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FIRST ORDER AUTOREGRESSIVE GAMMA SEQUENCES

AND POINT PROCESSES

*
D. P. Gaver
and
: *
P. A. W. Lewis

Naval Postgraduate School
Monterey, CA 93940

1. INTRODUCTION

The Poisson process is a basic model for point processes
(series of events) and can be characterized as a process in which
the intervals between events are independent and exponentially
distributed. In one of the earliest papers on point processes
(Wold, 1948) an attempt was made to generalize the Poisson process
by obtaining dependent but marginally exponentially distributed
intervals between events. Similarly Cox (1955)vattempted to
obtain a sequence of random variables with conditionally exponential
distributions. Neither of these attempts to generalize the Poisson
process led to analytically tractable results. In principle,
of course, it is simple to generate a sequence of marginally
exponentially distributed random variables with Markov dependence
if a bivariate exponential random variable is available. However,

despite the recent discovery of many bivariate exponential random

R
Research of both authors was supported in part by NSF grant
MCS-77-07587 at the Naval Postgraduate School and by the
Office of Naval Research.
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variable generation schemes [Marshall and Olkin (1967), Hawkes (1972);
Gaver (1972); Downton (1970)], none seem to have simple enough
properties, conditional and otherwise, to lead to analytically

and computatiohally tractable models for a non-independent

(Markovian) and easily simulated sequence of marginally exponentially
distributed random variables. Interest in the aforementioned
processes also may have been damped by the development of physically
motivated point process models such as the Poisson cluster process
and the self-exciting process, for example see Neyman and Scott
(1972). Unfortunately, many of these point process models are

somewhat awkward to handle analytically or computationally.

In this paper we show that if one starts with the usual
linear, additive autoregressive equation (first-order stochastic

difference equation)

TR Res Qpinkidy #:2, 504 (1.1)

where the innovation sequence {en} is one of i.i.d. random vari-
ables, then there is, for 0 < p < 1, a distribution for the en's
such that the Xn's have, marginally, an exponential distribution.
The resulting exponential autoregressive process (EAR1) has several
attractive features. First, the sequence is obtained as an additive
random linear combination of random variables, and is easy to
simulate, i.e. to realize on a computer. In simulating a gqueue,

for instance, one can easily obtain sequences of correlated service

times or interarrival times, with respectively an i.i.d. exponential

sequence or Poisson process as a special case (p = 0). These




correlated sequences are useful for checking for the sensitivity
of standard queueing results to departures from independence, and
for othér robustness studies.

A second feature is that the EAR1 process (l1.1l) is analyti-~
cally tractable; one can, for instance, obtain the Laplace transform
of the distribution of sums of the random variables. This is
essential if the process is to be used as a model for point pro-
cesses and one is to obtain the point spectrum.

A third feature of the EAR]l process is that its structure
leads to an extended model for a sequence of marginally exponentially
distributed random variables with the correlation structure of a
mixed autoregressive moving average process (ARMA p,q), the orders
of the autoregression and the moving average being p and g
respectively. Various properties of this exponential process,
called the EARMA(p,q) process, are detailed in Lawrance and Lewis
(1977), Jacobs and Lewis (1977) and Lawrance and Lewis (1978).

In Section 2 of this paper we discuss the exponential
solution of equation (1.1), as well as questions of stationarity
and mixing. The distribution of sums of random variables from
this process is discussed next; this relates in particular to the
use of the process to model intervals between events in point
processes. Joint distributions and conditional correlations of
two and three random variables are derived in Section 4. The
estimation of the exponential parameter A, the reciprocal of
E(Xn), and the correlation parameter p are briefly considered
in Section 5 for a fixed or random number of observed random
variables. It is shown that, because of a certain degeneracy

in the process, p can be estimated exactly in a long enough sequence.




Other solutions to equation (1.1) are considered in Section 6.
In fact random variables for which solutions to (1.1) (in trans-

formed version) exist are known as self-decomposable random

variables or random variables of type L; see Feller (1971, p.
588-90). Two cases of interest in modelling point processes

are discussed. These require consideration of Gamma-distributed
intervals, and intervals with a mixed exponential distribution;
questions connected with the latter remain unresolved.

Finally in Section 7 we consider the question of obtain-
ing autoregressive and Markovian exponential sequences with
negative correlation. It may be seen that (l1.1) has no solution
if P is negative. However, as soon as multivariate exponential
sequences are considered--in particular, multivariate
sequences which are antithetic realizations of each other
--we discover a method for obtaining processes with exponential
or other specified marginals and that exhibit negative

correlation.




25 EXPONENTIAL SEQUENCES
In what follows {En} will always be a secuence of i.i.d.
exponentially distributed random variables with parameter X:

P(E_ < x} =Fy (x) =1-e* (x>0, 10

En
(2.1)

=0 (x < 0)

Also an exponential (A) random variable will mean a random

variable with distribution (2.1).

2.1. The exponential first-order autoregressive sequence (EARI).

The starting point of the work in this paper is the question

as to whether the autoregressive equation (1.7)
X_ = pX +e = Y ple__. lol <1 (2.2)

has a solution for a cgiven distribution of Xi (note that the
expansion in (2.2) as an infinite moving average is valid because
lol <1). Now X _, is a function only of ¢ _,, €, 5, ... and
is therefore independent of €n* Therefore the Laplace-Stieltjes
transform ¢y (s) of the distribution of X/ is, at least for

n

8 >0,

(s) E[exp(-sX )] E[exp(-spX, _, + €.)]

¢
X

(ps) . (&) .

)
xn—l n




Thus ¢X (s)

b (s) = —2p—r (2.3

€n by (ps)
n

Assuming that the xn sequence is marginally stationary, we get

the basic equation
¢, (s)

¢_(s) = 4

€ Gy (PST
Now it is clear that if we require the Xn to be positive random
variables, then if p 1is negative so is pxn and we need the
error term e, which is independent of Xn—l'
Thus for positive random variables there will clearly be no solution
to (2.3) for p < 0. However if we let 0 < p < 1 and, side-

stepping the general question of existence and uniqueness of

solutions to (2.3), require the Xn's to be exponential with

i A
s = T35
then equation (2.3) forces
-7 A , A PRl A + ps
<p£(s)-—A+S T il - (0<p<1l, x>0)
- p # (lag) s (2.4)
3 A+ s k

The latter expression is the Laplace-Stieltjes transform of a
random variable, in fact a non-negative random variable which
has an atom of mass p at zero and which is exponential(A) if
positive. Thus we can write the difference equation generating

the series {Xn} as

to make Xn positive.

P




n n-1 n
‘ pxn_l W.p. p
= o SR T (2.5)
| ox__, +E,  w.p. (1-p)
= 2 2.
pX 5 + I E., (2.6)

where {In} is an i.i.d. sequence in which g 1 with prob-

ability (l-p), I_ = 0 with probability p and {E is an

n n}

i.i.d. sequence of (1) exponentials. It is easily verified,

directly from (2.2) or from the definition of € that

>| =

1 2
= o . = - X 27
E(e,) = (1-p) ; var (e ) ;7 {L<p™} (2.7)
There are several points to be made about the sequence Xn:
(i) When p = 0, then {Xn} is an i.i.d. sequence of
exponential (A) r.v.s.
(ii) The representations (2.5) and (2.6) of the process as

an (additive) random linear combination of Xn and En,

-1
which has a distribution independent of p, are sometimes
more convenient than is (2.2).

(iii) Although Xn is strictly a linear process (ARl), it

differs from the normal or Gaussian process ((2.2) with

€n normally distributed of Gaussian) in that the mean,

variance and higher moments of the ¢ 's are functions

7




of the parameter p. Thus one cannot apply general theorems about

linear processes to the exponential sequence because such
theorems usually assume that the en's have a distribution
which is free of the parameter p. As an example, Xn is
exponentially distributed even when p is close to one,
despite theorems for linear processes which assert that
in this case the Xn are approximately normally distributed.
For instance, if the en's are independent of o then
the skewness of the stationary distribution of X, ~can

f be shown to approach zero as p 4 1l; in the special case
of (2.4), this quantity is independent of p and equal
to 2--the value associated with the exponential d4d.f.

(iv} There are many other sequences of random variables {Xn}

with exponentially distributed marginals and the first-order
Markov property. 1In fact, given any bivariate exponential

distribution F (x,,%X,), assumed for convenience to
El,E2 =2
be absolutely continuous, with conditional density

£ (xz;xl), then we construct a Markovian sequence with

E2|El
joint density for, say, Xn, Xn—l' R X0 as
[ f (X vver %)
1 Xn,...,Xo n 0
= f (X 1 = & (x A )
B lE 0" Tl T O B e Dgmd




An interesting and useful feature of the EARl1 sequence
given by the solution (2.6) of the autoregressive equation is
that it is a (random) linear combination of i.i.d. exponential
sequences, and is thus easy to simulate on a computer, gives
reasonably tractable analytic results and in turn suggests the
definition of processes with more complicated correlation
structure and exponential marginals (Lawrance and Lewis, 1977,
Jacobs and Lewis, 1977, Lawrance and Lewis, 1978). The correlation
structures are essentially the same as those for linear processes

(Lawrance and Lewis, 1978).

2.2. Serial correlations, stationarity and mixing

Simple computations show that, as is trve of any regular

Markov process, the serial correlations for the EAR1 process are

cj = corr(X X ) = pj » 0. % p £ 1

n n+j

Note that the correlations are always positive. The spectrum of

the sequence is

El

{1 + 2

f+(w) :
J

Il =~ 8

cj cos (jw) } (0<w<m; 0<p<l)
1 g -

2

| =

L =9

Bt o = 25 0bn

For p = 0 we have f+(w) = 1/7 since the sequence xn is i.i.d.




Moreover it is not difficult to show that the process is

stationary if one takes

X, = E, (2.8)
Xn = an_l + g il pxn_l + InEn (2.9)

with e defined by (2.4). This is no surprise, for the

process is Markovian and is constructed to have an exponential
distribution in the stationary case.

With Eo = Xo
the sequence {xn} is strong mixing in the sense of Rosenblatt

it is shown in Jacobs and Lewis (1977) that

(1971).

3. SUMS OF STATIONARY INTERVALS

An important aspect of the stationary segquence {xn},
especially when it is used to model the intervals in a point
process, is the moments and distributions of sums
Tr by Xn i Xn+l
of T is found directly by noting that, in terms of X

BEEE X 1 The Laplace-Stieltjes transform

(2.2) may be modified to give this representation:

A .., = pJXn + pJ-l

n+j €nel * P Eoay 2Prw €n+j’ Gy =05d,2,004) 13:1)
and so
E=1 r r=1 r-j
@ - 1= 1-p
SEoe j£0 Xhe = %n (I:g"')'+ jzl €+ ('I:——-)-
10




It follows that

% te) = Blexpl-st.)] = ¢ (1’°r) i o (1'°r-j) (3.2)
s = exp —s E— s = S ._T__ -
Tr t Xn l-¢ j=1 € 1l-p

If the process starts with the stationary distribution, i.e.,

if Xn is exponential(}), then

¢ (s) = = I -t (3.3)
' o op
Tr A+ s (%:%—) J=i A+ s (llfp )

Clearly the distribution of Tr can be found explicitly by
inverting (3.3), which can be accomplished by expanding in
partial fractions. So also can an expression for the interval
spectrum. The result is analytically awkward, and will not

be quoted. 1In order to obtain (i) the intensity function, mf(t),
of a point process with EARl intervals, (ii) the point spectrum
g,(w), and (iii) the distribution of the counting process N(t)
(for definitions see Cox and Lewis, 1966, Sec. 4.5) one must be
able to sum ¢Tr(s) over r; there appears to be no neat
explicit formula for any of these functions. The variance of

T may be calculated directly from (3.1) since the innovations

r
{en} are independent:

N 2 1+p 1-,5-1 2 [ 1-02(x-1) :
Var[Tr] = —2 [(I:";L') + (r_—p);r -1 —Zp(—rg-p—— + p —1%—!——— (3.4)

P

11




Hence for p < 1 the index of dispersion (Cox and Lewis (1966),
o T2} i
Var[Tr]

J = lim Jr = lim 5 = %
r>o r+ o r{E[Xl]}

+ 0
= + .
L -1 (3.5)

As a byproduct of (3.5) we get, for p < 1, values of the slope
of the variance time curve, 1imt_,w V'(t) = V'(»), the initial.
points of the spectrum of counts g+(w) and the spectrum of

intervals as (Cox and Lewis, 1966, Sect. 4.6)

J
V' () = AJ
g+(0+) = AJ/m

Limit theorems for Tr and the counting process N(t) are given

in Jacobs and Lewis (1977).

4. JOINT DISTRIBUTIONS FOR THE STATIONARY SEQUENCE

Any pair X X in the stationary EAR1 sequence has

n+r

a bivariate exponential distribution. Consider Xn and Xn+1.
Directly from the definition (2.5) and (2.7) it can be shown
that the conditional random variable xn+l, given xn = x, has

an atom of mass o at px; otherwise it is, with probability (1l-p),

12




an exponential()) random variable shifted px from the origin.

The regre531on of Xn+1 on Xn = X |1is

1
E(xn+llxn =x) = x + (1-p) T (4.1)

which is linear. Moreover var(X IXn = X) = (l—pz)/kz, a

n+l
constant independent of x, and xn+1 is never smaller than
pX,, - The Laplace-Stieltjes transform of the bivariate exponential

distribution of Xn+l and Xn is

Yo (s,,s,) = E{exp(~s,X_ - s,X )}
X X . 1702 P T f2net
= E{exp([-s; + psz)xn]} ¢, (s,)
n
= A L (1-p) . '
X +s, + 08, lp X + 52‘

A ( A )\
= + -
P+ s, + ps, (1-p) A+ 5, + psz)(A + 32)

(4.2)

The bivariate distribution of {xn+1, Xn} has a singular component
along the line xn+l = xn, with probability p (the first term
+1 : pxn
(the second term in (4.2)) which is the joint distribution of Xn

in (4.2), and a continuous component in the space Xn

and pX, + En.’ Note that the distribution is not symmetric in

Xn+l

symmetric in 5, and Sy This simply means that the process

and Xn, since the transform ¢xn+1’xn(sl'sz) is not

is not time-reversible, as is the normal or Gaussian ARl process.

This asymmetry appears in the conditional mean of L
given X_  , = x, which is obtained from (4.2), as

This asymmetry also becomes evident in the non-linear form
of the conditional mean of xn, given xn+1 = x, which is obtained

13




from (4.2), as

E(xnlxn+1=x) = XTI%BT {1 - expl[- (% - 1) Ax]} # E[xn+l|xn=x]

The conditional variance of Xn’ given xn+l = X, can also be

obtained; unlike var(xn+l|xn = x) it is not a constant.
Higher order directional moments of Xo+1r X, are given
in Jacobs and Lewis (1977), and again evidence the directionality

of the process:

B 2 2 40 . .
Cy,1(1) = E(X X ,5) - E(X)) E(X, ) P i

i 2 o 2 = 2p(1+p)
Cp,2 (1) = B, Xo) - E(X) E(X,) = 22

Since the process is, from its definition, Markovian, the

conditional correlation of Xn and X given Xn = X, is

+1 n-1'
zero. We do not discuss distributions of triples any further.
In principle it is simple to write down transforms of the joint
distribution of any set of k‘ xn's; one obvious use of this
result would be in obtaining the distribution of the sum of

Xov voe 0 X0 g
in the previous section.

However, this was obtained by a direct argument

5. ESTIMATION AND DEGENERACY
Although it is not possible to write down the likelihood
equation for the EARl process in a tractable form where, say, we

observe xl, sy P xN, it seems at first sight that good estimates

14




of 1/ and p can be obtained from the sample mean, X = Tn/n,
whose variance is given at (3.4), and a first-order serial
correlation coefficient estimate 61 with modifications to take
account of the fact that the variance equals the mean squared,
i.e. Var(X) = 1/A2.

However, there is a degeneracy in the process which makes
it possible to find p exactly in a long enough run of Xn's,
and to estimate A more precisely than is possible using
straightforward moment methods.

To identify the degeneracy, which we call the zero-defect,

we note that in the process there are runs of Xn's which are
equal to the previous value, Xn-l' times p. Moreover, given
that there is a run of length R of this type, R has a "geometric

plus one" distribution with parameter op;

0 M R AP C IR e SERRRG S N (5.1)

E(R) = I—%—E ; var (R) = ———E———f ’

1 = Bl

This behavior, or a tendency towards it in data would be very
evident in plots of a sample sequence of Xn values.
Thus to estimate i i =
ima p in an observed series, let Zn xn+l/xn'
for n= 2,3, ..... Then




The probability that Zn = p, Or Zn # p, is independent of previous
Zn's aﬂd P{Zn =p} = p. Hence if we observe the minimum value of
Zn' n=2,3,... until we get a tie, that tie value is p. The
time to obtain this tie is the sum of two "geometric plus one"
random variables, with total mean 2/p and total variance
2(1—0)/02. The implication is that we can find o exactly after
a random number of observations for the present model. Moreover
since one then knows those Xn's which are made up of pxn_1
plus an En’ it is possible to compute the Enfs exactly (except
for two) and estimate E(X) = 1/) directly from the observed En's.

For a fixed length obsefvation of the process, say
Xl, reluiliy XN, the probability that p can be obtained exactly
is the probability that the sum of two "geometric plus one"
random variables is less than or equal to N. If two minimum
values are not observed by time N, a good estimate of p will ﬁ
be the minimum of the Zi's. This will either be p, or p plus !
a small bias term. The mean can be estimated as the sample
average in the usual way.

This degeneracy in sequences of positive random variables
generated from the stochastic difference equation seems to be
inherent in the present procedure. Slightly more realistic but

complicated first-order autoregressive exponential processes

without this zero defect will be discussed elsewhere.

16




6. OTHER SOLUTIONS TO THE AUTOREGRESSIVE EQUATION
Random variables X for which the transformed first-order

autoregressive equation

¢x(s)

w= ¢€(S) (6.1)

has a solution ¢€(s) for each 0 < p < 1 which is the transform

of a distribution function are called random variables of class L

(Feller, 1971, p. 588), or self-decomposable random variables.

Although there has been much recent interest in finding class L
random variables, the connection with the first-order autoregressive
process does not seem to have been made. On the other hand there
have been some attempts to find non-normal solutions to the auto-
regressive equation without connecting them to class L theory

(see, e.g. Bernier, 1970).

The limitation of the theory of class L random variables as it
relates to the present work is that it requires a solution for each
0 < p <1, which is the case for exponential()) random variables X.
This full range of p is desirable, Lut may not occur.

We do not explore the full connection here, but consider only
two types of random variables, Gamma distributed random
variables and mixed exponential random variables. These are
frequently used as alternatives to the exponential in modelling

stochastic phenomena such as response times in queues.

17




6.1. The Gamma Autoregressive Process GARI.

A necessary condition for X to be in the class L is
that it be infinitely divisible, and therefore we consider
Gamma (A,k) variables with density

k_ k-1

Fex) = AX S (>0 k> 0; x>0 (6.2)
KT (k)

and Laplace-Stieltjes transform (of the stationary distribution)

by (5) =( A )k : (6.3)

Then the solution to (6.1) is

k k
+ ps 33 2 A
e ) o (p + (h=p) T s) (6.4)

>

¢€(S) = (

It follows from a result reported by Feller ((1971), p. 452) or
directly from Theorem 1, p. 450) that [(A + ps)/(x + s)] is

the transform of an infinitely divisible distribution, and hence
(6.3) is actually the transform of (an infinitely divisible) distri-
bution function for every real k > 0. Thus we can in principle
generate an autoregressive process with gamma marginals (6.2)

by utilizing the {en} process characterized by (6.3). Here

are a few simple special cases.

2
k=2t o(8) = o +20(1-p) g4 + (1'°’2(s 3 x) ; (6.5)
2
k = 3: ¢€(s) = o3+202(1-p) ;—i—x + 2p(l-p)2 (s i A
3 A )@
R (m) : (6.6)

18
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Thus for k = 2 the random variable € may be thought of and
realized as a convex mixture of a degenerate random variable L
with mass at zero and an exponential()) and a Gamma (A,2)

distribution. Alternatively if El and E2 are independent

exponential (A\) random variables, the sum is chosen with probability

, is chosen with probability 2p(l-p)?, and neither of
Bl or E2, but rather zero, is chosen with probability pz.

(1-p)2, E

Unfortunately, no really simple way of generating random vari-

ables with Laplace-Stieltjes transform (6.4) for noninteger k is

known, though representation as an infinite sum of weighted
Gamma variables is possible (Bernier (1970)). Moreover for a
case of much interest k < 1, so that X is overdispersed
relative to an exponential random variable, and the degeneracy
or zero-defect of weight pk becomes very prominent.

As was true for the exponential case, we have for the

correlations, which are all positive,

cj=p U £ px 1
also
E(e) = A (1-p)
var(e] = A% (1-p2)/k .

As k +» «, the degeneracy disappears and X tends to become

normally distributed.

19




6.2. The Mixed Exponential Process MEARI1

Consider now X to be a mixture of two exponential densities

fx(x) = m\e + myAye g

G TR T (6.7)

For By 0, Kaed 1l, and/or Al = Az this of course reduces
to an exponential density. There are two main cases to consider,

besides these special cases.

If 0 { m, {1, then we always have a convex mixture of

1
exponential densities: fx(x) is a proper density function and

the coefficient of variation of X lies between 1 and infinity
(Cox, 1964), so that X is overdispersed relative to an
exponential random variable; X may be generated as a mixture
of two exponential random variables with parameters Al and

A and X is infinitely divisible (Feller (1971),p. 452).

2'

If = is greater than 1, so that T, is negative, a

1
necessary and sufficient condition for fx(x) to be a p.d.f.

: - =
is that nlxl + n2A2 > 0 or equivalently that “15.[1‘ (Al/xz)] s
Here is alternative way of writing the transform of X.

First, and directly,
A A
& 1 2
Px'S) = 1y AW R X, + 8 (6.8)

Now since Az > Al factor to obtain
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N
>
(18]
0
S — e~
=5
[\
a
3
=
b
N |-
—
>
[ \8)
+
N —
N — —

e Lo
A A ) ( A ) A
2 1 1 1
= i 1 -7 1 -~ —_— + T l ~ — ) —— . (6.9)
>‘2 + s § 1 ( 2 1 >‘2 )\1 + s
Now even if #. > 1 (m_ < 0) but
1l 2 )\l
y =T 1 - —-) (G L (6.10)
-2 |
or equivalently
Tydy + LEESY >0 (6.11) !
then ¢, (s) is the transform of the sum of an exponential(},) ’
random variable and a random variable having the distribution ﬁ

of the e-innovation of an EARl process, see (2.4). It follows

that X is infinitely divisible.

21




It is thus worth investigating whether one can generate
an autoregressive process {Xn} with mixed exponential
marginals for some or all o, the latter being the question
as to whether the mixed exponential random variable is in the

class L. We have, directly

LA Tahy

+
¢€(s) X ixiz;) . s +Al s +x2
X nxl i "2k2
ps + Al ps + AZ
= (Al + ps)()\2 + ps)()\l)\2 + nlkls + nzkzs)
(Al - S)(A2 + S)(Alk2 + mAips + ﬂzxzps)

After considerable simplification this Laplace-Stieltjes
transform can be written as a mixture of a degenerate random
variable with mass p at zero, and with probability (1-p)
(possibly) a random variable Y which has (possibly) density

function

-l X =\ %
M 1 2 ¢ J=%c/p
fY(x) = Ylkle + Y2A2e + Y3 e

Y

where Y1 + Y, + ¥u 3 Al < AZ’ ﬂl> 0, ﬂl# 1 and

Agha

C = H
+ (T-vl)AZ

ﬂlkl
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- -
% i (, pxl)(c 1) e (6.14)
| (A, = A;) (C= pAp)
f .
; Ay, = € Aiim %) (A; =~pA,)
P i (A, ) g (P2, 1 L P, i PR AN T pA,) (6.15)
(A = k) (pdy = ©) (€ - pi,)
(C:e Aidild, =€)
& ) St 1 & 1 - 6
L e G G (R M Sl (o v PhiRt

Now if LY is restricted to be 0 < ™ < 1, then Al GEC ¢ Az
and Py >0, Py >0, P3 > 0. Then it can be shown that the
signs of Yir Yor Y3 depend on whether 0 < p < Al/xz,-

Ak €p 4O, ar €/, ¢ P K Ls

(i) Yy is always positive;
(ii) Yo and Y3 are positive if 0 < p < Al/xz;
(iii) Y, is negative, Y3 is positive if Al/kz < p < C/Al;

(iv) Yo is positive, Y3 is negative if C/A2 Cop € 1

While this result is relatively simple, the only case in which it
has been possible to establish that fY(x) is a p.d.f. is that
in (ii), i.e. 0 < p ¢ Al/xz. The ratio xl/xz is roughly
related to the overdispersion of X relative to the exponential
distributicn; the smaller the value Al/xz, the greater the
dispersion and the smaller the admissible range of p. It seems
probable that fY(x) is not a density function for all P; at
all events efforts to prove that it is in the class L using
(6.10) and characterization theorems (Feller, 1971) have failed
at the time of this writing. A complete understanding is not now

available. 23




6.3. Discussion

Note the differences between the mixed exponential auto-
regressive sequence and the Gamma (k < 1) autoregressive sequence;
the former appears to require a restricted range for p, € can be
simulated, and the zero defect has probability p; the latter
sequence is valid for 0 < p < 1, € cannot at present be
simulated, and the zero-defect has probability pk DA O
The magnitude of this zero-defect alone probably makes the
Gamma process less useful than the mixed exponential process.
The tail behavior of the marginal distributions is also
different.

Laplace-Stieltjes transforms of distribution of sums,
T of xn's are obtained from (3.2) for both the Gamma and

r
1
mixed exponential autoregressive sequences. These cases are

still under study.
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7. MULTIVARIATE SEQUENCES AND NEGATIVE CORRELATION

Even though the autoregressive equation (1.1) has no solution
representing a positive random sequence when p < 0 it is possible
to modify it so as to produce negatively correlated exponential
sequences. These will not be individually Markovian, but will have
Markovian properties in a bivariate sense. A suggestion as to how
to proceed comes from writing xn in terms of the innovations
{en} as in (2.2):
(7.1)

n o 2
X = 2 pJe W= etk pE + p e LR 3 Pnt

n-2 0 -
Now consider generating two (or more) series in parallel, using
independent pairs of innovations, (en, eﬁ), for which if desired

Cor(en, eﬂ) < 0; e.g. for 0 < p < 1 and starting with the first

innovation.

2 3
. = ' — ' ' L)
Model 1: Xn pxn-l + €n en-+pen_l + p €ne2 + p €13 + & s
2
’ = L} b L} L} oo e
Ay T PReL) PRe e T i Bl
s — 2 3 LN 3
Model 2: Xn = an_l + £ en+ PEL_1 + p €gud + p En-3 +
2 (7.30
b = ] % e ] ] ' ' )
X = pxn-l + en = en-fpen_l + 0 en-2 + pE -3 +

25




In order for {Xn} and {XA} to exhibit asymptotically
exponential marginal distribution, it is clear that the marginal
innovation sequences {sn} and {eh} must themselves be iid
with an atom p at zero, and otherwise an exponential distribution.

This can be accomplished in several ways; here are two:

(i) Let
G eg =0 with probability p, 0 < p <1
1 (7.4)
e =E === 2n(U0))
o oy A 2 with probability 1l-p
1
= Pl e e
e! = E! = Y 2n (1l Un)

where {Un} is a sequence of uniform (0,1) "random numbers";
{En} and {EA} are then called antithetic, see Hammersley
and Handscomb (1964), and are maximally negatively correlated,
having correlation 1 - (12/6) = - 0.6449; see Moran (1967).
Each series in Models 1, 2 receive independent innovations of
exactly the type described in Section 2 and that were there

shown to lead to exponential marginals as n + «. In this

case
3o 5 2
El[e,e'] = (1-p) = [ ¢n u 2n(l-u)du = (1-p) = - 1r] (7.5)
AT 0 A
and
2 2
A A

Also Cov(en,CA) YO 1€ p 2 (n2/6 -1).
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(ii) If the distribution function of € is Fe , then in true

n
antithetic fashion determine
I | : Mt | S
oy Fe (Un). B = F€ (1 Un) (7.7)
In particular, if
0 if x< 0
F_ (x) = o} if x=0 (7.8)
€n
6 % Cl=phtl-e" " $& x50

Then innovation leading to marginal exponentials()) are

obtained; see Section 2. In this case

= 1 . LI 1 -
€n 0 if Un < p; €n 0 if Un & =g
U
1-U ) ( n ) :
AT n . : Samge sy AL B < E=p
= )\ n (l—p if Un > P = 5y 2n i n
(7.9)
Consequently
1l-p \
%, o 1 u 1l-u '
Ele,e)] = 3 [ &n (—:;) Ln (—:3) du , 0<p<3
e (7.10)
= ( ’ % < P S 1l

and hence
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Hne 3 1=p 7
e —— =0 SRR e ]
Cov(e ,el) = n £ in =5 &0 {=j du 5 y 0 Lipit
2
S L 1
= T s 5<p <Ll (7.11)
Scheme (ii) is capable of generating negative correlations
of greater magnitude than is Scheme (i), as is clear from
examining the situation 1/2 < p.
The expansions (7.2) and (7.3) allow the computation of
the lagged cross covariances between Xn and Xﬁ. For
n + » we find
L} j [} .
Model 1: Cov(X,, s ,Xp) ~ I%;f Covie,c't » 3 =8,1,2,... (712}
j ‘Cov(e,e') Boite -4 2,
Model 2: Cov(X_ ,.,X!) ~ —f— x {7.13)
J 1-p lVar(e) forai) = I,3;5,.5«

Of interest is the fact that the series of Model 2 may in
fact exhibit negative correlations; for, directly from (7.2),

and as n + «,

~ _P

COV(Xn+1’xn) = Cov(XA+l,xﬁ) P Cov(e,e"')
2
- ] L ~
Cov(Xn+2,Xn) = COV(xn+2’xn) 1%37 var (e)
: ) e ‘ j Covie,e"), 9 = 1;3,57ees
Cov(X_ ,h.,X = Cov(X' .,X ~ X
oy B o il 1=p Var (e), j =2,4,6,...

28
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Consequently if scheme (i) or (ii) above, or a multitude of other
possibilities, generate the innovation pairs, then the odd-~numbered
covariances will in fact be negative.

Clearly the above generation scheme can be generalized,
e.g. by including more equations, {Xn}, {Xa}, {x;}, etc., and by
allowing the innovations to have different marginal properties.

Further investigations are planned.

29
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8. SUMMARY AND CONCLUSIONS

We have presented a simple, autoregressive Markovian sequence
{xn} of exponential variates EARl which is an additive random
linear combinaﬁion of the previous value, X _,, and an independent
exponential random variable. The simplicity of this structure
allows one to model in an intuitive way dependencies in stochastic
systems. Jacobs (1978) has considered cyclic queues with EAR1
service times and found that the correlation may produce a
significant effect; more general queueing schemes which generate
multivariate exponential sequences are given by Lewis and Shedler

(1978) .

Maxima of the Xn in the EARl process have been studied
by Chernick (1977).

Two other marginal distributions for the Xn's have been
studied, the Gamma distribution and the mixed exponential. The
former is known to be a type L, i.e. satisfies ( 6.1) for all
p, while the mixed exponential appears to satisfy (6.1) only for
a limited range of p. Other type L distributions will be
investigated in the context of the modelling of independent
stochastic sequences elsewhere.

Extensions of. the first-order autoregressive structure
for exponential marginals to higher-order autoregressions,
moving averages and mixed autoregressive-moving average structures
has been given by Lawrance and Lewis (1977), Jacobs and Lewis

(1977) and Lawrance and Lewis (1978). The possibility of extending

30




the EARl structure depends on the fact that the {en} error
sequence is a mixture of a random variable with mass at zero
and an exponential distribution.

Three other possibilities will be detailed elsewhere--
a slight complication which brings in another parameter but gets
rid of the "zero-deficiency" in the EARl process; extension of
mixed correlation structures to give negative correlations,
and further multivariate extensions.

Finally we note that it is possible to introduce non-
stationarity and dependence on concomitant variables into the

sequence by multiplying xn by, say,

r
A(n) = exp{ ) a.z.(n)},
im0 J J
J
as was done in Cox and Lewis (1966, Ch. 3, ii). It would
be of interest to see how the methods given in Cox and Lewis
extend to the case where there is correlation present between

]
the xn s.
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