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FIRST ORDER AUTOREGRESSIVE GAMMA SEQUENCES

AND POINT PROCESSES

*I) . P. Gayer

and

*P. A. W. Lewis

Naval Postgraduate School
Monterey, CA 93940

1. INTRODUCTION

The Poisson process is a basic model for point processes

(series of events) and can be characterized as a process in which

tne intervals between events are independent and exponentially

distributed . In one of the earliest papers on point processes

(Wold, 1948) an attempt was made to generalize the Poisson process

by obtaining dependent but marginally exponentially distributed

intervals between events. Similarly Cox (1955) attempted to

obtain a sequence of random variables with conditional ly exponential

distributions. Neither of these attempts to generalize the Poisson

process led to analytically tractable results. In principle,

of course, it is simple to generate a sequence of marginally

exponentiall y distributed random variables with Markov dependence

if a bivariate exponential random variable is available. However,

despite the recent discovery of many bivariate exponential random

*Research of both authors was supported in part by NSF grant
MCS—77-07587 at the Naval Postgraduate School and by the
Office of Naval Research.
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variable generation schemes [Marshall and 01km (1967), Hawkes (1972);

Gayer (1972); Downton (1970)], none seem to have simple enough

properties , conditional and otherwise , to lead to analytically

and computationally tractable models for a non-independent

(Markovian) and easily simulated sequence of marginally exponentially

distributed random variables. Interest in the aforementioned

processes also may have been damped by the development of physically

motivated point process models such as the Poisson cluster process

and the self—exciting process, for example see Neyman and Scott

(1972). Unfortunately, many of these point process models are

somewhat awkward to handle analytically or computationally.

In this paper we show that if one starts with the usual

linear , additive autoregressive equation (first-order stochastic

difference equation)

X~ PXn_l + C
fl 

n = 0, ± 1, ± 2, ... (1.1)

where the innovation sequence {c~ } is one of i.i.d. random vari-

ables , then there is, for 0 < p < 1, a distribution for the

such that the Xn ’S have, marginally, an exponential distribution .

The resulting exponential autoregressive process (EARl) has several

attractive features. First, the sequence is obtained as an additive

random linear coznbinat~on of random varia~ 1es, and is easy to

simulate , i.e. to realize on a computer. In simulating a queue,

for instance, one can easily obtain sequences of correlated service

times or interarrival times, with respectively an i.i.d. exponential

sequence or Poisson process as a special case (p = 0). These2



correlated sequences are useful for checking for the sensitivity

of standard queueing results to departures from independence, and

for other robustness studies.

A second feature is that the EARl process (1.1) is analyti—

cally tractable; one can, for instance, obtain the Laplace transform

of the distribution of sums of the random variables. This is

essential if the process is to be used as a model for point pro-

cesses and one is to obtain the point spectrum.

A third feature of the EARl process is that its structure

leads to an extended model for a sequence of marginally exponentially

distributed random variables with the correlation structure of a

mixed autoregressive moving average process (ARMA p,q), the orders

of the autoregression and the moving average being p and q

respectively. Various properties of this exponential process,

called the EARMA (p,q) process , are detailed in Lawrance and Lewis

(1977), Jacobs and Lewis (1977) and Lawrance and Lewis (1978).

In Section 2 of this paper we discuss the exponential

solution of equation (1.1), as well as questions of stationarity

and mixing. The distribution of sums of random variables from

this process is discussed next; this relates in particular to the

use of the process to model intervals between events in point

processes. Joint distributions and conditional correlations of

two and three random variables are derived in Section 4. The

estimation of the exponential parameter A, the reciprocal of

and the correlation parameter p are briefly considered

in Section 5 for a fixed or random number of observed random

variables. It is shown that, because of a certain degeneracy

in the process , p can be estimated exactly in a long enough sequence.
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Other solutions to equation (1.1) are considered in Section 6.

In fact random variables for which solutions to (1.1) (in trans-

formed version) exist are known as self-decomposable random

variables or random variables of type L; see Feller (1971, p.

588-90). Two cases of interest in modelling point processes

are discussed. These require consideration of Gamma-distributed

intervals, and intervals with a mixed exponential distribution ;

questions connected with the latter remain unresolved.

Finally in Section 7 we consider the question of obtain-

ing autoregressive and Markovian exponential sequences with

negative correlation . It may be seen that (1.1) has no solution

if P is negative. However , as soon as multivariate exponential

sequences are considered——in , multivariate

sequences which are antithetic realizations of each other

-—we discover a method for obtaining processes with exponential

or other specified marginals and that exhibit negative

correlation .

4
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2. EXPONENTIAL SEr~UENCES

In what follows {E } will always be a seouence of i.i.d.
n

exponentially distributed random variables with parameter A ;

P {E~ < x} = FE ( x )  = 1 - e~~~
C 

(x > 0, A >  0)
n ( 2 .1)

= 0 (x < 0)

Also an exponential (A) random variable will mean a random

variable with distribution (2.1).

2.1. The exponential first—order autoregressive sequence (EARl)

The starting point of the work in this paper is the question

as to whether the autoregressive equation (1.7)

Xn = r~x~_1 + = 

j~ O ~~~~~~ 
I~ l < 1 (2.2)

has a solution for a given distribution of X~ (note that the

expansion in (2.2) as an infinite moving average is valid because

IPI < 1). Now X~_1 is a function only of En l f  Cf l 2~ 
... and

is therefore independent of c~~. Therefore the Laplace-Stieltjes

transform (s) of the distribution of x is, at least for
n n

s > 0 ,

4
~Xn

(S) = E(exp(_sx n)] = E[exp (-s~X~ ..1 +

= (p s ) • ( s )
n-i ~fl

5
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Thus (s)

P ( s )  = (2.3)
C r1 

( ç ~s)

Assuming that  the X~ sequence is marginally stationary, we get

the basic equation

— ______q~~(s)  — ______

Now it is clear that if we require the to be positive random

variables, then if p is negative so is pX~ and we need the

error term c~~, which is independent of X~~ 1, to make X~ positive.

Thus for positive random variables there will clearly be no solution

to (2.3) for p < 0. However if we let 0 < p < 1 and,side—

stepping the general question of existence and uniqueness of

solutions to (2.3) , require the Xn ’s to be exponential with

= 
A

‘I X ’ ’  A + s ’

then equation ( 2 . 3)  forces

= 
~ + ~ 

• A = ~ + ps ( O < p < l , A ) 0 )

A
= p + (l—p ) 

,~ ÷ ~ 
. (2.4)

The latter expression is the Laplace-Stieltjes transform of a

random variable , in fact a non-negative random variable which

has an atom of mass p at zero and which is exponential(X) if

positive. Thus we can write the difference equation generating

the series {x~} as

-~~ ;:

~~~~~

6
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X = p X  + cn n—i n

I PXn_ l  W. p. p

= 0 < p < 1 ( 2 . 5 )
PX n_ l  + E~ w . p.  (l~~~~ 

—

= PXn l  + ~~~~~ 
(2.6)

where (I} is an i.i.d. sequence in which I~ = 1 with prob-

ability (l-p), ‘n = o with probability p and {E
~
} is an

i.1.d. sequence of (A) exponentials. It is easily verified,

directly from (2.2) or from the definition of Cn~ 
that

E (c
~
) = (l—p) ; var(c~~) = -

~~~~
. ( 1—p 2 ) . (2.7)

There are several points to be made about the sequence X~ :

(i) When p = 0, then {X~} is an i.i.d. sequence of

exponential (A) r.v.s.

(ii) The representations (2.5) and (2.6) of the process as

an (additive) random linear combination of X and En-i n

which has a distribution independent of p, are sometimes

more convenient than is (2.2).

(iii) Although X~ is strictly a linear process (AR1) , it

differs from the normal or Gaussian process ((2.2) with

e
~ 

normally distributed of Gaussian) in that the mean,

variance and higher moments of the ‘s are ~uncti~~~~

7
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of the parameter p .  Thus one cannot app ly general theorems about

linear processes to the exponential sequence because such

theorems usually assume that the c
a
’S have a distribution

which is free of the parameter p. As an example , X~ is

exponentially distributed even when p is close to one,

despite theorems for linear processes which assert that

in this case the X~ are approximately normally distributed.

For instance, if the c
a
’s are independent of p then

the skewness of the stationary distribution of X can

be shown to approach zero as p + 1; in the special case

of (2.4), this quantity is independent of p and equal

to 2——the value associated with the exponential d.f.

(iv) There are many other sequences of random variables {X~ }

with exponentially distributed marginals and the f irst-order

Markov property. In f ac t , given any bivariate exponential

distribution FE E (x11 x2), assumed for convenience to
1’ 2

be absolutely continuous , with conditional density

~E IE 
(x
2 ;x

1
) ,  then we construct a l4arkovian sequence with

2 1
joint density for , say, X~ , ~~~~~ ... , X0 as

(x ,. .. ,x
0
)

n ’~~
•S ’ 0 n

= f E J E  (x ~~; x
1
) fE~~1IE~_2

(xfl_ 1; x 2
)

. . . f (x ;x ) f  (x)

8

- S  - -~~



V r .  —
~~~

- - -

An interesting and use ful feature of the EARl sequence

given by the solution (2 . 6 )  of the autoregressive equation is

that it is a (random) linear combination of i . i .d.  exponential

sequences , and is thus easy to simulate on a computer , gives

reasonably tractable analytic results and in turn suggests the

definition of processes with more complicated correlation

structure and exponential marginals (Lawrance and Lewis, 1977,

Jacobs and Lewis, 1977, Lawrance and Lewis, 1978). The correlation

structures are essentially the same as those for linear processes

(Lawrance and Lewis, 1978).

2.2. Serial correlations, stationarity and mixing

Simple computations show that, as is true of any regular

Markov process, the serial correlations for the EARl process are

c~ = corr (XnXn+j) = 0 i ~ < 1.

Note that the correlations are always positive. The spectrum of

the sequence is

= {l + 2 ~ c. cos(jw)} (0< w < ir ; O < p < l )
j=1 J

1 1 — p 2
it 2

V 
l + p  -2p cos w

For p = 0 we have f+(w) = 1/it since the sequence X~ is i.i.d.

9
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Moreover it is not diff icult  to show that the process is

stationary if one takes

X0 = E0 (2 . 8)

X~ = ~~~~~ + 6n = pX1~_1 + I~ E~ (2.9)

with defined by (2.4). This is no surprise, for the

process is Markovian and is constructed to have an exponential

distribution in the stationary case.

With E0 = X0 it is shown in Jacobs and Lewis (1977) that

the sequence {Xn } is strong mixing in the sense of Rosenblatt

( 1971) .

3. SUMS OF STATIONARY INTERVALS

An important aspect of the stationary sequence {Xn}i

especia lly when it is used to model the intervals in a point

process, is the moments and distributions of sums

Tr = X~ + X 1 +~~~~•+ Xn+r_1• The Laplace-Stieltjes transform

of Tr is found directly by noting that , in terms of X~ ,

(2.2) may be modified to give this representation :

Xn+j = P~X~ + P~ 
1C~~4 1 + + • • • +  CM.y (j=01 ,2,...) (3.1)

and so

T = xr~j = x~ (~:~~)+ 
r~l 

~~~ (
i...~

r_
J)

10
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It follows that

= E [exp(_sTt) = 

~X [~ (~:~‘)] ~ ~ [ ~~~ 
)] 

(3.2)

If the process starts with the stationary distribution , i.e.,

if Xn is exponent ia l(A) , then

I I _ r—i
r—l A + sp~~~1~

T 
= 

~ + ( 1~~~r) 
~

Clearly the distribution of Tr can be found explicitly by

inverting (3.3), which can be accomplished by expanding in

partial fractions. So also can an expression for the interval

spectrum. The result is analytically awkward, and will not

be quoted. In order to obtain (i) the intensity function, mf
(t)~

of a point process with EARl intervals, (ii) the point spectrum

and (iii) the distribution of the counting process N (t)

(for definitions see Cox and Lewis, 1966, Sec. 4.5) one must be

able to sum 
~T 

(s) over r; there appears to be no neat

explicit formula for any of these functions. The variance of

Tr may be calculated directly from (3.1) since the innovations

{c~ } are independent:

Var [T
r] = ~ [(~~~r)2 + (~

) ~r —1 _2P(1~~~~~~) + 2 (1_ ~
2(r_1) )(]

11
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Hence for p < 1 the index of dispersion (Cox and Lewis (1966),

p. 71) is

Var(T 1 
~ + 2= u r n  J = u r n  = p 

= ~ + 
p (3.5)

r-~~ 
r r-* oo r {E [X1]} 

- p -

As a byproduct of (3.5) we get, for p < 1, values of the slope

of the variance time curve , 1im
~~÷ 

V’ (t) = V’(oo), the initial.

points of the spectrum of counts g
÷
(w) and the spectrum of

intervals as (Cox and Lewis, 1966, Sect. 4.6)

f~~(0+) =

V’(co) = AJ

g~ (0+) = AJ/rr

Limit theorems for Tr and the counting process N(t) are given

in Jacobs and Lewis (1977) .

4. JOINT DISTRIBUTIONS FOR THE STATIONARY SEQUENCE

Any pair Xn~ 
Xn+r in the stationary EARl sequence has

a bivariate exponential distribution. Consider X~ and ~~~~~

Directly from the definition (2.5) and (2.7) it can be shown

that the conditional random variable X
~÷i~ 

given X~ = x, has

an atom of mass p at px; otherwise it is, with probability (l-p) ,

12



V - J—5 —-
~~~~~-- - -

an exponential(A) random variable shifted px from the origin.

The regression of XM1 on Xn = x is

E(X~~1JX~ = x) = x + (l-p) 4 , (4.1)

which is linear. Moreover var(X
~+i IX

~ = x) = (1-p 2)/A 2, a
constant independent of x, and X~~1 is never smaller than

pX~ . The Laplace-Stieltjes transform of the bivariate exponential

distr ibution of X~~1 and X~ is

4X ;X~~1
(5lv S2) = E{exp (—s1X~ 

-

= E{exp(—S1 + PS2)Xn
]} 

~~~~~~

— 
A 

~ 
A

— A + + 
~~~ 

~~ x +

= A + s1
~

+ p8 2 
+ ( l — p )  ( A  + + p~~2 ) ( A ~ ~2)

(4.2)

The bivariate distribution of {X
~÷i~ 

X~} has a singular component

along the line X~~1 = X~ , with probability p (the first term

in (4.2), and a continuous component in the space Xn+l >

(the second term in (4.2)) which is the joint distribution of X~

and pX~ + E~ . Note that the distribution is not symmetric in

X~~ 1 and XnP sSnce the transform 4 x 11x~~ l’~2~ 
is not

symmetric in s
~ 

and 
~~~ 

This simply means that the process

is not time—reversible, as is the normal or Gaussian AR1 process.

This asymmetry appears in the conditional mean of X~ ,

given X~~1 = x, which is obtained from (4.2), as

This asymmetry also becomes ~~~iVdent in the non-linear form

of the conditional mean of X1~, given x~1 x, which is obtained

13
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f rom (4.2), as

E(XnIXn+i=X) = A(l~~p) 
{l - exp[- - 1) Xx]) ~ E[X~~1lX~=x]

The conditional variance of Xn~ 
given X~41 = x, can also be

obtained; unlike var (Xn+1 I X n 
= x) it is not a constant.

Higher order directional moments of Xn+li X~ are given

in Jacobs and Lewis (1977), and again evidence the directionality

of the process:

C2 1 (l) = E(X~ X~~1) 
- E(X~) E(X~÷1) =

C1,2(l) = E(Xn X~~1) 
- E(X~) E(X~~1) = 

_ _ _ _ _ _

Since the process is, from its definition, Markovian , the

conditional correlation of X~41 and ~~~~~ given X~ = x , is

zero. We do not discuss distributions of triples any further.

In principle it is simple to write down transforms of the joint

distribution of any set of k X~ ’s; one obvious use of this

result would be in obtaining the distribution of the sum of

Xfl+k l. However, this was obtained by a direct argument

in the previous section.

5. ESTIMATION AND DEGENERACY

Although it is not possible to write down the likelihood

equation for the EARl process in a tractable form where, say, we

observe X1, ... , XN , it seems at first sight that good estimates

14
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of 1/A and p can be obtained from the samp le mean , X = T~ /n~

whose variance is given at ( 3 . 4 ) , and a first-order serial

correlation coefficient estimate with modifications to take

account of the fact that the variance equals the mean squared,
• 2i.e. Var (X) = 1/A

However , there is a degeneracy in the process which makes

it possible to find p exactly in a long enough run of X~~’ s ,

and to estimate A more precisely than is possible using

straightforward moment methods.

To identify the degeneracy , which we call the zero-defect,

we note that in the process there are runs of Xn ’S which are

equa l to the previous value , X~~1, times p . Moreover , given

that there is a run of length R of this type , R has a “ geometric

plus one ” distribution with parameter p;

P {R = i} = (1 — p ) p ]••••l , i = 1,2,3, ... (5.1)

E (R) = ; v a r(R)  = 2p (l— p)

This behavior , or a tendency towards it in data would be very

evident in plots of a sample sequence of X~ values.

Thus to estimate p in an observed series , let = X~÷1/X~ ,

for n = 2 ,3 Then

= 

Xf l l  
= if X~~1 

= pX~ w . p .  p

= 
~ 
+ 

E~~1 j
~ X~41 ~ pX~ w.p. (l-p) .

- — V - -~~~~



The probability that Z~ = p , or Z~ ~ p , is independent of previous

Z n ’s and P {Z n = p 1 = p. Hence if we observe the minimum value of

Z , n = 2 ,3 , . . .  until we get a tie , that tie value is p.  The

t ime to obta in this t ie is the sum of two “ geometric plus one ”

random variables, with total mean 2/p and total variance

2 ( l — p ) / p 2 . The implication is that we can find p exactly af ter

a random number of observations for the present model. Moreover

since one then knows those Xn’5 which are made up of

plus an E
fl l it is possible to compute the En’s exactly (except

for two) and estimate E(X) = 1/A directly from the observed En ’s.

For a fixed length observation of the process, say

the probability that p can be obtained exactly

is the probability that the sum of two “geometric plus one ”

random variables is less than or equal to N. If two minimum

values are not observed by time N, a good estimate of p will

be the minimum of the Z1
1 s. This will either be p, or p plus

a small bias term. The mean can be estimated as the sample

average in the usual way. -

This degeneracy in sequences of positive random variables

generated from the stochastic difference equation seems to be

inherent in the present procedure. Slightly more realistic but

complicated first-order autoregressive exponential processes

without this zero defect will be discussed elsewhere.

16
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6. OTHER SOLUTIONS TO THE AUTOREGRESSIVE EQUATION

Random variables X for which the transformed first—order

autoregressive equation

~~~(p5 )  = 4~~(s) (6.1)

has a solution ~~(s) for each 0 < p < 1 which is the transform

of a distribution function are called random variables of class L

(Feller , 1971 , p. 58 8) , or self-decomposable random variables.

Although there has been much recent interest in f inding class L

random variables, the connection with the first-order autoregressive

process does not seem to have been made . On the other hand there

have been some attempts to find non—normal solutions to the auto-

regressive equation without connecting them to class L theory

(see , e.g. Bernier, 1970).

The limitation of the theory of class L random variables as it

relates to the present work is that it requires a solution for each

0 < p < 1, which is the case for exponential(A) random variables X.

This full range of p is desirable, but may not occur.

We do not explore the full  connection here , but consider only

two types of random variables , Gamma distributed random

variables and mixed exponential random variables. These are

frequently used as alternatives to the exponential in modelling

stochastic phenomena such as response times in queues.

.
-

17
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6.1. The Gamma Autoregressive Process CARl.

A necessary condition for X to be in the class L is

that it be infinitely divisible, and therefore we consider

Gamma (X ,k) variables with density

k k-i -

= 
A X e (A > 0; k > 0; x > 0) (6.2)
k F (k)

and Laplace-Stieltjes transform (of the stationary distribution)

= 
(A ~ s 

(6.3)

Then the solution to (6.1) is

4 ( s)  = ( •

~~ 

: ~~ )k = (~ + (~~~p )  
A 

A )k (6.4)

It follows from a result reported by Feller ((1971), p. 452) or

directly from Theorem 1, p. 450) that [(A + ps)/(A + s)] is

the transform of an infini tely divisible distribution, and hence

(6.3) is actually the transform of (an infinite ly divi’ible) distri-

bution function for every real k > 0.  Thus we can in principie

generate an autoregressive process with gamma mar gina ls (6.2)

by utilizing the {cn) process characterized by (6.3). Here

are a few simple special cases.

k = 2: •~~
s p2 + 2 p ( l — p )  

~ + A + (1—p)
2 (
~ ~ 

(6.5)

k = 3: ~~(s) = p 3 + 2 p2 ( 1-p) 
~ + A + 2p(1-p)2 (

~ ~ ~
) 2

+ (1_p) 3(5 
~ 

~
)3 . (6.6)

18
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Thus for k = 2 the random variable e may be thought of and

realized as a convex mixture of a degenerate random variable

with mass at zero and an exponential(A) and a Gamma ( X ,2)

distribution. Alternatively if E1 and E2 are independent

exponential(A) random variables, the sum is chosen with probability

(1-p)2, E1 is chosen with probability 2p(l-p) 2, and neither of
• • .  2

E1 or E2, but rather zero , is chosen with probability p

Unfortunately, no really simple way of generating random vari-

ables with Laplace-Stieltjes transform (6.4) for noninteger k is

known , though representation as an infinite sum of weighted

Gamma variables is possible (Bernier (1970)). Moreover for a

case of much interest k < 1, so that X is overdispersed

relative to an exponential random variable, and the degeneracy

or zero—defect of weight becomes very prominent.

As was true for the exponential case, we have for the

correlations, which are all positive ,

c. = p3 0 < p < 1;

also

E(c) = A (1—p )

Var(c) = A2(l—p 2)/k

As k + oo , the degeneracy disappears and X tends to become

normally distributed.

19
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6 . 2 .  The Mixed Exponential Process MEAR1

Consider now X to be a mixture of two exponential densities

-A x -A 2x
= rr 1A 1e 

1 + ii 2 X 2e

x > 0, -tr1 = 1 — it 2 > 0, A 1 < A 2 . 
( 6 . 7 )

For it1 = 0 , it1 = 1, and/or A1 = A
2 this of course reduces

to an exponential density. There are two main cases to consider,

besides these special cases.

If 0 < it 1 < 1, then we always have 
a convex mixture of

exponential densities: fx
(X) is a proper density function and

the coefficient of variation of X lies between 1 and infinity

(Cox, 1964), so that X is overdispersed relative to an

exponential random variable; X may be generated as a mixture

of two exponential random variables with parameters A 1 and

A 2, and X is infinitely divisible (Feller (l97l),p. 452).

If it
1 

is greater than 1, so that it 2 is negative, a

necessary and sufficient condition for fx(x) to be a p.d.f.

is that JT 1X1 + TI2A2 > 0 or equivalently that [1- (A 1/A 2)]
1.

Here is alternative way of writing the transform of X.

First, and directly,

A1 A
4~~(s) = •Tt l A 1 + i 

+ A 2 
( 6 . 8 )

Now since A 2 
) A

1 factor to obtain

20
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A 2 
A 1 / x 2_÷ 5~d

A~ + s ~~~ + 1T] •

~~~~~

• k A 1 + s

A2 I A
1\ 

( A~~\ A

A2 
+ S ~~ 

- 
~~~~ 

— 

~
_ )  + - ci A 1~~ii . ( 6 . 9 )

Now even if it > 1 (it < 0) but
1 2 

~ 
= ~~1 (~ 

— < 1 , (6.10 )

or equ±.va lentl y

+ rr 1A 1 > 0 (6.11)

then c (s) i~ the transform of the sum of an exponential(A
2)

random variable and a random variable having the distribution

of the c-innovation of an EARl process , see (2.4). It follows

that X is infinitely divisible.

21
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It is thus worth investigating whether one can generate

an autoregressive process {X n
} with mixed exponential

marginals for  some or all p ,  the latter being the question

as to whether the mixed exponential random variable is in the

class L. We have , directly

+ 
ii 2A 2

5 +A
1 

S +A 2
~) (5)  — _______ — ____________________

C A -it Ail l 2 2
ps + A

1 
+ 

~~ + A 2

— 

(A
1 

+ ps ) (A
2 

+ ps ) (A 1A 2 + it1A 1s + TI2A 2
s) 

6 12)— 
(A 1 + s) (A

2 
+ s) (A1A 2 + ir1A 1ps + ir 2 A 2 p s )

After  considerable simplification this Laplace—Stieltjes

transform can be written as a mixture of a degenera-~e random

variable with mass p at zero , and with probability ( l - p)

(possibl y)  a random variable Y which has (possibly) density

function

f~~(x) = y 1A 1e 1 + y 2 A 2e 2 + 13 ~ e~~~~~~ (6 . 13)

where + 
~2 

+ 13 = 1, A 1 < A 2 , it1> 0 , it
1~~ 

1 and

A
1
A
2C — 

-rt
1
A
1 

+ (1—it 1) A 2 ~

22
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(A
2 
- pA

1
) (C - A

1
) 

= (6.14)11~~ 
p1 ,

(-A
2 

— A
1
) (C— p A

1
)

V 

(A — C) (pA — A ) (A
1 

—pA 2
)

= 
_2 
—  x 2 1 

= p2 
; (C ~ pA 2 ) (6. 15)

2 (A2 
— A 1) (pA 2 — C) ( C — pA

2
)

( C —  A 1) ( A
2

— C )  1 _ _ _ _

= 
- pA

1
) 

X (C - = P3 
X 

~~~~~~~~~~
• p A 2 ) (6.16)

Now if -it
1 is restricted to be 0 < -it

1 
< 1, then A1 < C < A 2

and p1 > 0, p2 > 0, p3 > 0. Then it can be shown that the

signs of y1, 
~2’ 

13 depend on whether 0 < p < A 1/A 2, -

< p < C/A z or C/A 2 < ~ < 1:

(j) is always positive ;

(ii) 
~2 

and 13 are positive if 0 < p < A 1/A 2;

(iii) 
~2 is negative , 13 is positive if A 1/A 2 < p < C/A1;

(iv) 
~2 

is positive, 13 is negative if C/A 2 < p < 1.

While this result is relatively simple , the only case in which it

has been possible to establish that f~~(x) is a p .d . f .  is that

in (ii), i.e. 0 < p < A 1/A 2. The ratio A1/A 2 is roughly

related to the overdispersion of X relative to the exponential

distributi’~~; the smaller the value A1/A 2, the greater the

V dispersion and the smaller the admissible range of p .  It seems

probable that f~~(x) is not a density function for all P; at
V 

all events efforts  to prove that it is in the class L using

(6.10 ) and characterization theorems (Feller , 1971) have failed

at the time of this writing. A complete understanding i. riot now

available . 23
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6.3. Discussion

Note the differences between the mixed exponential auto-

regressive sequence and the Gamma (k < 1) autoregressive sequence ;

the former appears to require a restricted range for p, c can be

simulated , and the zero defect has probability p ;  the latter

sequence is valid for 0 < p < 1, e cannot at present be

simulated, and the zero—defect has probability ~k > p

The magnitude of this zero-defect alone probably makes the

Gamma process less useful than the mixed exponential process.

The tail behavior of the marginal distributions is also

different.

Laplace—Stieltjes transforms of distribution of sums,

T of x ‘s are obtained from (3.2) for both the Gamma andr1 n

mixed exponential autoregressive sequences . These cases are

still under study.

24



7. MULTIVARIATE SEQUENCES AND NEGATIVE CORRELATION

Even though the autoregressive equation (1.1) has no solution

representing a positive random sequence when p < 0 it is possible

to modify it so as to produce negatively correlated exponential

sequences. These will not be individually Markovi an , but will have

Markovian properties in a bivariate sense. A suggestion as to how

to proceed comes from writing Xn in terms of the innovations

{ c }  as in (2.2):

Xn = j~ O 
P3Cn.j = + 

~~ n— l + P
2 c~~~2 +•••+ P~~c 0 . (7 . 1)

Now consider generating two (or more) series in parallel, using

independent pairs of innovations , (c~~ ci
) ,  for which if desired

Cor(cn, c 1 ) < 0; e.g. for 0 < p < 1 and starting with the first

innovation.

Model 1: Xn = + C = C~~~+ pE ~~~~1 
+ P

2 Cn_ 2  + PE:
~ _3 ~~~• • •  

( 7 . 2)
X~ = pX~~ 1 + c~ = c ’ + p c  1 + P C f l 2  + 

~~~ n—3 ~~~• • •

Model 2: = PXn_i + C = C + PC n_ l  + P
2 Cn_ 2  + P 3Cn_ 3 + S • •

X~ = ~~~~~ + c~ = ç+~~c~~~1 + p2c~~ 2 + p3c~~~3 
f . . .  (7 30

25
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In order for {X ~ } and {X~ } to exhibit asymptotically

exponential marginal distribution, it is clear that the marginal

innovation sequences tc~~} and {c~~) must themselves be iid

with an atom p at zero , and otherwise an exponential distribution.

This can be accomplished in several ways; here are two:

( i )  Let

E n = = 0 with probability p, 0 < p <1

1 ( 7 . 4 )
C = E = — -

~~~ th (Un n with probability i—p
= E~ = - ~~ th (l-U~~)

where {U n } is a sequence of uniform (0 ,1) “ random numbers ” ;

{En } and { E )  are then called antithetic, see Hammersley

and Handscomb ( 1964) ,  and are maximally negatively correlated ,

having correlation 1 - (ir2/6) = - 0.6449 ; see Moran (1967).

Each series in Models 1, 2 receive independent innovations of

exactly the type described in Section 2 and that were there

shown to lead to exponential marginals as n + °°. In this

case

= ( 1—p)  -

~~

- f ~n u ~n(1 — u ) du = ( 1—p ) _
~2 [2 — i~_] (7.5)

Cov(c ,c ’)  = ( i — p )  4 [2 — 

~~~~~

-] — ( 1—p) 2 
( 7 . 6 )

Also Cov(c~~ c~ ) > 0 if p > ( r r 2
/6 — 1).

26
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(ii) If the distribution function of c~ is F , then in true

antithetic fashion determine

C = F ‘( U ) ;  c~ = Fc
1( 1_U n )

In particular, if

0 if x < 0

F ( x) = p if x = 0 (7 .8 )
Ap + ( l — p )  ( l—e X ) jf x > 0

Then innovation leading to marginal exponentials(X) are

obtained; see Section 2. In this case

~~ U~~~~~P ; c~~~= O  if  I J > 1 - p ;

= - Zn 
(~~~~~~~~

) if U~ > p; = - Zn (?~~
) 

if U < 1~~

(7.9)

Consequently

E ( E , E~~] = 4 f Zn 
(1

iL.
) Zn (~_!a) du , 0 < ~p 

(7.10)

= 0 , ~~ < p < l

and hence

-a

27

_ _  
_  

I



1—p
Cov(E ,C ’) = -

~~
. f Zn -j ~

-- Zn du - 1~~~~ 
2 

, 0 < p <
A p

— 
~ 2 

p ~ . (7.11)

Scheme (ii) is capable of generating negative correlations

of greater magnitude than is Scheme (i) , as is clear from

examining the situation 1/2 < p.

The expansions (7.2) and (7 . 3 )  allow the computation of

the lagged cross covariances between and X~ . For

n + we f ind

Model 1: ~~~~~~~~~~~ 
1
~~2 Cov(c,c ’) , j  = 0 ,1,2 , . . .  ( 7.12)

j ~Cov(c,c ’) for j  = 0 ,2 , 4 , .. .
Model 2: Cov(X~~ .~ X~) 

p 
2 x (7.13)

i—p ~Var (c) for j  = 1,3,5,...

Of interest is the fact that the series of Model 2 may in

fact exhibit negative correlations ; for , directly from (7.2),

and as n +

COV ( Xn+l~ Xn ) = Cov(X~~1,X~) 
p 
2 Cov(c, c’)V 1—p

0

Cov(X~~2~ X~) = Cov(X~~ 2 , X~ ) 
1p 2 Var(c)

j  Cov(c,e’), j  = 1,3,5,...
Cov(X 

~ •,X ) = Cov(X’+ .,X’) 
p 
2n 

~ ‘~ ~ i— p Var(c), j  = 2,4,6,... •

28
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Consequently if scheme (i) or (ii) above , or a multitude of other

possibilities, generate the innovation pairs , then the odd—numbered

covariances will in fact be negative.

Clearly the above generation scheme can be generalized,

e. g. by including more equations , {X n }
~ 

{x~}, {ç} ,  etc . ,  and by

allowing the innovations to have different marginal properties.

Further investigations are planned.

_ _  -V~ V V V V  
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8. SUMMARY AND CONCLUSIONS

We have presented a simple, autoregressive Markovian sequence

{X n } of exponential variates EARl which is an additive random

linear combination of the previous value , Xn i~ 
and an independent

exponential random variable. The simplicity of this structure

allows one to model in an intuitive way dependencies in stochastic

systems. Jacobs (1978) has considered cyclic queues with EARl

service times and found that the correlation may produce a

significant effect; more general queueing schemes which generate

multivariate exponential sequences are given by Lewis and Shedler

(1978)

Maxima of the X~ in the EARl process have been studied

by Chernick (1977).

Two other marginal distributions for the Xn ’S have been

studied, the Gamma distribution and the mixed exponential. The

former is known to be a type L, i.e. satisfies ( 6.1) for all

p, while the mixed exponential appears to satisfy (6.1) only for

a limi ted range of p. Other type L distributions will be

investigated in the context of the modelling of independent

stochastic sequences elsewhere.

Extensions of the first-order autoregressive structure

for exponential marginals to higher-order autoregressions,

moving averages and mixed autoregressive-moving average structures

has been given by Lawrance and Lewis (1977), Jacobs and Lewis

(1977) and Lawrance and Lewis (1978). The possibility of extending

30
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the EARl structure depends on the fact that the {c~~} error

sequence is a mixture of a random variable with mass at zero

and an exponential distribution.

Three other possibilities will be detailed elsewhere--

a slight complication which brings in another parameter but gets

rid of the “ zero—deficiency” in the EAR]. process; extension of

mixed correlation structures to give negative correlations ,

and further multivatiate extensions.

Finally we note that it is possible to introduce non-

stationarity and dependence on concomitant variables into the

sequence by multiplying X~ by, say,

r
X ( n )  = exp{ ~j=0 ~

as was done in Cox and Lewis (1966 , Cli . 3 , ii) .  It would

be of interest to see how the methods given in Cox and Lewis

extend to the case where there is correlation present between

the X1~’s.

31
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