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ABSTRACT

The differential equation considered is y" - xy = ylyla. For general positive

a this equation arises in plasma physics, in work of de Boer and Ludford. For

a = 2, it yields similarity solutions to the well-known Korteweg-de Vries equation.
Solutions are sought which satisfy the boundary conditions
(1) y(») =0

(2) yx) ~ [-%x)lla as x > -» ,

It is shown that there is a unique such solution, and that it is, in a certain
sense, the boundary between solutions which exist on the whole real line and solu-
tions which, while tending to zero at plus infinity, blow up at a finite x. More
precisely, any solution satisfying (1) is asymptotic at plus infinity to some
multiple kAi(x) of Airy's function. We show that there is a unique k*(a) such
that when k = k*(a) the condition (2) is also satisfied. If 0 < k < k*, the
solution exists for all x and tends to zero as x + -», while if k > k* then
the solution blows up at a finite x. For the special case a = 2 the differ-
ential equation is classical, having been studied by Painlevé around the turn of
the century. 1In this case, using an integral equation derived by inverse scatter-
ing techniques by Ablowitz and Segur, we are able to show that k* = 1, confirming
previous numerical estimates.
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SIGNIFICANCE AND EXPLANATION

The problem treated in this paper arose originally in the context
of plasma physics. Differential equations had been obtained by carlier
authors describing the region around a spherical electric probe in a
slightly ionized continuum gas. The mathematical problem was to show the
existence of a transition solution to these equations by means of which
the ion-sheath region near the probe and the quasi-neutral region further
away are connected. This problem, originally presented by de Boer and
Ludford, is solved in this paper.

Perhaps a more far-reaching application, however, is for a special
case when the equations yield particular solutions to the well-known
Korteweg-de Vries equation for shallow water waves. In this context
the transition, or connection, problem is‘solved more completely, in that
a precise constant is found showing how the behaviour of these solutions

at the front of the wave is related to the behaviour at the back.
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The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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| A BOUNDARY VALUE PROBLEM ASSOCIATED WITH THE SECOND
PAINLEVE TRANSCENDENT AND THE KORTEWEG-DE VRIES EQUATION

4 - S. P. Hastings and J. B. McLeod

1. Introduction
In [1], in connection with a problem in plasma physics, de Boer and Ludford ask
3 whether there exists a solution to the boundary value problem consisting of the

equation
d2 a

(.1 -y = 2ylyl?, e <x<a,
dx

and the boundary conditions
(1.2) y(x) ~ (-%—x)lla as x > -»,

(1.3) y(x) 0 as x + += ,
The quantity a is a strictly positive constant.
As de Boer and Ludford point out, the case a = 2 is interesting because (1.1)
is then a particular case of what is known as the second Painlevé transcendent. The
Painleve transcendents were first studied by Painleve himself in a series of papers
beginning in 1893 (for a survey of the work see [2] or [3]). These papers dealt with
the question of which second order equations have the property that the singularities
other than poles of any of the solutions are independant of the particular solution
chosen and so dependent only on the equation. 1Indeed, in the case of the second
transcendent, no solution has any singularities at all except for poles and the point |
at :Lnﬂxiity. '

The case a =2 of (1.1) is interesting also because of a connection with the .

Korteweg-de Vries equation, currently the object of considerable attention in many
directions. It seems to have been observed first by Whitham (see [4])), building on

work of Miura and others, that, if y(x) is a solution of (1.1), and if

fay -y (=0, ;

Sponsored by the United States Army under Contract No. DAAG29-75-C-0024.
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then

2/3 /3

ulx,t) = (3t)° £0x/ (30013
is a similarity solution of the Korteweg-de Vries equation

+ +
ut Guux u =0,

a fact that can be verified by elementary manipulation.

We have two objectives in the present paper. The first is to answer the de Boer-
Ludford question in the affirmative, and indeed to prove even more, that the boundary
value problem (1.1-3) has one and only one solution. In order to state the result
fully, we recall first the definition of the Airy function M(x). This is defined

to be the solution of the equation

(1.4) AL” - xAL = 0

for which

(1.5) Ad(x) ~ w-uzlxl'l/‘m(-g- [x]2 - % %) as x + -
and

(1.6) Al(x) ~ % '-1/2‘-1/4“‘,(_%:3/2) a8 x > 4=,

Since the Airy function can be expressed in terms of Bessel functions of order %a
the asymptotic expansions are merely a reflection of the well known ones for Bessel
functions. Indeed, in the standard notation for Bessel functions (5],

-1/2 - 2
12, 1x1/2x1/3(3- «?),

(1.7) Ai(x) =
a result that is perhaps best proved by verifying that both Ai(x) and

x]'/ 211 /3(% xa/ 2) satisfy the equation (1.4) and then comparing their asymptotic
expansions to confirm that they are in the ratio given by (1.7).

Our existence and uniqueness theorem is then as follows,

Theorem 1. For each a > 0 the problem (1.1-3) has a unique solution, and this
SRR, — s
solution has the following properties:

(1) y>o0, y' <0
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(ii) if a <1, then y" >0, while if o > 1, then y" has precisely

one zero, with y"(x) > 0 for large positive x and y"(x) < 0 for

large neqative x;
(iii) as x * =, y(x) is asymptotic to some multiple k¥(a)Ai(x) of the
Airy function defined in (1.4-6).
Furthermore, any solution of (1.1) satisfying (1.3) is asymptotic to kAi(x) for

some k, and, conversely, for any k, there is a unique solution of (1.1) asymptotic

to kAi(x). If |k| < k*(a), then the solution asymptotic to kAi(x) exists for all

x and as x * -» is asymptotic to

ol

(1.8) d|x|-1/4sin-§- |xl3/2 ~ -0, if 6 <2,

|
&=
R

for some constants d,c.,c

1S5 where

(1.9) = e’ G r Ga+ I Gas2),

A :

(1.10) d|x|-1/4sin{-23- 7 e % a’10g|x| - cz} it aimi2,
and to

(1.11} d|x|-1/4sin{% |x|3/2 - cz} Af ‘w32

1f |k| > k*(a), the solution becomes infinite at a finite value of x.

Since (1.1) is left unchanged by the transformation y + -y, we can, and shall,
take k > 0 in the rest of the paper.

C. Conley, in unpublished notes, has proved the existence, but not the uniqueness,
of the solution of (1.1-3). His existence proof, like ours, is based on a "shooting”
technique, but his proof requires a distinction between the cases 0 < a <1 and
a > 1 which ours does not, and it is based on Wazewski's principle and separation
theorems in two dimensions while ours us.s the connectedness of the real line.

Our second objective, and our ser~nd theorem, are concerned with the case a = 2,

and the remainder of this introduction is confined to that.

-3-




In this situation, Rosales [6] observed numerically that k*(2) = 1 + 0(10™13),
which raises the obvious conjecture that in fact k*(2) = 1, and this we prove.
Theorem 2. k*(2) =1 .

Theorem 2 is an example of a nonlinear connection problem, since we are relating
the asymptotic behaviour of the solution of (1.1-3) as x »+ +® to the asymptotic
behaviour as x + -®, Linear connection problems have been one of the main areas in
ordinary differential equations for over a hundred years, but nonlinear connection
problems are very rare. One reason at least for this is that the method which is
perhaps the most useful one for linear problems is not in general applicable. This
is to consider x as a complex variable and pass from x = -® to x = +° along a
large semicircle in the x-plane. Provided that the coefficients in the equation have
a reasonably simple asymptotic behaviour as |x| + o, it may be possible to construct
an asymptotic expansion for the solution at all points on the large semicircle, and
so relate a specific behaviour as x + +° to a specific behaviour as x + -«,

In nonlinear problems, in general, this method fails because, even if the
coefficients in the equations are very reasonable, the solutions may not continue to
exist as lxl + @, For one important class of equations, however, something can be
saved, and these are the Painlevé transcendents, and in particular those transcendents
such as the second for which all solutions have no singularities other than poles in
the finite part of the plane. Indeed, Boutroux, in two long memoirs (7}, (8]

(see also [3]), has studied the asymptotics of solutions of the first Painleve
transcendent in considerable detail, and, as he remarks, the ideas extend to the
second transcendent also. The essential result is that the solutions behave
asymptotically, at least locally, like elliptic functions, and although Boutroux
does not specifically consider any connection problems, the solution of these is a
matter of piecing together different elliptic functions in different sectors on the
large semicircle in the complex plane.

Even if this programme is feasible, it certainly involves formidable technical

difficulties, and it turns out that we can in any case avoid it by solving our
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connection problem by using the relation already mentioned between the second Painleve
transcendent and the Korteweg-de Vries equation. Ablowitz and Segur (4] have pointed
out that the fact that the Korteweg-de Vries equation can be solved by the inverse
scattering technique implies that the solution of (1.1) which is asymptotic to kAi (x)
as x + @ can be regarded as the solution of a linear integral equation, and we use
this fact to establish Theorem 2.

This does however raise the question whether there is a deeper connection between
the Painleve transcendents, for which, exceptionally amongst nonlinear ordinary
differential equations, there is a routine for solving nonlinear connection problems,
and nonlinear evolution equations such as the Korteweg-de Vries equation, for which,
again exceptionally, there exists an inverse scattering technique relating behaviour

for large negative time to behaviour for large positive time. Ablowitz and Segur have

already pointed out that, jus\ -- vond Painlevé transcendent is associated with
the Korteweg-de Vries equation, s. first transcendent is associated with the
Boussinesq equation and the third with sine-Gordon equation. It would certainly

seem a reasonable conjecture that any similarity solution of a nonlinear evolution
equation for which an inverse scattering technique applies should necessarily satisfy
an ordinary differential equation whose solutions possess no singularities other than
poles, and this would in turn lead to a test for the availability of an inverse
scattering technique for any given nonlinear evolution equation, which is one of the
open pro.iems mentioned by Miura in [9]; but we do not pursue these questions further
here.

Theorem 2 solves the connection problem for the particular solution of (1.1)
(with a = 2) which is asymptotic to k*Ai(x) as x + =, If the solution is
asymptotic to kAi(x) with 0 < k < k*, then Theorem 1 asserts that the solution
exists for all x, and Ablowitz and Segur £ind on heuristic grounds that it has the
asymptotic form as x + ~= given by (1.10), where k and 4 are related by the
formula

(1.12) & o v M09 - ¥ .

-5-
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This would certainly imply Theorem 2, and it seems likely that a more detailed
application of the asymptotic methods used in this paper would in fact also prove
(1.12), but again we do not pursue this further here.

The arrangement of the paper is that the existence part of Theorem 1 is proved
in §§2-5, along with the qualitative properties of the solution, the uniqueness part
in §6, and the asymptotic behaviour in §7. Theorem 2 is proved in §§8-9.

We would like to thank Professors C. Conley, Y. Sibuya, W. Wasow and H. Weinberger

for helpful conversations.
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2. Existence of a solution

The proof depends on a series of lemmas, some of which are almost immediate. We
give the main proof, leaving the verification of those lemmas which require extended
arguments to later sections.

Lemma 1. There exists a unique solution of (1.1) which is asymptotic to kAi(x) as
e —_—

x **, k being any given positive number. This solution may not exist for all x

as x decreases to -, but at each x for which it continues to exist the solution

and its derivatives are continuous functions of k. We denote this solution by yk(x) .

This lemma requires little proof. Perhaps the simplest technique is to recognize
that yk must satisfy the integral equation

@

(2.1) Y, (0 = kAi(x) + 2 [ {Ai)Bi(t) - Bi(AL(t) by, () ]y, (£)|%at,
X

where Bi(x) is a solution of the equation

w" = xw =0
which is linearly independent of Ai(x) and which we can take to have the asymptotic
behaviour

Bi(x) ~ n1/2"1/4

xve

exp (% x3/2) as

The equation (2.1) can then be solved (uniquely) by iteration, and this gives both

' and its continuous dependence on k.

Lemma 2. The set of k(>0) for which vy (x) remains positive as x decreases
B et AN e o s k

and becomes infinite at some finite value of x is an open set, denoted by Sl.

The proof of this is deferred to §3.

Lemma 3. The set of k(>0) for which yk(x) {(which is certainly positive for

sufficiently large x) takes negative values before (if ever) it ceases to exist

is an open set, denoted by S

2
This lemma is an immediate consequence of the continuity of yk in k. If

yko(xo) < 0 for some ko and Xqr then yk(xo) < 0 for all k sufficiently close

to ko.




Lemma 4. The set S is non-empty.
————= —— 3

The proof is given in §4.

Lemma 5. The set S is non-empty.
= 2

The proof is given in §5.
The proof of existence can now be completed. Since the positive semiaxis is

connected, it cannot be divided into two non-empty disjoint open sets. But Sl and

are non-empty and open, and also clearly disjoint by definition, and so there

3,
2
exists at least one positive value of k which lies in neither S1 nor SZ. For

such a value of k, k* say, Yye (x) has the properties that it exists for all x
and is always positive. (It cannot take the value zero because this would have to be
a minimum, and y = y' = 0 at any point implies from (1.1) that y = 0.)

To obtain further properties of Yyenr we note first that y,"' < 0. For suppose

for contradiction that X, is the first value of x (for decreasing x) for which

Ypa(¥) = 0. From (1.1) we certainly have

(2.2) Belx) ¢+ %, 50,

Also,

d a a~1
= (R, o3 moy 'y, + 1,

which is positive if y"‘. > 0. Hence from (2.2) we see that, to the left of Xy

y;. < 0 and y,". > 0, contradicting yk. * 0 .
Now sa2t, for x < O,
(x) = (_%‘)l/a

(2.3) z(x),

Yk.
and it is routine that 2z satisfies

" 2 o a 1 (1 2
(2.4) "+ -{-x(z -1)-;(;-1)/3&}2.
This implies that, for x < 0, z cannot have a relative maximum where
o 1,1 3
s =1vR|8-af/n|",

or a relative minimum where

1,1 3
2% - 1< w2ie = 3/isl",




and so either z -+ 1 as x » -, which proves that yk. satisfies (1.1-3), or z
is monotonic for large negative x and so tends to infinity or to a finite limit
other than 1.

If 2z(-«) > 1, including 2z(~») = =, then it follows from (1.1) that ultimately

(for large negative x)

a+l
Vs 2 KYpa's

for some constant K(>0), and integration of this shows that yk.(x) blows up at
I finite x, contradicting the fact that k* does not belong to Sl'
If z(-») < 1, then it follows from (1.1) that ultimately
Vs S Kxy, o0
for a possibly different positive constant K, and since the equation obtained by
replacing < by = is certainly oscillatory, we contradict Yiu > 0,
The proof of existence is thus complete, granted the proof of the lemmas to

follow, but we can conveniently prove here the remaining properties of stated

Yyn
in Theorem 1.

Clearly, z(x) > 1 for x(<0) sufficiently small. (Indeed, 2z(x) - » as
x »0.) If a <1, (2.4) shows that 2z can have no minimum below 1, and since

z(-») =1, it follows that always 2z > 1 and so y;‘ > 0%

If, alternatively, o > 1, then 2(x) can cross the value 1 as x decreases,
but it cannot cross back since it can have no maximum exceeding 1. Indeed, 2z must

cross the value 1 once, since otherwise we would have yk, >0, < 0, and so

Yy
Yis (¥) > K|x| as x » -», for some positive K. But then, with a > 1, this implies
that

" a+l
Yyw 2 Yyu

for sufficiently large negative x, which causes blow-up at finite x. Hence 2

crosses 1 precisely once for x < 0, from which the required properties for y;.

follow.




3. Proof of Lemma 2

I1f, for a specific value of k, say ko, Yy blows up at x = Xqr then
(]

clearly we can find a value x1 near xo with

(3.1) 3 x) > x| + 1, yl"o(xl) <o.

Y
k0
If k is sufficiently close to ko, the inequalities (3.1) continue to hold with
k replaced by k, and it is then clear from (1.1) that, for -1 < x - xl <0, at

0
least as long as yk(x) is defined,

a a+l
¥y (%) > |x], yiix) <0, ¥ >9 i

But integration of the last (autonomous) inequality forces blow-up at a finite
point, indeed a finite point in x - x, 2=l if

(3.2) Yk(xl) > K, y,"(xl) < =K,

where K is some positive constant which is independent of xl. Clearly we can

choose x so that (3.2) is satisfied in addition to (3.1), and the lemma is proved.

MR
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4. Proof of Lemma 4

Since the integral term in (2.1) is positive for sufficiently large x (from the
L asymptotic expressions for Ai,Bi), it follows that e (x) > kAi(x) for sufficiently
large x. Differentiating (2.1), we can similarly show that y"‘(x) < kai'(x) < o0,

and so we can choose xl and k so that the inequalities (3.1) (with ko = k) and
(3.2) are satisfied. But then we know from the analysis of §3 that Yy blows up at

a finite point, proving the lemma.




P

5. Proof of lemma 5

Since k = 0 makes Yy identically zero, we can use the continuity of Yy in

- -

k (proved in lLemma 1) to choose k sufficiently small that yk(-l), y,“(-l) are

in turn so small that, for -1 > x > =(1 + "/2),
" At
| x 2|yk(x)| Hk

But then comparison of (1.1) with

1
yo - -3y

shows that Yk must vanish somewhere in [-1 - wfz', =1], completing the proof of

the lemma.




6. Uniqueness of the solution

The proof of uniqueness proceeds in the following stages. We first prove that
any solution of (1.1) which satisfies (1.3) is asymptotic to kAi(x) for some k.

We then prove a limited uniqueness theorem, that there is only one solution of (1.1-3)
for which y' < 0 (and so y > 0).

We then use this limited result to prove that (0<)k < k* implies that yk(x) + 0
as x » -®, while k > k* implies that Yy blows up at a finite point. This,
together with the already established fact that any solution satisfying (1.3) is of
the form yk, completes the proof of uniqueness.

To establish that any solution satisfying (1.3) is of the form Yyr we note that
y(x) + 0 as x » » implies that the coefficient of y in (1.1) is necessarily
positive for sufficiently large positive x, and so the equation is non-oscillatory,
and to obtain y + 0, we must have ultimately y > 0, y' < 0, y” >0 (or y < O,

y' > 0, y" < 0, although this is not significant since the negative of a solution is
also a solution). Indeed, since, for any fixed r with 0 < r < 1,

y" > rxy
for x sufficiently large, we can conclude, as in §8.2 of [10], that, for some
constant C,

Yy < ¢ e",p(_%rll./Z”3/2)'

and then the formal process that renders (1.1) and (1.3) equivalent to the integral
equation (2.1) is certainly justified, and the required asymptotic form follows.
We now establish the limited uniqueness theorem. Suppose that Y1 and Yy !
satisfy (1.1-3) with e 0, yi <0 for i 2 1,2, and suppose that ¥ye¥,
correspond to k1'k2' with kl > kz' 80 that ultimately (for x sufficiently large
and positive) Y, > Y, and yi < yé. In tact,' yl(x) > yz(x) for all x, as we

can prove by considering the expression

alge2.. 1 2 g 12 240
(3.1) Vi) = Syt - S ay 0 - 5io lyitx)l ?




for which it is easy to verify that

N §
' % -—=
(3.2) Vi 2Y; *

Now let us suppose for contradiction that yl(x) = yz(x) first (for decreasing x)

at x = xqe Then we have

2 2
Yy (%) =y (x0), 0> yilxg) > yix)), yi®(x)) < yi (xg) .
so that, from (3.1),
vl(xo) :Vz(xo) 7
But also vl(-') = Vz('). and (3.2) then implies that Vl(xo) > Vz(xo), giving the
required contradiction.

Hence yl >y Using the mean value theorem to give

2
o+l a+l

o
Mg, St (a + 1))!.‘,(»'1 = yz).

we see from (1.1) that
a
- " -~
(’.'1 Pk ¥ {2(a + Dy, + x)(y1 Y, -
Since
2y;(x) ~ «x as x * -»,
we can conclude that, for large negative x,
ax
- CR o -
(v1 Yz) e (Y1 Yz) ’

so that, as x + -», either y1 -y
/o

2 is exponentially large, which contradicts %

(y1 - y.",)/(-x):l + 0, or both yl -y, and (y1 -~ yz)' are exponentially small, F

2
which makes (Vl - V2) (~») = 0 and is again a contradiction. So limited uniqueness ,
is established.

Now suppose that 0 < k < k*, and consider the solution Yy of (1.1). This

must have the property that y"‘ vanishes at some finite point, since otherwise we

could prove as above that yk. > yk > 0 everywhere, so that yk exists and is

positive everywhere, from which it follows by the analysis in the existence proof

that Yy satisfies (1.2), contradicting limited uniqueness. .




”~

We can also show that always ka| <y (It is of course possible that Yy

k**
oscillates; indeed, the asymptotic behaviour proved in §7 shows that it does oscillate.)

Certainly, |yk(x)| < yk.(x) for x sufficiently large and positive. Consider the
function Vk defined in (3.1), and suppose for contradiction that, as x decreases,

|yk(x)| = yk,(x) first at x = Xy Then we have
| lyk(xo)l = Yiea(xy), lyl"(xo)l > yk,(xo), Vi (xg) 2 v, (x0),
and we can obtain a contradiction to this by integrating (3.2), as in the proof of
limited uniqueness.

Further, yk is bounded. This follows from the fact that if x = xl is the
first maximum of yk(x) as x decreases, then |yk(x)| < yk(xl) for x < X, To
prove this, suppose for contradiction that x is the first value of x as x

2
decreases from x, for which |yk(x)| = yk(xl). Then

§ 02 ML o 2+a
Vk(xz) b (xz) 3 xzyk(xz) 340 |Yk(x2)|

1 2
o4 vk(xl) -5 (%, - xl)yk(xl).

since y"((xl) = 0. But also

[y )| < y, (x)) for x, < x < X,
and so
*2
vox) =V (x) =% [ yZmax
k 2 k1 2 = k
1

1 2
(x2 - xl)yk(xl).

* Vi) =2

giving the required contradiction.

W -

It is now clear that yk cannot satisfy (1.2), which is all that is necessary

for the present uniqueness proof. The detailed asymptotic behaviour of - Yy is given

in §7.

Now suppose that k > k*., We wish to prove that yk blows up at a finite point.

w18
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If y"‘ < 0, we are done, for then we can prove, as in the proof of limited

uniqueness, that yk so long as both continue to exist, and so, if Yk does

> yk.
not blow up at a finite point, it is a solution of (1.1) which exists and is positive
for all x, and then the analysis in the existence proof shows that yk satisfies
(1.2), contradicting limited uniqueness.

In the case a < 1, we saw in §2 that y;. >0, t.e. Zy:' +x > 0; and so

y; >0 as long as yk > yk‘, 8o that, if Yk meets yk', we must have yl" < 0 at

the first point of meet (for decreasing x). But then the use of the energy function

vk shows as before that there is no point of meet, so that y"( < 0 and Yy must

blow up at a finite point.

The only difficulty occurs if o > 1, for then it is not clear that yl" may
not vanish. Of course, yl“ can only vanish for the first time (as x decreases)
where y; <0, i.e. where 2y: +x<0. But if a > 1, it is true that 2}':, +%x<0
for all x sufficiently large and negative, and so for values of k sufficiently
close to k*, it must be true that Y, crosses the curve 2ya +x =0,

Now consider two subsets of the semiaxis k > k*. The set 'I'1 is the set of k

such that y' becomes positive at some finite point. The set T, is the set of 'k
k 2

such that y," < 0 for so long as the solution exists.

The set Tl. is clearly open. Let us suppose for contradiction that it is

non-empty. (If it is empty, y;t <0 for k > k*, and we are done.) It is

certainly disjoint from '1'2.
2 is also open. For, if ko lies in Tz. we have already seen that

the solution blows up at a finite point or we would contradict limited uniqueness, and

The set T

it blows up with yl" + ==, Lemma 2 and its proof then assure us that for any k
0

sufficiently close to k yk also blows up at a finite point with y,'( + -», and

ol
that we can suppose (for k sufficiently close to ko) that y"‘ < 0 everywhere

that Yy exists, i.e. k is in '!‘2. Lemma 4 and its proof show that 'rz is

non-enpty.

-16-
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As usual, there must be some k > k* which is in neither 'x‘l nor '!'2. The i

corresponding solution yk must have the property that, at some finite point,

y"‘ = y; = 0. But then it is easy to check from (1.)) that y;' > 0, which forces

y"‘ to take positive values and places k in 'rl. This contradiction leads to the

conclusion that '1'1 is empty and completes the proof of uniqueness.




7. Asymptotic behaviour

We want to investigate the behaviour as x * -» of yk(x) for 0 < k < k*,
We have already seen that Yy is bounded. To obtain further information, we make

the substitutions

/2 1/4

t -% (x) V% 4 2(=%), = (-x)" 14,

Yk
where the function f will be chosen suitably later. Then (1.1), after some routine

calculations, becomes (with u = =-x)

w , " DR £ }_d_w_ S w
dtz (u1/2 2 f,)l’ 2 u(ul/z » f,)z dt 16 uz(ul/Z & t,)2
(7.1)
= - L - 2l'Ja w .
(“1/2 ’ f')2 lula/d(ul/2 = f')2

1f, in the first place, we take f = 0, we have

2 a )
dw, 5w __| _ 2wl
(7.2) o ] 3 [1 u]/4

w
+
a? 18, ul

Now multiply by w' = dw/dt and integrate. Recalling that yk(x) is bounded as

/6

x +» ==, so0 that w(t) = O(t1 ) as t + «», we see that we can, by integration by

parts, estimate

' -
[ % ae =0,
t

T
and this (and other similar estimates) leads to

',2 + '2 = constant + O(t-l/s)

It follows from this that w' and w are both boundeq, so that y = o(|x|"V4, {

1/4)

y," = 0(|x| ) and (7.2) is then oscillatory and asymptotically the distance

between successive zeros of w(t) is w.
In the case a > 2 we can now quickly complete the argument. For (7.2) can be
written as

-8 K

v eunoit Y,

,2:‘ %
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for some 4 > 0, and since t 2 € L1(1,°°), a routine application of the variation

of constants formula shows that

w=dsin(t - c)) + oe™%

’
proving (1.11).

1f a < 2, the leading terms on the right-hand side of (7.1) (assuming f' to
be small) are

2£" 2|w|®

-w + w + w,
u1/2 u‘u'6/4

and it turns out that we have to choose f so that the second and third of these are

of the same order. So for a = 2 we take f(u) = ¢ logu, and for o < 2 we take
1

f(u) = cu2 # (% - -:-u], where the constant c¢ (which may depend on a) has
still to be determined.
Let us first take the case a = 2. Then with the given choice of f the equation
(7.1) reduces to
dzw 4 2 ~2
——+w-i(c+w)w+0(t log t)

dt2

Set w = p cosb, w' = p sinf, so that

pz = w2 + w'z, 0 = tan-l(w'/w) @
Then

pp' = ww' + w'w" = % (c + wz)w' + O(t-zlog t),

and so, for some constant d, by an integration by parts,

Pad s (200 +vh) 40009 ) .
3t e
Also, |
2
%2.!“_;_:—‘.'_'-5--1+ ‘z(cv2+w4)+o<e21oqc)
t w +w 3tp

= -1+ -5‘? (¢ colzﬂ + dzcos4o) + O(t'zloq' t)

4 2 2 4, 4o -2
--14-3-;-(000-04dco-9) dt#o(t log t) .

GRS = i (T




Hence, integrating by parts and choosing c¢ so that
1
2
j' (c cosze + dzcos46)d0 =0,
0

i.e. choosing ¢ = -% dz, we have

0 = -t + constant + O(t ‘log t),
from which (1.10) follows.

The argument for the case a < 2 is similar. The equation (7.1) reduces to

2.1,
3 (g - emmng
__4-\1-2[ (c+|w[a)v#0(t33).
Introducing p and 6 as before, we see that
1
o ~daded -
pladdsone? V),
and so 2 1
E o 3 ---gq
de 2 (2 +01
ey s - (ew” + |w|“™) + o(e )
(7.3) R o
36" -1->a
2 2 a 2+a d6 2
= 1+23t (c cos“d + |a]®|cos8| )dt+o(t )
We now choose c so that
3
(7.4) [ (e cos®s + |a|%c0s**®s)a0 = 0,
0

and note that, by the transformation eotzo = z, and with the usual notation for the

beta function,

-1/2

- 2z) az

O
8
@
)
8
"
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The choice of ¢ from (7.4) is thus c = =€y vhere c, is given by (1.9), and with

1
this choice of ¢ we integrate (7.3) by parts to obtain

0 = ~t + constant + 0(t~ V2,

from which (1.8) follows.




8. The value of k*(2)

From now on we are concerned with (1.1) only in the case a = 2. Using the
relationship between (1.1) and the Korteweg-de Vries equation that was mentioned in
the introduction, Ablowitz and Segur [4] have shown a connection between the solution
of (1.1) which is asymptotic to kAi(x) as x *+ ®, i.e. yk(x) in our notation,

and the solution of the pair of integral equations (in which x is effectively a

parameter)
(8.1) K, (x,y) = ks (*) - %k [ %,x,8ni (55D as,
x
1 i 8 +
(8.2) K, (x,y) = -5k£ xl(x,-)u( >4)as .

Ablowitz and Segur prove the following results about the solution of these equations.

For x sufficiently large (depending on the choice of k), say x > Xy there

exists a unique solution of (8.1-2) that is square-integrable on [xo,"). Further, for

X 2 X we have

Ol
Kl(x,u) = vk(x) .
This result clearly suggests the importance of studying the operator Lx' where,

for any f € Lz(x,-), Lx is defined by

(8.3) o =3/ METY e .
x

Theorem 2 in §1, that k*(2) = 1, follows from the following series of lemmas, the
proofs of most of which are fairly immediate. One part of the proof is deferred to §9.

Lemma 8.1. l‘x is a compact, indeed Hilbert-Schmidt, self-adjoint operator in Lz(x,-).

Proof. This comes immediately from the observation that the kernel %M(L;—') of
L‘ is symmetric with
® o™ i 2
I]{M.x—z—')}dyd|<-,
x x

the convergence of the integral being a consequence of the exponential decay of

Al(t) as t + =,




Before stating the next lemma, we note that, at least in a formal sense, L

(8.4) L = I,
where 1 is the identity operator in L2 (==,=). This is nothing more than the
Titchmarsh-Kodaira form of the eigenfunction expansion (or resolution of the identity)
associated with the operator
2 4

(8.5) - "—2— o
at

@® =

in LZ(-O, =), for, as we shall see in §9, that expansion can be written formally as

@ @
(8.6) £ly) = %I M (=3 {I (3 ’)f(z)az}dy,
-0 -t

which is just (8.4). Since the eigenfunctions associated with the operator (8.5) are

obtained by solving the equation

= 9——‘2' + % tw = )w,
at
or, with s = -8),
2
9_12'_ = % (t + 8)w,
dt

t + 8
2 ’

accordance with (8.6). (They are only "generalized eigenfunctions" since the

we see that these eigenfunctions must be multiples of Ai( which is in
behaviour of Ai(t) as t + - prevents the eigenfunctions lying in Lz(-ﬂ,.).)
The next lemma gives an analytical statement of at least part of these formal

ideas.

Lemma 8.2. For any f e Lz(--,-), the function fo. which can be regarded as a

function defined on (-w,=), converges in mean as x + ~», and

un [l el = el
XS -

the norms being the norms in Lz (==, ),
Proof. This is just the Parseval theorem corresponding to the expansion (8.6), and 1

it can be proved formally by multiplying both sides of (8.6) by f(y) and integrating.

S st | 52‘3«
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A proof has to follow the lines of Theorem 3.7 of [10], which gives the analysis for
an operator in Lz(o,w) with a boundary condition at 0, the modifications for
L2(-°,°) being indicated in %3.8 of [10]. In our notation, Titchmarsh shows that
fo converges in mean in L2(-w,m; dk), where the Lebesgue-Stieltjes measure dk
measures the spectral density, and (8.6) shows that in this particular case this
measure is just Lebesgue measure. Furthermore, the Parseval theorem (formula (3.7.1)

in [10]) states just (8.7).

Lemma 8.3. For any finite x, ”ILx ”[: 1, where ”f... Hl denotes the operator norm

of Lx in Lz(x,w).

Proof. We note first that |]|Lx Hlis a nondecreasing function of x. For if ve estimate

the eigenvalue of largest modulus of Lx by the usual variational procedure, the set
of trial functions increases as x decreases, and so the modulus of the eigenvalue
does not decrease.

Now assume for contradiction that, for some X, the modulus of this largest
eigenvalue of Lx exceeds 1. Then, if Qx is the corresponding eigenfunction, we
have

Lx¢x - U¢xl

with |u| > 1. The eigenfunction ¢x is defined only on (X,®), but if we set

2 dy(y)s ¥ 2 X,
d(y) { 0 , y<x
then, for any x < X,

(LXO) (y) = up(y) for y > X,

and so

e ll 2 el = Jul Il'ell = Jul Ile]l .
2 2 2
L (==, =) L (x,=) L% (X, %) L% (-m, @)

But this contradicts Lemma 8.2 and completes the proof.
Lemma 8.4. k*(2) >1.
———— i

Proof. The equations (8.1-2) can be combined to give a single integral equation for

‘1' In fact,

I
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e X + 21.2
(8.8) K, (x,Y) mu(———l2 ) + k (z.xxl) (x,y),

and Lemma 8.3 implies ||| Li Il < 1.

Now suppose for contradiction that k*(2) < 1. Then (8.8) can be solved for any
finite x with k = % (1 + k*), since k <1, and this leads to a solution
Kl(x,x) = yk(x) of (1.1) which exists for all x. But at the same time k > k*, and
so we have a contradiction to Theorem 1.

Proof of Theorem 2. In view of Lemma 8.4, it only remains to prove that k*(2) > 1 is

impossible. So let us suppose for contradiction that k*(2) > 1. Then, by Theorem 1,
yk(x) exists and is bounded for all x and for all k with 0 < k < k*,
Now consider the equation

X +
2

2
3
(8.9) (f; + W) Kl(x,y} = Y]Kl(x,y) + 2{x1(x,x))2x1(x,y)

which Ablowitz and Seqgur show is satisfied by the solution Kl (x,y) of (8.8) for y > x

and x sufficiently large (depending on the choice of k). 1Indeed, if k is suffi-~

ciently small, (8.9) holds for all x and y. Writing
1 1
u-;(x+y), v-;(x-y), F(u,v) -xltx,y).

we see that F satisfies

»%p 2
(8.10) — (u,v) = uF(u,v) + 2F (u,0)F(u,v) .
2u

For any fixed v < 0, we can solve this equation for F(u.v) uniquely provided that

we are given F(u,0), which for consistency must satisfy (1.1), and also, for some u

9F
Ju

o-

the values of F(uo,v) and (uo,v). We can take for F(u,0) just yk(u). and if

u, is sufficiently large (depending on k), we can take l‘(uo,v) = Kl(uo v 8y = v),
with the corresponding value for %E (uo,v). If 0 < k < k*, the solution of (8.10)

then exists for the particular value of v and all u, since it is a linear equation

v

with continuous coefficients, and the solution is analytic in k. Since this is true i
for any one particular value of v, it is true for all v < 0. Also, r(l—g-l, L;J-)
coincides with KI (x,y) at least for k sufficiently small (when we can solve (8.8)

to give K

and show that it satisfies (8.9), and (from (8.8)) Kl(x.y) ie analytic

1
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in k except for possible singularities at those values of k for which k-z is

+ -
an eigenvalue of Li. Hence F-—xxz " .__1*2 ] and Kl(x,y) coincide (and l(l is
analytic in k) for all k with 0 < k < k*, and all x and Y.
2

|, where (for any fixed x) k_ is the

Now let k increase from 0 to (k
0,x 0,x

largest eigenvalue of Li. Since we are assuming that k* > 1, it certainly follows
from Lemma 8.2 that lko,x' < k* if x is chosen sufficiently large, and so, by what
we have said above, l(1 (x,y) remains analytic (and so in particular bounded) as k
increases to [ko,xl' But since k(-)?x is an eigenvalue of L’z(, this is possible

(from (8.8)) only if

L]
+
(8.11) | a3 =Yy, (nay = o,
= 2 0,x
where wo - is the eigenfunction of Li corresponding to the eigenvalue k:)zx. We
’ ’

have merely therefore to show that (8.11) is impossible, and the theorem is proved.

To show (8.11) impossible, we note first that wo 5 must be an eigenfunction of
’

L , with eigenvalue + k-l . Thus
x ="0yx
1 * ALt
8
(8.12) Vo, = :3k0’x£ Ai( = ]\bo'x(s)da,

and setting y = x, we see from (8.11) that

(8.13) v (x) =0 .

0,x
Making the transformation s = t - y,' we write (8.12) as

Yo

1 9 1
AT iRk i oM t)wo'x(t - y)at,
x+y

so that

' = l - xt - " l ' -
95 W) = s 2 ko'x{ Al "i'x)"o,x“" Ly A3 t)ug, (& y)dt}

o
il | + 8.,
= 4 Eko,x ,{ Ai 1-2——)00"(!)68,

using (8.13) and the backward transformation t = s + y. Thus "('),x is also an

eigenfunction of I‘x with eigenvalue ¥ k(-)lx’ and the same argument as was applied
’




to wo,x shows that also

4 V!

o,x(X) =0 .

The process can now be repeated to conclude that wo 5 and all its derivatives vanish
’

at x, implying that wo o is identically zero, which is impossible for an
’

eigenfunction.

OO ——




9. Proof of (8,6)

We want to obtain the eigenfunction expansion associated with the operator

2

k (9.1) L--d——?-+%x
dx”

2
in L (-»,»), and this can be found by following various formulae given in (10].
As in §3.1 of [10), the procedure is o¢ follows. First congider the problem

asgsociated with the operator (9.1) in L2(~m,0), and let ml(u) be the (uniquely

determined) function such that
06x,) + m (o, € L2 (-2,0),
where 0,4 are the solutions of Ly = uy for which
6(0,u) = 1, 6'(0,u) = 0,
$O,p) =0, ¢'(0,u) = -1 .
In fact, as one of the examples in Chapter IV of [10], 54.13, Titchmarsh works out the

function m()) associated with the operator

in LZ(O.w), and the equation My = Ay, and this, by the transformation ¢t = -%-x,

A =4y, m()) = —Zml(u), gives the function ml(u) that we want. Thus

(l)'(_ A3/2)

Lo i
m (W) = 22 WD (2,3/2) Yo
1/3 3

Al Je (x)(z 3/2) % (1)(2 3/2)}
2 A 1/3 1/3

(1)

Here, in standard Bessel function notation [5), H is the Hankel function of the

¢ 1/3
: first kind, and we have the relations
(1) o 2 goTi/6 -ni/2 !
1/3(1) s ol KI/J(” ) |
i
’ 2 =-ni/6, =-ni/3 =-3ni/2, _ -3ni/2 !
o do {e "1/3‘“ ) uIl/J(u )1,
; :
-27=
é
ﬁ




where K1/3 (already mentioned in 51) and 11/3 are Bessel functions of imaginary

arqument. Hence E

a [.,,172] -ni/3 2 /2 2 3/2
3o {( 2) [e "1/3(3 (=0 %) - "“y_}(i -0 ¥ )]}

2 1/2[; -w/3. 2 (_A)a/z) % (-A)3/2]]

ml(u) -
o
Lk 17303

= 11,5

d -1/2, mi/3 1/2 2 3/2
—_— (AL (=)) =~ - —(~
) i(=A) 3 ie (=2) L t3(3( A) ]t

-1/2__ /3, 172 2 3/2 ’
ie (=)) 11/3(3 (-\)¥4)

N =

Ai(-)2) - 3

Similarly, we define mz(u) to be the uniquely determined function such that

B0k, ) 4 m (e xou) € L2(0,),

where 0,4 are as before. This function is also in effect worked out by Titchmarsh

in 54.12 of [10], and

1
mz(u) - -;%(0.&)/00(0.)\)'
where, as before, ) = 4y, and
R P - AR Y
Vot ) (t = A) x1/3{3 (t - A) }.
so that

1
nz(u) s Ai(-h)/Ai(-X) .

Now we note ‘hat mz(u) is real for real u, and this simplifies the expansion formula,
as Titchmarsh points out in formula (3.1.12) of (10]. (Titchmarsh actually supposes
that m (u) is real for real u, but the adjustment is easily made.) Indeed, with a

suitable interpretation of the infinite integrals, the expansion formula becomes

(9.2) (0 = 2 [ b maEm) [ v,y fyay,

where

Oz(x.u) = 0(x,u) + -z(u)O(x.u)
and

du .

']
1im
9.3 E) = o0 £ - im

1
nl(u + 16) =~ n\zfu + 16)

2
Now, by definition of m Oz(x.v) is a solution of Ly = yy which is in L (0,®),

20
and so
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Vo) = aAL(3 x - 1),

for some constant C. But also 02(0.\1) = 1, and so in fact

vt = ALG x - 2) ALe-n) .

To determine £, we note first that, for the well-behaved functions with which

we are concerned, we can pass to the limit under the integral sign in (9.3) and obtain

B . i e
dau unl(u) - -2(&0)

Hence (8.6) follows from (9.2) if we can show (for real u) that

1

2
— e w 2n{adL(-2)}° .
nllu) -204)

=-im

(9.4) 2(nl(u) - nz(u))

12, mizaf i‘- 1/2 3 . .3 A, T 2 | _,.3/2
3/ %e [n(x)“ (-2 11/3(3“) B+Ai(x)(x) 11/3(3“) )]

{Au-x) - VMV R (-n”’)} AL (=)) '

Since Ai(-A) and (-7«)1/21 (% (-A)3/2) satisfy the same second order differential

1/3
equation, we know that their Wronskian (which appears in the numerator of (9.4)) is

independent of A, and letting )\ + -=, g0 that
A=) - %'-1/2(_”-1/4"’(_%(_”3/2)'

2 Y2 .1 /2,172, . -1/8 (2 . 3/2
V2 R @0V - 1312120 Vg R (YY),

we see that the numerator of (9.4) becomes %'-I“M/a‘ Thus

1 2
-im W = ZI(M(-M') '

as required.
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