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OPTIMALITY OF SUBSET SELECTION PROCEDURES FOR RANKING
MEANS OF THREE NORMAL POPULATIONS

by
]
Shanti S. Gupta and Klaus J. Miescke
Purdue University University of Mainz
| SUMMARY

This paper deals with the classical Gupta (1956,65) - approach ("Minimize
the expected subset size under the P*-condition”) in the case of three normal
populations with a common known variance and equal sample sizes n.

By the method of Lagrangian (undetermined) multipliers a function

(involving ¢- and ¢-terms only) is derived which is a convenient tool to

find optimal procedures within Seal's (1955,57) class. Numerical work together
with asymptotical results lead to the conclusion that for every fixed P* and
mean vector u,Gupta‘'s (1956) means procedure is optimal within Seal's class

for sufficiently large sample size n.
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/

"Optimality of subsct sclection procedures for ranking means of three normal

populations" by S. S. Gupta and K. .J. Miescke, Mimeo Series #78-19.

W

38: "... where {i,j,k} = {1,2,3} and h is appropriately ..."

37 6 insert between 37.and-36: "For a symmetric ‘h this type of

monotonicity can, equivalently, be described by"
61: "... of a standard normal ..."

76: replace "y" by '"u'".

128: replace "ﬁ*(b,c)" by "1 - P*(b,c¢c)".

HoG/o/O




OPTIMALITY OF SUBSET SELECTION PROCEDURES FOR RANKING MEANS
OF THREE NORMAL POPULATIONS*
by

Klaus J. Miescke
University of Mainz

Shanti S. Gupta

Purdue University and

1. Introduction

Suppose there are k normal populations TyseeesTy with unknown means
TETRRRT™ and a common known variance which for convenience we assume to
be unity. Further let X],...,Xk be the sample means of k independent samples
each of size n from = ,...,m . If our goal is to select a (non-empty) subset
S of {n],...,nk} which contains the "best" population - i.e. the population
associated with the largest mean - there are several reasonable requirements
which we could impose upon such a subset selection procedure S. A classical
approach due to Gupta (1956,1965) is the following:

“Minimize the expected subset size EE(IS|) under
(1.1) 1ﬁf PE{CSIS} = P*, where 0 < P* < 1 is a predetermined constant

and "CS" denotes a correct selection - i.e. the selection of any

subset which includes the best population.
Now Seal (1955) proposed the following natural class C of procedures:

(1.2) Include . in the selected subset Sa i.e. . € Sy iff
. k-1 -1/2
x- _>__ z G-Y -n C(Q’P*’k), i — ],o.a,k’ Where
1 j=1 J J -
Y{ s--.< Y, _y are the ordered values of {X;,....%; ;s K. qseukp)
and a;,...,0, 1 are non-negative constants with ap teta g s 1 and
c(a,P*,k) is determined by (1.1), the least favorable configuration (LFC)

being u = (u,...,u), u € R.

*This research was supported by the Office of Naval Research contract
N0O0014-75-C-0455 at Purdue University. Reproduction in whole or in part is
permitted for any purpose of the United States Government.
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If we require S to be non-empty, then c must be non-negative and therefore
a lower bound (greater than k']) for P* (depending on a and k) has to be
observed. Let us denote this sub-class of procedures by C,. We shall
return to this point in the next section. In the sequel let us denote
5, by Sp» S, and S, if o equals to (1,0,...,0), ((k-1)"T,...,(k-1)"1) and
(6,...,0,]), respectively. If we fix P* in (0,1) ((k'],l)) and y € D!k, then
clearly there exist optimal procedures in C (c,), since EE(‘Sel) is continuous
in o and the ranges of o are compact in RX. But how to find them? It is
conjectured by several authors that S] (Gupta's means-procedure) is optimal
over much of the parameter space {u|u € l!k}, but an explicit proof of this
conjecture has been missing up to now.

Seal (1957) heuristically reduced the problem in ¢ to a comparison of
SO, S, and S] only, and then he showed for k = 3 that in special parameter
situations S0 is inferior to S, and S, is inferior to S;. Furthermore,
superiority of S; w.r.t. other members of C, was deduced by Berger (1977)
heuristically, who proved that there are P*-values for which S] is the only
procedure within C,_ which is minimax w.r.t. the expected subset size.

Finally Deely and Gupta (1968) showed that in the special slippage

1/2 8 is

configuration p = (u,...,ut+s), 6 > 0, EE(ISll) < EE(IS*I) if n”
greater than a constant depending on P* and k only. But as they pointed out:
"Because of the difficult distribution problems involved, the general
comparison of the rule R (S1 here) in the class ¢, is hard to make".

In this paper we extend the results of Deely and Gupta (1968) in the
case of k = 3 to the following: Let € e(0,1), e, > 0 be fixed. Then there
exists a lower bound N(e],ez) for n, above which S] is optimal within both

gaMcfwanP*e&PLqimdulEem3Mﬂ;@|=A%“n¢ler

. = gL P
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Especially, we can prove that S, within C can never be optimal, a result

which is to some extent contradictory to the results of Seal (1957).

2. A general class of procedures for k = 3.

From now on we restrict ourselves to the case of k = 3. Thus we start
with independent variables Ri n N(“i’ n']), i =1,2,3. Since we restrict

our considerations to procedures which are invariant under permutations as

well as under common location shifts of the observables X],XZ,X3, we henceforth

assume without loss of generality that u = (u],uz,u3) = (0,8,0+8), 4,6 > 0,
holds.
By the imposed location invariance we arrive at the maximal invariant

(X]—XZ,X]-X3,XZ-X3) as a suitable statistic, where of course one of the
2

three differences is redundant. Let h: IR™ » IR be a continuous symmetric
function with the properties that h(0,0) = 0 and h(s],sz) g_h(t].tz) for all
s; < 4, and S, < t,. Because of the permutation invariance, the only natural

procedures that are appropriate are of the form:
(2.1) Include ; in the selected subset Sh(i],iz,i3) iff h(n]/z(ii-xj),

n)/z(ii-ik)) > 0 where {i,j,k} = {1,2,3} where h is an appropriately

chosen so that (1.1) is satisfied.

(2.2) a) h(tsty) < h(tyust,), 0 < u < ty-t

- W
b) h(t],tz) < h(t],t2+u). ty <ty u> 0,

c) h(tysty) < hitytustytu), ty < tys u 2 0.
Let H be an auxiliary function defined by
H(t,v) = h(t,t+v), t € R, v > 0.

Then (2.2) rewritten in terms of the function H reads as follows:

S ————————




(2.3) a) H(t,v) < H(ttu,v-u), 0 <u <v, t€ R,

b) H(t,v) < H(t,vtu) ,0<wu, v, t € IR,

|A

c) H(t,v) < H(ttu,v) , 0<u, v, t € R.

By c) we get the function r(v) = inf{t|H(t,v) > 0}, v > 0, with r(0) <O

which by b) is non-increasing and obviously has the following property:
(2.4) . H{x,v) >0 1ff £t > v(v), t € R, ¥ > 0,

Finally from a) and (2.4) we conclude that

(2.5) r(v-u) < r(v)tu, 0 <u < v, holds.

Putting ¢ = -r(0) and q(v) = r(v) + c we arrive at the following representation

of the general class of procedures given by (2.1):

: P 5 12 W25 g =172

(2.6) m, € Sq(X],XZ,X3) iff X, Z,max(Xj,Xk) +n q(n |Xj Xkl) n c(q,P*)
where {i,j,k} = {1,2,3}, q is a continuous non-increasing function with
q(0) = 0 and q(v-u) < g(v) + u, 0 < u < v and c(q,P*) is a constant

determined by (1.1).

There are of course many possible choices for q. The simplest, however, °
function q being linear, more explicitly q(v) = av, v > 0, with a €[-1,0].
Besides we note that no other choice within the class of polynomials is possible,
since there are no other polynomials satisfying -1 5_%;-q(x)‘5 0 for all x > 0.
In this way we arrive at Seal's class of procedures, since by letting b = a+l,

(2.6) reduces to C or C,*

(2.7)  w; € Sy(R7.%,%g) 1FF R, > b max(Ry,R,) + (1-b) min(xj,xk)-n"/zc(b,P*).
where {i,j,k} = {1,2,3}, b € [0,1] and c(b,P*) is a constant
determined by (1.1).

If b equals to 0, 1/20r 1, S turns out to be So, S, or S], respectively.




If we restrict our considerations to procedures which never select
empty subsets (i.e. to c+), then c(b,P*) > 0 must be observed. In this
case for every b € [0,1] the possible P*-values for Sb are restricted from

below by

(2.8) {XB > b max(X],Xz) + (l-b)min(i],iz)}

1/2

P(0,0,0)

1

= 27 Vx? are tg(37V/%(20-1)), b € [0,1].

(This result also follows from (3.1) with ¢ = 0, differentiation w.r.t. b,
transformation as in (3.5) and finally by (3.7).) Besides we remark that
for P* > 1/3 (i.e. c(1,P*) > 0) S] can-be put in the following perhaps more
familiar form:

(2.9) n; € S,(R),R,.%,) iFF K, > max(%;,8y.%,) - 071/

; c(1,P*).

To prove that for any fixed P* and E’S] is optimal within both C and c_ for

sufficiently large n, it suffices to do the following two steps:

1) To show with the method of Lagrangian (undetermined) multipliers, that
for sufficiently large n no Sb with 0 < b < 1 has an (not even local)

extremal EE(ISbI), a fact which clearly implies monotonicity of EE(ISbI) in b.

2) To show that for sufficiently large n, S] is superior to SO‘

3. Optimality within Seal's class for k = 3.

We will now simplify the notation considerably by putting n equal to 1 in
the sequel. Thereby we do not really lose any generality, since we can always

Le
R transfer to cases n > 1 very quickly by only replacing u by n]/2

p throughout the
following sections. Especially we point out that our results for "large
A(8)"- derived later on are to be interpreted as results for "large n and

:
3
-
4
fixed (or bounded from below) a(8)" in the general case. i




Let ¢ and ¢ denote the density and the c.d.f. of a standard
distribution. Then we have for {i,j,k} = {1,2,3} and for Z],ZZ,Z3 i.i.d.
N(O,T):

PE{ni € Sb(x]’XZ’X3)} =

PE{Zi = b(zk + Uk) * (]'b)(zj + Uj) = C - U, Zj+uj = Zk + Uk} *

i

pE{Zi 2 b(zj + Uj) + (]'b)(zj + Uk) =6 = Ui’ Zk+uk s Zj + Uj}

5 Im fn[]'¢(bﬂ + (1-b)g - C+uk-ui)]¢(€+uk—uj)d€ o(n)dn

-00 =00

e 1 1 D1-8(bm(1-b)-ctu - ) JolE4u - )deo(n)dn

-00 =0

and

(3.1) 2 [ [ C1-e(bnt(1-b)e-c)To(€)deg(n)dn = P*.

-00 =00

Thus for u = (0,A,A+8), A,8 > 0, we have

(3.2) E(Is,]) =

2 3 = n
J,Zl LSS D1-0(om(1-b)5e, ) To( 648, 5 Jdeo(n)dn

0 =00

where the Aij's and Bij's are given by Table 1 below.

Table 1 i=1 i=2 i=3
A. -c+A+$§ -c+ 8 ~Cc~86
il
Bi] § A+ 6 A
A12 -+ & -C-A ~C~A-8§
Bi2 -4 -A-6 - A

Now if y = (0,4,a+s) and P* ¢ (0,1) are fixed, b varies over [0,1] and
c(b,P*) is determined by (3.1), then Eu(‘sbl) is a continuous function of

b € [0,1] and therefore assumes at least one minimal value at 5, say,

AP




which gives us an optimal procedure Sﬁ in C. At this point it seems to be
natural to use the method of undetermined (Lagrangian) multipliers to find
such a b. (By Lebesgue's dominated convergence theorem it is easy to convince

oneself that steps up to (3.4) are valid). The three equations are (3.1) and

(3.3) (a) E (ISy1) = 2 st P(0,0,0)CSISp?»

9 _9
(b} 3¢ Ey(lsb|) X 5= P(O 0 0){cs|sb}

where A is the undetermined multiplier.
This can be put in the following form:

2
(3.4) (a) z Z I f (n-g)e(bn + (1-b)g + A, )¢(€+B )dﬁw(n)dn

= -00 =00

a2 [ [ (n-lolbn + (1-b)e-clele)degln)dn,

e 4

(b) jzl & | [atbn + (1-b)e + Aj5)w(e+B; 5)deg(n)dn

=2 [ [ glbn + (1-8YE Heluleldeoln)dn.

By change of variables u = ¢ and v = n-¢, we arrive at

(3.5) (a) I Z I/ v¢(y+bv+A )w(u+8 )w(u+v)d(u v)
J=1 i=1 {v>0}

=22 [[ velutbv-c)e(u)e(utv)d(u,v)
{v>0}

[ A
g () 5 3 J] elusbveh, do{u, dlurv)d(u,y)
§=1 451 (v>0)

=2x [[ olutbv-c)ep(u)p(utv)d(u,v).
{v>0}

Clearly the next step is to eliminate A by dividing equation (3.5) (a) by

e

equation (3.5) (b). Moreover, we shall see that it is possible to reduce




— ol w -

the double-integrals to relative simple terms. But we clearly point out
that this is possible only in case of k = 3, since otherwise higher integrals

are involved. We proceed now to carry out this reduction.

Lemma 1. For all u,v,b,A,B € IR

@(utbv+A)p(utB)p(utv)

3]/2

= (3" “uta)g(Bvty)g(e), where

1}

(3.6) a = 3 V2(psge(14b)v)

8 = (2/3)/2(b%-b+1) /2

v = 6 Y2((26-1)A-(14b)B) (b2-b+1) " 1/2

e = 27V 2(at(b-1)8) (b2-b+1)"1/2

The proof is straightforward and therefore omitted here.

Lemma 2. For all b,A,B € IR

(3.7) : fé vp(utbv+A)(u+B)p(utv)d(u,v)
v>0}
= 3252 ot yolyl-viT-aly))]

where g,y and ¢ are given by (3.6).

Proof: By lemma 1 the 1.h.s. of (3.7) equals to

{vjéfvw(3]/2“+a)w(Bv+v)¢(c)d(U.V)

ole)f w(3]/2u+a)du é ve(pvty)dv

3-]/2¢(e)£ vep(Bv+y)dv.

Substituting w = gv+y this equals




3-]/2w(e)8'2 7("'Y)¢(W)dw
Y

5 which in turn equals the r.h.s. of (3.7).
Since the proof of the next result proceeds analogously, we omit

it for brevity.

Lemma 3. For all b,A,B € IR

(3.8) JI  @(utbv+A)o(u+B)p(u+v)d(u,v)
| {v>0} .

= 3712671 (e [1-0()]

where 8,y and ¢ are given by (3.6).

To simplify the forthcoming formulas we introduce the following auxiliary
function f:

f(x) = @(x) - x(1-0(x)), x € IR,

which is positive, strictly decreasing and convex, since d/dx f(x) = #(x)-1,
. x € IR, is negative and strictly increasing in x.

Now we are in a position to state our main result:

! Theorem 1. Let p = (0,4,A+8), 4,6 > 0, and 0 < P* < 1 be fixed. If

Sb’ b € (0,1), minimizes the expected subset size subject to the P*-condition

(3.1), then necessarily b and ¢ = c(b,P*) must satisfy the equation

Lo
j:] i=] J i Y&
e " T80r,)

)

=1 i

‘P(Cia)[]"l’('ﬁ“)]

g.:.3
(] ' o -] "
where the e, ;'s and y,,'s are given by Table 2 below, and v, = 6 jgl 1§]Y1j

6" V2 (b2p+1)"V2(1-2b)e.
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Table 2 i=1 i=2 i=3
i 3%y #(2b-1)c  (2b-1)a-(2-b)s  -(b+1)a-(2-b)s - (b+1)a-(2b-1)s
f pes*C A+b6 -(1-p)a+bs -(1-b)a-6
3T72py12+(2b-1)c (2b-1)a+(b+1)s (2-b)a+(b+1)s (2-b)a-(2b-1)s
| pejgte a+(1-b)s  -ba+(1-b)é -ba-6

In the above table, p = 2172 (b2 - b + 1)1/2
Corollary 1. S, is not optimal in C except when u = (0,0,0).

Proof: Since b = 1/2, we have y, = 0 and Yi1 T TYi2° €41 T €520 fra 0] 0253,

Therefore the 1.h.s. of (3.9) reduces to

3

i i

1

e i
-

iP(E.i] )[]"b(Yﬂ)"'l‘q’(Yiz)]

3 3
= iZ]Q’(Ei])[f(Yi]) + f('Yi])]/iZ](P(ei])'

By the convexity of f this last expression is strictly greater than

3 3
1,Z]m(eﬂ)2f(0)/iZ]<p(e”) = 2f(0) if y # (0,0,0).

But the r.h.s. of (3.9) equals 2f(0) since y, = 0. Thus (3.9) holds only in
the case u = (0,0,0), where, of course, all procedures in C are optimal

(SinCe E(o,O’O)(ISb|) = 3P*).

d
| Though we cannot get explicit solutions by using (3.9), some more
i analysis is possible.
{u'
] In our asymptotic considerations in Section 5 we restrict ourselves

to the three types of parametric-configurations: ke




! 1
1
. :
P (I) a=0 i.e. y=(0,0,6), 6 >0,
| (II) a=6 d.e. p=(0,525),6>0 and
(I11) 6 =0 i.e. u = (0,4,4), & >0,

It should be noted that our numerical studies in the next section are

performed without the above restrictions.

1 4. Numerical results.

Let us denote the difference of the 1.h.s. and the r.h.s. of (3.9)

by G(b,c,A,6). We computed some‘interesting G-values as follows:

0.1 (0.1) 0.9.
0 (0.5) 4.

(i) b

(ii) ¢

In fact, we cover all values of ¢ = -4 (0.5) 4, since there is a symmetry

in our problem. More precisely, we have for all y, i, b, ¢, A and ¢

(4.1) PE{ni €Sy )= 1-P_E{ui € Syp,-cts

which implies

(4.2) P*(bsc) = 1 - P*(1-b,-c)

and

(4.3)  E(g,5,av6)(ISp,cl) = 3-E(0,5,54a)(I1-b,-c])-

It is easy to see (cf. Table 2) that

(4.4) G(b,c,s,8) = G(1-b,~c,5,4) for all b,c,a,s.

Remark: With our choice of c-values we cover for every b at least a
P*-interval of [0.005, 0.995], since P*(1,4) > 0.995. As to the configuration
of the means, we studied the cases y = (0,0,5) (i.e. A = 0) and y = (0,4,4+ta)

(i.e. 6 = ta) for i
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(ii1) t =10 (0.1) 0.5 (0.5) 2 and

0.25 (0.25) 2 (1) 9.

(iv) &

It suffices to study the above configurations, since we are in fact interested
in the general case, where u is fixed (or bounded away from 0) and n > 1
varies.

Our numerical findings are as follows: In most situations including 4 = 0

we have positive G-values. Negative values occur only when b > 0.5, ¢ > 2

and t < 0.5. But, and this should be emphasized, we also found that for every
such (b,c,t) - point there is a lTower bound for A (increasing in c), beyond
which we merely have positive G-values.

Morever, the (large A resp. §) ends of our tables clearly indicate the
beginning of the asymptotic behavior of G, which we shall study in the next
section. Thus there seems to be no gap between our numerical and our asymptotical
results. And therefore we believe that our assertion stated toward the end of
Section 1 is sufficiently well confirmed.

Finally we remark that the interesting question that remains open is
what really happens in cases where G = 0 occurs. Because of (4.2) and (4.3)
we know that if at a certain y = (0,4,a+6), Sb.c is optimal for P*(b,c),
then at y = (0,5,6+4) S1-p,-c 18 worst for P*(b,c). But we do not know whether
there is any extreme at all. Some first attempts to find an answer with the
help of Monte-Carlo-experiments did not lead to a definitive conclusion, but

it seems worthwhile to study this point in more detail at another occasion.

5. Asymptotic results in cases (I) -~ (III).

Theorem 2. Let P* and b in (0,1) and therefore c(b,P*) be fixed.
Then in all cases (I) - (III) the 1.h.s. of (3.9) tends to infinity

if 6 or A tends to infinity. ;:.;Ew
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i Proof: Since all tems gle;)s Flryy) T-slryy)s 12 1,2,3, § = 1.2,

are positive, it suffices to show that

25 1- .
¢(£1J) [ °(Y1J)J ~ 0 for all (i,j).

(5.]) (9(52])f(Y2]) §orad-+o

Now this evidently holds for (i,j) = (2,1), since in all cases (I)-(III)

Yoy tends to -« and therefore f(YZI) tends to ». The remaining five terms

are studied separately for cases (I) - (III) in the sequel.

Case (I) a = 0, p = (0,0,8).

Here the six pairs (cij’ Yij) reduce to three distinct pairs (cf.
Table 2). Thus we have to prove (5.1) for (i,j) = (3,1), (1.2) only.
By olez1)/eleyy) = ol(-c-8)/0)/q((-c+bs)/p)

= exp((-1/20°) [(1-b?)6%+2c(1+6)81} 55— 0 and
0 < [V-0(v3;)1/f(v,) j,f(YZI)'] 5= 0 we see that (5 .1) holds for

(i,3) = (3.1). :
For (i,j) = (1,2) we make use of the following inequalities (cf.
Feller (1968): "Large Deviations")

(5.2) 1-o(x) < @(x)/x for all x > 0.
(5.3) f(x) = o(x) - x(1-¢(x)) > -x for all x < O.

Now if 6 is sufficiently large we have Y2 > 0 and Yop < 0 and therefore

by (5.2) and (5.3)

0 5.W(e]z)[]'Q(Y]z)]/¢(€2])f(YZ])

< (FVmprgleleqglelyyp)/eley).
Clearly we have -1/11212] T 0. And the asymptotic behavior of o
¢(e12)¢(y]2)/¢(52]) can be found by looking at the corresponding term {

associated with 62 o
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exp{-(b-?)zdzlﬁpz} ¢ i 0.

f Thus (5.1) also holds for (i,j) = (1,2).

Case (II) a =&, u = (0,8,28).

: Heve we have 342, Yoy + (2b-1)c = 3(b-1)s and for 1 = 1,2,3

peqte: (b+1)8, (2b-1)s, (b-2)s
psi2+C: (2-b)s, (1-2b)s, -(b+1)s

By |2b-1| < |b+1|, |2-b| we have for all (i,j) # (2,1)
Q(Eij)/Q(EZ]) Fi 0. Thus the proof is completed by noting that

0 = []'Q(YIJ)]/f(Yz'I) = f(Yz])-] 6—‘_;—;"’ 0 holds.

Case (III) 6 = 0, u = (0,4,4).

As in case (I) we have to prove (5.1) only for two pairs: this time
for (i,j) = (1,1) and (2,2). By
oleg1)/elen) = ol(-c+a)/o)/o((-c-(1-b)a)/o)

= exp((-1/2o%)[b(2-b)a? - 2(2-b)cal} > O and
0 < [1-0(1q) W flry) < Flypy)™! 5=

we see that (5.1) holds for (i,j) = (1,1).
For (i,j) = (2,2) we proceed as in case (I): For sufficiently large a,

we have Yoo > 0 and Yo < 0 and therefore
0 < ‘9(822)[]'4’“22)]/‘9(‘:2] )f(YZ] )
< (=Wvppvp1)elenn)elvon)/wleyy).

2

turns out to be exp((-l/ﬁpz)(b+l)ZAZ}————-+ 0, (5.1)

A+w

associated with a
also holds for (i,j) = (2,2).
This completes the proof of Theorem 2.
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Remark. By similar arguments one can prove, that in the general case of
p = (0,4,a+8) the 1.h.s. of (3.9) tends to infinity if A is bounded and

§ »» or if 6§ is bounded and A + ~.

6. Comparison of S0 with S].

Theorem 3. Let 0 < P* < 1 and u = (0,4,4+s) # (0,0,0) be fixed. Then the

following inequalities hold:

(6.1) (@) E (I;]) < 02" 2(c;-n-6))+0(27/3(c;-6))w0(27 /2 (c 49))
(b) E,(Is]) > o2 P(cga)) + o2 Eegra) a2 E(erare))

where ¢ <€ S and 4 correspond to S0 and S] and are determined by (3.1).

Proof: For Zi = Xi -y i =1,2,3 being standard normal we have
3
EB(ISII) = 1'LPE{wi € S]}
P{Z]+c] > 22+A,Z3+A+6}

+ P{Zytatc, Z_Z],Z3+A+6}
+ P{Zgtats+cy > Z], Z,+4)

A

PLZy*e,) 2 Zytats)

+ P(Lyt0kc, > Z +045)

1 3
+ P{Zgtatste, > 1,44}

= o(27 12 (c;-n-8))r0(2 2 (c -8) J+0(27 /3 40)).
3
EB(ISOI) = 1§]P2(n1 € Sy}

= 1-P(Zy¥cy < Zy%a, Zytavs)

+

]-P{ZZ+A+CO _<_ Z] . Z3+A"'6}

+
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g

+ 1-P{Z3+A+6+C

+ 1-P{Z,+atc 1}

0= 2,1

= ¢(2-]/2(CO-A)) + ¢(2“/2(CO+A))+¢(2"/2

(c0+A+5)).

Corollary 2. For P* fixed and A or & or both sufficiently large we have

EE(lS]I) 5 Ey(lsoi)-

Proof: For & bounded we have

vim £ (|5,]) o(27 V2 (c,-8))+e(27 /2 (cq6)) and
Ao

2,

lim E (|S
in €, (15o1)

For A bounded we have

1im EU(ISII) 1 and

§4 =

: -1/2 =172
;EEE(ISOH 1+0(27 7 (cy-a))+e(27 " “(cya)).

Finally if A and 6 are unbounded we have

lim E (IS]|) =1 and
4 5 k

1im E (|S.|) = 2.
o 5ol

Corollary 3. Let P* be fixed. If u = (0,4,a+8) satisfies 4,6 > ¢1-Co then

E,(15;1)< E,(I,]).

Proof:
§ > ¢y-¢ implies ¢(2']/2(c]-A-5)) < @(Z-I/Z(CO-A)), A+s > ¢y-C implies '
- 0(271%(c,-6)) < o(27V¥cyra)) and & > c-c, implies o(27'/3(c48)) < |

o(z']/z(c0+A+G)). At this point we should remind ourselves that our results

derived for n = 1 properly modified (replacing u by nllzg) also hold true >,j“
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for n > 1. Thus for example the last corollary in the general case reads
as follows: "Let P* and u = (0,4,8+8) with 4,6 > 0 be fixed. If
n > ((c]-co)/min(A,c))2 then we have EE(ISII) < EE(ISOI)“.

Finally, we remark that we are aware of the fact, that we studied
a problem (optimality within Seal's class for k = 3), which on the one hand
is well known and established in literature, but which on the other hand is
only part of the more general problem searching for an optimal function q in
(2.6). As a matter of fact there are no results in this direction till now
(also none for distributions other than normal distribution) except only in
Studden (1967) (cf. corollary (2.1) there), where the k densities, however,
are assumed to be known in advance and P* is fixed on the éorresponding
parameter space. Admittedly solutions of problem (1.1) are hard to find.
It should be pointed out that recently some optimality problems have been

studied in decision-theoretic and, especially, in Bayesian framework.




(1]

(2]

L3]

L4]

(5]

(6]

L7]

L8]

REFERENCES

Berger, R. L. (1977). Minimax, admissible and r-minimax multiple
decision rules. Mimeo Series No. 489, Dept. of Statist., Purdue
Univ., W. Lafayette, IN.

Deely, J. J. and Gupta, S. S._(1968). On the properties of subset
selection procedures. Sankhya Ser. A 30, 37-50.

Feller, W. (1968). An Introduction to Probability Theory and Its
Applications. Vol. I, 3rd ed., Wiley, New York.

Gupta, S. S. (1956). On a decision rule for a problem in ranking
means. Mimeo Series No. 150, Inst. of Statist., Univ. of North
Carolina, Chapel Hil1l, North Carolina.

Gupta, S. S. (1965). On some multiple decision (selection and
ranking) rules. Technometrics 7, 225-245.

Seal, K. C. (1955). On a class of decision procedures for ranking
means of normal populations. Ann. Math. Statist. 26, 387-398.

Seal, K. C. (1957). An optimum decision rule for ranking means of
normal populations. Calcutta Statist. Assoc. Bull. 7, 131-150.

Studden, W. J. (1967). On selecting a subset of k populations
containing the best. Ann. Math. Statist. 38,1072-1078.

18




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BEPORE Ot ETOMG PORM
—REPGRT NuN - rﬁvmm‘

Mimeograph Series #78-19

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED
Optimality of subset selection procedures for Technical
ranking means of three normal populations

6. PERFORMING ORG. REPORT NUMBER

Mimeo. Series #78-19 ~
7. AUTHOR(e) 8. CON Al [-] ANT NUM e)

Shanti S. Gupta and Klaus J. Miescke ONR NO0O014-75-C-0455

9. PERFORMING ORGANIZATION NAME AND ADDRESS . ® ELEN
Purdue University A
Department of Statistics “
W. Lafayette, IN 47907

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE
Office of Naval Research
washi ngton - Dc “-]guu.l“ OF PAGES
T3, MONITORING AGENCY NAME & ADDRESS(/! different from Controlling owmv CLASS. (of thie report)
Unclassified

a, D IFICATION/ DOWNGRADING
scnk LE

[76. CISTRIBUTION STATEMENT (of this Reporl)
Approved for public release, distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abetrect entered in Block 20, If different from Report)

ey ey —
18. SUPPLEMENTARY NOTES

s, ey 'oios (Continue on reveree elde il necessary and Identify by block number)

Subset selectior, normal populations, expected size, optimality,
ranking of means.

. ABSTRACTYT on olde 11 ary and identify by bleeck number)
This paper deals with the classical Gupta £l§§6.65)-approach (“ﬁ;ﬁimize the

expected subset size under the P*-conditio in the case of three normal popu-
lations with a common known variance and equal sample sizes n.

By the method of Lagrangian (undetermined) multipliers a function (1nvolving.@#
and ¢~terms only) is derived which is a convenient tool to find optimal proce-

At

dures within Seal's (1955,57) class. Numerical work together with asymptotical

results lead to the conclusion that for every fixed P* and mean vectorép.supta'
DD ,55%% 1473  coimon oF 1 wov 68 1s ossoLETE UNCLASSIFIED j’,,. .

/N 0102-014- 6001
; sECUMTY

-ty J

PR i o




UNCLASSIFIED

LLLURITY CLASSIFICATION OF THIS PAGE(When Date Bntered)

(1956) means procedure is optimal within Seal's class for sufficiently large
sample size N

.

SECURITY CLASSIFICATION OF THIS PAGE(When Dota Entered)




Fypopraphical Corrections
"Optimality ot subsct sclection procedures tor ranking means of three normal
populations'" by S. S. Gupta and K. J. Miescke, Mimeo Series #78-19.
38: "... where {i,j,k} = {1,2,3) and h is appropriately ..."

39 6" insert between 3, and 3 @ 'For a symmetric h this type of
» U

monotonicity can, cq ivalently, be described by"

()’: "... of a standard nornal ..."
7(: replace "y'" by '"u'".
)
l._’H: replace "P*(b,c)'" by "1 - P*(b,c)".




