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S1M4ARY

The general multiplicative model (formula (2)) represents the

hazard function as the product of an “underlying” hazard rate, A(t),

of unspecified form and a certain function of known form, g(z; 8),

where z is a vector of concomitant variables, and ~ is a vector

of unknown parameters. Assuming that A(t) can be approximated by a

constant between any two consecutive failures, the general forms of

likelihood function are derived (formulae (6) and (7), or (9) and (11)).

The likelihood utilizes the available information on the time of

exposure to risk of each individual (until failure or withdrawal).

Special cases, when the z’s do not depend on t are discussed in

some detail (Section 7). Multiple failures are handled in a simple

manner — no ordering of failures is required (Section 8). Estimation

of empirical survival function when there are no covariates is

discussed in Section 9. An example using heart transplant data, is

given (for illustrat ive purpose only).
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1. INTRODUCTION

Of recent years there has been considerable interest in the use

of multiplicative models for hazard rates, as a means whereby the

influence of concomitant variables on survival can be expressed, and

so allowed for in the analysis of survival data. Methods of analysis

have been developed for estimation of parameters, reflecting

dependence of survival on concomitant variables, which are robust

with respect to the form of hazard rate function (provided the

nvltiplicative model is appropriate). Use of these methods does

involve sacrifice of some of the information typically available in

survival data.

In this paper the nature and likely effects of the omitted in-

formation are studied, mainly by comparison of the “critical functions”

of the parameters reflecting dependence on concomitant variables which

have to be maximized to obtain maximum likelihood estimators, according

as to what information is included and what further assumptions about

the model are made.

2. NOTATION

We suppose that N individuals in all are under observation at

some time or other during the study. We also suppose that observation

continues over a single interval of time — that is, that no individual

withdraws and then reenters the study later. The i-th individual will

be denoted by (i); for each individual (i), the data include times

of entry and of withdrawal or death (failure) and 1s. -valu.~ ~f c

concomitant variables (z11, ...,z51
) = lj . :

~~~~~ 
~
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Time t = 0 may correspond to date of initiation of a treatment

(as in many clinical studies) or to date of birth (as in some

occupational studies). In the first type of study it will very often

be the case that the time of entry is 0 for all individuals, but this

need not be so in general.

If, among the N individuals, n are observed to fail during

the course of the study, we denote the ordered failure times by

t1 <t2 < ... <t a. We denote the individual failing at time t
3 

by

(i(j)). (Multiple failures, when m
3
(>l) failures are recorded at

the same time, t., are discussed in Section 8.)

The set of individuals in the study at a time t — those “exposed

to risk” of being observed to fail — is called the risk set at time t.

In particular the risk set at (“just before”) the j-th failure — at

time t. — is denoted by P.. We also use the notation R! to denote
3 3

the set of all individuals who are under observation for at leas t par t

of the interval I. E (t. 1, t.] (j = l~ ..., n).

3. FORMULAT IO N OF THE PROBLEM

We are interested in estimating the survival distribution

function (SDF)

S(tj~) = Pr(T<t~zJ, (1)

where I denotes failure time . Usually it is impracticable to have

sufficient numbers of individuals with common (or even approximately

common) sets of values of the z’s, so it is necessary to make some

asstaptions about the way the z’s might combine to affect the SDP.

It might also appear necessary to make assumptions about the form of
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dependence on t , specifying at least a parametric model for this.

While this is so, it is possible to estimate parameters reflecting

dependence on the z’s, without making detailed assumptions about

the form of SDF as a function of t .

4. THE GENERAL MULTIPLICATIVE MODEL

These methods are based on use of the general multip licative

model for the hazard rate function

_dlogS (t~~)/dt = A (tlz) = A (t)g(z;~) , (2)

where X(t) is an “underlying” hazard rate of unspecified form

(except that ACt) �O), while g(•) is a known function of ~ and

of r unknown parameters 81, 
~~

• • ‘  8~ Usually r is taken equal

to s, and g() is assumed to be a function of 
~~~18~

z
~ , 

but

this is not essential . If z varies with time, we can write z(t)

on the right hand side of (2).

5. MAXIMUM PARTIAL LIKELIHOOD ESTIMATORS

A commonly used likelihood function forestimating the B’s

utilizes information only on individuals in the risk sets R.. Given

that a failure does occur at t.., among the risk set R , and I ’

supposing z=z(t), the probability that the individual (i(j)) is

the one which fails is

~(z~(J)(tJ
); ~)(Z~~~(L~(t~); ~)J~~ (3)

where means that individual (1) belongs to R~. This does

not depend on A(t). Cox (1972) used the product

7- 
-
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n [• ~ (z~ (J) (t ) ) ;  

~~~ , (4)

L~~R~~~~~~~
t j ) ;  ~)j

as a “partial likelihood” from which estimation of the B’s can be

found by maximizing this statistic. While this approach leads to

estimators of the B’s uninfluenced by ACt) it should be noted that:

(i) Only the information t . ,  R. and (i(j)) is used, that is,

information on events inside the intervals I~ is ignored. (This is,

why the term “partial likelihood” is applied to (4));

(ii) In order to estimate S(tlz) it is still necessary to

introduce some assumptions about the form of A( t ) .

6. MAXIMUM LIKELIHOOD ESTIMATION

In order to approximate the form of A (t) it may be supposed

that it remains constant over each interval, I~ , but can change

from interval to interval. Under this assumption

A (t) = A~ for t
)1 <t �t~ (5)

and the likelihood function for the data described in Section 1, with

the model (2) is

L(X; ~) =L (X1, ... , A~ ; B) = 11 L. (A1 ; ~) , (6)
3*1

where

L
1
(A
1
; 8) =A

J~
(z~(J)

(t
J
); 8)exp[-A

1 ~ f g(~~(t); ~)dt] , (7)
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and denotes that part of I . over which (~) is observed. Note

the difference between R! and R. - R! consists of P., p lus all
3 3 3  3

those individuals who withdraw .

We first maximize (6) with respect to the A
3
’s (supposing

the B’s fixed) and then maximize the resultant value, L(~(~); ~) ,

with respect to the B’s.

Clearly

n
max L(A; 8) = fT [ma x L.(A .; ~)]  . (8)

j=l A~ ~

It is easy to show that

—A w -1 - 1 Lmax Ae = w  e ,
A

corresponding to A = w ~ . Hence L(X; ~) is maximized by

= [ 
~ 

f g(z (t); ~)dt]~~ , (9)
3 —  &~ ‘ i .

3 3t

and the maximized value is

L(A (B); B) = e ”i~rJ 
g(z~(J)(t.); ~ . (10)

j*l 
~ 

f g(~~(t); ~)dt
fERJ 1j e

The maximum likelihood estimators of the B’s are those values

- 

which maximize the critical function
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e~L(~(B); = 
n [ g(z1(.)(t .); ~ 

1 (11)
j i ~ ~ 

f g(z2(t; 8)dt t
[~eCRJ ‘j e j

Comparing (11) with (4) we see that the numerators are identical but

the denominators differ,

~ g(z~(t.); Q) in (4)
LCR

J

being replaced by

~ J g(z~(t); 8)dt in (11).
&R! I. —

~ 3e
Whereas the quantity in (4) depends only on the risk set (R

i
) and

values of the concomitant variables “at t.,” in (11) it depends on

the risk set (RJ ) during 1
3 

and the whole periods of exposure of

individuals (~) in I..

7. SOME IMPORTANT SPECIAL CASES

In practice 2(t) will not be known for all t. In many cases,

only fixed values of concomitant variables are used — that is 2 (t )

does not depend on t , and so can be represented as z. If this is

so,then

J g(z
e; 8)dt = hj~~~(z~ ; ~), (12)

‘j e
where h

3~ 
is the length of time (“person X time units exposed to

risk”) for which (t) is under observation in I~ . For individuals

_ _ _ _ _ _ _ _  _ _ _  - - -~~~~~~~ -~~~—-  —~ - -~~~ -- —--~~~~~~~~-.
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under observation for the whole of I.,
3

h . = t . -t. = h .  . (13)3e ~ j-1 3

If precise information on times of entry and withdrawal are not

available, more or less arbitrary approximations must be used. If

(~) either enters or withdraws from the study (but does not do both)

in I . one might take h
3e ÷ fh~; if (e) both enters and

withdraws in I., one might take h. +1h . . Sometimes there
3 3e 3 3

may be specific information on withdrawal and/or entry “habits” which

might lead to modification of these formulae.

From (9) and (12) we see that

A. = h.~ g(z~; ~)]_l , (14)

and the critical function (11) takes the form

n r g(z. . ;~ )1
I . (15)

j=l ~ h.~g(L~; ~fl
L~i

n
This is a constant multiple TTh. of

j=l ~

~ r g(z.
rr , (16)
j=l 
[jR!

0it~~ e; ~)j3

where = h~~~/h~ is the proportion of I~ for which Ct) is

under observation.

~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~
—

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
-
~~~~~~~~~~

-
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The critical function (partial likelihood) (4) is now

n r g(z.~~.~ ; ~)
TT I ‘l tJ ) f (17)
J=1 I ~ ~~~I ecR .L 3

Comparison of (16) and (17) shows that they differ in their

denominators: — (a) the summation in (16) is over R!, while that

in (17, is over P., thus omitting individuals withdrawing in I~ ;

(b) the factors 0~~ in (16) reflect different proportions of I
i

during which the corresponding individuals were under observations.

To sum up, (17) could be obtained from (16) by (a) ignoring individuals

who withdrew during I
i’ and (b) supposing all individuals who

enter (and do not withdraw) during I
i 

to have been under observation

for the whole of the interval .

Situations when there are no new entries deserve, perhaps,

special attention . These are typical in clinical trials, where t is

the follow up time since initiation of the treatment .

For computational purposes, it might be useful to represent (16)

and (17) in more convenient forms.

Let denote the time of departure (by failure or withdrawal)

for individual (e) .

Then

0 for t � t .

= (T
e 

- t
3 1

)/h~ for t
1 

< < ~~. (18)

1 for t � t.,e

- — .- — —, 
~ c. ,.. — ~~~~~~~~~~~~~~
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so that (16) takes the form

n g(z.(.~~; B)— 
. (19)

LJ 1 
~~Oj1~(z~; ~)

If we were to define

0 if T~~~~t .
e. = (20)

1 if

formula (19) would correspond to (17).

8. MULTIPLE FAILURES

If several failures — m., say — are recorded at the same time,

then, in practice , it means that the time unit of record is not

sufficiently small to distinguish them . However, it is possible to

establish a likelihood function, treating the failures as if they

really did occur at the same tine , and so to obtain maximum likelihood

estimators.

We denote the m . individuals failing at time t. by

(i(j, 1)), (i(j, 2)) , ..., (i(j, m.)) (j =1 ,2, ..., n). Of course,

we must have m +m + ... +~n � N.1 2 n

The likelihood function is

m.

L(A; 8) Li ~~~~~~~~ ~(~~(J,~)(tJ
); ~)}exp{_A~ 

~ 
I g(z~(t); ~)dt]}.

3 3t
(21)
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Maximizing with respect to ~ gives

= m .[ 
~ 

f g(z (t) ; ~)dt1
l (22)

I .  ~ 
—

j 3e 
—

and the maximized value of the likelihood is

in .
3

n in . n ~~~~~ k)(tj); ~)
L(~(~); (~) = e~~~[FT m .3JrT 

k’~l 
. (23)

j 1 -~ j  1 
~ 

f g( 10 (t) , ~)dt
£cR! I .
- 3 3t

If 1.~ I , in (22) , we obtain Br eslow ’s (19 72) formula .

The ~‘s are obtai ned by maximizi ng the crit ica l func t ion

n m . n T~~(~1(J~ ) (t J ) ;  ~
)

e
~ 1T~T m .3 ) ’ L(

~~~
) ;  ~) = IT ~

-
~~
- , (24)

j 1  ~ j l  
~ 

f g(z~ (t); ~)dtLeR! I.
j 3e 

-

which d i f fers  from ( 11) only by substitution of

~) for g(z.(.)(t.); 8) ,

in the numerator.

If the z’s do not depend on t , then in place of (24) we can

use the critical function

~ ~~~~~~~~~~ ~~
fT~~~

1 
. (25)

j l  

~ 

O~~~(z~ ; ~) 

-
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9. ESTIMATION OF SURVIVAL FUNCTION WHEN ThERE ARE NO COVARIATES

When the covariates are absent so that g(.) ~1, formula (22)

gives

= iu.{ ~ h.1} (26)
~ ~ £cR’ ~

3

The corresponding estimate of the SDF (for t~~1 
�t <t .) is

Sit) = exp{~~ Xfhf 
-

= exp
[

~J~~ m
f(~~ 0f~ } 

- m~(t ~t~~1)h~~{~~~ 
eje]] 

(27)

for t~~1 
<t <t . Ci = 1, . . . ,  n).

For t >tn we have S(t) = S(t ) formally, but there may be

relatively few data for these t (they correspond to individuals

under observation for longer periods than that to the last failure).

If ~ i j
~ (16) — that is, there are no new entries, and

if R~, Rf 
— that is, there are no withdrawals — then (27) gives

S(t) = expE’ m
f
R
f 

- m .R (t-t. 1)h~~~, t~~~~1 � t< t ~ . (28)

By comparison, the Kaplan-Meier estimator of S(t) is

p.
S*(t) = fT (1 -mR ~~) (t. 

1 < t<t .), (29)
f=l

where Rf is the number of individuals in Rf.

Another approximation, given by Thompson (1977), leads to a

formula like (29), but with R increased by one-half of the number£

L ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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of withdrawals in I~ . Of course, when there aie no multiple failures,

formulae (22) through (29) are valid with mf’s replaced by ~

10. EXAMPLE

The data in Table 1 are adopted from Crowley and Hsu (1974)

(“Covariance Analysis of Heart Transplant Survival Data:’ Technical

Report No. 2, Division of Biostatistics , Stanford University). These

are survival data for N=64 patients who had heart transplants.

The date of entry corresponds here to the date of operation, so that

the time at entry is equal to zero for each patient in the follow-up .

The investigation covers the period January 6, 1968 to April 1, 1974

that is 2276 days . The time (in days) is the time beyond which

individual (t) was no longer under observation (after death or

withdrawal). The data are arranged in increasing order of

(column 3 of Table 1). Note that for patient (1) t
1 
=0k ; we have

assigned arbitrarily the value 0.5 days. The numbers in parentheses

in column 1 are the ID numbers of the patients, assigned to them at

entry. Column 2 gives the values of the indicator variable

equal to 1 if individual (t) is observed to die, and 0 otherwise.

There were n= 39 deaths, at times t., . (Note that when

= t. ) The values of 
~i’ 

when iS~~=0 are distinguished by

asterisk .

Out of 8 concomitant variables given in the original paper, only

two are shown here: age at entry, z1 (in years), and the so called

“mismatch score”, z2, based on tissue and blood typing of each

patient .

t 
_ _

_ _  

________
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We use these data for illustrating the methods of estimation .

There is no claim to evaluate the study as a whole.

The model used here is simply

X(t.; z.) = X.exp (81z1. + 82
z
2~
).

The parameters 8i~ 
and the A

s
’s are estimated by two approaches.

(a) Using the information on withdrawal times, with the risk

sets RJ - The likelihood function (19), with 
~~~ 

defined in (18),

is used. We notice a multiplicity at t17 (m17 =2). The estimates

of B’s and their estimated standard errors are:

B1 = 0.0705, S.D.(~1) = 0.0233;

~2 
=0.6644, S,D.(~2

) = 0.2876

(b) Ignoring che information or~ withdrawal time , that is, using

only the risk sets, R.. The likelihood function is still given by

(19), but with 0~~ defined by (20). The results are:

= 0.0699, S.D.(B1) = 0.0234

82 
= 0.6817, S.D.(~2) = 0.2883

We also evaluate the estimated survival functions ignoring covariates,

that is when g(•) =1 , in three different ways.

(a) S1(t) - utilizing information on withdrawal times with

sets R!
3

(b) ~
“2(t) - assuming that the withdrawal time is at the beginning

of the interval for all those who withdraw in the interval , with

sets R~.



-15-

Since there were no new entries, A
3
(t), is estimated from the

F formula

64 1
= m. [ ~ O.9h.] (30)

~ e=l ~~~~~~~~~

with defined by (18) for appraoch (a), and by (20) for approach

(b). Then S1(t) and i~(t) are calculated from (27) and (28)

respectively.

(c) S*(t) - the product—limit estimates, with sets R
3
.

The resulting SDF’s are given in the three last columns of

Table 1. There are not many withdrawals between any two deaths (this

is especially true for early deaths). In these circumstances is to

be expected that these three estimates of SDF do not differ greatly

as is, indeed , the case.
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TA8U~ L

Est imat ion of Survival Function (Or IIi~~rt Trans plant Data

I (ID) 6~ T t ~ t~ h~ ~it 1t R~ S ( ~~ ) S2(~(~ ~~~~~

1 (38) 1 0 .5 0.5 0.5 41.5 0.87 ô~ ~4 .9~~4 .9844 .9844
2 (29) 1 1 2 3.5 54.3 0.47 63 63 .9690 .9690 .9638
3 (100) 0 1’ 35 .2 0.67 .9690 .9690 4
4 (4) 1 3 3 3 2 40.4 1.66 62 61 .9532 .9332 .9531
S (20) 1 10 4 10 7 45 .3  2 .76 60 60 .9375 .937S .9372
6 (74) 1 1 5 12 2 29.2 0.61 59 59 .9211 .9217 .9214
7 (98) 0 13’ 28.9 0.77 .9164 .9163 4
8 (3) 1 15 6 15 3 54.3 1.11 58 57 .9058 .9057 .9052
9 (18) 1 23 7 23 8 46. 9 2.05 56 56 .8898 .8897 .8890

10 (70) 1 23 8 25 2 53.0 1.68 55 55 .873 7 .8736 .8728
11 (90) 1 26 9 26 1 52 .5 0.82 54 54 .8577 .8516 .856 7
12 (79 ) 1 29 10 29 3 54 .0 1.08 53 53 .8411 .8416 .8405
13 (92) 0 30’ 45 .8 0.16 .8400 .8399 4
14 (22) 1 39 11 39 10 42. 8 1.38 52 Si .8254 .8252 .3241
IS (45) 1 44 12 44 5 36.3 0.00 50 50 .8090 .8089 .8076
16 (10) 1 46 13 46 2 42. 5 0.61 49 49 .7921 .1926 .1911
17 (37) 1 47 14 47 1 61.7 0.87 48 48 .7763 .7762 .7746
18 (83) 1 48 15 48 1 53. 3 3.05 47 47 .7600 .1599 .7531
19 (87) 1 50 16 50 2 46. 4 2.25 46 46 .7436 .7435 .7416

17 51) 1 
~~~ 

45) 4 5) .7113) .7112) .7031)
22 (36) 1 54 18 54 3 49.1 2.09 43 43 .6950 .6949 .6922
23 (32) 1 60 19 60 6 64 .4 0.69 42 43 .6786 .6785 .6757
24 (13) 1 63 20 63 3 56.4 2.16 41 41 .6623 .6622 .6592
25 (13) 1 64 21 64 1 54 .6 1.89 40 40 .6459 .6456 .6426
26 (68) 1 65 22 IS 1 45.3  1.68 39 39 .6296 .6295 .6293
27 (65) 1 66 23 66 1 51.3 1.12 38 38 .6132 .6131 .8098
28 (89) 1 68 4 68 2 51. 4 1.33 37 37 .5969 .5963 .5933
29 (97) 0 109’ 23.6 1.71 .5853 .5850 4
30 (11) 1 121 25 127 59 48.0 0.36 36 35 .5804 .5300 .5764
SI (24 ) 1 136 26 136 9 52.0 1.62 34 34 .5635 .5632 .5594
32 (94) 1 161 27 161 25 43.9 1.20 33 33 .5467 .5463 .5425
33 (96) 0 164’ 26 .3 0.46 .5454 .5450 4
34 (67) 1 22 8 28 228 67 19.8 1.02 32 31 .5294 .5290 .5250
35 (93) 0 236’ 47.8 0.33 .5231 .5232 4
36 (51) 1 253 29 259 25 48.8 1.08 30 29 .5117 .5111 .5069
37 (16) 1 280 30 280 17 49.5 1.12 28 28 .4937 .4931 .4888
38 (84) 1 291 31 297 17 42.8 0.60 27 27 .4758 .4752 .4107
39 (78) 0 304’ 49.3 0.81 .4705 .4699 +
40 (58) 1 322 32 322 25 48.1 1.82 26 25 .4573 .4566 .4518
41 (88) 0 338’ 35.4 0.68 .4558 .4549
42 (86) 0 338’ 48.9 1.44 .4511 .4497
43 (81) 0 438’ 52 .9 1.94 .4465 .4446
44 (80) 0 455’ 46.5 1.41 .4450 .4428
45 (76) 0 498’ 52.2 1.70 .4410 .4335
46 (64) 1 551 33 551 229 46.9 0.12 24 19 .4362 .4332 .4230
47 (71) 0 583’ 46. 5 0.97 .4235 .4197
48 (72) 0 591’ 26.7 1.46 .4225 .4136
49 (7) 1 624 34 624 73 51.0 1.32 18 16 .4114 .4069 .4013
50 (69) 0 659’ 48.0 1.20 .4020 .3974 4
51 (23) I 130 34 730 106 58.4 0.96 IS 14 .5837 .5789 .3726
52 (63) 0 814’ 32.7 1.93 .3606 .354 7 4
53 (30) 1 $36 36 $36 106 45.0 1.58 13 12 .3548 .3486 .3416
$4 (S9) 0 $37’ 41.6 0.19 .3546 .3483
55 (56) 0 $74’ 38.1 0.98 .3457 .3394
56 (46) 1 994 37 994 158 48.5 0.81 11 9 .3184 .3119 .30 36
57 (21) 1 1024 3$ 1024 30 43. 4 1.13 3 S .2810 .2 753 .2657
58 (49) 0 11050 36.3 1.35 .2696 .2619
59 (41) 0 1265’ 45.5 0.98 .2486 .2377
60 (14) I 1350 39 1350 326 54.1 0.87 7 $ .2378 .2254 .2205
61 (40) 0 1366’ 45.6 0.73
62 (33) 0 1536’ 49.0 0.91
63 (34) 0 1548’ 40.5 0.38
64 (25) 0 1774’ 33.2 1.06
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