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PREFACE

The following report represents the third review of
research conducted under the auspices of the Joint Services
Electronics Program at the Institute for Electfonics Science
at Texas Tech University. Specific topics covered include,
fault analysis, large-scale systems, stochastic control and
estimation, nonlinear control, multidimensional system theory,

optical noise, and pattern recognition.
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ABSTRACT i

The fault diagnosis problem for a linear systm. yhose transfer function
matrix is measured at a discrete set of frequencies is formalized. A measure
of solvability for the resultant equations and a measure of testability for
the unit under test is developed. These, in turn, are used as the basis of

algorithms for choosing test points and test frequemcies.

INTRODUCTION- .

Conceptually, the fault analysis problem for an analog circuit or system
amounts to the measurement of a set of externally accessible parameters of
the system from which one desires to determine the internal system parameters

or equivalently locate the failed components as illustrated in Figure 1.

Figure 1. Conceptual Model of Fault Diagnosis Problem.

Here, the measurements, m,, may represent data taken at distinct test points

or altsernatively, data taken at a fixed test point under different stimuld.
Similarly, the Ty represent parameters characterizing the various internal

system components. Here, a single parameter may characterize an entire component,

say a resistance, capacitance or inductance. Alternatively, a component may be




represented by several parameters: the h-parameters of a transistor, the
poles and gain of an op-amp, etc. In general, one models a system component
by the minimum number of parameters which will allow the failure to be iso-
lated up to a shop replaceable assembly (SRA) with all "allowed" system fail-

ures manifesting themselves in the form of some parameter change.

To solve the fault diagnosis problem, one then measures m = col(ni) and

solves a nonlinear algebraic equation
) I m = F(r)

forr= col(ri) to diagnose the fault. The parameters in the resultant r
vector which are out of tolerance then indicate the faulty component.6
The purpose of the present paper is to give an explicit formulation of
the fault diagnosis equations which arise in the maintanence of linear systems,
Here, one measures the system frequency response as observed from a specified
set of externally accessible test points at a discrete set of frequencies
and it is desired to solve for a vector of internal system parameters, r,
which completely characterize the frequency response matrices of the in-

dividual system components; zi(s,r). L& 1y 25 sevs Qe
In the following section the explicit form for the fault diagnosis

equations is derived for a given set of test frequencies., A measure of solva=-

bility of these equations is then developed in section3 and empolyed in

section 4 in an algorithm for optimally selecting test frequencies. The measure

of solvability for the fault analysis equations, given an optimal choice of

1,2,5

test frequencies, is then taken as a measure of testability for the unit

under test (UUT) and is used as the basis of an algorithm for the optical choice of

3,4,5

test points, Pinally, a number of examples are presented in seciom 5.




EXPLICIT FORM OF THE FAULT DIAGNOSIS EQUATIONS
In the case of a linear time-invariant circuit or system, the fault

diagnosis equations may be expressed in analytical fotn.6 Since the fault
diagnosis equations deal with the relationship between the externally measure-
able system paramsters, =, and the internal component parameaters, r, ve

adopt a component connection model as the starting point for the derivation
of the fault diagnosis oqna:im.7’8

ployed large scale system models in which the components and connections in a

This is one of several commonly em=-

circuit or system are modeled by distinct equations, thereby permitting one to
explicitally deal with the relationship between the individual component
parameters and the composite system parameters,

Since the present study is restricted to linear time-invariant systems,
we assume that each component is characterized by a transfer function matrix
which iz dependent on the potemtially variable component parameters, Zi(s,r).
Por the classical RLC components Zi(s,r) may take the form R, Ls, or 1/sC
for the case of a resistor, inductor, or capacitor, respectively. More
generally, one may model an op-emp by the transfer functiom k/ (s—pl) (s-Pz)
vhers the parameter vector, r, now represents the three potentially variable
component parameters; k, Pys Pyi OF & delay by ko’r, etc, Although the symbol
Z is used, the components are not assumed to be representad by impedance

matrices. Indeed, hybrid models are used in most of our examples. For the

-purpose of analysis, it is assumed that all faults manifest themselves in

the form of changes, possibly catastophic, in the parametar vector, r, with
the frequancy characteristics of the components unchanged., Although not
universal, this fault hyvothesis covers the most commonly encountered situ-
ations and subsumes the common industrial practice of assuming that all
failures in analog circuits and systems take the form of open and short

circuited components, ’
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Our system components are thus characterized by a set of simultaneous

equations
2. b:l. - zi(s,r)ai 1=1, 2, .00y q

where a, and bi denote the component input and output vectors, respectively.

For notational brevity, these component equations may be combined into a single

block diagonal mstrix equation
3. b = Z(s,r)a

vhere b = col(bi). a= col(ai) and Z(s,r) = diag (zi(s,r)). )
Although there are many ways to represent the connection in a circuit or
system; say a block diagram, linear graph or signal flow graph, any such repre-
sentation is simply a graphical means for displaying a set of connection e-
quations: Kirchodf laws, adder equatioms, etc. As such, for our component
connection model we adopt a purely algebraic commection model in which the
connection equations are displayed explicitally without the intermediary of

some kind of graphical comnection diagram. This takes the form

4 i ko
Ll e

where u and y represent the vectors of accessible inputs and outputs which are
available to the test system. In simple systems, thc' connection matrices, Lij’ ﬂ
are usually obtainsble by inspection, whereas, in more complex systems,

computer codes have been developed for their d-rl.vation.7 Moreover, they are

assured to exist in all but the most pathalogical systu-.a
It is the pair of simultaneous matrix equations 3 and 4 which are termed

the component commection model. By combining equations 3 and 4 to eliminate

6’7

the component input and output variables, a and b, one may derive an expression

for the transfer function matrix observable by the test system between the test




input and output wvectors, u amd y, obtaining

' 5. $(s,7) = Ly, + Ly (1 = z(s,r)x.u)'lz(..r)x.u ’
» where
L ! 6. y = S(s,r)u

For a linear time-invariant system the transfer function S(s,r) is a
complete description of the measurable data about the wnit under test
available to the test system. Moreover, being rational it is completely de-
termined by its value at a finite number of frequencies. As such, without loss

of generality, we may take our measured data to be of the form
7. eol[S(sl,t). S(8507)5 ees S(sk,r)]

The fault diagnosis equations then take the form

—, -1 s—
S(sl,r) I.zz + I‘ZI(I.Z(’I'r)lil) 2(31,1')1.12
8. -1
| S(sz.r) Lzz + Ln(l-z(sz.r)r.u) z(sz.r)l.u
]
-1l
S(ay,1) Lyp + Lyy(1-2(s,r)Lyy) “Z(sy, )Ly,
- pa—— } pu—

0. Since S(s,r) is, in general, a matrix, the fault diagnosis equations as
derived above take the form of a matrix (eol[S(si,r)])vnluod function of a vector
valuad variable, r. Computationally, however, we prefer to work with a vector

L ]
valued function of a vector valued variable and hence, we transform S(s,r) into
a colum vector via

%




9. vec[S(s,z)] = Col [81(3.1‘)]

vhere Si(s,r) denotes the ith colum of the matrix, S(s,r). With the aid of

the identity vec(x¥z] ={2{® X]vec [Y] equation 8. then transforms ineo 12

v.c[s(sl.t)—ﬂ- vec[Ln] + [Liz 2 Ln(l-z(sl.r)Lu)-l]vcc[Z(al.t)]
nc[S(sz,r)] - vcc[r.zz] + [I.']:2 8 1.21(1-2(32,r)Ln)-l]vcc[Z(sz.r)]

10. M=

. .

vec{S(sk,:)] - vet:!:l.22 + L§2 2 Ln(l-Z(skr)Ln)-l] vec{Z(sk,r)]

which is the form of the fault diagnosis equations with which we desire to work.

SOLVABILITY OF THE FAULT DIAGNOSIS EQUATIONS

For the fault diagnosis equations derived above to be a viable tool of
circuit and system diagnosis two fundamental questions remain to be answered:
"What test frequencies should be employed to optimize the solvability of the
equations?"and "How solvable are the equations given an optimal choice of test
frequencies?" Both of these questions, in turn, hinge on the development of some

type of measure of solvability for the fault diagnosis equations.

For a set of linear equations
11. m= Fr

where r is an n-vector, m is a p-vector aad F is a p by m matrix one may
characterize the solvability of the equations in terms of the number of arbitrary
parameters in its solution (if a solution exists). As such, § = n-rank(F) is a
natural measure of the solvability for equation 11. Here, § = 0 implies that the

equation has a unique solution, § = 1 implies thac the solutiom is determined up

= P(r)
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to one arbitrary paramater and so on, with increasing values of § representing de-
creasing degrees of solvability.

Unfortunately, the fault diagnosis equations are nonlinear even for linear
systems and hence we must resort to the implicit fuinction theorem to obtain a

measure of solvability analogous to the ém.u Indeed, if r

. is a solution to

the fault diagnosis equations, then Te is determined up to a

1. 8(rp) = n = :Ink[?%% (rp)]

dimensional manifold (of arbitrary parameters) in a neighborhood of Tge Here |
dF/dr is the Jacobian matrix of partial derivatives of F with respect to r. With
the aid of the matrix identity d(x.l) /dr = -M-]'[cm/dr]n-l, dF/dr can be computed '

explicitally from equations 8. and 10. yielding

e, . R 3

13. { ([L+L11(1-z(sl.rf)Lll)'lz(sl.:f)]le)‘n(nzl(l-z(sl,rf)Lll)‘H[(dvec 2(s,,rg)]/dr

{S[1+n11(1-z(sz,:f)nll)‘lzzaz.rf)]le)‘n(L21<1-z(s2.rf)nll)'ﬁt(dvec Z(s,y,,) 1/dr

{( [1+Lu(1-z(sk,t£) Lu)-lz(sk. r,) ]Lu) tI(I-n(l-z (8y» ) Lll)-]’[(dvnc Z(s, »Tg) 1/ar
-

vhare "t" denotes matrix transposition and & denotes the matrix Kronecker (or
tensor) product.

The difficulty with the implicit function theorem is that it only yields local
information valid in a neighborhood of a solution. Fortunately, however, given
the special nature of the Jacobian matrix of equation 13. coupled with an assumption
that the component transfer function matrices zi(s,r) are rational in r, it is

possibla to show that the rank of the Jacobian matrix is "almost constamnt." This,

— WORO—




in turn, allows us to transform the local measure of solvability of equation 12.
1qto a global measure of solvability. For this purpose we adopt the algebraic
geometric definition for the term "almost constamnt.” I.e. we say that a function
of 1.-f is almost constant if it is constant excspt possibly for those valuas of rf
lying in an algebraic varisty(the solution space of a finite set of non-zero
simultamecus polynomial equations in n variables). More generally, wa say that a |
property holds "almost everywhere" (a.e.) or for almost all r, in n-space if it is 4
true for all values of Te c&pt possibly those lying in an algebraic variety.
Since the Lebesque measure of an algebraic variety is zero, this definition for the
concept "almost everywhere" is consistent with the more common measure theoretic
definition and is more natural in the context of our application.lu

Theorem 1: Let Zi(s,r); 1{=1,2, ..., q; be rational in r. Then § (rf) is almost
constant.

Note, the assumption that Zi(s.r) is rational in r is quite minor being satis-

fied by all of the examples given in section II except for the delay (which can

be approximated by a function which is rationmal in r). In practice, the

component transfer function matrices will also be rational in s though this is not
required for the present theorem since F and dF/dr are formulated in terms of

specific test frequencies, ’1' Sgs cees sk. Given our assumption on the zi(s.r),

together with equation 13., it then follows that -:—r:(rf) is also rational in Tge

Proof of Theorem 1: We begin by showing that an arbitrary polynomial matrix in

£, P(r), has almost constant rank. Since rank P(r) is restricted to the finite
set of integers (0, 1, 2, ..., j; where ] is the minimum of the number of rows

and colums in P(r)), there exists an L which maximizes the rank of P(r)

W, * cank(P(r )] > rank(P(r)]

Now, the rank of a matrix is the dimension of its largest non-singular square

sub-matrix. As such, P(r) admits a square sub-matrix, M(r), whose dimension is




_ N—

equal to the rank P(r-) and for which

15. " det H(rn) $ 0.

Now, det[M(r)] is a polynomial in r which is not identically zero (from equation

15.) and hence, it is non-zero a.s. As such,

16. rnk[?(r.):] > rak([P(r)] > rank([M(r)] = rmk[?(r‘)] a.e.

showing that rank[P(r)] = rank[P(r )] almost everywhere. As such, ramk[P(r)]is
almost constant. b

Now, to verify that rank [%E(rf)] is constant we decompose this matrix as

P(rf)

vhere P(rf) is a polynomial matrix and d(rf) is a non-zero common denominator.
P(tf) has almost constant rank while d(tf) is non-zero almost everywhere and hencs
can effect the rank of P(rf) only on an algebraic variety (since the division of
a matrix by a non-zero scalar does not effect its rank.) As such, our Jacobiam

matrix has almost constant rank implying that
dFP
18. §(rg) = a - rank [ (rp)]

is also almost constant. The proof of the Theorem is therefore complete.

Given the theorem, we may now define a global measure of solvability for the
fault diagnosis equation, §, as the generic valus of C(r-t o. F.@a. the-valus G(rf)
takes on for almost all Tge This proves to be a natural measure of solvability
since it indicates the ambiguity which will result from an attempt to solve the
fault diagnosis equations in a neighborhood of almost any failures. Of course,

10,11

one requires some sort of equation solving algorithm to locate a neighbor-

hood of an actual failure. The § paramster, however, reprasents a bound on the
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performance of any such algorithm. Finally, we note that since § is independent
of Tes the solution of the fault diagnosis equations, it can be computed at the
time the system and its test algorithm are developed by evaluating §(r) at a
randomly chosen generic point, say L In turn, this parameter may then be

employed as an aid in the choics of test frequencies and test points.

TEST FREQUENCY SELECTION

Adopting the measure of solvability, §, formulated in the precseding sectiom,
it remains to develop an algorithm for choosing a set of test frequencies;
S10 39 oo 85 which maximize the solvability of the fault diagnosis equations

(1.e. minimize §). To this end, let § denote the minimum value achieved by

min
§ for any set of test frequencies; e Sy sees S5 k=1, 2, ..., . Since the
possible values for § are restricted to the finite set; § = 0, 1, ..., n; such a
minimum is assured to exist.

The following theorem gives an explicit formula for computing Gm vhile its
proof yields an algorithm for choosing a set of test points which achieve Gm.
Since the purpose of this theorem is to formulate an algorithm for choosing test

frequencies, the theorem is expressed in terms of

19. vec{S(s,r)] = nc[Lzz] + [t.;zjﬁ L21(1-Z(s.r)t.u)-1] vec[Z(s,z)]

and

20. dv.cdl igs,rz Yat [+ Luu.z(.,:)l.u).‘us.r) 1Ly, ‘g(l.n(l-z(s.r)l.u)'l) }
fdvec(Z(s,r)]/dr}

vieved as rational functions in s rather than in terms of the function F(r)
which is formulated in terms of an a-priori choice of test frequencies.

Theorem 2: Let zi(s.r); i=1 2, ..., q; be rational in s and r. Then

dvec|S(s,r
Gdﬂ ® n - col-rank E——dLrA—I—LJ]




-

-

R

%

vhere n is the dimension of the parameter vector, r, and "col-rank" denotes

the generic number of linearly independent columns of the rational matrix [dev[S(s,r)]/dr.

over the field of complex numbers. Moreover, § e is achieved by almost any

choice of n-¢ distinct complex frequencied.

min
Proof: For the sake of brevity, we will prove the theorem ocnly for the special
case where S(s,r) is a scalar transfer function (allowing us to drop the "vec"
transformation) though essentially the sams proof goes through in the general case
modulo some notational coq:hxttiu.s Also, sincs the rank of the Jacobian matrix
is almost constant it sufficies to fix the paramster vector, r, at any generic

point, say r . This then reduces [dvee[S(s,r)]/dr] to a row vector of rational

functions

21. R(s) = [Ry(s) Ry(s) ... R (s)]
where

2. R (s) = [dvee[s(s,z)]/dr,]

and our problem reduces to the verifications of the fact that the number of
linearly independent columms of R(s) over the field of complex scalars is equal

to the maximum possible rank of the complex matrix

s =
23. R(sl) Rl(sl) i R2(sl) § evag Rn(sl)
—--- + I
R(s,) R.(s,) | R.,(s,) | i Ru(syg)
2 P SN :L s _E i . = col (R(s,))
o f 1 i 2 e o i
L ] = ] ] e
v ! . : ! .
| ] 1
IS TN N
[} ] |
-R(s )J _Rl(’k) E R,y(s,) E £ E R (sy) 4

over all possible choices of the complex frequencies; Syv Syr e
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Now, clearly if some column of R(s), say the nth, is dependent on the re-
maining columns, then

n-1
2u. R(s) = ] R.(s)

i 91
for all s. Then by applying 24. individually for each S
n-1

25. col (R (s;)) = i.:le ¢5col(Ry(s;))
for any possible number or choice of the S;- The rank of the matrix of
Equation 23 is therefore less than or equal to the number of linearly inde-
cendent columns of R(s) over the field of complex numbers.

To crove that equality can be achieved with an appropriate choice of
n-émin complex test fraquencies, S;» We invoke our assumption that S(s,r) is
a scalar transfer function. Without loss of generality, we may assume that
RL(S) through Rq(s) are the linearly independent entries in R(s) over the field
of complex numbers in which case we must show that there exists complex fre-
quencies Sys Sgs ey S (k = q in this case) which make the first q columns
of the matrix of equation 23. linearly independent.

Ifg=1; Rl(s) is not identically zero (since otherwise it would be

linearly dependent) and hence for almost all s Rl(sl) # 0. As such, the

l’
columns in this trivial one by one matrix are linearly independent. With this
as a starting point, we will use an inductive argument to show that the theorem

holds for all values of q. We, therefore, assume that it has been shown that

for q = p . there exist complex frequencies; Sys Sps cee s sp; such that
the matrix e -

A : Rl(sl) Rz(sl) v Rp(sl)

26. Rp =

Rl(s2) R2(52) coe Rp(sz)

R sy R IO
J.(sp) Z(Sp) p(sp)

— pu—
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has linearly independent columns and we desire to show that there exists an

s such that the matrix

p+l
= Rl(sl) Rz(sl) S Rp(sl) Rp+l(sl)
) LN ]
oA Rl(sz) Rz(sz. Rp(sz) RP+1(82)
—-p+l
Rl(sp) Rz(sp) uk Rp(sp) Rp+l(sp)
Rl(s) Rz(s) Rp(S) Rp+l(5) |
has linearly independent columns for s = s . By virture of our assumpticn that S(s,r)

p+l

a scalar both R, and 3?*1(3) are square and we may test for linear independence
of the colummns of §P+l(s) by computing its determinent. Expanding 27. in co-

factors along its bottom row, we obtain

p+l pHi+l
28.  det(R,,(s)) = 321 LT Rs(s)

Since Ep has linearly independent columns A # 0, hence, the coefficiencts

p+l'p+l
in the summation of equation 28. are not all zero and thus by the linear inde-

pendence of the Ri(S) the summation is not identically zero. As such, one can

choose almost any s which will make the determinant of §p+ (sp+l) non-zero thus

pt+l 3
assuring the §p+l has linearly independent columns when its rows are evaluated

at the complex frequencies S1s Sp» eey S The proof of the theorem is thus

p+l’
complete.

Note that the proof of the theorem yields a natural sequential algorithm for
choosing test frequencies. Moreover, for the scalar case we have shown that the
number of required test frequencies is exactly n°6min (equal to the column rank

of the Jaccbian matrix). In the general case where S(s,r) is not a scalar, the

&
-
.

number of required test frequencies is less than or equal to n-Gmin

i dbei s Wm0




Although the theorem implies that one can randomly choose almost any

n-smin test frequencies to maximize the solvability of the fault diagnosis
equations, the result does not take cognizence of numerical considerations. Al-
though no theory yet exists for choosing test points with numerical considera-
ations in mind, it has been our experience that the "well pcsednessﬁ of the fault
diagnosis equations is quite sensitive to the choice of test frequencies.s In
most of our experiments, we have worked with real test frequencies to eliminate the
necessity of working in the complex plane. On th§ other hand, m is most easily
measured when values of s; on the jw axis are empioyed whereas it has teen
suggested that test frequencies symetrically spaced around a circle in the com-
clex plane might yield numerically "well posed" equationms.

Although the measure of solvability, §, for the fault diagnosis equations
is dependent on the choice of test frequencies, as well as the properties of the
unit under test, smin is determined entirely by the UUT; its components,
connections and accessible test points; and is completely independent of the
test algorithm employed. As such, amin may be taken as a natural measure of
testabilisxl for the UUT which characterizes the degree to which the fault
analysis equations can be solved given an optimal choice of test frequencies
and solution algorithm. Moreover, Gmin may be used as an aid fof the optimal

selection of test points.a’“’s

To this end we may choose a set of test points,
from several options, so as to minimize Gmin' Alternatively, we may attribute
a cost to each input and output test point and then choose the least cost com-
bination of test points which yield a specified Gmin' This latter process re-
duces to a rather straighforward integer programming problem and is thus

5

readily automated. '’ The technique is illustrated in the examples of the

following section.
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EXAMPLES

An an initial illustration of the theory consider the RC coupled amplifier

with inductive load shown in Figure 2. Here we will take Ei to be the only

~m
Eal
-
t ]
AAAAAAAA

Figure 2: RC coupled amplifier with inductive load.

test input but we will initially allow So, iL’ ic, and Vi to all be taken as

test outputs with the measure of testability, 6“ , being used to extract a

in
reduced set of test outputs from these options. A component connection model

for this circuit is given by

M Ug(s) ° ° ° v
i [} /L8 v,_
28. i M .
Ve ° o 1/cs ie
i ° ° o wm Va
and
- e
v, 9 0 «1 o} 1 v_]
29. = ke i -
]
L 0 : 0 i
i 0 '
c o o0 1 ; 0 Ve
v 0 - '
a2l - 0 -1 o i 1 in
po— .
E, 1 0 0 o 1 &
| e
i 0o 1 o0 o0 o0
1
i 0 0 o0 1 ; 0
[ ]
v 0 0 - '
g L el -
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Taking our vector of potentially variable component parameters to be

r = col(p, L, C, R) each with unity nominal value, we obtain a nominal trans-

fer function matrix ':(s(.i.q . ff
s
S
L
30. s(s,r) s
E 3
“s+l
R i |

whereas .our Jaccbain matrix evaluated at the nominal parameter values is given
by
3q(s) 0 o
sg(s) sa(s)
'%:I" e |
) (s+l)  (s+1)
zg(s) gts) ~ als)

g(s)
3l. dvec[s(s,r)] _ wE SEL (k) teel)
dr

2
0 0 S -S

7  —
(s+l1) (s+1)
Q 0 s s
B 2
e (s+1) (s+1l) _|

Now, an inspection of this matrix will reveal that it has four independent
cclumns over the field of complex numbers and hence if all four possible outputs
are used, we will have amin = 0 implying that the fault diagnosis equations have
locally unique solutions. On the other hand, if only two outputs, Eo and ic, are
measured, our modified Jacobian matrix will reduce to the first and third rows
of the matrix shown in equation 31. which has column rank 3. As such, if we only
use these two test outputs, we optain smin = 1 and hence the solution to the
fault diagnosis equations will be characterized by a single arbitrary parameter.

In this latter case, with only Eo and ic taken as test outputs, theorem 2
implies that dF/dr will have rank 3 for almost any choice of 3 = n - Gmin test
frequencies. Chocsing s; =1, 8,=2,and s, =3, we obtain




g(1)/2 0 g(Ll)/4 g(l)/u
32.

0 0 1/u -1/4

&} 2g(2)/3 0 2g(2)/9  2g(2)/9
Q

0 0 2/9 -2/9

3g(3)/u

o

3g(3)/16 3g(3)/16

0 0 3/16 -3/16

wnich has three linearly independent columns as long as g(l) # 0, g(2) # 0 and
g(3) # 0. Indeed, in this example, any two of the three frequencies would have
sufficed to yield three linearly independent columns. Note, for scalar transfer
functions, theorem 2 implies that n-dmin frequencies are actually reguired >ut
for matrix transfer functions fewer frequencies may suffice.

0f ccurse, for the circuit of Tigure 2, we have a choice of some 15 combin-
ations of the four outputs with which we may choose to work for the diagnosis

of the circuit. The resultant smin's for the various combinations of outputs

are given in table l.s
Ffinally, with the aid of Table 1, one may readily develop a test point
selection algorithm for our circuit.“’s For instance, if we desire to find the

smallest set of outputs which yield a Gmi < 1 an inspection of the table will

n
L and ic, or Eo and ic are the optimal choices. Of

reveal that Eo and iL, i
course, if one attributes a cost to the various outputs (determined by the
convenience of making the required measurements), then we may further dis-
tinguish between these three possibilities. For instance, if voltage measure-
ments are deemed to be easier than current measurements, the combination of

iL and ic may be excluded with the decision between the remaining two options

Seing dependent on whether it is easier to measure the circuit's input

current (i,) or its load current (lL).
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Qutputs ki
Eo, i lc, Vi 0
Egs ip» ic 0
i ic, Vi 1
LL, Vi, Eo i
Vi, Eo’ lc 1
Eo, i 1
iL’ Vi 2
Vl, r.o 2
Eo’ “¢ 3
ier ¥y
E 2
(o]
iL 2
T 2
-
v, 3
Table 1: Measure of testability for the
circuit of Figure 2 using various
combinations of test outputs.
As a second example, consider the one stage transistor amplifier shown
in Figure 3 with the AC equivalent circuit of Figure 4. Since it is clearly
impossible to distinguish between failures in the two parallel bias resistors,
Ra and Rb’ these two resistors have been combined into the single resistor, R;

in the component connection model of equations 33. and 3u. Taking all of the
component parameters as potentiall faulty, r becomes a 12 vector composed or
Cl, Dy teeo RL and as before, we take all parameters to have the nominal value
of unity.
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Figure 3. One Stage Transistor Figure 4., Amplifier Equivalent
Amplifier ; Circuit
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Once again we let the input voltage be the only test input for the system and

we take V , Ic s Vg s and Ie' to be possible output test points. The resultant §
o )

p a . :
Zor each of the 15 possible combinations of these output terminals Is tabulated in

in Table 2.°

min

e i b b M il
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4 Kys 4
v r 1
|-x X y xl‘x
v, r, 0 s
¥ {
'c )f S cu
v g le
3. 1cz Ks v‘f )
IH; ){; "n.
3, X, .
lc C's <,
k |
Ic Ces vte
e v
19,,, 0 ’ Sm 0 vgm
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T2, e ] R
Qutputs S,
min
v 3
o)
L 2
2
VRt 2
a
L 3
a
¥ Lo 0
bt !
e 1
o Ra
o’ Te ’
Ey 2
Cl Ra
Lcl' Ie L
Var, Te 0
a
Ve g » Vg 0
i a
Vos d ¢ % 0
o} Cl e
Vo’ VR" Ie 5
a
In s Vass L 0
Cl Ra e
o iy s Yaye a 0
o Cl Ra e
Table 2: Measure of Testability for the circuit of

Figure 3 using various test outputs.
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From the table it is apparent that no single test output suffices to

yield a Gmin = 0 (perfect testability) though smin = 0 can be achieved using

tw@ taest outputs; Vo and I or V° and Ie'

!

CONCLUSIONS

Our purpose in the preceeding has been to formulate an analytic theory in
support of the intuitive art usually associated with the design of a test
algorithm. With the aid of the techniques developed above, we believe that it

will be possible to develop an automated test program generation (AT2G) algor-

.5

ithm for linear systems. Indeed, such an algorithm could be readily combined
with the same ccmputer-aided design (CAD) algeorithm used in the system design

= e 2 : . Rt o
orocess.  Given the compeonent connecticn equations such an algerithm could t
employed to automatically (or interactively) choose test pecints and test fre-
quencies and generate the required set of rault diagnosis equations. These
could then be stored on tape and supplied to the automatic test equipment (ATE)

in which a fzulty system would be tested and the fault diagnosis equations solved.

Although we do not propose to discuss the actual solution of the fault

diagnosis equations here, it should be pointed out that by assuming that relatively

few components have failed, say p<< n, it is possible to develop specialized

algorithms for the solution of the fault diagnosis equations which are far more

7,11,12

aefficient than standard equation solvers in this application. These are

typically derived from the fault simulation algorithms used in the diagnosis of

digital systems and may naturally be classified into "simulation. before test" and

"simulation after test” algorithms. Some of the algorithms are discussed in

raeferences 7, 9, 10 and 1l.

Finally, we note that as formulated above, the measure of testability, §

min

assumes that any combtinaticn component failues is possible. If, however, we

assume that at most p<< n components fail simultaneously, the ambiguity in the
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solution of the fault diagnosis equations may actually be less than Gmin'

For instance, in the example of Figure 3, with only Vo taken as an output

Gmin = 3, yet the fault diagnosis equations can be solved exactly if we assume
that only one parameter is out of tolerence.lo The point, here, is that even
though the solution of the fault diagnosis equations in n-space has three
arbitrary parameters when the solution is restricted to the one dimensional

manifold of parameter vectors in which all but one coordinant are nominal in

is unique.

REFERENCES

1. Deika, W.J., "Measure of Testability in Device and System Desizn," Proc.
of the 20th Midwest Symp. on Circuits and Systems, Lubbock, Texas,

August, 1277, pp. 39-52.

"

Deika, W.J., "A Review of Measurements of Testability for Analog Systems,"
Proc. of the 1977 AUTOTESTCON, Hyannis, Mass., November 1977, pp. 279-284.

w
.

Sen, N. and R. Saeks, "A Measure of Testability and its Application to

Test Point Selection - Theory," Proc. of the 20th Midwest Symp. on

Circuits and Systems, Lubbock, Tx., August 1977, pp. 576-383.

u, Sen, N. and R. Saeks, "A Measure of Testability and its Application to
Test Point Selection - Computation," Proc. of the 1977 AUTOTESTCON,
Hyannis, Mass., November 1977, pp. 212-219.

5. Sen, N., M.S. Thesis, Texas Tech Univ., Lubbock, TX, 1977.

6. Ransom, M.N., and R. Saeks, "A Functional Approach to Fault Analysis in

Linear Systems," in Rational Fault Analysis, New York, Marcel Dekker, 1377,

pp. 1l2u4-134.

7. Saeks, R. and R.A. DeCarlo, Interconnected Dynamical Systems, New York,

Marcel Dekker, (to appear).

8. Singh, S.P. and R. -W. Liu, "Existence of State Equation Representation of
Linear Large-Scale Dynamical Systems," IEEE Trans. on Circuits and Systems,
Vol. CAS-20, pp. 239-246, (1973).

9. Proc. of the Workshop on Automatic Test Technology, NSIA, San Diego,

April, 1978, (to appear).




10.

11.
12.

23

Chen, H.M.S., and R. Saeks, "A Search Algorithm for the Solution of the
Fault Diagnosis Equations," Unpublished Notes, Texas Tech Univ., 1978.
Chen, H.M.S., M.S. Thesis, Texas Tech Univ., 13977.

Ransom, M.N. and R. Saeks, "The Connection Function - Theory and Appli-
cation," Int. J. on Circuit Theory and its Applicatioms, Vol. 3, pp. 5-21,
(1975).

Fleming, W., Functions of Several Variables, Addison- Wesley, Reading,
1965.

Spivak, M., Calculus on Manifolds, Benjamin, Amsterdam, 1966.




RESEARCH

on

LARGE-SCALE SYSTEMS

R. Saeks and K.S. Chao
DEPARTMENT OF ELECTRICAL ENGINEERING

TEXAS TECH UNIVERSITY

L




ABSTRACT

An algorithm for the.inversion of a continuously parameterized family of
sparse matricies is formulated in terms of a differential equation characterizing
the evolution of the sparse L and U factors of the given family of matrices.
INTRODUCTION

In the various algorithms used for the analysis and design of large-scale
circuits and systems, .the problem of inverting a continuously parameterized
family of sparse matrices, M(r), is often encountered.]'s In frequency domain
analysis, this might represent a transfer function matrix which one must invert

over a specified frequency range3

while in time domain analysis, such an M(r)
arises in the form of the Jacobian matrix for the system equations1 which is
dependent on some potentially variable parameter, r. Typically, one inverts
M(r) at a discrete set of points; Fis i=1,2, ..., n; using a sparse matrix
algorithm.  Indeed, the more efficient algorithms exploit the fact that the
matrices M(ri) have a common sparsity structure allowing much of the compu-

tational overhead to be shared by the n i nversions.]

An alternative to repeated inversion is the continuations algorithms wherein

one integrates the differential equation

1. 2(r) = -2(r)(dWdr)Z(r) 5 2(0) = M(0)")

" to obtain M(r)’l = Z(r). 4Yhile the integration of Equation 1 is far more

efficient than repeated matrix inversion for small matrices, it fails to take
advantage of the sparseness of M(r), thereby rendering the technique in-
applicable in a large-scale systems context. The purpose of the present note

is to present an alternative continuation algorithm which combines the LU factor-

ization technique of sparse matrix inversion with Equation 1.

27
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LU _FACTOR DYNAMICS

Recall the standard sparse matrix inversion techm'que6 wherein one factors
a matrix into the form M = LU where L is lower triangular and U is upper tri-
angular with ones along the diagonal. We then represent the inverse matrix in
U"L']

the form M~ The key to the technique is that both L and U and their

1 is not sparse.

4 inverses will be sparse if M is sparse though, in general, M~
As such, one may store and manipulate the inverse of a sparse matrix via

its sparse upper and lower triangular factors, ™! and L", even though the

inverse matrix, itself, is non-sparse. These ideas are combined with the

continuation algorithm concept in the following theorem.7 Here, the notation

YrM] is used to denote the strictly upper triangular matrix obtained from M

by setting all of the entries of M on or below the diagonal to zero. Similarly,

][M] denotes the lower triangular matrix obtained from M by setting all of the

entries above the diaconal to zero.

THEQREM: Let X(r) and Y(r) be solutions of the matrix differential equation

X = -xICY(dM/dr)X] 3 X(0) = U(0)”!

Y -][Y(dM/dr)X]Y ; Y(0) = L(O).‘I

Then, X(r) = U(r)"" and Y(r) = L(r)'] where M(r)°1 = U(r)']L(r)'] is the LU
factored form of M(r)‘1. Note, if M(r) and dM/dr are sparse then every matrix
involved in the integration of Equation 2 will be sparse. Moreover, the inte-
gration may be carried out with the aid only of a matrix multiplication algorithm

.plus a simple procedure for extracting the upper and lower triangular sub-matrices
of Y(dM/dr)X.

Proof of the Theorem: First, we observe that if Y(0) is lower triangular, then

Y will be lower triangular and so will Y(r) for all r. Similarly, if X(0) is
upper triangular with ones on the diagonal, then i. being the product of an

upper triangular and strictly upper triangular matrix, will be strictly upper
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triangular. As such, X(r) will be upper triangular with ones on the diagonal for
all r. Thus, X(r) and Y(r) have the correct form and it remains to verify the

equality M(r)™! = X(r)Y(r). Here,

r : Ty g
uﬂuﬂ-xmwm>+[oumnmnm=xmwm)+[£u@nm>+umwqu
r
= X(0)Y(0) + Jo {-X(9)rY(q) (dM/dq)X(q) I¥(q) - X(q)]EY(q)(dM/dq)X(q)JY(q)l‘dq

:
3. = x(0)¥(0) + jo (-X(q)CY(q) (dM/dq)X(q) 1¥(q) }dq
r A
= X(0)Y(0) + jo [X(q)¥(q) 1(dM/da)CX(q)Y(q) Idq

Differentiation of both sides of Equation 3 with respect to r then results in
4.  [X(r)Y(r)1 = [X(r)Y(r)2(dM/dr)CX(r)Y(r)]

Finally, a comparison of Equations 4 and 1 reveals that X(r)Y(r) = M(r)'] since

both X(r)Y(r) and M(r)'l satisfy the same differential equation.

EXAMPLE

Consider the family of matrices

5. [1 r]
M(r) =
5 1

Here, M(0) is lower triangular and hence has the trivial LU-factorization

é. 1 0 1 ol |1 0
M(0) = [ ] = [ ] [ ] = L(0)u(0)
-1 1 -1 1110 1

while




As such, we have

: 1 0
= L)' = [' 1
1 1

-

and

9. u(o) -
, 0 1

Now, upon using an Euler integration formula (Z(h) = Z(0) + Hi(O)] we may
estimate U(.l)'] and L(.l)-] via the equalities

v 2 w1+ (L1uo)”!

"

u(0)~! - (.1u(o)~T YrLio) "meo)u(o) '

10. 2
YA B -1/16}
e -t [p of o P
and
L. = L) ¢ Le)!
= 10)" - o)y moyu(o) o) !
1.

1 0 0 0 1 0
0 11 .1 .11 {9710 9/10

Multiplying these estimates then yields

-1 o =] 91/100 -9/100
12. M(.1) = u(.1) L(.1) H
9/10 9/10

which compares favorably with the exact inverse

g4 per am
13. M(.1)T =
/1 1om

30
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The error here is due to the approximation inherent in the numerical integration ’
process and can be reduced by use of a more accurate integration procedure. Of

course, the result of the theorem is exact and the computed value for M(r)'] will

' .
be as accurate as the integration process employed.
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ABSTRACT

There has been considerable work dealing with the topic of filter-
ing for problems with state dependent noise [1-3]. As well as being of
theoretical interest, the topic is of some practical importance since
many systems are better modeled as having multiplicative disturbances
instead of additive. One example occurs in the momentum exchange method
for regulating the angular procession of a rotating space craft [4].
There is a disturbance which depends on the procession rates. Another
example occurs in the design of phase lock loops [2]. The phase insta-
bility of an oscillator described in rectangular coordinates appears as
white, state dependent noise. If one received a signal which consisted
of a large number of sinusoids of various frequencies, each having phase
distortion, then one would have to build a hiagh order filter to recover

the signal using existing methods.
INTRODUCTION

The design of high order filters is often problematic from the view-
point of on-line computation. Therefore, a number of researchers have
been interested in designing filters of reduced order [5-8]. It often
happens that one is only interested in estimating a lower order linear
transformation of a state vector, and it seems reasonable to attempt to
do this with a lower order filter. Design of the filter parameters is a
fixed configuration optimization problem [8-10]. In such problems, the
structure is not necessarily optimal, but given the structural constraints,
the parameters are selected optimally. It is interesting to note that »
these problems often have non-unique solutions because there are too many
free parameters. This feature can be used to obtain filters which are

easier to implement than well-known techniques such as Kalman filtering,
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even when the fixed configuration filter is of full order [8]. In some
cases, there is no performance loss associated with the alternative linear
filter, (8], [11].

In this paper we seek to extend the reduced order filtering results
developed in [8] to problems with state dependent noise. The problem
is similar to that considered in [12], however, in [12] a discrete system
model was considered, and only a single stage/optimization was performed.
Here a continuous time problem is considered, and the matrix minimum
principle [13] is used to obtain a solution. Because we allow a driving
term in the filter to remove any a-priori bias, it turns out that the
problem has singular arcs, which is not surprising considering previous
works [3], [11] in the area. A very nice feature of the work is that
in some cases only linear two-point boundary value problems are obtained.
These can be solved either by a direct use of linear systems theory or
by a Riccati equation technique. Under certain circumstances only a

single-point boundary-value problem must be solved.

PROBLEM STATEMENT

The system of interest is assumed to be modeled by the Ito stochas-
tic differential equation

dx(t) = A(t)x(t)dt + dw(t)
n
. 3 [Xi(t)-ui(t)]Gi(t)dv(t) (1)
i=1

where x(t) is the state vector of demdnsion n and u(t) is the mean value
of the state vector. The disturbances are zero mean incremental Wiener
processes with covariances

E{dw(t)dw!(t)} = Q(t)dt (2)
E{dv(t)dvT(t)} = =(t)dt
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It is not hard to show [14] that the mean value vector, u satisfies
du(t) = A(t)u(t)dt (3)
The initial condition for (1) is random with known mean and variance
E{x(ty) } = ug (4)
Var {x(to)} =8 (5)

Equation (4) is obviously the initial condition for (3).
The observation vector is also corrupted by state dependent noise.

dy (t) = C(t) x(t)dt+dv(t) + i [xi(t)-ui(t)] M (t)dv (6)
=1

In (6), y(t) is the observation vector of dimension m, dv(t) is the

. additive measurament disturbance, and dv(t) is the multiplicative dis-
durbance. The vector v(t) may be large, and some of its elements affect
the dynamic model through the terms Gy, while others affect the obser-

‘ vational mocdel through the terms M The additive disturbance, dv(t)

i
is a zero mean incremental Wiener process with covariance
E {dv(t)dv ()} = R(t)dt (7)
B The terms w(t), v(t), v(t) and x(ty) are uncorrelated.
Only a linear transformation of x(t) is to be estimated, i.e., it

is desired to estimate

+ z(t) = N(t)x(t) (8)

where z(t) is a vector of dimension 2 <n.
The estimate of z(t), which we call 2(t) is constrained to be obtained
* by the filter equation
B(t) = [FD(e) + o(v)] de + Ke)dy  (9)
The vector g(t) and the initial condition, ?(to) are to be selected
so that
e {e(t)} =0 vt =[t,, t] (10)

e —— —




where e(t) is the error vector

e(t) = z(t) - 2(t) (11)

The matrices F(t) and K(t) are then to be selected so that a quadritic

performance measure t
f -
3= [ eT(t) Qe(t)dt + eT(ts)Se(ts) ] (12)
€
0

is minimized. The weighting matrix S fs assumed to be positive definite
symmetric. The weighting matrix 6 may be positive definite or zero and

is critically important to the solution.

GENERAL SOLUTION

[n order to proceed, it is convenient to develop an equation for
the error. From the Ito differential rule ﬁS , 1t is seen that
dz(t) = N(t)dx(t) + N(t)x(t)dt (13)
Using (6), (9), and (13) it is seen that the differential equation of

the error is

de(t) = dz(t) - dz(t)

or

de [(NA-FN-KC+N)X - g] dt+ Ndw - Kdv
n n

+Fedt+ [NZ} x.G; - KZ xiMi] dv iy
i=1 i=1
In (14) we have introduced the notation, x = Xx-u. From (14) it is seen

that

d_Fle(t)} = F(t)E]e(t)]
dt (15)

provided that
g(t) = (NA-FN-KC+N)u(t) (16)




If furthermore

2(t ) = N(t )u(t,) (17)

it is clear that

E{e(t))f=0 (18)

From (15) and (18), one can see that (10) is satisfied so that (16)
and (17) are appropriate selections. If g(t) is selected according to

(16), the error differential equation can be written as

de = (NA-FN-KC+N)xdt + Ncw-Kdv
=
+ Fedt +), X; (.‘\'Gi-KMi)dv (19)
i=1
The equation for x is
QIS
dx = ARdt + dw +3 x;5:dv (20)
i=1

Clearly x and e are both zero mean processes.
If (19) and (20) are put in 1 equation, it is easy to see how
the second moment matrix defined as :
o) s |Prxlt) | Pre(t)], [EIX(DRT(0)] | Ejx(2)eT(2)}
Pex(t) | Pee(t)| [Ele(t)XT(t)f | Ele(tleT(e)]  (21)

propagates. This is useful since the performance measure (12) may

be written as

te o
J - tr;ftf QPoq(t)dt + SPee(te)} (22)

0
If one has the appropriate constraint equation, the optimal selection

of F(t) and K(t) may thus be solved with deterministic theory using the
matrix minimum principle.

Equations (19) and (20) may be written as
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Piw dw

dx(t) A 0
dt +

P

de(t) (NA-FN-KC+N) | F

)
™
, O

n -
+ Z X; T dv
i=1

where

NGi - KMi
The second moment matrix associated with (23) satisfies [4],

b=GP+PG +G+¢

wnere
K e
g 4
t(NA—FN-KC+N) l F J
; T
ML ]
[NQ l KRKT + NQNT J
and

Partitioning P in (25) we obtain the individual equations,

Ndw - Kdv

40

(23)

(26)

(27)

(28)




< 4

. T
B APxx *PA 40+ (29)

P ® [NA-FN-KC+N] Pxe + Pe % [NA-FN-KC+N]

T T T T
+ Py + PogFl + NON' + KRKT + K WK
- NwKT

- TNT T
> K‘I’ZN +NW1N (30)

and
T

p . A
Pre = APyg + Py (NA-FN-KC+N)' + P F -
+w7+%M-w%T (31)

In (29), (30), and (31), the terms \yl, Wy and W5 are defined as

& T
IS D G. = G, (32)
1 1=1 Xxij 1 J
J=1
5& T
v, = P G. =M, (33)
J=1
55 T
W,y = P M: = M (34)
SR gy 1T
%1
The term Pex is simply the transpose of Pxe‘ Clearly Pxx can be calculated

independently, and can thus be regarded as a known quantity. The probiem
is to select K and F so that (22) is minimized subject to the constraints
imposed by (30) and (31).

The Hamiltonian for this problem is then

(35)

" J = : T - T S|
H=tr lQPee+PeeAee+Pxe-‘ Xe+Pex‘\ gx |
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where A

Negs 'xe» and Moy are Lagrange multiplier matrices associated with

Pee’ Pye» and Pex respectively. The constraint equation for Pex is in-
cuded for symmetry.

The optimal solution for the gain K(t) is obtained by setting the
gradient of H with respect to K equal to zero. This leads to the ex-

pression for K.
-1
- ’1 T T FR}
K=y e (PaxC’ + M) + A, (T +i5)] [R 4] (36)

where the required inverses are assumed to exist. The Lagrange multiplier

matrices satisfy the equations

B ="2n = 10 v Roaf # P Aesl (37)

and

=S

]

)
Q
x
[l

- A (NA-FN-KCHN) T Age + AT ALy + AQF} (38)

The matrix Agyx is just the transpose of Age. The initial conditions for

(29), (30}, and (31) are

- b 3
Pex(t) = Var {x(t )} = P (39)
and
P (t) =P N(t)T; P (t)=N(t)P N(t)T (40)
xe ‘"o 0 0 ee '0 o° "0 0
The terminal values for (37) and (38) are as required by the transversality

condition applied at the terminal time

(41)

"
wm

Age (tf)

Aye (tf) =

and
(42)

|
o
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Notice that Aee(t) can be computed separately without solving the rest
of the problem if F is known beforehand. However at this point, we have
not yet determined how F should be selected. It will be seen that this
depends in a critical way on the nature of Q. We will consider two

different classes of problems.

CASE 1.

In this case, we assume that a = 0. The meaning of this is that
the quality of the estimation algorithm is only important at the terminal
time. This may make sense for rather a large class of problems. The
raason that this case is of particular interest is that the selection
of F does not affect the Hamiltonian, so that we are free to select its
value based on other considerations.

Consider that part of the Hamiltonian which depends explicitly
on F.

H* = tr {FO+O'F} (43)
where

©= (P -NPye) Age *+ (Pax-NPyy) Axe (44)

From (39) and (40) it is clear that(a(to) = 0. If it can be shown that
O(t) = 0 for all t in the interval of interest, then a singular arc
exists. The Hamiltonian is independent of F. In this case, one does
not need to specify F to stay on the singular arc. Differentiating
Ogives
(45)
e = Vo Agg = ;TN Age ]

3= o T ¥ A P :
O=FO-OF + K[RK Age + WK Aee CPus e = P 4
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The bracketed term in the above is zero whenever K is chosen optimally,
i.e., according to (36). Hence
O(t) = F(t)O(t) - O(t)F(t) (46)
and (46) implies that ©(t) = 0 for all tZto since O(to) = 0. The J

selection of F is thus not a performance factor. It may be selected
a-priori so that;\ee(t) can be precomputed. It may be selected so as
to achieve some other objective such as reduced sensitivity, computaticnal
convenience or to minimize some alternative performance measure specifi-
cally involving F.

When one thinks about it, the singularity with respect to F is
not particularly surprising. Clearly two different filters can even pro-
duce the same output at a particular time, given the same input. What is
interesting, is that this fact is generally overlooked, and as the example
problem will show, that an alternative filter structure can be relatively

easily implemented.

CASE II.

In this case the weighting matrix, 6, is a positive definite sym-

metric matrix. When one develops an expression for©, the result is

.

0=r0-6F +Qf (47)

instead of (46), where

Q= NP - Py (48)

Thus unless ) is zero, a singular arc does not exist.




It is easily seen that (t) does not equal zero unless F is slected
appropriately. From the initial conditions, ()(to) = 0. Taking the

time derivative of Q) we get

. . T 2 . T
Q= FOQ+QF + (NPxx Pex) (NA-FN-KC+N)
_ T_w T\T 8
K [RK PAILE A cpxe] (49)

Examining the last equations we see that if

(NA-FN-KC+N) = 0 (50)

then

Q= Fa+aF (51)

This follows from the fact that when (50) holds, z\xe(t) is zero for

all t in the interval. Consequently the expression for the gain becomes
-1

K = [Pech + N\yz] [R + \v3] (52)

and (52) is sufficient to have the last term in (49) be zero. In view
of (51) and the fact that Q(t,) is zero, it is clear that Q(t) is
zero for all te [to, tf] provided that (50) holds and that the gain is
selected optimally.

When Q(t) is zero, it may be seen that the orthogonality require-

ment is met in a reduced state space, i.e.
- . " - T =
Q(t) = NE)Pe(t)-Peg (8) = E{ [2(t)-e(n)]eT(0)} =0 (53)
Since 2 = z-e, (53) may be written as

E{2(t) e'(t)} =0 (54)

45
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so that what we have required for singularity is that the error and
the estimate be orthogonal.
When N is the identity matrix and there is no state dependent

noise, the result is the Kalman filter, with the requirement {50) that
F(t) = A(t)-K(t)C(t) (55)

which of course means that the filter is of full order. !lhen the filter
is of reduced order, and N is constant, what we have is the observer

constraint equation[16]

NA-FN-KC = 0 (56)

-

In ceneral, when é >0, (50) is a necessary condition for a singular arc.
Clearly it is not always possible to select F to satisfy (50). In such
cases, the problem needs to be reformulated so that an unbounded F is
not indicated. Alternatively a suboptimal solution can be accepted.
We will examine this topic in the next section.

A necessary and sufficient condition that (50) have a solution

F, is that

[NA-KC+&] Vi = [NA-KCHQ] vteltyte) (57)

If (57) holds then a solution is
F = [NA-KC+ﬂ] NY+ r [I-NNﬂ (58)

where N)ais the pseudo inverse of N and where [ is an arbitrary 2&x2
matrix [17]. When the matrix (NNT) is nonsingular then the solution

(58) can be written as
-1

F s [NA-KC+N] N [NNT] (59)
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SPECIFIC F SOLUTIONS

In the preceding section we have shown that when one is only
interested in estimation at a particular time, the selection of F may
be based on considerations other than optimality, so that one may
pick it prior to optimization. Furthermore, when 6:>0, it may not
be possible to find an F which results in a singular arc. In
that case one may opt to select F prior to optimization. In this
section, we will see that when F is selected a pribri, the two point
boundary value problem which must be solved for.the selection of K
is linear, and hence relatively easy to solve.

Considar substituting the gain expression (36) in (31) and (38).

The resulting expressions are

. 3 . T T T T
B Pxe = APxe + Pxx(;“’NA-FN) + PxeF + QN+ ‘!’1 N

T T -1

T =1
-(PyxC +\y2)(R+\y3) [(Pxx G- # vz) bes Mue

Nk
‘N 6 Pxe] (60)

and

Axe = ~(NA-FN+)T Agq = AT Aye = AyeF + CT (R+ ¥,)"!

T )T (61)

£ .[(PXX C + \!’2

When F is known a priori, both Pxx and A, are known in the sense that

¥ b
Axe +(c Pxe 3 yZ NT) Aee}

they may be precomputed. The above equations are then seen to give a
’ linear TPBVP in the matrices Pyo and Ay,. The solution may be obtained
in a straight forward manner using linear systems theory, or alternatively
by assuming that the elements of A,, are linearly related to those of
Pies and obtaining a solution involving a Riccati equation. The values

obtained for Py, and Aye may then be used in the gain expression (36).

| — ——
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We cannot overemphasize the importance of the fact that our result
is a linear TPBVYP, since it is reasonable to expect to solve a linear
matrix TPBVP. Often a nonlinear matrix TPBVP is so difficult to solve,
that the utility of the result is questionable. We shall explain pro-
cedures for solving a linear TPBVP by looking at a particularly easy
case in which '\ee is a scalar times the identity matrix. This results
when both F and 6 are scalars times the jdentity matrix. When this is

true, (60) may be written as

Bra ™ Bialee ® o Rya'+ iy (62)
where
Loy = e P b (63)
Lyp =% (CPxx +\y2T).\-1ee (64)
0, = Pxx (Na-Frf) T+ QT ¥, e L*‘VZTNT (65)
and where
L* = (P’ +9) (R+wy)7! (66)

Equation (62) is of the form

Ae = L21 Pye * L2 Aye * 0p i
where
21 3 s
L - —AT-F + CTL*T (69)
22
and
; i § - T
0y » -(NA-FN+N)T.\ee v cT(re w1, NT Ao (70)
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Let L be the matrix

)
L L
e o1
[ Loy I L22J
¢
and & be the associated state transition matrix which can similarly be
partitioned
' .
e
¢ = | (72)
[“’21 “’22J
*
Then the solution to (62) is
pxe(t) = @11 (t, to)Pxe(tO) +°12 (tato) f\xe(to)
’ t (73)
+j; [Qll(t,'!') Dl(‘l.’) +¢12 (t,‘t) Dz(T)]d’r
0
and
t
+j. PZl(t’T) 0,(x) + @22(t,r)02(r)]dr (74)
L ] to
Applying (74) at time t = te gives
4 Axe(tf) =0 = °21(tf’t0)Pxe(t0) + ¢22(tf,to) Axe(to)
te
f [earlteong (o) ¢ baa(team)Dy(0)]dr (75)
to
*
5




S0

He can solve (75) for A, (ty) and substitute the results in (73) and
(74) to obtain the solution for all te[to, tf].
There is another approach which is probably preferable in most cases.

We assume that A,q is linearly related to Pxe by the relationship
Nelt) = U(t)Pye(t) + B(t) (76)

Differenatiating (76), one obtains the differential equation

.’\xe = UPXE +U[L11PXE + D1+L12 UPxe + le B] + B (77)
Alternatively, from (67)

.Kxe = L21Pxe > LZZ 'Jpxe + Lzzs + DZ (78)
Equating (77) and (78), we get for U
and for B

Since A, (tg) = 0, the terminal conditions for U and for B are

(81)

[}
o

U (tf) =

(82)

"
o

B (t,)

The Riccati equation (79) and equation (80) can be solved backwards in
time from the above terminal conditions. The optimal gain may then be

expressed as

=1
o

1T
K =[P Qe #hvy + n g \UPxe+B)T(PxxCT+‘y2)] [R+w3] (33)
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and P,o is evaluated as

Pre = L11Pxe * L2 [pre + 3] + 0 (84)

The matrices A, Pyyx, U, and B must be evaluated off line, however, P,,
and K can be evaluated on line if this is desired. Most Tikely these
would also be evaluated off line and K stored for on 1ine calculation

of E(t) using (9).

EXAMPLES

The first example we shall consider is of the category discussed in
Case II. We assume that A(t) is zero, N(t) = C(t), and that there exists
an F such that

FC = C - KC Vte[to, tf] (85)

then if CCT is nonsingular

F = [CCT - chq (ccTy 7 (36)
The filter equation is

gl I% ¢ ) Al B A

gz = C0° (CC §  2d¢ + K [?y - zdt] (87)
The initial condition for (87) is

2(ty) = Clty) ug (88)

The gain is of the form

< md
K(t) = [pxeTcT + C\vz] [R + w3] (39)
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where Pxe is the solution to
AE T T B o ik
Pxe = Pxe(CCT) 1[C(‘. -CC K ]+(Q+w1) C-¥, K (90)
Alternatively since CPa = Pee’ it may be desirable to evaluate (89)
as -1
K(t) = [Pee + C‘Vz] ER + w3] (91)
where Pee is the solution to
T
: T ool ]
P (t) -[cc Dk el K:] PoatPac [cc (ccTy! - x
+ coeT + KRKT + kegkT - CrKT
- ke, CT + cvyc! (32)

The reason (92) is appealing is that Pee has fewer elements to calculate
then Pye.

The next example is concerned with the very simple problem of
estimating a constant having zero mean and variance 1 prior to observations.

The observation is of the form
dy = x dt + dv + Mx dv (93)

where v and v are zero mean white noise with covariance parameter 1
and M is constant. We are interested in estimating the value of x at

time, T. Hence
J=e{e? (T} (94)

and this is a problem of the category referred to as Case 1. For com-
putational convenience we select F = 0.' The TPBVP then is
ﬁxe “= =7 (Pea * Ay (95)
A (96)

-
xe Y (Pxe Axe)




with Pxe (0) = 1 and Axe (T) = 0, where

vy a (1+ M)l

The solution is

(t) 1 - y(t-T)
P t -
Be 1 + T
and
e '
e Y (99)
I+ T

Interestingly, because of the complimentary nature of P,o(t) and pa(t),

the gain is a constant,

1T (100)

The filter is simply

d(t) = P dy(t)

1+ YT (101)

and the error variance at time t = T is

(102)

O
—
—
S
|
]

The filter (101) is simpler to construct than the choice which would
require F = -K, i.e., one of the form

dR(t) = k(t) [dy(t) - 'Q(t)dt] (103)
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even though it is obviously a full order filter. The authors feel that
the nonunique property of optimal linear filters for certain cases is

a feature which one should take advantage of.

REMARKS AND CONCLUSIONS

We have extended the results of (8] to problems having state de-
pendent noise in the observation and dynamical equation. Control
theoretic methods have been used to solve the problem, and optimal
solutions have been shown to correspond to singular arcs. Different
solutions result when there is an integral performance measure than
when only estimation at the terminal time is important. In some cases,
we have seen that it makes sense to select the filter matrix ahead of
time and then optimize the gain. The computational algorithms associated
with such prior selection are particularly convenient. There are no
terribly difficult TPBVP's in this approach and that is why the authors
feel that it is practical and useful, both for full order and reduced
order filters. The amount of off line calculation necessary to simplify

on line filtering appears to be quite realistic.
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ABSTRACT

Consider the nonlinear system
n-1

x(t) = £(x(t)) + ] u.(t)g,(x(t)), x(0) = x. € M,
i=1 * * 0

where M is a connected C~ real n-dimensional manifold,

f'gl""’gn-l are c” linearly independent vector fields on M,
and Uyree.,u o are real-valued controls. Since the integral
manifolds of gl""'gn-l' if any, are real (n-1l)-dimensiocnal

submanifolds of M, such a system is called a hypersurface sys-
tem. Suppcse U is the largest open subset of M which is reach-

able frcm X and suppose U # M. It is shown that the boundary

of U is a C~ real (n-1)-dimensional submanifold N of M and N is

an integral manifold of the vector fields Gyreece9 1" More-

over the restriction of £ to N must assign vectors pointing in
the direction of U. Such a U is called the region of reach-

ability for the system with initial point Xy Many ideas here

parallel those used in several complex variables for the studies
of regions of holomorphy and of uniqueness of analytic continua-

tion for the CR-functions on a C real hypersurface in Cn, n o> L.

INTRODUCTION

Let M be a connected C~ real n-dimensional manifold,

59




£, 9yreeee90 be ¢~ linearly independent vector fields on M,

and Uyree.,u _, be ;eal«valued controls. The system

n-1
x(t) = £(x(t)) + [ wu,(t)g.(x(t)), x(0) = x_€M,
i=1 1 1 0

is called a hypersurface system since the number of g vector
fields is n-1. We know that the reachable set of this system
contains an open set in M (see arguments in [8]), and we de-
note by U the largest open subset of M which is reachable from

Xqe This set U is called the region of reachability from x

ol

and if U = M, the system is controllable from x If U# M

0"
then we prove that the boundary of U is a c” real(n-1)-dimensional
submanifold N of M and N is an integral manifold of the vector

fields Gyree-r9

n-1° In addition, the restriction of the vector

field £ to N must point in the direction of U.
This article is arranged in the following way. In section
2 we give definitions and relevant examples. Section 3 contains

a local theory concerning the boundary of U under the assumption

that this boundary is C1 near one.of its points. In section 4
we state a theorem from (6] concerning a subbundle of the tangent
bfundle to M and allowing us to remove the Cl restriction. Then

we prove our main result, Theorem 4.2, and give several applica-

tions.
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DEFINITIONS AND EXAMPLES

We shall use the classical Probenius Theorem and Chow's
Theorem [2]. For a statement of these results and their appli-
cations to control theory we refer the reader to [1].

Of interest to us is the controllability of the system

n-1
(2.1) %(t) = £(x(t)) + § wu.(t)g,(x(t)), x(0) = x. €M,
: 3 i 0
i=1
with M, £, gl""’gn-l' and ul,...,un_l as in the introduction.

We let T(M) denote the tangent bundle of M with fiber Tx(M)
for x € M.

Recall that if X is a vector vield on M, then a is an

intecral curve of X if a is a C mapping from a closed interval

ISR into M such that

d:ét) = X(a(t)) for all t €1I.

Definition 2.1 [8)]. If D is a subset of T (M), then an inteqgral

curve of D is a mapping @ from a real interval ([t,t'] into M

such that there exist t = to <tl Carans <tk = t' and vector fields

Xyr++-sX, in D with the restriction of a to [ti_l,ti] being an
integral curve of xi' for each 1 = 1,2,...,k.

Definition 2.2. Let D be a subset of T(M) and let xOGtL A

point x €M is D-reachable from X4 if there is an integral curve

a of D and some T > 0 in the interval for a such that a(0) = X

and a(T) = x. A subset S of M is D-reachable from X if every

point x € § is reachable from Xg*




— ——

62

For the remainder of this article D is the subset of T (M)
n-1
given by the vector fields f(x(t)) + i£1 ui(t)gi(x(t)). There-
fore we drop the D from D-reachable.
For complete vector fields (i.e. vector fields which can be
defined for all -» < t < =) it can be seen from arguments in [8]
(and not difficult to prove for the special case of hypersurface

systems like (2.1l) even if the vector fields may not be complete)

that the reachable set from x, contains a nonempty open subset of M,
containing Xg in its closure.

Definition 2.3. The largest open subset U of M which is reach-

able from X, is called the region of reachability from x If

0.

U = M, we say that the system is controllable from Xge

We make two final comments before introducing some illu-
strative examples. Since we are considering unbounded controls
(both positive and negative), no generality will be lost in
assuming that we can move along the integral curves of Fyreeer9nqe
If we define the Lie bracket of two linearly independent vector

fields £ and g in Rz by [(g.f] = gﬁf - gig, then we find that

[g,f] is a linear combination of £ and g. This means that there
are no "new" directions in which a solution to the system

%(t) = £(x(t)) + ult)g(x(t)) , x(0) = xOGRZ

can move (see [1]).

Example 1. Consider the linear system

X 1 0 X 0

- + u(t) = f(x(t)) + u(t)qg,
&2 0 1 X, 1
S
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where M is the open right half plane in Rz. By the well known

test of Kalman [7] this system is not controllable for all of Rz

from any point X, in mz since [é i][g] is equal to [2]. Let

Xq = (xlo,xzo) be an arbitrary point in M. The integral curve

of g through (xlo,xzo) is given by the vertical line X, =X
Suppose U is the open set in M defined by {(xl}xz)lxl s x93

L
Since we can reach any point on Xl = xlo, our only hope in escaping

from the set U is that there is some point on the line x, = x 0

1 1

at which f is in the direction of the complement of U. However,

ol

1 . 0

f(x(t)) = % on this line and Xy >0, implyving U contains the
2

X

reachable set from xo. Letting u(t) = 0, we reach every point

0
x
on the line X, = -33 X to the right of (xlo,xzo). Using infinite
*1
controls and the interval curves of g, we f£ind that the region

of reachability of our system from X is the set U.

Example 2. Consider the linear system

b3 0 1 Xy 0
= + u(t) = f(x(t)) + u(t)g,

x, 1 0 X5 1
!
where M is the open upper half plane in Rz. From Kalman [7] we

2

see that this system is controllable for all of R“ from any point

& o 1]To 1] . . AR [o]
xoe R” since [1 0] L1J=[o is not a linear combination of 1]
Let Xy = (xlo,xzo) be any point in M. Again, the integral

curve of g through (xlo,xzo) is given by the vertical line
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X, = xlo, and we must restrict x. to be positive for points on

2

this line in order to stay in M. Let U be the open set in M

given by {(xl,x2)|x1:>xlo, X, >0}. The vectors that £ assigns

2
at each point of the line X, = xl0 in M are in the direction of
U since xz0 >0. This is also true for each vertical line in M
to the right of X = xlo. Hence the integral curve given by

f(x(t)) with initial value (x o,xq°)~must move forever to the

1

right. Those integral curves of g including and to the right

of Xy, = x intersect the integral curves of f transversally

1
(defined in section 3) at each of its points. Thus the reach-

able set from xo in M is U. Since we cannot move outside of

M, U is the region of reachability from Xqe

We remark that we are assuming £ and g are linearly in-

dependent on M in our theory. Suppose that we relax this

temporarily and let M = Rz in our Example 2. Starting at any

0 2

point Xy = (x1 ,xzo) in R, we can always move vertically

(both up and down) along X, = xlo, SO we can assume X 9 >0.

2

An argument as in our previous discussion shows we can reach

the set {(xl,xz)lx1 > xlo} since we no longer must remain in

the open upper half plane. We take a new point (x1 Xy )

] '
with X, = xlo and Xy < 0. Since the vectors f assigns along

0

1 )

the line x, = x are negative in the X, sense when (xlo,x

1 2
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is in the open lower half plane, we can also reach the region

0 :
{(xl,xz)lxl < Xy 4%, < 0}. Moving along the integral curves

of g will give us the entire plane, as predicted by the Kalman
theory. |

Examples 1 and 2 suggest a possible solution to our problem
for 2-dimensional linear systems. If U is the region of reach-

ability from X in M, then the boundary of U in M should be the

integral curves of g on which the vectors given by f point in
the direction of U.

Since we aré most interested in nonlinear systems, we
examine the following bilinear system.
Example 3. Consider the system

il(t; 0o 1 X 1 0] [x

+ u(t)
iz(t) L 0 X 0 -1 X

f(x(t)) + u(t)g(x(t)),

where M is the set Rz-{(0,0)}. Brockett [1] states that if

lo,xzo) is in the positive quadrant, then the region

X (x

0

of reachability U from x, is contained in this quadrant.

0

The integral curve of g through a point on xl =0,x, > 0 is

2

the line (O,xz) with X, > 0. Moreover, the integral curve

of g through a point on Xy = 0,x, > 0 is the line (xl,O)

1

with X, > 0. These together form the boundary of the first

guadrant in M. The vector field f assigns vectors to this
boundary which point toward the first quadrant. Thus there

is no hope of a solution starting in this quadrant to leave it.
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We could give many more examples at this time, but they
would all hint at the same conclusion. In the system (2.1),
the important items to check appear to be the integral mani-

folds of CPREER- A if any exist, and the direction of the

vector field £ on these integral manifolds. We next examine

these conditions for regions of reachability with Cl boundaries.

Cl BOUNDARIES

Let U be the region of reachability of the hyperéurface
system given in (2.1). Let x be an element of the boundary of
U (denoted by 35U), and assume 3U is C1 in some open neighborhood
W of x in M. As just mentioned we need to consider the direc-
tions of £ on WM3U and the possibility of having an integral

manifcld of gyre--s9 through x. Recall that a  differentiable

n-1

submanifold S of M is an integral manifold of Gyreecr9 1f

1

TY(S) is the space spanned by 9yre-+r9,1 at y for each y€ sS.

For a more thorough discussion of integral manifolds we
must consider the Lie bracket which we defined earlier for RZ

(a very special case). Let 95 and gj be different vector

X

p agi 99g..
fields on M and define [gi.gjl = 3§_9j - 3—1gi. This may or

may not give us a "new" direction in which to move (see [1]). '

Let LA be the smallest Lie algebra generated by taking suc-

cessive Lie brackets of the Fyrecer9o1 given in equation (2.1).

I P T C T

If we get a vector space of the same dimension at each point of

M, then LA is a fiber bundle with constant fiber dimension n-1
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or n. Morecover, L, is a fiber subbundle of the tangent bundle

to M.

The following definition is essential to our work. Let

Sl and S2 be Cl submanifolds of M of dimensions k and n-k
respectively.

Definition 3.1. The manifolds Sl and S2 intersect transversally

. r\ . 2 3
at a point y GS,,,SZ if and only if Ty(sl) :} Ty(Sz) Ty(M).
Here @ denotes the direct sum.

We now prove a result under the assumption that locally

1
our cpven set has a C~ boundary.

Thecrem 3.2. Let O be an cpen set in M which is reachable from

xy for system (2.1), and let x be an arbitrary point in 30.

Suppose there is an open neighborhood W of x in M such that

W N30 is a Cl real(n-1) -dimensicnal submanifold of M. If any

one of the following conditions holds, then O is not the region

of reachability from Xq-
i) the fiber dimension of LA at x is n,
ii) the integral curve of some 95 1l <i< n-1, is trans-

versal to 30 at x,

iii) f assigns at x a vector pointing in the direction of

S
the complement of O.
Proof. If i) holds then the fiber dimension of LA at all points
» in some open neighborhood of x in M must be n (since n is max-

imal). Thus 30 cannot be an integrable manifold of Fyreeer9 2y

near x by the Frobenius Theorem, and there exist a point y € 30
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arbitrarily close to x and a gy 1l < i < n-1, such that the
integral curve of 95 is transversal to 30 at y. Hence, i) re-

duces to ii).
Next we assume that ii) is true. 1If the integral curve

of 9y chosen arbitrarily from the set Gyreeer9_1r is trans-

versal to 30 at x, then it is transversal to 30 in W30,

W being an open neighborhood of x in M (this W may be a smaller

set than our original W). Following the integral curves of

93 that start in W/MNO, a reachable set from Xq and continuing

past W30, we have that O cannot be the region of reachability

from xo.

If iii) holds at x, then it holds for all points in W M30,

and the argument given in ii) with 9, replaced by f implies the

desired result. Q.=.D.

It is interesting to note that condition i) does not depend
on W30 being a Cl manifold.

We seek a minimum number of necessary conditions that an
open set UcM be the region of reachability from Xqe

Theorem 3.3. Let U be the region of reachability from Xq of

the system (2.1). Suppose 3U is a Cl manifold for an open
neighborhhcod W of x¢€3U in M. Then W(13U is an integral mani-

fold of gyre--s9 and the vector field f assigns to WM aU

n-1"'
vectors pointing -irr the direction of U.

Proof. It follows =Zrom part ii) of the preceding theocrem that

WM U is an integral manifold of 9yreer9 Hence WNJU is

1°

actually a C” submamifold of M. Since £, Gyrec=e9,01 form a

aal o s b o
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linearly independent set on M and WN3U is an integral manifold

of gyrecc 19y part iii) implies the statement concerning £. Q.E.
We shall prove in the next section that the hypothesis 35U

: i 3
is C” near x is superfluous.

THE MAIN RESULT

The following theorem was proved in [6] for use in the unique-
ness of analytic continuation problem for CR-distributions on CR-
hypersurfaces in Cn, n > 1. The statement concerning a C2

boundary can be relaxed to Cl, or we can simply replace Cl

2 . ; ;
by C° everywhere in the preceding section.

m . .
Theorem 4.1 [(6]. Let M be a C manifold of dimension n,

and let H be a subbundle of the tangent bundle of M with
£iber dimensicn n-1l. Suppose U<M is an open set with the
property that if OCU is an open set having a C2 boundary,

then for each x €30 N3U we have Tx(ao) = Hx (the fiber of

H at x). Then for each point x €3U, there is a neighborhood
V of x, a real-valued function h €C (V) with nonzero differ-
ential for all point in V, and a closed nowhere dense set
EC R such that

(1) 3uNV = {x €V|h(x) €E},

(2) for each & €E, S, = {x €V|h(x) = 2} is an integral

manifold of H; i.e. the boundary of U is foliated by integral
manifolds of H.
We now restate Theorem 3.3 under more general conditions.

Theorem 4.2. Let U be the region of reachability from xy of

the system (2.1). Then 3U = N is a ~ 8 integral manifold of

D.

s b el e



9yre--09,1 (or more generally, is foliated by such integral

manifolds) and f assigns vectors on N which point in the direc-

tion of U.

Proof. Let H be the subbundle of T (M) spanned by gl""’gn-l'

If O is an open subset of U with a C2

boundary, then an appli-
cation of Theorem 3.2 and Theorem 4.1 give us the stated con-
clusion. Q.E.D.

We have the following important corollary, the proof of

which is obvious.

Corollary 4.3. Suppose M is connected and contains no integral

manifolds of gysre--+9,_; for which both of the following state-

ments hold:

a) The closure of the integral manifold is foliated by
integral manifolds.

b) The vectors assigned by f on this integral manifold
always point in the same direction relative to the integral
manifold (i.e. if this manifold divides M into two components;
the vectors mPst point toward the same component). Then the

system (2.1) is controllable from any xoé M.

Let Ad denote Hausdorff measure (see [3]) in dimension d
on M. Suppose L is the set of points on which the Lie algebra

LA has dimension n-l. Then L is a closed set in M, and the

p
Frobenius Theorem implies that L contains the integral manifolds

of Gyrecer9oqr if any exist. For such an integral manifold we

must have A" (L) > 0, and we have proved our next result.

Theorem 4.4. If Aa-l(L) = 0 and M is connected, then the system

(2.1) is controllable from any Xy €M.




Notice that if M is of dimension 2, we always have integral
curves of g for the system x(t) = £(x(t)) + u(t)g(x(t)),

x(0) = Xqe Thus Theorem 4.4 does not apply in this case.

We state two theorems from [l1] and indicate in a rather
superficial way the relation of these theorems to this present
work. We restrict our attention to dimension 2 and to a
hypersurface system.

Theorem 4.5 [l1]. Suppose f and g are vector fields on a

c” real 2-dimensional manifold M. Suppose that {£,c} meet the
conditions of Chow's Theorem for C  vector fields, and suppcse

that for each initial condition xo the solution of (t) = £(x(t))

is periodic with a least period T(xo). Then the reachable set
£rom X of the system X(t) = £(x(t)) + u(t)g(x(t)) is the set

given by Chow's Theorem.

We start at Xq €M and take the integral curve of g through
Xqg- Suppose this curve divides M into two connected cocmponents

M' and M. If the solution of X(t) = f(x(t)) starts at Xq in
the direction of M+, then since the solution is periodic, there

is some point on the integral curve of g through X, at which

the vector of f is in the M direction. Of course, this is in
keeping with Theorem 4.2.
In [S] is proved a very nice generalization of the following

result, which we state in dimension 2.
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Theorem 4.6 [S5)]. Consider the system

x(t) = £(x(t)) + u(t)gix(t)), x(0) = Xqe
for a C real 2-dimensional manifold M. Suppose [f,g] = ag
on M, where a is a c” function on M. Then the reachable set

from Xg is obtained by taking the integral curve a of £

through x, (in the positive time sense) and then all integral
curves of g interesecting a.

This 2-dimensional version can be seen in light of the
following result found in (4]. The one-parameter group of
transformations generated by f permutes the integral curves
of g with a change of parametrization if [£f,9] = ag for some
¢~ function a on M. Interpreted freely, once an integral
curve of f passes through an integral curve of g it can never
return. This seems to be in agreement with Theorem 4.2.

An obvious question to ask is if the necessary conditions

of Theorem 4.2 are also sufficient.

Theorem 4.7. Let xoe;M and suppose U is the smallest open sub-
set of M with Xy € U satisfying 3U = N is an integral manifold
of Fyreer9, and £ assigns vectors to N in the direction of

U. Then U is the region of reachability from x, for the system

0
f2.1).
Proof. We know that we can reach an open set and by the theory

developed in this paper we have that we can reach U. The im-

portant fact to remember is that to leave U we must break through

N near some point xle N. In the system




n-1
k(t) = £(x,t) + J u, (t)g.(x(t)) at the point x
i=1 * 5

we can move

1
in the directions f'gl""’gn-l' - SRARE N - S and

n-1
£+ ) u; (t)g; for the appropriate finite u,'s. Since N is 1
i=1

an integral manifold of gyreeerIpyr Lie brackets like [gi,gj]

with i # j will give us no "new" directions in which to move

from x,. Also, since f,gl,...,gn_1 span T (M), the brackets

[f,gi], i=1l,...,n-1, will yield vector fields which are linear

combinations of f,gl,...,gn_l (the same is also true for suc-

cessive Lie brackets). The only linear combinations here which

we can use at x, are those already indicated by the system. Q.E.D.

The proof of Theorem 4.7 is applicable only for hypersurface
systems (or certain general systems that behave like hypersur-
face systems). We shall consider results as in this paper for
general systems of the form

m
x(t) = £(x(t)) + izl u, (t)g, (x(t)) elsewhere. Such a system
with m < n-1 seems much more difficult to handle than a hyper-

surface systen.
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ABSTRACT

A class of two-dimensional recursive digital filters called symmetric
half-plane filters is discussed; some properties of these filters are derived
and it is shown that in certain situations these properties may give the
symmetric half-plane filters both theoretical and practical advantages over

previously proposed filters. In particular, they are ideally suited to highly

parallel processing.

INTRODUCTION

In the literature on 2—dimensiona1 recursive digital filters, two main
types of filter have been studied; these are the quarter-plane filter (e.g.[1],
[2]) and t-z asymmetric half-plane filter [3]. Basically, the two correspond
to two diffzrent concepts of causality. The general stability conditions
for a wide class of filters (including symmetric half-plane) were discussed in
[4]; unfortunately, however, those filters are not recursively implementable in
general. Here we will consider a class of filters which are recursively im-

plementable, and satisfy the same stability conditions as those in [4].

SYMMETRIC HALF-PLANE FILTERS

By a symmetric half-plane filter we will mean a (causal, recursive) 2-di-
mensional digital filter, the denominator of whose transfer function is of
the form

N

M
M, 1) % 1% o = (1)
!l - mzl nZ-N mn~1 72
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This differs from the filters in [4] in that m goes from 1, rather'than 0,

to M; i.e., this filter omits all of the row m=0 except for the constant

term; the asymmetric half-plane filters omit half of this row. The filter (1)

is recursively realizable, since the computation of the output at any point
f depends only on the outputs in previously computed rows; looked at from another
point of view, each row of output depends only on previous rows of output. This
, has two effects; firstly, it focuses attention on the row as the basic element
in the filter; secondly, it implies that all the outputs in a given row may be
computed in parallel, since each output in a row depends only on outputs in
previous rows, and not on any of the outputs of the same row. This is the main
practical advantage of this class of filters - it would be of significance, how-
ever, only in real-time hardware applications of 2-dimensional filtering, and
these seem to be few.

SOME_PROPERTIES

Using the methods in [4], one can easily derive the following:

The filter (1) (i.e., the all-pole filter whose denominator is A(Z],ZZ)) is
stable if A(Z,,Z,) # 0 for all (2,5 Zz) such that IZ]I =1 and IZZI < T

We note that this set is the same as that for the symmetric half-plane filter
in [4]; it is smaller than that for the asymmetric half-plane filters [3]. It
is the smallest "instability set" (known to the author) of any recursively im-
plementable class of filters.

However, there is a price to be paid; the amplitude response of the filter

is restricted as follows:

1 ; ;
If A(Z1,Zz) is of the form (1), and if ITT?TTET is the transfer function of a
stable filter, then

2n R >
jo log |A(eI®1,e3%2)| 4o, = 0 (2)

independently of o,.




19,

Thus, the average gain along any line of length 2 parallel to the 8,-axis is
. constant; or in other words the filter cannot have variations in the 6;-direction

in overall (average) gain. Equivalently, if the cepstrum of |A(eJel, ejez)l is

T P Ln
given by § I "]
m=-o n=-=

then ;on = 0, for all n.

This follows immediately from (2) and the definition of the cepstrum; (2)
will be proved in a forthcoming paper.

This impties that in order to realize an arbitrary magnitude function, the
filter must either have a (nonminimum-phase) numerator polynomial, or the filter
must be cascaded with a 1-dimensional filter in Z]. It is very easy to calculate

the ideal amplitude response of this filter.

DESIGN AND IMPLEMENTATION CONSIDERATIONS

It is conceptually convenient (and in a large number of cases, computation-
ally efficient) to implement the ¢onvolution in the Z]-direction by means of the
Fourier Transform. (It is assumed from the beginning that the dimension of
the array to be filtered is a known fixed constant in the Z]-direction, i.e., each
row is of the same fixed width). From this point of view, and regarding each row
as a single entity described by its 1-dimensional Z-transform, the coefficients

a - in (1) are irrelevant; what matters are the M functions

C N 1
2 (381 JoyyN
a (e"1) = § a (el71)".
m necN MR

Further, the stability requirement for the filter is equivalent to the requirement

that for each fixed 8,, the filter defined by

1

21 ém(ejel)zg +1
m=

Ae1 (Zz) -

is 1-dimensionally stable. Finally, the functions Sm(ejel) do not have to be
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analytic or meromorphic functions; this is seen by letting N+=. In other words,
the roots of 5m(e5°1) can vary quite arbitrarily with 8;. Thus, we can design

the one-variable filter Ael(zz) by any one of the usual one-variable design
methods we choose (yielding a stable filter) for each 6,: the result will be a
stable two-variable filter: further, if our one-variable method gives poles and
zeros explicitly, we have the same for our two varfable filter, which can there-
fore be expressed as a cascade of filters of degree 1 in Z,. Finally, if one
desires a filter of finite degree in Z,, one can solve the following approximation

problem (for eachm, 1 <m < M); minimize (over bmn)

N . R
[l § b el - bm(eJel)ll subject to

ne-N M0
N .
| 7 b e8| < 1 for all &), where
< mn
n=-N
Bm(ejel) denotes the m-th pole of AeI(ZZ) as a function of 8,, and || || denotes

some error norm.

Hopefully this will become clearer on consideration of the following- example.
EXAMPLE

We wish to design a filter with second-order Butterworth response in Z, to
approximate the fan filter whose passband is the set |6,| < |e,|. For fixed 8,,
therefore, the filter is a 1-dimensional filter whose passband is the set |8| < |8,].
Using the bilinear transform technique, we find the second-order continuous

Butterworth filter
1
27,2
1+ /2 S/mc +s /mc

transforms into




o4

vl (1 +2,)2

2
Wifte v e (2 a2) 2 ¢ (el e /2u e ) z,

while its (stable) poles transform into

1+ ‘1’ VML - Gitdy)

and

(a+ .c(;é‘—j) V- (7&)}

for w_ > 0.
In accordance with the usual frequency warping, we take W, = | tan el/2(; however,
we note that this causes stability problems at 8,=0 and e,=v; we therefore take

a small perturbation oqu, e.g.,

& sin 0,/2)2 + ¢
Yo (cos 8,/2)% + ¢ (8)

The filter can now be directly implemented by multiplying the Fourier transform
of the previous output rows by the appropriate functions according to (3) and (4)
and performing the recursion from row to row directly.

Alternatively, if a finite-order (in Z;) filter is desired, we must solve

the problem: Minimize (over b))
2| 724 (3 - 1” tan %1/2| jne,
I ] ‘." -JJ) |tan .1/2' n.-ﬂb n® B

lx-:-):--nblnejm1 | <3 TOr 3 8,

subject to

and similarly for the other root. The resulting filter may then be implemented in
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cascade. It should be pointed out that while the above optimization problem is
not simple, it is one-dimensional.

Finally, the above example was chosen for simplicity and convenience rather
than realism. Clearly a Butterworth filter is not optimal for this problem,
especially when it yields a design which is not all-pole; if we have to store
input rows (as well as output rows) we may as well use them, and design an

elliptic type filter; alternatively, we might use a filter which is all-pole

in its discrete form.
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ABSTRACT

Many physical noise processes are signal-dependent. One well
known example is film-grain noise (1-3). In this note, an example
of the application of optimal estimators for images in signal-de-

pendent film-grain noise is presented.

THE MODEL
A versatile model incorporating both signal-independent addi-
tive noise and signal-dependent noise is utilized. This model is

given in Eq. (1),

_—~
=

where r is the observed photogravhic density, s is the original
uncorrupted image density, k is the scanning constant, f(s) is some
function of s, and n, and n, are signal-independent noise processes.
Thus, the middle term on the right-hand sideof Eq. (1) is the signal-
dependent noise term.

It is assumed that Nys» Mgy and s are mutually statistically
independent. To apply the model to film-grain noise problems,
let £(s) = sP, where p is ususally taken to be 1/2 or 1/3 (1-3).

and n, are

L 2
: y . ; 2 2
zero mean Gaussian random variables, with variances °l and Oy re-

In this note, we let p = 1/2 and we assume n

spectively. Further, s is assumed to be a Gaussian random variable

; 2 2
with mean Mg and variance cs.

THE ESTIMATOR STRUCTURES

The maximum likelihood (ML) estimate is found by maximizing

p(r/s) over s (3). For the model of Eg. (1), the estimate is found

85




86

to be
~ k202 2 2r02 02 271/2 kzcz 02
fe = |22+ (= 1) * ot ( 222) = = e, (2)
k o k 9] k oy
as compared to the simple estimate
Sy. =r ¢3)

ML

which results when the signal-dependent noise term of Eg. (1) is
omitted.

The maximum a posteriori probability (MAP) estimate is found
by maximizing p(s/r) over s(3). For the model of Eg. (1) and the

above assumptions, the estimate Saian is found to be the solution of

4 4 2.2 2 4 4
2K 0 5~ 4k“0J05=-2k ‘o, - A
1 S3 2 2 1"s i 2k‘32 s2
2 2 1
o] o
s s
4 2.2 2
20,-4k" 00, A 4
P 2 S L ST O R | e (4)
o2 1 2
s
4
20.,u
2 2 2"s =
+ [k cl(cz-r ) - 202r - 5 ] = 0
O

Again, omission of the signal-dependent noise term in Eqg. (1) results

in a comparatively simplified estimate,

s o r % W s
MAP 2 2 2 2 S
OS+02 Og+05 (5)




Because this MAP estimate includes prior information about the
image, it should give superior performance. In fact, under the
above assumptions it can be shown that the MAP estimator minimizes

the mean square estimation error (3).

RESULTS

Figure 1 is the original image of an archer. Figure 2 is
the noisy image generated digitally according to the model of Eg.
(1). The image in Figure 3 is the estimate found by the solution
of the MAP equation, Eg. (4), with Mg and oi taken to be the
sample mean and variance of the original image.

One factor severaly affecting estimator performance is vio-
laticn of the assumption that the image statistics are Gaussian.

For a discussion of this, see the paper by Froehlich et.al. (3).
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ABSTRACT

Tn the following we consider a one-parameter group G acting
cn a set 92 of patterns. We show that under extremely mild assump-
tions the problem of recognition of equivalence of two patterns
reduces to the recognition of translated functions defined on the
real line. Thus, the recognition problem is reduced to one of a
practical nature. In fact, the well known properties of the
Fourier transform with respect to translation can then be applied

in most instances to provide a tractable solution.

FOURIER TRANSFORMS

Let X denote the set of real numbers and C dencte the set of
comeplex numbers. We follow Bremerman {l] in defining the Fourier
transform of a function £:! K = KR (or €) as

-

fa) = [_ eI%¢(s)as. (1)

Of course, the integral may fail to exist, even for well-behaved
functions f£. Thus, E mayv be a distribution [1] (i.e., a linear
functional on a suitable test space). In any event, let us con-
sider the one-parameter group of translations acting on f: K =+ K

in which a point t€ X corresponds to a translation

A.: £(s) + £(s-t). By change of variable in equation (1) above
we have
Tbla) = &3 (a) (2)

In the terminology of our previous reports (6,7], we see that f{or

~

each a € C the mapping Eu: f - £(a) is a relative invariant whose

93
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modulus is the exponential map p_ : K - {zeC| |z|=1} given by

o (t) = el®%. This is a well-known property of the Fourier
. Y

transform.

Now let fl,fzz K - K and let us seek t€ K such that
f2 = Atfl. Provided fl and f2 both exist, we see that a necessary

condition is that for all a € C we have

: = oJot:
fz(u) e £,

(a) (3)
Determination of t now becomes a matter of practicality. Observe
that the condition expressed in equation (2) is sufficient as

well since it implies that f2 = Atfl a.e. (almost everywhere).

Thus we see that the values of the Fourier transform give a com-

plete set of relative invariants. Now, from (2) and the relation
jat = ; .

le | = 1 we deduce that the values |f(a)| are invariant. Con-

sequently, a necessary condition that £, = Atf for some t € K

2 3l

is again expressed by the requirement that for all a € C we have
[£,() | = £, ()] . (4)

In the following, we will assume that a recognition problem

is solved when it is reduced to the translation problem for func-

tions defined on K.
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ONE-PARAMETER GROUPS

By a one-parameter group of transformations acting in k"

we main a family G = {@t} of coordinate transformations in K"

which depend analytically on a real parameter t and form a

group with respect to composition (see [4] and [5]). Note that

each :t: k" - k™. It is always possible to choose the paramet-

erization in such a way that :t.¢s = ;t+s' Such a system of

. ' . : n
coordinates in G are called canonical coordinates. For x €K

and t €KX we use yp(x,t) and v _(x) interchangeably. The vector

-

field cf the group is defined to be

2 3
s’,(X) = 3_t ltzo. (5)

Note that also &£: K° -~ k&, say § = (51,62,...,£n) where each

Ei: k™ - k. Finally, the infinitesimal generator of G is the

differential operator

U =

hea3

g, (03, S (6)
1

i=1

where x = (xl,...,xn).

Now the equations for canonical coordinates are expressed

as

e (e(x,t),s) = ©(x,t+s) (7)
for all s,t € K and x € K®. Application of a—| and &

1 e 3t ' t=0 “7C Js's=0

to both sides of equation (7) and the use of equations (5) and
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(6) yield the results

o

UQ-at
and

P Rse)

N @

3t £E(P) .

The first of these shows that @(x,t) may be reconstructed from
the infinitesimal generator as the unique solution to the partial

differential equation

Q>
G

U =

¢ B(x,0) = %, (8)

Q>
(23

while the second shows that <(x,t) may be reconstructed from the

vector field £ as the solution of

Ef®Y , ¥(x,0) = x, (9)

1%
IE
|

Q
ad

which, for a given x, is actually an ordinary differential equa-
tion in t. Equation (8) is typically solved [ ] by obtaining

solutions to the system of ordinary differential equations

dxl de dxn
E%) T EoTx) R s LiEm s = Ehe A

] Equation (9) may be expressed in integral form as
®(x,t) = x + [5 E(%(x,s))ds. (11)

The latter formulation suggests an interesting physical
realization. In figure (1) we see a feedback realization of
egquation (l11). The output of an integrator is input as argu-
ment to a generator for £ values. The resulting value is input

toc the integrator. Starting with the input x to the integrator

Be— | A

TP I O Frr .
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at time t 0, the output is the trajectory ¢(x,t), t > 0.
Replacing £ by -f gives the trajectory backward in timé,
Fixi=8), £ 2 0. In effect, one is able to obtain group tra-
jectories in a straightforward manner in analog form.

This observation merits further study and will be ac-
tively pursued in the future research. Comparison with the

work of Brockett [2,3] amplifies the belief that further

efforts along this line can reduce many recognition problems

5 el £)

Figure 1. Realization of equation (1l1).

to problems in control theory. 1Initial efforts, not complete
at this time, suggest that similar methods can be used in more
cgeneral n-parameter groups and that a control may be introduced

to select among the (infinitely) many one-parameter subgroups.

INVARIANTS FOR ONE PARAMETER GROUPS

As before, let G be a one-parameter group of transformations

in X'. It is shown in [S] that a map h: K" - K is G-invariant

if and only if Ch = 0. Furthermore, there are n-1 linearly inde-

pendent solutions hl'h2'°"’hn-l such that any invariant h is

expressible as h = H(hl'hz""'hn Y

=1

|
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Now, we may select ¥ " hl(x),...,yn_l=h (x) and an addi-

n-1

tional coordinate Y, so that in the coordinate system Yyreeer¥,

the action of G becomes

¢i(y,t) Y i <n

(12}

and ?n(y,t) yn+t.

That is, in suitable coordinates, the action of G is trans-
laticn in the last coordinate.

Now let us suppose that the pattern space Q is a set of

] n J
functions f: K + V, where V is a real vector space and that

3 ) I ity ; —
the action of G on 2 is induced by the action of G in K. Thus,
fgr € € G, &

=

2 TR
(vtf)(x) = -(»t €x) ) . (13)

Following the change of coordinates, we see that the problem of

recognition of equivalence of fl'fze Q is reduced to translation

in the n~th coordinate. Thus, we may consider this problem re-
duced to the Fourier transform methods previously discussed.

THE GENERAL PROBLEM FOR ONE-PARAMETER GROUPS

Let Q be an arbitrary set of patterns and let G be a one-
parameter group which acts on Q. Also, let R: Q@ - V be a mea-
surement function on Q with values in some real vector spéce.
As in earlier reports we obtain a representation of wé Q as a

function wh: G + V by defining wr(g) = R(q—lw). In terms of

canonical coordinates in G we may define a new representation

o




)

w: K = V by the formula

w(s) = w"(:cs), s€K.. (14)
Now for t € K we have
— B ) < e =1
“tw(S) (cotW) (ws) w (<9t *S)
= w(__ ) = wis-t) = A _w(s)
s-t £ :

That is, we have successfully represented Q as a class of
functions w: K = V is such a way that the action of G becomes
translation. The question of equivalence of patterns may now
be resolved by the use of the Fourier transform methods pre-
viouslv discussed.

CONCLUSIONS

We have shown that the recognition cf equivalence of pat-
terns under a one-parameter group is always reducible to one-
dimensional translation of functions of a real variable. .The
recognition problem is thus one of a practical nature which may
be resclved by known methods, such as the use of Fourier trans-
forms.

Further work will be done in the attempt to generalize the
above to general n-parameter groups. This will be complicated,
in general, by the lack of a transform analogous to the Fourier
transform, which fails to be readily available except in the
Abelian case.

We have also given a means of analog generation of +:ra
tories which suggests a control theory approach to rec
problems. This technique will be extended to n-pararme:

and the relation to general system theory will be ex:
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ABSTRACT

A failure prediction algorithm for application in a periodic
on-line maintenence system operating in a Poisson shock environment
is described. The system under test is measured at periddic main-
* tenence intervals with the data derived therefrom, being used to
estimate system lifetime and determine an optimal replacement
time. The resultant algorithm»is simulated and compared with'

various fixed replacement schedules.

INTRODUCTION

Fault analysis processes, have been and will continue to be very
significant factors in the safety and reliability of electrical
systems. This is especially true due to the following facts: a
rapid advancement in the complexity and size of modern systems,
increased availability and capabilities of computers, and rapidly
changing technologies in integrated circuit fabrication. Due to
this, fault analysis has become much more than an academic re-
search topic. Fault analysis is applicable in an industrial en-
vironment to minimize cost, extend the lifetime of the overall
system, control maintenance schedules, and effectively plan man-
power needs.

Although considerable effort has been expended during the
past decade to develope techniques for fault detection and diag-
nosis in both analog and digital electronic circuitsl little
attention has been given to the possibility of formulating algor-
ithms for fault prediction. To accurately predict a fault, a
device must be tested at periodic maintenance intervals. If the

device fails or does not operate correctly, it is replaced

lo3




immediately. The device may be assumed good if its character-
istics are in tolerence. However, if the characteristics are slightly
off nominal, but the device still operates correctly, one can
attempt to predict if the device will fail before the next scheduled
maintenance interval. If device failure is predicted, it can be
replaced before failure occurs as part of planned preventative
maintenance.

With the advent of the low-cost microprocessor, on-line fault
prediction is possible and practical.2 A curve fitting algorithm
for on-line fault-prediction was first introduced by Saeks, Liberty

in 1975. It was assumed that prior life-time statis-
tics for the system under test were known. Also, performance data
of the system at each maintenance interval were collected. The
application of these data to a second order polynomial equation re-
sulted in an estimation of the time at which the component under
test would exceed tolerance limits. Based on a criterion of simul-
taneously minimizing on-line failures and maximizing component life-
time, a decision as to whether or not the component should be re-
Placed is made at each maintenance interval.

The disadvantages of this curve fitting algorithm are: the
application is limited to failures due to permanent overstress, the
second order polynomial is too simple to describe the performance
of the component, and the prior lifetime statistics for the com-
ponent are often not available.

Another area where an extensive research effort is being
applied is shock models and wear processes. Esary, Marshall and

6,7,8 introduced a shock model for‘the life distribution

Proschan
of a component subjected to a sequence of shocks randomly occuring

in time according to a homogeneous Poisson process. They also

e
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considered the related shock models in which each shock caused a
random amount of damage and failure occured when the accumulated
damage exceeded a specified threshold. This failure model is
well known in modern reliability theory.'

Employing the Poisson-Shock model, another curve fitting fault

prediction algorithm which will overcome the disadvantages of the

Saeks-Liberty-Tung algorithm will be discussed in the present
paper.9 In-the following section, a model‘for the failure dyngmics
of a system component parameter is formulated. Here, it is assumed
that the faulure is due to the component being subjected to a se-

guence of Poisson distributed shockslo’ll

with the measurable para-
meter being controlled by an unknown difference equation whose
underlying discrete "component time" process is defined by the number
of shock to which the component has been subjected. Since both the
failure dynamics (i.e. the difference equation) and the relation-
ship between "component time" and real time are unknown, our fail-
ure model is doubly stochastic. The third section of the paper is
devoted to the formulation of an algorithm for estimating the com-
Ponent failure dynamics and its "lifetime", defined to be the number
of shocks required to cause component failure. This is followed by
the formulation of an "optimal" replacement theory wherein the
optimal réal time at which to replace a component is computed in
terms of its estimated "lifetime". Finally, the results of a simu-
lation of the algorithm in both an ideal and noisy environment are
presented and compared with the simulated performance for several

fixed replacement schedules.

FAILURE DYNAMICS

The performance of an analog device subject to a series of

discrete shocks (switching process, improper operation, etc...) may
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drift due to the shock damage. Let C(N) represent values of a

particular component parameter, where the "component time”", N,
denotes the number of shocks the component has received. It is

assumed that the drifting parameters can be described by a first

order* difference equation of the form:
1 C(N+1) = C(N) - a_ - a,N - a,N% - - a Nt c() =1
' o 1l 2 S h

Here, the coeficients and order of the "forcing polynomial" are
assumed to be unknown and must be estimated as part of the fault
prediction process. A little algebra together with the standard
recursive formula for solving a difference equations will reveal
that
N-1 h p
2. GO Be i e R O
j=0 i=0
Now, if the tolerence limit for the component parameter is
taken to be C = 0, we may define the lifetime of the component to
be the smallest integer, N, for which C(N) < 0. This integer which
we denote by L then represents the number of shocks necessary to
cause the component to fail.
Consider a simple example where the "forcing polynomial" is
taken to be of the first order with positive coeficients. Then 1.

reduces té
C(N+1l) = C(N) ~a, -alN ; C(O0) = 1

From equation 2. C(N) can thus be expressed as

ate - _N(N-1)

C(N) 1 aoN S LY a,

tThe concepts described herein carry over without modification to
the case where the failure model is characterized by higher order
difference equations. The first order model, however, suffices to

illustrate the theory and his hence used throughout the present
paper.
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Then the lifetime of this component is the smallest integer satis-
fying the equation

& - L(L-1)
1-ayL 3 a; 20

That is, L is the smalles integer such that

2
(2a0 - al)

- 2a1

+ Bal - (2ao - al)

Since the failure model of equation 1. is dependent on "com-
Ponent time", i.e. the number of shocks the component has received,
rather than real time, it remains to define the relationship between
“component time" and real time. Following common practice in re-
liability theorys, we assume that this relationship is determined
by a Poisson process. 1Indeed, this is the unigue point process
which has the scaling properties required for such an application.ll

Here, the probability of N shocks occuring in the time interval t

is:

N
3, P (t) = e kt —%}"’—- N 0,1,2, <o

Where k is a given constant representing the average number of
shocks per unit time. Therefore, (kt) is the average number of
shocks in the time interval t.

If a component with lifetime L is subjected to Poisson shock
with constant k the probability that it will fail (i.e. receive at

least L shocks) by time t, is then given by the formula9
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L-1
P(t) = Z Pn(t)
n=0
= L-1 i
ekt (x¢)?
n=0 n'

Thus, even though the lifetime of our component is integer valued,
in our model the actual failure time is continuously distributed
since the time at which the component receives the Lth shock is

continuously distributed.

ESTIMATION OF FAILURE DYNAMICS AND LIFETIME

In a periodic maintenance system, the performance of a component
is measured at each maintenance interval nT. That is to say,
(Cl’ Cor eney Cg) is the performance data taken at maintenance times
(T , 2T, ..., gT). The estimation problem can be stated as:

"Given performance data (Cl, Cz' ey Cg), T and k, estimate
the unknown constants (ao, Ay eee ah) of the failure dynamics."
Since it is assumed that the system is subjected to Poisson Shock
with constant k, the expected number of shocks in each maintenance

interval is kT.f As such, if we assume that Cm is the value of

the component parameter at N = mkT, then upon substituting
Cm = C(mkT) into equation 2. we obtain
mkT-1 0 mkT-1 1 mkT-1

| Ph iR R (R ot FO e ) aj =1-¢
jzo 0 jmo 1 320 h m

where m =1, 2, 3, ...., g or in the matrix form:

fAlthouqh not theoretically necessary, we assume that kT is an integer.
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N N
r; -1 o kT-1 kT-1 ;\ ( r’
E j R T B a, 1-C,
j= j=0 j=0
2kT-1 2kT-1 2kT-1
4. JA 3 .. 40 1 3 e LEe a; | = |1-cy| 42
j=0 j=0 3=0
gkT-1 gkT-1 gkT-1 1-C
: 3 20 j Zo j ay g
j= i= J=

Since the number of data points, g, is typically much greater
than the order of the polynomial assumed in the failure model, h, it
is not expected that equation 4. admits an exact solution. Rather,
we attempt to solve for a coefficeint vector, A, which minimizes
the error between JA and Z. 1In particular, if one adopts a least

squares error criterion the optimal A is given by

5. A2 a5
where J'G denotes the generalized inverse of J.12 Indeed, if as is

G -l_¢t

typically the case J has full column rank than J ° = (JtJ) J~ where

"t" denotes matrix transposition. As such, we take the a° =

col(ag, a°, o ag) as our estimate of the coefficients of the

-difference equation characterizing the failure dynamics of our drift-

ing parameter, C, as per equation 1. e
To estimate the failure dynamics of a drifting parameter, the
proper choice of the order h is, in general, quite difficult and

depends upon physical considerations and engineering experience.
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Once h is preselected, however, coefficients to best approximate

the failure dynamics can be readily computed via equation 5. The
accuracy of the resultant estimate, however, is highly dependent

on the choice of the order, h, and on the number of measurements

which are taken, g. To find a new set of coefficients for a
different combination of h and g, the entire calculation procedure
is typically repeated from the very beginning which is impractical i
in the on-line maintenance system. Fortunately, sequential refine-
ment schemes for obtaining new sets of coefficients without re-
peating the entire calculation can be developed.lz’l3 As such, it
is possible to sequentially update ones estimates of the parameters;
ayr @1s +eey Ay as additional measurements are taken and/or to
increase the order of the model for the failure dynamics without
repetitious matrix inversion. Our algorithm for estimation of the
failure dynamic underlying the measured data my thus be readily
implemented on-line with the computational power presently available
in today's microprocessors. The matrix algebraic details of the
required sequential refinement schemes are straighforwardlz'l3 and
readily available in the literature. As such, they will not be
repeated here.

In practice, given g measurements Cl’ C2, oy Cg taken at
maintenance intervals T, 2T, 3T, ..., gT, one sequentially esti-
mates the coefficients of the failure dynamics; @gr Ayr ceer Ay
increasing h until no further error reduction is achieved. The
resultant set of coefficients is then used in equation 2. to de-

termine th