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PREFACE

This investigation was conducted at the U. S. Army Engineer Water-
ways Experiment Station (WES) under the sponsorship of the Office, Chief
of Engineers, Department of the Army, as a part of Project CWIS 311L5,
"Liquefaction Potential of Dams and Foundations Under Earthquake
Excitation."

The investigation was conducted by Drs. G. Y. Baladi and B. Rohani
during the period September 1976 through August 1977, under the general
direction of Mr. J. P. Sale, Chief, Soils and Pavements Laboratory, and
Drs. J. G. Jackson, Jr., Chief, Soil Dynamics Division, F. G. McLean,
Chief, Earthquake Engineering and Vibrations Division (EE&VD), and
W. F. Marcuson III, Project Leader (EE&VD). The report was written
by Drs. Baladi and Rohani.

COL J. L. Cannon, CE, was Director of WES during the preparation

of this report. Technical Director was Mri “F R. Brown.
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LIQUEFACTION POTENTIAL OF DAMS AND FOUNDATIONS

DEVELOPMENT OF A CONSTITUTIVE RELATION FOR SIMULATING
THE RESPONSE OF SATURATED COHESIONLESS SOIL

PART I: INTRODUCTION

Background

1. During 1975 a research effort was initiated at the U. S.

Army Engineer Waterways Experiment Station (WES) to develop an analyti-
cal tool for studying the liquefaction potential of dams and foundations
subjected to earthquake excitation. Specifically, the objective was to
develop a rational computational method (based on continuum mechanics
precepts) for the performance of effective stress analyses of realisti-
cally posed boundary-value problems involving fully saturated cohesion-
less soils.*

2. The investigation was divided into three phases. Phase I,
completed in .1.9’{6,l involved the development of a three-dimensional
(3D) elastic-plastic isotropic constitutive model that qualitatively
simulated some of the basic stress-strain-pore pressure response fea-
tures observed in laboratory tests conducted on fully saturated cohe-
sionless soils. This model, however, does not treat observed strain-
softening behavior, nor does it predict the progressive increases in
pore pressure observed under low-amplitude (subfailure) cyclic shear
loading conditions--two phenomena considered important contributors to
the liquefaction problems. These two features were successfully modeled
during Phase II of the investigation by appropriate extensions of the
Phase I constitutive model. The objective of Phase III (not yet begun)
is to incorporate the Phase II version of the constitutive model into a

suitable numerical code for future use in the conducting of

* The terms "cohesionless soil" and "sand" are used interchangeably
throughout this report to designate earth materials with negligible
cohesion.
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effective-stress analyses and assessment of liquefaction potential of
various earth structures subjected to earthquake or other dynamic

loading conditions.

Purpose

3. The purpose of this report is to document the results of
Phase II of the investigation, i.e., the extension of the Phase I model
to (a) include strain-softening shear behavior and (b) predict the
progressive increase of pore pressure observed when a saturated sand is

subjected to undrained cyclic shear loadings.

Scope

4. The typical mechanical behavior of saturated coehsionless
soils subjected to various laboratory test loading conditions is dis-
cussed in Part II. Part III presents the mathematical formulation of
the constitutive model. The behavior of the constitutive model under
simulated triaxial test conditions is demonstrated in Part IV. Part V
presents comparisons of model predictions with the measured laboratory
response of two sands. A summary and recommendations are given in
Part VI. Appendix A contains a derivation of the fundamental
equations of elastic-plastic constitutive models and is included for

reference purposes and future use.




PART II: TYPICAL MECHANICAL BEHAVIOR OF SATURATED
COHESIONLESS SOILS

5. The mechanical response of a cohesionless soil when subjected
to externally applied loads is a function of the volumetric and devia-
toric stress-strain properties of the material. These properties, in
turn, are affected by such factors as void ratio, density, degree of
saturation, interstitial pore fluid, and the loading history of the ma-
terial. Density, in particular, has a strong influence on the response
of the material. Loose sand, for example, contracts and exhibits a
ductile-type stress-strain behavior when subjected to a deviatoric state
of stress, whereas dense sand dilates and exhibits a brittle-type stress-
strain behavior when subjected to a similar stress condition. The bound-
ary between these loose and dense states is characterized by that density
at which shearing deformation occurs without volume change. This den-
sity is usually referred to as the "critical density," and, as shown in

Figure 1,*¥ its magnitude varies with mean normal stress.2 The

\ R
CRITICAL DENSITY LINE £
\\\\ Y/
DENSE STATE (DILATIVE BEHAVIOR) ‘// /
7%

.

DENSITY

o’
A5y LOOSE STATE (CONTRACTI!VE BEHAVIOR)

Jinvy

EFFECTIVE PRESSURE, P'

Figure 1. Volumetric response of sand in dense and loose states sub-
Jected to a deviatoric state of stress (constant P')

-

* For convenience, symbols are listed and defined in the Notation
(Appendix B).




stress-strain behavior of sand is, therefore, highly dependent on the
confining pressure. For fully saturated sand, the stress-strain be-
havior also varies greatly depending on whether the sand is loaded in a
drained or undrained condition. Since the pore fluid (water) is rela-
tively incompressible, pressure builds up in the pore fluid during un-
drained loading. Consequently, the effective stress carried by the par-
ticles comprising the soil skeleton equals the total stress minus this
pore pressure. This effective confining pressure, then, influencec the

undrained stress-strain behavior of saturated sand.

Behavior Under Monotonic-Type Loading

6. Figure 2 qualitatively depicts typical stress-~strain~-pore
pressure response curves for four specimens of saturated sand, each at
a different initial density, tested undrained in a triaxial test device.
As indicated in Figure 2, the specimens are consolidated to the same
effective pressure (point 1). The curves marked "1 -+ 2" show behavior
typical of very loose sand. This specimen develops its peak strength
at a relatively small strain (compared with the value of strain at the
end of the test) and then softens (loses strength) with further strain-
ing. The strength at the end of the test, referred to as "residual
strength," is only a small fraction of the peak strength. Because of
the contractive behavior of loose sand, the effective pressure in the
specimen decreases as the test progresses causing a concomitant in-
crease in the pore pressure. The curves marked "1 - 5" show behavior
typical of dense sand. The strength of the material increases contin-
uously with increasing strain, and the effective pressure in the dense
sand specimen increases as the test is continued, due to its dilative
behavior. The pore pressure reaches its maximum value at a relatively
small strain, then decreases, eventually becoming less than its initial
value (the crossover point occurring when the total and the effective
stress paths intersect).

T. Within the extreme limits of very loose and very dense sands

a multiplicity of behavior can be observed, depending on the initial
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state of compaction of the material. For example, as indicated by the
curves marked "1 - L4" in Figure 2, for a sand slightly looser than the
densest (dilative) specimen, the effective pressure first decreases and
then begins to increase as the test continues. Accordingly, the induced
pore pressure first increases and then decreases with increasing strain.
8. Typical stress-strain curves for saturated sand tested under
drained triaxial test conditions are depicted qualitatively in Figure 3.
The dense sand specimen develops its peak strength early in the test
and then softens as the test progresses. The loose sand specimen, con-
versely, continuously hardens and generally develops its peak strength
at the end of the test. Comparison of Figure 3 with Figure 2 indicates
that the stress difference-axial strain response for very dense and very
loose sands in the drained condition contrasts markedly with the corre-
sponding responsés in the undrained condition. That is, a softening
stress-strain response corresponds to a dilative behavior (i.e., dense
sand) in a drained test, but a contractive behavior (i.e., loose sand)
in an undrained test. Conversely, a hardening response corresponds to a
contractive behavior in a drained test and a dilative behavior in an

undrained test.

Behavior Under Cyclic Loading

9. Typical behavior of saturated sand subjected to cyclic loading
in an undrained condition is shown qualitatively in Figure 4. The mate-
rial is first consolidated to point A and then subjected to small ampli-
tude (subfailure) cyclic stresses (the cyclic load oscillating between
zero and a maximum compression load). The important feature of the
behavior depicted in Figure 4 is that the accumulated strain during
cyclic loading prior to failure (point A + B) is small, compared with
the strain at the end of the test, whereas the pore pressure increases

rapidly during this period. During the last cycle when the effective
stress path reaches the failure envelope (point B), the material fails

suddenly and loses strength as the test continues (point B + C). The

response of the material from point B to point C is similar to the
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.

response of loose sand under monotonic loading (curves 1 + 2, Figure 2);
i.e., the pore pressure increases steadily and reaches its maximum value
at point C. At point C the shearing strength of the material is only

a small fraction of the strength at point B.

10. Figure 5 portrays typical response of saturated sand in an
undrained condition subjected to cyclic stresses with stress reversals
(the cyclic load oscillating between a maximum extension and a maximum
compression load). The most important feature of the behavior shown in
Figure 5 is also similar to that indicated in Figure L. The accumulated
strain prior to failure (point A -+ B) is very small, but the pore pres-
sure increases rapidly during this period. At point B the material
fails suddenly and loses strength with further straining while the pore
pressure increases steadily (point B + C).

11. The behavior of loose saturated sand in a drained condition
subjected to cyclic shear stresses with stress reversals is shown quali-
tatively in Figure 6. The rate of volume change decreases as the test
progresses; i.e., most of the volumetric strain takes place in the 1irst
few cycles of loading. This behavior reflects the rate of pore pressure
generation in the corresponding undrained test. Furthermore, the volu-
metric strain in the first few cycles is plastic (irrecoverable) in
nature and becomes mostly elastic in the subsequent cycles. Also, as
indicated in Figure 6, the hysteresis loop generated during shear is
greatest in the first cycle of loading and becomes smaller as the test
continues. Such behavior indicates that during a cyclic drained test,
the response of the sand approaches that of an elastic material with

the progression of the test.
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PART III: FORMULATION OF THE CONSTITUTIVE MODEL

12. The mechanical behavior of saturated cohesionless soils was
described qualitatively in Part II. This part presents the development
of an elastic-plastic constitutive relationship that describes these
various response features.

13. The basic theory of elastic-plastic constitutive models for
single-phase (solid) materials is presented in detail in Appendix A.
Equations All through Al6 of Appendix A define the elastic behavior of
the models. The plastic behavior is described by Equations Al7 through
A28. Equations A29 and A30 express the complete elastic-plastic de-
scription. In order to apply these equations to a two-phase continuum
(consisting of a solid skeleton and a pore fluid), the normal stress
components must be divided into two parts: the stress carried by the

' and the stress

solid structure, referred to as the "effective stress,'
carried by the pore fluid, referred to as the "pore water pressure."

Mathematically, total stress can be expressed as

o=o0'+u (1a)
or, in tensorial form, as
=qg'. +
o;5 = iy uéij (1b)
where
ij = total stress tensor
ij = effective stress tensor
u = pore pressure
§ = Kronecker delta = e
ij A

For example, in the case of a triaxial test (cylindrical coordinate

system z , r , and 0), Equation 1b takes the following form:

Q
"

o' +u
Z

o, %0 %0l +u=gl+u (2)

1k

i
i.
TN S~ ——




where oz and g, OO are, respectively, the axial and radial total
stress components. The following paragraphs contain the mathematical
forms of the various response functions developed for the proposed two-

phase constitutive relation.

Elastic Behavior

1k. The behavior of the model in the elastic (recoverable) range
is described by the elastic bulk and shear moduli. The elastic bulk
modulus is assumed to be a function of effective mean normal stress,*
P' , or the first invariant of the effective stress tensor Ji (Ji =

3P') (Figure 7). The elastic shear modulus, on the other hand, is

}

X
"

‘ 2

| 1

| = I

' [a}

| :

’ =
X
o
=

| @ i
0 K = —
= MAX = i - K,
(7]
<
|
e

. - *
—L *

FIRST INVARIANT OF EFFECTIVE STRESS TENSOR, I

Figure 7. Elastic bulk modulus versus first invariant of the effective
g stress tensor

assumed to be a function of the second invariant of the stress deviation

tensor, Eé , and the plastic volumetric strain, eP (Figure 8).%*

kk

* The bulk modulus could also be a function of the plastic volumetric
strain.

** The functional forms of the bulk and shear moduli (Equations 3 and
4) could include more terms and provide more flexibility in fitting
the behavior of any specific material (cf., Reference 3).
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Figure 8. Elastic shear modulus versus second invariant of the stress 1
deviation tensor showing effects of plastic volumetric strain {

=——.i_-— - - 1
K T, 1 - K exp KQJl ) (3)
Gi — It 2
= — = - + - -
G & s & 1 - G exp Gz,’J2 Gyql - exp |-Gy \e, (L)
where
Ki = initial elastic bulk modulus
Kl and K2 = material constants
Gi = jnitial elastic shear modulus
Gl, 02, G3, and Gh = material constants
The constants Ki » Kl . and K2 can be determined from the slope of

the unloading curve from an isotropic consolidation test (Figure 9

The constants Gi ¥ Gl . G2 ’

the slopes of the unloading stress difference-strain difference curves

G3 , and Gh can be determined from

from drained triaxial tests conducted at different confining pressures

(Figure 10).
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Plastic Behavior

15. For the plastic behavior, the loading function § (Equa-
tion A9) is assumed to be isotropic and to consist of two parts (Fig-

ure 11): an ultimate failure envelope, which limits the maximum shear

’ J2
J\ f(J'.I,\/.Tz) PRAGER-DRUCKER
FAILURE ENVELOPE

s

FLITANT,, 1]

RSy

STRAIN-HARDENING
ELLIPTICAL YIELD
SURFACE (MOVABLE)

o

% X(ky) >

Figure 11. Proposed yield surface

strength of the material, and a strain-hardening yield surface.3 The
failure envelope portion of the loading function is assumed to be of

the Prager-Drucker type and is denoted by

f(i,\jﬁ—z>=\ﬁ;-m}i--k=o (5)

and the strain-hardening yield surface is assumed to be elliptical and

of the following form:

18




F<Ji s \/3—:2 , K> = [Ji = Llell® + R232 - x(k) - L(x)¥f = 0 (6)

where k and o are material constants representing the cohesive and
frictional strengths of the material, respectively. For cohesionless
soil k 1is negligible. The parameter R 1is the ratio of the major to
minor axes of the elliptic yield surface (Figure 11). Note in Figure 11
that L(k) and X(k) define the intersections of each hardening sur-
face with the failure envelope f(J'l ,\/52 , and the Ji axis,
respectively. The hardening parameter «k 1is generally a function of
the history of plastic volumetric strain. For the present model, «

was chosen as
a P
K = E Gkﬁ]>i (7)

kk/i

where GHF))' is the ith increment of plastic volumetric strain, and
n 1is the number of increments from the beginning of the loading history.

The following relationships were chosen between « , L(x) and X(«x)

nie) i nle) >0
L(k) = (8)
0 if n(k) €0

X(k) = - % ln(l - %) (9)

When it is assumed that the failure envelope (Equation 5) intersects

each ellipse (Equation 6) at the crown, it follows that

1
~ =1n(l - =)= Rk
i) s Bl D ( w)
ME) S, 1 + oR e
19
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where D and W are material constants. W is the maximum nonrecover-
able volumetric compaction that the material can withstand under iso-
tropic consolidation. Because of its impact on the behavior of the

model the parameter R 1is discussed in the following paragraph.

Parameter R and Its Effect on Behavior of Model

16. The value of R depends on the state of compaction of the
material. For contractive material (i.e., loose, Figure 2, curve marked
"1 > 2"), the value of R is found to be greater than 1/a . For
dilative material (i.e., dense, Figure 2 curves marked "1 - 4" or
"1 > 5"), the value of R is found to be less than 1/a . R = 1/a
corresponds to the curve marked "1 -+ 3" in Figure 2. In this case the
strain-hardening yield surface is not allowed to translate relative to

the origin of the Ji s ,’Jz axis, and the behavior o? the model becomes

similar to the critical state model proposed by Schofield and Wroth.2
These variations in the parameter R can be accounted for by the
following relation:
Ri
R = m; {1 + R, exp[—RzL(Kﬂ} (Ghlk)

where Ri s Rl s &nd R are material constants that can be determined,

for example, from Ko tist results (through a trial and error process)
so that a good fit to both the stress path and the stress-strain curves
is obtained. Equation 11 is used to compute the value of R whenever
the yield surface (Figure 11) is expanding. During unloading in shear,
however (i.e. path 2 + 3 in Figure 12), it is postulated that the yield
surface ab will contract as shown by the dashed curve ab' in Fig-
ure 12. It should be noted that the contraction of the yield surface
is not dependent on the plastic strain because, during unloading, plas-
tic strain is constant. The final position of the yield surface is
determined by the magnitude of \F§- at point 3. The value of R at

2
point 3 is greater than that given by Equation 11 by a factor Rf .

20
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Figure 12. Postulated model behavior during unloading and reloading
in shear

Therefore during reloading in shear (path 3 > 4 in Figure 12) the

parameter R takes the form

where the numerical value of Rf is determined from the continuity
condition at the unload/reload interface at point 3. That is, the value
of R at point 3 is first determined from Equations 6, 8, and 10, where
X(k) corresponding to point a is known and L(kx) corresponds to point
b' . This value of R , together with the values of Ri 5 Rl y and R

2

can “hen be substituted into Equation 12 from which Rf can be

determined.
17. The contraction of the yield surface as discussed in the

abo're paragraph allows considerable flexibility in modeling the btehavior

21
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of strain-softening materials and the response of saturated sand under
subfailure cyclic loading conditions. Part IV covers the behavior of
the model when subjected to monotonic and cyclic loadings under triaxial

test.

22




PART IV: BEHAVIOR OF THE MODEL UNDER TRIAXIAL TEST CONDITIONS

} 18. Current methods of routine stress analysis in geotechnical
engineering require material property information, much of which is
usually obtained with the triaxial test apparatus. It is of interest,
therefore, to investigate the behavior of the proposed model in a tri-
axial test configuration for both drained and undrained conditions,
including cyclic loading. With the adoption of the z-axis of a cylin-

drical coordinate system (z, r, and 0) as the axis of symmetry of the

assumed isotropic specimen, the effective stress tensor oij and the
strain tensor Eij associated with the triaxial test configuration are
a! 0 0
' = 1
ol 0 o, 0 (13a)
0 0 o!
T
€ 0] 0
2
L, = 1
Elj 0 €, 0 (13b)
0 0 €
r
The variables Ji (first invariant of the effective stress tensor),

3% (second invariant of the stress deviation tensor), and €1k (the
volumetric strain AV/V) associated with the above stress and strain

tensors take the following forms:

J! = ¢' + 20" (1ba)
Z 4
7, - %(o; < o;>2 (1hv)

N
w

|
1
1
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€., = ¢, # er = — (1ke)

Triaxial tests on saturated sands generally are performed in two phases:
(a) an isotropic consolidation phase and (b) a shear phase. The shear
phase may be performed either drained or undrained. These phases are

discussed below.

Isotropic Consolidation Phase

19. During the isotropic consolidation phase of the triaxial test,

Jl

o; = o; = §l (15a)
€

e, = ¢, = -%?5 (15b)

The relation between the elastic volumetric strain increment and the
increment of the first invariant of the effective stress tensor is

(see Equation Al2)

E

Xk (16)

TV =
Jq 3K de
where the elastic bulk modulus K is given by Equation 3. Substitution
of Equation 3 into Equation 16 and integration of the resulting expres-
sion provides the following relation between the elastic volumetric

, E ¥
strain ekk and Jl :

- ' -
b 1 -k i exp(ngl) K -
kk ~ 3KK, I-K

The relation between the plastic volumetric strain eik and Ji is

given by Equation 9, where « (Equation T7) for this phase of the test

is ¢, and X(k) is J]» thus

kk

2L
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Cik =W [l - exp(-DJi')] (18)

As a result of Equations 17 and 18, the total volumetric strain takes

the following form:

1 = cxp(KJ')—K
A 1 ov] 1 :
Ckk 3K K 1n 1-K i w[l g ‘XP<'DJ1):| (19)

Equations 1T through 19 provide a complete specification for the be-
havior of the material during the isotropic consolidation phase of the

triaxial test.

20. The qualitative behavior of the model during isotropic con-
solidation is shown in Figure 13. The slope of the Ji versus €,

curve during initial loading can be obtained from Equation 19:

V3,

Figure 13. Behavior of the model under cyclic
isotropic consolidation
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aJ!
1 & ~
B 1 - 3K (20)
- '
Kk X + WD exp (—DJl)

a—— =R iy 4
I-K 1 Kl exp ( K2Jl)

~

where K 1is the apparent bulk modulus of the material. The combination

of Equations 3, 18, and 20 results in

K = - 1 S (21)
= 430 <W - € )

K kk

The second term in the denominator of Equation 21 represents a softening
term; i.e., it accounts for the fact that K is initially softer than

the elastic bulk modulus K . At higher pressures, however, this soft-
1%
k
K equals the elastic bulk modulus K.* If a sample is consolidated from

ening term becomes zero (i.e., e K = W) and the apparent bulk modulus

point 1 to point 2 (Figure 13), unloaded from point 2 to point 3, and
then reloaded from point 3 to point 2, the model dictates that the
unloading-reloading behavior is purely elastic.

Shear Phase

Undrained condition

21. During the shear phase of a conventional undrained triaxial

test, the cell, or confining, pressure is maintained constant: i.e.,
= = '
0, = constant P (22a)
hence,

do. =0 (22v)

* FPor a dense material, the softening term is usually small, and the
modulus K closely approximates the elastic bulk modulus.
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where Pé is the confining pressure at the end of the isotropic con-
solidation phase. The stipulation that the shear phase is performed
undrained means that the volumetric strain is constant and equal to
the volumetric strain achieved at the end of the consolidation phase.¥

Accordingly, for an undrained shear phase,

T R
de]] = dekk + dekk =0 (23a)
which leads to
de._ = - s de (23pb)
r 2 z

The shear phase up to failure (Equation 5) can be accomplished by either
monotonic or cyclic loading. At failure, the shear strength of the
material can either (a) increase (i.e., undergo strain hardening),

(b) decrease (i.e., undergo strain softening), or (c) remain constant
(e.g., if the material is at its critical density, Figure 2, point 3).
The behavior of the model under these three conditions is examined
separately below.

22. Prefailure response under monotonic loading. The total volu-

metric strain at the end of the consolidation phase of the test can be

obtained from Equations 9 and 1T:

l1-K exggx J‘) = K
x 1 21 1
*ox * KK, I A W{l - exP[-DX(K)]} (2ka)
el 1
or
1=K exp(3K P')- K
= 2 2 ¢ 1 y A )
" = X, 1n ¥ + W [1 exp( 3DPC)] (24b)

* Undrained shear actually means no change in water content; the con-
dition of constant volumetric strain is only an approximation.

2T




The equation of the hardening surface (Equation 6) for the triaxial con-
figuration takes the following form:
2 R2 2 2
Y e s ' i o =
[71 - 2] + 3 (o - o1)° - [k(0) - L)% = 0 (25)
An expression for the effective stress path in the shear phase (i.e.,

0; - o; versus J!) can be obtained by the combination of Equations 10,

1
24b, and 25:

R exp(K2Ji)— K,
exp(3K2Pé)— Kl

Ji( 1+ aR) + Rk +

= [l - exp(—3DPé)] 3 =

oR & =B exp(KzJi) 5k E
Rk - =5 1n {l + §Wﬁ;§; 1n exp(3K2Pé) 5 - [1 - exp(}BDPé)]
R2 2 2
+ 5—-(1 + uR) (0; - 0;) =0 (26)

Figure 14 shows a typical effective stress path produced by Equation 26.
The sample is isotropically consolidated from point 1 to point 2. The
path indicated by point 2 - 3 represents the prefailure effective stress
path under monotonic loading. The total stress path is indicated by
point 2 » 4. Since the effective and the total stress paths are known,
the excess pore pressure u can easily be determined as indicated in
Figure 14. Because the pore pressure and the effective stress tensor
have been determined, the complete strain tensor can be obtained from
Equation A29 by use of Equations 3, 4, 9, 10, and 25 (with R calcu-
lated from Equation 11). A computer program called TDRIVER was
developed to solve numerically this system of equations, as well as

Equation A29, and to generate various plots of stress-strain and pore

28
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Figure 1L4. Typical effective stress path produced by Equation 26

pressure response for undrained triaxial conditions. This program and
its flow charts are available upon request.

23. Postfailure response of dilative materials. Figure 15 repre-

sents a typical triaxial test stress path for dilative material. The
plastic volumetric strain increment along the path 3 -~ L can be obtained

from Equations 5, A20, and A28 as

df(Ji i \/_3;

9Ka2 + G

e

dekk = -3

Since the total volumetric strain increment during the shear phase is
assumed to be zero, the elastic volumetric strain increment can be set

equal to the negative of the plastic volumetric strain increment; that

is
‘
™ E af (Ji s QJ2)
| dey, = 3 > o (28)
9Ka~ + G i
| B
| 29 !
l !
a
PP — a— - - T — B
L ) " Y . Lll.lﬂf.' — ‘




EFFECTIVE STRESS PATH

© ® 3

1

Figure 15. Typical stress path for dilative material under undrained
shear (triaxial test) conditions

The hardening parameter k along the path 3 + 4 (see Figure 15) is

ol <C§k‘)l-2 o <€ik‘)2—3 i (eikD?,-h (29)

The intersection of the strain-hardening yield surface, Equation 6, with

the Ji axis can be obtained from Equation 9. The intersection of the

yield surface with the failure envelope is given by
L(k) = min [Ji ’ x(n)] (30)

The value of R can be determined from
_ X(k) = L(k
R(k) = J?)-ni-%?} (31)
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Note that when R =0 (i.e., X(k) = L(k)), the material reaches its
peak shear strength (point 4, Figure 15).

24. In summary, for a dilative material, R is a function of «
through Equation 11, and «k 1is equal to the actual plastic volumetric
strain along the paths 1 - 2 and 2 » 3 in Figure 15. Along the path
3 > 4, however, «k is given by Equation 29, and R is a function of «
through Equation 31. Equation A29 will give the total strain when the
computer program TDRIVER is used.

25. Postfailure response of contractive material. Figure 2

(curve 1 » 2) shows the typical behavior of a contractive material
under the undrained triaxial test condition. Figure 16 represents
the model simulation of this behavior. The treatment of path 1 + 2 » 3
is similar to the prefailure behavior discussed in the previous para-
graph. Beyond point 3 the material strain softens. This may be viewed
as a release of elastic strain with a concomitant buildup of plastic
strain. The path 3 - b, therefore, can be simulated by the model in two
steps: elastic unloading from point 3 to point a followed by elastic-
plastic loading from point a to point b.

26. Since path 3 - a is purely elastic,

dey, = deik = deik =0 (32)

Therefore, k and X(k) remain constants and the yield surface (Equa-
tion 6) is inactive along this path. The value of L , however, is
variable and can be computed from Equations 6 and 10. The long-dashed
line shown in the left sketch of Figure 16 represents the position of
the yield surface at point a. The value of R corresponding to this
yield surface is computed from Equation 12. Along the path a - b, the
total volumetric strain, which is constant, can be obtained from Equa-
tion 2ha. The effective stress path a » b can be determined from Equa-
tion 26, and the computer program TDRIVER may be used to compute
total strain along the path 3 - a > b .

27. The above process is repeated along the path b » 4 as shown

by the short-dashed line in Figure 16. Note that the loading increment

3k
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between 3 + b can bz divided into n increments so that the dotted
portion of the stress-strain curve shown in Figure 16 can be closely
adhered to.

28. Prefailure response under undrained cylic loading. Figures b

and 5 show the typical behavior of saturated soil under undrained cylic
shear loading. This behavior can be simulated by the model similarly

to the manner described for the treatment of strain-softening materials.
The path 3 » a (Figure 17) is purely elastic, in which « and X(«x)

are constant while L 1is variable. From a to b the path is elastic-
plastic for which the total strain tensor can be obtained from Equa-

tion A29 with the use of the computer program TDRIVER.

Drained condition

29. For the case of a drained shear test the effective stresses

are identical to the total stresses and the stress path is known a priori.

Hence, the model treats this case identically to the undrained case
except that the restriction of no volume change during the shear phase
is dropped. The material response is determined directly from Equation

A29 using the computer program TDRIVER.

1 !

' ' T =0
C -y

72 r z r

Figure 17. Model simulation of undrained cyclic shear loading conditions
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PART V: COMPARISON OF LABORATORY TEST DATA WITH MODEL PREDICTION

30. 1In order tc demonstrate the versatility of the proposed
constitutive model for simulation of the wide variety stress-strain-pore
pressure responses observed in tests of saturated cohesionless soils (as
seen in Figures 2 and 4), four sets of experimental data were considered.
The irst set of data (data set 1) typifies the behavior of contractive
(loose) materials. As indicated in Figure 2 (curves 1 » 3), this type
of material exhibits an increase in pore pressure during undrained shear.
The second set of data (data set 2) typifies the behavior of dilative
(dense) materials. During undrained shear these materials exhibit an
increase in effective pressure and a consequent decrease in pore pres-
sure (curves 1 + 5, Figure 2). The third set of data (data set 3)
typifies the behavior of very loose (work-softening) materials subjected
to undrained shear (curves 1 - 2, Figure 2). The fourth set of data
(data set 4) demonstrates the behavior of loose saturated sand under
undrained cyclic shear loading. As shown in Figure U, undrained cyclic
shear causes a rapid decrease in effective pressure and a consequent
increase in pore pressure. The model can also simulate the response of
dense saturated sand under undrained cyclic shear loading. However,
because of lack of experimental data in proper format, such simulation

was not made.

Material Constants

31l. The numerical values of the material constants used for model
simulation of the four sets of data are given in Table 1. As indicated
in this table, there are 15 material constants associated with the
constitutive model. Three material constants (Ki > Kl , and K2) are
associated with the elastic bulk modulus (Equation 3), and five mate-
rial constants (Gi § Gl s Gy

elastic shear modulus (Equation 4). The material constants k and «

G3 , and Gb) are associated with the

relate to the ultimate failure envelope of the material (Equation 5),

and the material constants W and D are associated with the hardening

3k
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function (Equation 9). The material constants R, » R, , and R, are
associated with the parameter R (Equation 11), which defines the ratio
of the major to the minor axes of the elliptic yield surface. Direct
determination of these material constants requires an elaborate set of
experimental data. Because of the lack of detailed experimental data
some of the material constants in Table 1 were assumed to be zero. In
addition, the numerical values of some of the other constants had to be
determined by trial and error, by the use of the computer program
TDRIVER in order to obtain a good fit to the available experimental data,
in lieu of the values being determined directly from test results. Ac-
cordingly, the entire capability of the constitutive model was not
utilized in simulating these experimental data. The following

sections compare the model predictions with these experimental data.

Comparison with Contractive Material (Data Set 1)

32. The experimental data for the contractive material (Reid-
Bedford Model sand) were obtained from Reference 4. The data consist
of results from one load/unload isotropic consolidation test and two
consolidated undrained triaxial tests. The tests were conducted on
saturated samples of Reid-Bedford Model sand having an initial relative
density of approximately 20 percent. Figurec 18 through 21 compare the
actual test results with predicted behavior by the model for this set of
data. The result of the consolidation test is shown in Figure 18. Fig-
ure 19 shows effective stress paths in principal stress difference-
effective mean normal stress space. The shear stress-strain relations,
in terms of principal stress difference versus axial strain, are shown
in Figure 20. Figure 21 shows excess pore pressures versus axial strain.
Figures 18 through 21 indicate that the constitutive model qualitatively

simulates the response of contractive materials.

Comparison with Dilative Material (Data Set 2)

33. Experimental data for a dilative material were obtained from
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Reference 1. The data consist of the same type of test results as re-
ported for the contractive material. The tests were conducted on satu-
rated samples of Reid-Bedford Model sand having an initial relative
density of approximately 76 percent. Figures 22 through 25 compare the
actual test results with behavior predicted by the model for the dila-
tive material. The result of the consolidation test is shown in Fig-
ure 22. The effective stress paths are presented in Figure 23, and
Figure 24 shows principal stress difference versus axial strain rela-
tions. Figure 25 shows excess pore pressures versus axial strain. In
generating these model simulations, the yield function F (the elliptic
cap) was used as the loading function from the beginning of the test
until the effective stress path reached the ultimate failure envelope

f ;3 from then on, the ultimate failure envelope was used as the loading
function. During the first part of the model simulation (i.e., when F
was used as the loading function) pore pressure increased and reached
its maximum value when the effective stress path reached the ultimate
failure envelope. As the test continued, excess pore pressure then
decreased and eventually became negative. The experimental/model com-
parisons shown in Figures 22 through 25 indicate that the proposed
censtitutive relation can qualitatively simulate the stress-strein-

pore pressure response of dilative materials.

Comparison with Strain-Softening Behavior (Data Set 3)

34. Experimental data for a strain-softening material were ob-
tained from Reference 5. The data consist of results obtained from one
consolidated undrained triaxial test. The test was conducted on a satu-
rated sample of Banding sand having an initial relative density of ap-
proximately 13 percent. Comparisons of the test results with behavior
predicted by the model are shown in Figures 26 through 28. Figure 26
shows the effective stress paths, and Figure 27 presents principal
stress difference versus axial strain relations. Excess pore pressure
versus axial strain is shown in Figure 28. These figures illustrate
that the proposed constitutive relation quite capably simulates the

stress-strain-pore pressure response of work-softening materials.
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Figure 26. Effective stress paths for consolidated undrained
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Figure 28. Excess pore water pressure versus
axial strain response from undrained triaxial
test; experimental versus model; data set 3

Comparison with Cyclic Test Results (Data Set 4)

35. Cyclic test data were obtained from Reference 5 and consist
of results from one consolidated undrained triaxial test. The test was
conducted on a saturated sample of Banding sand having an initial rela-
tive density of approximately 21 percent. The cyclic load oscillated
between zero and a maximum compression load. Figures 29 through 31
show comparisons of the test results with behavior predicted by the
model for this set of data. Figure 29 shows the effective stress paths.
The principal stress difference versus axial strain responses are shown

in Figure 30, and excess pore pressure versus axial strain is compared

in Figure 31. The most significant experimental feature of cyclic load-
ing is the progressive increase of pore pressure observed with increas-

ing stress cycles, a phenomenon which contributes to liquefaction of
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saturated sand. Figure 31 shows that the proposed constitutive relation

simulates this phenomenon quite well.
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Figure 31. Excess pore water pressure versus axial strain
response from cycled undrained triaxial test; experimental
versus model; data set L
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PART VI: SUMMARY AND RECOMMENDATIONS

36. A three-dimensional elastic-plastic isotropic constitutive
relation has been developed for simulating the stress-strain-pore
pressure response of saturated cohesionless materials. The major new
features of the constitutive model are (a) its treatment of work-
softening behavior, and (b) its ability to predict progressive increases
of pore pressure under low-amplitude (subfailure) cyclic shear loadings.
Both of these pheromena are important factors that contribute to the
liquefaction of saturated sands. The constitutive relation also allows
for dependency of the elastic shear modulus on the shearing stress and
plastic volumetric strain. This particular feature of the model is
quite useful for simulating the nonlinear shearing stress-strain
response of soils.

37. The formulation of the work-softening behavior is numerically
stable. Theoretically, however, this behavior could violate the
Drucker6 stability postulate, which is a sufficient, though not neces-
sary, condition for satisfying all of the thermodynamic and continuity
requirements of the incremental theory of plasticity.

38. It is recommended that Phase III of this investigation
include incorporation of this constitutive model into a suitable
numerical computer code for use in the assessing of the liquefaction
potential of dams and other earth structures subjected to different

transient or static-type loadings.
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APPENDIX A: FUNDAMENTAL EQUATIONS OF ELASTIC-PLASTIC
MATERIAL MODELS

Basic Concepts from Continuum Mechanics

1. In engineering practice it is convenient, and often reasonable,
to disregard the structural details of materials and consider their
gross behavior only. Engineering materials are therefore described, or
characterized, mathematically within the frameworks of the theory of
continuous mass media. Neglecting thermal effects, the basic field

equations that govern the motion of a continuum are the continuity

equation¥
3p. DV) =0 (A1)
at ( L7
and the equations of motion
+ N - =
aij,j Pi pa; 0 (A2)
where
p = mass density
t = time
¥ - componen®s of velocity vector
oij = symmetrical stress tensor

F. = components of body force
a, = components of acceleration vector
2. Equations Al and A2 constitute four equations that involve ten
unknown functions of time and space: The mass density p , the three
velocity components vi , and the six independent stress components
o,

iJ

acceleration components a

. The body force components Fi are known quantities and the

; eare expressible in terms of the velocity

* Indices assume values 1, 2, or 3. A repeated index is to be summed
over its range. A comma in the subscripts represents a derivative.
Quantities are referred to rectangular Cartesian coordinates xi .

Al

I

I




components vi . Therefore, six additional equations relating the ten
unknown variables are required in order to determine the wmofion or
deformation of a medium when subjected to external disturbances such
as surface forces and/or displacements. In continuum mechanics, such
relations are stated by constitutive equations (or material models) which
relate stresses to deformation and history of deformation. The dif-
ference between constitutive equations and field equations (Equations Al
and A2) is that the latter are applicable to all materials, whereas the
former represent the intrinsic response of a particular material or
class of materials.

3. The general form of a constitutive equation may be expressed

by the functional form
=0 (A3)

where the deformation-rate and spin tensors, Dmn and qu , respec-

tively, are related to the components of the velocity vector vy

D -2 (y + v )
mn 2 m,n n,m

|
N+

2 (y -V )
Pa P,q 9P,

and the strain tensor s is related to the components of the displace-

For small displacement gradients,

(Pr,s = us,r) (A5)

Equations Al through A3 constitute ten equations which include ten

ment vector ui .

™
[l
|-

rs

unknown variables. These equations will lead, in conjunction with the
kinematic relations given by Equations A4 and A5 and boundary conditions,
to a complete description for solution of a boundary-value problem.

. The mechanical behavior of a number of engineering materials

is described within the framework of elastic-plastic constitutive

A2
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relationships. The development of the specific functional form of
Equation A3 for the elastic-plastic models is given in the following

section.

General Description of Elastic-Plastic Constitutive Models

5. The basic premise of elastic-plastic constitutive models is
the assumption that certain materials are capable of undergoing small
plastic (permanent) as well as elastic (recoverable) strains at each
loading increment. Mathematically, the total strain increment is

assumed to be the sum of the elastic and plastic strain increments; i.e.,

de,, = defj + aefj (A6)

where

deij = components of the total strain increment tensor

dc?j = components of the elastic strain increment tensor
de};J = components of the plastic strain increment tensor

6. Within the elastic range the behavior of the material can bte

described by an elastic constitutive relation of the type

deE =

15 = Mg (°mn) 40y (AT)

where
AiJkl = material response function
dckl = components of stress increment tensor
The behavior of the material in the plastic range can be described
within the framework of the generalized incremental theory of plasticity.

*
The mathematical basis of the theory was established by Drucker6 by

* Raised numerals refer to similarly numbered items in the References
at the end of the main text.




introducing the concept of material stability with the following impli-
cations:

a. Yield surface (loading function) should be convex in
stress space.

b. Yield surface and plastic potential should coincide (this
is referred to as associated flow rule).

c. Work "softening" should not occur.

These three conditions can be summarized mathematically by the following

inequality:

P
>
doij dej, 2 0 (A8)
The above conditions allow considerable flexibility in choosing the form
of the loading function § for the model, which serves as both a yield
surface and plastic potential. For isotropic materials the yield sur-

face may be expressed, for example, as

8 (Jl \/72 ’ .<> b (A9)

where
Jl = On = first invariant of stress tensor
3: = 2 S5..5.. = second invariant of stress deviation tensor
2 A T g
Sij e ?ij - (Jl/3)6ij = gtress deviation tensor
§,, = i B ™ Kronecker delta

o awy
a hardening parameter

Y
1}

The hardening parameter « , in general, can be taken to be a function
of the plastic strain tensor EEJ . The yield surface of Equation A9
may expand or contract as the hardening parameter «k increases or
decreases, respectively (Figure Al).

T. Conditions a, b, and ¢ above, taken in conjunction with
Equation A9, result in the following plastic flow rule for isotropic

materials:

Al

e ——
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Figure Al. Typical yield surface for an elastic-
plastic model
dx —éi— if §=0
90,
P 1]
de,, = (A10)
1J
0 if 4 <0

where d)A 1is a positive scalar factor of proportionality, which is non-
zero only when plastic deformations occur, and is dependent on the par-
ticular form of the loading function.

Elastic strain increment tensor

8. For isotropic elastic materials the strain increment tensor

(Equation A7) takes the following form:

ae®, = =il as. + &= a8, (A11)

The bulk and shear moduli can be functions of the invariants of the

stress tensor. Accordingly, assume that K = K (Jl 3 Eé ’ 35) and

G = G(fl 5 J2 . 33) s Where 33 is the third invariant of the stress

A5

e




deviation tensor. Equation All can be written in terms of the hydro-
static and deviatoric components of the strain and stress increment

tensors; i. e.,

deEk = l_ — 4J; (A12)
3K(J1 » Jp s J3)

B o 1 :

de., = ds, 5 (A13)

iy = —
2G<§l . J2 5 J3)

where
dEEk = increment of elastic volumetric strain
delibj = elastic strain deviation increment tensor

In order not to generate energy or hysteresis within the elastic range,
the elastic behavior of the model must be path independent. The mate-
rial should then possess a positive definite elastic internal energy
function ¥ , which is independent of stress path. The strain energy
function can be written as

€

1 O 4E

5 R
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N1
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Coe
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B4
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Q
- 0
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N

J
3 J le 1 (A1k)
= dJl +J. — SlJ das 3
0 9K<§1 » Jo s J3) P =GITINe J3)
s a(s £ J2 a7
J =I b +I 2
| 0 lBK(Jl 3 J2 3 J3) 0 QG<Il s J2 s J3
'0
(-
1 In order for ¥ to be independent of stress path, the integrals in 1
Equation Allk have to depend only on the current values of Jl and J2 . i
‘ .
| ‘
{
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|
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Therefore, the bulk and shear moduli have to be expressed as

’ (Jl)
G (32)

Further, K and G must always be positive. Since during elastic

~
1]

Q
"

deformation the hardening parameter « 1is constant, the bulk and shear

moduli can also be expressed as

(A16)

(]

]

Q
T
~f

Plastic strain increment tensor

9. The plastic strain increment tensor is given by Equation AlO
where the loading function § is given by Equation A9. The hardening
function in Equation A9 could be taken as being equal to plastic volu-

s . 12
metric strain Ekk ; thus

(A1T)

The use of Equation A17 will allow the yield surface to expand as well
as to contract, Figure Al. The plastic loading criteria for the

function § are given as

v

0 loading

il

T P
90,
ij

i) 0 neutral loading (A18)

< 0 unloading

Because def;J = 0 during unloading or neutral loading, as well as for
4 < 0 , Equations All through Al3 are used to determine the purely elas-

tic strain changes. The prescription that neutral loading produces no

plastic strain is called the continuity condition. Its satisfaction

AT

——— 4 g i
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leads to concidence of elastic and plastic constitutive laws during
neutral loading.6’7

10. Like the elastic behavior, the plastic stress-strain relation
can be expressed in terms of the hydrostatic and deviatoric components
of strain. Application of the chain rule of differentiation to the

right side of Equation AlQ yields

3J a,/?f
Fo i 34 P 2

de =
1] 3ad. 90, = e
1 i BVJQ i
or
e ) 3
dey, = A Sg_ 8y * 1 6_ 845 (Mm19)
il 2 J2 BVJe
Multiplication of both sides of Equation Al9 by Gij gives
deik =3 an A4 (A20)

BJl

The deviatoric component of the plastic strain increment tensor (dezj)

can be written as

15 12

N e
deiJ = deyy = Fdeg 513 (A21)
Substitution of Equation Al9 and A20 into Equation A2l yields
9
del, e M 26 (a22)

S 0
X eNT, 5, M
2
11. In order to use Equations A20 and A22, or Equation Al9, the
proportionality factor dX must be determined. This can be accomplished

in the following manner. From Equations A9 and Al7 the total derivative

of f becomes

Moy ook, 38 s & +9-6-P—deik=0 (A23)

BJl B} 2V‘3"2' av&-’; - (B % aekk

af =

A8

A«



In view of Equations A12, Al3, and A20, Equation A23 becomes

G deE
E af ij oaf YR b _af
0. 5 P

3K de + 8
Kk 9J = —
1 \/J2 a\lJ2 ) 1 de,

= 0 (A2h)

Substitution of Equation A6 into Equation A2h4 results in

P \ab g P 3 a6 b .
3K(de - de )——— + —= (de. - de. ) =235, = -3d\ = (A25)
kk kk/3J ‘F—Jg iJ ij 8"—J2 ij 8 DEEK

or
P a4 e 28 B ders

a8 ¢ . _af
3K de + —= = 80 des s 3 dE L et S —
1 ‘,Jg 8‘!J2 a I i kk BJl ‘,Jg 3"J2 iJj 1.3

kk 9J

28 _af (A26)

With the substitution of the values of dsik and deiJ from Equa-

tions A20 and A22, respectively, Equatiocn A26 becomes

26 6 _af af | Wy
3K deyy 577 Y = — SiJ deij = 9K dr |37 ) * G dx =

1 vJ23VJ2 il BVJ2

(=N

(A27)

|

—3d>\%g— g
1 9%¢

;:*U

When the equation is solved for dX , it is expressed as*

W

——

af
3K — dE + = =
aJl kk "Jz 5 J2 1d i
(A28)

dax =
%(y_)? a6 Y g af of
1

* For elastic-ideally plastic material, the numerator in Equation A28
is df and aé/aeﬁk =0 .
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Total strain increment tensor

12.

ation of Equations A6, All, Al9, and A28; thus,

The total strain increment tensor can be obtained by combin-

[ af G af 1
3K —— de, , + ——= 8. de
ar as, Sy PRI g e
de,, = ==&, , + —=l 4
J 9K i) 2G 2 2
af af of o4
DK== Gl =—eul]} = 3 =
aJl N7 aJl 5 P
i 2 “Kk
X %%— 6., + l_. -24:- 5.,
s o Ny
Similarly, the stress increment tensor can be written as
[ af g _af ]
3K —— de + = 85__ de
3Jl kk \,3; a‘[Jg mn  mn
doij = K dekk Gij + 2G deiJ - > > ;
oK 28 \* , of-28 08 9
aJ ,,—'—- 0. P
i 1 9 J2 1 aekk g
S,
x [3K i S+ 20 _9.5_ e 5

aJl iJ 3@ 2\/‘@

Equation A29, or Equation A30, is the general constitutive equation for

an elastic-plastic isotropic material. To use these equations it is

only necessary to specify the functional forms of K , G, and 6 .
j
AL0 i
|
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APPENDIX B: NOTATION

Components of acceleration vector

Material response function

¥lastic strain deviation increment tensor

Components of the total strain increment tensor
Components of the elastic strain increment tensor
Increment of elastic volumetric strain

Components of the plastic strain increment tensor

Increment of plastic volumetric strain

Positive scalar factor of proportionality used
with flow rule

Components of stress increment tensor

Material constant

Deformation rate tensor

Void ratio

Failure envelope portion of the loading function
Loading function

Components of body force

Elastic shear modulus

Initial elastic shear modulus

Material constants

First invariant of effective stress tensor
Second invariant of the stress deviation tensor

Third invariant of the stress deviation tensor

Material constant representing cohesive strength
of material

Elastic bulk modulus

Apparent bulk modulus of material

Initial elastic bulk modulus

Material constants

Effective pressure or effective mean normal

stress

Bl
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Confining pressure at end of isotropic consoli-
dation phase

Ratio of the major to the minor axis of the
elliptic yield surface

Change in R during cyclic loading
Material constants

Stress deviation tensor

Time

Excess pore pressure

Components of displacement vector
Components of velocity vector

Material constant, maximum nonrecoverable
volumetric compaction material can withstand

N —

under isotropic consolidation

Cylindrical coordinate system

Material constant representing frictional

strength of material
Volumetric strain
Kronecker delta
Strain tensor
Volumetric strain
Radial strain

Axial strain

Tangential strain components

Plastic volumetric strain
Hardening parameter

Mass density

Total stress tensor
Effective stress tensor
Radial total stress component

Axial stress component

Tangential total stress component

Complementary energy density function

Spin tensor

e e i
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