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ON A SELECTION PROBLEM IN
RELIABILITY THEORY*

by

Woo-Chul Kim
Purdue Un iversity

thiS ?*I~ IS 5~~~~~ Q~W4ITY ?MG~L9.~~~~
Q~~~~1 ~~~~~~~~~ 1~ ~~C ~~~

1. INTRODUCTION

Suppose we have an 9.-out-of-rn system, where m units are to be placed

and at least t of them should function to make the system work , and the

units are statistically independent (see Barlow and Proschan (1975)). In

many situations several brands of units are available , from which we have to

choose at most in brands and draw m units of the system from them . ~ote

that it is permissible to draw Units from a population more than once. he

will find ‘optimal’ solut ions for the series system (i.e. 9. = n) and the

l-out-of-2 system when each unit has an exponentially distributed li felc n ’th .

Let 7rl,..., TT
k 
(k > 2) denote the available brands and assume that c.i.-h

unit from the i-th brand has an exponentially distributed 1ife1en~ths with

mean Iifelength A.
1 

(i = 1 ,...,k). Based on kn independent observ;itions

1 < i < k, from 
~~~~~

‘. “‘uk’ we want to find an ‘optimal’ solution .

Bcc~use of sufficiency, the problem can be reduced to the one based on
n

{X. = X..: 1 < I k}, with X1 having Gamma distribution with mean

~ 
j=l ~ -,

nA and variance nA .~~.1 1

For the series system the expected lifelength of the system , when we use

br ands i t .  , . .  .,n . (1 < I < ... ~ i < k) for the in units , is easily seen
1 in

to be ( ~ A t.) ’. and for the l-out-of-2 system it is given by A ’ + A . 1 
-

j=1 1 ~
(A. + A.) when we use brands i i .  and i t .  (1 ~ i < j < k). We will consider

a l oss function which is inversely proportional to the expected lifelength

corresponding to an action.

~~9~1s work was supported by the Office of Nava l Research contract N00014-75-
C-0455 at Purdue University.



In section 2, we will give the results for the series system. It I- ,

assumed that the loss incurred by using brands it. ,. ..,ir
1 

(1 < i
1 ... < i k)11 m m

for the series system is given by

(1.1) L(X,(i
1
,.. .,i ) )  = ~ A.

1=1 j
Then it is shown that for the series system, the natural rule, which draws al!

the units from the population associated with the largest sample mean j j f (

time, or equivalently with max x
1, is uniformly best among the permutationl< i<k

invariant rules and, theref~r~ , it is admissible and minimax among all the

rules.

In section 3, the Bayes rule for the l-out-of-2 system is given. Here,

it is assumed that the loss function is given by

( 1 .2) L ( A ,(i,j)) = (A ~~ + A. ’ — (A. +

where (i,j) (1 < i < j < k) denotes the action of drawing units from and

ii . . Furthermore, the prior distribution of A is assumed to be the

independent natural conjugate Gamma-2 distribution (see p. 54 Raiffa and

Schlaifer (1961)).

The l-out-of-2 system with k = 2 has been considered by Brostrom (1977).

He constructed a loss function which depends on (A1,X2) only through A~ / A 2 to

obtain the invariance under the scale change. However, it should be pointed

out that the construction of such a loss function can not be done for k > 2,

for the obvious reason; in fact, he used the loss function L given by (1.2)

d ivided by L(A , (1,2)) , but for k > 2 there are no ‘intermediate ’ actions

by which we can standard i ze the loss function without losing comparability of

the different actions.
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Finall y, let us introduce some notations . Let X (1) 
< ~~~~~ < . .

denote the ordered observations (x1, x2,. .. ,Xk), and 7T
( . )  

and A (•) denote

the ~ and the A associated with X
( . ) .  ~ = 1,... ,k.

2. OPTIMAL SOLUTION FOR TUE SERIES SYSTEM

In this section, it is assumed that the loss function is given by (1.1) .

The action space is denoted by ~ = ~~~~~~~ ‘~ m~ 
1 < i1 

< ... < I k} wh e r

(i1 , .  . . , i )  is interpreted as drawing the j-th unit from the brand ii ~~~(i = 1 ,

,m ) .  Given x = (X ,~~
. . . , X

k ) .  the posterior risk of a decision rule d ,

which selects an action (i
i~~•~~~

im) € CL with probability 1, is denoted by

m
(2 . 1)  r(d,x) E [ ~ A. x],

j=l j

when the prior distribution of A is given.

In this section , when considering only BayE s rules, attention can be

restricted to non-randomized decision rules (see Ferguson (1967), §1.8).

The following result considerably reduces the number of decision rules

to be compared for the Bayes rule w.r.t. a symmetric prior of A.

Lemma 1. If the prior distribution of A is permutation symmetric on (O ,=’~~,

then the Bayes rule d* is given by

r(d* ,x) = Mm Mm r(d ,x),
l<s<kAm n~~N

where N5 = {n
5 = (n1,...,n5) :  n

1 ~ ... ~~n5 ~ ~ n. = in, nO ’s are integers},

kAm = Mm (k,m ) and d~ draws n~ units from “(k..j÷l) 
for i = l~ . ..

Proof. For s = 1 ,.. .,kAm let us define C&~ to be

= {U
1
,.~~ ,

j
5: ~~~~~~~~~~~~~ ~~~~~~~~ 

1 < i~ < k, i.~ i
3
,,for j#j’l,

_ _ _ _ _ _ _  _ _  
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where (i1,... ,i ;  n1,. . . ,n )  is interpreted as drawing n . units from

~ 
( j  = 1 ,2,... ,s). Note that we are partitioning the action space CL

3
into kAm components L(s = 1 , . . . , kAm) , where we should use s different

brands . Again, CL
~ 
can be written as

= U CL , where , CL = {(i1,...,i):(i 1,...,i5;~~) €u }.
n~~N -s —s
—3 S

Nc~e that the loss function given by (2.1) can be written as
S

L(A ,a) = ~ n.A . for a € (a . Now consider a decision problem with
3=1 ~ .j

the action space CL , the above loss function and the observation vector

x. Clearl y, this problem is equivalent to partitioning k brands it
1 

lT
k

into s+l subsets “~
‘s”~s+i~ 

where y. is of size 1 for j = 1 ,...

is of size k - s and the action (i1 ,... ~
i~) corresponds to the action

((n’ . },...,{ii . } , (ii.: 1 < i < k, i ~ i ,. ..,i } ) .
‘1 

1 — — 1 s

It is easy to see that this component decision problem is invariant

under the permutation group, and that the loss function satisfies the mono-

tonicity and the invariance properties of Eaton (1967) with parameters

of his paper being At 1 (i = 1,... ,k). Since the density f ( x ,0.) of

X1 has monotone likelihood property in x and O~ 
= A

t
’. it follows from

Eaton ’s results that the rule which assigns it (k_ j+l) to 1) 
for j = I ,.. ,s

and 5
(k-s+l)’~ 

. .  to is Bayes w.r.t. a permutation symmetric prior

distribution of 0 = (01,... ‘°k~~ 
This completes the proof .

The following lemma has a result which is of interest in itself.

Lemma_2. Assume that X1,.. . , X~ , given 0 = (9
k ,.. ‘°k~ 

~ ~ (_ ~ ,~)
k
, are

independently distributed random variables with X . having p.d.f. f(x ,0.).

J f . I ( x , () ) has t he monotone I i It I I hood rat i o (MLR ) property in x and 0 * and

if the prior distribution , r (O), of 0 = (0k,... ‘0k
1 is permutation symmetric



- r-.

kon ~ , then

E[6(.) rxl E [0(.) ~x] for i > j ,

where E[0(.)Ix] denotes the posterior expectation of 0 associated with

Proof. Let = ~~~ 0(i) > O (.)}.

Then

k 
[0(1)

_0
(~)1f(x~O)dr (O) = I [0(i)_O ( j ) 1f(~ *~

)d r (
~
)+ I~

0

k 

= f [0 (i
_0

( j ) 1 Ef(x~
0)_f(x

~
0’)JdT( 0)*

where f ( x ,0) = I! f(x.,0.) and 0’ is obtained from 0 by interchanging
i= 1

and 0(•). keeping other components fixed. Thus

E[0(j)
_0
()) x] n(x) 

~ [O (~)
_0
(J)

] [f(x ,0)—f(x ,0’)]dr(O), where

n(x) is a normalizing factor. The result follows from the MLR property of

f ( x ,9) and the fact that 0(i)
~
0
U) ,~~ 0 for 2. €

REMARK 1 . The MLR property of f(x
~
,0.) in Lemma 2 can be replaced either

by the M property of f(x,0) in Eaton (1967), or by the DT property of f(x,0)

in Hollander , Proschan and Sethuraman (1977).

REMARK 2. If 0k,. 
~‘
0k are, a priori, positive random variables, then it is

easy to see that E[0~~. ~x] < E[0(~)~ x) 
for i > j. Therefore in our

problem E[A
(~~ IxJ < E (A~~~ jx J for i > j ,  if the prior distribution of

A = (A1,... ,Ak) is permutation symmetric on

The next result follows from Lemma 1 and Lemma 2.



ThEORE M 1. For any permutation symmetric prior distribution of A on (0,

the Bayes rule is d
1 = dn , as defined in Lemma 1; namciy t he Ba yes rule

—1
draws all m units from

Proof. It follows from (2.1) that r(d ,x) can be written as

r(d ,x) = E [ 
~

‘ n .A . Ix ] for n € ~— 

j~~1 ~ ( k -j + l )  — —S S

There fore

r(d ,x) - E[(m
~
s+l)A (k) + 

j~ 2 
A (k j+l)l~~1

= E[(m- 
j~ 2 

j (k) 
j~ 2 ~~~~~~~~ 

- E[(m
~
s+l)A (k) ÷ .~~2

A
(k j+l) ~]

= E [~~ (n
j
_ 1)(A

(k j+l)
_A

(k) )Ix] > 0 as pointed out in Remark 2.

Thus MIN r(d ,x) = r(d ,x) where d = d
~~ with n~ 

= (m-s+l ,1 ,.. . ,l) € N ,
n € N  —s —
—5 5 5

i.e.

(2.2) d5 draws (m-s+l) units from 1T (k) and one unit  from each

1T (k j + l )  (j = 2,...,s).

And for a n y s :  2 < s < k A m ,

r(d ,x) - r(d1,x) = 

j~ 2 - ÷ (k) — 
0.

Therefore the result follows from Lemma 1.

Cor. 1. The ‘natural ’ rule d
1 is uniformly best among the permutation invar-

iant rules.

Proof. This follows from considering a permutation symmetric prior T wh ich

gives mass 
~~~~~ 

at each permutation of components of a fixed vector A € (0,0,)
k
•

- ~- -  - -. . - - -
~
-—-- - -  --- -



Cor. 2. The natural rule d
1 is admissible and minimax within the class of

all decision rules .

Proof. Since the permutation group is finite , the result follows from theorems

in Ferguson (1967), §4-3.

REMARK 3. Alternative proof of Theorem 1 has been suggested by Panchapakesan

(1978) after this paper was partially prepared . His idea is to treat the

above decision problem as a product of m decision problems ; nam ely

(a = , Ci
1

x ... xCL , where I .  € . (a. means to draw the j-th unit from the i-th

brand . This can be done since the loss function L(A ,a) for a E CL can be

written as

L(!,a) = 

~~~~ 

= L.(A ,a.) for a - l’”•”
~~ 

€ CL and a.= {i } € L..

Then using Lemma 2, a simpler proof of Theorem 1 can be done . ~c h;ive chosen

to retain our method of proof for other independent interest since this

alternative approach can not be done if the loss function is not additive.

REMARK 4. if we consider a loss function L
1

(A ,(i1,.. . ,i)) = (in Him
m 1<i<k

( 
~ ~

. )~~~~, it is easy to verify the monotonicity and invariance p~o~erties
j=1 j

of Eaton (1967) . Therefore Lemma 1 holds for the loss function L
1
. Assuming

an exchangeable pr ior of A ~~ (Ø~~ ) k namel y,  given B = (~~, 
A

1

,... ,A
k 

are

positive lid random variables with p.d.f. g(~ ,~) and the distribution of

B is known, we can prove that the Bayes rule d* for the loss function L1

satisfies

(2.3) r(d*,x) = Mm
l<s<kA in

S - -~~



S — I- -.

8

where the rule d is defined in ( 2 . 2 ) . Note that this can not be achieved

by the a l te rna t ive  method in Remark 3. Even though (2.3) is a considerable

reduction in a number of candidates for the Bayes rule , specificat ion of the

Bayes rul e seems very difficult except when m = 2. One interesting

exchangeable prior is assuming an irerted Dirichiet prior distribution
II ~a-l

1

r (a k+a) i=l
wi th  p . d . f .  t ( A )  = 

k 
- k where a > 0, a > 0 are known

7(a) 7(a) 
~i

i

constants, which is equivalent to assuming that A 1, . .  •~~
A k~ 

given B =

are lid Gamma random variables with mean a/B and a/B 2 , and B has Gamma dis-

tribution with mean a and variance a (see Johnson and Kotz, 1972 , Page

239) . Another simplest way of assuming an exchangeable prior is specif ying

that A 1, . .  . , Xk are , a priori , positive lid random variables.  Some numerical

resul ts  in this  direction for m > 2 would be interest ing .

3. BAYES SOL UTION FOR THE l-OUT-O F-2 SYSTEM

In th i s  section it is assumed that  the loss funct ion is g iven by (1 .2) .

The action space is denoted by (a = {(i , j ) :  1 < i < j < k}, where (i ,j) is

interpreted as drawing one unit each from the brands and ~~ respectively.

Furthermore , the prior distribution of A is assumed to be independent natural

conjugate Gaxnma-2 d is t r ibut ion . Then the joint a priori p . d . f .  of A is

k a 
a i - B A .

(3. 1) T ( X )  = TI [~~
__

) X 1 e a > 0 and B > 0.
i= 1

Then it is easy to see that the posterior p . d . f .  of A , g iven X=x , is

fl+ak (x . + B) - ( x . + B ) A .
(3.2) r ( Ix )  = 

i~ 1 ‘ 7 (fl+a) A C 
1



It follows from this that A
( l ) , . . . , A

k) are , a posteriori , independenti’-

distributed Gamma random variables with mean ( n + a ) / (x ( . ) +B ) and variance

(n+a )/ (x ( .) +B) 2 . Let r(d ,x) denote the poster ior  r i sk  of rule d , given x.

By considering CL1 = {(i, i ) ;  ~ = , k }  and = {(i , j ) ;  1 < i < j I.)

and using simLi ar argument s tu the one in Lemma 1 , we have the next resul t .

Lemma 3. For any permutation symmetric prior of A on (O o:,) k the Bny es ru~ c

d* is given by

r(d* ,x) = Min {r(d 1,x ) ,  r(d 2 , x ) } ,

where d1 chooses 2 units from 11(k) and d 2 chooses one unit from iT
(k) 

and

another from lT (k l ) .

Now we state and prove a theo rem wh ich gives the Bayes solution .

ThEORE M_2. The Bayes rul e d* w .r .t. the prior given by (3.1) is given by

(d1 if x + B < c(x  k +

( 3.3) d* = (k-l) — ( )

Ld2 if X (k l) ~ B > C ( X
(k) 

+ B),

where c = H~~~ (O) € (0 , 1), H n (c) = ~~~~~~~~~~ I - .~-(n+a) for c > 0 and
U +c V +cUV

U , V are iid Gamma random variables with mean (n+a) and variance (n+a) .

Proof: It follows form (1.2) and (3.2)  that

r(d 1,x) = 4E[A (k) lx ] = 
~~ x~~~ +B

and

2 2 -1r(d 2, x) = E[A (k) A (k l) (A (k) +A (k l) )(A (k) +A (k) A (k l) + A (k l) ) ~
]

UV(U+ r V) x
- X (k) +B U# r k UV+r k V 

° k -



where U and V are lid Gamma random variables wi th  mean (n+ a) and var iance
X

( k l ~~~~
+f

(fl
~a). 

Thus r(d ,x) > r (d ,,x) if and only if H ( 
‘ ~~ )<0 , which is

1 — — a,n X (k) B
x k l +B 

1equivalent to ~ 
- ~~~~~~~~ > Il (0) since H (t) is a decreasing function

X (k) + ~ cx,n a,n

of t > 0. Furthermore it is easy to see that

1
~a 

(1) = [ UV(U+V) 
~ 

- 4(n+a) < 0
,n U +UV+V

which implies 0 < H~~~(0) < 1.. Hence the result follows from Lemma 3.

It is easy to see that —h- 
~ 

are marginally independent hct :~
1 k

random variables with mena n/(n+a). It follows from this that the Bayes

risk of the ruled
1 
s~.ti~sf~es

( 3.4) r (d
1) 

=

< 2  a
3 ~

where (l) is the smallest order statistic from a sample of size k from

Beta distributions with mean aI (ct+n) . It follows from (3 .4)  that the Bayes

risk of the Bayes rule d* in (3.3) is finite . Furthermore, the distribution

function of X , given A € (O,c=Y~, is absolutely continuous with respect to the

marginal distribution function of A .

The next result follows from the above fact and a well known theorem

(see , for example , Brown (1974), Theorem 3.14).

Corollary 3. The Bayes rule d* in (3.3) is admissible.

Similarly, it is easy to see that the generalized Bayes rule w.r.t.
k

dA = It d log A . which corresponds to the vague prior a = B - ~0, is given by
i= l  1

(3.3) wi th  a = B = 0.



RE MARK 5. If we consider a loss function L7(A ,(i,j)) = 
~~

- ( Him ~~) _ I  
-

l< i< k

[A ÷A T
1- ( X .+A j~~~~], it follows from the same method that the Bayes1 3 1 3  -

rule w.r.t. the prior specified in (3.1) is given by (3 .3) with c =

(0) € (0,1) and G (t ) = _____ - —~------- + E[—~—-1 for t > 0, where Ua,n n+a-l n+a-l tti+\,

and V are iid Gamma random variables with mean and i- ariancc equal to (n+a).

The remaining analogous results can also be obtai’ eJ .
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