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PREFACE

This investigation was conducted at the U. S. Army Engineer Water—

ways Experiment Station (WES ) under the sponsorship of the Office , Chief

of Engineers , Department of the Army , as a part of Project CWIS 311145,

“Liquefaction Potential of Dams and Foundations Under Earthquake

Excitation.”

The investigation was conducted by Drs. G. Y. Baladi arid B. Rohan i

during the period September 1976 through August 1977, under the general

direction of Mr. J. P. Sale, Chief , Soils and Pavements Laboratory , and

Drs. J. G. Jackson , Jr., Chief , Soil Dynamics Division, F. G. McLean ,

Chief, Earthquake Engineering and Vibrations Division (EE&VD), and

W. F. Marcuson III, Project Leader (EE&VD). The report was written

by Drs. Baladi and Rohani.

COL J. L. Cannon , CE, was Director of WES during the preparation

of this report. Technical Director was Mr~
’°F’-~ B. Brown.
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LIQUEFACTION POTENTIAL OF DAMS AND FOUNDATIONS

DEVELOPMENT OF A CONSTITUTIVE RELATION FOR SIMULATING

THE RESPONSE OF SATURATED COHESIONLESS SOIL

PART I : INTRODUCTION

Background

1. During 1975 a research effort was initiated at the U. S.

Army Engineer Waterways Experiment Station (WES) to develop an analy-t i-

cal tool for studying the liquefaction potential of dams and foundations
subjected to earthquake excitation. Specifically , the objective was to

develop a rational computational method (based on continuum mechanics

precepts) for the performance of effective stress analyses of realisti—

cally posed boundary-value problems involving fully saturated cohesion-

less soils.*

2. The investigation was divided into three phases. Phase I,

completed in .1.976,
1 
involved the development of a three—dimensional

(3D) elastic—plastic isotropic constitutive model that qualitatively

simulated some of the basic stress—strain—pore pressure response fea-

tures observed in laboratory tests conducted on fully saturated cohe-

sionless soils. This model, however , does not treat observed strain—

softening behavior , nor does it predict the progressive increases in

pore pressure observed under low—amplitude (subfailure) cyclic shear

loading conditions——two phenomena considered important contributors to

the liquefaction problems. These two features were successfully modeled

during Phase II of the investigation by appropriate extensions of the

Phase I constitutive model. The objective of Phase III (not yet begun)

is to incorporate the Phase II version of the constitutive model into a

suitable numerical code for future use in the conducting of

* The terms “cohesionless soil” and “sand” are used interchangeably
throughout this report to designate earth materials with negligible
cohesion .

3
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effective—stress analyses and assessment of liquefaction potential of

various earth structures subjected to earthquake or other dynamic

loading conditions .

Purpose

3. The purpose of this report is to document the results of

Phase II of the investigation , i.e., the extension of the Phase I model

to (a) include strain—softening shear behavior and. (b) predict the

progressive increase of pore pressure observed when a saturated sand is

subjected to undrained cyclic shear loadings .

Scope

14. The typical mechanical behavior of saturated coehsionless

soils subjected to various laboratory test loading conditions is dis-.

cussed in Part II. Part III presents the mathematical formulation of’

the constitutive model. The behavior of the constitutive model under

simulated triaxial test conditions is demonstrated in Part IV. Part V

presents comparisons of model predictions with the measured laboratory

response of two sands. A summary and recommendations are given in

Part VI. Appendix A contains a derivation of the fundamental

equations of elastic—plastic constitutive models and is included for

reference purposes and future use.

14
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PART II: TYPICAL MECHANICAL BEHAVIOR OF SATURATED
COHESIONLESS SOILS

5. The mechanical response of a cohesionless soil when subjected

to externally applied loads is a function of the volumetric and devia—

toric stress—strain properties of the material. These properties , in

turn, are affected. by such factors as void ratio, density , degree of

saturation , interstitial pore fluid, and the loading history of the ma-

terial. Density , in particular, has a strong influence on the response

of the material. Loose sand, for example , contracts and exhibits a

ductile—type stress—strain behavior when subjected to a deviatoric state

of stress, whereas dense sand dilates and exhibits a brittle—type stress—

strain behavior when subjected to a similar stress condition. The bound-

ary between these loose and dense states is characterized by that density

at which shearing deformation occurs without volume change. This den-

sity is usually referred to as the “critical density ,” and, as shown in

Figure l,* its magnitude varies with mean normal stress.
2 The

INC /
~~~~~~~~~~~~~~ 

\
\

~~~~

T I L  DENSITY LINE 

/

DENSE STATE (DILATIVE BEHAVIOR)

/4
LOOSE STATE (CONTRA CT~VE BEHAVIOR)

////////////%
EFFECTIVE PRESSURE , P

Figure 1. Volumetric response of sand in dense and loose states sub—
Jected to a deviatoric state of stress (constant F’)

* For convenience , symbols are listed and defined in the Notation
(Appendix B).
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stress—strain behavior of sand is , therefore , highly dependent on the

confining pressure. For fully saturated sand, the stress—strain be-

havior also varies greatly depending on whether the sand is loaded in a

drained or undrained condition . Since the pore fluid (water) is rela-

tively incompressible , pressure builds up in the pore fluid during un-

drained loading. Con~~quently , the effective stress carried by the par-

ticles comprising the soil skeleton equals the total stress minus this

pore pressure. This effective confining pressure , then, influenc~~ the

undrained stress—strain behavior of saturated sand .

Behavior Under Monotonic-Type Loading

6. Figure 2 qualitatively depicts typical stress—strain—pore

pressure response curves for four specimens of saturated sand, each at

a different initial density , tested undrained in a triaxial test device.

As indicated in Figure 2, the specimens are consolidated to the same

effective pressure (point 1). The curves marked “1 -* 2” show behavior

typical of very loose sand. This specimen develops its peak strength

at a relatively small strain (compared with the value of strain at the

end of the test) and then softens (loses strength) with further strain-

ing. The strength at the end of the test , referred to as “residual

strength,” is only a small fraction of the peak strength. Because of

the contractive behavior of loose sand, the effective pressure in the

specimen decreases as the test progresses causing a concomitant in-

crease in the pore pressure. The curves marked “1 + ~ show behavior

typical of dense sand. The strength of the material increases contin-

uously with increasing strain, and the effective pressure in the dense

sand specimen increases as the test is continued , due to its dilative

behavior . The pore pressure reaches its maximum value at a relatively

small strain, then decreases, eventually becoming less than its initial

value (the crossover point occurring when the total and the effective

stress paths intersect).

7. Within the extreme limits of very loose and very dense sands

a multiplicity of behavior can be observed, depending on the initial

6
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Figure 2. Typ ical behavior of saturated sand during undrained shear in
a triaxial test device
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state of compaction of the material. For example, as indicated by the

curves marked “1 -~- 14” in Figure 2, for a sand slightly looser than the

densest (dilative) specimen , the effective pressure first decreases and

then begins to increase as the test continues . Accordingly , the induced

pore pressure first increases and then decreases with increasing strain.

8. Typical stress—strain curves for saturated sand tested under

drained triaxial test conditions are depicted qualitatively in Figure 3.

The dense sand specimen develops its peak strength early in the test

and then softens as the test progresses. The loose sand specimen , con-

versely , continuously hardens and generally develops its peak strength

at the end of the test . Comparison of Figure 3 with Figure 2 indicates

that the stress difference—axial strain response for very dense and very

loose sands in the drained condition contrasts markedly with the corre-

sponding responses in the undrained condition. That is, a softening

stress—strain response corresponds to a dilative behavior (i.e., dense

sand) in a drained test , but a contractive behavior (i.e., loose sand)

in an undrained test. Conversely , a hardening response corresponds to a

contractive behavior in a drained test and a dilative behavior in an

undrained test.

Behavior Under Cyclic Loading

9. Typical behavior of’ saturated sand subjected to cyclic loading

in an undrained condition is shown qualitatively in Figure 4. The mate-

rial is first consolidated to point A and then subjected to small ampli-

tude (subfailure) cyclic stresses (the cyclic load oscillating between

zero and a maximum compression load). The important feature of the

behavior depicted in Figure 14 is that the accumulated strain during

cyclic loading prior to failure (point A -
~~ B) is small, compared with

the strain at the end of the test , whereas the pore pressure increases

rapidly during this period. During the last cycle when the effective

stress path reaches the failure envelope (point B), the material fails

suddenly and loses strength as the test continues (point B -
~ C). The

response of the material from point B to point C is similar to the

8 . . .
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Figure 3. Typical behavior of saturated sand during drained shear
in a triaxial test device
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response of loose sand under monotonic loading (curves 1 -
~ 2, Figure 2);

i.e., the pore pressure increases steadily and reaches its maximum value

at point C. At point C the shearing strength of the material is only

a small fraction of the strength at point B.

10. Figure 5 portrays typical response of saturated sand in an

undrained condition subjected to cyclic stresses with stress reversals

(the cyclic load oscillating between a maximum extension and a maximum

compression load). The most important feature of the behavior shown in

Figure 5 is also similar to that indicated in Figure 14 . The accumulated

strain prior to failure (point A -
~~ B) is very small, but the pore pres-

sure increases rapidly during this period. At point B the material

fails suddenly and loses strength with further straining while the pore

pressure increases steadily (point B + C).

11. The behavior of loose saturated sand in a drained condition

subjected to cyclic shear stresses with stress reversals is shown quali-

tatively in Figure 6. The rate of volume change decreases as the t’~st

progresses ; i.e., most of the volumetric strain takes place in the first

few cycles of loading. This behavior reflects the rate of pore pressure

generation in the corresponding undrained test. Furthermore, the volu-

metric strain in the first few cycles is plastic (irrecoverable) in

nature and becomes mostly elastic in the subsequent cycles. Also, as

indicated in Figure 6, the hysteresis loop generated during shear is

greatest in the first cycle of loading and becomes smaller as the test

continues. Such behavior indicates that during a cyclic drained test ,

the response of the sand approaches that of an elastic material with

the progression of the test.

11 
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Figure 5. Typical behavior of saturated sand under undrained conditions

subjected to cyclic loading with stress reversals in a triaxial test
device
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Figure 6. Typical behavior of loose saturated sand under drained condi-
tions subjected to cyclic loading with stress reversals in a triaxial

test device
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PART III : FORMULATION OF THE CONSTITUTIVE MODEL

12. The mechanical behavior of saturated cohesionless soils was

described qualitatively in Part II. This part presents the development

of an elastic—plastic constitutive relationship that describes these

various response features.

13. The basic theory of elastic—plastic constitutive models for

single—phase (solid) materials is presented in detail in Appendix A.

Equations All through A16 of Appendix A define the elastic behavior of

the models. The plastic behavior is described by Equations A17 through

A28. Equations A29 and A30 express the complete elastic—plastic de-

scription. In order to apply these equations to a two—phase continuum

(consisting of’ a solid skeleton and a pore fluid), the normal stress

components must be divided into two parts: the stress carried by the

solid structure , referred to as the “effective stress,” and the stress

carried by the pore fluid, referred to as the “pore water pressure.”

Mathematically , total stress can be expressed as

a = a ’ + u (la)

or, in tensorial form, as

a. = a! + u~S. (lb)
ii ii 3~j

where

a. = total stress tensorii
a! = effective stress tensor
u = pore pressure

6ij = Kronecker delta =

For example, in the case of a triaxiaJ- test (cylindrical coordinate

system z , r , and 0), Equation lb takes the following form:

a a ’ + uz z

o a 0 a ’ + u a ~~+ u  (2)

— — 
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where a and a = a0 are, respectively , the axial and radial total

stress components. The following paragraphs contain the mathematical

forms of the various response functions developed for the proposed two—
phase constitutive relation.

Elastic Behavior

14. The behavior of the model in the elastic (recoverable) range

is described by the elastic bulk and shear moduli. The elastic bulk

modulus is assumed to be a function of effective mean normal stress,*

or the first invariant of the effective stress tensor J~ (J~ =
3P’) (Figure 7). The elastic shear modulus, on the other hand, is

y

U,

FIRST INVARIANT OF EFFECTIVE STRESS TENSOR , J~

Figure 7. Elastic bulk modulus versus first invariant of the effective
stress tensor

assumed to be a function of the second invariant of the stress deviation

tensor, 
~2 

and the plastic volumetric strain, c~~ (Figure 8).**

* The bulk modulus could also be a function of the plastic volumetric
strain.

— ** The functional forms of the bulk and shear moduli (Equations 3 and
4 ) could include more terms and provide more flexibility in fitting
the behavior of any specific material (Cf., Reference 3).
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-L
SECOND INVARIA NT OF THE STRESS DEVIATION TENSOR , j~

Figure 8. Elastic shear modulus versus second invariant of the stress
deviation tensor showing effects of’ plastic volumetric strain

K = 1 - K 1 
— K

1 exP(_K2Jj )] (3)

G = 1 -G 1 [1 
- G

1 exP(_G2~~~~)] 
+ G

3{l 
- exp [_G14(

c~~)2]~~

where

K. = initial elastic bulk modulus
1

K1 and K2 
= material constants

C. = initial elastic shear modulus
G1, C2, 03. and = material constants

The constants K. , K1 
and 1(

2 can be determined from the slope of

the unloading curve from an isotropic consolidation test (Figure 9).

The constants G. , , G~ , G
3 , and G4 can be determined from

the slopes of the unloading stress difference—strain difference curves

from drained triaxiai. tests conducted at different confining pressures

(Figure 10).
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Figure 10. Proposed relationship for triaxial shear test
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Plastic Behavior

15. For the plastic behavior , the loading function ~ (Equa-

tion A9) is assumed to be isotropic and to consist of’ two parts (Fig-

ure 11): an ultimate failure envelope, which limits the maximum shear

PRAGER-DRUCKER

FAILURE ENVELOPE

4 L(K2)

4- L(K 1 ) F(J ~~~/~~ , K2)

F(J , ’I/~~~, K 1 )

K2 > ~~

STRAIN-HARDENING

I ELLIPTICAL YIELD

k SURFA CE (MOVABLE )

I ____
4 X ( K 1 ) ‘p— I
4 X (~~2)

Figure 11. Proposed yield surface

strength of the material, and a strain—hardening yield surface.
3 The

failure envelope portion of the loading function is assumed to be of

the Prager-Drucker type and is denoted by

f(J1 ~~~~~~~~~~~~~~~~~~~~~~~~~ (5)

and the strain—hardening yield surface is assumed to be elliptical and

of the following form: j

18
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F (Jl , , 
K) 

= - L(K)]
2 

+ R2
~ 2 

- [X ( K )  - L(K]2 = 0 (6)

where k and c~ are material constants representing the cohesive and

frictional strengths of the material, respectively. For cohesionless

soil k is negligible. The parameter R is the ratio of the major to

minor axes of the elliptic yield surface (Figure 11). Note in Figure 11

that L(K) and X (K) define the intersections of each hardening sur-

face with the failure envelope f(J
1
1 
,,J

~) , and the axis,

respectively . The hardening parameter K iS generally a function of’

the history of plastic volumetric strain. For the present model, K

was chosen as

K = 

:~~: 
~~~~~~~~ 

(7)

where (dc~~). is the 1th increment of plastic volumetric strain, and

zi is the number of increments from the beginning of the loading history.

The following relationships were chosen between K , L (K) and X(K)

~~n ( K )  if f l ( K )  > 0

L( K ) =~~~ (8)

0 if 11( K) ~ 0

X ( K )  = - ~~ ‘ ln(l — (9)

When it is assumed that the failure envelope (Equation 5) intersects

each ellipse (Equation 6) at the crown, It follows that

1 / K\

X(K )  - Rk - ~ in k]. - ii)- Rk

l + c * R  = l +a R  
10
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where D and W are material constants. W is the max imum nonrecover—

able volumetric compaction that the material can withstand under iso-

tropic consolidation . Because of its impact on the behavior of the

model the parameter R is discussed in the following paragraph.

Parameter R and Its Effect on Behavior of Model

16. The value of R depends on the state of compaction of the

material. For contractive material (i.e., loose, Figure 2, curve marked

“1 + 2”), the value of B is found to be greater than l/c~ . For

dilative material (i.e., dense, Figure 2 curves marked “1 -~ 14” or
“1 + 5”), the value of R is found to be less than l/~ . R = l/cz
corresponds to the curve marked “1 -* 3” in Figure 2. In this case the

strain—hardening yield surface is not allowed to translate relative to

the origin of the J~ , axis, and the behavior of the model becomes

similar to the critical state model proposed by Schofield and Wroth.
2

These variations in the parameter R can be accounted for by the

following relation:

B = 
1 + R 1 

{l + B
1 exP[_R2

L(K~~} 
(11)

where R . , R
1 

, and R2 
are material constants that can be determined ,

for example, from K test results (through a trial and error process)

so that a good fit to both the stress path and the stress—strain curves

is obtained. Equation 11 is used to compute the value of B whenever

the yield surface (Figure 11) is expanding. During unloading in shear,

however (i.e. path 2 + 
~ in Figure 12), it is postulated that the y

ield

surface ab will contract as shown by the dashed curve ab’ in Fig-

ure 12. It should be noted that the contraction of the yield surface

is not dependent on the plastic strain because, during unloading, plas—

tic strain is constant. The final position of the yield surface is

determined by the magnitude of at point 3. The value of B at

point 3 is greater than that given by Equation 11 by a factor Rf . 4

20
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Fi gure 12. Postulated model behavior during unloading and reloading
in shear

Therefore during reloading in shear (path 3 -~ 14 in Figure 12) the

F~ar~rn~ L I r R takes the form

= 
f 1  

{i 
+ R1 exP [_R 2L ( K ) ]

} 
(12)

where the numerical value of R
f’ 

is determined from the continuity

condition at the unload/reload in4;erface at point 3. That is, the value

of B at, point 3 is first determined from Equations 6, 8, and 10, where
X(K) corresponding to point a is known and L (K) corresponds to point

This value of R , together with the values of B1 
, R1 , and

can ‘,hen be :;l1b~;tituted into Equation 12 from which can be

determined .

11. The contraction of the yield surface as discussed in the

paragraph allows considerable flexibility in modeling the behavior

-— - - ---



01’ st r a in—s oft ’~n i r~g materials and the response of :;a~~~r a L~:r I sand under

su b t a i l u ro  cy cU c  loading condi t ions .  Part IV covers ~~~
• heha-;i~~r of

the rn~~1el when subjected to monotonic and cyclic loadings under ~r i ax ial

t,f~:;t
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PART IV: BEHAVIOB OF THE MODEL UNDER TRIAXIAL TEST CONDITIONS

18. Current methods of routine stress analysis in geotechnical

engineering require material property information , much of which is

usually obtained with the triaxial test apparatus . It is of interest ,

therefore, to investigate the behavior of the proposed model in a t n —

axial test configuration for both drained and undrained conditions ,

including cyclic loading. With the adoption of the z—axis of a cylin-

drical coordinate system (z, r, and 0) as the axis of symmetry of the
assumed isotropic specimen , the effective stress tensor a!

j and the
strain tensor £jj associated with the tniaxial test configuration are

a ’ 0 0z

0 a’ 0 (l3a)

O 0 a’
r

C 0 0z

= 0 £ 0 (13b)

0 0 Cr

The variables (first invariant of the effective stress tensor),

~ (second invariant of the stress deviation tensor), and c (thekk
volumetric strain AVIV) associated with the above stress and strain

tensors take the following forms:

= a~ + 2a’ (114a)

= — a~)2 (l14b)

23
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AV= C~~ + 2C ‘

~~~ 

(114c )

Triaxial tests on saturated sands generally are performed ~n two phases :

(a) an isotropic consolidation phase and (b) a shear phase. The shear

phase may be performed either drained or undrainea. These phases are

discussed below.

Isotropic Consolidation Phase

19. During the isotropic consolidation phase of the triaxial test,

J’
a’ = a’ = —

~~~ (iSa)z r 3

C
C C =—  (l5b )
z r 3

The relation between the elastic volumetric strain increment and thc

increment of the first invariant of the effective stress tensor is

(see Equation A12)

3K dc
~k 

(16)

where the elastic bulk modulus K is given by Equation 3. Substitution

of Equation 3 into Equation 16 and integration of the resulting expres-

sion provides the following relation between the elastic volumetric

strain £kk and J~

= 3K2K. 
ln [ax

~~~2J~~~ K

i] (17)

The relation between the plastic volumetric strain and J~, is

given by Equation 9, where K (Equation 7) for this phase of the test

is £~~~ and X(K) is thus

24 - 
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= w 
[i 

- exP(_DJj)] (18)

As a result of Equations 17 and 18, the total volumetric strain takes

the following form:

= 3 K K  in [ exp(K2J~) - K1 ] + WEl - ~
xp

~
_
DJj )1 (19)

Equations 17 through 19 provide a complete specification for the be-

havior of the material during the isotropic consolidation phase of the

triaxial test.

20. The qualitative behavior of the model during isotropic con-

solidation is shown in Figure 13. The slope of the J~ versus £kk
curve during initial loading can be obtained from Equation 19:

~~~~~j 1

Figure 13. Behavior of the model under cyclic
isotropic consolidation

25
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dJ~ 
— 

1 
- 

-
~~

dckk 
- 

~~ r 1 + 
~~~~ exP (_DJI) 

— 3K (20)

1 — 
~~ [1 

— K
1 
exp (_K 2Ji)j

where K is the apparent bulk modulus of the material. The combination

of Equations 3, 18, and 20 results in

1 
P (21)

+ 3D 
(w 

-

The second term in the denominator of Equation 21 represents a softening

term; i.e., it accounts for the fact that K is initially softer than

the elastic bulk mod~ilus K . At higher pressures, however , this soft-

ening term becomes zero (i.e., £
~k 

= W) and the apparent bulk modulus
K equals the elastic bulk modulus K.* If a sample is consolidated from

point 1 to point 2 (Figure 13), unloaded from point 2 to point 3, and

then reloaded from point 3 to point 2, the model dictates that the

unloading—reloading behavior is purely elastic.

Shear Phase

Undrained condition

21. During the shear phase of a conventional undrained tniaxial

test, the cell, or confining, pressure is maintained constant: i.e.,

ar 
= constant = P~ (22a)

hence ,

,

~

da = 0  (22b)
r

4 * For a dense material, the softening term is usually small , and the
modulus K closely approximates the elastic bulk modulus .

26
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where P’ is the confining pressure at the end of the isotropic con-

solidation phase. The stipulation that the shear phase is performed

undrained means that the volumetric strain is constant and equal to

the volumetric strain achieved at the end of the consolidation phase.*

Accordingly, for an undrained shear phase,

= dC
~k 

+ dC~~ = 0 (23a)

which leads to

dC = — dc (23b)

The shear phase up to failure (Equation 5) can be accomplished by either

monotonic or cyclic loading. At failure, the shear strength of the

material can either (a) increase (i.e., undergo strain hardening),

(b) decrease (i.e., undergo strain softening), or (c) remain constant

(e.g., if the material is at its critical density , Figure 2, point 3) .

The behavior of the model under these three conditions is examined

separately below.

22. Prefailure response under monotonic loading. The total volu-

metric strain at the end of the consolidation phase of the test can be

obtained from Equations 9 and 17:

1 — K  exp(K J’)-K
= 3 K K

1 ln [ 1 — K 1 
+ W {l — exP[_DX(K)]

} 
(214a)

or 

£~~~ = 3K2K1 
ln [ex

2~~)_ x~
] 

+ w [1 - eXP(_3DP~)] 
(24b)

* Undrained shear actually means no change in water content; the con-
dition of constant volumetric strain is only an approximation.
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The equation of the hardening surface (Equation 6) for the triaxial con-

figuration takes the following form:

- L ( K ) ]
2 

+ 
~~~~~ (a’ - at)

2 
[X ( K )  - L(K)]

2 
= 0 (25)

An expression for the effective stress path in the shear phase (i.e.,

a ’ — a’ versus J~ ) can be obtained by the combination of Equations 10,

214b, and 25:

/ 1 - K1 IexP(K2J’)- K

~Jj ( 1 + + Bk + ln 1 + 3WK
2
K. 

ln Lexp 31(2~’~~
_ 

~l

- [1~~ exp(~3DP~)]~)2 -

- ln 
{l 

+ 
3
~~2

Ki 
ln 
[:::~~~~~~~l] 

- [1~~ exp~~3DP~~~})2

+ ~~~(l + aR)2 (a’ - a’)2 = 0 (26)

Figure 114 shows a typical effective stress path produced by Equation 26.

The sample is isotropically consolidated from point 1 to point 2. The

path indicated by point 2 + 3 represents the prefailure effective stress

path under monotonic loading. The total stress path is indicated by

point 2 + 4 . Since the effective and the total stress paths are known,

the excess pore pressure u can easily be determined as indicated in

Figure l~ . Because the pore pressure and the effective stress tensor

have been determined, the complete strain tensor can be obtained from

Equation A29 by use of Equations 3, 14 , 9, 10, and 25 (with B calcu—

lated from Equation 11). A computer program called TDRIVER was
developed to solve numerically this system of equations, as well as

Equation A29, and to generate various plots of stress—strain and pore

28 — -
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Figure l~4. Typical effective stress path produced by Equation 26

pressure response for undrained triaxial conditions. This program and

its flow charts are available upon request.

23. Postfailure response of dilative materials. Figure 15 repre-

sents a typical triaxial test stress path for dilative material. The

plastic volumetric strain increment along the path 3 + 14 can be obtained

from Equations 5, A20, and A28 as

P ~df(J~ ~~P)1
= —3 1 I c~ ( 27)

9Kc* + C J
Since the total volumetric strain increment during the shear phase is

assumed to be zero, the elastic volumetric strain increment can be set

equal to the negative of the plastic volumetric strain increment ; that

is

dc
~k 

= 
df ~~~ ,~7;) 

a ( 28)
9Ka +0
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Figure 15. Typ ical stress path for dilative material under undrained
shear (triaxial test) conditions

The hardening parameter K along the path 3 -“ 14 (see Figure 15) is

K = 

(~
C
~k~)12 

+ 

(~
C
~k~)23 

+ 
(

~
C

~~k~) 3 4  
( 29)

The intersection of the strain—hardening yield surface, Equation 6, with

the J1 axis can be obtained from Equation 9. The intersection of the

yield surface with the failure envelope is given by

L(K) = mm , X(K) ]  (30)

The value of B can be determined from

- R ( K )  = 
X(

~~
)
+

_

c*~~ :~ (31 )

30
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Note that when R = 0 (i.e., X ( K )  = L(K)), the material reaches its

peak shear strength (point 14 , Figure 15).

214. In summary , for a dilative material, R is a function of K

through Equation 11, and K is equal to the actual plastic volumetric

strain along the paths 1 + 2 and 2 -‘ 3 in Fi gure 15. Along the path

3 14 , however , K ~ 5 given by Equation 29, and R is a function of K

through Equation 31. Equation P29 will give the total strain when the

computer program TDRIVER is used.

25. Postfailure response of contractive material. Figure 2

(curve 1 + 2) shows the typical behavior of a contractive material

under the undrained triaxial test condition. Figure 16 represents

the model simulation of this  behavior. The treatment of path 1 + 2 + 3

is similar to the prefailure behavior discussed in the previous para-

graph. Beyond point 3 the material strain softens. This may be viewed

as a release of elastic strain with a concomitant buildup of plastic

strain. The path 3 + b , therefore, can be simulated by the model in two

steps: elastic unloading from point 3 to point a followed by elastic—

plastic loading from point a to point b.

26. Since path 3 - a is purely elastic ,

dckk 
:-~ dC

~k 
dC
~k 

= o (32 )

Therefore, K and X(K) remain constants and the yield surface (Equa-

tion 6) is inactive along this path. The value of L , however, is

variable arid can be computed from Equations 6 and 10. The long—dashed

line shown in the left sketch of Figure 16 represents the position of

the yield surface at point a. The value of B corresponding to this

yield surface is computed from Equation 12. Along the path a + b, the

total volumetric strain, which is constant, can be obtained from Equa-

tion 214a. The effective stress path a + b can be determined from Equa-

tion 26, and the computer program TDRIVER may be used to compute

total strain along the path 3 -
~‘ a + b .

27. The above process is repeated along the paL” b + 14 as sho wn

by the short—dashed line in Figure 16. Note that the loading increment

31
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between 3 -~ can b~ l i t  i i ~-d into n increments so that the dotted

portion of the ;Lre~;s—strain curve shown in Fi gure 16 can be closely

adhered to.

28. Prefailure response under undrained cylic loading. Fi gures 14

and 5 show the typical behavior of saturated soil under undrained cylic

shear loading. This behavior can be simulated by the model similarly

to the manner described for the treatment of strain—softening materials.

The path 3 a (Figure ii) is purely elastic , in which K and X ( K )

are constant while L is variable. From a to b the path is elastic—

plastic for which the total strain tensor can be obtained from Equa-

tion A29 with the use of the computer program TDRIVER .

Drained condition

29. For the case of a drained shear test the effective stresses

are identical to the total stresses and the stress path is known a priori.

Hence , the model treats this case identically to the undrained case

except that the restriction of no volume change during the shear phase

is dropped . The material response is determined directly from Equation

A2~) using the computer program TDRIITER.

- 
, ~

J
g 

~1 ~~~ (7

r Z r

Figure 17. Model simulation of undrained cyclic shear loading conditions
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PART ‘I: C0MPAR1 :;Dll OF LABORATORY TEST DATA WITH MODEL P REDICT IUU

~O. In order t.o ~Ierw ri~;tr at e  the  ve r sa t i l i t y  of the proposed

(~~~r~: ; t , j t u t i / e  fflc~l(2 1 for s imulat ion of the wide variety s t r e s s—s t r a in—pore

pr~~:;:~ I 1r~ r ’ sponses observed in tests of saturated cohesionless soils (as

:~ : 5 rt  in Fi~ IAres 2 and 1 4 ) ,  four sets of experimental data were considered.
The ~‘ir st  set of’ data ( data set i) typifies the behavior of contractive

(1oo~;e) mater ia l s .  As indicated in Fi gure 2 (curves  1 3 ) ,  th i s  typ ’

of material, exhibits an increase in pore pressure during undrained shear .

J’h~: ~econ~1 set of data (data set 2) typifies the behavior of r!ilative

(dense) materials. During undrained shear these materials exhibit an

increase in e f f e c t i v e  pressure and a consequent decrea~;e in pore pres-

sure (curves 1 5, Figure 2). The third set of data (data set 3)

typifie~ the behavior of very loose (work—so ~’tening ) materials subjected

to undrained shear (curves 1 ~ 2, Figure 2). The fourth set of data

(data :;i~t. 14 )  demonstrate~; the behavior of’ loose saturated sand under

undrained cyclic shear loading . As shown in Figure 14, undrained cyclic

shear cause~ a rapid decrease in effective pressure md a consequent

increase in pore pressure. The model can also simulate the response of

dense saturated sand under undrained cyclic shear loadin~ . However ,

because of lack of experimental data in proper format , such simulation

was riot. ma le .

Material Constants

31. The numerical values of the material constants used for model

simulation of the four sets of data are given in Table 1. As indicated

in this table, there are 15 material constants associated with the

constitutive model . Three material constants (x1 , K1 , and K2) are

associated with the elastic bulk modulus (Equation 3), and five mate-

rial constants (o~ , G~, , , , and 04) are associated with the

elastic shear modulus (Equation 14 ) . The material constants K and cx

relate to the ultimate failure envelope of the material (Equation 5),

and the material constants W and D are associated with the hardening

314
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f’Imction ( Equation 9). The material constants B. , B
1 , and B2 are

associated wi th  the parameter B (Equation 11), which defines the ratio
of the major to the minor axes of the elliptic yield surface. Direct

determination of these material constants requires an elaborate set of

experimental  data. Because of the lack of detailed experimental data

some of the material constants in Table 1 were assumed to be zero. lo

addition , the numerical values of some of the other constants had to be

determined by trial and error, by the use of the computer program

TDRIVER in order to obtain a good f i t  to the available experimental data ,

in lieu of the values being determined directly from test results. Ac-

cordingly, the entire capability of the constitutive model was not

ut i l ized in simulating these experimental data. The following

sections compare the model predictions with these experimental data.

Comparison with Contractive Material ( Data Set 1)

3~~. The experimental data for the contractive material (Reid—

Bedford Model sand) were obtained from Refer ence 4 . The data consist

of r’:suJts from one load/unload isotropic consolidation test and two

consolidated undrained triaxial tests. The tests were conducted on

saturated samples of Reid—Bedford Model san-i having au initial relative

density of approximately 20 percent. FigureE 18 through 21 compare the

actual test results with predicted behavior by the model for this set of

data. The result of the consolidation test is shown in Figure 18. Fig-

ure 19 shows effective stress paths in princ ipal stress difference-.

effective mean normal stress space. The shear stress—strain relations,

in terms of princ ipal stress difference versus axial straii~, are shown

in Figure 20. Figure 21 shows excess pore pressures versus axial strain.

Figures 18 through 21 indicate that the constitutive model qualitatively

simulates the response of contractive materials.

Comparison with Dilative Material (Data Set 2)

33. Experimentel data for a dilative material were obtained from

35
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testB; experimental versus model; data set 1
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Reference 1. The data consist of the same type of test results as re-

ported for the contractive material. The tests were conducted on satu-

rated samples of Reid—Bedford Model sand having an initial relative

density of approximately 76 percent . Figures 22 through 25 compare the

actual test results viith behavior predicted by the model for the dila-

tive material. The result of the consolidation test is shown in Fig-

ure 22. The effective stress paths are presented in Figure 23, and

Figure 24 shows principal stress difference versus axial strain rela-

tions. Figure 25 shows excess pore pressures versus axial strain. In

generating these model simulations, the yield function F (the elliptic

cap) was used as the loading function from the beginning of the test

until the effective stress path reached the ultimate failure envelope

f ; from then on , the u1tim~.t~ failure envelope was used as the loading

function . During the first part of the model simulation (i.e., when F

was used as the loading function) pore pressure increased and reached

its maximum value when the effective stress path reached the ultimate

failure envelope. As the test continued, excess pore pressure then

decreased and eventually became negative. The experimental/model com-

parisons shown in Figures 22 through 25 indicate that the proposed

constitutive relation can qualitatively simulate the stress—strain—

pore pressure response of dilat ive materials.

Comparison with Strain—Softening Behavior (Data Set 3)

34. Experimental data for a strain—softening material were ob-

tained from Reference 5. The data consist of results obtained from one

consolidated undrained triaxial test. The test was conducted on a satu-

rated sample of Banding sand having an initial relative density of ap-

proximately 13 percent. Comparisons of the test results with behavior

predicted by the model are shown in Figures 26 through 28. Figure 26

• shows the effective stress paths, and Figure 27 presents principal
stress difference versus axial strain relations. Excess pore pressure

:_ versus axial strain is shown in Figure 28. These figures illustrate

that the proposed constitutive relation quite capably simulates the

stress—strain—pore pressure response of work—softening materials.
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4 -  1
MODEL BEHAV I OR
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Fig-ire 26. Effec t ive  stress paths for consolidated undrained
triaxial tests; experimental versus model ; data set 3
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Figure 27. Principal stress difference versus axial strain
response from undrained triaxial test ; experimental versus

model ; data set 3
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INITIAL EFFECTIVE CONFINING
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AXIAL  STRAIN PERCENT

Figure 28. Excess pore water pressure versus
axial strain response from undrained triaxial
test ; experimental versus model ; dat a set 3

Comparison with Cyclic Test Results (Data Set 4)

35. Cyclic test data were obtained from Reference 5 and consist

of results from one consolidated undrained triaxial test. The test was

conducted on a saturated sample of Banding sand having an initial rela-

tive density of approximately 21 percent. The cyclic load oscillated

between zero and. a maximum compression load. Figures 29 through 31

show comparisons of the test results with behavior predicted by the

model for this set of data. Figure 29 shows the effective stress paths.

The principal stress difference versus axial strain responses are shown

in Figure 30, and excess pore pressure versus axial strain is compared

in Figure 31. The most significant experimental feature of cyclic load-

ing is the progressive increase of pore pressure observed with increas-

ing stress cycles , a phenomenon which contributes to liquefaction of

42
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Figure 29. Effective stress paths for consolidatedundrained (cyclic shear) triaxiaj. test; experimental
versus model; data set 4
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saturated sand. Figure 31 shows that the proposed constitutive relation

simulates this phenomenon quite well.
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Figure 31. Excess pore water pressure versus axial strain
response from cycled undrained triaxial test ; experimental

versus model; data set 4
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PART VI : SUMMAR Y AND RECOMMENDATI ONS

36. A three—dimensional elastic—plastic isotropic constitutive

relation has been developed for simulating the stress—strain—pore

pressure response of saturated cohesionl e~ s materials. The major new

features of the constitutive model are (a) its treatment of work—

softening behavior , and (b) its ability to predict progressive increases

of pore pressure under low—amplitude (subfailure) cyclic shear loadings.

Both of these phenomena are important factors that contribute to the

1iquefactio~ of saturated sands. The constitutive relation also allows

for dependency of the elastic shear modulus on the shearing stress and

plastic volumetric strain. This particular feature of the model is

quite useful for simulating the nonlinear shearing stress—strain

response of soils.

37. The formulation of the work—softening behavior is numerically

stable. Theoretically , however, this behavior could violate the

Drucker6 stability postulate, which is a sufficient , though not neces-

sary, condition for satisfying all of the thermodynamic and continuity

requirements of the incremental theory of plasticity.

38. It is recommended that Phase III of this investigation

include incorporation of this constitutive model into a suitable

numerical computer code for use in the assessing of the liquefaction

potential of dams and other earth structures subjected to different

transient or static—type loadings.
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APPENDIX A: FUNDA1~ NTAL EQUATIONS OF ELASTIC-PLASTIC
MATERIAL MODELS

Basic Concepts from Continuum Mechanics

1. In engineering practice it is convenient, and often reasonable,

to disregard the structural details of materials and consider their

gross behavior only. Engineering materials are therefore described , or

characterized , mathematically within the frameworks of the theory of

continuous mass media. Neglecting thermal effects, the basic field

equations that govern the motion of a continuum are the continuity

equat ion*

~~~- +  
(~v~)~~ = o (Al)

and the equations of motion

o . + F . — pa . 0 (A2)ij , j  1 1

where

p mass density

t = time

v. = components of velocity vector

a ij  = symmetrical stress tensor

F. = components of body force

a. = components of acceleration vector

2. Equations Al and A2 constitute four equations that involve ten

unknown functions of time and space: The mass density p , the three

velocity components v~ , and the six independent stress components

°ij 
. The body force components F. are known quantities and the

acceleration components a1 are expressible in terms of the velocity

* Indices assume values 1, 2, or 3. A repeated index is to be summed
over its r ange . A comma in the subscripts represents a derivative.
Quant it ies are referred to rectangular Cartesian coordinates X1

Al

2
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components v . . Therefore, six additional equat~~rtC r~ 1~~~irii~ the  cen

unknown variables are required in order to determine th i~ ion ~r

deformation of a medium when subjected to external disturbances such

as surface forces and/or displacements. In continuum mechanics , such

relations are stated by constitutive equations (or material models) which

relate stresses to deformation and history of deformation . The dif-

ference between constitutive equations and field equations (Equations Al

and A2) is that the latter are applicable to all materials, whereas the

former represent the intrinsic response of a particular material or

class of materials .

3. The general form of a constitutive equation may be expressed

by the functional form

~~~ (D~~ ‘ c-rs ‘ ~qp ‘ 0i j  ‘ 
= 0 (A3 )

where the deformation—rate and spin tensors, D and ~ , respec—mn qp
tively , are related to the components of the velocity vector v.

D L ( v  + v
mn 2 m ,n n ,m

(A14 )
1 /

~i = — i v  — vpq 2 \ p,q q,p

and the strain tensor c is related to the components of the displace-

ment vector u~ . For small displacement gradients,

~ + u  
‘
) (A5)

rs 2 \ r,s s,r/

Equations Al through A3 constitute ten equations which include ten

unknown variables. These equations -will lead, in conjunction with the

kinematic relations given by Equations A14 and A5 and boundary conditions ,

to a complete description for solution of a boundary-value problem.

14. The mechanical behavior of a number of engineering materials

is described within the framework of elastic—plastic constitutive

A2

- 
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relationships . The development of the specific functi~ nal form of

Equation A3 for the e las t ic—plas t ic  models is c-~iv ~ n in the  ~~iL wini~

:;e~ t. i rl .

General Description of Elastic—Plastic Constitutive Models

5. The basic premise of elast ic—plast ic consti tutive models is

the assumption that certain materials are capable of undergoing small

ç- La~tic (permanent) as well as elastic (recoverable) strains at each

loading increment . Mathematically, the total strain increment is

~t::::uiri~d to be the :;urn of the elastic and plastic strain increments; i.e.,

dc . = dc-~ + de~ (A6)
ii ii

where

dE.~ = components of the total strain increment tensor

= components of the elastic strain increment tensor

dc~~ = components of the plastic strain increment tensor

6. W i t h i n  the elastic range the behavior of the material can be

described by an elastic constitutive relation of the type

dc~~ = Al iki (~~~~~~~~)  ~~~ 
(AT )

where

~~~~ = material response function

= components of stress increment tensor

The behavior of the material in the plastic range can be described

within the framework of the g~neralized incremental theory of plasticity.6*
• The mathematical basis of the theory was established by Drucker by

,—

* Raised numerals refer to similarly numbered items in the References
at the end of the main text.
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introducing the concept of material stability with the i~~1. 1 ’ wiw~ 1mph —

cat ions :

a. Yield surface (loading f’unction ) should be c riv’ x in
stress space.

b. Yield surface and plastic potential should coincide (this
is referred to as associated flow rule).

c. Work “softening” should not occur.

These three conditions can be summarized mathematically by the following

inequality :

Pdo. de .  - > 0 (A8 )

The above conditions allow considerable flexibility in choosing the form

of the loading function ~ for the model , which :;erves a~; both a yield

surface and plastic potential. For i sotropic mater i aU; the yield sur-

face may be expressed , for example , as

~ (~ 
,

~~~~~~~~~~ 

, 
K) 

= o (A 9 )

where

J = = f i r s t  invariant of 5tress tensor1 nfl

j = ~~
- S. G.  = second invariant of stress deviation tensor2 2 ij 1,)

S . . = o. — (J /3)6. = stress deviation tensorij  ij  1 i j

= ~ 1 = 
= Kronecker delta

ii 10 i~~~j
K = a hardening parameter

The hardening parameter K , in general, can be taken to be a function

of the plastic strain tensor . The yield surfac e of Equation A9

may expand or contract as the hardening parameter K increases or

decreases , respectively (Figure Al).

7. Conditions a, b , and c above, taken in conjunction with

Equation A9, result in the following plastic flow rule for isotropic

materials:

A14
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MILL/RE EA’VELOPE

Figure Al. Typical yield surface for an elastic—
plastic model

d A — ~~ if ~~~~O
ij

dc.~ = (Alo)

0 if ~~ < O

where dA is a positive scalar factor of proportionality, which is non-

zero only when plastic deformations occur, and is dependent on the par-

ticular form of the loading function.

Elastic strain increment tensor

8. For isotropic elastic materials the strain increment tensor

(Equation AT) takes the following form:

de~~ = —

~~~~~ 

dJ
1 
+ ~~ dS.,~ 

(All)

The bulk and shear moduli can be functions of the invariants of the

stress tensor. Accordingly , assume that K = K ~~~~ , , 
~ )  

and

G = , , , where J
3 

is the third invariant of the stress

A5 ~- - . - 
- 
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- 
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deviation tens-jr. Equation All can be wri t ten  in terms of the hydro-

static and deviatoric components of the strain and ~;trc~~ increment

tensors; i. e.,

dc
~k 

= 
— 

dJ1 
(A12)

3K(J1 ‘
~2

de~ = 
1 dS. . (A l 3 )

ii 2G(J1 ‘~2 ‘ ~~3) 
‘

where

dc
~k 

= increment of elastic volumetric strain

de~ . = elastic strain deviation increment tensor
1J

In order not to generate energy or hysteresis within the elastic range,

the elastic behavior of the model must be path independent . The mate-

rial should then possess a positive definite elastic internal energy

funct ion ‘P , which is independent of stress path. The strain energy

function can be written as

‘P ~~ ij  

dJ dS .
= I (s~ + ~ J~ 61~) [9K 

(
~~~~ 

~ ~ 

6ij 
+ 

2G(J1 ~ 
~3)]

1 9K(J1 

~~ 
dJ1 +j

ii 
2G(J1 ~~: )  

~~ 
dS~~ 

(Aib )

dJ2
- 

~~ 18K(J1 ‘ ~3) ~J0 2G(J1 ‘ ~3)

In order for ‘P to be independent of stress path, the integrals in 
—

Equation A114 have to depend only on the current values of and J2 . 4

A6

4
—

—- — -
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Therefore, the bulk and shear moduli have to be expresse ’ as

K = K (~1)
(Al5)

G = 0 @2)

Further, K and G must always be positive . Since during el astic

deformation the hardening parameter K IS constant , the bulk and shear

moduli can also be expressed as

K = K(J1 , K)

(Al6)
G = G(J2 , K)

Plastic strain increment tensor

9. The plastic strain increment tensor is given by Equation AlO

where the loading function ~ is given by Equation A9. The hardening

function in Equation A9 could be taken as being equal to plastic volu-

metric strain ; thus

K = £kk 
(All)

The use of Equation A17 will allow the yield surface to expand as well

as to contract , Figure Al. The plastic loading criteria for the

function ~ are given as

> 0 loading

dc
i 

0 neutral loading (Al8)
cii ~

< 0 unloading

Because dc-!~ = 0 during unloading or neutral loading, as well as for

< 0 , Equations All through A13 are used to determine the purely elas—

tic strain changes. The prescription that neutral loading produces no

plastic strain is called the continuity condition. Its satisfaction

AT 
t 

-
. 
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leads to concidence of elastic and plastic constitutive laws during

neutral loading .6 ’~
10. Like the elastic behavior , the plastic stress—strain relation

can be expressed in terms of the hydrostatic and deviatoric components

of strain. Application of the chain rule of differentiation to the

right side of Equation AlO yields

dc~ = d)~ 
(~.L 

aJ1 +
ij \3J1 3°ij  ~s~rr ~~~~

or 

de~~ = dA (
~ 

6
ij  

+ 
2~~~~ a~~~~~ 

) (Al9)

Multiplication of both sides of Equation A19 by gives

de~~~= 3 dA~~~— (A20)

The deviatoric component of the plastic strain increment tensor (de~~~)

can be written as

de~1 
= — 

~ 
dc~~ 61j 

(A21 )

Substitution of Equation Al9 and A20 into Equation A2l yields -

P dA ~de1j 
= S~i 

A22

11. In order to use Equations A20 and A22, or Equation Al9, the

proportionality factor dA must be determined. This can be accomplished

in the following manner. From Equations A9 and A17 the total derivative

of ~ becomes 
¶

dSj~ +~~~~~~dC-~~~~~0 (A23)

- =--- ---- ---- - . - ~~~~~~~~~~~~~~~~~~~~~ ~~~~ 
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In view of Equations Al2, A13, and A20, Equation A23 becomes

G deE

+ 3 dx -u.— _iL
3K dc

~k 
-
~

-

~

— + S = 0 (A2I~)
1 ~~~~ 

ij i

Substitution of Equation A6 into Equation A214 results in

+ G (d _ d e
~’) ~ A -

~~~~
— —p-- (A 25)3K (dekk 

- dc
~k)~~~ ~~~~ ij ii ~~~~~~ 

= -3 d 
1 

~~kk

or
G a~ ~ de~- de. =3K de3K dckk 

+ 

~-~r 
5i j  lj  kk 

-
~

J— + 
-

~
i

~~~: ~~~R

- 3 dx ~~~~~
— —

~~~~ --- (A26)
l~j  P
1 

~~kk

With the substitution of the values of de
~k 

and de~ from Equa—
ij

tions A20 and A22, respectively , Equation A26 becomes

_ __ _  

f~~~ 
\2

a tc  
_____ ______ de.1 = 9K dA 

(

~~~
)2 + ~ dA~~~~~~

)
3K dckk 

.5.j:_]i. + 
4
q1[~~ ~q~f 

ii

— 3 dx ~~~
— —~~-~~—- (A27)
1 kic

When the equation is solved for dA , it is expressed as*

3K 
~~~~~~ 

dckk 
+ 

~~~

.._.... 
~ 

S~~ de1,~

dA = (A28)

_______ 
a 6

9 PK(~4-)+G (~~~~)3W a

.—
* For elastic—ideally plastic material, the numerator in Equation A28

is d6 and a/aSP 0kk

A9

a

- 
___________



Total strain increment tensor

12. The total strain increment tensor can be obtained by combin-

ation of Equations A6, All , A19, and A28; thus,

- 

a6 G aic
- 

dJ1 dS~~ 

3K 
~
j— dckk 

+ S de

dc.~ — 9K 6
iJ 

+ 
20 + / 6 \2 / \2 

____

- 
~
aJl)

+ 
1 a ic 

~ii 2~~~~ ~~~~ ii) (A29)

Similarly , the stress increment tensor can be written as

3K~~~—d c + 
G aic S de 

-

aJ1 kk a~Y inn sin

do . = K d e  6. +2G de. — /ii kk ii faic ~2 / aic \2 aic 
_____9K~~~ _) + G(

~asI~;•) 
- 

~~~~kk

x (3K -
~~~

— 6 + 2G aic ~~ 
\ 

(A3o)

\ ij asJ~~ 2~~~)

Equation A29, or Equation A30, is the general constitutive equation for

an elastic—plastic isotropic material. To use these equations it is

only necessary to specify the functional forms of K , G , and ~

AlO
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APPENDIX B: NOTATION

a. Components of acceleration vector

A ijkl Material response function

de~1 
Flastic strain deviation increment tensor

dc.1 Components of the total strain increment tensor

Components of the elastic strain increment tensor

dc~~ Increment of elastic volumetric strain

dc~1 
Components of the plastic strain increment tensor

dc~~ Increment of plastic volumetric strain

dA Positive scalar factor of proportionality used
with flow rule

dcii Components of stress increment tensor

D Material constant

D Deformation rate tensor
Inn
e Void ratio

f(J~ ~~~~~~~~~~~~~ 
Failure envelope portion of the loading function

~ Loading function

F. Components of body force

G Elastic shear modulus

Gi Initial elastic shear modulus

G1,
G2,G3,G14 Material constants

J ~ First invariant of effect ive stress tensor

Second invariant of the stress deviation tensor

J
3 

Third invariant of the stress deviation tensor

k Material constant representing cohesive strength
of material

K Elastic bulk modulus

K Apparent bulk modulus of material

Initial elastic bulk modulus

Material constants

P’ Effective pressure or effective mean normal
stress 

B)..

, ~~~~

— —S. —

— 

— - 

~~~~~~~~~~ ~;;_ T i i ~7-~a..s ~~~



P1 Confining pressure at end of isotropic consoli-
c dation phase

B Ratio of the major to the minor axis of the
elliptic yield sur face

Rf Change in R during cyclic loading

Material constants

S. Stress deviation tensorij
t Time

u Excess pore pressure

u~ Component s of displacement vector

v. Components of velocity vector

W Material constant, maximum nonrecoverable
volumetric compaction material can withstand
under isotropic consolidation

z,r,0 Cylindrical coordinate system

a Material constant representing frictional
strength of material

~V/V Volumetric strain

S. Kronecker delta
ii

Strain tensor
ii

Volumetric strain

c Radial strainr
Axial strainz

Co Tangential strain components

P .Plastic volumetric strain

K Hardening parameter

p Mass density

a. Tot al stress tensor
ii

a! Effect ive stress tensor
ii

Radial total stress component

Axial stress component

08 Tangential total stress component

‘V Complementary energy density function

Spin tensorqp

B2
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