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OPTIMALITY OF SUBSET SELECTION PROCEDURES FOR RANKING
MEANS OF THREE NORMAL POPULATIONS

by

Shanti S. Gupta and Klaus J. Miescke
Purdue Un ivers ity Un ivers ity of Ma inz

SUMMARY

This paper deals wi th the classical Gupta (1956,65) - approach (“Minimi ze

the expected subset size under the P*.conditiona )  In the case of three norma l
populations with a comon known variance and equal sample sizes n.

By the method of Lagrangian (undetermined) multipliers a function

(involving ~~
- and ç-tenns only) is derived which is a convenient tool to

find optimal procedures within Seal ’s (1955,57) class. Numerical work together

wi th asymptotical results lead to the conclusion that for every fixed ~* and
mean vector i,Gupta ’s (1956) means procedure is optimal within Seal ’s class
for su fficiently lar ge sample si ze n.
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“Optimal ity of subset selection procedures for ranking means of three normal

populations” by S. S. Gupta and K. .J. Miescke, Mimeo Series #78-19.

38: 
“... where {i ,j,k } = {l ,2,3} and h is appropriately ...“

3
7,6

: insert between 3
7

.and 3
6: “For a symmetric h this type of

monotonicity can, equivalently , be described by”

6
1
: “... of a standard norma l ...“

7
6: replace !’y” by “u”.

12
8: replace ~p*(h,c)~ by “1 — p*(b,c)~
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OPT IMALITY OF SUBSET SELECTI ON PROCEDURES FOR RANKIN G MEANS
• OF THREE NORMAL POPULATIONS*

by

Shanti S. Gupta and Klaus J. Miescke
Purdue University University of Mainz

1. Introduction

Suppose there are k normal populations 1Tl’•~~
’1Tk with unknown means

an d a common known var iance whi ch for conven ience we assume to

be unity . Further let X1,. ..~
Xk be the sample means of k independent samples

each of size n from 
~l’~ ‘~k 

If our goal is to select a (non-empty) subset

S of 
~~~ ~~~~ 

which contains the “best” population - i.e. the population

associated with the largest mean - there are several reasonable requirements

which we could impose upon such a subset selection procedure S. A classical

approach due to Gupta (1956,1965) is the following:

“Minimize the expected subset size E (ISI) under

(1.1) inf P {CSIS} = ~*, where 0 ~* < 1 is a predeterm ined constan t

and “CS” denotes a correct selection - i.e. the selection of any

subset which includes the best population .

Now Seal (1955) proposed the following natural class c of procedures:

(1.2) Include i~. in the selected subset S i.e. ir. E S iff
• 1 a 1 a
• k—i

~ a~Y~~fl 
‘ c(a,P*,k), i = l,...,k, where

J=l

~~~~~~~~~~~~~ ~k-l 
are the ordered values of {X 1,...,R1 1’

and al,...,ak l  are non-negative constants with a~ ~~~~~~~ ak_i = 1 and

c(a,P*,k) is determined by (1.1), the least favorable configuration (LFC)

being p (p,. 
~~~~ 

p E IR.

• .• *Thjs research was supported by the Office of Naval Research contract
~: N00014-75-C-0455 at Purdue University. Reproduction In whole or in part is : -

permitted for any purpose of the United States Government.
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If we require S to be non-empty , then c must be non-negative and therefore

a lower bound (greater than k~~) for ~* (depending on a and k) has to be

observed. Let us denote this sub-class of procedures by C.,.. We shall

return to this point in the next section. In the sequel let us denote

~ct 
by S~, S~ 

and S1 if ~ equa l s to (l ,O ,...,O), ((k-l)~~,...,(k—l )
1 ) and

(0,... ,O,l), respectively. If we fix ~* in (0,1) ((k 1 ,1)) and ~ E 1R
1
~, then

clearly there exist optimal procedures in c (c+),since E (IS I ) is continuous

in ~ and the ranges of ~ are compact i n IR k. But how to find them? It is

conjectured by several authors that S~ (Gupta’s means-procedure) is optimal

over much of the parameter space {p~~i E R
k} but an explicit proof of this

conjecture has been missing up to now.

Seal (1957) heuristicaily reduced the problem in c to a compari son of

~~ 
S~ and 

~ 
only, and then he showed for k = 3 that in special parameter

situations S0 is inferior to S~ an d S
~ 

is infer ior to S1. Furthermore,

superiori ty of S~ w.r.t. other members of C.,. was deduced by Berger (1977)

heuristically, who proved that there are P*_values for which S1 is the only

procedure wi thin C.~ which is minimax w.r.t. the expected subset size.

Finall y Deel y and Gupta (1968) showed that in the spec ial sli ppage

conf igurat ion ~ 
= (p,...,p+6), & > 0, E ()51 J ) < E(~S,~ ) i f n~~

’2 & Is

greater than a cons tan t depend ing on P~ and k onl y . But as they pointed out:

“Because of the difficult distribution problems involved , the general

compar ison of the rule R 
~~ 

here ) In the class C,. is hard to make”.

In this paper we extend the results of Deely and Gupta (1968) In the

case of k = 3 to the following: Let Cl ~(O ,l), ~2 > 0 be fixed . Then there

exist! a lower bound N(c1,c2) for n, above which S1 Is optimal within both

and c for all P* E (t1,l-~1~] and all ~ E 1R3 with I~I = 1~~+. +p~ 
> c2.

-‘ 

~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ — -—-~~~ —~~~~~~ --



3

Especially, we can prove that S~ within c can never be optimal , a result

which is to some extent contradictory to the results of Seal (1957).

2. A general class of procedures for k = 3.

From now on we restrict ourselves to the case of k 3. Thus we start

wi th independent variables ‘~~ N(p.~, n
1 ), I = 1 ,2,3. Since we restrict

our considerations to procedures which are invariant under permutations as

well as under common location shifts of the observables R1,X2,R3, we henceforth

assume without loss of generality that p = (p j,p2,~i3
) = (0,~,~+6), ~,& > 0,

holds.

By the imposed location i nvariance we arrive at the maxima l invariant

(R 1-X 2,X 1-R3,R2-~3) as a suitable statistic , where of course one of the

three differences is redundant. Let h: JR 2 + ZR be a continuous syninetric

function wi th the properties that h(O,0) = 0 and h( s 1,s2) < h(t 1,t~) for al l

< t1, and S2 < t2. Because of the permutation invariance , the onl y na tural

procedures that are appropriate are of the form:

(2.1) Include ir
~ 

in the selec ted subset Sh(R l,R2,~3
) i ff h (n 1”2(~1

_
~~)~

> 0 where {i ,j , k} = {l ,2,3) where h is an appropriately

chosen so that (1.1) is satisfied.

(2.2) a) h(t1,t2) < h( t1+u,t2), 0 < u < t2-t~,

b) h(t1,t2) h ( t1,t2+u), t1 < t2, u > 0,

c) h(t1,t2) h(t1+u,t2+u), t1 t2, u 0.

Let H be an auxiliary function defined by

H(t,v) = h(t,t+v), t E , V > 0.

Then (2.2) rewritten In terms of the function H reads as follows:

.5

r

- .-~~~1-------~ - — -
~~~~~~~~~

•
, 
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(2.3) a) H(t,v) < H(t+u,v-u), 0 u < v, t E I?.,

b) H(t,v) < H(t,v+u) , 0 < u, v, t E IR ,

c) H(t,v) < H(t+u,v) , 0 < U , v , t E JR.

By c) we get the function r(v) = inf{tIH (t,v) > O}, v > 0, with r(O) < 0

which by b) is non-increasing and obviously has the followi ng property:

(2.4) H(t,v) > 0 1ff t > r(v), t E IR , v > 0.

Finally from a) and (2.4) we conclude that

(2.5) r(v—u) < r(v)+u , 0 < u < v , holds .

Putting c = -r(0) and q(v) = r(v) + c we arrive at the followi ng representation

of the general class of procedures given by (2.1):

(2.6) 
~ 

E 5q 1,~2,R3) 1ff R1 .max(RJ~
Rk) + ~~~~~~~~~~~~~~~~~~~~~~~~

where {i,j,k} = {1 ,2,3], q is a continuous non-increasing function wi th

q (O) = 0 and q(v-u) < q (v )  + u, 0 < u < v and c(q,P*) is a constant

determined by (1.1).

There are of course many poss ib le cho ices for q . The simplest, however,

function q being linear , more explicitly q(v) . = av , v > 0, wi th a E[-l,0J.

Besides we note that no other choice within the class of polynomials is possible ,

since there are no other polynomials satisfying -1 < ~~~
- q(x) < 0 for all x > 0.

In th is way we arr ive at Seal ’s class of procedures, since by letting b = a+l ,

(2.6) reduces to c or

(2.7) 
~ 

E Sb (R l,R2,R3) 1ff R.1 > b max (R
J~

Rk) + (1-b) mln(Rj,Rk
)_n h1’2c(b ,P*),

where (i,j,k} = {1,2,3}, b E (0,1] and c( b,P*) is a constan t

determined by (1.1). •
-

If b equals to 0, 1/2 or 1 , Sb turns out to be S~
, S
~ 

or S1, respectively

—- 
~ -- ~ii ~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —-
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If we restrict our considerations to procedures which never select

empty subsets (i.e. to c.,.)~ then c(b,P*) > 0 must be observed. In this

case for every b E [0,1] the possible P*_values for 5b are restricted from

below by

(2.8) P(0 0 0)~
g
3 > b max(~1,~2 ) + (1—b)min(~1,R2)}

= 2 l
~ T~ arc tg(3~~

’2(2b-l)), b E [0,1].

(This result also follows from (3.1) with c = 0, differentiation w.r.t. b ,

transformation as in (3.5) and finally by (3.7).) Besides we remark that

for ~ > 1/3 (i.e. c(l ,P*) > 0) S1 can be put in the following perhaps more

familiar form:

(2.9) ir.~ E S1 (R1,~2,R3) 1ff L~ > m ax(R1,~2,R3) 
- n L’2 c(1 ,P*).

To prove that for any fixed ~~* and p,S1 is optimal within both C and C4. for

sufficiently large n, it suffices to do the following two steps:

1) To show with the method of Lagrangiari (undetermined ) multipliers , that

for sufficiently large n no Sb with 0 < b < 1 has an (not even local)

extremal E ( I S b I) , a fact which clearly implies monotonicity of E (lS b~
) in b.

2) To show that for sufficiently large n , S1 is superior to S0.

3. Optimality within Seal ’s class for k = 3.

S 

We will now simplify the notation considerably by putting n equal to 1 in

the sequel . Thereby we do not really lose any generality , since we can always

transfer to cases n > 1 very quickly by only replacing p by n 1
~
’2p throughout the

fol lowing sections . Es pecia l ly we po in t ou t tha t our results for “large

A (6)”- derived later on are to be interpreted as results for “large n and

fixed (or bounded from below) ~(6)” in the general case.
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Let ~ and o denote the density and the c.d.f. of a standard

distribution . Then we have for {i,j,k) = {1 ,2,3} and for Z1,Z2,Z3 i.i.d .

N(O,l):

P {IT~ E Sb (X l,X2,X3)} 
=

P{Z 1 > b(Zk + 
~
‘k~ 

+ (l_b)(Z~ + ~~
) - c — 

~~~
, Z~+~ < Zk + ‘~‘k~ 

+

P (Z1 > b(Z~ + ~~) + (1_b)(Z~ + ‘~k~ 
- c - 

~~~
, Zk+Iik ~ Z~ +

= f [l~~(bi, + (1-b)~ - c+ik~~
.)J 

~~~~~~~ 
cp(n)d~

+ 
~~ 

1 0 _ c ~~~~~~~( i
) ) ~~

and

~ n
(3.1) 2 f f [l-~(bn+(l-b)c-c)]~p(~)d~p(n)dn = p*.

Thus for ~i 
= (O,A ,A+s), A ,& > 0, we have

(3.2) EU(IS b~
)

2 3 ~~ n
.~~~ .~~~ I I ~~~~~~~~~~~~~~~~~~~~~~~~~~~j=l i=1 —~~~ 

—
~~~

where the A 1~ ’s an d B~3
1 s are given by Table 1 below.

Table l i = l  i = 2  i = 3
A 11 - c + A + 6  - c + o  - c — 6

B11 ~~~~~~
A12 - c + ~~ - c - A  -~~~- A - 6

B12 - - - 6 - A

Now if ~ 
= (0,A ,A+6) and ~* E (0,1) are fixed , b var ies over [0,1] and

c(b,P*) is determined by (3.1), then EP(IS b J ) Is a continuous function of • .

• b E [0,1] and therefore assumes at leas t one min imal value at b say,
•
s
’
~~

- 
~~

_______________________________________ ______________________________________ —I— 
— —5 — —5-- — ——-- — -  b’ — 

_________________________
- -i. -- S.— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

—.- • . •
• S
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which gives us an optimal procedure S6 in C. At this point it seems to be

natural to use the method of undetermined (Lagrangian) multipliers to find

such a ~~~. (By Lebesgue ’s dominated convergence theorem It is easy to convince

oneself that steps up to (3.4) are valid). The three equations are (3.1) and

(3.3) (a) j~
- E ((Sb l) = A 

~~ 
P(O O O ) CS

~
Sb}.

(b) 
~ 

E
~
(IS b I) = A j~ 

P~00 O)(CSISb}

where A is the undetermined multiplier.

This can be put in the following form:

2 3 ~~ n
(3.4) (a) ~ ~ 5 5 (~—~)~(b~ + (l-b)~ + A 1 .)~(~+B1 .)d~cp(r,)dr,j= l 1=1 —~~~ 

-
~~~ ‘3

~ n
= 2A f f (n-~)cp(bn + (l-b)c-c)cp(~ )d~cp(ri)dr,,

2 3 ~~~~~
(b) ~ ~ f f cp(bn + (l—b)~ + A j .)q,(F+Bj .)dF~p(n)dn

j l i= l —oo —oo ‘3 3

~ n
2A I J q(bn + (1-b)~ +c)cp( Ej d~cp(r~)dn.

By change of var iab les u = ~ and v = ~~~ we arr ive at
2 3

(3.5) (a) ~ ~ ff vcp(y+bv+A1~)q(u+B1.)cp(u+v)d(u,v)j 1 1=1 {v>0} ‘3

= 2A ff vcp(u+bv—c)q,(u)cp(u+v)d(u,v)
{v>0}

2 3
(b) ~ ~ fJ c~(u+bv+A 1.)c~(u+B1~)c9(u+v)d(u~v).1=1 1*1 (v’O)

= 2A ff cp (u+bv-c)q,(u)cp(u+v)d(u,v).
{v>0}

Clearly the next step Is to eliminate A by dividing equation (3.5) (a) by

equation (3.5) (b). Moreover, we shall see that ft Is possible to reduce

— ~~~~~~
• ~~~ ~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~
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the double-integrals to relative simple terms. But we clearly point out

that this is possible only in case of k = 3, since otherwise higher Integrals

are involved. We proceed now to carry out this reduction .

Lemma 1. For all u ,v ,b ,A ,B E IR

ip (u+bv+A )p (u+B)cp(u+v)

= (3 2u+a)~(~v+y)cp(E), where

(3.6) a 3~~~
2 (A+B+(l+b)v)

= (2 / 3) l/ ’2 (b 2_b÷l )L~
’2

I = 6 1”2((2b-l)A— (1+b)B)(b 2-b+l )~~
”2

= 2~~
”2(A+(b-1)B)(b 2-b+l) 1”2

The proof is straightforward and therefore omitted here.

Lemma 2. For all b ,A ,B E JR

(3.7) ff vp (u+bv+A)ç~(u+B)cp(u+v)d(u ,v)
(v> 0}

= 3 1/2f~
_2 

cp ( E)[W (y) -y ( l-~ (y )) ]

where ~,y and £ are given by (3.6).

Proof: By lemma 1 the 1.h.s. of (3.7) equals to

55 v~(3
1”2u+ci)cp(~v+y)cp(c)d(u,v)

{v>0!

= cp(c)f cp(3 1”2 u+a)du I vcp(~v+y)dv
-

~~~ 0

= 3 112q,(c)~ vp (~v+y)dv.

Substituting w = ~v+y this equals

,51~~
,

S ~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- —~~~~~~~-.‘.~-~‘.—.— ‘..- S 

—

5—
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3-lI2 ( ) ~-2 f(w-y) cp(w)dw

which in turn equals the r.h.s. of (3.7).

Since the proof of the next result proceeds analogously, we omit

it for brevity.

Lemma 3. For all b,A ,B E JR

(3.8) ff cp(u+bv+A)cp(u+B)cp(u+v)d(u ,v)
{v>0}

= 3
_ l/2

~
_ l

(C)[ 1 4 ~(Y)]

where t3,y and c are given by (3.6).

To simplify the forthcoming formulas we introduce the followi ng auxiliary

• function f:

f(x) = cp(x) - x(l-s(x)), x E IR ,

which is positive, strictly decreasing and convex, since d/dx f(x) =

x e ZR , is negative and strictly increasing in x.

Now we are in a positi on to state our ma in result:

Theorem 1. Let ~ = (0,A,A+a), A,6 > 0, ~~ 0 < < 1 be fixed. If

Sb, b E (0,1), mInimizes the expected subset size subject to the p*...condltjon

(3.1), then necessarily b and c = c(b,P*) must satisfy the equation

~ 1~l 
c
~
(eij)f(

~jj
) 

- 

f(y
~
)

2 3
I I q(c j j ) [ l— ~ (y j j )]
,j=1 i=l ~1

i 2 ~where the c 4 4 ’ S and 14. ’ s are given by Table 2 below, and y~ 
* 6  ~ =

‘ II “3 i—i igi
6 ht ’2 (b 2_ b+1yh1’2 (1_2b)c.

‘S

‘
S.

— — 
~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ _~~_—~~~~ •~ 

~~~~ S -
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Table 2 i = 1  
— 

i = 2  i = 3
3112py. 1+(2b—l)c (2b—1)A— (2—b)6 — (b+1)A—(2—b)6 —(b+l)6—(2b—1)&

-(l-D)A+b6

3~~
2py.2+(2b-l)c (2b-l)A+ (b+l)o (2-b)A+(b+l )6 (2-b)A-(2b—1)tS

pc12+c A+(1-b)o -bA+ (l—b)6

In the above table , p = 21/2 (b2 - b + 1) 1/2

Corollary 1. S
~ 

is not optimal in C except when i~ (0,0,0).

Proof: Since b = 1/2, we have y
~ 

= 0 and = 
~i2’ 

C
j 1  

= Ci2~ 
i = 1 ,2,3.

Therefore the 1.h.s. of (3.9) reduces to

~~~~~~~~~~~~~~~~~~

3 3
= ~~ç(e~1 ) [f (~ 11) +

By the convexity of f this last expression is strictly greater than
3 3

.1 cp(C11)2f(0)/ ~ 
= 2f(0) if ~ ~ (0,0,0).i=l

But the r.h.s. of (3.9) equals 2f(0) since y~ 
= 0. Thus (3.9) holds only in

the case = (0,0,0), where , of course , all procedures In C are optimal

(s i nce E(o,o,o)(IS b I) 3p*).

Though we cannot get explicit solutions by using (3.9), some more

analysis is possible.

In our asymptotic considerations in Section 5 we restrict ourselves S .

to the three types of parametric-configurations:
1’

I S .

• ,• .5

_______________________ S 

.-. ~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~
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( I )  ~ = 0 i.e. p = (0,0,6), is > 0,

(II) A = 6 i.e. ~ = (0,& ? 26), is > 0 and

S 
6 = 0 i.e. ~ = (0,A ,A), ~ > 0,

• It should be noted that our numerical studies in the next section are

performed without the above restrictions.

4. NumerIcal results.

Let us denote the difference of the l.h.s. and the r.h.s. of (3.9)

by G(b,c,~,&). We computed some interesting 13-values as follows:

(1) b = 0.1 (0.1) 0.9.

(ii) c = 0 (0.5) 4.

In fact, we cover all values of c = -4 (0.5) 4, sInce there is a syninetry

In our problem. More precisely, we have for all p ,  I , b, c, ~ and 6

(4.1) P {1T1 E 5b,c~ 
= l— P~~{ir 1 E

which implies

(4.2) p*(b ,c) = 1 - p*(l..b,..c)

and

(4.3) E(o,A ,A÷is ) ( ISb,c l) = 3_E (0,is,&+A) ( IS 1_b ,_c I).

It Is easy to see (Cf. Table 2) that

(4.4) G(b ,c ,A,6) = G( l—b, —c ,4 ,A ) for all b,C,A,s .

Remark: W i th our choice of c-values we cover for every b at least a

P*..interval of (0.005, 0.995], sInce P*(l,4) 0.995. As to the configuration

of the means, we studied the cases = (0,0 ,& ) (I.e. A ~ 0) and ~ * (O,A,A+tA )

(i.e. 6 tA) for

4 
5

$
— S _ _ _

~~~

S - — • S• • • - - -- 5-
-5.5-- - w — ~~~~~~ ~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~ i_i:-
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(lii) t = 0 (0.1) 0.5 (0.5) 2 and

(iv) A = 0.25 (0.25) 2 (1) 9.

It suffices to study the above configurations , si nce we are in fact interested

in the general case, where p is fixed (or bounded away from 0) and n ~~ . 
1

varies .

Our numeri cal findings are as follows: In most situations including A = 0

we have positive G-va lues. Negative values occur only when b > 0.5, C > 2

and t < 0.5. But , and this should be emphasized , we also found that for every

such (b,c,t) - point there is a lower bound for ~ (increasing in c), beyond

which we merely have positive G-values .

Morever, the (large A resp. is) ends of our tables clearly indicate the

beginning of the asymptotic behavior of G, which we shall study In the next

section. Thus there seems to be no gap between our numerical and our asymptotical

results. And therefore we believe that our assertion stated toward the end of

Section 1 is sufficiently well confirmed.

Finally we remark that the interesting question that remains open is

what really happens in cases where G = 0 occurs. Because of (4.2) and (4.3)

we know that if at a certain p = (0,~,A+o), 5b,c is optimal for P*(b,c),

then at ~ = (0, o ,is+A ) 51-b,-c is worst for P*(b ,c). But we do not know whether

there is any extreme at all. Some first attempts to find an answer wi th the

help of Monte-Carlo-experiments did not lead to a definitive conclusion , but

it seems worthwhile to study this point in more detail at another occasion.

5. Asymptotic results In cases (I) - (III). S

Theorem 2. Let ~* and b in (0,1) and therefore c(b ,P* ) be fixed.

Then in all cases (I) — (III) the l.h.s. of (3.9) tends to infinity

j f 6 or A tends to infinity.

- ~~~• p ~ ~~~~~~~~~~~~~~~~~~~~
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Proof: Since all terms c(E1j ). f(y .3 ), ‘~~~~i j~ ’ 
I 1,2,3, j = 1 ,2,

are positive, it suffices to show that

S cp(~ ..) [l-~(y ..) ] 
__________(5.1) 

~~c21 )f(y21
’
~ is or A -~ o~~ 

0 for all (i ,j).

Now this evidently holds for (i ,j) = (2,1), since In all cases (I)-(Iii)

tends to -
~~~ and therefore f(121 ) tends to w. The remaining five terms

are studied separately for cases (I) - (III) in the sequel .

Case (I) A = 0, ~ = (0,0,6).

Here the six pairs (*~~~ ~~~ reduce to three distinct pairs (cf.

Table 2). Thus we have to prove (5.1) for (i ,j ) = (3 ,1), (1.2) only.

By 
‘ 3 l’~~2l~ 

= cpU-c—6 )/ p)/cp ((—c+b is)/ p )

= exp{(-l/2p2)[(l-b2)62+2c(l+b)6]J 
~ ~~ 

~~~~~ 0 and

0 < [1-.(131)]/f(121 ) ~ ‘(1~i
) 1 

~ + ~~~ 0 we see that (5 .1) holds for

(i ,j) = (3.1).

For (i ,j) = (1 ,2) we make use of the following inequalities (cf.

Feller (1968): “Large Deviations”)

• (5.2) 1-~(x) < cp(x)/x for all x > 0.

(5.3) f(x) = cp(x) - x(1-~(x)) > -x for all x 0.

Now if is is sufficiently large we have > 0 and c 0 and therefore

by (5.2) and (5.3)

0 ~ ,(c32)(l_o(y32)]/cp(c2~~f(~21) j
< (-l/y1 2y21)~(~ 12)~(y 12)/cp(c21).

Clearly we have -l/’~12~r21 ~ ,,‘ 0. And the asymptotic behavior of

can be found by looking at the corresponding term

associated wi th is2:

S .  —.A. ~~~. _‘—~~~~~ —-. i~~ i ~ 
E” - ~~ —‘~~~- — -~~ - -~~—~~~——
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exp{- (b-2)262/6p2} 
~ 

0.

Thus (5.1) also holds for (i,j) (1,2).

Case ( I I )  ~ a, p = (0 ,is ,2 s ).

S 
Here we have 31 ’12p 

~2l 
+ (2b-l)c = 3(b-1)6 and for I = 1,2,3

pc 11+c: (b÷1)6 , (2b—1)5 , (b—2)6

pE 12+c: (2-b)a , (l-2b)o , —(b+l)is

By 1 2b-1I < Ib+l I, 12-b i we have for all (i ,j) $ (2,1)

0. Thus the proof is completed by noting that

O < 
~~~~~~~~~~~~~ ~ ~

(Y
~i)~ ~ 

0 ho lds.

Case ( I I I )  a = 0, p = (O ,A ,A).

As in case(I)we have to prove (5.1) only for two pairs: this time

for (i,~) = (1 ,1) an d (2 ,2). By

~~ ll ’ E2l) 
=

= exp{(-l/2p2)[b(2-b)A2 - 2(2-b)cA)} A + co~ 
~ and

0 ~~. [1-s(111)]/f(121) ~ A + co’~ 
0

we see that (5.1) holds for (i,j) (1,1).

For (i,j) = (2,2) we proceed as in case (I): For sufficiently large A ,

S 
we have 

~22 
> 0 and 

~2l < 0 and therefore
S 

0 ~ cp( e22 )[1- (y 22 ) )/cp( c21 ) f (y 21 )

< (-l/y 22y21 )cp(e22 )cp(y22 ) /cp(c 21 ).

Clearly -1/122121 A + ~~ 0. And since the term of cp(c22)cp(y22)/~(c 23 )

associated with A2 turns out to be exp{(-1/6p 2)(b+1)2A 2}~ + 
4 0, (5.1) 5

also holds for (i ,j) = (2 ,2).

This completes the proof of Theorem 2. ~~~~
S .
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Remark. By similar arguments one can prove , that In the general case of

= (0,~,~+6) the 1.h.s. of (3.9) tends to infinity if A is bounded and

is + or if 6 is bounded and A .* ~~~.

6. Comparison of S0 with

Theorem 3. Let 0 < P~ < 1 and ~ = (O,A,A+o ) $ (0 ,0,0) be fixed. Then the

following inequalities hold:

(6.1) (a) E~(~S1 I) 
<

(b) E~(~S0j )  > •(2’
~~

2(c0-A) ) +

where c0 < C1. c~ and c1 correspond to S0 and S1 and are determined by (3.1).

Proof: For = - 

~~~
, I = 1 ,2,3 being standard normal we have

3
E ((S .~j )  = ~ P {ir .~ E

i:c1~~
= P{Z 1+c1 >

+ P{Z 2+A+c1 > Z1,Z 3+A+6 }

+ P{Z 3+6+5+c1 > Z 1, Z~+~}

< P{Z .~+c1 > Z3+~+6}

S 

+ P{Z 2+A+c1 > Z3+A+6 }

+ P(Z 3+A+6+c1 >

=

3
• E( 1 S01) = Z P { w j E S0}

= 1-P(Z1+c0 c Z2+A, Z3+A+is}

+ l-P{Z2+A+c0 c Z1, Z3+A+4 }

+ 1-P(Z3+A+6+c0 c Z~, Z2+A}

l-P{Z1+c0 ~ 
~ 4

— S S ~~5~~~ 55~~ - S .• T.~w,. 
_______
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+ l-P(Z2+A+c0 < Z1 }

+ 1-P{Z 3+A+is+c0 < Z1}

+ (2~~
2(c0+A))+~(2~~h’2(c0+A+is)).

Corollary 2. For ~* fixed and A or a or both sufficiently large we have

E( 1 S 1 1) < E~(IS 0~).

Proof: For iS bounded we have

u r n  E( I S1~) 
= ~>(2 

2(c 1 -a))+tii(2~~
”2(c 1+6)) and

l im E 
~~~~ 

= 2,

For A bounded we have

u r n  E (1S 1 1) = 1 and

u r n  E (1S 01) = l+~(2
_h/2 (c0_A))+4(2~~

/’2(c0+A)).

Finally if A and is are unbounded we have

u r n  E (~S1~) 
= 1 and

A ,&-ico ~

u r n  E (~S0 l) = 2.
A ,is-ico

Corollary 3. Let P~ be fixed. If ~ = (0 ,A ,A+6) satisfies A ,6 > c1-c0 then

E (1S 1 1)< E~(IS0I). 
. 

S

Proof:

6 > c1-c0 implies •(2~~
’2(c 1—A-is)) < •(2~~~

2(c0-A)), i~+is > c1-c0 implies

< •(2 lf2(c 0+A)) and A > c1-c0 impl ies ~(2 1”2 (c 1+6)) < 
S

At this point we should remind ourselves that our results

derived for n = 1 properly modified (replacing ~ by nL’2~) also hold true

~~~~~~~~~~~~~ - . - -

~~~~ 

_ _ _ S—  ~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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for n > 1. Thus for example the last corollary in the general case reads

as follows : “Let P~ and i~ 
= (0, A ,,A+is) with A ,6 > 0 be fixed. If

n > ((c 1—c 0)/mln(A,s )) 2 then we have E ( 1 S 11) <

Finally, we remark that we are awa re of the fact, that we studied

a problem (optimality wi thin Seal ’s d ais for k = 3), which on the one hand

Is well known and established in literature, but which on the other hand Is

only part of the more general problem searching for an optimal function q in

(2.6). As a matter of fact there are no resul ts in this direction till now

(also none for distributions other than normal distribution) except only in

Studden (1967) (cf. corollary (2.1) there), where the k densities , however,

are assumed to be known in advance and ~* is fixed on the corresponding

parameter space. Admi ttedly solutions of problem (1.1) are hard to find.

It should be pointed out that recently some optimality problems have been

studied in decision-theoretic and, especial ly, in Bayesian framework.

5— L
$5 50

S .

S _ _ _ _ _ _  S 

•
~~~ 

.
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