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ABSTRACT

The differential equation considered is y” — xy = yIy~’. For general positive
a this equation arises in plasma physics, in work of de Boer and Ludford. For

ci = 2, it yields similarity solutions to the well—known Korteweg-de Vries equation.

Solutions are sought which satisfy the boundary conditions

(1) y(Øo )=O

(2) y(x) (_4x)’~’
a as x ÷

rt is shown that there is a unique such solution, and that it is, in a certain

sense, the boundary between solutions which exist on the whole real line and solu-

tions which, while tending to zero at plus infinity, blow up at a finite x. More

precisely, any solution satisfying (1) is asymptotic at plus infinity to some

multiple kAi(x) of Airy’s function. We show that there is a unique k*(a) such

that when k k*(a) the condition (2) is also satisfied. If 0 < k < k*, the
solution exists for all x and tends to zero as x + —

~~~, while if k ) k* then
the solution blows i~~ at a finite x. For the special case a — 2 the differ-
ential equation is classical, having been studied by Pain1ev~ around the turn of
the century. In this case, using an integral equation derived by inverse scatter-
ing techniques by 7~blowitz and Segur , we are able to show that k* — 1, confirming
previous numerical estimates.
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SIGNIFICANCE AND EXPLANATION

The problem treated in this paper arose originally in the context

of plasma physics. Differential equations had been obtained by ~arlier

authors describing the region around a spherical electric probe in a

I slightly ionized continuum gas. The mathematical problem was to show the

existence of a transition solution to these equations by means of which

the ion-sheath region near the probe and the quasi—neutral region further

away are connected. This problem, originally presented by de Boer and

Ludford, is solved in this paper.

Perhaps a n~ re far-reaching application, however, is for a special

case when the equations yield particular solutions to the well-known

Korteweg-de Vries equation for shallow water waves. In this context

the transition, or connection, problem is solved more completely, in that

a precise constant is found showing how the behaviour of these solutions

at the front of the wave is related to the behaviour at the back.
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A BOUNDARY VALUE PBOBLEM ASSOCIATED WITH THE SECOND
PAINLEVI TRANSCENDENT AND THE KORTEWEG-DE VRIES EQUATION

S. P. Hastings and J. B. McLeod

1. Introduction

In 111, in connection with a problem in plasma physics , de Hoer and Ludford ask

whether there exists a solution to the boundary value problem consisting of the

equation

2
(1.1) q _ x y _ 2 y ~y~a , — < x < — ,

dx

and the boundary conditions

(1.2) y(x) (4x)~
1
~’° as x +

(1.3) y(x) + 0 as x + 4=

The quantity a is a strictly positive constant.

As de Hoer and Ludford point out , the case a — 2 is interesting because (1.1)

is ther a particular case of what is known as the second Pai nlev~ transcendent. The

Painlev transcendents were first studied by Painlev~ himself in a series of papers

beginning in 1893 (for a survey of the work see (2 J  or (3 ] ) .  These papers dealt with

the question of which second order equations have the property that the singularities

other than poles of any of the solutions are ind.pendant of the particular solution

chosen and so dependent only on the equation. Indeed , in the case of the second

transcendent, no solution has any singularities at all except for poles and the point

at infinity.

Th. case a 2 of (1.1) is intere sting also because of a connection with the

Zortaweg-de Vries .quation , currently the object of considerable attention in many

directions . It seem. to hay, been cbmarvad first by Ilbitham (ma. 14 1), building on

work of Miura and other., that , if y(x) is a solution of (1.1) , and if

f — y’ — y2 ( ‘  — 4/4*) ,

Sponsored by the United Stat .. Army under Contract No. DAAG29-75-C -0024.
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then

u(x , t) (3t) 2”3 f (x / (3 t ) 1’13 )

is a sinilarity solution of the Yorteweg—de Vries equation

ut + 6uu5 + u ,~~~~~~O ,

a fact that can be verified by elementary manipulation.

We have two objectives in the present paper. The first is to answer the 4* Boer—

Ludford question in the affirmative, and indeed to prove even sore, that the boundary

value problem (1. 1-3) has one and only one solution. In order to state the result

fully, we recall first the definition of the Airy function Ai(x) . This is defined

to be the solution of the equation

(1.4) Ai~ — XAi — 0

for which

( 1.5) Ai (x) 1 h/2
1x 1

1/lco.(.a x I 3
~

2 
— 

i as x + —

and

(1.6) Ai (x) — ~ v~ l/2
*~l/4.~p(~.J .x3/2) a. x + +“

Since the Airy function can be expressed in term s of Bessel functions of orde r

the asymptotic expansions are merely a reflection of the well known ones for Bessel

functions. Ind eed, in the standard notation for Bessel functions 151,

(1.7) Ai( x) — 3_l/2t
_l

xl/2~~,3 (~. *
3/2) ,

• a resul t that i. perhaps best proved by verifyi ng that both Ai (x) and

~l/2~~~~(! ~3/2) satisfy the .quation (1.4) and then comparing their asymptotic

.xpansiona to confirm that they are in th. ratio given by (1.7) .

~ ar existence and uniqu.n..s thsorem is then as follows .

Th.orea 1. For each a > 0 the problem (1.1-3) has a unique solution , and this

solution has the following prop rti..

Ci ) y~~~0, y ’ ‘0 ,

—2—
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(ii )  if  a < 1, 
~~~~~~ 

y” > 0, while if a ~ 1, then y” has precisely

one zero, with y”(x) > 0 for large positive x and y” (x) < 0 for

large nequtive x~

f (iii) 
~~~ * -‘. •, y(x)  is asy~~ totic to some multiple k ” (a ) Ai (x)  of the

Airy function defined in (1,4-6).

Fu rthe rsore, any solution of (1.1 )  satisfying (1 .3 )  is asymptotic to kA i(x)  for

some k , and, conversely, for any k there is a unique solution of (1.1) asymptotic

to kA i(x) . If 
~
)i

~ 
< k *(a ) ,  then the solution asymptotic to kAi(x)  exists for all

x and as x + - is asymptotic to

1 1

(1.8) dJx I_ l/4
sin{~ J x 1 312 - _________ - if a < 2,

for some constants d,c1,c2 , where

(1.9) c1 — 21r ‘fdf ° r (
~) r 

(~~

. 

~ 
+ .~)ir (.

~~ 
a + 2) ,

(1.10) dIxI ’~sin{~ 1x 1 312 
- ~~ d 2loglx l  - C

2) 
if a - 2,

and to

(1.11) dlxI~~
”4sin{~ 1x 1

3”2 — c
2} 

if a > 2

If Iki ‘ k (a), the solution becomes infinite at a finite value of x.

Since (1.1) is left unchanged by the transformation y ~ —y , we can, and shall,

take k > 0 in the rest of the paper.

C. Conlay , in unpublished notes, has proved the existence , but not the uniqueness,

of the solution of (1.1—3) . His existence proof , like ours, is based on a “shooting”
E

technique, but his proo f requires a distinction between the cases 0 c a < 1 and

a > 1 which ours does not, and it is based on Waze wski’ a principle and ieparation

theorems in two dimension , while ours us’s the connect edness of the real line .

Our second objective , and ou~ se’~~nd theorem, are concerned with the case a — 2 ,

and the rsms ind. r of this introduc t ion i. confined to that.

-3-.
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In this situation , Rosales (61 observed nuserically that k 5 (2 )  — 1 + 0(10 13) ,

which raises the obvious conjecture that in fact k”(2) — 1, and this we prove.

Theorem 2. k*(2) — 1

Theorem 2 is an example of a nonlinear connection problem, since we are relating

the asymptotic behaviour of the solution of (1.1-3) as x -+ 4 to the asymptotic

behaviour as x -, ~~~. Linear connection problems have been one of the main areas in

ordinary differential equations for over a hund red years , but nonlinear connection

problems are very rare . Oue reason at least for this is that the method which is

perhaps the sost useful one for linear problems is not in general applicable. This

is to consider x as a complex variable and pass from x — — to x - + along a

large semicircle in the x-plane . Provided that the coefficients in the equation have

a reasonably simple asymptotic behaviour as l x i  + ~~~, it may be possible to construct

an asymptotic expansion for the solution at all points on the large semicircle , and

so relate a specific behaviour as x + + to a specific behaviour as x -,

In nonlinear problems , in general , this method fails because , even if the

coefficients in the equations are very reasonable , the solutions may not continue to

exist as xi + — . For one important class of equat ions, however, something can be

saved , and these are the Pa inlev~ transcendent a , and in particular those transcend ent .

such as the second for which all solutions have no singularities other than pole, in

the finite part of the plan. . Indeed , Soutroun, in two long memoirs (73 , (83

(see also ( 3 ) ) ,  has studied the asymptotic. of solutions of the first Painlsv.

tran scenden t in considerable detail , and , as he remarks , the ideas extend to the
I

second transcendent also. The essential resul t is that the solutions behave

asymptotically , at least locally, like elliptic funct ions, and although Boutroux

does not specifically consider any connection proble ms, the solution of thes, is a

matter of piecing together different elliptic functions in different sectors on the

large semicircle in the complex plan..

Even if this progra e is feasible, it certainly involves formidable technical

difficulties , and it turns out that we can in any case avoid it by solving our

-4-
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connection prob~.a by using the relation alr eady mentio ned between the second Pain1ev~

transcendent and the Korte w.g-de Vries equati on. Ablowitz and Segur (41 have pointed

out that the fact that the Korteweg-de Vrie s equation can be solved by the invers e

scatterin g technique implies that the solut ion of (1.1) wt.i’~h is asymptotic to kA i ( x)

a. x -‘ can be regar ded as the solution of a linear integral equation, and we use

thi . fact to establis h Theorem 2.

This does howeve r rai se the quest ion wheth er there is a deepe r connection between

the Pain leve tr anscendents , for which, exceptionally ~~~ngst nonlinear ordinary

diffe rent ial equatio ns, there is a routine for solving nonl inear connection probl ems ,

and nonlinear evolution equations such as the Korteweg-de Vries equation, for which,

again exception ally , there exists an invers e scatterin g technique relating behaviour

for large negative t ime to behaviour for lar ge positive t ime . ablowitz and Segur have

alread y pointed Out that , jms~ 
-- end Painl ev~ transcend ent is associated with

I-

the Eort sweg dU Yries equation, m.. first trans cendent is associated with the

Boussinesq equation and th. third wib sine—Gordon equation. It would certainly
4

seem a reasonable conjecture that any similarity solution of a nonl inear evolution

equation for which an inverse scattering technique applies should necessar ily satisfy

an ordinary diff. ren t~a1 equation whose solut ions possess no singularitie s other tha n

poles , and th is would in turn lead to a test for the availabili ty of an inverse

scatt er ing technique for any given nonlinea r evolution equation, which is one of the

open pro~~ums menti oned by Miura in 19h but we do not pursue these questions fur ther

he re

Theorem 2 solves the connection problem for the particula r solut ion of (1.1)

(with a — 2) which is asymptotic to k5Ai (x) as x -~ — . If the solution is

asymptot ic to kAi Cx ) with 0 k < k0 , then Theorem 1 asserts tha t the solution

exists for all x, and ~blowitz and Segur find on heur istic qrouedl tha t it has the

asympto tic form as x -  — given by (1.10) , where k and d are related by the

formula

(1.12) d~ — —,~~log(1 — k2 )

-5-



This gould certainly imply Theorem 2, and it seems likely that a sore detailed

application of the asymptotic methods used in this paper would in fact also prove

( 1. 1 2 ) ,  but again we do not pursue this further hare.

The arrangement of the paper is that the existence part of Theorem 1 is proved

in U2-5, along with the qualitative properties of the solution, the uniqueness part

in S6 , and the asymptotic behaviour in ~7. Theorem 2 is proved in U8-9.

We would like to thank Professors C. Conley, Y. Sibuya , U. Wasow and H. Weitherger

for helpful conversations.
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2. Existence of a solution

The proof depends on a serie5 of lenstas, some of which are almost immediate. We

give the main proof, leaving the verification of those lemmas which require extended

arguments to later Sections.

L.emsa 1. There exists a unique solution of (1.1) which is asymptotic to kAi(x) as

x ~ - , k being any given positive number. This solution may not exist for all x

as x decreases to — , but at each x for which it continues to ex ist the solution

and its derivatives are continuous functions of k .  We denote this solution by yk ( x ) .

This lemma requires little proof. Perhaps the simplest technique is to recognize

that must satisfy the integral equation

(2.1 ) yk~~~ 
— kAi( x) + 2 f {Ai(x)ai (t ) — n i ( x )Ai ( t ) )yk ( t ) i Y k (tJ l

mdt ,

where Bi (x )  is a solution of the equation

— xw 0

which is linearly independent of Ai (x) and which we can take to have the asymptotic

behaviour

Bi( x) — iv ”2x~~
’4exp (4 x~~

’2 ) as x -.

The equation (2 .1) can then be solved (uni quely) by iteration, and this gives both

and its continuous dependence on k.

Lemea 2. The set of k(>0 ) for which Y
k
(x) remains positive as x decreases

and become. infinite at same finite value of x is an open set, denoted by S
1
.

The proof of this is deferred to ~3.

Leema 3. The set of k (  > 0 )  for which 
~~~~~ 

(wh ich .te certainly positive for

sufficiently large xl takes neq~ative value s before (if ever) it ceases to exist

is an open set, denoted by

This lesma is an imsiediate consequence of the continuity of ic k. If

~k (x0 ) ‘ 0 for some k0 and x0, then < 0 for all k sufficiently close

to k~ .

- _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  ______- _ _ _ _ _ _



Lemma 4. The set S1 
is non—empty.

The proof is given in ~4.

I..emma 5. The set S2 
is non—empty.

The proof is given in S5.

The proof of existence can now be completed. Since the positive semiaxis is

connected , it cannot be divided into two non-empty disjoint open Sets. But S1 and

.3 , are r.on—empty and open, and also clearly disjoint by definition, and so there

exists at least one positive value of k which lies in neither nor S2
. For

such a value of k , k* say, 
~‘k*~~~ 

has the properties that it exists for all x

and is always positive . (It cannot take the value zero because this would have to be

a minimum, and y — y — 0 at any point implies from (1.1) that y 0.)

To obtain further properties of y~~, we note first that y~~ 
< 0. For suppose

for contradiction that x0 
is the first value of x (for decreasing x) for which

y~~(x) — 0. From (1.1) we certainly have

( 2 . 2 )  y~ 5 (x0
) + x0 < 0

Also,

4.. (y~~ + 4 — ay~~
1y~~ + 1,

which is positive if > 0. th nce from (2 .2) we see that , to the left of x0 ,

< 0 and y~ 5 > 0, contrsdtcl:inq ‘ 0

Now sat, for x < 0,

(2.3 )  
~~~~~~ 

= (_ +x) I
~

0z(x) ,

and it is routine that z sati sfies

( 2 .4)  ~~~ + ~~~~
. 

~~
. — ~~~~~ — 1) — 

~~ (~~ 
— l) /x2}z

This implies that, for x < 0, z cannot have ~ relative max imum where

a i i ) .  i i
— l> ;~ ;—  l i / I x i  ~

or a relative minimum where

a l~~l i~~~~3z — 1’ —ii; — l~/ ptj

—8—
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(

and so either z - 1 as x - , which proves that y~ , sa t i s f ies  (1.1—3) , or z

is sonotonic for large negative x and so tends to infinity or to a f in i t e  l imit

other than 1.

if  z ( — ) ~ 1, including z(— ’) — ~~, then it follows from (1.1) that ultimately

(for large negative x)

1 ‘~‘k*

for some constant K(>0), and integration of this shows that y
k*(x) blows up at

finite x, contradicting the fact that k5 does not belong to S
1
.

If  z ( — ~ ) < 1, then it follows from (1.1) that ultimately

Y~5 — ‘~~‘k* ’

for a possibly different positive constant K, and since the equation obtained by

replacing ~ by — is certainly oscillatory, we contradict Yks > 0.

The proof of existence is thus complete, granted the proof of the lemmas to

fol low, but we can conveniently prove here the remaining properties of Yk* stated

in Theorem 1.

Clearly, z(x) > 1 for x(<0) sufficiently small. (Indeed, z(x) -~ as

x + 0.) If ci < 1, (2.4) shows that z can have no minimum below 1, and since

z(—~’) — 1, it follows that always a > 1 and so > 0.

If , alternatively, a > 1. then z(x) can cross the value 1 as x decreases,

but it cannot cross back since it can have no maximum exceeding 1. Indeed, z must

cross the value 1 once , since otherwise we would have Yk* > 0, y~~ < 0, and so

Yk*
(x) > X~x~ as x — , for some positive K. But then, with a > 1, this implies

that

for sufficiently large negative x, which causes blow—up at f ini te  x. Hence *

crosses 1 precisely once for x ~ 0, from which the required properties for

follow .

-9-
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3. Proof of Lemma 2

If, for a specific value of k, say k
0
, 

~k 
blows up at x = x0 , then

clearly we can find a value x1 near x
~ 

with

(3.1) y~~(x1
) > 1x 11 + 1, y~~~(x

1
) < 0 .

If k is sufficiently close to k0
, the inequalities (3.1) continue to hold with

k0 replaced by k , and it is then clear from (1.1) that, for -l < x - x 1 < 0, at

least as long as ~~ (x) i. defined,

a a+l
> Ix~, y~(x) < 0, y~ >

But integration of the last (autonomous) inequality force. blow- up at a finite

point , indeed a finite point in x — *1 1 —l if

(3 .2 )  yk
(xj ) > K, y~~(x1

) < —K ,

where K is some positive constant which is independent of x1
. Clearly we can

choose x1 so that (3.2) is satisfied in addition to (3.1) . and the lemma is proved.

1,

- .  - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I-
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4. Proof of Lenuna 4

Since the integral term in (2.1) is positive for sufficiently large x (from the

asymptotic expressions for Ai ,Bi) ,  it follows that Yk (X) - JcAi (x) for suf f ic ien t ly

large x. Di f fe rentiating (2 . 1) ,  we can similarly show that y~ ( x) k A i ’ (x )  ~ 0 ,

and so we can choose *1 and k so that the inequalities (3 . 1)  (with k0 — k) and

(3.2) are satisfied. But than we know from the analysis of ~3 that 
~
‘k blows up at

a finite point, proving the lemma.

I

k JL U  
~~ 
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5. Proof of lameS S

Since k — 0 makes identically zero, we can use the continuity of in

k (proved in Lemma 1) to choose k sufficiently small that 
~k 1 11’ yj~(-l) are

in turn so small that, for —l ‘ x > — ( 1  +

x -  2 , y k
(x) I a~~~ _ f .

But then comparison of (1.1) with

y= —

shows that 1’k must vanish somewhere in (-1 - W /~~, -1), completing the proof of

the lemma.

ii

•1 
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6. Uniqueness of the solution

The proof of uniqueness proceeds in the following stages. We first  prove that

any solution of (1.1) which satisfies (1.3) is asymptotic to kAi(x) for some k.

We then prove a limited uniqueness theorem, that there i. only one solution of (1.1—3)

for which y ’ < 0 (and so y > 0 ) .

We then use this limited result to prove that (0<1k < k implies that Yk (X) ~ 0

as x ÷ - , while k > k5 implies that 
~k 

blows up at a finite point. This,

together with the already established fact that any solution satisfying (1.3) 1. of

the form 
~k ’ completes the proof of uniqueness.

To establish that any solution satisfying (1.3) is of the form 
~k’ 

we note that

y(x)  -, 0 as a -* — implies that the coefficient of y in (1.1) is necessarily

positive for sufficiently large positive x, and so the equation is non—oscillatory ,

and to obtain y * 0 , we must have ultimately y > 0 , y ’ < 0 , y > 0  (or y < 0 ,

y ’ > 0, y” < 0, although this is not significant since the negative of a solution is

• also a solution). Indeed , since, for any fixed r with 0 < r < 1,

“ ray

• for x sufficiently large, we can conclude, as in 18.2 of (101 , that, for some

constant C,

y(x)  < C  exp (— .
~ r

1”2x3”2),

and then the formal process that renders (1.1) and ( 1 .3)  equivalent to the integral

equation (2.1) is certainly justified, and the required asymptotic form follow. .

We - now establish th. limited uniqueness theorem. Suppose that y1 and y2
satisfy (1.1—3) with > 0, ‘ 0 for i e 1,2 , and suppose that y11y 2
correspond to k 1,k2 , with k1 ‘ k2, so that ultimately (for x sufficiently large

and positive) y
1 > and y~ < y~ . In fact , y1(x) > y

2
(x) for all a, as we

can prove by considering the expression

(3.1) V
1

(x) — ~~ y~
2 (x) — f *y~ (x) — j .

~~ 
y~(x) 

~~~~

-1?

I _V 
- -- 

- - 
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-
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(

for wh ich it is easy to ver ify that

, 1 2(3.2) v~ =

Now let us suppose for contradiction that y1
(x) — y 2 (x) first (fo r decreasing x)

at x — x0. Then we have

y1(x 0) — y2 (x0) ,  0 > ~~ (x0) > y ~ (x0) ,  ~~
2 (x 0) < y ~

2 (x0)

so that, from (3.1),

V1
(x
0
) < V

2
(x
0
)

But also v1(— ) — V
2
(), ~nd (3.2) than implies that V

1
(x
0
) > V

2(x0), giving the

required contradiction.

Hence y
1 

> y2 . Using the mean value theorem to give

a+l a+l a
— y

2 > (a + l)y
2
(y
1 

—

we see from (1.1) that

(y
1 

— y 2) ’  > {2(a + l)y~ + x}(y
1 

— y
2
)

Since

2y~ (x ) ” — x as x - — ,

we can conclude that , for large negative a ,

(y
1 

— l’
2
) ~~~~~~~~ (y1 — y

2
)

so that, as x -
~ - , either y1 - y 2 is exponentially large, which contradicts

— Y2) / ( .X ) 1
~

a -
~ 0, or both y1 — y2 and (y1 

- y
2
P are exponentially small,

which makes (V
1 

- V2
) ( — )  — 0 and is again a contradiction. So limi ted uniqueness

is established. - 
V

No., suppo a. that 0 < I i ’  k , and consider the solution 
~‘k of (1.1). This

must have the property that y~ vanishes at some finite point, sinc, otherwise we

• could prove as above that 
~ ~k > o everywhere , so tha t existi and is

positive everywhere, from which it follows by the analysi , in the existence proof

that y~ satisfies ( 1 . 2 ) ,  contradicting limited uniqueness .
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V

We can also show tha t always T Y k I < Y k*~ 
( It  is of course possible that

oscillates; indeed , the asymp totic behaviour proved in §7 shows that it does oscillate.)

Cer ta in ly ,  Yk (x) I < 

~k ’~~”~ 
for x sufficiently large and positive. Consider the

function Vk defined in (3 .1 ) ,  and suppose for contradiction that , as x decreases,

Iy ~ ( x ) I  = yk . (x) f irst at x a0. Then we have

Ty ~ (x 0) I  — 
~
‘k*~ ’O1’ I 4(x0

)~ _~~k* (x O
)
~ 

vk (x O
) 1V ka (xO ) ,

and we can obtain a contradiction to this by integrating ( 3 . 2 ) ,  as in the proof of

limited uniqueness.

Further , is bounded. This follows from the fact that if x — x
~ 

is the

first maximum of y
k
(x) as x decreases , then yk

( x ) J  < y
k~
”l1 for a < x1. To

prove this , suppose for contradiction that a2 is the firs t value of a as a

decreases from a
1 fo r which Iy k

(x ) I  — Yk
(X
l

) .  Then

vk (x2) - 4 y~~~(x 2
) - 4 x2y~ (x

2
) - 

~~~~~ 
IYk (x2)I

2
~
°

1 2
1V k

(x
l
) - 

~~ 
(x 2 — x1

)~~~(x 1) ,

since y~~(x 1
) — 0. But also

< 
~
‘k~~’l~ 

for x2 < a < x1,

and so

a
2

vk (x 2 ) — Vk (x
l

) — 4 f y~ (x )d x

< Vk (x
l

) — 4(x2 —

giving the required contradiction.
•

It is now clear that cannot satisfy (1.2), which 1. all that is necessary

for the present uniqueness proof. The detailed asymptotic behaviour of - is given

in l7.

V 
Now suppose that k > k~. We wish to prove that blows up at a finite point.

— 15—
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If y~ < 0, we are done, for then we can prove, as in the proof of limited

uniqueness, that > y~~ so long as both continue to exist , and so, ~~ ~k doe s

not blow up at a finite point, it is a solution of (1.1) which exists and is positive

for all a, and then the analysis in the existence proof shows that 
~k satisfies

(1.2) , contradicting limited uniqueness.

In the case a < l~ we saw in §2 that ‘ 0. i.e. 2y~~ + x > 0; and so

> 0 as long as 
~k 

> Yk*~ 
so that , if meets 

~
‘k~ ’ we must have y~ < 0 at

the first point of meet (for decreasing x). But then the use of the energy function

shows as before that there is no point of meet, so that y~ < 0 and 
~k must

blow up at a finite point.

The only difficulty occurs if a ‘ 1, for then it is not clear that y~ may

not vanish. Of course, y~ 
can only vanish for the first time (as a decrease. )

where y~ < 0 , i.e. where 2y~ + a < 0. But if a > 1, it is true that 2y~5 + x < 0

for all a sufficiently large and negative , and so for values of k sufficiently

close to k5 , it must be true that y1, crosse s the curve ~ ,a 
+ ~ -

Now consider two subsets of the semiaxis k > k* • The set T
l 

is the set of k

su. h that y~ becomes positive at some finite point. The set T2 is the set of Ii

such that y~ < 0 for so long as the solution exist. .

The set T1 is clearly open . Let us suppose for contradiction that it is

non-empty . (I f  it is empty, y~ < 0 for Ii > k5 , and we are done.) It is

certainly disjoint from T2 .

The set ‘F
2 

is also open. For, if k0 lie, in T2~ 
we have already seen that

the solut ion blows up at a finite point or we would contradict limited uniqueness, and

it blows up with y~ -~ -~~ . Lemma 2 and it5 proof then assure us that for any k
0

sufficiently close to k0, 
~k also blows up at a finite point with y~ + - , and

that we can suppose (for k sufficiently close to k0) that y~ ( 0 everywhere

that exist. , i.e. Ii is in ?2 . Lemma 4 and its proof show that T2 is

non—empty.

H -16-
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As usual, there must be some k > k which is in neither T
I nor T

2
. ~~

corresponding solution 
~k must have the property that , at some finite point ,

— y~ — 0. But then it is easy to check from (1.1) that y~’>  0, which forces

y~ to tak e positive values and places k in ‘Fl
. This contradiction leads to the

conclusion that T~ La empty and completes the proof of uniqueness.

II 

—17—



7. Asymptotic behaviour

We want to investigate the behaviour as a -
~ 

-_ of Yk
(x) for 0 < k < k5 .

We have already seen that is bounded. To obtain further information , we make

the substitutions

t — .

~, 
(~ x)~~’2 

+ f(—x) , Yk — (—~ )~~
11
~.,,

where the function f will be chosen suitably later. Then (1.1). after some routine

calculations, becomes (with u — —x)

d2w f f” 1 V l d w  5 w

dt2 
+ 

1(u~’2 + f’) 2 
— 2 u(u 1

~
’2 + f 1) 2J d + 

~~ 2 ( 1/2 ÷
( 7 . 1 )

a
- - 

{(u
h/2 

+ f’) 2 
- 

I t0/l (u
h/2 

+ f1)2} 
-

If, in the fir ut place , we take f 0, we have

(7 .2 )  ~~~~~~~~ - - u~!iT)*1’41 U

Now multiply by w ’ I dw/dt and integrate. Recalling that 
~~~~ 

is bounded as

a -
~ 

- , so that w( t )  — 0(t1”6) as t + ~~~, we see that we can, by integration by

parts , estimate

I dt —

‘ F t

and this (and other similar estimates ) leads to

+ w~ = constant + 0(t~~
”3)

It follow, from this that w’ and w are both bounded, so that — 0(Ix [
i
~
14
),

- O(~ x~~
”4 ) .  and ( 7 . 2 )  is then oscillatory and asymptotically the distance V

between successive zer o. of w ( t )  is w .

In the case a ‘ 2 we can now quickly complete the argument. For (7 .2)  can be

written as

w” + w — O (t ) ,

-18-
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for some - 0, and since t~~~
6 

E L’(l ,”), a routine application of the variation

of constants formula shows that

w ~. ci s in (t  — c2) +

proving ( 1 . 1 1) .

If a < 2 , the leading terms on the right-hand side of (7.1) (assuming f ’  to

be small) are

2f’ 
_______-w + —i-7~- w +  /4

w,
U U I U ~

and it turns out that we have to choose f so that the second and third of these are

of the same order. So for a — 2 we take f (u) — c log U, and for a < 2 we take
1 1

f(u) — cu2 ~ 
a 

- ~~
- a) ,  where the constant c (which may depend on a) has

still to be determined.

Let us first take the case a — 2. Then with the given choice of f the equation

(7. 1) reduc es to

+ w — -
~~
- (c + w2 )w + 0(t ’~

2log t)
dt 3t

Set w • P conO, w’ — p sinO , so that

2 2 2 —l
p — u  + w ’ , 0— t a n  (u /u)

Then

pp ’ — Wv ’ + u ’w” — -
~~~~ 

(c + w2)ww ’ + 0(t ~
2 log t ) ,

and so, for some constant ci, by an integration by parts ,

p2 — d2 
4 -

~~~~ (2cw
2 

+ w4) + D(t ~~iog t) .

Also,

dO 
— 
ww” — ~~‘

2 

— —l + Cow2 + w4 ) + 0(t 2log t)
dt w2 + w ’ 3tp

— — l + -
~~~ Cc cos2e + d

2cos4o) + 0(t 2 loq t)

— —1 + Cc ~~~~~ + d2cos4O) ~~ + O(t 2loq t)

-13-
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Hence , integrating by pert. and choosing c so that
1
is

f (c cos2O + d2cos4O)d O — 0,
0

3 2i.e. choosing c — -~~~ d , we have

e — —t + constant + 0(t~~log t ) ,

f rom which (1.10) follows .

The arg~aent for the case a < 2 is similar. The equation (7.1) reduces to
2 1
— + — a  4 1

+ w — 2
(*) 

6 
(c + IuIU )w + 0(t 3 3 ) -

Introducing p and 8 as before , we see that
1 1

2 2p — ci + OCt 1

and so 
2 1— + — a  ~ 1

—l 
6 2 

+ 1 W1
2+a ) + 0(t 3 3 )

~ 
~~+ 1a

— —l + 2(i) 
6 

(c ~~~~~ + IdIabcos6 l
21u
)~~~.+ 0~~

_ l _ I a
,

We now choose c so that
1

(7 .4)  f Cc cos2e ÷ dI a CO$2Ia O)db — 0,

and note that, by the transformation cos2e - z, and with th. usual notation for the

beta function,

1 12 2~~ — ~ 
1 5ris (1 — z)~~

”2dz
0 0

1 (3 1 1
— 

~~ 
+ 5~~

.‘4 r (~~~+~~~~a) r (.~)/r ( 2 + f a )

Th. choice of c from (7.4) is thus c — -c1, where c
~ 

is given by (1.9) • and with

this choice of c we integrate (7.3) by parts to obtain

0 — —t + constant + O (~
— a

~’2 )

from which (1.8) follows.

20
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A . The value of Jc*(2)

From now on we are concerned with (1.1) only in the case a • 2. using the

relationship between (1.1) and the Korteweg-de Vries equation that was mentioned in

the introduction, ablowitz and Segur [4 J have shown a connection between the solution

uf ( 1. 1)  which is asymptotic to kki (x) as a -+ , i.e. yk
(x) in our notation,

and the solution of the pair of integral equations (in which a is effectively a

pa rams ter)

(8. 1) K
1
(a ,y) — kAi (X + 

Y) — 4 k J K2(x,
s)Ai (5 

~

(8.2) K2
(x ,y) — —4k J K

1
(a,s)Ai(!_j_~)dB

D,blowitz and Segur prove the following results about the solution of these equations.

For x sufficiently large (depending on the choice of k), say a > a
0
, there

exists a unique solution of (8.1-2) that is square—integrable on (x0
, ). Further, for

we have

K1
(x,x) — y~ (x)

This result clearly suggests the importance of studying the operator L ,  where ,

for any f ‘ L2(x ,”), L i. defined by

(8.3) (L f)(y) — 4  f M(~ ~ 
)f (s)ds -

Theorem 2 in §1, that k~ (2) — 1, follows from the following series of lemmas , the

proofs of sost of which are fairly i mdiate . (~ie part of  the proof is deferred to 9.

Lemma 8.1. L is a compac,~ indeed hubert-Schmidt,  seif-adj oint ope rato r in L2 (x ,— ) .  
0

Proof. Thi. c o s  i diat.ly from the observa tion that the kerne l 4 Ai(’~ 
~ 

of

ii sy stric with

— ~ 
_____ ds <

the convergence of the integral being a consequence of th. exponential decay of

~~~ 

‘ Ai ( t)  as

—21—
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Before stating the next leimna, we note that , at least in a formal sense ,

(8.4) L2 • I,

where I is the identity operator in L2(—~’,~~). This is nothing sore than the

‘Fitchmsz-sh-Kodaira form of the eigenfunction expansion (or resolution of the identity)

associated with the operator

2
(8.5)

8

in L
2
(—— ,—), for , as we shall see in §9 , that expansion can be written formally as

(8. 6) f ( y )  — 4 Ai~~.-j_!~ {~ Ai~&j_Z~f ( z)dz}dY ,

w)~~ch is just (8.4).  Since the eigenfunctions associated with the operator (8.5) are

obtained by solving the equation

d2w 1
- —i• + i tw -
at

or, with 5 — —8A ,

2
— 4 (t + s)w ,

dt

we see that these eigenfunctions must be multiples of Ai (
t 

~~
) ,  which is in

accordance with (8.6). (They are only “generalized eiqenfunctions” since the

behaviour of Ai (t) as t + -~~ prevents the eigenfunctions lying in

The next lemma gives an analytical statement of at least pert of these forma l

ideas.

L a a  8.2. For any f E L2 (— ’s,— ),  the function L f , which can be reg~arded as a

function defined on C-— ,—), converges in mean as a -s -isa and

‘ta ll L
~~

f Il — fi t II

the norms being th. norm , in (-is, is).

Proof. This is just the Par .eval theo rem corr.spondinq to th . expansion (8.6),  and

it can be proved formally by multiplying both .id.~ of (8.6) by f (y )  and integrating .

— 22—
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A proo f has to follow the i~ n~~ of Theorem L 7  of [101, which qives the analysis for

an operator in L~ (0 ,—) with a boundary condition at 0, the modifications for

being indicated in §3.8 of [10). in our notation, Titchmarsh shows that

converges in mean in L2(—o ,~~; dk), where the Lebesgue-Stieltjes measure dk

measures the spectral density, and (8.6) shows that in this particular case this

measure is just Lebesgue measure. Furthermore, the Parseval theorem (formula (3.7.1)

in I10J ) states just (8.7).

Len-isa 8.3. For any finite x, L iH~~ 1, where . . .  III denotes the operator norm

in

Proof. We note first that fit L is a nondecreasing function of x. For if we estimate

the elgenva lue of largest modulus of L by the usual variational procedure , the set

of t rial functions increases as a decreases, and so the modulus of the eigenvalue

does not decrease.

Now assume for contradiction that, for some X , the modulus of this largest

eigenvalue of Lx exceeds 1. Ther., if is the corresponding eigenfunction , we

have

Lx+x

with ui ~
- 1. The eigenfunction is defined only on (X, ) ,  but if we set

$(y) — I x (Y) ~ X,
t 0 , y~~~ X ,

then, for any x ~

(L~~~) ( y ) — u $ (y )  for y >

• and so

Ii ui I) II — J u t  I! • ii
L2 (X , )  L2(X,is)

But this contradicts Lemma 8.2 and completes the proof.

0 V Le~~~ 8.4. k (2 )  > 1 -

Proo f. The equations (8 .1 -2)  can be contined to give a single integral equation for

K1 . In fact,

-23-
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(

(8.8) K
1
(x,Y) — kAi (~~

_
~~~1) + k

2
(L
2
x
1) ~~~~~

and Lemma 8.3 implies JJJ L2 JJJ < 1.

Now suppose for contradiction that k*(2)  ~ 1. Then (8.8) can be solved for any

finite a with k — 4 (1 + k) , since k < 1, and this leads to a solution

K 1 (x, x) — Yk (x) of (1.1) which exists for all a. But at the same time k > k , and

so we have a contradiction to Theorem 1.

Proof of Theorem 2. In view of Lemma 8.4, it only remains to prove that k *(2 )  > 1 is

impossible. So let us suppose for contradiction that k5(2) > 1. Then, by Theorem 1,

exists and is bounded for all x and for all k with 0 < k < k~.

Now consider the equation

(8.9) (i— + ~~~~ 1
1
(x ,y) — (“ 

~ 
‘
~)x ~ (x ,y)  + 2 {X1(x, x ) ) 2K1

(x ,y)

which ablowitz and Segur show is satisfied by the solution K
1
(a ,y) of (8.8) for y > a

and a sufficiently large (depending on the choice of ic). Indeed , if ii is cut f i-

ciently small, (8.9) holds for all a and y. Writing

1 1u — (a + y) ,  v — (a - y ) ,  F(u ,v) - X1
(x ,y), 

- 
V

we see that F satisfies

(8.10) —.
~ (u ,v) — uF (u,v) + 21~

2(u,0)F(u,v) -

For any fixed v < 0 , we can solve this equation for F(u.-v) uniquely provid.d that

we are given F(u ,0) ,  which for consistency must satisf y (1 .1) ,  and also , for some

the values of F(u01v) and ~~ (u0
,v). We can take for F(u , O) just yk

(u)
~ 

and if

u0 
is sufficiently large (depending on k), we can take F(u0,v) — K

1
(u
0 

+ v, u
0 

- v),

• with the corresponding value for ~~ (u0
,v). If 0 < k c ~~* , the solution of (8.10)

then exists for the particular value of v and all a, since it is a linear equation

with continuous coefficients , and the solution is analytic in k. Sinc, this is true

for any one particular value of v, it is true for all v c 0. Also, ,(X + 7, * ; 7)

coincides with K
1
(x,y) at least for Ii sufficiently small (when we can solve (8.8)

to give and show that it satisfies (8.9), end ( from (8.8) ) K 1(x ,y) i~ analytic

V_ c
-24- 

0

V 
- 

0 

~ ‘ J  ~~ - 
0 - 0 

-
~

- 
- 

- •
0

—

~

— - 00

_______________________ 0 -   
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ n—

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ &~~~~~~!~~~~~
- ‘ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

0 V
~~



in k except for possible singularities at those values of k for which ~~~ 
~~

an elgenvalue of L~ . Hence ~~~~~~ ~
-j-1) and K1(x ,y) coincide (and K

1 is

analytic in k) for all k with 0 < it < kA , and all a and y .

Now let it increase from 0 to (k0~~
I, where (for any fixed a) It

0
2 is the

largest eigenvalue O~ ~?. Since we are accusi ng that k > 1, it certainly follows

from Lensna 8.2 that lk0,~ l < k~ if x is chosen sufficiently large, and so, by what

we have said above, K
1
(x,y) remains analytic (and so in particular bounded) as it

increases to it
0 I. But since k 2 is an eigenvalue of L2, this is possible

(from (8.8)) only if

(8.11) 1 Ai (X 1*o,~~(y)dY = 0,

where *0* 
is the eigenfunction of L2 corresponding to the eigenvalue It

0
2 . We

have merely there fore to chow that (8.11) is impossible, and the theorem is proved.

To show (8.11) impossible, we note first that *0,x must be an eiqenfunction of

L , with eigenvalue + it 1 
- Thusa — 0,x

(8.12) *O x (
~~ 

— ± 4 k 0,~ 1 ki e’ 5)*
0,~~
(sd s ,

and setting y — x, we see from (8.11) that

(8. 13) *o, x (X) = 0

Making the transformation s — t — y we write (8.12) as

*o,~~
(Y) — ± 4 k~~~ J Ai(4 t)*0,~~~t — y)dt,

so that

*~,~~
(Y) — ± 4 k 0,~ {_Ai~~~j 1*0,~~~x - 

~ 
Ai (4 t)s~,,~~t 

- y)dt}

— 4 i t0~~~ I Ale’ 5)s6,~~
sd s ,

using (8.13) and the backward transformation t — s + y. Thus *, ,~ is also an

eigenfunction of L
~ with eigenva lue 

~~~~~ 
and the same argusent as was app lied



(

to ii shows that a lso0, a

*~,a
(X) 0 -

The process can now be repeated to conclude that *0,a and all its derivatives vanish

at a, implying tha t 
~‘O x  is identically zero , which is impossible for an -

eigenfunction.

IT 



9. Proof of (8.6)

We want to obtain the eigenfenction expansion associated with the operator

2
(9.1) L — - ~ —~~+~~~x

dx

in  L
2
(—is ,~o ) ,  and this can be found by following various formulae given in ( 10) .

As in §3. 1 of 1 101 , the procedure is -~~ fo l l o w c .  First consider the problem

associated wi th  the operator (9 .1) in L2 (--~°, ’) ) ,  and let m1 (u )  be the (uniquely

determined) function such that

O (x,~~) + m
1

(u ) $ ( a ,p )  e

where 8,$ are the solutions of Ly — py for which

— 1, O’ (0,~~) 
i s O,

— 0, $‘ (0,~~) — —1 -

In fact, as one of the eaamples in Chapter IV of (10), §4. 13 , Titchmarsh works out the

function m(A) associated with the operator

42

dt

in L2 (0 ,.=), and the equation My — Ày, and this , by the transformation t — — 4  a,

A — 4ii , m (A) — -2m
1 (u), gives the function m

1(U) that we want. Thus

H~
’1 (! A 3I2~

I )  !~~1/2 j~/~3 1.~ ‘
Il 2 fl (i) (2 

A
3’2

~~ 
4À

1/3 1.3 )

1 d J’A 1/2 ( 1)( 2 A 3/2 hh/ IA 1/2H ( 1h 12 A 312
— 2 4A 

~ 
H 1~ 3 1.3 )Jf% l/3~3

Here , in standard Bessel function notation (5), ~~~ is the Hankel function of the

first kind, and we have the relatio ns

(1) 2 —iii/6 —wi/2
111,3

(5) - —
~

- e K113(ze

V 

— 2 e
- 5h/6(a 5i/3K1,3(se

_351/2) —
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(I

wherr~ K113 (already mentioned in ~1) and 1
1/3 are Bessel functions of Imaginary

argianent. Hence 0

— 
1 ti~ 

{(_A)~~ 2[e ~
‘113 K

1~ 3(4 
(—A ) 3”2) — siI

113(~ (_A ) 3
~
’2
)]}

1 2 (_A) 1
~2fe ~~

‘3K
1,3(4 

(_A )h/2) — sii1,3(4 (—A) 3/2)}

i ~~ {~
i~

_)i
~ — f

1”2ie 
si/3

2 A i ( — A )  — 3 112 ie ~~~~~~ (_ A ) ”2 11,,3 (4 ( _ A ) 3~’2)

Similar ly ,  we define ni2 (u) to be the uniquely determined function such that

8(x ,p )  + m
2 (u ) * ( x ,u )  E

where O,$ are as before. This function is also in effect worked out by Titchmarsh

in §4.12 of (10), and

is

where, as before , A 4u, and

*0
(t,A) — (t — A )l/2K1,3{4 t —

so that

is — 4 A~ (—A )/Ai(—A) -

Now we note That m 2
(p ) is real for real u , and this simplifies the expansion formula ,

as Titchmarsh points out in formula (3.1.12) of (101. (Titchmarah actually supposes

that m
~

(li J is real for real ~, but the adjustment is easily made.) Indeed , wi th a

suitable interpretatio n of the infinite integrals , the expansion formula becomes

(9.2) f (x) — 
~ J *2(x.u)d~

(u) J ~‘2
( y , u ) f ( y ) d y ,

wher e

— O (x ,V )  + a2(u)~~
(x ,u)

and

- I.e 
m
1
Iu + ~~

) - m
2

(u + 16) du .

Now, by definition of *2 $2
(x ,~i) Is a solution of Ly — uy which is in

and so

=28—
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-V- is ---

1
*3(5,11) — c*i(4 * — A ) ,

for some constant C. But also *2 (0 ,
~~ 

is 1, and so in fact

*3
(5 111) a Ai(4 x — A) Ai (—A-) -

To det rmine ~, we not. first that, for the well-behaved functions with which

we are concerned, we can pass to the limit under th. integral sign in (9.3) and obtain

1
da *1

(11) — *3(11)

Hence (8.6) follows from (9.2) if we can show (for real ~i)  that

—im a1(u) — *2(11) 
is 25{Ai(—A)}2 -

Now

(9.4) 2(Il
i
(11) — *3

(11) )

-( _ 3_l/ 2ieli/3[M (_ A ) ~~~{(_ A) h/2 I113(~ (_ A) 3/2)} + A~ (-A) (-A)”2x
113(4 

(_A ) 3~’2)]

{Ai (—A) — 3 1”2ie~~~
3(—A) 1”2I

113(4 
(_)l)3/2)] ~~~~~

Since Ai(—A) and (_ A ) 1’2 I~,3(4 (— 1) 3/2) satisfy the same second order differential

equation, we know that their Wronskian (which appea rs in the nuasrator of (9.4)) 1.

independent of A , and letting A ~ -., so that

Ai (—A)

(_A )~
’2I

113(j. 
(—A)3’2) 4 3’~

2w ”2(— A) 1”4eiup(} (_A)3~
’2),

we see that the nuasrator of (9.4) becc s 4 ~~~~~~~~ Thue

—La e~
(P) 

~~~~ 
— 2w(Ai(—A))2,

as required.
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solution exists for all x and tends to zero as x + —~~ , while if k > k5 then

the solution blows up at a finite x. For the special case a — 2 the differential

equation is classical, having been studied by Painlev around the turn of the cen-

tury. In this case , using an integral equation derived by inverse scattering

techniques by ~blowitz and Segur, we are able to show that k* a ~~, confirming
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