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On Extremes of Stationary Processes

by

M.R. Leadbetter*

Abstract. Certain aspects of extremal theory for (a) stationary sequences and
(b) continuous parameter stationary processes, are discussed in this paper. A
slightly modified form of a previously used dependence condition, leads to
simple proofs of some key results in extremal theory of stationary sequences.
Dependence conditions of a '"weak mixing'" type are introduced for continuous
parameter stationary processes and results of classical extreme value theory

extended to that context.

Introduction.

Even though its roots reach much further back into mathematical antiquity,
the field of classical extreme value theory may be regarded as half a century
old - really beginning from the work of Frechet [8), Fisher and Tippet [7],
and somewhat later given an extensive development by Gnedenko |9]. In particu-
lar, Gnedenko rigorously proved the central result that the only possible
nondegenerate limits of maxima of i.i.d. sequences (under linear normalizations)
are the three so called extreme value distributione recognized earlier in |8]
and |7). This result - stated explicitly in the next section - will be here
referred to as Gnedenko's Theorem.

In more recent years there has been a developing interest in extending the
results to include dependent sequences. Investigations have taken two main lines -

the extension of general theory to certain dependent sequences (beginning with

'Research supported by Contract N00014-75-C-0809 with the Office of Naval Research.
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the only work of Watson [16] under m-dependence, and Loynes [14] under strong
mixing assumptions), and the detailed theory (Berman |1]) for stationary normal
sequences.

The general theory for stationary sequences has been further studied by a
number of authors under various dependence restrictions. In particular use has
been made of weak 'distributional mixing conditions' suggested in [11].

Under these conditions it may be shown that not only does Gnedenko's Theorem
still hold, but that in many cases the limiting law is the same as would

occur if the terms of the sequence were independent with the same marginal
distributions as the original sequence. Further, recent work of R. Davis ([4])
has made possible a yet more complete and satisfying statement of these results.
One of the purposes of the present paper is to show how a slight modification
of the previously used dependence restrictions, leads to very simple proofs for
these existing results. This is described in Section 2.

Our main interest here, however, is to study the behavior of extremes of
continuous parameter stationary processes, which we shall do by relating to the
sequence case. A detailed theory is already in existence for stationary normal
processes (involving many studies, begun by the work of Cramér [2],|3]), where
it is known that the so-called ''double exponential' extremal limit applies.

Our object here is to determine circumstances under which extremal theory may
be extended to general continuous parameter stationary processes and in parti-
cular, to obtain a form of Gnedenko's Theorem in that context.

These tasks are undertaken in Sections 3-5 where weak mixing conditions-
analogous to those for sequences - are defined and used. As will be seen, the
asymptotic form of the mean number u(x) of upcrossings of a high level x per
unit time plays a central role in the discussion and, in particular, in
determining domains of attraction (replacing the tail 1-F(x) of the marginal

distribution in the sequence case). We regard this as one of the most




interesting consequences of the theory, and one of potential practical useful-

ness. At the same time this automatically restricts attention to cases for

k . which such means exist (excluding, for example, the more irregularly behaved

stationary normal processes with infinite second spectral moments). It is

likely that the theory can be extended at the expense of complication (for ;

example by consideration of so-called "e-upcrossings') but we do not do so here.
Finally we note that we have chosen particular dependence restrictions from

a variety of possible similar conditions. It is certainly possible that differ-

ent forms of these may prove preferable as the theory develops further.

1. Two Results from Classical Extreme Value Theory.

The field of classical extreme value theory deals substantially with i

asymptotic distributional questions surrounding Mn = max(ﬁl,ez,...,zn) as n + ,
where El,gz,..., are i.i.d. random variables (with common d.f. F). ‘that is,
one is first interested in sequences {un} for which P{Mn :_un}converges to a

limit as n + ». In this i.i.d. situation it is almost trivial to show that if

1.1 n(l - F(“n)) +1>0as n >
then
(1.2) PM <u }e"

and conversely.

' The main body of the i.i.d. distributional theory is directed towards the
further study of when such convergence will occur for every x when

u, = un(x) = x/nn + bn’ an(> 0) and bn being constants. Rephrased, we ask

under what circumstances it is true that
(1.3) P{a (M, - b)) < x} + G(x)

at each real x (or at least for continuity points of G). Clearly such a G is

a A




non-decreasing with values between zero and one. It is, in fact, quite readily
shown (cf. [5] or [12]) that if G is a non-degenerate d.f., then it must be
max stable in the sense that for each n=1,2,... there exist constants ah>o,sn
such that G"(x) = G(anx + Bn) for all x. Further it is not too difficult to
show (cf. [S], |12] that the "max stable'" distributions consist precisely of
the following three general '"types'" (the so called '"extreme value types').

Type I: G(x) = exp(-e™¥) , o< x<w

Type II: G(x) = exp(-xa) (e > 0), x >0 (zero for x < 0)

Type III: G(x) = exp(-(-x)%) (a > 0), x <0 (1 for x > 0)

(In these x may be replaced by ax + b for any a > 0, b) .

From these results we see that the only non-degenerate d.f.'s which may
occur as limiting distributions of maxima of i.i.d. sequences as in (1.3), are
the three extreme value types. As noted above, we refer to this as Gnedenko's
Theorem.

Further, classical extreme value theory provides necessary and sufficient
conditions on F to ensure that it gives rise to any one G of the three possible
types (i.e. that F "belongs to the domain of attraction of G"). These condi-
tions mainly involve the behavior of the tail 1-F(u) of F as u increases. For
example if 1-F(u) is regularly varying with exponent -0 as u + «, then F is

attracted to the type II limit law (cf. [5]).

2. VDependent Sequences.

Much of the classical theory may be extended to apply to (stationary)
dependent sequences if the dependence is not too strong. One suitable depen-
dence restriction is that of strong mixing under which Gnedenko's Theorem
certainly still holds ([14]). However, strong mixing imposes a uniformity

which is not needed in this context, and weaker forms of mixing will, in fact,




suffice. One convenient such condition is the following which we shall call

the "distributional mixing condition D(un)". Specifically, write Fi i i
1igeeeiy

to denote the joint d.f. of Eil"'ein' Fil"'inlU) = Fil...in(u,u,...u), and

let {un} be a real sequence. Then D(un) is said to hold if for any choice of

p . : 4 2 T T
n, P, P P+ P SN, 0 <y < ip Ry vis 9 Jp, Y ip L.
(2.1) |E. i (u)- F . tu )P . ()l <a

i), Jl...jp n il...xp n j1~--Jp n n, %
where “n,z + 0 for some sequence ln =0 (n).

n
the following lemma is fundamental in studying the extremes of dependent

sequences. This lemma is a modified version of Lemma 2.5 of [11] to which we

refer for proof (cf. also [12] Lemma 2.3).

Lemma 2.1. Let the astationary sequence {En} satisfy D(un). for a given

sequence {un} of econstants. Then

k
P{Mn f-un} - P {M[n/k] f_un} +0 as n + o

for each integer k ([n/k] denoting the integer part of n/k and

Mn - mu(gl’gz,..‘.gn)).

‘The proof of this result - contained in the references cited above -
involves the standard technique used under mixing conditions of considering
k slightly separated subsets Il"'Ik of (1...n) and showing that the maxima
on these subsets are approximately independent. (
By means of this result, it is almost trivial to extend Gnedenko's Theorem
to include a wide variety of stationary sequences. While this is proved in [11]

we sketch a simplified proof, here based on Lemma 2.1.
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h&v e Gibdasi 0

Theorem 2.2. Let {£ )} be a stationary sequence, M = max(§,,...,§} and

suppose that for some constants {a > 0}, {bn} we have
Pla, M - b) < x} > Glx)

where G t8 a non-degenerate d.f. If D(un) holds with u = x/an + bn’ for each

X, then G i8 ome of the three extreme value forms.

Sketch of proof: Writing u_ = x/a_ + b_ we have P{M_ < u_} + G(x) and hence by
P n n n n—n
Lemma 2.1, p{M[n/k] f_un} - Gllk(x) for each fixed k. This is true with nk

replacing n so that P{Mn :-unk} -+ Gl/k(x) or, rephrasing,

1/k

P{ank(Mn - bnk) <x} +»6"7(x) .

/k

Thus for a fixed k, Mn has the non-degenerate limit Gl with normalizing

nk’ “nk
But a well known result of Khintchine (cf [6] and [12]) shows that if two such

[ constants a b ., as well as the limit G (with normalizing constants an,bn).

non-degenerate limits exist, they must be the same apart from a linear trans-
; formation of the argument, i.e. G(x) = Gllk(akx + Bk) for some & > 0, Bk‘
This shows that G is max stable and hence an extreme value d.f. by the remarks
regarding the classical case in Section 1. Ll
The other result of the classical theory quoted - the equivalence of (1.1)
and (1.2), also extends to this dependent context, but requires a further
] restriction. One such convenient condition - which we refer to as D‘(un) -
is the following
(nﬁkl
(2.2) (D'(un)) li:*:?p n i P(gl >u, &j > un} +0 as k » o
(in which [ ] denotes the integer part). The first part of the following
result has been known for some years ([11]). A version of the converse part

was obtained recently by R. Davis |4] under a slightly different D'-condition.

Here we give a very simple proof using the present form of (2.2).




Theorem 2.3. Swuppoae that D(u ), 0'(u)) hold for the stationary sequence
(&n). where {un} t8 a gtven sequence of oonatanta, If (1.1) holds
(i.e. n l>(t:l >ul e 1) then (1.2) holds (i.e. P(Nn < un} + ¢ %) and

conversely.

Proof: Fix k and write, for each n, n' = |n/k]. Using the fact that

n!
(Mn, > un} = U {S,j > un}. standard inequalities for the probability of a union,
J=1
and stationarity, it is simply shown that
(2.3) 1 -n'(1 - F(un)) _\‘_P{M“, :'u“} <1-n'QQ - F(u“)) + S“
n' 1
where S = n' jga PLE, >, Cj > u“} and ll:;up S, ® oLk™") as k » « by D'(u ).

If (1.1) holds, 1 - Ftu“) ~ 1/(n'k), so that n » « in (2.3) gives

= : ) -1
1 - t/k < lim inf l‘(Mn, < un) < lim sup P{Mn, L u“) <1-1vk+o(k’) .

n-ee n-e
By taking kth powers throughout, using Lemma 2.1, and letting k » « we see that
(1.2) holds.

Conversely suppose that (1.2) holds. Then (2.3) gives
1 - l‘{Mn, < un} <n'Q - F(un)) £1 - P(N'“ iun} * S,
where P{N ' <u } + o Wk by (1.2) and Lemma 2.1 so that we obtain
1- e WK < k*! lim inf n(l - Fu)) < k! lim sup n(1 - F(un))

ne n+®

1- V¥, ota/m)

from which by multiplying by k and letting k » «, (1.1) follows. N




The importance of this result may be scen from the following corollary,
which shows in particular that under D, D' conditions the same limit (if any)
occurs in the dependent case as would occur if the sequence were i.i.d. That
is the maximum for the stationary sequence then has the same asymptotic distri-
bution as it would if the individual terms were independent with the same
marginal d.f. Hence the tail of this d.f. may still be used in eriteria to
determine domains of attraction. In this corollary ﬁn will be used to denote
the maximum of n independent random variables, each having the same marginal

d.f. F as the Ei.

Corollary: Suppose that D(un), D'(u“) hotd for the stationary sequence lEn}.
Then P(Mn :_un} >0 >0 if and only if P{ﬁn‘i ut *+p.

In particular suppose that for some constants e, * 0, bn’ U(un), D'(un)

hold with o x/sn + b for each X, and G ig a non-degenerate d.f. Then

P{an(Mn - bn) :.x} + G(x)
tf and only if
P{anmn - bn) < x} + Gx)

and G i8, of course, necessarily then one of the extreme value types.

PROOF. rhe first part follows at once from the equivalence of (1.1) and (1.2)

writing (p = e”7) in both independent and dependent cases. ‘The second part

follows by identifying p and G(x) where G(x) > 0 (and using continuity where

G = 0 - each extreme value d.f. being continuous). 1l
Finally in this section we note that the conditions D(un), D'(un) are

satisfied when {en) is a stationary normal sequence under appropriate restric-

tions on the covariance function. The simplest of these is that the covariance




T

T . iR

Y

function {rn} should satisfy L log n » 0 as n »w, but ceven weaker conditions

yet are known cf. [13]).

3. Continuous Parameter Processes - General Framework.

We turn attention now to a stationary process {{(t): t > 0} in continuous
“time". It will be assumed, without further comment, that f(t) has (a.s.)
continuous sample functions, and continuous one-dimensional distributions. If
E is any set of real numbers we write M(E) = sup{{(t): t ¢ E}, and Nu(v) for the »

|

number of upcrossings of a level u by £(t) in the set E. 1t will be convenient

to write M(t), N (t) when E = [0,t].
Our interest lies in asymptotic distributional properties of M(T) when T

becomes large. Since for an integer n

(3.1) M(n) = max(gl,...,g“)
where
(3.2) Gy s max{f(t): i -1 st <l

it is reasonable to expect that the properties of M(T) may be approached via

the theory for sequences. Of course the members of the sequence are nof now the
original r.v.'s of the process, but their marima over fired tntervale. Hence
our basic distribution P(Cl < x) of the sequence case must be replaced by the
distribution of % i.e. P{t;l < x} o= Pimax(&(t): 0 <t < 1) < x}. Since it is
the tail of this distribution which plays a crucial role (e.g. in (1.1)), one
of our first tasks must be to discuss the asymptotic behavior of P{M(1) > ul,
i.e. the tail probability for the maximum over a fYxed interval. The other
task - to obtain convenient distributional mixing conditions on the {(t) to

ensure that appropriate D(un), D'(u“) conditions hold for the Ly sequence - will

be taken up in Section S.
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Before embarking on these tasks it is convenient to give the following
form of Gnedenko's Theorem assuming that the 'partial maxima" & satisfy appro-
priate D(un) - conditions. A more complete statement will be given in Section

5 where, as noted, conditions on the original process {(t) will be obtained.
Theorem 3.1. Suppose that for some families of constants {aT > U}, {le we have
(5.3) P{aT(M(T) - bT) <x} +G(x), as T + »

(for a non-degenerate d.f. G), and that the (ci} sequence defined by (3.2)
sattisfies D(un) whenever u e x/an + bn (for each fixed real x). Then G 1is one

of the three extreme value types.

Proof. (3.3) must hold, in particular, as T » = through integral values. Since
the L~ Sequence is clearly stationary, thc result follows by replacing in by

Cn in Theorem 2.2, and using (3.1). 5

Corollary: The result holds in particular if the Dlu ) conditions are replaced
by the asswmption that {g(t)} te strongly mixing. For then the sequence {Ci}

ts strongly mixing and thus satisfies the D(un)-unnditfon. Ll

4. Maxima over Fixed Intervals.

As noted above, the trail of the distribution of the maximum of {(t) in a
fixed interval (e.g. [0,1]), plays a crucial role with respect to the asymptotic
distributional properties of M(T) as T » . Accordingly we consider here the
behavior of P{M(h) > u} as u + = for a fixed h. We shall relate this simply to
the mean number of upcrossings of the level u, using the notation Nu(n), Nu(t)
as defined above. Here we assume the finitcness of first and second moments of
such quantities as Nu(h). These would usually be checked from known formulac

(cf. |10]) giving these moments in terms of distributions of { and its
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derivative (cf. kqn. 4.4 below). In cases where these moments are not finite,
it appears possible to couch the discussion in terms of the so-called
"e¢-upcrossings" ([15]), but we do not attempt to do so here, for the reasons
expressed in the Introduction.

For t > 0, write
(4.1) I, () = P{E(0) < u < E(t) }/t.

It is easily checked that if (for fixed u) a sequence g 0 may be found

such that lim inf I _(u) < «, then lim I (u) exists, finite, and
nae n q*0 q

(4.2) Hl=u)) = E Nu(O.l) = MMm I _(u)
qr0 4

We remark in passing that It(u) may be simply written in terms of the
distribution of 7 (0), “(t) and that if this is absolutely continuous (4.2) may

be transformed to give
z
(4.3) I ) = f: dz fo Py (u - tx,2)dx

where pt(x,z) is the joint density for £(0) and (§(t) - £(0)/t. This leads

easily - under appropriate conditions - to the well known expression
(4.9 u = f; z plu,z)dz

where p is the joint density for {(0) and its derivative £'(0) (cf. |10]). For
example this may be evaluated when ¢ is a standard (zero mean, unit variance)
stationary normal process with covariance function r(t), to give

' ‘i "uz/z
W= ((-r"(0))%/2 )]e .
In our situation here, u is not usually fixed, and we shall want to let u

converge to the right hand endpoint (finite or infinite) of the distribution F

of £(t). We shall use "u - «" to denote this, with the understanding




12

that this is to be replaced by "u + b" if F has a finite right hand endpoint b.
We shall sometimes (though not in this section) need the further assumption

that q = q(u) may be chosen depending on u so that
(4.5) Iq(u) Yy oas u @

i.e. I
el G L,

(4.3), for example in the case of stationary normal processes, under appropriate

(u) as u » @). ‘This assumption may be verified from

conditions.

We also at times require the following condition
(4.6) E Nu(h)[Nu(h) - 1] =0o(y) as u + »,

for a given fixed h. This is an intuitively appealing '"regularity' condition
which asserts that E Ni(h) is appropriately close to E Nu(h) which will be the
case if Nu(h) is zero or one with high probability, i.e. if P{Nu(h) > 1} is
appropriately small for large u. (4.6) would be verified in practice by using
(4.4) and the corresponding result giving £ Nu(h)(Nu(h) - 1) in terms of appro-
priate joint densities ([10]).

The following result gives the desired tail distribution for the maxima of

E(t) over fixed intervals.

Theorem 4.1. Let h be fixed. Suppose that (4.6) holds for the stationary
process {E(t)}, and that P{£(0) > u} = o(u) ag u > . (u=puu) = EN (0,1)).
Then

(4.7) P{MCh) >u} "y h as u + o,
Proof. Clearly

(4.8) PN (h) > 1} < P{M(h) > u} < P{E(0) > u} + P{N,(h) > 1}

Suh+o)
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by assumption, and since P{Nu(h) 21} <E Nu(h) = h. Now if

Pj - P{Nu(h) = j}, we have
E Nu(h)[Nu(h) - 1] = jgz j(j-l)pj > j§2 ij = uh - p{Nu(h) - 1)
so that

PIN,(h) > 1} > PN (h) = 1} > wh - EN (RN (h) - 1]
=y h - o(n)

by (4.6). tHence from (4.8),
wh - o) < P{MMh) >ul < yuh+ oy
from which the result follows. 0

From this result with h = 1 we see¢ at once that P(cl >u}l v (with &
defined by (3.2)). Hence if assumptions on {(t) can be found under which the
& satisfy appropriate D(un). D'(un) conditions, then the sequence theory
applies to M(n) given by (3.1) provided the funotion u(u) ie used in lieu of
the tail of the distribution (e.g. in (1.1), or in classical criteria for the
domains of attraction). As with Gnedenko's Theorem (Theorem 3.1) it will be
convenient to state these results explicitly here under D (and D') assumptions
for the ci's, completing these results in Section 5 where the dependence condi-

tions will be recast in terms of the original process {f{(t)}.

Theorem 4.2. Suppose that the conditiong of Theorem 4.1 are satisfied by the
atationary process {L(t)with h = 1, let (un} be a aequence of ocongtants, and
write U, = u['l‘] for each T > 0. Suppose that the sequenoe {cn} (defined by

(3.2)) satisfies D(un), D'(un). Then, for a given 1 > 0,

(4.9) P{M(T) < u.r} vel asT oo
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if and only if

(4.10) e ©otug) v /T as 1 > »
or equtvalently 1f and only if

(4.10)" u = u(un) Y Tho oas no> e,

Proof. It is clear that (4.10) and (4.10)' are equivalent from the definition
of up as u(,r]. If (4.9) holds, it holds as T » » through integral values. It
then follows from Theorem 2.3 that nP{(l > un} » T and hence from Theorem 4.1
that (4.10)' holds, as required.

Conversely if (4.10)' holds it follows similarly from Theorems 2.2 and 4.1

that P{M(n) < un} » e ' . Now if n denotes the integer part [1] of T, we have =

PIMUT) < ug} = PM(T)

| ~

u |
n

= P{M(n)

A

un} - P{M(n) < u < M(T) }.

As noted the first term converges to ¢"'. But the second term is dominated by
Pl > v} = Plg; >u } vy by Theorem 4.1, and i+ 0 by (4.10)", so that

(4.9) follows. 1

Corollary 1. Suppose that the conditions of Theorems 3.1 and 4.1 hold and that

the {t,} sequence also satisfies V'(u), for all u, of the form x/a_ + b .
Then G(x) f8 preetfgely the extreme value d.f. which would be obtained for the

maxima N - max(El...En) of an i.1.d. sequence El,'(\z... whoge tatl distribu-

tion satisfies
(4.11) PLZ, > x} v ux)

Thus the olassical eriteria for domain of attraction may be applied with

ux) replacing the tail distribtuion of the sequence terms.




()

Proof: By the theorem we have that My " 1/n where t = -log G(x), whenever
G(x) » 0. Since P(L‘ > x} v u(x) by Theorem 4.1, there exist i.i.d. random
variables Ei (having the same marginal distributions as Cl’ satisfying (4.11).
Hence P(El> un} N u(un) o t/n so that P(ﬁn < un} +e ', Rephrased, this

states
Pla (M= bo) < x> GLx),
as required, [
Conversely the following result is similarly proved.

Corollary 2. Suppose that the conditiona of Theorem 4.1 hold and that there are
{.t.d. random variables Eliz... auch that P(nn(ﬂ“ - bn) < x} * G(x) for some
non-degenerate G, congtanta a > o'bn' ﬁn n mux({l.fz...in), and such that
P{ﬁl‘-x} “ou(x) as x > @, Jf D(u), D'(un) are sattafied by the sequence {cn)

for atl u of the form x/un+bn then Pl&rlM(T) = b)) < x} » G(x) (where

"
a - “[T]' bT = b[T])' (l
It may seem curious that it is the tail 1-F(u) of the distribution of one
of the random variables which is central in the sequence case, whereas the mean
number of upcrossings of a level per unit time plays the same role in the
continuous context. However, it is worth noting that for an i.i.d. sequence,
the probability of an upcrossing of a level u in unit time is P{Ci_l <u < a‘) -
F(u) [l - F(u)] v 1 = Flu) for large u. Since only zero or one such upcrossing
may occur in unit time, this is also the mean number of such upcrossings per
unit time. Thus the tail 1 - F(u) of the distribution is, in the discrete case,
also the asymptotic form of the mean number of upcrossings of u per unit time,

and so naturally corresponds to u(u) in the continuous case.
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5. Dependence Restrictions for &(t).

In the sequence case we used the conditions n(un), D'(un) to restrict depen-
dence. We now define continuous analogs ch[u“). né(un)} of these conditions
which will apply to the process £(t), and may replace the D, D' requirements for
the cn-sequonce in the previous theorems.

The condition Dc(u“) is the following analog of D(un), where again (unl 1s

any real sequence. In this Iq(u) is defined by (4.1) and if Ft ¢
1t

denotes a finite dimensional d.f. of &(t), F (u) is written for

{ PR <
1 n
Ft Tihe (u...u).
1 n

Specifically {{(t)} will be said to satisfy Dc(un) if there is a sequence
{qn}. q, * 0 as n » », such that 1 (un) N u(un) as n » « and, for any

n
< n/qn, jl - ip z_Q/qn we have (writing

integers n, il < 12 ees ip < jl ...<jp,

W =

(5.1) |F, ; v ot - B AN i o fa ¥l ¢
1lq...ipq,qu...Jp,q n 11q...1pq n qu...Jp,q n n,%

where a 2 + 0 for some sequence Qn = o(n).

In diZcussing D(un) for the (n-sequence, it will be convenient to first
obtain the following lemma, which enables us to approximate the maximum of £ in
a fixed interval by the maximum of discrete values £(jq) for points jq (j=0,1,2..
in that interval. In this lemma, and subsequently.N&qJ(E) will denote the number
of upcrossings of the level u by the sequence { (jq) in a set E, 1.e. the number

of integers j such that jq ¢ E for which £(jq) < u < g[(j+1)q). We also write

N&q’(t) when E = [0,t].

Lemma 5.1. Suppose that (4.5) holds. Then, as u + , {f I 18 an interval of
fixed length h,
(i) EN&Q)(I) =y h+ ol
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(it) If also P{E(V) > u} = o(y), then we have

B PV (LGq) e u)} - P{M(1) < ul = o)
jqcl

as u > o (uniformly in all such fized length intervals).

Proof. (i) The number, m=m , Say, of points jq « 1, clearly satisfies m v h/q

as u *> © so that, by stationarity,
3 N(q)(l) =m PLE(0) <u <&@t Vvh I (u) vyl
» 3 < .(q ' q(u uh

by (4.5), so that (i) follows.

(ii) ‘The difference in probabilities is clearly non-negative and dominated

by
(5.2) PLE(a) > ul + P{Nu(l) ~ 0, Nﬁq)(l) = 0}

if a denotes the left hand endpoint of I. But the first term is equal to
P{£(0) > u} = o(n) and the second is dominated by
P(Nu(I) - Niq)(l) >0} < E(Nu(lj - N&q)(l)} (Nu - Néq) being non-negative) so

that (by (i)), (5.2) does not exceed
ph = [uh+o(uw] *o(w) = o(w
as required. (1

By using this lemma we may now obtain conditions under which D(un) holds for
the sequence {cn}. We write W, * u(un) for the mean number of upcrossings of UL

by £(t) per unit time.

Lemma §.2. Let Nn}m:aamwmwvofcmmnmw(mdswmmcthnl%u%)hﬂ&wﬁm

the process E(t). Suppose also that nu  is bounded, and PLE(V) > u } = oly,).

Then the sequence {cn) of maxima of &, over the intervale [n-1,n], satiefiea D(u ).
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Proof. Fix n, 11 < 12...<ip < jl...<jp,_§ n, jl-jp > 0. Let q=q, be chosen so

that (5.1) holds. Then, writing Ir'[ir'l’ir]' Js=ljs-l,jsl, we have, by Lemma 5.1,

0 iP{K {e(GGa) < u.jq e L} n {€Gq) <u,jq € I

r=1 s=1

- P{)\ (\ (( : u)l

r=1 L N s=1 L

<(p+p')olu) =olm)

which tends to zero as n + « since ny, is bounded. By applying this as stated

and also to the groups of lr and Js intervals separately, we see at once that the

difference, Rn, say, between

(5.3) lP{})\lLi <u) )’\ (4.9 <u)}-l'{f\(r <u)}v{n (%, i“n)”
r=1 h s N g=1 Js r=1 r s=] Js

and

(5.4) IP((\ EGa) <us Jq e 1) F\ te(a) <u, jq € J )}
r=1 ' =l

-Pm (t,Uq)<u,jq(l)}l‘{n (£GQ) < u, ja e I3

r=1
tends to zero as n » ., But since the smallest jq in any Js is at least jl'l’
and the largest in any Ir is at most i“. (5.1) shows that (5.4) does not exceed
where an,l + 0 for some sequence ln = o(n). Hence (5.3) does not exceed

n
* R and of 48 + 0 for &8 = & ¢+ 1, so that the sequence {z,“}

Oln,!.-l

O, 2 " %,2-1
satisfies D(un) as asserted 0

The continuous version of Gendenko's Theorem (Theorem 3.1) may now be

restated in terms of conditions on the process ¢(t). '
Theorem 5.3. Suppose that for some families of constants {a, > 0}, (by} we have .

P{aT (M(T) - bT) < x} » G(x)
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for a non-degenerate d.f. G and that, for each sequence u = (x/an + bn} (ull

real x), {¢,(t)) satisfies Dc("n) and P{E0) > u} = o(y), lim sup n W <=, where
n

p o= u(u), oy = u(un). Then G ig one of the three cxtreme value types.

This follows at once from Theorem 3.1 and Lemma §.2. [

The condition Dc(un)(and the other conditions of this Theorem) are not too
difficult to verify when {(t) is a normal process. The appropriate D' condition
for the continuous case - which we shall call Dé(un)- is simpler to state and
more interesting than Dc(un),though evidently also more difficult to verify. Like
Dc(un)’ Dé(un) is a natural analog of the corresponding sequence condition (D'(un)).

Specifically, we say that {{(t)} satisfies Dé(un), for a given sequence
{u }, if
(5.5) lim sup E N ([n/kD (N, (In/K]) - 1) = o(k!) as k » .

n-so n n

We note that while this seems formally quite different from the stated D'(un)
condition for sequences, the difference is somewhat illusory, since the sequence
condition may also be recast in terms of a second factorial moment (of numbers
of exceedances). Theorem 4.2 may now be restated in terms of the assumptions

'
Dc’ Dc as follows.

Theorem 5.4. [Let {un} be a sequence of constants, . = Uiy Suppose that the
stationary process (§(t)} satisfics D (u), Di(u), that (4.6) holds and that
PLE(O) > u} = o(u) as u > . Then (4.9) holds (P{M(T) :_uT} +e N if and only

if (4.10) holds (uT = u(uT) N~ T/T).
Proof: For fixed k, writing n' = |n/k] and arguing as in Theorem 4.1 we obtain

(5.6) n'un - E Nun(n')(Nun(n') - 1) < P{M(n") > un} < P(E(0) > un} + n'u“ .

If (4.9) holds since the central term of (5.6) does not exceed P{M(n) > uni
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which converges to l-e", it follows from the left hand inequality in (5.6) that
n' Mo ( and hence n un) is bounded when k is chosen so that the left hand side
of (5.5) is finite. If (4.10) holds it is trivially true that n Hy is bounded.
Hence under (4.9) or (4.10), by Lemma 5.2 the sequence {cn} of maxima of £(t) i
over the intervals [n-1,n), satisfy D(un). Hence also by Lemma 2.1 (with - for ‘

Ei),
(5.7 P{M(n) < un) - Pk{M(n‘) < un) +0 as n-+w

for each k. The rest of the proof now follows the same arguments as in Theorem

e et

2.3. For example if (4.10) holds we may let n » « in (5.6) and use (5.5) to

obtain

1 - t/k < lim inf P(M(n') < u )} < lim sup P(M (n') <}

ne»>© n-e

| A

1 - t/k + o(1/k)

|~

from which (4.9) follows by taking the kth power, using (5.7) and letting k » «.

Similarly (4.9) implies (4.10). 1]
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