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SUMMARY

An L—network is an electric network comprising two reactive arms, one in
series and one in shunt. Any two impedances can be matched at a single frequency

by at least one such network. This Report explains relevant theory, sets out

design equations, and examines the broadband matching performance of L—networks

both algebraically and by means of computer analysis of examples. It is shown

that these networks have occasional broadband uses.

Treatment is general but findings are expressed in terms of circuits which

opera te at f r equencies in the low gigahertz region.
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INTRODUCTION

An L—ne twork is a two—port network consisting of two reactive arms, one in

series and one in shunt.  Usually each arm comprises a single inductor or

capacitor: the eight forms of two—element L—network are itemised in Fig 6.1.

The problem considered in this Report is how to design a network to put

between a signal source and a load so as to convey to the load the whole of the

power available from the source. Any two terminations can be matched at a parti-

cular frequency by a choice of one or n~ re L—networks, and L—networks are the 
S

simplest class of transformerless networks with this property. An L—network used

for matching has occasionally been called a “reactance transformer”.

The investigation whose results are reported here had two main aims. The

first was to produce a computer program which would design L—netvorks, since
graphical methods of design ’’3’5’7 1 0 ’14’15 had proved imprecise, time—consuming

and error—prone. This involved establishing the design formulae. The second aim

was to investigate how useful L—networks were for broadband matching. The S

literature found did not cover these areas.

First of all the design equations were derived, and the L—network design 
S

program was written and tested . Then an investigation was made of the range of

terminations which each type of L—network can match, and the choice of types of

L—network to match given terminations. Only matching at a single frequency was

considered.

The second aim was achieved — so far as was practicable — by considering the
variation of matching efficiency with frequency in very simple cases. The match-

i~g efficiency was investigated algebraically only for the case of matching two

resistances; then examples were produced using the L—network design program and

analysed using a computer program for frequency analysis. Some of the computer

examples had both terminations resistive, and the rest had one resistive termina

tion and one two—element termination.

This Report describes the main results of this work, incl uding conclusions
about the usefulness of L—networks and of the L—network design program. The pro—

gram is described elsewhere 16
.

The L—network was found to give a very broad peak, but still it seems

049 unsuitable for most high—performance broadband work, because the peak is f ar f r om
flat. Nevertheless it seems to have two important broadband uses. Firstly, it

can be used in conjunction with a matching network designed for resistive termina—

tions, in order to transform each of the actual terminating impedances to a

_ _ _ _ _ _ _ _ _ _ _ _  
— ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~
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resistance comparable to its own magnitude. Secondly, a multistage amplifier

whose design will be optimised by computer could use L—networks if the optimisa—

tion of element values will remove irregularities from the response.

The next simplest class of matching networks comprises the T and 11

networks. The L—network design program can make the design of such a network

much easier.

2 LITERATURE

This survey is not comprehensive. Unless otherwise stated , matching a t a
single frequency only is considered.

Both terminations resistive

Elementary introductions are by the ARRL
2 and Ryder 13, of which both give

the design formulae and the latter gives their derivation. There is a se t of

design tables ’2 for a certain class of broadband impedance—matching network of

which certain L—networks are the simplest form .

One termination resistive, the other arbitrary

The usual practical problem of this kind is the matching of an arbitrary

impedance to a long transmission line at a single frequency. Smith7 introduces
the eight forms of two—element L—network and considers the feasibility of each

for any given single—frequency matching task. He also gives design curves on a

cartesian chart. In his later book
3 
he considers the same problem in terms of

the Smith chart. In neither case does he give any formulae.

Martes
8 
covers the same material as Smith

3 excep t f o r  desi gn curves.
Phi llips9 covers the same material as Smith3. Mathis1° considers the ef f e ct of

lossy components, but gives no design curves. None of these authors gives any

formulae.

Both terminations general

This problem occurs in the design of amplifier interstage networks, in
which connection Hewlett—Packard 1 briefly treat the Smith chart method of

11finding the element values. Perna gives an intuitive explanation. His account

does not go into depth , and he seems to assume incorrectly that the selectivity

equals the reactance/resistance ratio. Linvill and Gibbons
15 

consider a graphical
method of L—network design using a cartesian plot. They then briefly consider how

to design an L—network for band—pass matching. None of the above au thors gives
the formulae for the element values.
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Theoretical treatments

Theoretical books 4 6  tend to concentrate on more sophisticated filters, and

therefore tend to give L—networks l i t t le  attention and to discuss them using

unnecessary concepts unfamiliar to most engineers. The most useful treatment

found was by Everitt and Anner’4, who treat only the case of resistive termina— S

tions. They briefly derive the design equations, discuss graphical design and

give a formula for the frequency response of each of the two appropriate forms of

L—network. The quantity tIl/lId i which they plot is in fact the square root

of the transducer gain.

The state of the literature

It seems very difficult to find a comprehensive treatment of the L—netwozk,

and possibly none exists. The treatments mentioned are all very restricted.

None even gives design formulae for the case of general terminations. Further— S

more, the references given in the papers mentioned have not led to any further

useful information. This Report is intended to supply some of the important

information which is not easily found.

3 IMPEDANCE—MATCHING NETWORKS

En order to clarify the task for which the L—network is used in the context

of this Report, this section will outline the basic concepts of matching networks.

When a two—port network loaded by an impedance ZL 
has an input impedance

Z .  , the network can be said to transform Z
L 

to Z .

The avaiZable power of a signal source is the most power which any load

can draw from it.

The transducer gain of a network joining a specified source to a specified

load is the ratio

power devel oped in load
available power of sourc e

Clearly it can be used as a measure of the efficiency of a matching network.

I t can be shown tha t, if  a signal source has impedance Z~ , the only value
of load impedance seen by the source which will draw the whole available power

S 
f r om it is Z~ . In other words maximum power transfer occurs if and only if
there is a conjugate match.

•
049
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The essential task of an impedance—matching network is to provide , between

the terminations which it joins, a transducer gain which is fairly even and

fairly close to unity over the wanted passband . It does this by loading the

source with an impedance fairly close to the conjugate of the source impedance:

this is a task of impedance transformation. Such a network uses passive elements,

and usually its ohmic losses are minimised; theoretical designs are usually

lossless.

Transformerless matching networks are conunon. These generally use induc-

tors and capacitors only. They can only be used over a relatively narrow band ,

in contrast with the multi—decade capabilities of some transformers. Any

impedance—matching network using lumped elements has a smooth curve of transducer

gain versus frequency, so that if it gives a perfect match at one frequency it

will also give a good match over a band of neighbouring frequencies. It is

impossible , however, for a transformerless matching network to give a perfect S

match over any band of f r e quencies, however narrow.

For all transformerless matching network design tasks, there is a tradeoff

between the number of elements needed in the network and its performance in

terms of width of passband, minimum transducer gain over the passband, and the
amplitude of variation of transducer gain over the passband.

In addi tion, if one termination contains a reactive element, there is a
S limit to the performance achievable by a matching network even if it can have

any number of elements. The limit is set by the time constant of the termination.

In general , of course , the task of a matching network is to provide a
transducer gain variation of a prescribed shape, which is not the same as pro-

viding a good match. It is intuitively clear that usually (a) the more reactive

elements there are in the terminations, the more difficult it is to achieve a

S wanted transducer gain curve, and (b) the more elements are allowed in the match-
ing network, the more closely such a curve can be approached.

The simplest class of transformerless matching network able to match any

two impedances at one frequency is the class of two—element L—networks. A two—

element L—network of a given form has its element values completely defined by

S the requirement of a match at the wanted frequency: this will be seen in the next

part. The designer therefore has no freedom to choose the shape of the response.

4 THE BAS C IDEAS OF L-NETWORKS
0

Consider the problem of matching two resistive terminations R
1 

and

at a single frequency, with R
2 

being the larger. The problem can be solved 049

_ _  _ _ _ _ _  

1:
L - ___ .~~~~~~~~ .. _ _ _ _ _ _ _ _ _ _ _
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like this. First, R
2 

is shunted by a reactance such that the impedance of the

combina tion has real par t equal to R
1 . Then the reactance of the combination

is balanced out by adding an opposite reactance in series. The impedance of the

three—element combination now equals R
1 
. That is the essential idea behind the

L—netvork. Fig 4.1 shows the three elements, and will be used in the f ollowing
derivation of expressions for the required reactances.

In general

( jX
2

) R
2 

X~R2 
X2R~Z

I JX2
+ R

2 
= 

R~~+ 4  R~~+ X ~ 
(4—1 )

X
2 is to be chosen to make Re (Z

1
) — K

1

X~R2
2 2 R 1 . (4—2)

R 2 + X 2

Therefore X2 — ± — 
______ 

(4 3)

/R2

Now X 1 must be chosen to balance out the reactance in Z
1

X R2
x 2 2  

—1 2 2~~~R2 + X 2 
S

Comparison with equation (4—2) gives

R R
x — _ 2 1  4 5 )

2

The two solutions are therefore: (4—6)

049 ( i)  X
1 R

IJj~
. — I and X

2 
— — 

JR2

- ---~~~- 5 - S— ~---— ---rn 5 -5 S .- -~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - ~~~~~~~_ ~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~
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~~JX~

Fig 4.1

a R1~~ ~~R2

H

b R1 j J 2

I 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Fig 4.2 Three ways of drawing a circuit
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fR R
(ii) — — R 1 1~~ — I and x2 — — 

2

4 ’  [~2
4K ,

It can be seen that if R
2 

is less than R
1 

there is no solution. This means

that the shunt reactance must always be on the side of the larger resistance.

The following points will be noted:—

(i) The reactances are opposite in sign.

(ii) ~X2 J > /1i > ~X 1~ (4—7 )

X R
(iii) = — j~ 

. (4—8)
1 2

(iv) When R
2 ~~ K

1 , 
both reactances have magritude approximately q

’R1
R
2

(v) When R, — K
2 , the formulae give X 1 

zero and X
2 

infinite.

In other words, the matching network degenerates into a direct connection.

The obvious way to implement each reactance is with a single reactor. (Of

course a reactance can be synthesised with any of an infinite number of combinw-

tions of reactors, for example series or parallel LC combinations.) So, for

example. one possible matching L—netvork gives the circuit shown in Fig 4.2a,
which resembles a low—pass filter. But that can also be redrawn as in Fig 4.2b,

resembling a parallel tuned circuit, or as in Fig 4.2c, resembling a series tuned
circuit. Not surprisingly, the frequency response of this circuit has a peak
rather like that of a simple tuned circuit, as a later part of this Report will

show. The behaviour at frequencies far from the peak resembles that of a low—pass

filter.

5 L—NETWORJ ( DESIGN EQUATIONS

This part will be less elementary than the last in its approach, and will

use a few theorems relating to power flow in linear circuits, although the element

reactances could have been derived in the same way as in the last part.

049 To simplif y the algebra, the termination next to the shunt arm of the

L—uetwork will be characterised by its admittance, the other by its impedance, and
the L—netvork itself will be characterised by its series reactance and shunt

Susceptance.

-5 _~~~~~~~~ _ 
- S-  -
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The task of matching is here to set the transducer gain from source to load

to the value of unity. However, the transducer gain between the two terminations

is independent of which is considered to be the source and which the load , since

the L—netvork is reciprocal. For this reason, the analysis below does not dis-
tinguish source and load, but refers to the terminations as A and B , with

their impedances etc distinguished by suffixes a and b

Since the L—network is lossless, the matching condition can be set at any

plane between source and load, because all such conditions are equivalent.

Consider the circuit shown in Fig 5.1 , where the marked quantities are

element impedances at the frequency at which there is to be maximum power transfer.

The Figure applies to one frequency only, and the representation of each termina-

tion does not relate to true resistive or reactive elements constituting the

termination. There must be a conjugate match at the plane P , so that

Ra + JX a + JX 1 
= 

(Gb + j ~
b + Tc)

* 
• (5- 1)

Equating the respective real and imaginary parts, one soon finds the two solu-

tions (i) and (ii) to be

(i) X 1 
— — X + R J ~

1
G 

— 1 (5—2)

S B2 
— — Eb + Gb ,JR

’
G 

— 1 (5— 3) 
4

and 
_ _ _ _ _ _ _ _

(ii) X 1 = — Xa 
— 

RJR~G 
— I (5—4)

B2 
= — Bb 

— G
bJR ~ 

— I . (5—5 )
-~~~~ a b

Each exists if and only if R
a ~ 

I/G
b , 

that is , if and only if the equivalent
series resistance of termination A is not greater than the equivalent parallel

resistance of termination B • In the case of equality, solutions (i) and (i i)
are the same. 049

~~~~~~~~ 5 - 5 5 - - -~~~~~~~
._ _-~~~~~~~~~~~~~~~~~~~~~ == ~~5-~~~~S - 5 -______________
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Termination ‘ L — net work Termination
A B

Fig 5.1

N

H 
151
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The significance of those results is this. Let the source impedance be

— R~ + jX~ and its admittance — G~ + iBs 
; let the load impedance ZL be

described by similar symbols. If the series arm of the L is towards the load, 
S

the series arm reac tance of the L will be — X
L 

± 
~~~~ Jc~5 

—

and its parallel arm susceptance — B
5 
± C

S 
— I ~

where both plus signs or both minus signs must be taken together. This kind of

L—network (with the series arm on the load side) can be used if and only if

RL~~ 
1/Cs
A similar statement can be made about the use of an L—network with the 5

series arm on the source side by exchanging the words ‘source’ and ‘load’ and

the suffixes S and L above.

In fact it can be shown that, for any source and load, either R
1~ ~ 

h G
5

or 
~ 

1/G
b 

or both. It follows that any source and load can be matched at

one frequency by an L—network. (The proof that ‘R~ ~
< I/Cs or K

5 ~ 
1/C

L
’ is

not easy to see.)

From the foregoing, it can be seen that in general a given source and load
can be matched at one frequency by a choice of either two or four L—networks. In

certain special cases, these L—networks will not all be distinct. W :en R
s 

= 1/C
L

or RL h G
5 

but not both, there will be three solutions. When both are true,

it can be shown that the terminations are equal and resistive: the one L—network

which will match is the trivial one with zero series reactance and zero shunt

susceptance.

6 CONDITIONS FOR THE EXISTENCE OF A MATCHING L—NETWORK OF A GIVEN FORM

One can define eight forms of L—network according to the sign of each

S reactance and the side on which the shunt arm is placed. These forms are enumer—

ated in Fig 6.1, in which a non—negative reactance is represented by an inductance
S symbol and a non—positive reactance by a capacitance symbol. In this Report,

when the word ‘form’ is used to mean one of thosc~ forms, it will be written with

a capital F • Nomenclature such as ‘Form 1’ is peculiar to this Report.

Two problems are of interest:— Firstly, what range of terminations can a

given form of L—network match? Secondly, which forms of L—network can be used to

match two given terminations? The two problems will he treated below under

separate headings. During this work expressions have been derived constituting a
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complete solution to the first problem, but they will not be given here because

they are too long to be of much practical interest. However, from these
expressions there have been derived the corresponding expressions relating to the

simpler problem in which the source is a unit resistance. From those expressions,

in turn, a graphical solution has been obtained to the problem of which Forms will
match a given load to a resistive source.

Clearly, although the solutions given below are expressed in terms of a
source which is a unit resis tance, they can be applied imeediately to any problem
where one of the terminations is resistive. This part relates to the task of

5 

matching at a single frequency.

The loads which each Form can match

Let F~ be the necessary and sufficient condition for there to exist at

least one L—network of Form a which will match a resistive source of impedance

Z~ to a load of impedance Z
L 

. (The prime denotes the restriction that the

source is resistive.) The conditions are as follows:—

S 
Fl’ : (g~~ I & x~~~O) v ( r 3 1)
F2’ : (r ~ I & x ~ 0) v (g ~ 3)
F3’ : (g ~ I & x ~ 0) v (r ~ 1)
F4’ : ( rE I  & x~~~O) v ( g 3 1 )
F5’ : r~~~1 & g~~~1 & x~~~O

F6’ : r E 1 & g ~ I & x ~ 0
P7’ : r~~~1 & g ç l  & x~~~O

F8’ : r ( 1  & g~~~I & x~~~O

S where — K
0 

(real)

and Z
L 

= R
0
(r + jx) = R

0
/(g + jb).

& denotes logical ‘and’
v denotes logical ‘or ’ (inclusive ‘or’).

Fig 6.2 shows the areas on the Smith chart3 corresponding to the inequalities
• in the conditions. From those it can be seen what area corresponds to the satis—

faction of , for example, condition Fl ’ : that area is shown shaded in the Figure.

The Forms which can match a given load

From the expressions given above it can be deduced which Forms can be used
S 

to match any given load. This deduction is easily made graphically, and a
Smith chart giving the results appears as Fig 6.3. Consideration of the number 

049

S 
of solutions (L—networks) in each area shows that, for a load impedance represented

S S ,• .
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by a point in any of the four areas of the chart, matching may be effected by one

L—network of each of the Forms shown in that area, and by no others.

7 FREQUENCY ANALYSIS OF L—NETWORKS MATCHING RESISTIVE TERMINATIONS

In this section, the frequency behaviour of transducer gain will be dis-

cussed . Only the simplest case will be treated: two resistances matched by an

L—network comprising one inductance and one capacitance. Even one extra reactive

element makes the algebra very much more complicated.

The analysis does st i l l  apply , however , to a case where one of the reactive

elements in the circuit analysed is a combination of two similar elements , one

belonging to a termination and the other to the L—network.

In order to match two resistances, only Forms I to 4 can be used. Form I
was analysed , and the results for the other three Forms were deduced using

relationships between the Forms.

The circuit under discussion, shown in Fig 7.1 , has the frequency response

of a second—order low—pass filter. The properties of this kind of response are

set out in the Appendix , and some were used in the analysis discussed below.

L 
~~R2 - 1/G2

Note: R 2 > R1
Fig 7.1

Apart from the formula giving transducer gain G~ as a function of

frequency, the quant i t ies  Q ,  f and 
~ 

implicit in this formula are also

of interest. Q is the selectivi ty,  and f is the natural frequency of the

response. N is the ratio of the amplitude of the voltage gain at the peak to
S 

that at zero frequency in the low—pass case or infinite frequency in the high—

pass case. Let f 0 be the frequency of perfect  match.

It can be shown that in the low—pass case (Form I or 2):

S 

G
~ 

= 

I + {+(J~— J~) (~— )}2 
‘ 

(7—1)

Q = +ji.~+ i (7—2)

-~~ ~~~~~~~~~~~~~
—.——----— 

-5 -~~------——--- -—- 5—- .-—----—- -S- -----5—--•--’--~~ ----•S
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N - .~(J;2~ +J~i) , (7—3)

fR +R
— 

~O~JR 2 — R 1 ~ 
— )

and that in the high—pass case (Form 3 or 4):

C — 1 (7.,.5)

Q and H are as for the low—pass case, (7—6)

and

fR2 - 
K
1

~~o J R~ + K
1

The derivation proceeds along these lines, K1 
is arbitrarily taken to be

the source. The circuit analysed is shown in Fig 7.2, which defines source

voltage V
5 

and load voltage V~ , both being phasors whose magnitudes are rum

quantities. 
_______ _______ ________

1 1 +
OR, 

~~C

T__

Fig 7.2 —

With those values for L and C which give the required reactances for a

perfec t match at f
0 , 

the complex—valued function V
~

/V 5 
is obtained. From

this , the values of Q and f are deduced, and H is inferred from Q • 04

Transducer gain has been defined as power delivered to load divided by

power available from source. 
S
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Thus

Iv 12/R2G — . (7—8)
t 1V 5 1 2/4R1

The modulus squared of V~ /V5 is therefore taken and G
~ 

is obtained. Thus

all the required formulae are obtained for Form 1.

The transducer gain ’function for Form 2 is identical to that of Form I

(R
2 

being the larger resistance in both cases) because Form 2 is Form I back—

wards. The functions G
~ 

for Forms 3 and 4 are also identical by the same

argument — this function is obtained from the low—pass function by substituting

f
0/f for f/ f

0 
. That relationship, and the fact that Q and M~ are the

same as for the low—pass case, arise because the Forms are related by a low—pass

to high—pass transformation.

The expressions above for Q and N show that Q always exceeds 0.7

S 

and H is at least unity. When R
2 ~ 

R
1 , Q and M are both approximately

equal to

(7—9)

S Curves for the response of a second—order low—pass filter are given in
S Ref 17, pp 226—228 and Ref 18 , pp 158—h59.  These use the parameter ~ (zeta)

which is 1/2Q . The normalisation of those published curves sets the responses

equal at zero frequency, as is the case for the voltage gain of the low-pass
5 circuits discussed. However, the transducer gains are equal not at zero frequency

but at the peak.

Q is not equal to any ratio of reac tance to resistance or susceptance to

conductance

Another fortn’4 of the formula for the transducer gain of a low—pass

L—network matching resistances is

= 

(a - 1)2[(f/f
0
)4 2(f/ f  )2] + (n + 1) 2 (7 -hO)

049
where n — R

2/R 1

~~~~-
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Examination of the formulae shows that the transducer gain curves for both

low-pass and high—pass cases are smooth with a single peak. In the low-pass case

the gain is non—zero at zero frequency, and falls asymptotically to zero at

inf inite frequency . In the high—pass case the gain is zero at zero frequency
and falls asymptotically to a non—zero value at infinite frequency.

It can easily be shown that for Forms I and 2 at zero frequency, and for

Forms 3 and 4 at infinite frequency,

4R. R /R
— 

1 2  
2 — 

~~
(R

2
+ R

’) . ( 7—11 )
(K

1 
+ R

2
) ‘.2 1/

The term subtracted from 1 represents the proportion of available power which is

reflected because of the mismatch between source and load resistances. This
reflection is smaller than one might expect~ this table gives some examples.

S Transducer gain
- R

2/R1 
— -

Ratio dB

1 I 0
2 0.89 —0.51
3 0.75 — 1.25
20 0.18 — 7.4
40 0.095 —10.2

For this reason , when two resistances matched by an L—network are comparable,
the slope of the transducer gain from the peak towards the zero—frequency value

(if low—pass) or asymptotic infinite—frequency value (if high—pass) is very gentle.

The formula (7—2) for Q shows that tuning is sharper for resistances of

very different orders of magnitude. The Q values for practical cases are
S smaller than one might expect , eg R

2 
15R

1 
gives a Q of 2. With such low

Q values, the relative bandwidth would be so large that the peak would be very
asymsetrical.

Examples of the transducer gain curve will be given in the next part.

8 COMPUTER ANALYSIS OF EXAMPLES WITH RESISTIVE TERMINATIONS

Introduction 049
For a 50 ohm source and various resis tive loads , matching L—netvorks were

S 

designed with the program LNETWORK 16 
and analysed with the program REDAP38.



P..—’~~’ — 55 - S -

21

LNETWORK designs two—element L—networks using equations (5—2) to (5~-5). 
S

Given the frequency of match and the terminating impedances, it prints Out the

reactances and element values for all the two or four L—networks which can be

used . REDAP38 is a fairly comprehensive program for frequency analysis of linear

circuits. Both programs have been implemented for teletype use on the RAE’S

[CL 1906S remote—access computer, and at the time of writing they are on files

in the machine.

The results, tables of transducer gain against frequency, are reproduced

here only as graphs; the frequency axis has been chosen to be linear. The

frequency of perfect match in each case was 2 GHz. The values of load resistance

used are 12.5 ohms, 200 ohms and 2000 ohms . 200 ohms was chosen to make the

ratio of resistances equal to the moderate value of 4. 12.5 ohms was used to

allow comparison with 200 ohms, since it also gives a resistance ratio of 4.

Finally 2 kilohms was used because it gives a high ratio of 40.

The matching networks

Fig 8.1 shows both circuits possible for each of the chosen loads. For

each load there is one high—pass L—network which will match, and one low-pass,

but no others. In every circuit the reactors are of opposite type and the shunt

reactor is next to the larger resiatance. For each load, the series reactances

at 2 GHz of the two alternative L—networks were equal in magnitude and opposite

in sign, and the same was true for the shunt reactances. The reactance values

are not reproduced.

There is a close relationship between cases 200L, 20011, 12.SL and 12.5H
in the Figure. For example, 200L and 12.SL are dual with respect to 50 ohms, as
illustrated by the fact that

6.892n}1 . . .
2 

— 2.757 pF to four sLgnlflcant figures.
(500)

Again, 12.5L could be obtained from 200L by drawing the voltage generator or the

other side and dividing all impedances by 4.

From either of those facts it could be deduced that the curves of transducer

gain against frequency for 200L and 12.5L are the same, and indeed the printouts

from the computer analyses of cases 200L and I2.SL were identical, as were those

of 200H and 12.5W.
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50Q 6.892n S

(200L) 
0.6892p 

2O0~2

(200H) 200fl S

I

ri~r° 1~~(12 .5L) 9 —0 

757~~__~
1 l2 .5~

(12.5H) 12 .5c�

50Q 24.85n
I2 kL) 0.2485pT 

2kQ

_[-~r~ 0.2S49p~~~~~~1(2kH ) 

—0 
25.49n~ 0~~~

’ 
2k~l

S Fig 8.1 L-networks matching resistive terminations — element values
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Curves for 0 to 4 CHz; 200 ohm load

Fig 8.2 shows the two L—networks which match 50 ohms to 200 ohms at 2 GHz,

together with their transducer gain curves. The purposes of the Figure are to

show the behaviour of the low—pass and high—pass cases over a wide range of

frequency and to contrast them.

The nature of the curves is as expected in the last section. The curves 
S

would have been mirror—images about the 2 GHz line if a logarithmic frequency

scale had been used. At zero frequency, the low-pass curve has a minimum of

— 1.9 dB. This is of course, the same as the value of transducer gain when the

50 ohm source is connected directly to the 200 ohm load. It has been stated

that the gain of the low—pass circuit at high frequencies falls asymptotically

to zero. The graph does not show this , but is consistent with it. Tne fact 
S

that the gain of the high—pass circuit falls to zero at zero frequency is shown

fairly clearly.

The peaks of’ both circuits are, roughl y speaking, equally broad . This
reflects the fact that the Q values are the same. For the low-pass case, the

—I dB points are at 1.1 GHz and 2.6 GHz. This suggests that L—networks could

of ten be used in broadband applications , despite their extreme simplicity . 
S

Curves for I to 3 GHz: 12.5 ohm, 200 ohm and 2000 ohm loads

Fig 8.3 shows, for each load , the transducer gain curves of the low—pass

and high—pass matching networks. One pair of curves applies to both 32.5 ohms

and 200 ohms, as explained above. This Figure is drawn for frequencies between

1 and 3 GHz, in order to show the peak clearly.

The 200 ohm and 2000 ohm cases are seen to have roughly the same degree of

asymmetry in the overall response. The peak of the response in the 2000 ohm

case is sharper . The Q values, computed using equation (7—2), are 1. 12 for

200 ohms (and 12.5 ohms) and 3.20 for 2000 ohms.

It is of interest to check the much used formula for half—power bandwidth

to see how accurate it is here. The formula is

S ~~. centre frequency
half—power bandwidth — 

Q

This arises from Theorem (A—9) in the Appendix and applies for Q 
~ , but little

accuracy can be expected at the low Q values in these examples. If the centre

049 frequency is taken to be 2 GHz the estimates from the formula are 3.70 GHz for

_ _ _ _  _ _ _ _ _  _ _ _ _ _  

_ _ _ _ _ _  
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2001 : 500 to 3230 and 2000 low pass forms S

200H 500 to 12.50 and 2000 : hig h pass forms S

2K 1 500 to 20000 low pass form
2KH 500 to 20000 hègh pass form S
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S 
the 200 ohm load and 0.625 GHz for the 2000 ohm load . The graph shows that the 

S

former is a gross underestimate while the latter is reasonably close.

Around the top of the peak, the response for each load differs very little

between the high—pass and low-pass cases.

9 FREQUENCY RESPONSE WHEN TERMINATIONS ARE NOT BOTH RESISTIVE

So many variations are possible in the terminations that general conclusions

on the performance of L—networks in all circuits cannot be drawn. However, the

computer investigation was extended to include the case where one termination was

a resistance and the other was a combination of a resistance and a single reactive

element. A source of 50 ohms and a representative range of loads were considered .

S For each load all the matching L—networks were designed, and in each case the

transducer gain was analysed with REDAP38.

The results were too copious to include here. The essential conclusions

were these. The additional reactive element in the load usually narrowed the

peak , the degree of narrowing depending roughly on the reactance/resistance or

susceptance/conductance ratio of the load. When the load contained some reactance,

different L—networks generally gave peaks of different widths. For some loads

having a large X/R or BIG ratio, four matching L—networks existed; in the

remaining cases two matching networks exis -ed. Where the above—mentioned ratio

was low, the response differed little from that with both terminations resistive,

as one would expect.

10 USEFULNESS OF L—NETWORKS

The formulae for transducer gain and the computer results imply a standard

of performance which is inadequate f or many applications. The peak is far from

flat, the sides are not steep and the whole response is asyimnetrical. This is to

be expected in networks designed only for single—frequency matching.

The L—network will be useful in the following situations.

(i) The signals to be handled are all in a band much narrower than the peak

of the response. An example is an RI amplifier in a transmitter.

S (ii) The frequency response is allowed to vary considerably over the band used,
because such variation will have little effect on the performance of the

whole equipment. M~ example is where the network links the output of a

S low-noise high-gain RI amplifier to a tunable superhet with AGC. Variation
S of gain over the tuning band will not cause significant variation in either

the noise figure or the gain of the overall receiver. 
049
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(iii) The specification for the network’s frequency response is undemanding
because the equipment specification itself is undemanding. 

S

(iv) An L—network happens to give the frequency response wanted.

(v) Irregularities in the response introduced by the L—network can be removed

by adjusting the element values in another filter indirectly in cascade 
S

with it.

(vi) The module being designed has many passive elements whose values can be

chosen. The designer intends to make a rough initial design and optimise

it (probably by computer), and the number of values to be chosen allows the

optimisation enough scope for adjusting the frequency response to fulfil

the specification.

Of those situations, (iii), (iv) and (v) are obviously not of great S

practical importance: (ii) would seem to arise only where there is gain to waste.

(i) is the classic situation where an L—network is used, and almost the
only one discussed in the literature. Since the peak of the transducer gain of

S 
an L—network can be quite broad, such a network could sometimes cope with quite

a large signal bandwidth. That was the justification for the derivs.tiou of the

transducer gain formulae stated in an earlier part: to find out about the broad-

band capabilities of L—networks.

(vi) is a common situation nowadays, especially in the design of multistage

microwave amplifiers , and the use of L—networks there seems quite promising.

Here is an example of situation (i). It is required to match two impedances

over a fairly broad band. Neither is purely resistive, but the reactances are not

large and do not change very much over the band. The designer has no program or
tables to design a suitable matching network, a~d he wishes to make use of a set
of tables for the element values of a broadband matching network which will match
resistive terminations whose values are in discrete ratios (such as 2, 5, 10,
20 ete).

He can proceed as follows. He adds to one termination a series or parallel

reactor which will transform it to a pure resistance near the centre frequency.

Then he designs a matching network, using the tables, which will transform this
resistance to a resistance fairly close to the impedance of the other termination.

Finally he matches to that termination using an L-network. Although this is ugly

S from the theoretical point of view, one might sometimes need to do it. Trial and

049 
error might be needed to produce a satisfactory design, or of course the method
might fail. Fig 10.1 shows an example of such a design. S

- ~~~~~~~~~~~~~ 
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I I $

I I I

~~~~~~~~~~~~~~~~~~

T H  T~ T~T~
Term i nation~ Reactor Matching network L— network ~Term ination

( model ) ‘ designed from tables ‘ ( model )

Fig 10.1

11 USE OF L—NETWORK DESIGN PR0GRM~1 IN DESIGNING T AND 11 NETWORKS

Suppose that the following problem has arisen. Two complicated terminations

are to be matched over a band, for example the output and input of successive

transistors in an amplifier. No L—network is suitable; this may be because of

unsatisfactory frequency response or some more practical consideration such as

- 
the dc properties of the network not allowing the required biasing. The designer

considers that a T or II (pi) matching network 14 may be suitable.

Since the T and II networks have three elements, but the requirement for

a perfect match at one frequency would impose only two conditions on the element

values, the designer could be said to have one degree of freedom in choosing the

element values in order to vary the shape of the response. This is not enough to
allow a perfect match at a second frequency — there will always be only one peak —

but there is some control over the width of the peak.

The simplest way of using the extra degree of freedom is arbitrarily to

assign a value to one of the elements and then to choose the values of the other

two according to the wanted frequency of perfect match. Unless the element

initially fixed is the middle element, the other two elements will form an

L—network. Therefore, if a value is initially given to an outer element, the

L—network design formulae can be used to find out if the proposed topology f or
S the other two elements allows the network to be realised , and if so to give the

element values.

The procedure would therefore be as follows. The topology of the ii or

T is chosen, including the optional fixing of the sign of each reactance. A

frequency of perfect match is chosen. A value is assigned to an outer element.

Program LNETWORK is run to give the values of the other two elements. This process 04 
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is repeated for a range of values of the outer element , giving several designs
S for the T or fl network. Finally the whole circuit is analysed by program

REDAP38 for each value of the outer element, and the design giving the best
frequency response is identified . Further improvement in the shape of the res-

ponse may be possible at the expense of the maximum gain.

12 CONCLUSIONS

If two terminations are to be matched at a single frequency, the matching

task can be performed by a choice of two or four L—networks. The range of

terminations which can be matched to a resistance by each of the eight forms of

L—network has been stated in terms of formulae, corresponding to the graphical

statements in several papers, and a graph has been presented showing for every
possible terminating impedance which L—networks may be used to match it to a

resistance.

Design formulae have been set out for the L—network which can cope with

any pair of terminating impedances. These formulae have been embodied in a

computer program.

When a two—element L—network is used to match two resistances, the peak is
broader than one might expect, but its shape makes the characteristic unsuitable

for most high—performance broadband work. The response is asyimnetrical, the top

is not flat and the slope of the skirts is not steep.

With terminations which are not both pure resistances, or an L—network

with more than two elements, the frequency response is more complicated and few

general comments can be made, but it is likely that the passband will be narrower
and that the whole response will be irregular.

Nevertheless , the L—network is often worth considering for a broadband

matching task. In particular, the use of L—networks should be considered when

a multistage microwave amplifier is to be designed using a rough initial design
and subsequent optimisation by computer.

S The next simplest networks to the L are the 31 and T , which allow the
S 

designer a measure of choice in the shape of the response. The L—network design

program can be used to help in designing a T or II network.

It is hoped that this Report has drawn attention to a neglected type of

‘49 network , and provided information which will help designers to assess its Suit-
abili ty for tasks and to design networks of this type.

.5. - - - -- 5 - - i_ 
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Appendix

THE SECOND—ORDER LOW—PASS FILTER 
S

This Appendix states formulae applying to transfer functions of the form

2 (A—I)
a(jw) + b(jw) + c

where a, b and c are real constants and a and c have the same sign. Many

of these formulae are used in the derivation of the frequency response properties

of the low—pass L—network matching resistive terminations.

The transfer functions examined here can be considered to be ratios of 
S

S phasors, although from a more general point of view they are Fourier transfer

functions, which are ratios of Fourier transforms.

Consider the circuit of Fig A.1.

-II
+ L 

~ I 
+

R~~ 
V0~

—-0

Fig Al A commonly considered tuned circuit

It is very easily shown that the voltage transfer function is

‘out 
— 

RC(jw ) 
. (A—2)

V~ + RC(j u) + LC (j u~)
2

There is zero transmission at zero and infinite frequencies , and unity trans-

mission at w l/1~~ , which is the natural frequency of the circuit. The sharp— S

ness of the peak depends on the ratio L/CR2 , whose square root is the selectivity

Q • It can easily be shown that Q = w~L/R , where w is the natural frequency.

This is typical of the sort of tuned circuit often considered in introductory text—

049 books, which usually proceed to give universal selectivity curves, showing for unit

S 
how the response varies with frequency for different values of Q .

_ _ _ _  _____ L
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When a narrow band about the top of the peak is considered , which is the

case when Q is high, the response is little different when the input and/or
output are at different points in the tuned circuit from those shown in Fig A.1 —

for example, when the output voltage is taken across the capacitance instead of
the resistance. That is because such a change of circuit changes only the

numerator of the transfer function, which determines only the global slope of

the response, whereas it is overwhelmingly the denominator which determines the

position and width of the peak.

However, this Report relates to the response of the L—network at all

frequencies, with a view to broadband use, and L—networks are usually used in
such a way that the Q is very low. It is for this reason that the low-pass

transfer function is being examined here. To facilitate comparison with the band—

pass case discussed above, the symbols Q and 
~ 

, relating to the denominator

of the transfer function, will again be used. Now that Q and have been

discussed , the examination of the low-pass transfer function (A—I) can proceed.

Theorem (A—i):

I 
_ _ _ _ _ _ _ _

a(j u) 2 + b(jw) + c C 
+ 

~ 

(ii~)÷ (i~
)

2

where Q =

and = v’~7~~.

Thus the variables a, b and c can be replaced by u , Q and a
scaling factor. Accordingly, from here on the scaling fac tor will be ignored and
this simpler form of transfer function will be considered:—

Let

T(jw ) = 
I 

. (A-3)

I + !(i~’~+ (i.~~ ~~n) V’~n

Note

T(0) — I + J~ 
. (A—4)

049
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Note on ~ :— Control engineers characterise second—order systems in terms of

u as discussed above and a quantity ~ (zeta) called “damping ratio” or

“damping factor” . S

(A-5)

The’,rem (A—2):
T (jw ) = j Q .

Proof Immediate, from equation (A—3).

Note This is the origin of the name “magnification” as applied to the Q—factor

of a tuned circuit.

Now a further substitution will be made so that the response can be

characteri3ed in terms of the frequency of the peak, w
0 , 

and the height of the

voltage peak, M~ , instead of in terms of w and Q as above. This applies
S 

only for Q ~ 1/12 , which is always true for the L—network when matching

S resistances.

Let the angular frequency maximising ITI be

S 
Let IT(iu0)I be N

Theorem (A—3): 
_______

S 

- w J~
’J_.L~ when Q ~ 1/12 ~

S 
and

0 when Q ~< 1 //2

S 

Proof From equation (A—3), differentiate TI
2 

with respect to

Note Clearly w
0 

-‘. w as Q -
~ ~~

Note For a given non—zero w
0 , 

w -‘- ~ as Q -
~ 1/12

Theorem (A—4): S

M — ________ when Q ~ 1/12 ,

H
049

and
N — I when Q ~ 1 / /2 .
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Proof Using theorem (A—3), find M

t’i~te N > Q
p

Theorem (A—5) : N + Q as Q ÷

Proof Manipulation of theorem (A—4).

Note M deserves the name of “magnification” just as much as Q does, but the

term is rarely if ever used to denote .

Now that the new variables have been evaluated and some of their properties

mentioned , the quantity ITt
2 
, which corresponds to power gain, will  be given as

a function of the new variables, and from this function further formulae will be

deduced concerning the frequency response.

Theorem (A—6):— When Q ~ 1//2 : 
S

M2

S 

~~~ — 

I + 

(
~2 — ~)(2,

2 
— i)2 

.

- Proof Lengthy manipulation using theorems (A—3) and (A—4).
S Theorem (A—i):— If w

1 
> > 0

IT(jw 1~ I T ( j w 2 ) I

then
2 /2 2

(A
0 ~t l ~~~~2 ~

Proof Manipulation from theorem (A—6)

Ncte This theorem can be used to find the peak frequency for given band edges.

.~~ orem (A—8) :— For any M~ ,

~~
s sOj Theorem (A—6).

Definition The haif—power band~idth is the difference between the two positive S

2
values of w for which ITt —

Ti~e~Or~r~ (A—9):— The half—power bandz~idth B approaches w0/Q a~ Q tends to

inf init y ,  in the Benee that

S 
it B 

— ~ • 
049
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Proof From theorem (A—6), fairly long manipulation.

Note Work reported in this Report sugges ts that 
0/Q is fairly close to B

when Q > 4
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