u~)) ~ > 0 as n
then

(1.2) P{M~~< u ~) ~~e
T

and conversely.

rhe main body of the i.i.d. distributional theory is directed towards the

further study of when such convergence will occur for every x when

u~(x) x/a~ + ~~ a~(> 0) and b~ being constants. Rephrased, we ask

under what circumstances it is true that

(1 .3) P(a~(M~ - bn) <x ) 
+ G(x) 0

at each rea l x (or at least for continuity points of C). Clearly such a C Is

~~~
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non-decreasing with values between zero and one. It is, in fact quite readily

shown (cf. [5] or (12]) that if C is a non-degenerate d.f., then it must be

max stable in the sense that for each n—1 ,2,... there exist constants %>o,8

such that G~(x) * G(ct~x + B )  for all x. Further it is not too difficult to

show (cf. [5], [12] that the “max stable” distributions consist precisely of

the following three general “types” (the so called “extreme value types”).

Type I: (3(x) exp(_e
_x
) , -~~ < x <

Type II: CCX) - exp(_xa) (ct > 0), x ‘ 0 (zero for x <

Type III: (3(x) exp(-(-x)a) (a > 0), x < 0 (1 for x > 0)

(In these x may be replaced by ax + b for any a > 0, b)

From these results we see that the only non-degenerate d.f.’s which may

occur as limiting distributions of maxima of i.i.d. sequences as in (1.3), are

the three extreme value types. As noted above, we refer to this as Gnedenko’s

Theorem.

Further, classical extreme value theory provides necessary and sufficient

conditions on F to ensure that it gives rise to any one G of the three possible

types (i.e. that F “belongs to the domain of attraction of C”). These condi-

tions mainly involve the behavior of the tail l-F(u) of F as u increases. For

example if 1-F(u) is regularly varying with exponent -a as u co , then F is

attracted to the type II limit law (cf. [5]).

2. Dependent Sequences.

?4~ch of the cla~sical theory may be extended to apply to (stationary)

depend ent sequences if the dependence is not too strong. One suitable depen-

dence restriction is that of strong mixing under which Gnedenko’s Theorem

certainly still holds ([14]). However, strong mixing imposes a uniformity

which is not needed in this context, and weaker forms of mixing will , in fact, 
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suffice. One convenient such condition is the following which we shall call

the “distributional mixing condition D(u~)”. Specifically, wri te F1 ~ , ~l 2 ~
” n

to denote the joint d.f. of F,~ 
~~ 

, F. 
~ 

(U) • F~ ~ 
(u,u,. . .u), and

l~” n 1l.~~ n l ••• n
let {u~) be a real sequence. Then D(u~) is said to hold if for any choice of

n b PP P’P P + P ~ ~~ 
~l 

< < ip < < j
~
, j~~i~ 1..

(2.1) 
‘l ~‘ 

~1
•
~ 

(u) - F1 ~ 
. ‘~~ 

Fj •
~~ 

(u~)I <

where a ~ 0 for some sequence 
~n 

- o (n) .

The following lemma is fundamental in studying the extremes of dependent

sequences. This lemma is a modified version of Lemma 2.5 of [11] to which we

refer for proof (cf. also [12) Lemma 2.3).

Lemma 2.1. Let the atationary sequence i~~} Batiafy v(U~). for a giVt.~f l

sequence (ti~~} of constants. Then

P {M~ < u )  - Pk{M < u~} + 0 as n ÷

for each integer k ((n/k] denoting the integer part of n/ k c~nd

Mn

ihe proof of this result - contained in the references cited above -

invo lves the standard technique used under mixing conditions of consider ing

k slightly separated subsets Il•• •‘k of (1.. .n) and showing that the 
maxima

on these subsets are approximately independent.

By means of this result, it is almost trivial to extend Gnedenko’s Theorem

to include a wide variety of stationary sequences. While this is proved in [Ill

we sketch a simplified proof, here based on Lemma 2.1 .
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Theorem 2.2. Let {~~} be a stationary aequenoe, M~ - maxU,1,. ..,~~~ ) and

suppose tha t for some constants (an > 0), (b
n

} we have

P {an (M - b i  ‘ xl 6(x)

where C is a non-degener~ite d.f. If D(u~) holds with u~ - x/a~ + ~~ for each

x, then C is one of the three extreme value forms.

Sketch of proof: Wr iting u x/an + b we have P01 u )  ÷ 6(x) and hence by

Lemma 2.1, P(M [n/k] < u~) ÷ (3~ ’I (~) for each fixed k. This is true with nk

replacing n so that P{M~ Link) Gl/k(x) or, rephrasing,

1/kP{a k(M - b
nk) < xl + G (x)

Thus for a fixed k, M~ has the non-degenerate limit 6
l/k with normalizing

constants anki bflk as well as the limit (3 (with normalizing constants ~~~~~~

But a well known result of Khintchinc (cf L6] and (12]) shows that if two such

non-degenerate limits exist, they must be the same apart from a linear trans-

formation of the argument, i.e. 6(x) - G1~~(c*,,~x + for some as
K 

> 0,

This shows that C is max stable and hence an extreme value d.f. by the remarks

regarding the classical case in Section 1.

The other result of the classical theory quoted - the equivalence of (1.1)

and (1.2), also extends to this dependent context, but requires a further

restriction. One such convenient condition - which we refer to as D’(u~) -

is the following

[nIkJ
(2.2) (D’(u )) u r n  sup n ~ P (F

1 > U , ~~~. u }  -. 0 as k
n-Ia. j.2

(in which ( ] denotes the integer part). The first part of the following

result has been known for soe~e years ([11]). A version of the converse part

was obtained recently by R. Davis [4] under a slightly different D’-condltion.

Here we give a very simple proof using the present form of (2.2) .
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Theorem 2.3. Siqpeee tha t D(u~) U’ (un) hot~1 f~’r ~~. eta t~ “&.u’y ~~~~~~

(C~}, where (u~ } is a ~zii ’eP * sequence of a Qfls t4rn ts. rf (1.1) holds

(i.e. n P(~1 > u~ r) then (1.2) halds (i.e. P04 < u )  -~~

Proof: Fix k and write , for each n, n’ a [n/k]. Using the fact that

(t4~, “ u • U (~~ ‘ u~), standard inequalities for the probability of a union ,
i— I

and stationarity, it Is simply shown that

(2.3) 1 — n’(I — F(u~) )  
~. P {Pç~, U

11
) .z 1 — n ’(l — F(u1~)) + Sn

where S~ - n’ ~ P (~1 u~, C~ > u~) and h a  sup S~ a o(k 1) as k •
~~ 

a. by D’(u~J .
fl-Ia.

If (1.1) holds, 1 - F(u~) ‘.. i/(n ’k), so that n 
-
~~ in (2.3) gives

1 - i/k ‘. I irn tnf P(M , ‘. u~) S 1 tin sup P04~ , u,~) ~z 1 - ~/k + o(k 1)

By taking kth powers throughout, using Lemma 2.1, and letting k -
~ we see that

(1.2) holds .

Conversely suppose that (1.2) holds . Then (2.3) gives

1 - P(N , ‘ u~l ‘ n’(l - F(u )) < I - P(t4~ , ‘~ u~ } + S~

where P(M~’ < u,~) -~ ~~~~ by (1.2) and l,eaaia 2.1 so that we obtain

- •~~~
k 

~. k~~ lim lnf n(l - F(u~ ) )  k 1 h a  sup n(1 - Fl.u~))

~ 
- 0-T/k • o(l/k )

from which by multiplying by k and letting k •‘ ~~, (1.1) follows.
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The importance of this result may be soon from the following corollary,

which shows in particular that under D, D’ conditions the same limit (if any)

occurs in the dependent case as would occur if the sequence were i.i.d. That

is the maximum for the stationary sequence then has the same asymptotic distri-

bution as it would if the individual terms were independent with the same

marginal d.f. Hence the tail of this d.j. may still be used in criteria to

determine don~zins of attrtwtion. In this corollary Mn will be used to denote

the maximum of n independent random variables , each having the same marginal

d.f. F as the ~~~..1

Corollary: Suppo se tha t D(u
11
), D’(u1~) hold for the stationary sequence tE~}.

Then P {M~ < } -
~~ 

> 0 if and only if P {M11 
< u

11 I 
÷ p .

In particular suppose ti~at fo r  some constants a1~ > 0, b~. D(u11
), L) ’( u~ )

ho 1. i wit i~: u~ = x/a
11 

+ b far each x , ~mJ C a non-dags~inera te d. f. Then

P{a
11
(M

11 
- b

11
) x l  + G(x)

if and onl:i if

P {a
11
(M

11 
- b j  xl + (3(x)

and C is, of course, necessarily then one of the extreme va lue types.

PROOF. the first part follows at once from the equivalence of (1.1) and (1.2)

writing (p e ’~) in both independent and dependent cases. the second part

follows by identifying p and 6(x) where (3(x) > 0 (and using continuity where

(3 0 - each extreme value d.f. being continuous). H

Finally in this section we note that the conditions D(u~)~ D’(u~) are

satisfied when {E,~) is a stationary normal sequence 
under appropriate restric-

tions on the covariance function. The simplest of these is that the covariance
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fw~ct Ion (rI should satisfy r~ lu g n (I as n j ”. hut cven weaker ~~~~~ i t

yet are known cf. 113]).

3. Continuous Parameter Processes - General Framuwo~k .

We turn attention now to a stationary process (i.(t): t ~ ol in conttnuous

“time”. It will be assumed , without further comment , that  ~( t )  has (u . s . )

cont i nuous sample func t ions , and cont inuous one-dimensional  d i s t r i b u t i o n s . I f

E is any set of real numbers we w r i t e  MU - i = sup 1~~(t ) : t I ) , and N
~1
(E) (or the

number of upcrossings of a level u by ~At) in t h e  set F .  it will he c o n v en i en t

to w r i t e  ‘~( t ) ,  N~,( t )  whet~ ~ a (O .t j

Our interest lies in asymptotic di s t  r i b u t  lonu l  propert ie s  of M(T) whei~ I

becomes large . Since for an integer n

(3.1) M(n) — m ax ( ,  

where

max{~ (t): i — 1 ‘ t il

it is reasonable to expect that the propert ies of M(T) may be approached v i a

the theory for sequences . Ot. course the members of the sequence are •i. ’ t  now t he

ori g inal r .v . ‘s of the process , but t h e i r  .&-~~
-
~~ : ‘.~~~ i.red te~~’.~?e. t Ie n ct~

our basic d i s t r ibu t ion  P(~~ ~ x )  of the sequence case must be replaced by the

distribution of i . e .  P (~.1 xl  P t m ax ( ~~( t ) :  0 t 1) x l .  Since i t  is

the tail of this distribution which plays a cruci al role (e.g. In (1.1)), one

F of our first tasks must be to discuss the asymptotic behavior of P ( M L I )

i.e. the t a l l  probability for the maximum over a f i.r1 J Interval. The other

task - to obtain convenient distribut ional m i x i n g  conditions on the ~ ( t )  to

ensure that appropriate D(u~). U’ (ti fl
) t-on dit  ion s hold for the 

~~~~ 

Se’qUefit’t’ - W i l l

be taken up In Section 5. 

S ~~~~ ---5. - - ---- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -— —~~~~~~~~
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Before embarking on these tasks it is convenient to give the following

form of Gnedenko’s Theorem assuming that the “partial maxima” 
~ 

satisfy appro-

priate D(u~) - conditions. A more complete statement will be given in Section

S where, as noted, conditions on the ori gina l process 1(t) will be obtained .

Theorem 3. 1 - ~~~~~~~~~ that j ~~~
- c-ne f ~sni i, e  (~J ~~~1eta nt6 ( a.1. “ LI I , {b.~. ‘~~ h~ ’’

(3 .3 t P {a
T

(M(T 1 - b
1) < xl G (x), as I

a ~:u ’i— ~J ent z ’z  t 1 J .  . G), and tha t  the ’ (
~~. I ‘ j & ~ k~~~ J c f i n e ~ l ’~l ( 3 . 2 )

~‘f ee  U(u ) t.~ht ’n.~:’~ r u = x/a + b (j’’!- -~~~~z ~f.rt -~! real x)  - T~e~: (3n n n n

~f the t hree extrer i,_’ ~‘: l ; ~ ’ tq ~ e.

Proof. (3.3) must hold , in particular , as I -‘ throug h in tegra l  values . Since

the -sequence is clearly stationary , tt’e result follows by replacing ~~ by

~ 
in Theorem 2 . 2 , and using (31) .

Corollary: Tht~ ~-~‘~~:~~
‘ t h ’lJe in ; ‘~o-~ ~tw  f :~~ D(u j ‘~~~ t : . e z~’e ~~ l z ~-~~

!‘‘ i the ~ r ?p t Len t ~~ I :. (t  ) I i~ or ~ ‘‘~~_~ i c’, ‘: ‘. ~
- ‘ 

~ 
•
~~ ~ 

-,:
~
.4
,

s tx ’onii~i 
• •  and thus .;z t !~~‘1~’ z~ D( U ) — - n l i t  :~ “~ -

4. Maxima over Fixed Intervals.

As noted above, the trail of the distribution of the maximum of ~(t) in a

fixed interval (e.g. [0,1]), plays a crucial role with respect to the asymptotic

distributional properties of M(T) as I ‘. According ly we consider here the

behavior of P01(h) > u} as u -~ ~ for a fixed h. We shal l relate this simply to

the mean number of upcrossings of the level u, using the notation N
~
(E), N (t)

as defined above. Here we assume the finiteness of first and second moments of

such quantities as N(h .I. These would usually be checked from known formulae

(cf. Ll OJ) giving these moments in terms of distribut ions of F~ and its

- -5 -— -- 5 -  - - - -~~~ —-- —S~~~~~~~~~~ --—-5 - - - - - -
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derivat ive (cf. t:qn. 4.4 below). In cases where these moments are not finite ,

it appears possible to couch th e  discussion in ter’n s of the 51)-called

“t-upcross ings” ([1St .), but we do not attempt to do so here, for the reasons

expressed in the In t roduc ti on.

For t - -. 0, write

(4. 1 ) = P {~~(0i •- u • — E,(t)}/t.

It is easil y checked that i f (for f ixed t i) a sequence q
~ 

0 may be found

such that  u r n  inf  I (u)  — ~~ . then u r n  I (u) ex i s t s , f i n i t e , and
n-~~ 

1n q-~O 
q

(4.2) TI 1= ~ Lu)) = E N (0,1) = u r n  i (u)
q.O~~

We remark in passing that ~~~~ may he s imply  wr i tten in terms of the

distribution of zjO), ( t )  and that if this is absolutely continuous 14 .2) m a y

be transformed to give

(4.3) I
~~

(t1) = f dz f~ ~~~~ 
- tx ,z) dx

where p
~
(x,z) is the joint density for ~(O) and (~~(t)  - ~~O)/t. This leads

easily - wider appropriate conditions - to the well known expression

(4 .4 )  = z p(u ,z)dz

where p is the joint density for F,(0) and its derivative C’(O) (cf. LlOi ). For

examp le th is may be evalua ted when E~. i s a standard (zero mean , unit var iance)

stationary normal process with covariance function r ( T ) , to give
2

Ii ((-r”(0))~ /2 )]e
U /2

In our situation here, u is not usually fixed , and we shall want to let u

S converge to the right hand endpoint (finite or infinite) of the distribution F

of ~ ( t ) .  We shall use “u -~ 
cc” to denote this , with the understanding 

.~~~~~~~~~~~ 
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that this is to be replaced by “u + b” if F has a finite right hand endpoint b.

We shall sometimes (though not in this section) need the further assumption

that q ~ q(u) may be chosen depending on u so that

(4.5) Iq(U) “ i~ 
as u -~

(i.e. lint I _ (u)’~. ~ ~ 
Cu) as u -~ o). This assumption may be verified fromq q~~)

(4 .3) , for example in the case of stationary normal processes, under appropriate

conditions.

We also at times require the following condition

(4.6) E N (h)(N (h) - 1] o(i) as u

for a given fixed h. This is an intuitively appealing “regularity” condition

which asserts that E N~(hJ is appropriately close to E N~
(h) which will be the

t S

case if N
~
(h) is zero or one with high probability, i.e. if P {N

~
(h) > 1} is

appropriately small for large u. (4.6) would be verified in practice by using

(4.4) and the corresponding result giving E N
~

(h) (N
~
(h) - 1) in terms of appro-

priate joint densities ([10]).

The following result gives the desired tail distribution for the maxima of

1 (t) over fixed intervals.

Theorem 4.1. Let h be fixed. Suppose tha t (4.8) holds for the stationary

prooese {~ (t)}, and tha t P {E~(0) > ul = olu) as u ~~~. (~i = ~i(u) = E N
u
(O
~
l))•

Then

(4.7) P04(h) > u) “~ ~i h as u -, co.

Proof . Clearly

(4.8) P04 (h) > l} < P04(h) > ul < p{~ (0) > u} + P {N
~
(h) > l}

~j  h + o(li )

—-—5 -
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by assumption , and since P (N u (h) 1) E N 1~(h ) a p h. Now if

a P (N u (h) • j}, we have

E N~ (h)(N~ (hJ - 11 a 
~~ J ( J - l ) r ~ ‘ ~ jP~ - ~i h - P (N (h) s
j.2 j.2

so that

P(N (h) “ L I ‘ P(N (h) a p h — t N (h) IN~
(h) — 1]

— p h — o(p)

by (.+.6). Hence from (4.8),

p h — o(p) ‘- P{M(h) “ ul p Ii + o(p)

from which the result follows . (1

From this result with h a ~ we see at once that P(1~1 
> u) ‘~.a p (with 

~
defined by (3.2)). Hence if assumptions on C(t) can be found under which the

c~ satisfy appropriate L)(u~). l)’(u~) conditions , then th~ sequence theory

app i Los to M (n) ~1i m ’ t ’n by (3.1) pro vided the junotion p~u) is uBed in 1 iou Of ’

th’ tail of the di~.tribution (e.g. in (1.1), or In classical criteria for the

domains of attraction). As with Gnedunko ’s Theorem (Theorem 3.1) it will he

convenient to state these results explicitly here under D (and D’) assumptions

for the s’s, completing these results In Section 5 where the dependence condi-

tions will be recast in terms of the original process {C(t)I.

Theorem 4.2. Suppose that the coudit ions of Theorem 4. 1 are satisfied by the

stationary process (t.(t)) wit h h a 
~, let (u n ) Fe a sequence of constants , mil

wri te UT U (TJ .~~~~ e~ iah T > 0. Suppoes tha t the 8&qL4CP It * { C~ J (defined by

~3.2) ) sa t is f i e s  D(u~) , D ’ ( u )  . Then, for a ~ji0en ~‘ 0,

(4 ,9) P04(T) < u.s,) 0~~~ ~~~ ‘1.

1~-5 — - - -5--- - --
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i f  and on 
~~ if

(4.10) ~~‘ i/I as T

or equ i ~‘a l~ ‘ if lu 1/ ’ md i n / i  U ’

( 4 . 1 0 ) ’ p = P ( U
r

) i’-’ r~~ as n

Proof. It is clear that (4 .10) and (4.10)’ are equivalent from the definition

of u.1. as u(TI~ 
If (4.9) holds, it holds as T through integral values . It

then follows from Theorem 2 .3  that nP {t~1 ~ u~ } ~ i and hence from Theorem 4.1

that (4.10)’ holds, as required.

Conversely If (4.10) ’ holds it follows similarl y from Theorems 2.2 and 4.1

that P04(n) < u l  e~~ . Now i f n denotes the integer part IT] of 1, we ha ve

P04(T) ~— u~
) — Pj M(T ) ~ u~~

P04(n) ‘- u~) - P04(n) < u M(T)} .

As noted the first term converges to e~~. Rut the second term is dominated by

u~ } a P {~1 
-‘ u~} ~ 

p~ by Theorem 4.1 , and p 0 by (4.10)’, so that

(4.9) follows. H

Corollary 1. Suppose that the conditions ( If  ih1 - ’orems .~~. 1 and 4. 1 hold and tha t

the {c~ } sequence also sat i sf ies  V’(u~)~ f o r  a l l -  u~ of the J ’oi~n x/a~ + h ,, .

Then C ( X )  is prec ise! ’, the extreme Va tue i. f .  which i~~u I d l ’s obtained j ’
~ 

1 r t ime

ntax ’jj ia f4,,~ a max (~ 1 . . 1 )  of an I .  I .  il. ~~~~~~~ ~~~~ 
t,,  . . . whose ta-i ? (list r il ’u—

tion satisfies

(4.11) P(~~ > x )  “a p ( x )

Thus the classical criteria for domain of attra ction may be apV lf ~-’iI  with

uI~) replacing the tai l ‘iintr ibtuiou ‘f the sequence tei~ie.

_ _ _ _ _ _ _ _ _  
IJ
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Proof: By the theorem we have that 
~~~ “ i/n  where r a -log G(x), whenever

G(x) 0. Since pft,1 
“ xl “a p (x) by theorem 4.1 , there exist 1.I.d. random

var iab les ~ (having the same margina l d ist r ibu t ions  as C1) satisfying (4.11).

Hence P {C~> u~} “a p (un) 
a “a ‘tin so that P(~~ ‘ u,~} - e t . Rephrased , this

states

PIH n (M n — b~ xi (;(~)

as required . II

Conversely the followIng result Is similarly proved .

Coro 1 lary 2. ~‘uppose tha t the oondi t ions of i’h~oi ’,’nm 4. 1 hold and that t he ~e ~

I .  i.d. rtzndom vuri zl ’tes . . ouch tha t P(a~ (~ 1~ — h~) ‘~ x l  4 G (x) fo r  i,ori. ’

,*. ‘n— isneru f e C, c’o pse r an to a,~ ~‘ 0, b~ , M,~ ‘ max ~~~~ , . . . ~~) ani  su ’h f -h a t

P x } “a p (x) as x .
~ ‘. If ’ 1) (un) , U ’ (ii I at’e sat isfi1 ‘~ I ?‘~ the soqi~e~~’e (

• f o r  . il  i’ ~~ of the f o i,n x/a .b~ t hou Pta.r(M(T) — b,1,) < xl • G(x) (wher e

• a (.1.)~ b1 • ‘
~[TJ~~ 

H

It may seem curious that it is the tail 1-F(u) of the distribution of one

of the random variables which is central in the sequence case, whereas the moan

number of upcrossings of a level per unit  t ime plays the same role in the

continuous context. However, it is worth noting that for an i.I.d. sequence,

the probabil ity of an upcrossing of a level u in unit  t ime Is P(~~~ 1 
( U C1) -

P (u)Il - F(u) J “a 1 - F(u) for large u . Since only zero or one such upcrossing

may occur in unit t ime , thi s Is a lso the mean number of such upcrossings per

uni t tima . Thus the ta Il 1 - flu) of the distribution is , in th. discrete case ,

a lso the asymptot ic form of the moan number of upcrossings cif u per unit time ,

and so natur ally corresponds to p (uJ In the continuous case .

_ _ _  a
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5. Dependence Restrictions for ~.(t).

In the sequence case we used the conditions l)(u~). fl’(u~) to restrict depen-

dence. We now define continuous analogs (Dc(Un I
~ 

H~(u~)J of those conditions

which will apply to the process ~(t), and may replace the 0, 0’ requirements for

the l~ -sequence in the previous theorems.

The condition D
~
(u) is the following analog of D(u~)~ where again (u,1 .t is

any real sequence. In this I Cu) is defined by (4.1) and if Ft ~q n
denotes a finite dimensional d.f. of C(t), 

~ ~ 
( U)  is written for

I ’’’ n
F (u...u).tl.. .tn

Specifically {C(t), will be said to satisfy Dc (un) if there is a sequence

(%l. 
~~ 

-. 0 as n ÷ “ such that lq
(U~) ~‘a u,~ ~ iflu~) us n -‘ and, for any

S 

integers n, i1 < i2 ... < i~ s j1 .. .<j~ , < n/q,~, j1 - i > Q,,/q we have (writing

q~~~~~ q)

(5.1) IF. - . (U ) — F. (u ) F. - (u ) I  ai1q.. .ipq,J 1q. . .j~,,q n t 1q. . .i~q a ~1q. . •j~~,q ii n ,9

where - 0 for some sequence t,1 o(n) .

In discussing D(u~) for the Ca-sequence , i t  w i l l  be convenient to first

F obtain the following lemma, which enables us to approximate the maximum of F~ in

a fixed interval by the maximum of discrete values ~(jq) for points jq (j0
,l ,2.. .J

in that interval . In this lemma, and subsequently, N,~~ (h) will denote the number

of upcrossings of the level u by the sequence I.(jq) in a set E, i.e. the number

of integers j such that jq I~ for which ~(,jq) ~ 
u < F((j+1)q). We also wrIte

N~
’0(t) when E - [U t ) .

Lemma 5.1. Suppose that (4.5) ho l ds . Thou, as u + ~~, if I is an in terva l of ’

ftxed length h,

(i) ~N~~~(I)  • p h + o(p)
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(ii) If also P(~ (U) ‘ u} o(p) , i-hen we

Pt U (~.(jq) u) } — P{M(I ) ul o (iiI
jq
~

t

w U (uni f ~~n!-~ in m l ?  su~’h f i xed l~’~~t h intervals) .

Proof. ~i) the number , m=m , say , of poin ts jq 1 , clearly satisfi es a - ‘ -  h/q

as u so that , by stattonerity,

E N~~~ ( l )  m P {t~(O) ‘- u 
~.(q) ~‘ h I q tU) “.

by (4.5) , so that (i) follows .

(ii) l’he difference in probabilitie s is clearly non-negative and dominated

by

(5.2) P(t~(a) ~‘ u~ P{N (I I 0, N~
’
~~(l) = 0)

if a denotes the left hand endpoint of I. But the first term is equal to

P(f~(0) UI • 0(p) and the second is dominated by

P (N
~
(r) - N~~~(1) 0~ E(N~,(l) - N t

~~(i)) (N~ 
- being non-negative) so

that (by (i)), (5.2) does not exceed

p h - [p h + o(pfl # o(p) = o(p)

as required . H

By using this lemma we may now obtain conditions under which D(u~) holds for

the sequence t~~ t . We write ~~ ~ (u~ ) for the moan number of upcrossings of tin

by C(t) per unit time .

Lemma 5.2. Let (U n ) l ’e cm mWqueP Iot ’ of ’ cons tants a,m I suppose tha t ’ D
~
(u
~
) holds ~t~’r

the pro cess ~(t) . :~upp~ so a? no tha t n p,,, is bounded, and P (C (U) u~) — o

Then the sequence (r~ I of ~ri,zxi,m~ of ‘i’ s ’i~ I he m t  e,’i ’rln [n — 1 ,n J  , eat m e f :  ~e 0(u ,1 ) 

--
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Proof. Fix n, i1 < i2... l~, ‘- j1...<j~,, 
< n , j1-j~, 

> Q .  Let q-~~ be chosen so

that (5.1) holds. ‘rhen, writing Ira[ir
_ l )ir]J 

.J = (j -l ,j J ,  we have , by Lemma 5.1 ,

p
0 <P{ fl {C(jq) u~,jq ‘r1n ~ 

{~;(jq) < u~ ,jq J5)}
r— 1 s— I

~ 
p 1

- Pt (~ R. < u ) ~ (‘I (r,. ‘ un))
r=l r s— I s

< (p + p1) o(p~) o(np )

which tends to zero as n — since np~ is bounded . By applying this as stated

and also to the group s of c.nd J5 
intervals separately, we see at once that the

— difference, R~ . say , between

-

~~~~ 
p 25~ 

p p
(5.3) IP{fl ~~~ ~ u~)~ (1 (r~ ~ u~)} 

- Pt (“t (r.~ ~ 
U
n
)) P{fl (r.~ ~

ral r s=l s r=1 r sal s

and

(5.4) I~
{ 
~~ tC (jq) < u~, jq ‘r’fl A H.(jq) < u~, jq J )
r—l s—i

p p t

— P{ (% (i,(Jq) < ~~ jq lr)} P{ fl (l;.(jq) ~~. 
u~, jq c J5 ) I

r—l s—i

tends to zero as n — ~~~ . But since the smallest jq in any J5 is at least

and the largest in any 1r is at most i,~
, (5.1) shows that (5.4) does not exceed

~~ where a + 0 for some sequence Ln 
o(n). Hence (5.3) does not exceed

- ~~~~~ + R  and -
~~ 0 for + 1 , so that the sequence ~~~

satisfies D(u ) as asserted. Li

The continuous version of Gendonko’s Theorem (Theorem 3.1) may now be

restated in terms of conditions on the process ~,(t). 
S

Theorem 5.3. Suppoe e tha t for some families of constants (a.~ 
0), (bT) we have

~
t
~’r (M(T) - bT) ~ xl (;(x)

-S 
_ _ _ _ _ _ _ _ _ _ _ _
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a non—~ k’a~’nt ’rate ’ Lf. G and tha t, for each aequfsnc(’ U~ {x/a,~ + b~ ) (~i l

i’ t ’a x), {~Jt) ) eatieJ ’it ’e D (u ) and P {C ( 0 )  > ul = o~p) , I in sup n ~j 
•~c n n

p = p(u) , p = p (u) . Then C in one of the t-hr, ‘ € ‘~ t r. ri • value typ~’e.

‘h! f ~ l l~ ‘we a t once f r o m  Theorem .~~. 1 and Le,vria ~~~. :‘.

The condition D .(u )(and the other conditions of this Theorem) are not too

difficult to verify when C(t) is a normal process. The appropriate I)’ condition

for the continuous case - which we shall call D~(u~)_ is simpler to state and

more interesting than D
~

(u
~
), though evidently also more difficult to verify . Like

Dc(Un
)
~ 

D
~
(Un) is a natural analog of the corresponding sequence condition (D’(u~

)).
S 

Specifically, we say that tC(t)l satisfies D~(u~). for a given sequence

(u I, if

(5.5) u r n  sup E N ([n/kl)(N (tn/k)) - 1) = o(k~~) as k ‘+ c= .

We note that while this seems formally quite different from the stated L)’(u~)

‘ condition for sequences, the difference is somewhat illusory, since the sequence

condition may also be recast in terms of a second factorial moment (of numbers

of exceedances). Theorem 4.2 may now he restated in terms of the assumptions

D , D ’ as follows.
C C - -

Theorem 5. 4. Lot {un} be a sequence of ’ constante, U.1. = U [ f l .  Suppose that the

stati onary p roc ess (C(t)} satisfies Dc(Un)t D’(u~), that (4.8) ho lds and that

P(1(O) > u} — o(p) as u -
~~ ~~~. Then (4. ~) holds (P {M(T) < U.1.) -~ e T) if and only

if (4. 10) holds = p(u.1.) “u

Proof: For fixed k, writing n ’ - tn/k l and arguing as in Theorem 4.1 we obtain

(5.6) n’~&1.~ 
- E N ( n ’)(N (n ’) - 1) ‘- P ( M ( n ’) > u~) < P(C(O) > u )  +

If (4.9) holds since the central term of (5.6) does not exceed Pft4(n) u I

L _ _ _ _ _ _ _
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which converges to l_e t
. it follows from the left hand inequality in (5.6) th at

n’ C and hence n u~) Is bounded when k is chosen so that the left hand side

of (5.5) is finIte. 11 (4. 10)  ho lds it is triv ia ll y t rue that  n is bounded .

Hence under (4.9) or (4.10), by Lemma 5.2 the sequence (c~) of maxima of ((t)

over the intervals [n-I ,nJ, satisfy D(u~). Hence also by Lemma 2.1 (with for

(5.7) P04(n) - u l  - Pk (M (r )  ~- u } . 0 as ~ +

for each k. The rest of the proof now follows the same arguments as in Theorem

2.3. For example if (4.10) holds we may let n — ~ in (5.6) and use (5.5) to

obtain

1 - T/k ‘- u r n  inf PIM(n ’) u,~} c h a  sup P(M~(n ’) < u~}
f l~(~) n-’~

‘~ 1 - r/k + o(1/k)

from which (4.9) follows by taking the kth power, using (5.7) and letting k

Similarly (4.9) implies (4.10). ii
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