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Abstract

This paper develops a decision theoretic framework for one

period or ~fight-to-the finish,’~ stochastic Lanchester models.

Costs are assigned to the employment and destruction of friendly

forces and rewards granted for uvictory. u Solutions for certain

one period problems are obtained approximately by using the

standard central limit theorem or by making use of certain

martingale central limit theorems. Some examples are presented.
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1. Introduction

The military operations research literature abounds with

works dealing with Lanchester type attrition models (the reader

is referred to the tutorial by Taylor ~ll] for a survey).

Unfortunately, the use of these models in the development of

optimal decision making remains a relatively unexplored area

of analysis. Problems of optimal fire allocation as differential

games such as those addressed by Isbell and Marlow [2], Weiss [13],

Kawara [4], and Taylor [9], [lO~ involve decision making, but the

research in this area is somewhat limited in scope and suffers

from its reliance on deterministic rather than stochastic models.

Furthermore, models of decision making have not been built on a

decision theoretic structure, one which involves an assignment of

costs to the employment and destruction of friendly units and

rewards for victory and the destruction of enemy units.

This paper is concerned with one period or ~‘fight-to-the-finish”

Lanchester models. A decision theoretic framework suitable for

such problems is developed. This framework is especially

simple in that it allows for only one type of decision, the choice

of initial force level. This approach can be generalized to handle

multi-period or sequential decision models. Such models allow for

complex decision-making such as the calling in of reinforcements or

withdrawal of cotnmitted units as well as allowing for changes in tactics

during the conflict. Such generalizations are reserved for a later paper.

The evolution of the attrition process is assumed to be

described by a fixed stochastic Lanchester model. The determination
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of an optimal decision requires the calculation of quantities

such as the probability of victory for some side and the expected

number of survivors conditional upon victory. For stochast±c

Lanchester models, these quantities are not available in a

convenient closed form. The difficulty of obtaining any ex-

pressions for these quantities, even ones which are far too complex

to be of any utility, has retarded the development of any strategic

planning based upon Lanchester-type attrition structures. Instead

of closed form expressions, we employ several approximation

techniques. These techniques are based on both the classical

central limit theorem and more recent martingale central limit

theorems (see Watson [12 ] and Perla [5] for a full description

of the latter methods). The approximations themselves are still

complicated and the optimal decisions described in this paper must

be determined numerically.

I
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -i-~~ - . ~~~~~~~~
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2. Decision Theoretic Framework

We concentrate on the basic one-stage decision framework

which is based on a very simple military situation. The decision

maker must decide whether to accept a combat action, and, if so,

the amount of force to employ. This decision will be based on a

number of objective and subjective assessments such as the type

of conflict Involved , the strength of the opponents, the costs

of employing units, the forces available, and the relative reward

for victory.

The mathematical formulation of this decision problem is

constructed along the following lines. First, we define an under-

lying space € of possible initial conditions associated with

the particular situation and beyond the control of the decision maker.

This may include such factors as the enemy force level, the nature of

the conflict to be fought, and the effectiveness of the opponents

forces. Any of these quantities may be known or unknown to

the decision maker. In the case that some component, the opponent ’s

force level for example, were unknown, the decision maker may have

prior information which can be expressed in the form of a prior

distribution on ® . We next define the space of possible battle

outcomes, ~~. For our situation an outcome consists of a pair

which indicates the victory and the number or’ survivors. Finally,

there is a space of available decisions, D. In this simple

framework we allow only the choice of initial force levels;

however, this could easily be extended to include tactical con-

siderations. A real-valued loss function L is defined on ç~ x D

I
L - : ~~~~~~~~~~~  ~~~~~~~~~~~~~~~~~~ 
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with L(~ ,8) representing the loss to the decision maker when

outcome w € ci occurs given that he has made the decision a € D.

Furthermore, if P (.lo ,e) is a probability distribution on ci

for each a € D  and e€ e  and F(.) a probability di~tribution

on ~~~, then

= JP(.Ia ,e)dF(e)

is a probability distribution on ci for each a € D. We will also

write P(.~~8) as p (.).

The expected loss, or risk, of any decision o € D  is

defined by

p(ó) = $L(w,a)dP5(w).

ci

The decision maker wishes to choose a decision a*€ D such that

(8*) is a minimum.

In order to analyze the combat decision problem as outlined

• above, it is important to understand the character and role of

each of its components.

The space 6 of initial conditions includes those elements

of the conflict situation beyond the immediate control or influence

of the decision maker. Important factors which might be represented

by elements of ~ are the numerical strength of hostile forces

and their combat power, as quantified by their attrition coefficients,

as well as the effects of terrain and weather. We assume that the

opponent’s force level, while possibly unknown to the decision

maker, is fixed a priori. It will also be assumed that the dynamics
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of the combat, represented by the mathematical attrition model

used to describe it, is also beyond the decision maker’s control.

and may well be unknown. This uncertainty requires the commander

• to formulate an a prior probability distribution F for the possible

states in ® based on the information available to the commander

concerning the unknown quantities and his interpretation of that

information. Thus ® represents the underlying structure of the

combat situation which may be possible, and F the commander ’s

uncertainty about that structure. In the remainder of this paper

full information will be assumed; that is, the commander ’s prior

places a probability mass of one on some particular element of s’- .
The general case will be discussed in more detail in a subsequent

paper.

In the basic decision problem, conflIct continues until the

force level of one side is reduced to zero. Since the elements

of the outcome space ci represent the final state of the conflict,

or terminal point, they may be expressed in the form (x,o) or

(o ,Y) where X or Y is the number of survivors of the victorious

side. More general termination criteria will not be discussed here.

Decisions are restricted to determination of the number of

units to employ, and all such units are committed at the beginning

of the conflict. The basic problem addressed here does not allow

for possible reinforcements and is treated as a one stage decision

problem.

The loss function L(~ ,8), and the cost and reward structure

associated with it, are constructed in terms of a basic unit of

value defined as the cost of the destruction of a single friendly

L ~~~~~~~~~~~~~~~~~~~~~~~~ - .~~~~~~~~~~~~~~ . ~
. 
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unit. The costs for troop employment and the reward for victory

are measured in terms of this unit of value. Furthermore, it

will be assumed that partial destruction of the enemy force is

of no value. Under these sorts of assumptions the loss function

may be written

L(~~,6) = cX0(5) + [X0(o) — X f
(w)] — VI( w )  (1)

where X0(a) is the initial friendly force level chosen by decision

a € D , Xf(w) is the surviving friendly force level specified by

outcome w c ~~~, 
and 1(w) = 1 if Xf(w) > 0 and 1(w) = 0 if

Xf(w) = 0. The constants c and V represent the cost of employing

troops and the value of victory respectively. Note that in this

case, the value of victory does not depend on the number of friendly

survivors as long as there is at least one. Alternative formulations

in which the surviving force level plays a more direct role in

assessing the value of victory will not be discussed here.

Solution of the decision problem requires a knowledge of the

expected value of the friendly force level at the conclusion of

the combat and the probability of a friendly victory. These

quantities are calculated from the probability distributions P ( • I o , e ) ,
derived from the stochastic Lanchester model appropriate to the

state 8. The usual stochastic models of the Lanchester-type are

in the form of bivariate or multivariate Markov Chains, and these

are the types of models which will be employed in the sequel.

Markov chains are characterized first of all by a state space,

the elements of which represent the state or condition of the

process at any point in time. In stochastic combat models, the 

.~~~~~~~~~~~~~~~
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state space is generally a cartesian product of the form ~ N

where ~ = (l,2,...N) for some sufficiently large integer N.

The dimension of the space depends on the number of distinct

types of units available on either side, each component represent-

ing the number of surviving units of a particular type. In the

simple case as it has been outlined above, there is only one type

of unit on each side and so the state space, E, is simply N x N.

The elements of the state space represent the surviving force

level on each side, and are thus ordered pairs of the form (x ,Y).

Since we are concerned with the distribution of survivors

at the conclusion of the combat and not at any specified time

during its course, we may consider the combat process a discrete

one, with epochs marked by the occurrence of a casualty. In this

case, transitions are made from a state (x,Y) to either of the

states (x-l,Y) or (X ,Y-l). In general, the transition prob-

abilities may be written:

prt x y\ 
~X 1 ~~~ 

— 
f ( X ,Y)

L~ ~~~~~~~ 
- 
‘ ‘~ 

— 

f(X ,Y) +g(X ,Y)

p rfx y\ 1~~ ~ 
l\1L ~ .‘ I~ k ‘ 

— / .1 — f ( X ,Y)+g(X ,Y)

for suitable functions f and g. The forms of the f and g

functions are derived from the appropriate physical assumptions

about the combat process. (See Karr [3] for example).

From the transition probabilities it is possible to calculate

the distribution of final configurations. This fact, in turn,

allows calculation of winning probabilities and expected number of

survivors , thus providing the tools to solve the one stage decision

problem. An example is presented in the next section. 

~~~~~~~~~~~ - — - .~~ ---——.— -- - - -. —--
~
.-•
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3. An Example of the Basic Decision Problem

As an example of the basic decision problem consider the

stochastic version of the Lanchester Linear Law. The process

is of the form[(X~ ,Y~ ) ) where Xn and 
~n 

are the force levels

after a total of n casualties. If the initial force levels are

X0 and Y0 respectively, then X~~+Y~ +n= X0+Y0.

If we define = X~~1 - and ~~~ similarly, then the transi-

tion probabilities of the process may be expressed in the following form

P[AX~ = ~
l
~~
AY
n 

= 0~ (X~
,Y
~

) ]  = = q

P[AX~~=0,AY~ = -1i (x~,Y~)J ~~~~ = p.

The above holds for ~~~~~~~ > 0. The constants a and b are

characteristic of the attrition process and p+q=l .

As can be seen, the transition probabilities for the model

are state independent provided both sides have survivors. States

in which either force level has dropped to zero are absorbing

states and no further transitions are possible. Thus the elements

w € c i  are of the form (x,o) or (o,Y) with X <X0, Y<Y0. In this

case the combat process takes on the form of a restricted random

walk in the plane, beginning at the point (X0,Y0) with steps either

to the left or downward. (See Figure 1).

Y X casualty
(x 0 ,Y0 )

Y casualty

0 X

Figure 1

_ _ _ _ _ _ _ _ _ _ _ _ _
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The X axis and ~ axis are absorbing barriers for this walk,

and the probability P(w o,e) may be written in terms of the

negative binomial distribution.

Thus, if 8 € ~ specifies a linear attrition model of this

form, with initial Y force level and attrition parameters

a and b , and if 5 € D specifies an initial X force level

of X0, then the probability of w € ci, where uj specifies that

X wins with X f survivors is given by:

X0 -X f+Y0-l y x -x
P(~~ a) = P{(Xf,0 ) J X Q )Y0,p ] = 

X0
_ X

f 

p ° q ° ~

l<X f <X 0
(2)

xc +Yo
_ l  

Y X
= p O q C~~

J 

xc

0 X~ I 
X0 - 1

where Xc =XQ
_ X f represents the X casualties.

refine the set c ci by
0

ci~ = ( w € c i l w  = (X ,o),1 < x < x 0~,0

that is the points on the positive X axis to the left of the

initial X force level (excluding the origin). Then the prob-

ability of an X victory under the conditions assumed above is

X0 -l fx 0 + Y 0 _ l \  
~P(ci~ 1X0,Y0,p) = ~ ( ) 

~ 
o q c

0 X~~=0 \ X~ )

- -  - . , S - - - - -
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Thus for a Y0 and p fixed by 8 € 5, the risk of decision

a =X0 is given by

p (X0) =cX0 + E [X c IX o~
Yo~P] 

- VP1clx~~
x0,Y0,p]

= cX0 + E[X c !cix , Xo,Yo,p ]PIcix IX o,Yo,p] (3)

+ E [X
~~ci~ 

,X0,Y01p]P[c2~ 1X0,Y0,p] 
- vP[cix~~

X0,Y0,p].

Employing the correct negative binomial expressions in equation (3)

we have x0-~. x~ + - 1 
~

p (X ) = c X  + ~ p
O

q
C

0 x = oC C

xo-1 Xc + Y o
_ l  

Y X l
+ X 0 1-  1 p O q C~ (4 )

Xc=O x~ J
X0-l Xc + Y o

_ l  
~ x -

- v  z p O q
C

Xc=O XC

or X0-1 X
~
+Y0

_ l y x
p(X 0 ) = cX0 + x 

Z Xc p 0 q C

c Xc

X + Y -lC 0 Y X
I p O q C ( 5)

Xc=Xo XC

• X0-1 Xc +Yo
_ l 

~ x
- v  z p O q C

xC=O Xc

.

~ 

.-
~~

-• ----
~~~~~~~~~~~~~

-
~~~~~~~~~~~~~~~
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The form of expression (5) provides little insight intO the

qualitative behavior of the risk function. In order to solve the

decision problem, the value of X0 which minimizes (5)  must be

obtained. Again, the complexity of the expression renders this

task somewhat difficult, requiring an extensive numerical search.

Thus the risk function of even this, the simplest of the Lanchester

models, presents some serious obstacles to the ready solution of

the one-stage decision problem.

For more complex models, such as that based on the Larichester

Square Law, the mathematical difficulties are compounded; even

basic probabilities such as PE (Xf~0)IX0~Y0,p7 involve summations

of some complexity (see Smith [8]). One attempt to circumvent

the intractability of expression (5) is presented in Section ~~.

A more general method of attack suitable for a variety of Lanchester

models is presented in Section 5.

Ii’

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -
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4. Approximate Solution of the One-Stage Problem

The discussion of the one-stage decision problem as presented

in Section 3 revealed the difficulty of solving for the decision,

• X0(o), which minimizes the risk function p. Typically, closed

form solutions of these optimization problems cannot be found due

to the complexity and mathematical intractability of the required

expressions. This failure of analytic methods leads to a considera-

tion of techniques of approximation, in order to simplify the

expressions with which we must deal, and also of numerical methods

which may be employed to solve the problem.

One likely approach is to employ a central limit theorem to

approximate Cumbersome probability distributions by the more familiar

and well studied normal distribution. Consider the Linear Law

example presented above. In particular, consider the term

X0-l X~ + Y~~-l ~ x
I

X
~~
=O X~

in expression (5). This term represents the probability that the

X side is victorious conditional on X0, Y0 and p. This prob-

ability is merely the probability that a negative binomial random

variable is less than X0. The standard central limit theorem

applies , allowing the approximation of this sum by the appropriate

value of the standard normal cumulative distribution function ~ ,

under the conditions that X0 and are large (say larger

than 30) and p is not very extreme. In combat models, both of

the latter assumptions are generally valid.
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In this manner, expression (5) may be written in an approximate

form as

p(X0) ~ cx~ + 
~~~~~ ~PX0 -:Y0

;l
~ 

+ - 

(6 )

~ 
pX~ - qY0~

- 
~~

We simplify expression (6) even further by assuming the values

of X0,Y0 and p are such that we may consider the arguments of

all three normal distribution functions in the above expression to

be the same without serious loss in accuracy. (Note that for this

reason the usual continuity correction will be ignored as well.)

- This leads to the approximation

pX -qY qY

-

• 

p (X 0) ~~~ (c+l)X 0 - ~ [(q~~)l/~] {

~~0 ÷~~~
_ 

~~~~~} 

. (~ )

The optimal decision, X~, is obtained from expression (7) by

differentiating it as a function of X0, (treated as a continuous

rather than an integer variable), setting the derivative equal to

zero , and solving for X0. If we let cp (x) be the normal prob-

ability density function (cp(x) = ~‘(x)) then we may write

IpX - qY 1 Ip (X +v )  - qY 1 1 (pX - qY\
0 = c+l-~ 

[(qY )
l/2

j 

- L (qY )112 j [cP~ (qy )l/2)

The continued presence of the normal distribution function, ~,

remains something of a problem; however, as suming its argument is

- ,.._: ‘,
~~~~~ 

::. 
—~~~~~ _~~~~~~ - - - - .- 
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sufficiently large, we may approximate it through use of the

Mills ratio technique (see Feller [1], p.166). This approximation

allows the estimation of normal tail probabilities by the ratio of

the normal pdf to its argument:

for x >> 0, 1 - ~ (x)  — p (x)/x .

The use of this approximation requires the consideration of two

cases.

Case 1: pX0 - qY0> 0 (the subscript 0 Is deleted in the

sequel). In this case we approximate

~r~x _ q y 1 (qy)l/2 /pX- qY \
[( qy) l72] pX - 4Y 

\(qy)l/2)

Thus

p ’(X) C + px~~qY 
~(PX

;
~~~

) 
[Px~~~Y±Pv]{Px

;~~
Y]

(9)

- ~ _ Jpx _ qY_\ fpX-q Y + 
pV (aY)1/2~

- 

\(qy)
1/2) \~(qy)

l/2 (q Y) ’/2 
- p~~-qY

j

Since X and Y are assumed to be large, we consider the term

p~~_
/
q~;• to be negligible. This gives

~~
‘ (X) c - 

~ 
[
~~~)~~2] ~~2 

+ 
(q~~1[2}

• (10)

Defining pX - 
= r~ and pV 

2 a we have
(qY) (qY)

p ’ (X ) = f ( i ~) c - ~~(~~)~~~ + a ) .  (11) 

— _ 

~ _--- -~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~
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In order to solve for the optimal value of X, we set f (n) to

zero and solve for n, that is, find those values of ~ such

that

c(r) ) = -4-— (12)

wher e c and ~ are known constants  and n is assumed to be

positive by definition .

The solutions of ( 12) are the intersect ions of the standard

normal density funct ion with a certain hyperbola. Only positive

- roots need to be considered. The exact charac ter iza t ion  of the

- roots is difficult and ultimately (12) must be solved numerically .

Nevertheless some insights can be gained from a qualitative

examination of (12).
-

_ 
There are two cases, c/a < (2~ )_ 1/2 and c/~ ~ (2~ Y

112.

ln the first case, c/~ < (2ir )~~~
’2
, there is exact ly  one positive

solution of (12). Figure 2 provides the approximate diagram for

- this case. If no is the negative root , we wish to know for

J -

I
i —-  

.L. 
~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ _ _  -
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what value x will n0 + x also be a root, clearly 
~~ 

+ x > 0.

Given ~(n 0) = c/(n 0+a) and ç(n0
+x) = c / ( n 0+ x+a), one can easily

find that x must satisfy

exp(-n 0x + ~x 2 ) = 1 + x/(fl0~ a) . (13)

The equation has a solution it’ x = 0. The left side has a negative

• derivative at 0 but the second derivative is positive . Thus

exp (n 0x + 4x
2
) will cross the line 1 + x/(n 0

+a) exactly once for

x > 0. This crossing point when added to n0 gives the solution

to (12). 
-

The situation is not clear if c/a > (2Tr )~~
/’2. There may be

none, one, or two roots. The ratio c/a is not sufficient to

determine which.

i’Iow suppose d c i  ) . In this case, there can be no

negative -
.~ solutions to equation (12). However, it can be shown

- • by the same argument employed above that there can be at most two

solutions to (10) when pX — qY > 0. A single solution is also

possible . It can be shown that If the smallest solution n 0 is

such that n0 > it is, in fact, the unique positive

solution to (12).

In summary, if pX — qY > 0, there are at most two admissible

solutions to equation (12), that is, at most two critical

values for the risk function as a function of the X force level.

- - - - - - — ~ - -•~~~~~~~~
- —- -~~~•-~ ---—--~~ —-
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Figure 2 
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Case 2: pX — qY < 0. The solution of the problem for this

case follows the same lines as that for Case 1. In this manner

we arrive at the equation

~~( n )  = ~~~~~~~~~ (la)

where n and a are defined as before but with the restriction

that only negative solutions of (l~4) are valid . Equation (i1~) is

of the same form as (12), and so it follows that there is at most

one valid solution to It, and such a solution can only exist If

ci

In this latter case, c/cl < —
~~~

— (since a is positive). Thus

It Is possible to have critical values X1 and X2 for the risk

function such that pX1 — qY < 0 and pX2 — qY > 0. Note also

that if c/a > then (c+l)/ci >1/(2,y)1”2, and so there are at

most two cri tical X valu es for th e risk functi on .

A further examination of the character of the risk function

reveals that there Is a point at which the cost of the forces

employed is equal to or just greater than the value of victory.

As the initial force increases beyond that point , the large cost of

the manpower employed dominates the value of victory,

thus the loss and risk increase to infinity as the force level

goes to infinity. If there are only two critical points for

the risk function, the larger of the two must represent a local

minimum or a saddle point .

Fur thermore, for very large values of c, it is possible

that there are no valid solutions to equations (12) and (l~4).

_ _ _ __ _ _ _ _ _
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in this case , the risk funct ion has no extreme values except for

the boundary value at zero. (That is, the cost of employing troops

is so high relative to the value of victory that the combat is

best avoided.)

Summarizing the results of the above analysis, the risk function

can have zero, one, or two critical values. These findings

coincide with intuitive conjectures of possible reasonable shapes

for the risk function based on the proposed loss and reward

structure. In general, the risk function can be expected to

exhibit one of the qualitative types of behavior exhibited in

Figure 3.

p(X) 

~~~~~ 3a 

p(X)

p (x) 

~~~~~~ 
~ 

p (x)

Figure 3

__________________________________________________________ ~~~~
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The difference between functions of the form (3a) and (3b ) has

little impact on decision making. In either of these cases,

the optimal value of the risk function occurs for X = 0 and no

manpower should be cou~ itted to the combat. In the case of (3c)

• and (3d), however, true optimal force levels exist and correspond

to positive X values.

In order to determine the optimal value of X In these

latter cases, it is necessary to solve (12) or (114) numerically.

Standard numerical techniques such as the bisection method are

applicable and proved to give results which are IntuItively

reasonable and appealing In a minimal amount of computing time.

Some specific examples were considered , and selected results are

included in Table 1. It is important to notice that the optimal

force levels are substantially higher than the minimum force level

required for victory by the deterministic model. This Is not

surprising In view of the fact that the deterministic analysis

does not take any account of the relative cost of employing units

or the value of victory nor does it recognize the uncertainty of

the conflict ’s outcome . It also highlights the importance of

using a stochastic analysIs to evaluate military requirements.

Although the basic approach that has been described in this

section Is relatively straightforward and appears to give reason—

able results, it does have some drawbacks. Most serious is the

fact that this particular approach is not readily applicable to

other stochastic Lanchester type models in which the transition

probabilities are state dependent. In these cases, the complexity 

--- —- --~---
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of the expressions for the required probabilities makes an Immediate

application of standard central limit theorems difficult . One

highly effective alternate technique suggested by Watson [12] is

discussed in the next section. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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Table 1 - Numerical Results for the One Stage Decision Problem

Lanchester Linear Law, Standard Central Limit

Theorem Approach

Notation: Y0 - Initia l hostile force level

p - Probability next casualty is an enemy (p = a -4- b

c - Cost of employing friendly troops

V - Reward for destroying entire enemy force

X0 - Optimal friendly force level , central limit approach

p0 - Risk of optima l force -

XL - Minimal force required to win battle (enemydestroyed with at least one friendly survivor)
from deterministic equations.

p c V X0 p0 XL

100 0.5 0.5 500 136.94 - 328.89 101

• 1000 0 . 5  0 . 5  5000 1134.40 - 3426.12 1001

100 0.3 0.5 500 299.14 -111.95 234.3

1000 0.3 0.5 5000 2578.38 -1363.33 2334.3

100 0.7 0.5 500 64.92 -423.43 43.86

1000 0.7 0.5 5000 507.58 -4314.08 429.57

100 0.5 0.6 500 135.92 -318.45 101

1000 0.5 0.6 5000 1131.67 -3312.00 1001

100 0.3 0.6 500 296.90 -82.16 234.3

1000 0 .3  0 .6  5000 2 5 7 2 . 4 7  -1105 .37  2 3 3 4 . 3

100 0 .7  0 .6  500 64. 40 -416 .94  4 3 . 8 6

1000 0 . 7  0 .6  5000 506.16 - 4 2 6 3 . 1 6  4 2 9 . 5 7

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

ii
_

~ 
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5. Martir igale Acproximatlori s and Decision Making

The central limit theorem method used in the last section is

limit ed to the linear law case in which the t ransi t ion prob—

abilit ies are spatially homogeneous. For more complicated attri-

tion structures , one must turn to martingale approximatIons

originally Introduced by Watson [12] and further developed by

Perla [5] and Perla and Lehoczky [6] .  We b r ie fly  review the

method and then i l lus t ra te  its use in decision making .

Supp ose {(X ~ ,Y~~) ,n > 0} is a discrete stochastic process

based on a casualty time scale , that is , X~ and Y~ are the

opposing force levels af ter  a total  of n casualties have occurred .

The usual models for a combat process of this type take the form

of bivariate Markov chains. As discussed above , the transit ion

pr obabilit ies of such chains may be given in general by

g(X ,Y )
(Xn

_1
~
Yn) with probability

(Xn+1~
Yn+i ) =

1’ (Xn
~ (Xri~ Y~~•~l)  with probability

for some suitable funct ions  f and g . A discrete t ime mart ingale

can be defined from this chain by finding a funct ion  K ( . , )

such that

K(X ,Y) = [K(X—l ,Y)g(X,Y) + K(X,Y—l)f(X,Y)]/[f(X,Y) + g(X,Y)]. (15)

Equation (15 ) can, in general, be solved inductIvely for the

function K. Let

g(X~,Y)~~ _ 
f(Xn~

Yn)

f(X~,Y~) + g(X~,Y~) 
= q(X~ ,Y~) and f(Xn,Yn) + g(X~,Y~) 

= P(Xn~
Yn)~ -

L~~~~~~~~~~~ _ _ _ _ _ _ _ _ _  
-
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p (X~,Y~ ) is the probability that the next casualty is a Y, while

q(X~ ,Y~ ) represents the probability that the next casualty is an

X.) The function K can then be derived from

K (X— l ,Y)  — K(X,Y) = —p(X,Y)e(X,Y) (16)
K(X,Y—l) — K( X ,Y )  = q(X,Y)e (X,Y)

where e is some function of (x,Y) which may be chosen in a suitable

manner . (See Watson [ l 2J ) .  Some examples of these types of

martingale functions are

K1(X,Y) = pX — qY where 
~ 

= q =

for a Linear Law model with a t t r i t ion constant s a and b , or

= ~[bX(X+l) — aY(Y+l)]

for a Square Law model .

Thus , if a function K satisfies equa~ ion (16), the discrete

stochastic process {(K(X~,Y~ ),8~),n > 0} is a martingale , where

= 5(X1, o < I < n) is the a— field generated by 1X ~,0 < i < n).

In the casualty time scale X and Y are functionally related

by X~ + 
~~ 

+ n = X0 + Y0. The a—field generated by the (x ,Y)

pairs is simply that generated by either component indIvidually.

If we let (Xf , Yf ) be the force levels when the conflict

terminates , then we must find P( X f > 0)  = P(X wins ) and

E(XfIX f>0), the expected number of survivors conditional on victory .L These quantities are involved in the risk function. They can be

calculated approximately by noting that K~ = K(X~,Y1) will be

— approximately normally distributed with some specified mean and

variance. In many cases, the distribution of K(Xf,Yf) can be

found and the required quantities therefore calculated approximately.

• 
- •

~~~
‘- - - - 

-
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We illustrate with the square law case where

K(x,y) = ~b x (x + l )  — ~ay(y+l). The distr ibution of = IC(Xf,Yf)

will be approximately normal with mean

u = ~.bX0(X 0+l) — ~~Y0(Y0+i) (17)

and variance

a2 = 4(b
2X~ + a2 Y~ — (8b~i

3)1”2) if ~ > 0
( 18)

4(b
2
Xg + a2Y~ — (—8au 3)1”2) if u < 0.

Now K1 > 0 if and only if Xf > 0 and Yf = 0. Thus

P(X wins) = P(x >0) = P(K >0) ~(~i/a). Furthermore, If K > 0,

then K~ = 1/2 bX1(X1~l) or Xf = l/2((l + —s-— ) — 1). It

follows that

E(X1IX~>0) i/2[f(l+ 8K 
~~~~~~~~~~~~~~~~~~~~~~~~ 

-1)].



_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

26

6. Martiz~ga1e Solutions 
•for the Linear and Square Laws

The martingale techniques outlined In the previous section

may be used to obtain approximate solutions to the one stage

decision problem through numerical approximation and computer

optimization techniques. As an example of the general methods

employed , this section presents th~ details and results of the

solution to the Linear Law case, and outlines the approach

required for solution of a Square Law problem.

Let the initial force configuration be (X 0,Y0) with X0,Y0

large. Define k(x,y) = px — qy where p = ~~~~~~~~ - and q = 1 — p.
Let ~ pX0 — qY0. The distribution of I(~. Is approximated by

a normal distribution with mean u and variance a2 given by

a2 
~~pX0 if ~~< 0

it ~~> o .

Since the value of Kf is positive if and only if X1 > 0

and Yf = 0, P(X win) = P(K1>0) ~(—~a/a) where .(x) is the

standard normal distribution function at the point x. The

expected value of Xf is obtained by the same type of argument .

If K
1 >0 , then Y1 = 0 and X~. = K1/p. Thus

E[X1IX wins] ~
.EcKfIK f ‘0)

where ~ is the standard normal density function . Thus

E[X0—X 11X wins] = X0 — ~{ii+a~~(u/a )/$ (ii/a)J =

X0 — ~~~~~~~ q — ~
. 

~~~~~~~~~~ 
= ~~ Y0 — 

1~IIIJ
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The risk function, p (X0), then takes on the approximate form

p(X0) (c+l)X~ — ~(~L/o)[v+X0 — ~~ Y0J — ~~(u/a). (19)

The solution of the one stage problem requires the minimization

of (19) as a function of X0.

It is clear from the discussion of the shape of the one stage

risk function In Section IV, as well as from intuitive considerations,

that the optimal value of must be to the right of the point

q/p Y0. In this case, u pX0 — qY0 > 0 and so a2 = qY0.

Substituting these values in equation (19) we have

- pX0—qY0
~ 
(X 0) = (c+l)X0 — ~~~ )[v + X0 — ~~

- Y~]

/~~Y pX -q Y0 0) (20)
P i ~ç

Under the same sort of assumptions employed in Section 14,

this risk function may be differentiated , and the optimal X0

value obtained numerically . This approach was employed for the

same cases used in standard central limit theorem approach of

section 14. The results are presented in Table 2. Table 3 presents

a comparison of the results obtained from these two methods. As

can be seen, the agreement of the methods, both in terms of

optimal force level and optimal risk, is quIte good .

- /
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Table 2 — Numerical Results for the One Stage Decision Problem
Martingale Method

.~otation : Y0 — Initial enemy force level

p — Probability next casualty is enemy

c — Cost of employing friendly troops

v — Reward for victory (totally destroying enemy

force)

X0 — Optimal Initial force level

~ (X e) — Risk of optimal force level

y p C V X0 p (X 0)

100 0.5 0.5 500 136.55 —329.31
1000 0.5 0.5 5000 11314.03 —3 1426.1 9
100 0.3 0.5 500 297.66 —112.67
1000 0.3 0.5 5000 2576.814 —1363.92
100 0.7 0.5 500 64.80 —423.49
1000 0.7 0.5 5000 507.146 —14314.12

100 0.5 0.6 500 135.514 —315.71
1000 0.5 0.6 5000 1131.28 —3312.93
100 0.3 0.6 500 295.142 —83.04

1000 0. 3 0.6 5000 2570.9 14 —110 6.56
100 0.7 0.6 500 64.28 —1417.014

1000 0.7 0.6 5000 506.03 —14263.145

- ---_---—---------— - ——- _ •&__ •—-- - •, -- , • • - - ---- ---- —,-— —~---- —- —•--.--~~~~~~~~~~
-—--—-
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Table 3 — Comparison of Martingale and Standard Central Limit
Theorem Results

case Standard (X0,~ (X 0)) Martingale (X0,p (X0))

1 136.914,—328.89 136.55,—3 29.31

2 11314.40,—3426.12 1l34.03,—31426.l9

3 299.14,—lll.95 297.66,—112.67

14 2578. 36,—l363. 33 2 576 .8 14,— 1363 .92
5 64.92,—J423.143 64.80,—423.-49
6 507.58,—’43l4.08 507.146,—143114.12

7 l35.92,—3l9.-~45 135.54,—315.71

8 ll3l.67,—3312.00 1131.28,—3312.93

9 296.90,—82.l6

10 2572.147,—1l05.37 2570.914,_1106.56

11 614.140,—4l6.94 64.28,~ 14l7.014

12 506.16,—14263.l6 506.03,—14263.-145

1
1;
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The case of the square law is similar to the linear law but

differs in detail and ease of solution . In section 5, the

• P(X1>O) and E(X11X 1>0) where computed approximately. The risk

function is given by

p(X0) = (c+1)X0 — E(Xf~X0,Xf>O)P(Xf~0) — vP(Xf>0).

thus
(c~ l)X~ + ~(u / a )  

1+2v-(J(l+ ~~~l/2~~~~~ (21)

where 
~ arid a2 are defined in (17 ) and (18).

The minimization of (21) is made difficult by the presence of

the integral and that both ~ and a are functions of x0. Con-

sequently, the optimal x0 is best found through a computer search.

This task may be simplified by recognizing that E(X11X0,X1>0)

can be represented by 1E(T1”2 1T>1) — 1/2 where T is a random
2 BK1

iariable with a normal distribution. Since T = 1 + —~~~
-—
, the

mean and variance of its normal distribution are easily determined

from Kf.

L 
____________________________________________________________________________________________ 
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7. Summary and Suggestions for Further Research

This paper has formulated a framework for an elementary one

stage decision problem in a simplified combat environment . The

combat models employed were based on stochastic versions of the

classical Lanchester attrition laws.

The risk function to be minimized involved a victory prob—

ability and the expected number of survivors. These quantities

were obtained approximately by using either the usual central

limit theorem or the martingale central limit theorem applied to

the specific attrition structure’. Numerical solutions seem to

generally be required .

The Ideas and results presented in this paper represent a

first step in applying the concepts of statistical decision theory

to Lanchester processes. in this paper, only the simplest possible

decision problem was addressed. in a further paper, the diffusion

• approximation methodology presented in Perla and Lehoczky [6] will

be used to study multi—stage problems . In such cases, the decision

maker will have a series of force allocation decisions to make

as opportunities for reinforcement or withdrawal present them-

selves. The solution to such multI—stage problems, as well as

other possible problems of interest, will be based , to a large

extent, on the methodology presented here.

_________________________________
- - - - -
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