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PREFACE

The following report represents the third review of

research conducted under the auspices of the Joint Services

Electronics Program at the Institute for Electronics Science

at Texas Tech University.- Specific topics covered include,

fault analysis, large—scale systems, stochastic control and

estimation, nonlinear control, multidimensional system theory,

optical noise, and pattern recognition.
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ABSTRACT

The fault diagnosis problem for a linear sys~~m. whose transfer fimctian

p matri x is measured at a diacret. set of f requencies is for ~aliz.d. A measure

of solvability for the resultant equations and a measure of testability for

the tait md.r test is developed. These , In turn, are used a. the basis of

a.tgorithme fo~ choosing test points and test frequ encies.

INTRODUCTION -

Conceptually, the fau lt analysis problem for an analog circuit or system

amounts to the measurement of a set of externally accessible parameters of

the system from which one desir es to determine the internal system paramete rs

or equivalent ly locate the failed componen ts as illustrated in Figure 1.

zs~~~ J
$14

’ 
. .~~~

‘ 
. 

.

n~l . J
. $

Figure 1. Conceptual Model of Fault Diagnosis Problem.

Hers , the measure ments , m~, say represent data taken at distinct test points

p. or alternatively, data taken at a fixed test point mder different stimuli.

Similarly, the r~ represen t parameters characteri zing the various Internal

system components. Here , a single parameter may characteri ze an entire component,

P say a resis tance , capacitance or inductance. Al ternatively , a component may be

1p 
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represented by several par ~~~ters: the h—parameters of a transistor, the

poles and gain of an op—amp , etc. In general , one models a system component

by the ~~{i~ 1~~~~~ n*~~ er of par~~~t.rs which will allow the failure to be iso—

lated up to a shop replaceable assembly (SM) with all “allowed” system fail-

ures ~~~if estiug ths elves in the fore of some par et.r change.

To solve th. fault di agnosis problem, one then measures m - col(m~) and

solves a nonlinear algebraic equation

1. m F(r)

for r — col(r ~) to diagnose the fault. The par~~~ters in the resultant r

vector which are out of tolerance then indicate the faulty component.6

The purpose of the present paper is to give an explici t formulation of

the fault diagnosis equati ons which arise in the ma.intnzence of linear systems .

Here , one measures the system frequency response as observed from a specified

set of externally accessible test points at a discre te set of frequencies

and. it is desired to solve for a vector of Internal system parameters , r ,

which completely characterize the frequency response matrices of the in—

dividual system components ; Z~(s,r), i • 1, 2 , ... , q.

In the following secti on the explicit fore for the fault diagnosis

equations is derived for a given set of test frequencies . A measure of solva-

bility of these equa tions i~ then developed in section3 and espolyed in

section 4 in an algorithm for opt~~~Lly selecting test frequ cies. The measure

of solvability for the fault analysis equations, given an optimal choice of

test frequencies , is then ~-.k.” as a measure of testability1’2’5 for the ‘mit

under test ~U~T) and is used as the basis of an algorithm for the optical choice of

tes t points.3’4’5 Finally , a number of .~~~~1es are presented in secion 5. 

.~~~~~~~~~ - -- ~~~- - -~~~~-~~ ~~~~~~~- - ~~~~~~
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E~~LICIT FORM OF THE FAULT DIAGNOSIS EQUATIONS

In the case of a linear tine—invariant circuit or sys tem, the fault

diagnosis equations may be expressed in analytical f ore.6 Since the fault

diagnosis equations deal with the relationship between the externally measure—

able syseen par ters, a, and the internal component parameters, r, we
p

adopt a component connection model as th. starting point for the derivation

of the fault diagnosis equations .7’8 This is one of several co only em-

ployed large scale system models in which the components and connections In a
p

circuit or system are modeled hi distinct equations, thereby permitting one to

explicitaily deal with the relationship between the Individual component

parameters and the composite system par ~~~ters.p
Since the present study is restricted to linear time—invariant systems,

we assume that each component is characte rized by a transfer function matrix

which ia dependent on the potentially variable component par ameters , Z~, (s , r).

Pot the classical RLC components Z~ (s ,r) may take the form R, LI , or 1/sC

for the case of a resistor , Inductor, or capacitor , respectively . More

generally , one may model an op—~~~ by the tra nsfer function k/(s—p 1) (s—p 2)

where the parameter vector , r , now represents the three potentially variable

component param eters ; k , p1, p2; or a delay by kesT, etc. Although the symbol

2 is used, the components are not assumed to be represented by impedance

matrices. Indeed, hybrid models are used in most of our e~-’ pl.s. For the

- purpose of analys is, it is assumed that all faults manifest the elves in

-, the fore of changes , possibly catastophic, in the parameter vector, r, with

the. frequency characteristics of the components unchanged. Although not

u niversal , this fault hynothesis covers the most comaonly encountered situ—

p ationa and subsumes the comeon industrial practice of assuming that all.

failures in analog circuits and systems take the form of open and shor t

circuited co.ponents.9

P
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Our system components are thus characterized by a set of simultaneous

equations

2. b~ • Z1(s,r)a1 I — 1, 2 , ..., q

where a1 and b1 denote the companent input d output vectors, respectively.

For notational brevity, these component equations may be combin ed into a single

block diagonal matrix equation

3. b — Z(s ,r )a

where 5 — col(b 1) ,  a — col(a1) and Z(s ,r) — diag (Z1(s,r)).

Although there are many ways to rep resent the connection in a circuit or

system; say a block diagram, linear graph or signal flow graph , any such repre-

sentation is simply a graphical. means for displaying a set of connection e—

quation s: Kir cho4f lais, adder equations , etc. As such , for our componen t

conne ction model we adop t a pur ely algebraic connection model in vhich the

connection equations are disp layed explicitally without the intermediary of

some kind of graphical connecti on diagram. This takes the fore

4. a . L ~1b + L ~~u

y - L21b + L22u

where u and y represent the vectors of accessib le inputs and outputs whi ch are

available to the test system. In simple systems, the connection matrices,

are usually obtainable by inspection , vtterw, in more complex systems ,

onaputer codes have been developed for their derivation.7 ~breover, they are

assured to emist in all but the most pathalogical systems.8

It is the pair of simultaneous matrix equations 3 and 4 which are termed

the component connection model. 3y combining equations 3 and 4 to eliminat e

the component Input and output variables, a and b , one may deri us6’7 an expr ession

for the transfer fusccicu matrix observable by the test system between the test - 

--- -.- .~~--~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ----~~~~- _~~ - - - - - -
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input and output vectors, u and y, obtaining

5. S(s,r) — L22 + L21(]. — Z(s ,r)L11) 3
~Z(a ,r)L~~

where

6. y — S(s,r)u

For a linear time—invariant system the t ransfe r function S (a , r ) is a

complete description of the measurable dat a about the unit under test

available to the test system. Ibreover, being rational. it is completely de—

tereLn ed by its value at a finite number of freq uencies . As such , without loss

of generali ty , we may take our measured data to be of the fo rm

7. col(S(s1,r), S(s 2 1 r), ... ,

The fault dia~iosis equations then take the fo rm

S(s1,r) + L~1(l—Z(s1,r)L 1
Y’
~Z(s1,r)L~~

8. S(a2,r) + L2i (l_Z(s2, r)L11)
~~

Z(s2 .r) L~~

.

+

S1n~~~~~~ S-Cs, r) is, in general , a matrix, the fault diageosis equations as

derived above take th. fore of a matrix (col(S(si,r)] )valusd function of a vector

valued variable, r. Computationally , however, we prefe r to work with a vector

valued function of a vector valued variab le and hence, we t rans form S (s ,r) into

a col~~ vector via

p

_ _ _ _  _ _  -
~~~~~~~~~~~
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9. v.c(S(s,r)] — Cot (S~ (s ,r))

where S~(s,r) denotes the ith coli~~ of the matrix , S(s,r). With the aid of

the identity vec(XTZ] —Cz~j  X] vee CT] equation 8. then transforms Into7’~~

vec(S(s1, r)] — vec(L22] + EL~~ ~ L21(l—Z (s 1, r)L 11)~~ ]vec(Z(s1, r )]

vec(S(s2, r)) — vec(L~~] + CT4~ * L21(1—Z(s 2,r ) L11Y ’]vec(Z(s2 r) ]

10. M P(r)

vec[S(sk, r)] — vecfL22 + L~~ * LZl ( l—Z( sk r )L ll)
~~~

] vec(Z(sk, r )]

whi ch is the form of the fault diagnosis equation s with which we desire to work.

SOLVABILITY OF THE FAULT DIAGNOSIS EQUATIONS

For the fault diagnosis equations derived above to be a Viable tool of

circuit and system diagnosis two fundamental. questions rema in to be answered:

“~J hat test f req uencies should be employed to optimize the solvabilit y of the

equa tions?” aid “Roi’ solvab le axe the eq uations given an optimal choice of test

frequencies?’ Both of these questions, in turn , hinge on the development of some

typ e of measure of solvability fat the fault diagnosis equations .

For a set of Linear equations

U. a — F r

whe re r is an n—vector , a is a p—vector and F is a p by a matri x one may

characterize the solvabilit y of the equations in terms of the number of arbitrary

par~~~ters in its solution (if a solution exists). As such , 6 — n—rank(P) is a

natural measure of the solvability for equation U. ifere , 6 - 0 implies that the

equation han a uniqu. solution , 4 — 1 implies that the solution is determined up 

- - —--- ~~~~~~~~~~~~~ -~ - ~~~~---._-— —--~ —..----- .--- - - -
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to one arbitrary par eer and so on, with increasing values of 6 representing de—

creasing degrees of solvabili ty.

~~for tunatel y, the fault diagnosis equations are nonlinear even for Linear

systems and hence we ~~~t resort to the imp licit function theorem to obtain a

measur e of solvability ~~alngous to the above .1~ Ind eed, if rf is a solution to

the fault diagnosis equations, then r f is determine d up to a

p 
12. 6(rf) — n — rank

[~~~ (r f)]]

dimensio~al manifold (of arbitrary par ameter s) in a neighborhood of r f . Hers

dl/ dr is the Jacobian mat rix of partial derivatives of F with respect to r. With

P the aid of the matrix identity d(N 1) /dr — —M 1 (d!4/d r] M 1 , dY/dr can be computed

explicitally from equations 8. and 10. yielding

{ ([l+L11(l_Z(s1,rf)L11)
lZ(s1,rf)]L12)

tt(L21
(l_Z(s1,rf)L11)~~((dve c Z(s1~rf)]/dr

- 

{ ((1+LU(l_Z(sz, r f )LU) Z(s2, r f) ]Lu) tI(L21(l_Z(s 2, r f )L.11) 
1
~((dvec Z(s2 ~rf) )/dr

) .

.

(([1+LU(l_Z(sk, r f )LU) Z (sk ,rf )]LU) tI(LZl (l_Z(sk, rf )L,~l)~~ ((dvec Z(sk , rf )]/dr

where “t” denotes matrix transposition and & denotes the matrix Krcneckar (or

tensor) product.

The difficulty with the implicit function theorem is that it only yields local

information valid in a neighborhood of a solution . Fortunately , however , given

the special nature of the Jacobian mat rix of equation 13. coupled with an assumption

that th. componen t t rans fer function matrices Z1 (s , r) are rational in r it is

possib le to show that the tank of the Jacobian matrix is “almost constant. ” This ,

_ _  _ _ _ _ _  _ _ _ _ _ _ _ _  _ _
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in turn , allows on to transform the local measure of solvabili ty of equation 12.

into a global measure of solvabili ty. For this purp ose we adopt the algebraic

geometric definition for the term “almost constait.” I .e. we say that a function

of tf is almost constant if it is constant except possibly for those values of

lying in algebraic variat y(th. solution space of a finite set of non— zero

siaz.ttaneou. polynomial equations in n variables). More generally, we say that a

property holds “almost everywhere” (a...) or for almost aU tf in n—space if it is

t rim for all values of tf except possib ly those lying in an algebraic variety.

Since the Iabesque measure of an algebraic variety is zero, this definition for the

concept “almost everywhere” is consistent with the more comeon measure theoretic

definition and is more natural in the context of o~x appiicationY’

Theorem 1: Let Z~ (s~ r ); 1. — 1, 2 , . . . ,  q; be rational in r. Then 6 (r e) is almost

constant.

Note , the assi~~ tion that Z~ (s , r) is ration al in r is quite minor being satis-

fied by all of the examples given in section LI except for the delay (which can

be approximated by a function which is rational in r ). In practice , the

c~~~onen t trans fer function mat ri ces will also be rational in s thou gh this is not

required for the present theorem since F and dY/dr are formulated in terms of

specific test frequencies , 
~l’ ~~~~~ ~~~~~~ 

s~ . Given our assumption on the

togethe r with equation 13. , it then follows that ~~~<t f
) is also rational in r f.

Proof of Theorem 1: V. begin by shoving that an arbitra ry polynomial matrix in

r , P(r) , has almost constant rank. Since rank P(r) is restri cted to the finite

set of integers (0, 1, 2 , ..., j ;  where j  is the minimum of the ni~~ er of rows

and coluans in P ( r) ) ,  there exists an r5 which meximizes the rank of P(r)

14. ~ ~cank (P(r )]  ‘ rank(P(r) ]

Now, the rank of a matrix is the d{~~nsion of its larges t non—singular square

sith—matrix. A. audi , P(r) a~~~ts a square sub—eatrix , M(r), whose dimension is

“---——---- --- _ _  _ _ _ _ _ _
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equal to the rank P(r
5) and for whidi

15. det M(r ) # 0 .

Now, dst(M(t)] is a polynomial in r which is not identically zero (from equation
15.) and hence , it is nan—zero ac .  A. such,

16. r k(P(rJ ] rmsk(P(r)] ‘ rank (M(r) ] — rank(P(r )) ac .

showing that rank(P(r)] • rank(P(r5)) almost everywhere. As such, rmak(P (r) )Ls

almost constant.

Now, to verify that rank (‘~~(r f) 3 is constant we decompose this matrix as

17 dF P(r f )
~~(rf) — 

d(rf) -

where P(rf) is a polynomial matrix and d(r f) is a non—z ero co~~~n denominator.

P (r f) has ‘lenet constant rank while d(r f) is non—zero almos t everywhere and hence

can effect the rank of P (r f) only on an algebraic variety (sin ce the division of

a matrix by a non—zero scalar doss not effect its rank. ) As such , our Jacobi anp
matrix has almo t constant rank implying that

18. S(r f) — a — rank (~~ (r f)]
p

is also ~~1~~~~~t constant . The proof of the Theorem is therefore complete.

- ______ Given the theorem, vs may now define a global measure of solvability for the

fault diagnosis equation, 4 , as the generic value of I(r1) . .  I..-. the-value

cakes on for almost all. rf. This proves to be a natur al measure of solvabili ty

since it indicates the aabiguity which will result from an attempt to solve the

fault diagnosis equations in a neighborhood of almost any failures . Of cours e ,

one requires same sort of equation solving a1gorithm~~~U to locate a neighbor-

hood of an actual failure. The 6 pir ster , however, reprssen~~ a bound on the

p 

- -~~- - -~~~~~~~~~~~ —--—-~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - — - - — --- --
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perfo rmance of any such algorithm. Finally, vs note that since 6 is independent

of r f. the solution of the fault diagnosis equations, it c be computed at the

time the system d its test algorithm are developed by evaluating 6(r ) at a

randomly chosen generic point, say r .  In turu , this par~~~t.r may then be

employed as aid in the choice of test frequencies and test points.

TEST FREQUENCY SELECTION

Adopting th, measur e of solvability, 6 , formulated in the preceeding section,

it re~~~ns to develop an algorithm for choosing a set of test frequen cies;

~i’ ~i’ 
s~ ; which maximize the solvability of the fault diagnosis equations

(i.e. minimize 5). To this end, let denote the minimum value achieved by

6 for any set of test frequen cies ; 
~1’ ~~ . . . ,  s~ k — 1, 2 , ..., • Since the

possib le values for 6 are restri cted to the finite set ; 6 — 0 , 1, . . .,  a; such a

minimum is assure d to exist.

The following theorem gives an explicit formul a for comp uting 6~~~ while its

proof yields an algorithm for choosing a set of test points which achieve 6~~~ .

Since th. purp ose of this the orem is to formul at e an algorith m for choosing test

freq uencies, the theorem is exp ressed in ter ms of

19. ‘vec(S(s ,r)] — vec(L~~] + [L~~3* L2i(l_Z(s , r )L ~~
) 4) vec[Z(s ,r ))

and

20. dvscrs(s. r) }
~ [(1 + Lu(1

~
Z(s, r)L

~~
) ”tZ(s ,r) ]L,~ ) ~ L~~(l Z(s ~t) 

~~~~~~ ~~ }

Edimc( Z(s ,r)]/ dr }

viewed as rati onal functions in $ rathe r than in terms of the function F (r)

which i formulated in terms of an a-priori choice of test frequencies .

Theorem 2: Let Z1(s , r ); I — 1, 2, . . . ,  q; be rational in a and r. Then

• a — col—rat k [dvects(s.r) i] 

-----—-- -----_ _--~~-- - --- —-- --.-—_—---- --—_------------- -- --. --~~~ - —-
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where a is the di~~~sion of the par ~~~tsr vector , r , and “ col—r ik” denotes

the genetic ui~~ er of linearly independent coli~~ s of the rational natrix ~dev(S(s ,r)]/dr :

over the field of comp lex ni~~srs. Moreover, 6~~~ is achieved by almost any

choice of n-4~~~ distinct compla x fr.quencisd.

Proof: For the sake of brevity, we will prove the theorem only for the special
p

ass where S(s ,r) is a scalar t rans fer function (allowing os to drop the “vec”

transformation) thou gh essentially the same proof goes through in the general ease

modulo some notational complexities.5 Also, since the rank of the Jacabian matrix
p

is *lao~t constant it sufficies to fix the parameter vector, r, at any generi c

point , say r .  This then re duces (dvec(S(s, r) ]/dr ] to a row vector of rational

functions

21. R(s) — [R1(s) P.~(s) ... Re(s )]

where

22. R1(s) — (dwsc(S(s,r0)]/dr1]

aid our problem reduces to the verifications of the fact that the n~~~er of

linearly independent eoli s of R(s) over the field of complex scalars is equal

to th, maximum possible rank of the complex matrix

23. R (s 1
) R1(s1) R 2 (s 1

) •. .  R~ (s 1)

~(s ) ft (s ) ‘ R2(s ) ~2 1 2  2 
= col (a( s~ ) )  

-

• : : :  :
R( s ) 

~~~~~~ ~~~~~~ • • •

• over all. ~ossib2.e choices of the complex frequencies ; 
~~~ ~~~ 

•..  s, ;  k 1, 2
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Now , clearly if some column of R ( s) ,  say the nth , is dependent on the re—

maining colUmns, then

n-i
2&I . Rn(s)  = ~ c~R~(s)

1 1

for all, a. Then by applying 2U . individually for each S
i

n-i
25 . co.l. (R ~(s1))  

~~ c4 col(R 4 (s~ ) )  -

i~i 
J

for any possible nunthex’ or choice of the si,. The rank of the matrix of

Equation 23 is therefore less than or equal to the number of linearly inde—

:endent columns of R(s) over the field of comulex numbers .

T~ ;rove that equality can be achieved with an appropriate choice of

n—s . coinniex test fr~ quencies , si,, we invoke our’ assumotion that S(s ,r )  is

a scai.ar transfer function . Without loss of generality , we ~iay assume that

R1( s)  through Rq(S) are the linearly independent entries in R(s )  over the field

of complex numbers in which case we must show that there exists complex fre-

quencies si, , ~2 ’ • . . ,  S~~ (k q in this case) which make the first q columns

of the matrix of equation 23. linearly independent .

If q = 1, R1(s)  is not identica.LLy zero (since otherwise it would be

linearly dependent) and hence for almost all s1, R1(s1) � 0. As such , the

columns in this trivial one by one matrix are linearly independent. With this

as a star ting point , we will use an inductive argument to show that the theorem

holds fox’ all values of q. We , therefore, assume that it has been shown that

for q p -. there exist complex frequencies; si,, ~2’ ~~
• •  ~ s~ ; such that

the matrix

R( s ) ft (s ) ... R ( s )1 1  2 1  p 1

R1(s 2) R.,(s 2) ... R(s~)

ft (5 ) a (s ) ... ft (5 )
1 P  2 p  p p

- ~~~~~~~~~~~~~~~ - - - ~~~~~~~~~~~~~~~~~~~ -~~~~~~~~~ - - ~~~~~~~~~~~ -- --- - - ~~~~~~~~ ~~~~~~~~~~~~~
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has linearly independent columns and we desire to show that there exists an

s ,
~~~~ , 

such that the matrix

27. 
R1(s 1) R~(s1) ... R~(s1) R~~1(s1)

ft (s)  ~~~ 
~~~

2
~~~~~~

2

’
~ ... R~(s2) R~51(s2)

—psi

• R1(s~ ) R2(s~) ... R~(s~ ) R~51(s~ )

R1(s) R 2 ( s) R ( s)  R 51(s)

~as linearly independent columns for a s~~1. By virture of our assumpticn that S(s ,r )

~ scalar both and 1(s) are square and we nay test f3x’ linear i.~dependence

~f the columns of ~~~~ (s)  by computing its determinent. Expanding 27. in co-

factors along its bottom row , we obtain

psi
28. det(~~51 ( s) )  = 

j~ l 
~~~~~~~~~~~~~ ~R~ (s)

Since has linearly independent columns 
~p+l ’pf ~ 

� 0, hence, the coefficiencts

in the summation of equation 28. are not aLl. zero and thus by the linear inde-

pendence of the R1(s) the summation is not identically zero. As such, one can

choose almost any 5pf1 which will make the determinant of 
~~~~~~~~~~~~~~~~~~~~~~~~ 

non-zero thus

assuring the has Linearly independent columns when its rows ar e evaluated

at the complex frequencies s~~ ~2’ ••
~~~ 

5p+l ’ The proof of the theorem is thus

• complete.

Mote that the proof of the theorem yields a natural sequential algorithm fox’

choosing test frequencies . Moreover , for the scaler case we have shown that the

• number of required test frequencies is exactly n_ S mj n (equal to the column rank

of the Jacobian matr ix) . Zn th . general case where S(s ,r ) is not a sca.Lar , the

number of required test frequencies is less than or equal to

• 

-- -~~~~~~~~~~~~~~ --~~~~ - ---~~~~ - - - -~~~~~ ~~~~~ . - -~~~~~~- -~~- - - 
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Although the theor’em implies that one can randomly choose almost any

~ min test frequencies to maximize the solvability of the fault diagnosis

equations, the result does not take cognizence of numerical considerations. Al-’

though no theory yet exists fox’ choosing test points with numer ical considera—

ations in mind, it has been our experience that the “well posedness” of the fault

diagnosis equations is quite sensitive to the choice of test frequencies.5 In

most of our experiments, we have worked with real test frequencies to eliminate the

necessity of working in the complex plane. On the other hand , m is most easily

measured when values of s~, on the jw axis are employed whereas it has been

suggested that test frequencies symetrica.U.y spaced around a circle in the com-

ple x ~lane might yield numerically “well posed” equations .

Al though the neasure of solvability , 5 , for the fault diagnosis equations

is dependent on the choice of test frequencies , as well as the properties of the

.ini: under tes t , 
~~

. is determined ent irely by the QUT ; its components ,

connections and accessible test points; and is completely independent of the

test algorithm employed. As such, may be taken as a natural measure of

testab ility1 for the tJUT which characterizes the degree to which the fault

analysis equations can be solved given an optimal choice of test frequencies

and solution algorithm. Moreover , 
~
5min may be used as an aid for the optimal.

selection of test points .3’~~’
5 To this end we may choose a set of test points ,

from several options , so as to minimize 6min~ 
Alternatively, we may attribute

a cost to each input and output test point and then choose the least cost com-

b ination of test points which yield a specified 5min • This latt er process x ’s-

duces to a rather straighforward integer programming problem and is thus

readily automated. L1
~ S The technique is illustrated In the examples of the

following section.

~ 
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EXAMP LES

An an initial, illustration of the theory consider the RC coupled amplif ier

with inductive load shown in Figure 2. Here we wiLl take to be the only

YR * I. E

• ‘I It.

Figure 2: RC coupled amplifier with inductive load.

test input but we will initially allow E0, i~~ i~, and V . to all be taken as

test outputs with the measure of testability, 
~min’ being used to extract a

P reduced set of test outputs from these options . A component connect ion model

for this circuit is given by

p V
• 

0 0

i
t. I 0 1/LS VI,

28. I
o i~cS

“ L ‘ irn

p
and

0 0 — 1  0 : 1  V
• 29.

1 0 0 0 : 0

0 0 0 1 0 V~

— 0 0 —1 0 1

1 0 0 0 1

0 1 0 0 0 
—

a11 0 0 0 1 0

0 0 —3. 0 1
— S —

_ _  —~~~~~~~ -~~~~~ ---~~~~~ — - - - - -- - - - — -- ---- -- -~~
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Taking our vector of potentia lly var iable component parameters to be

= col(~.., L, C, R) each with unity nominal value , we obtain a nominal trans-

fez’ function matrix ~~gCs).1 • 3. 
S

s+1
g(s)

• s+].
30. S(s,r)

S
a.].

$

1+1.

whereas our Jacobain matrix evaluated at the nominal parameter values is given

by

sg(s) 0 sg (a) sq (s)
5+3. (z#1)~

9~..i!L -g(si ~j~j  ~~~~31. dvec[S(s ,r ))  
= 

3+1 s+1 (3+1) 2 
(3+ 1) 2

dx’ 2
0 0 s —s

(3.1) ( ii i )

0 0 3 a
2

Now , an inspection of this matrix ‘411 reveal that it has four independent

columns over the field of complex numbers and hence if all four possible outputs

are used , we will, have = 0 implying that the fault diagnosis equations have

Locally unique solutions . On the other hand , if only two outputs , E0 and i1.,, are

measured, our modified Jacobian matrix will reduce to the first and third rows

of the matrix shown in equation 31. which has column rank 3. As such, if we only

use these two test outputs , we obtain = 1 and hence the solution to the

fault diagnosis equations will. be characterized by a single arbitrary parameter.

In this latt er case , with only E
0 

and i~ taken as test outputs, theorem 2

Implies that dF /dr will have rank 3 for almost any choice of 3 = n - 
~
5min test

frequencIes. Chocsing 
~~~ 

= ~~~ 
~~~2 

= 2 , and s3 = 3 , we obtain

-_  --~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -



_

g(l)/2 0 g( l )/ LI.  g( l )/ z.~
32.

0 0 1/ ~ 4 — 1/LI.
p

(r ) — 
2g(2)/3 0 2g(2) / 9 2g(2) 19

3g(3)/LI. 0 3g(3)/ 16 3g(3)/l6

0 0 3/16 —3/ 16

which has three linearly independent columns as long as g( l)  � 0 , g ( 2 )  � 0 and

g( 3) � 0. Indeed , in this example , any two of the three frequencies would have

sufficed to yield three linearly independent columns . Mote , for scalar transfer

ctions , t~eoren 2 irnrlies that ~~~~~ 
frequencies are act .ially recuired but

for natrix transfer functions fewer frequencies may suffice .

Of ccurse , for the circuit of ~‘igure 2 , we have a choice of some 15 combin-

ations of the four outputs with which we ~nay choose to work for the diagnos.is

of the circuit . The resultant 
~min ’S for the various combinations of outputs

are kiven in table

Finally , with the aid of Table 1, one may readily develop a test point

selection algorithm for our circuit .t”5 For instance , if we desire to find the
smallest set of outputs which yield a < 1 an inspection of the table will.

x’eveal that E and 
~~ ~~ 

and IC’ or E and i~ are the optimal choices. Of

course, if one attributes a cost to the various outputs (determined by the

convenience of making the required measurements), then we may further dis-

tinguiski between these three possibilities. For instance, if voltage measure-

ments are deemed to be easier than current measurements , the combination of

I. and IC may be excluded with the decision between the remaining two options

being dependent on whether It is easier to measure the circuit’s input

:urren t (I c) or its load current

_ _ _ _ __  _
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Outputs
_______________ 

Tfl 3.fl

E
0

, 
~~~~ ~~ 

~~i 
0

E0 , 1L’ ~‘C 
0

1

i~, Vi,, E0 1

V1, £~,, 1c 1,

1

iL’ 1,, 1

~~~~~ 2

V., E 2
1 0

E , i~ 1
2

5 2
0

2

i,, 2

V . 3
1

Table 1: Measure of testability for’ the
circuit of Figure 2 using various
combinations of test outputs .

As a second example, consider the one stage transistor amplifier shown

in Figure 3 with the AC equivalent circuit of Figure t’ • Since it is clearly

impossible to distinguish between failures in the two parallel bias resistors,

and Rb, these two resistors have been combined into the single resistor , ~~
in the component connection model of equations 33. and 3U . Taking all. of the

component parameters as potentia.U. faulty , r becomes a 12 vector composed of

Cl~ 
r~ , . . .,  and as before , we take all parameters to have the nominal value

of unity.

_ _ _ _ _ _ _  _ _ _
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r C u C2x
—11-- AC CC

_ _ _  

~~~~~ I. ~
~i R~ Rb

~~~~~~~~
Rb R

~~~ C 

I ~Ce

Figure 3. One Stage Transistor Figure Le . Amplifier Equivalent
Amplif ier’ Circuit

$ 3 0 0 0 0 1 1 0 1 0 1 1 0 v C
0 0 0 0 0 0 1 0 1 0 1 0

I 
I r

1,, 0 0 0 0 0 0 ~~~1 — 1 ‘ 1 -1 0 0 0 V
I I I’

0 0 0 0 0 0 0 0 0 1 1 1 0 V
1

I C

1 0 0 0 0 0 0 0 0 0 0 0 1 0C2 “ C.
v - -1 0 0 0 0 0 0 0 0 0 0 0 1

V -1 -1 -1 0 0 0 0 0 0 0 0 0 1
e

• 
0 0 1 0 0 0 0 0 0 0 0 0 ’  0 1

* 
C.

VCe 
1 -1 -1 0 0 0 0 0 0 0 0 0 1 ‘Ce

v • 0 0 1 -1 0 0 0 0 0 0 0 0 0 2
9
5 

gteV R I .1 —1 0 —1 0 0 0 0 0 0 0 0 1
c i  R

• ~~ ..L.__ .1 
__.!____ !__ _° °_____ °__ . ._.! ~R

v -1 -2 0 —~ -1 0 0 0 0 0 0 0 1
0

0 0  0 0 0 1 1 0 1 0 1 1

~R -l 0 a 0 a a a 0 0 0 0 O t  2a - I

~, 0 0 0 0 0 0 1 0 1 0 0 0 : 0

Once again we let the input voltage be the only test input for the system and

sultant 6mi.n• we take V , 1c1’ 
V~~, and re~ 

to be possible output test points . The re

for each of the 15 possib Le combinations of these output terminals Ls tabulated ~,n

in Table 2.~ 

-~ —-—- •- -— - — -—---- -- —-- - — ~~~- - - - -—~~~~~ ..~~~~~.
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VC2

_ 
3~ls 

— 

‘Cl 

—

v r
r
1 

Z

y r 0 r
r T ___

C’,

TIle
e e

C,s C,
* C s  V

e Ce

::
~

Output s
______________________ 

n in
‘1 3

0

2
1

2
a
I 3

C

jo ‘- ,

tc 2
1 a

I 1
, e

4.

V I 3R ’ , ea
V
o~~

IC ~~~~ 
0

1 a
v , t , I 0

0 C
1 e

V , ~~~~ t~ 0
a

1~ ~~ 0C ~~ ‘‘ e
1 a

1
0 , 

~~ ~~‘ ‘ 
t
e 

0
1 a

Table 2: Measure of Testability for the circuit of
Figure 3 using various test outputs.
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From the table it is apparent that no single test output suffices to

yield a 0 (perfect testability ) though 6min = 0 can be achieved using
tw~ test outputs ; V0 and or V and

1
CONCLUSIONS

Our purpose in the preceeding has been to formulate an analytic theory in

support of the intuitive art usually associated with the design of a test

algorithm. With the aid of the techniques developed above, we believe that it

will be possible to develon an automated test program generation (ATPG) algor-

ithm for linear systems.t”5 Indeed, such an algorithm could be readily combined

with the same computer—aided design (CAD) algorithm used in the system design

process.9 Given the corntcr .ent ccnnecticn equations such an algorithm could be

emnicyed to automatically (or interactively) choose test points and test fre—

~uencies and generate the required set of fault diagnosis equations. These

could then be stored on tape and supplied to the automatic test equipment (ATE)

in which a faulty system would be tested and the fault diagnosis equations solved.

• 
Although we do not propose to discuss the actual solution of the fault

diagnosis equations here, it should be pointed out that by assuming that relatively

few components have failed , say p<< n, it is possible to develop specialized

p algorithms for the solution of the fault diagnosis equations which are far more

efficient than standard equation solvers in this application.7’11’12 These are

typically derived from the fault simulation algorithms used in the diagnosis of 
______

- - 
jij~~~~~~systems and may naturally be classified into “sbnulation. before test ” and

“simulation after test ” algorithms . Some of the algorit hms are discussed in

references 7, 9, 10 and II.

• 
Finally , we note that as formulated above, the measure of testability , 

~~~~~~~

assumes that any combination component failues is possible. If, however , we

assume that at most ;<c n components fail simultaneously , the ambiguity in t
hep
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solution of the fault diagnosis equations may actually be less than

For instance , in the example of Figure 3, with only V taken as an output

6min = 3 , yet the fault diagnosis equations can be solved exactly if we assume

that only one parameter’ is out of to1erence)~
0 The point, here, is that even

though the solution of the fault diagnosis equations in n-space has three

arbitrary parameters when the solution is restricted to the one dimensional

manifold of parameter’ vectors in which all but one coordinant are nominal, it

is unique.
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ABSTRACT

An algorithm for the. inversion of a continuously parameterized family of

sparse matricies is formulated in terms of a differential equation characterizing

the evolution of the sparse L and U factors of the given family of matrices.

INTRODUCTION

In the various algorithms used for the analysis and design of large—scale

ci rcuits and systems, .the problem of Inverting a continuously parameterized

family of sparse matrices, M(r), is often encountered.~~
5 In frequency domain

p

analysis , this might represent a transfer function matri x which one must invert

over a specified frequency range3 while in time domain analysis, such an M(r)

arises in  the form of the Jacobian matrix for the system equations1 which is

depenaent on some potentially var iab le parameter , r. Typically, one inverts

M(r) at a discrete set of points ; r1, i = 1 , 2, ..., n ; using a sparse matrix

algori thm. Indeed, the more efficient algori thms exploit the fact that the

matrices M(r~) have a coninon sparsity structure allowi ng much of the compu—

tational overhead to be shared by the n inversions)

An al ternative to repeated inversion is the continuations algori thm5 where in
one integrates the differential equation

1. Z(r) = -Z(r)(dM/dr)Z(r) ; Z(O) =

to obta in M(r~~
1 Z(r). Wh ile the integration of Equation 1 is far more

effici ent than repeated matrix inversion for small matrices, it fails to take

• advantage of the sparseness of M(r), thereby rendering the technique in-

applicable in a large—scale systems context. The purpose of the present note

is to present an alternative continuation algorithm which combines the LU factor-

• ization technique of sparse matrix inversion with Equation 1.

27p

_ _
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LU FACTOR DYNAMICS

Recall the standard sparse matrix Inversion technique6 wherein one factors

a matrix into the form H LU where L is lower triangular and U Is upper tri-

angular with ones along the diagonal . We then represent the inverse matrix in

the form W 1 U 1L 1 . The key to the technique is that both L and U and their

inverses will be sparse If M Is sparse though, in general, M”1 is not sparse.

As such, one may store and manipulate the Inverse of a sparse matrix via

its sparse upper and lower triangular factors, U”t and L” 1 , even though the
inverse matrix, Itself , is non—sparse. These ideas are combined with the

continuation algorithm concept in the following theorem.7 Here, the notation
UCMI is used to denote the strictly upper triangular matrix obtained from M

by setting all of the entries of M on or below the diagona l to zero. Similarly,
1[M] denotes the l ower triangular matrix obtained from M by settin~ all of the

entries above the diagonal to zero.

THEOREM: Let X(r) and Y(r) be solutions of the matrix differential equation

X = _X UEY(dM/dr)X] ; x(O) = U(O)~2.
V = )[Y(dM/dr)X]Y ; Y(O)

Then, X(r) = U (rY~ and Y(r) 
= L(r)”1 where M(rY’t 

= U(rY’~L(rY’
1 is the LU

factored form of M(r)”~ . Note, if M(r) and dM/dr are sparse then every matrix

Involved in the integration of Equation 2 will be sparse. Moreover, the inte-

gration may be carried out with the aid only of a matrix mul tiplication algori thm

plus a sin~le procedure for extracting the upper and lower triangular sub-matrices

of Y(d M/ dr) X .

Proof of the Theorem: First, we observe that If Y(O) Is lower triangular, then

V will be lower triangular and so will Y(r) for all r. Similarly, If X(O) is

upper triangular with ones on the diagonal , then X, being the product of an

upper triangular and strictly upper triangular matrix, will be strictly upper



p
triangular. As such , X(r) will be upper triangular with ones on the diagonal for

all r. Thus, X(r) and Y(r) have the correct form and it remains to verify the

equ ality M(r)~~ = X(r)Y(r). Here,

r • r .
X(r)Y(r) X(O)Y(O) + j CX(q)Y(q)]dq X(O)Y(O) + 

J 

CX(q)Y(q) + X(q)Y(q)]dq
0 0

= x(O)Y(O) + •f {_X(q)U(Y(q)(dM/dq)X(q)]Y~q) — X(q)1[Y(q)(dM/dq)X(q)]Y(q)ldq

3. x(O)Y(o) + J {—X(q)CY(q)(dM/dq)X(q)]Y(q))dq H
p 0

= x(O)Y(O) + J [X(q)Y(q))(dM/dq)[X(q)Y(q)]dq
0

• Differentiation of both sides of Equation 3 wi th respect to r then results in

4. CX(r)Y(r)] = [X(r)Y(r)J(dM/dr)[X(r)Y(r)]

Finally, a comparison of Equations 4 and 1 reveals that X(r)Y(r) = M (r)” t si nce

both X(r)Y(r) and M(r~
”1 satisfy the same differential equation.

EXAMPLE

Consider the family of matrices

- 5. r i
M(r)~~~ IL-l lJ

Here, M(O) is lower triangular and hence has the trivial LU-factorization

• 6. rl ol r i ol ri
M(O) I I I 1 I I L(O)U(O)

L-1 lJ L-~ 
lJ L° 1J

while
p

7. . lo 1
M(r) = IL o o

p



30

As such , we have

8. Ii 0
L(OY~ 

= IL1

and

ri ol
9. u(O) ”T =

- L0

Now, upon using an Euler integration formula CZ(h) Z(O) + IIZ(O)] we may

estimate U(.1Y 1 and L ( .1 ) ”~ via the equalities

÷ ( .1)U(O Y ” ’

10. 
= U (O) ~~ - ( . l ) U ( O )~ 

UEL (O) lM(O)u(O) l
J

-i/ o

and

+ ( . 1 ) L ( O ) ~~

— L(O) ” 1 
—

11. 
11 01 10 01=11 o 1
Lo iJ L1 .iJ L9/lO 9/l OJ

r4iltiplying these estimates then yields

1 191/100 -g,iool
12. M(.l) U(.l)”1L(.l)” IL 9/10 9/1OJ

which compares favorably with the exact inverse

~ 
ho/ u —1 /11]

13. M(.l) I IL10’1’ 1o/11J
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The error here is due to the approximation inherent in the numerical integration

process and can be reduced by use of a more accurate integration procedure. Of
course , the result of the theorem is exact and the computed val ue for M(r)’~ w i ll
be as accurate as the integration process employed.
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ABSTRACT

There has been considerable work dealing with the topic of fil ter-

ing for problems with state dependent noise [1-3]. As well as being of

theoretical interest, the top ic is of some prac tical importance since

many systems are better modeled as having multiplicative disturbances

instead of additive . One example occurs in the momentum exchange method

for regulating the angular procession of a rotating space craft [4].

There is a di sturbance wh ich depen ds on the process ion ra tes. Another

example occurs in the design of phase lock loops [2]. The phase insta-

bility of an oscillator described in rectangular coordinates appears as

wh i te, state dependent noise. If one received a signal which consisted

of a large number of sinusoids of various frequencies , each having phase

distortion , then one would have to build a high order fi l ter to recover

the si gnal using existing —ethods.

INTRODUCTIO N

The des ign of high order fil ters is often problematic from the view-

point of on— line computation. Therefore, a number of researchers have

been interested In designing fi l ters of reduced order [5-8]. It often

happens that one is only interested in estimating a lower order linear

transformation of a state vector, and it seems reasonable to attempt to

do this with a lower order fi l ter. Design of the fi l ter parameters is a

fi xed conf iguration optimization problem [8-10]. In such problems , the

structure is not necessarily optimal , but given the structural constraints,

the parameters are selected optimally. It is interesting to note that

these problems often have non-unique solutions because there are too many

free parameters. This feature can be used to obtain filters which are

easier to implement than well-known techniques such as Ka lman fi l tering,
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even when the fixed confi guration fil ter is of full order [8]. In some

cases , there is no performance loss associated with the alternative linear

filter , [8], [11].

In th is paper we seek to ext end the reduced or der fi l ter i ng resul ts

developed in [8] to problems with state dependent noise. The problem

is similar to that cOnsidered in [12], however , In [12] a discrete system

model was cons idered , and only a single stage/optimization was performed.

Here a continuous time problem is considered , and the matrix minimum

principle [13] is used to obtain a solution . Because we allow a driving

term In the fi l ter to remove any a-priori bias , it turns out that the

problem has singular arcs , which is not surprising considering previous

works [s], [11] in the area. A very nice feature of the work is that

in  some cases only linea r two-point boundary value problems are obtained.

These can be solved either by a direct use of linear systems theory or

by a Riccati equation technique . Under certain circumstances only a

single—point boundary-value problem must be solved.

PROBLEM STATEMENT

The system of interest is assumed to be modeled by the Ito stochas-

tic diffe rential equation

dx(t) A(t)x(t)dt + dw(t )

÷ ~ [xj (t)-~j (t)] G j (t)dv(t) (1)

where x(t) is the state vector of d~n~ns ion n and ~.‘(t) is the mean value

of the state vector. The disturbances are zero mean incrementa l Wiener

processes with covariances

E{dw (t)dw T (t) } = Q(t )dt (2)
E~dv(t)dv T (t) I = ~(t)dt
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It is not hard to show [14] that the mean value vector , u sat isfies

d~(t) = A( t ) u ( t )d t  (3)
p

The initial condition for (1) is rando m with known mean and var iance

E~~x(t 0 ) } =  
~ 

(4)

Var x(t ) = P0 (5)

Equation (4) is obviously the initial condition for (3).

The observation vector is also corrupted by state dependent noise.

d y ( t )  = C( t )  x( t )d t+dv( t )  + 
~ [x 1 (t)-u~(t)] 

M
~
(t)d

~ 
(6)

1=1

In (6), y(t) is the observation vector of diTension m , dv(t) is the

• addit ive measurement disturbance , and d’(t) is the multiplicative dis-

durbance. The vector ‘~(t) may be large , and some of its elements affect

the dynamic model through the terms G~. while others a ffect the obser —

vat iona l model through the terms M~. The addit ive disturbance , d v ( t )

is a zero mean incremental Wiener process with covariance

E ~dv(t)d v T ( t ) }  = R(t)dt (7)

• The terms w( t ) ,  v ( t ) ,  u( t) and x(t 0) are uncorrelated .

Only a linear transformation of x (t )  is to be estimated , i.e., i t

is desired to estimate

• z ( t)  = N(- t )x( - t ) (8)

where z (t) is a vector of dimension ~~~~
The estimate of z( t ) ,  wh ich we call ~(t) is constrained to be obtained

• by the filter equation

d2(t) = [F(t)~ (t) + g(t)] dt + K(t)dy (9)

The vector g(t) and the initial condition , ~( t )  are to be selected

so that

E ~e(t )~ = o vt = [t0~ tf] (10)
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where e ( t )  is the error vector

e(t )  = z ( t )  - ~‘(t) (11)

The matrices F(t) and K(t) are then to be selected so that a quadr~.tic

performance measure t f
J E~ 

f eT (t) Qe(t)dt + e1(t f )Se(t f )~ (12)
to

is minimized. The weighting matrix S is assume d to be positive definite

symetric. The weighting matrix Q may be positive definite or zero and

is cri tically important to the solution.

GENERAL SOLUTION

:~ order to proceed , it is convenient oo deve lop an equati on for

the error . From the Ito differential rule ~15~ , it is seen that

dz(t) = N (t~dx(t) + ~(t~x(t)dt (13)

Using (6), (9), and (13) it is seen that the differential equation of

the error is

de(t) = dz(t) - d z( t )

or r 1
de = Lc -FN~KC4-r~) x - gj dt + Ndw - K d v

+Fedt + x .G1 - K~~ ~.M.] dv

In (14) we have introduced the notation , x = ~~~~~~ From (14) it is seen

that

d F~e(t ) }  = F(t)E c( t )~dt (15)

provided that

g(t) (~ A- FN—~C~N)~ (t ) (- 16)
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If furthermore

z ( t ) = N( t ) w ( t0) (17)

it is c lear that

E{ e ( t ) I= 0 (18 )

From (15) and (18), one can see that (10) is satisfied so that (16)

and (17) are appropriate selections . If g(t) is selected according to

(16) , the error different ial equation can be written as

de = (NA—FN -KC÷r~1)xdt + Ndw-Kdv

+ Fedt 
~E x~ (~4G~_KM .)d~ (19)

The ecua tion for ~ is

d~ = A~dt + dw +
~~~ 

x~’~ dv (20)

Clearly x and e are both zero mean processes .

If (19) and (20) are put in 1 equation , it is easy to see how

the second moment matrix defined as

P(t) A fr XX (t ) j p
xe (t ) 1A I ( t)~~

T ( t )~ E~~(t)e
T(tfl

[.
Pex ( t ) I Pee C t)] ~~e(t)~

T(t)} E~e(t)e
T(t)} (21)

propagates . This is useful since the performance measure (12) may

be written as

J = tr~f~ ~~~~~t~~t + SPee(t f )} (22)

If one has the appropriate constraint equation , the optimal selection

of F(t) and K(t) may thus be solved with deterministic theory using the

matr ix minimum principle.

Equations (19) and (20) may be written as 

--- ~~~~ -—-~ - - -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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[d~(t)] dt + 
dw

[de(t)j (NA-FN-KC+~I) F J [ej  Ndw - Kdv

n -
+ x . r .  dv

i=1 i (23)

where

G.
1

— KM . (24)

The second moment matrix associated with (23) satisfies [4]

P GP + PGT + O + ;  (25)

where

A 0
G A

- (26)
(NA- FN -KC + ~ ) F

Q QNT

T 
(27)

N Q KRK + NQNT

and

= 

i~ 1 ~~~~ 
r1!I ~

T

(28)

Partitioning P in (25) we obtain the individual equations ,

_ _ _ _ _  _ _  _ _
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P =AP + P
~~

A
T + Q +

~vi (29)

~ee = [NA FN Kc:~] ~x:~~ ~e: [NA FN KC+~]

T

+ FPèe + Pee F
T 

+ NQNT 
+ KRK T 

+ K ~p3K
T

- N’P2KT 
- K~V2

INT + N4/1N
T (30)

p
and

~xe = APxe + ‘xx (NA-FN-Kc41 )T 
+ P F T

+ QNT + ‘4’ NT - ‘V KT ( 31)
• 1 2

In ( 2 9 ) ,  ( 30 ) ,  and (31), the terms ‘~ j~ ~~ and ~4/3 are defined as

$ 
‘V 1 

= G. T (32)

= G. M~
T (33)

‘1~3 ~~~ 
“xx~~ 

M~ M~
T (34)

The term 
~
‘ex is simply the transpose of 

~xe 
Clearly 

~xx can be calculated

independently, and can thus be regarded as a known quantity . The prob lem

is to select K and F so that (22) is minimized subject to the constraints

imposed by (30) and (31).

The Hami l tonian for this problem is then

H = tr 
~ ~~ee 

~ 
‘ee A T

ee + 
~xe

’
~
T
xe + 

~ex~
T
~x 

} (35)

p

_ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _  _ _ _ _ _  _ _  _ _ _ _ _ _ _ _ _ _ _ _  _ _ _  .4
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H

where •‘
~ee’ 

!.xe, and 
~ex are Lagrange multiplier matrices associated with

~
‘ee ’ ~‘xe’ 

and 
~ex respectively. The constraint equation for 

~ex is ifl

cuded for symetry.

The optima l solution for the gain K(t) is obtained by setting the

gradient of H with respect to K equal to zero. This leads to the ex-

pression for K.

K = 

~‘ee~~~~e 
(P ex CT 

+ N~~) + Ae (P
XX C

T +‘~ )] ER +‘V3] (36)

where the required inverses are assumed to exist: The Lagrange multiplier

matrices satisfy the equations

_
~H -

~ee 
= 

~~~ ~~~~ + F •‘ee~ (37)
‘p ee

and

~xe 
~~~~

-_ = 
~

(NA FN KC+N) T
~\ee + AT .~txe + .

~xeF
.
~ (38)

The matrix 
~ex is just the transpose of A xe. The initial conditions for

(29), (3O~, and (31) are

P
~~

(t0
) = Var ~x(t0)~ = P0 (39)

and

~
‘xe (t0) = P0 N (t0)

T; 1’ee (t0) = ~i (t0) P0 N (t0)
T (40)

The terminal values for (37) and (38) are as required by the transversal-i ty

condition app lied at the terminal time

~ee 
(t
f

) = S (41)
and

~xe 
(tf) 

= 0 (42)
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Notice that Aee (t) can be computed separately without solving the rest

of the problem if F is known beforehand. However at this point, we have

not yet determined how F should be selected. It will be seen that this

depends in a critical way on the nature of Q. We will consider two

different classes of problems .

CASE I.

t 
In this case , we assume that Q = 0. The meaning of this is that

the quality of the estimation algorithm is only important at the terminal

tire . This may make sense for rather a large class of problems . The

reason that this case is of particular interest is that the selection

of F does riot affect the Hamiltonian , so that we are free to select its

va ue based on other conside rations.

Consider that part of the Hami l tonian which depends explicitly

on F.

H* = tr {Fe+OTFT~ (43) 
—

where

0= (Pee _NPx e ) A ee + (P ex~NPxx ) A xe (44)

• From (39) and (40) it is clear that e(t0) = 0. If it can be shown that

0(t) = 0 for all t in the interval of interest , then a s ingular arc

exists. The Hami l tonian is independent of F. In this case, one does

not need to specify F to stay on the singular arc. Differentiating

egives

(45)

e= FO - OF + K[RKT ‘see ~V3KT~~, - CPxe ~ee - CP~ ~~ 
- ~4’2T 

“ee - ~V2
TNT \ee]

p
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The bracketed term in the above is zero whenever K is chosen optimally,

i.e., according to (36). Hence

e(t) = F(t)e(t) -0(t)F(t) (46)

and (46) implies that e(t) = 0 for all t�t0 
since 0(t0) = 0. The

selection of F is thus not a performance factor. It may be selected

a-priori so that Aee (t) can be precomputed . It may be selected so as

to achieve some other objective such as reduced sensitivity , computational

convenience or to minimize some alternative performance measure specifi-

cally involving F.

When one thinks about it , the sinaularity with respect to F is

not particularly surprising. Clearly two different filters can even pro-

duce the same output at a particular time , given the same input. What is

interesting, is that this fact is generally overlooked , and as the example

problem will show , that an alternative filter structure can be relatively

easily implemented .

CASE II .

In this case the wei ghting matrix , Q, is a positive definite sym-

metr ic ma tr ix. When one develo ps an ex press i on forØ , the result is

Fe-0F +c~ (47 )

instead of (46), where

Q= NP - 

~‘ee 
(48)

Thus unless ~ is zero , a singular arc does not exist.

___________  ______ — —-4
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It is easily seen that 11(t) does not equal zero unless F is slected

appropriately. From the initial conditions , ci(t0) 
= 0. Taking the

time derivative of f lwe get

(1 = Ffl+11FT + (NP xx~Pex) (NA—FN- KC+~)
T

-K [RKT
_ ‘4’2

1N1 + ~P3
KT_CPxe] (49)

Examining the last equations we see that if

t (NA-FN- KC+~) = 0 (50)

then

S ci = F11+flF~ (51)

ftis follows from the fact that when (50) holds , 
~xe (t) is zero for

all t in the interval . Consequently the expression for the gain becomes
—1

K = [Pex C
T + Nq~2] [R + ‘4r

3] (52)

and (52) is sufficient to have the last term in (49) be zero. In view

of (51) and the fact that 11(t0) is zero , it is clear that 11(t) is

zero for all tE [t0~ tf] provided that (50) holds and that the gain is

selected optimally.

When 11(t) is zero, it may be seen that the orthogonality require-

ment is met in a reduced state space , i.e.

11(t) = N( t)P xe (t) P ee(t) = E{[Z(t)_e(t)]eT(t)~ = 0 (53)

S ince ~ = z-e, (53) may be written as

• E~~2(t)  eT
( t ) I = 0 (54)

_ _ _  _  

—
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ t
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so that what we have required for singularity is that the error and

the estimate be orthogonal.

When N is the identity matrix and there is no state dependent

noise , the result is the Kalman fi l ter, with the requirement i~50) that

F(t) = A(t)-K(t)C(t) (55)

which of course means that the fi l ter is of full order. When the fil ter

is of reduced order , and N is constant , what we have is the observer

constraint equation [16]

NA-FN-KC = 0 (56)

In ceneral , when Q ~0, (50) is a necessary condition for a singula r arc .

Clearly it is not always possible to select F to satisfy (50).  In such

cases , the problem needs to be reformulated so that an unbounded F is

not indicated . Alternatively a suboptirna l solution can be accepted .

We will examine this topic in the next section .

A necessary and sufficient condition that (50) have a solution

F, is that

[NA_Kc+~] ~~
i = [NA_Kc+~] VtE~t0,tf} 

(57)

If (57) ho lds then a solu tion is

F = [NA_Kc+~] N
1+ i [I_NN~] (58)

where N~”is the pseudo inverse of N and where F’ is an arb i trary LXL

matri x [17]. When the matri x CNN T) is nonsingular then the solution

(58) can be written as

F = [NA-Kc+~] 
~T [NNT] (59) 

—~~~~~ -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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SPECIF IC  F S O L U T I O N S

In the preceding section we have shown that when one is only

interested in estimation at a particular time , the selection of F may

be based on cons iderations other than optimality , so that one may

pick it prior to optimization. Furthermore , when Q >O , it may not

be poss1b~e to find an F which resul ts in a singular arc . In

that case one may opt to select F prior to optimization . In this

section , we will see that when F is selected a priori , the two point

boundary value problem wh i ch mus t be solved for the selection of K

is linear , and hence relat ively easy to solve.
$ 

Consi d~r substituting the gain expression (36) in (31) and (38).

The resulting expressions are

~‘xe 
= APxe + Pxx(~

+NA_FN)T + PxeF
T + QNT 

+ 
~~

xx C
T
~~ 2

) (~~ 4’3Y
l 
[(P CT + 

~
‘2~ 

Axe

+~~
t MT + C P  1 (60)2 xej

and

A xe = (NA_FN+
~
)TA ee - AT 

~xe - AxeF + (R + v3)

• •[(P ~
T 

+ 

~~ 
A + (CPxe + V~ NT) 

~ee] 
(61)

When F is known a priori , both and tee are known in the sense that

they may be precomputed . The above equations are then seen to give a

• l inear TPBVP in the ma tr ices 
~
‘xe and Axe. The solution may be obtained

in a straight forward manner using linear systems theory , or alternatively

by assuming that the elements of txe are linearly related to those of

~xe’ and obtaining a solution involving a Riccati equation. The values

obtained for 
~xe an d Axe may then be used in the gain expression (36).
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We cannot overemphasize the importance of the fact that our result

is a linear TPBVP , since it is reasonable to expect to solve a linear

matrix TPBVP. Often a nonlinea r matrix TPBVP is so difficult to solve ,

that the utilit y of the result is questionable. We shall explain pro-

cedures for solving a linear TPBVP by looking at a particularly easy

case i n whi ch A ee is a scalar times the identity matrix. This results

when both F and Q are scalars times the identity matrix. When this is

true , (60) may be written as

~xe 
= L11Pxe + L12 i~xe 

+ D~ ( 62 )

where

L 11
= A + F _ L * C (63)

L12 ~~L* (CPx~ ~~~~ ~~
‘ee (64)

~xx ~~ -FN4~~
T 

+ QNT 
~~~~~ 

- ~ t ~2~
NT

and where

= (P~~C
T 

+ ‘1’2
) (R + ‘v3Y~ (66)

Equation (62) is of the form

~xe = L21 ~xe 
+ L22 ~xe 

+ D2 (67)

where

L21 CT (R+ *3) C Aee (68)

L22 = _AT_F 1 CTL~
T (69)

and

02 = (NA_ FN441)T 
~ee + c T (R+ ‘V3)

1 ~V2
TNT A ee (70)
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Let L be the matrix

)
L11 L12

L 
_ _ _ _ _ _ _ _  

(71)

L21 L22
p

and ~~be the associated state transition matrix 
which can similarly be

partitioned

~~12
(72)

~ 22
p

Then the solution to (62) is

Pxe(t) = ~b 11 (t, t0)P xe(to) ~
‘12 (t,t0) ‘~xe

(to)

+) [~11
(
~~~

) oi(r) ~~12 (t,~) o2(t)]d~ 
(73)

and

A xe(t) = •2i(t~
to)P xe(t ) + (

~ ‘~o~ 
A xe(to) 

-

÷1 [~2l(t~t) ~ (~) + ~22(t ,t)D2(t)]dt (74)

• to

Applying (74) at time t = tf gives

• A e(tf) = 0 = •2l(tf~
to)P e(to) + 

~22
(t
f~
to) A xe(to)

+j f 
[~21

tf~T D l t ÷ ~22(tf~T)D2(r)]dt (75)

pp
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We can solve (75) for t
~xe 

(t 0 ) and substitute the results in (73) and

(74) to obtain the solution for all tE[t0, tf].

There is another approach which is probably preferable in most cases.

We assume that Axe is linearly related to 1’xe by the relationship

Axe(t) 
= U(t)Pxe(t) + 8(t )  (76)

Differenatiating (76), one obtains the differential equation

A xe 
= 

~~xe +U EL11Pxe + 01+L12 UPxe + L12 B] + B (77)

Alternatively, from (67)

kxe = L21Pxe + L22 ~ xe ~ L22B + (73)

Equating (77) and (78), we get for U

U + UL11 + UL 12U = L21 ÷ L22U (79)

and for B

UL 128 + B + UD1 L22 B + 02 (80)

Since Axe (tf) = 0, the terminal conditions for U and for B are

U ( t f ) = 0  (81)

B(t f)= 0 (82)

The Riccati equation (79) and equation (80) can be solved backwards in

time from the above terminal conditions . The optima l gain may then be

expressed as 
-1

K = rPxe
TCT +Nv 2 + A ee ’ (UP xe4~B) T(P x~~

T+112)] [R÷~3] (33)
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and 
~xe is evaluated as

~xe 
= L11Pxe + L12 [uPxe + B] + D~ (84)

The matrices Aee , ~
‘<~ 

U, and B must be evaluated off line , however , 
~xe

p and K can be evaluated on line if this is desired . Most likely these

would also be evaluated off line and K stored for on line calculation

of z(t) using (9).

p

E X A M P L E S

The first example we shall consider is of the category discussed in
p

Case II. We assume that A(t) is zero , ~4(t) = C(t), and that tl~ere exists

an F such that

FC = C - KC VtE{t0~ tf] (85)

then if CCT is nonsingular

F = [ccT 
- KCCT] (CC T) -1 (86)

The filter equation is

dz = CCT (C C T) ~dt + K [dy - ~dt] 
(87)

The initial condition for (87) is

• ~(t 0 ) c(-t0) u0 (88)

The gain is of the form

• K(t) = [Pxe
TCT + cv 2] [R + 

~3] 
( )

•
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where is the solut ion to

~xe 
= p

xe
T 1[CtT cT KT]÷cQ~~1) cT

~~2 KT 
(90)

Alternatively since CPxe = 

~
‘ee’ it may be desirable to eva luate (89 )

as —1

K(t) = [Pee + C~
1
2] [R + ‘p 3] (91)

where 
~ee 

is the solution to

~ee
(t) [~c

T(cc
T
Y

l 
- K] ~ee~~ee [

~C
T(C C Ty1 

- K]

+ CQC T + KRKT + K~3K
T 

- C~2K
T

- K~2
TCT + C;,1C

T (92)

The reason (92) is app ealing is that 
~ee 

has fewer elements to calculate

then 
~xe .

The next example is concerned with the very simple problem of

estimating a constant having zero mean and variance 1 prior to observations.

The observation is of the form

d y = x d t + dv + Mx dv (93)

where v and u are zero mean wh i te noise with covariance parameter 1

and M is constant. We are interested in estimating the value of x at

time , 1. Hence

J = E~~e
2 (T)} (94)

and this is a problem of the category referred to as Case 1. For com-

putational convenience we select F = 0. The TPBVP then is

(95)

Axe = 

~ xé + A )  (96)
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p

with 
~xe (0 )  = 1 and A

xe 
(1) = 0 , where

~ (1 + M2)~~ (97)

The solution is

p
1 - y(t-T)

Pxe (t) = _____________ 
(98)

1 + yT

and

A (t) = ~ ( t T) 
(99)

1 +

Interestingly, because of the cor~pi im enta ry nature of Py~ (t) and xe (t),

the gain is a constant ,

k(t) = k = 
( 100 )

The fi l ter is simply

A- dx(t) = dy(t) (101)1 + yT

and the error variance at time t = I is

1 1 + M 2

p 
~ee~

T
~ 

= ______ = 
2 

(102)
1 + Y T  1 + M  + 1

The fi lter (101) is simpler to construct than the choice which would

p 
require F = -K , i.e ., one of the form

d~(t) k ( t )  [dy(t) - ~(t)dt] (103)

p

_ _  _ _
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even though it is obviously a full order fi l ter. The authors feel that

the nonunique property of optimal linear fi l ters for certain cases is

a feature which one should take advantage of.

REMARKS AND CONCLUSIONS

We have extended the results of [8] to prob lems having state de-

pendent noise in the observation and dynamical equation. Control

theoretic methods have been used to solve the problem , and optima l

solutions have been shown to correspond to singular arcs . Different

solutions result when there is an integra l performance measure than

~h~ n onl y estimation at the terminal time is imoc tant. ifl some cases ,

we have seen that it makes sense to select the filter matrix ahead of

time and then optimize the gain . The computational algorithms associated

with such prior selection are particularly convenient. There are no

terribly difficult TPBVP’s in this approach and that is why the authors

feel that it is practical and useful , both for full order and reduced

order filters . The amount of off line calculation necessary to simplify

on line filtering appears to be quite realistic.
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ABS TRACT

p Consider the nonlinear system

n—i

~ (t )  = f(x (t) ) + ~ u . ( t ) g ~~( x ( t ) ) ,  x ( 0 )  = x0 E M ,
i=1 1

P where M is a connected C~ real n—dimensional manifold ,

f,g1,. ..,g~~ 1 
are C~ linearly independent vector fields on M,

and u1
,.. . ,u~_1 are real—valued controls. Since the integral

p

manifolds  of g 1,. ..,g 1, if any , are real (n—l)—dirnensional

submanifolds of M, such a system is called a hypersurf ace sys-

P tern. Suppose U is the largest open subset of M which is r each—

able f rcm x0 and suppose U ~ M. It is shown that the boundary

of u is a C~ real (n—l)—dimensjonal submanifold N of !1 and N is
p

an integral manifold of the vector fields g11...,g 1. More-

over the restriction of f to N must assign vectors pointing in

the direction of U.  Such a U is called the region of reach-

ability for the system with initial point x0. Many ideas here

parallel those used in several complex variables for the studies

P of regions of holomorphy and of uniqueness of analytic continua-

tion for the CR—functions on a C~ real hypersurf ace in &~, n > 1.

p

INTRODtYCT ION

P Let M be a connected C~ real n—dimensional manifold ,

p
59
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f, g1
,...,g

1 be C~ linearly independent vector fields on M ,

and u 1, . . .  , u 1 be real-v alued contro ls. The system

n—i
*(t) = f ( x ( t ) )  + ~ u . ( t ) g . ( x ( t ) ) ,  x ( 0) = x E M ,

j=l 1 1 0

is called a hypersurface system since the number of g vector

fields is n—i .  We know that the reachable set of this system

contains an open set in M (see arguments in (81), and we de-

note by U the largest open subset of H which is reachable from

x0. This set U is called the region of reachabili ty from x
0
,

and if U = N, the system is controllable from x
0
. If U ~ M

then we prove that the boundary of U is a C~ real (n—l) -dimensional

submanifold N of M and N is an integral manifold of the vector

fields ~~~~~~~~~~~~ In addition, the restriction of the vector

field f to N must point in the direction of U.

This article is arranged in the following way. In section

2 we give definitions and relevant examples. Section 3 contains

a local theory concerning the boundary of U under the assumption

that this boundary is C1 near one . of its points . In section 4

we state a theorem from (6] concerning a subbun dle of the tangent

bundle to N and allowing us to remov e the C1 restriction . Then

we prove our main result , Theorem 4 . 2 , and give several applica-

tions.
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DEFINITIONS AND EXAMPLES
p

We shall use the classical Probenius Theorem and Chow ’s

Theorem (2]. For a statement of these results and their appli—

cations to control theory we refer the reader to 111.

Of interest to us is the controllability of the system

n—I.
(2 . 1 )  k ( t )  = f ( x ( t ) ) + ~ u1(t)g~~(x(t)). x(0) = x0 ~~M ,

t i=1.

with H , f , ~~~~~~~~~~~~ and U1 , . . . , U
1 

as in the in troduction .

We let T(M) denote the tangent bundle of M with fiber TX (M)

for  x E M .

Recall that if X is a vector yield on M , then a is an

intecral curve of X if a is a C~ mapping from a closed in terval
I ~~~ into M such that

da(t) 
= X(a(t)) for all t El .

Definition 2.1 18]. If D is a subset of T(M), then an integral
curv e of D is a mapping a from a real interval (t,t’ I into N
such that there exist t = t 0 < t 1 c . • •  < t

k = t ’ and vector fields

X 1,... ,X~ in D with the restriction of a to [t
~~ i, t~

] being an

integral curve of X . , , for each i = 1,2,... ,k.

Definition 2.2. Let 0 be a subset of T (M) and let x0 E M .  A

point x E M is 0—reachable from x0 if there is an integral curve

• a of 0 and some T > 0 in the interval for a such that a(O) = x0

and aCT )  = x. A subset S of M is 0—r eachable from x0 if every

point x E S is reachable from x0.p
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For the remainder of this article D is the subset of T (M)

n-i
given by the vector fields f ( x ( t ) )  + ~ u.(t)g.(x(t)). There—

j =l 1 1

fore we drop the 0 from D—reac hable .

For complete vector fields (i.e. vector fields which can be

defined for all -~~~ < t < ~
) it can be seen from arguments in (8]

(and not difficult to prove for the special case of hypersurfa ce

systems like (2.1) even if the vector fields may not be complete)

that the reachable set from x0 contains a nonempty open subset of M,
containing x0 in its closure.
Definition 2.3. The largest open subset U of M which is reach-

able from x0 is called the region of reachability f rom x 0. If

U = M , we say that the system is controllable from x 0.

We make two final comments before introducing some illu-

strative examples. Since we are considering unbounded controls

(both positive and negative) , no generality will be lost in

assuming that we can move along the in tegral curves of

If we define the Lie bracket of two linearly independent vector

fields f and g in ~ 2 by (g, f I = ~~f - ~~ g, then we find that

[g, f]  is a linear combination of f and g. This means that there

are no “ new” directions in which a solut ion to the system

k (t ) = f ( x ( t ) ) + u ( t ) g ( x ( t ) ) , x (0) = x0 E I R 2

can move ( see ( 1 ] ) .

Example 1. Consider the linear system

1 0 x1 10
+ u(t) f(x (t)) + u (t)g,

0 1. x2 ~i
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p

where M is the open right half plane in ~2 By the well known

test of Ka].man (7] this system is not controllable for all of

from any point x0 in ~ 2 since {
~ ~

] [
~] 

is equal to 
[~
]. Let

x0 
= (x

1
0,x2

0) be an arbitrary point in M. The integral curve

• of g through (x1
0,x2

0) is given by the vertical line x
1 

= x
1
0.

Suppose U is the open set in M defined by ((x1,x 2) t x 1
> x

1
0}.

Since we can reach any point on = our only hope in escaping

from the set U is that there is some point on the line x1 = x
1
°

at which f is in the direction of the complement of U. However ,

xl
f (x (t)) = on this line and x1

0 
> 0 , imply ing U contains the

2

reachab le set from x0. Letting u ( t )  = 0, ~e reach every point

0
on the line x

2 
= .—~~~~~. x~ to the right of (x1

0 ,x2
0). Using infinite

xl

controls and the interval curves of g, we find that the region

of reachability of our system from x0 is the set U.

Example 2. Consider the linear system
p

1k 1° 11 [xi 1011 
= I I ii + u(t) j I = f ( x ( t ) ) + u(t)g,

L*2 L’ OJ Lx 2j L’i
P 2where N is the open upper half plane in ~ . From Kal inan (7 1 we

see that this system is controllable for all of ~~2 from any point

• 
x0E~~

2 since [
~ ~

] i~]= [~} is not a linear combination of [
~
].

Let x0 = (x
1
0,x2

0) be any point in N. Again , the integral

curve of g through (x 1
0,x2

0) is given by the vertical line
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X

1 

= X1°, and we must restrict x2 to be positive for points on

this line in order to stay in N. Let U be the open set in H

given by {(x1,x2)1x 1 x1
0, x2 >0). The vectors that f assigns

at each point of the line x1 = x1° in M are in the direction of

U since x2
0 

> 0. This is also true for each vertical line in M

to the right of x1 = x1
0. Hence the integral curve given by

• . . • 0 0f(x(t)) with initlal value (x1 ,x., ) -  must move forever to the

right. Those integral curves of g including and to the right

of = intersect the integral curves of f transversally

(defined in section 3) at each of its points. Thus the reach-

able set from x0 in M is U. Since we cannot move outside of

N, U is the region of reachability from x0.

We remark that we are assuming f and g are linearly in-

dependent on H in our theory. Suppose that we relax this

temporarily and let N = in our Example 2. Starting at any

point x0 = (x1
0,x2

0) in R2, we can always move vertically

(both up and down) along x1 x1
0, so we can assume x2° > 0.

An argument as in our previous discussion show s we can reach

the set ((x 1
,x2) 1x 1 ~ x1

0} since we no longer must remain in

the open upper half plane . We take a new point (x1 ,x2 )

with x1 = x1
0 and x2 < 0. Since the vectors f assigns along

the line x
1 
‘..x1° are negative in the x1 sense when (x1

0,x2)
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is in the open lower half plane , we can also reach the region

{(x 1,x2)!x 1 < x1
0 ,x 2 < 0). Moving along the integral curves

of g will give us the entire plane , as predicted by the Kalman
theory .

Examples 1 and 2 suggest a possible solution to our problem
V

for 2-dimensional linear systems. If U is the region of reach-

abili ty from x 0 in M , then the bounda ry of U in M should be the

in tegral curves of g on which the vectors given by f point in

the direction of U.

Since we are most interested in nonlinear systems , we

examine the following bilinear sys tem.

Example 3. Consider the system

1*l
(t

~ = 
[0 i~J I~x i~1 + u ( t )  j

~i 1 H
Lk2 (t )I L1 0j LX2J [0 

~J LX2J

= f ( x ( t ) ) + u ( t ) g ( x ( t ) ) ,

where M is the set ~R
2— {(0,O)}. Brockett [1] states that i f

x0 = (x 1
0 , x2

0 ) is in the positive quadrant, then the region

of reachability U from x0 is contained in this quadrant.

The integral curve of g through a point on x1 0 ,x 2 > 0 is

the line ( O x 2
) with x2 > 0. Moreover, the integral curve

of g through a point on x2 = 0,x1 
> 0 is the line (x1,0)

with x1 > 0 .  These toge ther form the boundary of the first

quadrant in M. The vector field f assigns vectors to this

boundary which point toward the first quadrant. Thus there

is no hope of a solution starting in this quadrant to leave it.



00

We could give man~y more examples at this time, but they

would all hint at the same conclusion. In the system (2.1),

the important items to check appear to be the integral mani-

folds of g1.-•.,g~_1~ if any exist, and the direction of the

vector field f on these integral manifolds. We next examine

these conditions for regions of reachability with C
1 boundaries.

C1 BOUNDARIES

Let U be the region of reachability of the hypersurf ace

system given in (2.1). Let x be an element of the boundary of

U (denoted by ~U) , and assume au is C’ in some open neighborhood

W of x in M~~ As just mentioned we need to consider the direc-

tions of f on wfl au and the possibility of having an integral

manifold of g
1~~~~•,g~ _1 through x. Recall that a differentiable

submanifold S of M is an integral manifold of g1, . . . ,g~~ 1 if
T
v
(S) is the space spanned by g1,..•,g~_1 at y for each YES.

For a more thorough discussion of integral manifolds we

must consider the Lie bracket which we defined earlier for

(a very special case). Let and g. be different vector

~g. ~g.fields on N and define (g~~,g~ I = - ~~~~~~ This may or

may not give us a “new” direction in which to move (see [1]).

Let LA be the smallest Lie algebra generated by taking suc-

cessive Lie brackets of the g11...,g 
~ 
given in equation (2.1).

If we get a vector space of the same dimension at each point of

M , then LA is a fiber bundle with Constant fiber dimension n-i

—4
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or n. Moreover , LA is a fiber subbundle of the tangent bundle

to N .

The following definition is essential to our work . Let

S1 and S2 be C
1 submanjfolds of M of dimensions k and n—k

respectively.

Definition 3.1. The manifolds S1 and S2 intersect transversally

at a point y ES ,flS2 if and only if T~~(S1 ) e T~~(S2) = T~~(M).

Here ~ denotes the direct sum.

We now prove a resul t  under the assumDtion tha t  locally

• cur open set has a C’ boundary .

Theorem 3 . 2 .  Let 0 be an open set in M which is reachable from

x 0 for sy stem (2 . 1 ) , and let ~x be an arb itrary point in ~O.

Suppose there is an open neighborhood W of x in M such that

W fl~ O is a C’ r e a l (n — 1)  -dimensional submanifold of H. If any

one of the following conditions holds , then 0 is not the region
‘
I

of reachability from x0.

i) the fiber dimension of LA at x is n,

• ii) the integral curve of some g
~~
, 1 < i < n—i , is trans-

versal to ~O at x ,

iii) f assigns at x a vector pointing in the direction of
P

the complement of 0.

Proof. If i) holds then the fiber dimension of LA at all points

in some open neighborhood of X in M must be n (since n is max-

imal). Thus ~O cannot be an integrable manifold of g1,... ,g 1

near x by the Frobenius Theorem , and there exist a point y €
p 

__~
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arbitrarily close to x and a g
~

, 1 < i < n— l , such that the

integral curv e of g~ is transversal to 30 at y. Hence , i) re-

duces to ii ).

Next we assume that ii) is true. If the integral curve

of g1, chosen arbitrarily from the set ~~~~~~~~~~~~~~~~~~~~~~~ 
is trans-

versal to 30 at x , then it is transversal to 30 in Wfl30,

W being an open neighborhood of x in M (this W may be a smaller

set than our original W). Following the integral curves of

g 1 that start in w f l o , a reachab le set from x 0 , and cont inuing

past W f l 3 0 , we have that 0 cannot be the region of reachability

f rom x 0 .

If ii i) holds at x , then it holds for  all points in W fl30,

and the argument given in ii) with g1 rep laced by f implies the

desired result. Q.E.D.

it is interesting to note that condition i) does not depend

on Wflao being a C1 manifold.

We seek a mini nuin number of necessary conditions tha t an

open set UCM be th~e region of reachability from x~~.

Theorem 3.3. Let E be the region of reachability from x0 of

the system (2.1). Suppose 3U is a C1 manifold for an open

neighborhhood W of ~~E~ U in M. Then w f la u  is an integral mani-

fo ld of g11... ~~~~~~~~~~~ and the vector field f assigns to Wr) 3U

vectors pointing -in the direction of U.

Proof. It follows ~from part ii)  of the preceding theorem that

Wfl3U is an integra~ . manifold of g1,. .. ,g 1. Hence W fl3U is

actually a C~ subm~~~jfold of M. Since f , g
1
,. . . ,g~~~ form a
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linear ly independent set on M and W fl3U is an integral manifold

of g 1,. . .  ~~~~~~ part iii) implies the statement concerning f .  Q .E.D.

We shall prove in the next section that the hypothesis 3U

is C1 near x is superfluous .

THE MAIN RESULT

The following theorem was proved in [6) for use in the unique-

ness of analytic continuation problem for CR-distributions on CR-

p hypersurfaces in C’1, n > 1. The statement concerning a C2

boundary can be relaxed to C1, or we can simply replace C1

by C2 everywhere in the preceding section.
p

Theorem 4 . 1  [6 ) .  Let M be a C~ man ifold of d im ension n ,

and let H be a subbundle of the tangent bundle of M wi th

fiber dimension n — l .  Suppose U CM is an open set with the

property that if OCU is an open set having a C2 boundary ,

then for each x E ~O flau we have T~ 
(30 ) = H

~ (the fiber of

P H at x). Then for each point x E 3U, there is a neighborhood

V of x, a real-valued function h E C~~(V) with nonzero differ-

ential for all point in V , and a closed nowhere dense set

EC ~ such that

(1) 3U flV = ( x E V I h ( x )  E E l ,

(2) for each LEE , SL = {x€V th(x) = LI  is an integral
p

manifold of H; i.e. the boundary of U is foliated by integral

manifolds of H.

We now restate Theorem 3 . 3  under more general conditions.

Theorem 4 . 2 .  Let U be the region of reachability from x0 of

the system (2.1). Then 3U N is a C~ integral manifold of

P



r

70

g1,. .. ,g~ _1 (or more generally, is foliated by such integral

manifolds ) and f assigns vectors on N which point in the direc-

tion of U.

proof. Let H be the subbundle of T(M) spanned by g1,...

If 0 is an open subset of U with a C2 boundary , then an appli-

cation of Theorem 3.2 and Theorem 4.]. give us the stated con-

clusion. Q.E.D.

We have the following important corollary , the proo f of

which is obvious.

Corollary 4.3. Suppose M is conn~ cted and contains no integral

manifolds  of g11.. . ,g~~~ for  which both of the fol lowing state-

ments hold:

a) The closure of the integral  manifold is fo l iated by

integral manifolds.

b) The vectors assigned by f on this  integral manifold

always point in the same direction relative to the integral

manifold (i.e. if this manifold divides M into two components ,

• the vectors must point toward the same component) . Then the

system (2.1) is controllable from any x0EM .

Let Ad denote Hausdorff measure (see [3]) in dimension d

on N. Suppose L is the set of points on which the Lie algebra

LA has dimension n—i. Then L is a closed set in M, and the

~‘robenius Theorem implies that L contains the integral manifolds

of g1~ •~~•,g~ .1, 
if any exist. For such an integral manifold we

must have A~~~
1 (L ) > 0, and we have proved our next result.

Theorem 4 . 4 .  If A~~~
1
~(L ) = 0 and N is connected, then the system

(2 . 1 )  is controllabl e from any x
0 EM.
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Notice that if M is of dimension 2, we always have integral

curves of g for the system 5c(t) = f(x(t)) + u(t)g(x(t)),

x(O) = x0. Thus Theorem 4.4 does not apply in this case.

We state two theorems from [1) and indicate in a rather

superficial way the relation of these theorems to this present

work. We restrict our attention to dimension 2 and to a

hypersurface system.

Theorem 4.5 (1). Suppose f and g are vector fields on a

C real 2—dimensional manifold M. Suppose that ~f ,a} meet the

conditions of Chow ’s Theorem for  C~ vector f i e lds , and suppose

t:-iat for each initial condition x
0 the solution of *( t )  = f(x(t) )

is periodic with a least period T(x
0). Then the reachable set

from of the system k(t) = f(x(t)) ÷ u (t)g(x(t)) is the set
p

given by Chow ’s Theorem.

We start at x0 EM and take the integral curve of g through

) x~ . Suppose this curve divides M into two connected components

and M .  If the solution of ic(t) = f(x(t)) starts at x0 in

the direction of M+, then since the solution is periodic , there
p

is some point on the integral curve of g through x
0 

at which

the vector of f is in the M direction. Of course , this is in

P keeping with Theorem 4.2.

In (5) is proved a very nice generalization of the following

result, which we state in dimension 2.

P

P 
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Theorem 4 . 6  [5].  Consider the system

*(t )  = f(x(t) ) + u ( t ) g ( x ( t ) ) ,  x ( 0 )  = x0 ,

for a C~ real 2—dimensional manifold N. Suppose (f ,g] =

on M, where a is a C~ function on M. Then the reachable set

from x0 is obtained by taking the integral curve a of f

through x0 (in the positive time sense) and then all integral

curves of g interesecting a.

This 2—dimensional version can be seen in light of the

following result found in (4]. The One-parameter group of

transformations generated by f permutes the integral curves

of g with a change of parametrization if [f ,g]  = cxg for  some

C~ function a on M. Interpreted freely , once an integral

curve of f passes through an integral curve of g it can never

return . This seems to be in agreement wi th Theorem 4 . 2 .

An obvious question to ask is if the necessary conditions

of Theorem 4.2 are also sufficient.

Theorem 4.7 .  Let X 0 E. M and suppose U is the smallest open sub-

set of N with X0E U satisfying 3u = N is an integral manifold

of g1,...,g~.1 and f assigns vectors to N in the direction of

U. Then U is the region of reachability from x0 for the system

(2.1).

Proof. We know that we can reach an open set and by the theory

developed in this paper we have that we can reach U. The im-

portant fact to remember is that to leave U we must break through

N near some point x1E N. In the system
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n-i
S c ( t )  = f(x,t) + u. (t)g~~(x(t)) at the point x1 we can move

1

in the directions f,g1
,...,g~~ 1, —g1,•••,—g~_1, 

and

n-i
f + Z u . (t ) g .  for the appropriate finite U. ‘

5 .  Since N is1. 1 1.

an integral manifold of g1,..•,g~~1, 
Lie brackets like (g .,g.]

with i ~ 
j will give us no “new” directions in which to move

p from x1. Also , since f,g1,...,g~~1 span T(M), the brackets

(f ,g~ ], i=l,...,n—l , will yield vector fields which are linear

combinations of ~~~~~~~~~~~~ (the same is also true for suc—
P

cessive Lie brackets). The only linear combinations here which

we can use at x1 are those already indicated by the system. Q.E.D.

• The proof of Theorem 4.7 is applicable only for hypersurf ace

systems (or certain general systems that behave like hypersur-

f ace systems). We shall consider results as in this paper for

P general systems of the form

in
k ( t) = f ( x ( t ) ) + ~ u~~(t ) g~~(x ( t ) ) elsewhere. Such a system

i=l

• with in < n-i seems much more difficult to handle than a hyper-

surf ace system.

p .,

p

p

~

•_

~ 

--- •-~~-~~•~ - 4
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ABSTRACT

A class of two—dimensional recursive digital filters called symmetric

half-plane filters is discussed; some properties of these filters are derived

and it is shown that in certain situations these properties may give the

symmetric half-plane filters both theoretical and practical advantages over

prev iousl y proposed f i l ters . In particular , they are ideally suited to highly

parallel processing .

I NTRODI JCT I ON

In the literature on 2-dimensional recursive di gita l filters , two main

types of filter have been studied; these are the quarter-plane filter (e.g.[l],

[2]) and t e  asymmetric half-plane filter [3]. Basically, the two correspond

p to two dif~erent concepts of causality. The general stability conditions

for a wide class of filters (including symmetri c half-plane) were discussed in

[4]; unfortunately, however , those filters are not recursively implementable in

P general. Here we will consider a class of f i l ters which  are recursively im-

plementable , and satisfy the same stability conditions as those in [4].

SYMMETRIC HALF-PLANE FILTERS
p

By a symmetric half-plane filter we will mean a (causal , recursive) 2-di-

mensional digital fil ter, the denominator of whose transfer function is of

the form

M N
A(Z 1, 22) = 1 + amn z? z~ ( 1)

m= l n*_N

P
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This differs from the filters in [4] in that m goes from 1 , rather than 0,

to M; i.e., this filter omits all of the row m=0 except for the constant

term; the asyumietric half-plane filters omit half of this row. The filter (1)

is recursively realizable, since the computation of the output at any point

depends only on the outputs in previously computed rows ; looked at from another
point of view, each row of output depends only on previous rows of output . Thi s

has two effects ; firstly, it focuses attention on the row as the basic element

in the filter ; secondly, it implies that all the outputs in a given row may be

computed in parallel , since each output in a row depends only on outputs in

previ ous rows, and not on any of the outputs of the same row. This is the main

practical advantage of this class of filters - it would be of significance, how-

ever , only in real-time hardware applications of 2-dimensional fi l tering , and

these seem to be few.

SOME PROPERTIES

Using the methods in [4), one can easily derive the following:

The filter (1) (i.e., the all—pole filter whose denominator is A(Z1,Z2
))  is

stable If A(Z1,Z2) ~
& 0 for all (Z 1, Z2) such that 2.1 1 1 and Z21 ~~. 1.

We note that this set is the same as that for the symmetric half-plane filter

in [4); It Is smaller than that for the asymmetric half-plane filters [3). It

is the smallest “ Instability set ” ( known to the author) of any recursively im—

plementable class of fi lters.

However, there is a price to be paid ; the ampl itude response of the fi lter

Is restricted as follows :

If A(Z 1,Z~,) is of the form (1), and If A~1~ 7 ~ 
is the transfer function of a

stable fi lter ,’ then
r2,r

J log IA(e ~°1 ,e~°2) I  do 2 = 0 (2 )

Independently of 8i.

L __ 
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Thus , the average gain along any line of length 2it parallel to the e2-ax is is

constant; or in other words the filter cannot have variations in the e 1-d irection

in overall (average) gain. Equivalently, if the cepstrum of IA(e36’, eJ°2fl i~
given by ~ ~ 

21 Z~
m~—~ n=-~

then = 0, for all n.

This follows immediately from (2) and the definition of the cepstrum; (2)

will be proved in a forthcoming paper.

This implies that in order to realize an arbitrary magnitude function , the

filter must either have a (nonminimum-phase) numerator polynomial , or the fi l ter

m ust be cascaded with a 1-dimensiona l filter in Z1. It is very easy to calculate

t~e ideal amplitude response of this filter.

DESI GN AND IMPLEMENTATIO N CONSIDERAT IO NS

It is conceptually convenient (and in a large number of cases, computation-
a

ally efficient) to implement the Convolution in the Z1-direct ion by means of the

Fourier Transform. (It is assumed from the beginning that the dimension of

the array to be filtered is a known fixed constant in the Z1 -direction , i.e., each

row is of the same fixed width). From this point of view , and regarding each row

as a single entity described by its 1—dimensional Z-transform , the coefficients

a in (1) are i rrelevant; what matters are the M functionsmn

N
a (e~°1) = a (e361)Nm n — N  mn

• Further, the stability requirement for the filter is equivalent to the requirement

that for each fixed e~, the filter defined by

a A8 (2 2 = MI 
Z ~m~~

38’
~~T 

+ I
m 1

is 1-dimensionally stable . Finally, the functions a (e38 ’) do not have to bem
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analytic or meromorphic functions; this is seen by letting N~’. In other words ,

the roots of am (e381) can vary quite arbitrarily with e~. Thus , we can des ign
the one—variabl e filter A8 (Z2) by any one of the usual one—vari able design

methods we choose (yiel di ng a stable fi l ter) for each 0~ : the result will be a

stable two—variable filter: further, if our one—variable method gives poles and

zeros explicitly, we have the same for our two var iable f i l ter, which can there-
fore be expressed as a cascade of filters of degree 1 in Z2. Finally, if one

desires a filter of finite degree in Z1, one can solve the foll owing approximation

problem (for each m , 1 < m  <M); minimize (over bmn )

N
H ~~ 

bmne
~~

°1 — bm (e381)H subject to
n=— N

~ b e3r~01t < 1 for all 0i~ 
where

n=-N mn

bm (eJO t) denotes the m-th pole of A0 (Z 2) as a function of 0 1, and 
~ 

denotes
some error norm.

Hopefully this will become clearer on consideration of the following. example.

EXAMPLE

We wish to design a filter with second-order Butterworth response in Z2 to

approximate the fan fil ter whose passband is the set 18 2 1 < ta i l . For fixed e~,

therefore, the filter is a 1-dimensional filter whose passband is the set t e l  < l~i t•
Using the bilinear transform technique, we find the second—order continuous

Butterworth fI 1 ter
1

1 + /2 s/w ., + S 2/w~

transforms into



r 
- . . — .  . . _ _

0 .1.

“c (1 • 12)2

+ ~ + (2w
~

2 
-

. z )  12 • (~~~2 + /2 • 1) 
(3)

whi le its (stable) poles transform into

a
(1 # )/( i —

(1 4
p 

~
or
~~~~

> O .

In accordance with the usual frequency warping , we take = I tan 
01/21; however,

P we note that this causes stability problems at e i O an d 6 1 n; we therefore take

a small pertur ba tion of~~, e.g.,

J(sin e1/2 ) 2 +

‘/(cos e i/2~’ + £ (4)

The filter can now be directly implemented by multiplying the Fourier transform

of the previous output rows by the appropriate functions according to (3) and (4)

and performing the recursion from row to row directly.

Al ternatively, if a finite—order (in Z~) filter is desired , we mus t so lve

the problem: Minimize (over bin)

P 121/2 i 1 1 t~ fl ~~/2t — 

N b •~~~~l do 11 i i2+Il-ji tan 
~ /2~

N

~ 
b ~ 1 for allsubject to n~~~N 

I 0 1

p

and similarly for the other root. The resulting filter may then be implemented in

p 
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cascade. It should be pointed out that while the above optimization problem is

not simple , it is one—dimensional.

Finally, the above example was chosen for simpl icity an d conven ience rather
than realism. Clearly a Butterworth fi l ter is not optima l for this problem,

especially when it yields a design which is not all-pole; if we have to store

input rows (as well as output rows ) we may as well use them, and design an

elliptic type filter; alternatively, we might use a filter which is all-pole

in its discrete form.
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ABSTRACT

Many physical noise processes are signal-dependent. One well

known example is film—grain noise (1-3) . In this note , an example

of the application of optimal estimators for images in signal-de-

pendent film—grain noise is presented .

THE MODEL

A versatile model incorporating both signal-independent addi-

tive noise and signal-dependent noise is ut i l ized.  This model is

given in Eq. (1)

r = S + k f ’ s ) n 1 ~
- n 2 ,  ( 1)

where r is the observed photogra~ hic density , s is the orig inal

uncorrupted image density , k is the scanning constant , f ( s )  is some

function of s, and n 1 and n2 are signal-independent noise processes .

Thus , the middle term on the right-hand side of Eq. Cl) is the signal-

dependent noise term.
p

It is assumed that n1, n2, and s are mutually statistically

independent. To apply the model to film-grain noise problems ,

let f(s) = s~~, where p is ususally taken to be 1/2 or 1/3 (1-3).
p

In this note, we let p = 1/ 2 and we assume n1 and n2 are

zero mean Gaussian random variables , with variances and ~~~~~ , re-

spectively . Further, s is assumed to be a Gaussian random variable
2with mean and variance

THE ESTIMATOR STRUCTU RES

• The maximum likelihood (ML ) estimate is found by maximizing

p (r/s) over s (3). For the model of Eq . (1), the estimate is found

• 85



n ~~~~~~~~~~

. . .— ~~~~~~~~~~~~~~~~~~~~~~

to be

= [r
2 

+ (k:c~
)

2

+ 
2r:~ 

+ 

(k !J]~~

’2 
- 

k2a~ 
- 

k2c~ 

(2)

as compared to the simple estimate

5ML = r  (3)

which results when the signal-dependent noise term of Eq. (1) is

omitted .

The maximum a posteriori probabili ty (MAP ) estimate is found

by maximizing p ( s/ r )  over s ( 3 ) . For the model of Eq. ( 1) and the

above assumptions, the estimate S
wap is found to be the solution of

[
2k~~~~

]
~~3 ; ~4:

2

~~~~~

2k4

~~~~ 
+ 2k 2~~ ]s

2

+ 
[20 2 _ 4k 

12  
+ k 4 C~ + 2a~]s

+ [k
2 a~~(o~ _r 2 ) — 2a~r — 

2:~ I.i~ ] =

Again, omission of the signal—dependent noise term in Eq. (1) results

in a comparatively simplified estimate,

-
5MAP 2 ~~r +  2 2
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Because this MAP estimate includes prior information about the

image , it should give superior performance. In fact, under the

above assumptions it can be shown that the MAP estimator minimizes

the mean square estimation error (3).

RESULTS

Figure 1 is the original image of an archer. Figure 2 is

the noisy image generated digitally according to the model of Eq.

(1). The image in Figure 3 is the estimate found by the solution

of the MAP equation , Eq. ( 4 )  , with and taken to be the

sample mean and variance of the original image.
S

One fac tor  severaly a f f e c t i n g  es t imator  performance is vio—

laticn of the assumption that the image statistics are Gaussian .

For a discussion of this , see the paper by Froehlich et.al. (3~~.
P
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ABSTRACT

In the following we consider a one—parameter group G acting

on a set ~ of patterns . We show that under extremely mild assump-

tions the problem of recognition of equivalence of two patterns

p reduces to the recognition of translated functions def ined on the

real line . Thus , the recognition problem is reduced to one of a

practical nature. In fact , the well known properties of the

• Fourier transform with respect to translation can then be applied

in most instances to provide a t rac tab le  solut ion .

FOURIER TRANSFORMS

Let :< denote the set of real numbers and C dencte the set of

comolex numbers .  We fo l l ow ~ rem erman (11 in defining the Fourier

t r a n s f o r m  of a func t ion  f :  K K (or C) as

j c ~s= j e f ( s ) d s . ( 1)

Of course, the integral may f a i l  to exist , even for well-behaved

4 func t ions  f .  Thus , f may be a d i s t r ibu t ion  [l~ ( i . e . ,  a linear

functional on a suitab le test  space) . In any event , let us con-

sider the one—parameter group of translations acting on f: K K

P . in which a point t E K corresponds to a translation

f(s) -
~ f(s- t). By change of variable in equation (1) above

we have
P ~~~~~~~~~ -

A t
f’(cL) = e3~ f ( ~~) ( 2 )

In the terminology of our previous reports [6 ,7), we see that for

each c z E C  the mapping E :  f f (c~) is a relative invariant whose

p
93
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modulus is the exponential map p :  K {z~~ CI I z I= l } gi~ven by

P a (t )  = ejat. This is a well—known property of the Fourier

transform.

Now let f 1,f
2: K 

-
~~ K and let us seek t E  K such that

= X
~
f
i. Provided f1 

and f
2 both exist

, we see tha t a necessary

condition is that for all a E C we have

- j at
= e f ( ~~~) ( 3 )

Determination of t now becomes a matter of oracticality . Observe

that the condition expressed in equation (2) is sufficient as

well since it implies that f2 = a.e. (almost everywhere).

Thus we see that the values of the Fourier transform give a com-

plete set of relative invariants. Now , from (2) and the rela tion

Ie
jat

l = 1 we deduce that the values f(a) I are invariant. Con-

sequently, a necessary condition tha t f 2 = X
~
f
i 

for some t E K

is again expressed by the requirement that for all a € C we have

f 2 (~~ I = lf 1(a) I . (4)

In the following , we will assume that a recognition prob lem

is solved when it is redu ced to the translation prob lem for func-

tions defined on K.

L . _ _

~~~~

- -~~~~ ~~~~~~~~~~~~~~~~~~~~ 
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ONE-PARAMETER GROUPS

By a one—parameter group of transformations acting in K~

we main a family G = of coordin ate transformat ions  in K~

which depend analytically on a real parameter t and form a

group with respect to composition (see (4] and [5]). Note that

each ~~ : K
n 

-
~ K1

~. It is always possible to choose the paramet-

p erization in such a way that = Such a system of

coordinates in G are called canonical coordinates. For x €

3nd t € K  we use ~.(x ,t) and ‘.~t (x) interchangeably. The vector

I
f’eld cf the crcup is d e f i n e d  to be

= 
~~ ~=o ( 5 )

I n nNote that also ~: K K , say ~ = 

~~1’~~2 ’~ ‘~~n~ 
where each

-
~ K. Finally , the i n f i n itesima l generator of G is the

p differential opera tor

n
Z ~ . ( x ) - ~-— , 

. (6)
i=1 1. X

~~~

P where x = (x 1 , . . . , x ) .

Now the equa tions for canonical coor dina tes ar e expressed

as
P

~ (cc(x ,t) , s) = Zr (x,t+s) (7)

for  all s , t E K and x E K”. Applica tion of and

P to both sides of equation (7) and the use of equations (5) and

P 
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(6) yield the results

=

and

The first of these shows tha t C,~ (x ,t)  may be reconstructed from

the infinitesimal generator as the unique solution to the partial

differential equation

~= , ~(x, 0)  = x , (8)

while the second shows that ~(x,t) may be reconstructed from the

vecto r f i e l d  ~ as the so lu t ion  of

F = ~~~( Z ~~ , ~ (x , 0) = x , ( 9 )

which , for  a given x , is actually an or dinary di f f e rential equa-

tion in t. Equation (8) is typ ical ly solved [ ] by obtaining

solutions to the system of ordinary differential equations

dx dx dx
= 

~2 (x) = = _ _ _ _  = dt .  (10)

Equation (9 )  may be expressed in integral form as

cp (x,t) = x + ~(cp(x ,s))ds. (1.1)

The latter formulation suggests an interesting physical

realization. In figure (1) we see a feedback realization of

equation (11). The output of an integrator is input as argu-

ment to a gener ator for ~ values. The resulting value is input

to the integrator . Starting with the input x to the integrator

-.

~

- - ~
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at time t = 0 ,  the output is the t ra jectory c (x ,t) , t ~ 0.

Replacing by -
~~~ gives the t ra jec tory  backward In time ,

(x, —t) , t > 0. In effect , one is able to obtain group tra-

jectories in a s t ra ight forward  manner in analog form .

This observation merits further study and will be ac-

tively pursued in the future research. Comparison with the

work of Brocke tt [2 ,3) ampl i f ies the belief tha t fu r ther

efforts along this line can reduce many recognition problems

x — - - 
~KII Zr (x,t)

Figure 1. Real iza t ion  of equation ( 11)

to problems in control theory. Initial efforts , not comp lete

at. this time , suggest tha t  similar methods can be used in more

general n-parameter groups and that a control may be introduced

p to select among the (infinitely) many one—parameter subgroups.

INVARIANTS FOR ONE PARAMETER GROUPS

As before , let C be a one—parameter group of transformations
P

in K~ . It is shown in (5] that a map h: K~ K is G-invariant

if and only if Uh = 0. Furthermore , there are n — i  l inear ly  inde —

p penderit solutions h 1
,h
2,. ,h 1 such that any invariant h is

ex~ ressible as h =

P

- .~~~~~~~~~~~~~~~~~~~~~~~ .- -.. J
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Now , we may select y1 
= h1(x) ,... iY n_ i =hri_ 1 (X) and an addi-

tional coordinate y~ so that in the coordinate system y~~, . . . ,y . ,

the action of G becomes

z~. (y,t) = y~ , i < n
(12)

and ;~~(y~t) = y +t.

That is , in suitable coordinates , the action of G is t rans—

lat icn in the last coordinate.

Now let us suppose that the pa t t e rn  space 2 is a set of

functions f: K’’ -
~ V , where V is a real vector space and that

the ~cti:n of G on ~ is induced by the action of G in K
r
~. Thus ,

f i ~r E G , f~~~~
_
~

(x )  C ( ~~~~~~~~~~~~~ ) )  (13 )

Fol lowing the change of coordinates , we see that the prob lem of

recognition of equivalence of f 11 f 2
E 2 is reduced to t r a n s l a t i o n

in the n—th coordinate. Thus , we may consider this problem re-

duced to the Fourier transform methods previously discussed.

THE GENERAL PROBLEM FOR ONE-PARAMETER GROUPS

Let ~) be an arbitrary set of patterns and let G be a one-

par ameter group which acts on Q. Also, let R: G V be a mea-

surement function on (2 with values in some real vector space.

As in earlier reports we obtain a representation of w E Q  as a

function wr: G V by defining w~
’(g) = R(g 1w). In term s of

canonical coordinates in G we may define a new representation
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w: K V by the formula

w(s) = W r (~~5) ,  s eK ., (14)

Now for  t E K we have

E~~~(s) (~~~ W) r (~~5
) = wt (cD

t
]
~~~)

r — -

= w 
~~s—t~ 

= w ( s — t )  = X~
w ( s )

That is, we have successfully represented (2 as a class of

functions w: K V is such a way that the action of G becomes
p

zranslation . The question of equivalence of ~atterns may now

be resolved by the use of the Fourier transfo:m methods pre-

v~ ouslv discu ssed .

CONCLUS IONS

We have shown that  the recognit ion of equivalence of pat-

terns under a one-parameter group is always reducible to one—

dimensional translation of functions of a real variab le. The

recogri.~ion problem is thus one of a practical nature which may

• be resolved by known metho is, such as the use of Fourier trans-

forms .

Further work will  be done in the attsmpt to generalize the

above to general n—parameter groups. This will be complicated ,

in general , by the lack of a transform analogous to the Fourier

transform , which fai ls  to be readi ly avai lable except in the

Abelian case.

We have also given a means of analog generation of r~

tories which suggests a control theory approach to r’~ c.-I
problems. This technique will be extended to n -p 3 r 1 - s t . ’

and the relation to general system theory wil be •~

I
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ABSTRACT

A failure prediction algorithm for application in a periodic

on—line maintenence system operating in a Poisson shock environment

is described. The system under test is measured at periodic main—

tenence intervals with the data derived therefrom, being used to

estimate system lifetime and determine an optimal replacement

time. The resultant algorithm is simulated and compared with

various fixed replacement schedules.
p

INTRODUCTION

Fault analysis processes, have been and will continue to be very
P significant factors in the safety and reliability of electrical

Systems. This is especially true due to the following facts: a

rapid advancement in the complexity and size of modern systems,

increased availability and capabilities of computers, and rapidly

changing technologies in integrated circuit fabrication. Due to

this, fault analysis has become much more than an academic re—
p

search topic. Fault analysis is applicable in an industrial en-

vironment to minimize cost, extend the lifetime of the overall

system, control maintenance schedules, and effectively plan man—
p

power needs.

Although considerabl, effort has been expended during the

past decade to develops techniques for fault detection and diag—

1nosis in both analog and digital electronic circuits little

attention has been given to the possibility of formulating alger-

ithas for fault prediction. To accurately predict a fault , a

device must be t.st.d at periodic maintenance intervals. If the

dsvice fails or does not operate correctly , it is replaced

p
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immediately. The device may be assumed good if its character-

istics are in tolerence. However, if the characteristics are slightly

of f nominal, but the device still operates correctly, one can

attempt to predict if the device will fail before the next scheduled

maintenance interval. If device failure is predicted, it can be

• replaced before failure occurs as part of planned preventative

maintenance.

With the advent of the low-cost microprocessor , on-line fault

prediction is possible and practical.2 A curve f i t t ing algorithm

for on—line fault prediction was first introduced by Saeks , Liberty
and Tung 3’4 ’5 in 1975. It was assumed that prior life—time statis-

tics for the system under test were known. Also, performance data

of the system at each maintenance interval were collected. The

application of these data to a second order polynomial equation re-

sulted in an estimation of the time at which the component under

test would exceed tolerance limits. Based on a criterion of simul-

taneously. minimizing on—line failures and maximizing component life-

time, a decision as to whether or not the component should be re-

placed is made at each maintenance interval.

The disadvantages of this curve fitting algorithm are: the

application is limited to failures due to permanent overstress, the

second order polynomial is too simple to describe the performance

of the component, and the prior lifetime statistics for the corn—

ponent are often not available.

Another area where an extensive research effort is being

applied is shock models and wear processes. Esary, Marshall and

Proschan6’7’8 introduced a shock model for the life distribution

of a component subjected to a sequence of shocks randomly occuring

in time according to a homogeneous Poisson process. They also
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considered the related shock models in which each shock caused a

random amount of damage and failure occured when the accumulated
damage exceeded a specified threshold. This failure model is

well known in modern reliability theory.

Employing the Poisson—Shock model, another curve fitting fault

• prediction algorithm which will overcome the disadvantages of the

Saeks-Liberty—Tung algorithm will be discussed in the present

paper.9 In the following section, a model for the failure dynamics

of a system component parameter is formulated . Here , it is assumed

that the faulure is due to the component being subjected to a se-

quence of Poisson distributed shocks10’11 with the measurable para-

meter being controlled by an unknown difference equation whose
p

underlying discrete “ component time ” process is defined by the number

of shock to which the component has been subjected. Since both the

failure dynamics (i.e. the difference equation) and the relation—

ship between “component time” and real time are unknown , our fail-

ure model is doubly stochastic. The third section of the paper is

devoted to the formulation of an algorithm for estimating the corn-

Ponent failure dynamics and its “lifetime” , defined to be the number

of shocks required to cause component failure. This is followed by

the formulation of an “optimal” replacement theory wherein the

optimal real time at which to replace a component is computed in

terms of its estimated “lifetime” . Finally , the results of a siznu—

p lation of the algorithm in both an ideal and noisy environment are

presented and compared with the simulated performance for several

fixed replacement schedules.

P FAILURE DYNAMICS

The performance of an analog device subject to a series of

discrete shocks (switching process , improper operation , etc...) may
p
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drift due to the shock damage. Let C(N) represent values of a

particular component parameter, where the “component time” , N,

denotes the number of shocks the component has received. It is

assumed that the drifting parameters can be described by a first

ordert difference equation of the form :

• 1. C(N+1) = C(N) — a0 
— a1N 

— a2N
2 

- ... — a1~N
1
~ C( 0)  — 1

Here, the coeficients and order of the “forcing polynomial” are

assumed to be unknown and must be estimated as part of the fault

prediction process. A little algebra together with the standard

recursive formula for solving a difference equations will reveal

that

N-i h
2. C ( N )  = 1 — 

~~ a~j
1

j =0 i=0

Now, if the tolerence limit for the component parameter is

taken to be C = 0, we may define the lifetime of the component to

be the smallest integer , N , for which C ( N )  < 0. This integer which

we denote by L then represents the number of shocks necessary to

cause the component to fail.

Consider a simple example where the “forcing polynomial” is

taken to be of the first order with positive coeficients. Then 1.

reduces to

C(N+1) — C(N) —a0 —a1N ; C(0) 1

From equation 2. C(N) can thus be expressed as

C (N )  — 1 - a0N - 
N (N—1) a1

tThe concepts described herein carry over without modification to
the case where th. failure model is characterized by higher order
difference equations. The first order model, however, sufficea to
illustrate the theory and his hence used throughout the present
paper.

I’. ~~~~~~~~~~~~~~~~~~~
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Then the lifetime of this component is the smallest integer satis-

fying the equation

That is, L is the smalles integer such that

(2a0 
— a1)

2 + Ba1 
— (2a0 

— a1)
— 2a1

Since the failure model of equation 1. is dependent on “corn—

ponent time ” , i.e. the number of shocks the component has received ,

rather than real time , it remains to define the relationship between

“ component time ” and real time. Following common practice in re-

liability theory6 , we assume that this relationship is determined

by a Poisson process. Indeed , this is the unique point process
11which has the scaling properties required for such an application.

Here, the probability of N shocks occuring in the time interval t

is:
P

k N
• 3. PN (t ) e N~ 

N 0 ,1,2 ,

Where Ic is a given constant representing the average number of
P

shocks per unit time. Therefore, (kt) is the average number of
shocks in the time interval t.

If a component with lifetime L is subjected to Poisson shock .

with constant Ic the probability that it will fail (i.e. receive at

least L shocks) by time t, is then given by the formula9

pP
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L-l
F(t) = ~ P~ (t)n=0

= L-l
e 1~1•~~~ (kt)’~n—0

Thus, even though the lifetime of our component is integer valued,

in our model the actual failure time is continuously distributed

since the time at which the component receives the Lth shock is

continuously distributed.

ESTIMATION OF FAILURE DYNAMICS AND LIFETIME

ifl a periodic maintenance system , the performance of a component
is measured at each maintenance interval nT. That is to say,

(C1, C2 ,  • • • ~~~ Cg) is the performance data taken at maintenance times

(T , 2T , ... , gT). The estimation problem can be stated as:

“Given performance data (C1, C2, ... , Cg ) i  T and Ic , estimate

the unknown constants (a0, a1, ... , a~ ) of the failure dynamics .”

Since it is assumed that the system is subjected to Poisson Shock

with constant k, the expected number of shocks in each maintenance

interval is kT. t As such , if we assume that Cm is the value of

the component parameter at N — znkT , then upon substituting

Cm C (mkT) into equation 2. we obtain

mkT- 1 mkT- 1 1 mkT- 1 ha0j  + ~ a1j + + ahj = 1 — Cmj—O j—O

where in = 1, 2 , 3 , g or in the matrix form:

t~~ though not theoretically necessary , we assume that kT is an integer .
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iu~

/ ~~~~ ~~~~
kT-l kT-l

~‘ .0 ~ .1 v •h
:3 i. •

~~~~
- •  

~ 
a0j =0 j =0 j=0

2kT-l 2kT-1 2kT-l h4. JA~~ ~ 
j0 ~ 

j
~
1 .... 

~ 
j a~ = 1.—C2 ~~Z

j=0 j=0

p . . . . . . . . . . .
gkT— l gkT—1 gkT—1 

~h l~Cg
j =0 j =O j—O

4, ‘
~b /  ~~ /p

Since the number of data points, g, is typically much greater

than the order of the polynomial assumed in the failure model , h , it

is not expected that equation 4. admits an exact solution. Rather ,

we attempt to solve for a coefficeint vector, A, which minimizes

the error between JA and Z. In particular, if one adopts a least

squares error criterion the optimal A is given by

5. A0 
= j Gz

p

where J~~ denotes the generalized inverse of ,i l2 Indeed , if as is

typically the case J has full column rank than j~~~ (JtJ)~~lJt where

p “ t” denotes matrix transposition. As such , we take the A0

col(a°, a~ , .. ., a~ ) as our estimate of the coefficients of the

difference equation characterizing the failure dynamics of our drift-

P ing parameter , C, as per equation 1. -
. - -

To estimate the failure dynamics of a drifting parameter , the

proper choice of the order h is, in general, quite difficult and

depends upon physical considerations and engineering experience.

‘p



Once h is preselected , however , coefficients to best approximate

the failure dynamics can be readily computed via equation 5. The

accuracy of the resultant estimate, however, is highly dependent

on the choice of the order , h , and on the number of measurements

which are taken , g. To find a new set of coefficients for a

different combination of h and g, the entire calculation procedure

is typically repeated from the very beginning which is impractical

in the on—line maintenance system. Fortunately, sequential ref m e —

rnent schemes for obtaining new sets of coefficients without re-

peating the entire calculation can be developed .12’13 As such , it

is possible to sequentially update one~ estimates of the parameters;

~~~~~~
‘ 

a~ , ..., ah; as additional measurements are taken and/or to

increase the order of the model for the failure dynamics without

repetitious matrix inversion. Our algorithm for estimation of the

failure dynamic underlying the measured data my thus be readily

implemented on—line with the computational power presently available

in today ’s microprocessors. The matrix algebraic details of the

required sequential refinement schemes are straighforward12’1 and

readily available in the literature. As such , they will not be

repeated here.

In practice , given g measurements C1, C2, ~~~~~~~~ Cg taken at

maintenance intervals T , 2T, 3T, ..., gT, one sequentially esti-

mates the coefficients of the failure dynamics; a0 , a1, ... , a~ ;

increasing h until no further error reduction is achieved . The

resultant set of coefficients is then used in equation 2. to de—

termine the component lifetime, L. Upon solving the equation,
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the resultant estimated lifetime is found to be the smallest in-

teger, L, such that

L-l hP 6. a~j
1 

> 1
j=0 i—0

Of course, if the measured data is not decaying towards zero,

i.e. the component isn ’t f~ i1ing, this inequality will have no

solution in which case we take L to be infinite.9

REPLACEMENT THEORY
P

Although the algorithm outl~.ned in the preceed~.ng secion yields

an “optimal” estimate of the number of shocks required to cause

fai lure the time at which the Lth shock takes place is statistical
P

in nature and hence, it still remains to determine the optimal (in

an approprate sense) time at which to replace the component. One

such criterion is formulated in the following. For this purpose,
S

it is assumed that L has been computed to our satisfaction and we

desire to choose a time, TrP at which to replace the component as a

function of L. Given L and we denote the resultant probability

of on—line failure (i .e.  failure before Tr) by Pf. 2r 1. - Pf
then denotes the probability that the component is replaced at time

before it fails. Similarly , we let Tf denote the expected time

to failure for those components which fail on-line, we let T de-

note the expected time to failure for all components and we let T*

denote the expected time to failure for the components if they were

operated to failure without replacement (i.e. T* = TJT 1,~~~~
• Finally,

we let f L (t )  denote the probability density function that the corn-

p ponent receives the Lth shock at time t , given that the component

fails on-line, whereas, ~~(t) represents the density function of

the Poisson distribution with parameter (k) and EL (t) represent the

p
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corresponding distr ibution function ; i.e.

7. p~~(t) = 
(kt )~ e~~

t i = 0, 1, 2 

L-l
8. EL (t )  = p1(t)

i=0

With the aid of some elementary calculus9 Pf? PrFTf~ 
and T,

as well as their derivatives with respect to Tr? can be computed

analytically . As such , upon defining an appropriate cost measure

an explicit formula for determining an “optimal” Tr given L can be

derived. We begin with the derivation of the explicit formula

for the various quantities involved in our replacement theory .

Since a component will be replaced by our algorithm i f an

only if it is still operating at time Tr~ i.e. if it has not yet

received L shocks at time Tr~ the probability of replacement is

just the probability of receiving less than L shocks by time

We thus have:

(prop 1) 
~r EL ( T )

L-l (kT )ir 
, e~~

Tr

L— 1

Pi (T r )

= EL(Tr)

(p rop 2) P f = 1 - EL(Tr)



-

Iii

(prop 3) ITr 1J p~~(t) dt = (1 — Ei+i (Tr)}

= 
(kt)1 e~~

t dt

~~ 
1

’
~r ~~ e~~

t dt

Using the identity
p

J ~m eax dx = eax ~ ( 1 ) r m ’
r 0  (m— r) ar+l

p
this becomes

p T . iJ r ~~ (t) at = ~~ e~~ t ~ (_ 1) r , ~i-r
0 r=0 (i—r) ! (_k)r+l J 0

i } —k.0 i~ —kT 1
= k ~~e 

~fll  - e r 
r=O ( i—r )  kr+l

= I — e~~
Tr ~ (kTr)

i_r

Ic r=0 (i—r)!

= ~~~. {~. - e~~ Tr 
j~ 0 

(kT r ) }
= 

~~~ ~~l - 

~~~~~~~~ 

P~~
(Tr)}

P = ~~~ [~l - E i+l (Tr)
•

} j

p
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~L—1 
(t)

(p rop ‘1~ f L (t )  = 
L
~
’k 

(l_E
L(Tr))

To derive this conditional density function we partition the

interval. (O iTr ) into N segments of length ~ — Tr/N and we compute

the probability that the Lth shock takes place in the ith time

interval, ((i-l)1~, ia). Since, this can be caused by having L—l

shocks before (i-l)~ and at least one shock in the interval

( ( i - 1)t 1, i~ ] or by having L—2 shocks before (i-1)A and at least

two shocks in the interval ( ( i — l ) ~~, i1~], etc . the probability of

failure in the ith interval is given by

L

~ 
pL_ . u 1 )

~~~E1 
— E.(~~)]

j=l

L q9. 
= Z 

~L— 
((i—l)~~) ~ 

(~ e~~~j =1 q—j q.

= ~ ~~~~, i PL..s 11)
~~

) )  (~ k) re~~ k
r 1  s=1.

Taking the probability density function at a point t in the interval

((i—1)~~, iA) to be limiting value of this quanity divided by ~ as

~ goes to zero
1° it is observed that the terms of 9. containing

powers of (ak) greater than 1 go to zero in the limit. As such,

the probability density function for the Lth shock to take place

at time t is given by

1~ 
•t ~L 1

((i—1)A) (ók)e k

10. =

_ _  ~~--~~~~~ - .- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .- 



Finally, since we are only interested in the conditional probabil-

ity density function that the Lth shock will take place at time t

given that the component fails on-line the quanity of equation 10.

must be normalized yielding

p
((i—l)A) p~~ _ 1  (t)

f (t = 
.& 

= 
..

f 
~ 

(l
~
EL(T))

as was to be shown .

(Prop 5) T f 
_

~~~~~~~~ ~~ :
Since T

f is the expected lifetime of the components which

fail before replacement,

Tf 
= t fL(t) dt

— I
Tr t P~~ 1

(t)
— 

~ 
{l
~
EL(T)} 

dt

J

Tr 
~ 

(kt)’~~ —kt
= (L— 1)~ 

e dt
I { 1 — E ( T  Ik L r

L I
Tr (kt ) L e~~ t at

= k J 0 L~

~ 
(l

~EL (Tr ) }  1:

• 
= Lj0 PL(t) dt

(1 — EL(T)}

From (prop 3), equation 11. thus reduces to the desired equality.
P 

~~-- - . --- - --
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(Prop 6 )  ‘ = (1 — EL+l(T)) + Tr EL(Tr)

= Pf ~f 
+ 

~r Tr
l - E  CT )

= {i. - EL(T
)} •+ 1 - EL(T) 

+ Tr EL(T)

= 1 — EL+l (T )} + T EL(Tr)

(Prop 7) T*=

(Prop 8)

d (Pf)
d(kT ) PL_l (Tr)

and

d (P

d(kT ) = PL...l (Tr)

This result follows simply by differentiating the expressions for

Pf and of (prop 1) and (prop 2) analytically.

EL(T)

L-l (kTr)
1 

-kT
— e r

i— 0

= e~~ Tr + 
fr-i (kT )~ e~~ Tr
i—i

Thus

_ _ _ _ _ _ _ _ _ _ _ _  --,- .- - --.~~~~~~~~—-- -
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Li. /

d(P ) 
_e~~

Tr + 
L—l i(kT )1~~ 

- 

(kTr)
’ 

e~~
Tr

d(kT ) i—I.

L-l 
_ _ _ _ _ _ _ _  e~~

Tr — 

L— l (kT ) 1 
e~~

Tr
i~ I. . i=0 i~

— EL_l~~~
EL

— PL..l(Tr)

Moreover since

Pf 
= -

d(Pf) d(l—P )

d(kT ) = 
d(kT ) = PL 1 (Tr)

p 
(Prop 9) d(k~~ ) (1 — E~~(T~j} PL

(T
r) - (1 — EL+l (Tr ) }  PL...1(Tr )

d(kT ) — L 
Cl - EL(T)] 

2

From (prop 3)p 
‘- E  ‘T

k~ — L+l ’ r
f 1 - E~~(T)

Thus by direct differentiation

_ _ _ _  

d(k ~ f) {l
~ EL (T) PL (Tr) - (l

~ EL+l ( T ) }  PL...1(?r)
d(kT r ) U — E~, ( T ) }

p

(Prop 10) d~k?) E (T )d(kT ) L r

p
From (prop 6)

T ( 1. - Ei~+i (Tr ) } + TrEL ( T )

p
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hence

kT — L (1 - E~~ j•(T )} + kTrEL~
T )

Thus by direct differentiation

_ _ _ _  — L {PL (T ) }  + (kT (
~~~~~~~ 1( T ) )  + EL (Tr )

= L PL (Tr ) - kTrPL_l (Tr) + £L ( T )

Since
L(kT ) -kTe r

(kT r ) L_ l

= (kT ) e~~~
Trr ( L — l ) ~

— kTrPL_l (Tr)

this reduces to

d ( liT)
— E CT

d(kT ) L r

as required.

Given the above statistics for replacement, on—line failure,

and expected time to failure of a component with estimated lifetime,

L and assumed replacement time Tr we desire to choose Tr (given L)

which minimizes some appropriate cost function . Intuitively, this

cost function should represent both the cost of on-line failure and

the cost of wasted component lifetime due to replacing components be-



fore failure. 5 ’17 We , therefore , adopt the cost functional

p
Cost — CfPf + Cw (kT - kT)

Here, Cf and Cw are appropriate weight factors representing the cost of a
p

on-line failure and the cost of component lifetime wastage, re-

spectively. Thus, the first term in the cost functional represents

the expected cost of a failure (i.e. the probability of an on-line
p

failure times the cost of such a failure) whereas , the second term

in the cost functional represents the expected cost of wasted corn—

ponent lifetime (i.e. the expected lifetime reduction times the

cost per unit time for such a lifetime reduction with k serving as a

normalizing factor).

To minimize the cost functional of equation 33. one simply

substitutes the values for P f (’rr )
~ 

T*, and T (T r ) computed in the

preceeding pages, defferentiating the Cost with respect to kTr and

setting it equal to zero. This then results in the equality9

12. 0 = Cf P~ _j ~(T~ ) - CwEL(T)

• where d(Pf)/d(kTr) is given by Prop 9 and d(kT)/d(kTr) is given by

Prop 10. Thus the choice of an optimal Tr given L is reduced to

the solution of a single nonlinear equation in one unknown. The

p solutions of this equation are plotted in Figure 1. for a number

of values of L and Cf/CW. Indeed, it can be readily shown that

equation 12. has exactly one solution for Tr > 0. Moreover, the

P function

RL(t) CfpL l (t) - cWEL(t)

p
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takes on negative values for 0 < t < Tr and positive values for

p Tr 
c ~ hence in an on-line maintenance system one need not even

solve equation 12. Rather , one simply evaluates R
L(t) at the

time of the next scheduled maintenance. If this results in a
P negative number, the next scheduled maintenance preceeds the optimal

replacement time and hence, we should wait, at least, until the next

scheduled maintenance (when we will have more data) to replace the

component. On the other hand , if the evaluation of RL(t) at the

next scheduled maintenance time results in a positive value, the

optimal replacement time will have passed by the next scheduled

maintenance and hence , the component should be replaced at the

present maintenance interval.

Summarizing the on-line maintenance algorithm resulting from

the above theory takes the following form. At the gth scheduled

maintenance interval (at time gT) one measures the component para-

meter, C . If C is already out of tolerence, the component is
9 

g g
simply replaced and no further analysis is required. If, however ,

Cg is in tolerence (Cg > 0 in our notation) it is used together

with the values of the component parameter measured at the previous
P

maintenance intervals to estimate the dynamics of the failure model

for the component. Here, sequential refinement schemes may be

used both to include the effect of C on the estimates made at
• g

the (g— i)s t  maintenance interval and to increase the order of the

polynomial used to represent the component failure dynamics. Once

the component failure dynamics have been satisfactorily estimated ,

one solves 6. to estimate whether or not to replace the component.

If R~~~g+l)T) 0 the component is replaced, whereas, if

P

_ _ _ _ _ _ _ _ _ _  _ _ _ _
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RL ((g+l)T) c 0 the component is not replaced , and the system is

returned to service until the next scheduled maintenance .

S IMtJLATIONS

A computer simulation of an on—line periodic maintenance

based on the above described algorithm was performed for 600

maintenance intervals with a new component replacing the old com-

ponent after each replacement decision and/or on—line failure 9

The system was subjected to computer generated Poisson shocks

with constant k = 0.1 shocks per hour and a maintenance interval

of T = 20 hours. The simulation was first run using identical

components with L = 28 (expected lifetime of 14 maintenance inter-

vals) and then repeated using random components and noisy data

measurements .

For the case where identical. components were employed , Table 1.

gives the total number of replacements and failures resulting from

the application of the algorithm over the 600 simulated maintenance

intervals with different values of Cf /Cw . For comparison , Table 2.

shows the total number of replacements and failures which would

have resulted from a fixed replacement strategy ranging from 6 to

12 maintenance intervals. Since the cost function is

C o s t _ C f P f + C w (kT* _ k T )

the overall. cost can be expressed as

C
Cost ~“— ~~

- (No . of failures )

+ 0.1 (280*(No . of components used) — 12000)

The overall costs resulting from the application of our algorithm

-- .~-- . .
~~~ . --~~~ -~~~~~~~
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and the various fixed replacement schedules may be computed

from the data in Tables 1 and 2. The resultant costs for differ-

ent values of Cf/CW are given in Table 3.

Note, since L = 28 for each component in this simulation, an

optimal replacement strategy of approximately 10 maintenance inter-

vals can be computed from equation 12. without estimating L. As

such, it is not surprising that this fixed replacement strategy

resulted in lower costs than the algorithm. It should, however,

be noted that the algorithm did not have the advantage of a

a—priori knowledge of L and yet it sill out-performed all of the

p f i xed replacement strategies except the optimal strategy ( that is ,

optimal once L is known).

In our second si~aulation , random noise was added to the data

P to simulate both the effects of imperfect measurements and the

effect components with random failure characteristics. Various

simulations were run , as before , for 600 maintenance intervals

P each with k = 0.1 and T = 20 , with noise levels ranging between

20 and 60 percent of the tolerence interval. The results of these

simulations are given in Tables 4. and 5. Except for a single case ,

P which we believe to be anomolous , the algorithm out-performed any

fixed replacement strategy.

CON~LUS ION

In the preceeding , we have described a curve fitting algorithm

for the prediction of failures in analog devices . The algorithm was

tested in a variety of situations and found to be surprisingly
p 

effective in predicting failures with relatively little wastage of

component lifetime and on—line failure cost.
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C1/C~4 No. of replacement No. of failure

50 11.8 7

75 56 1.

100 52 2
1.0 $Li. 2

200 511. 2

TABLE 1

Total replacements and failures within 600 main-
tenance intervals for different Cf/CW

Constant
replacement time No. of replacement No • of failure

every 6 intervals 100 0

every 7 intervals 85 0

every 8 intervals 75 0

every 9 intervals 65 1
every 10 intervals 59 1
every ii. intervals 11.8 6

every 12 intervals 39 11

TABLE 2

Total replacements and failures within 600 maintenance inter-
vals for various fixed replacement strategies
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50 75 -
. 100 150 200

Methods

1600 1600 i6oo 1600 i6oo

~~~~ vZis 
1096 1096 1096 1096 1096

~~~~~~~~ 
900 900 900 900 900

V . S  698 723 711~8 798 8L.8

530 555 580 630 680

p 612 762 912 1.212 151.2

750 1025 1300 1850 211.00

the algorithm 690 11.71 51.2 668 768

p

TABLE 3

Overall cost with different mathods and different Cf/Cw
p

*

p

p
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‘
~~- noise

~~ 2~~~~~~ vel
rnëth~~~~ m.. 0 % 20 % 30 % 40 6o %

every 6 
i6oo i6oo i6oo i6oo 2200intervals

every 7 1096 1096 1096 1.280 2008intervals

every 8 900 900 1200 1300 2128intervals
p

every ~ 748 848 948 1376 211.32intervals

every 10 580 880 1380 1980 23611.intervals
P

every 11. 912 1340 1340 1340 211.52 
-

intervals

every 12 1300 1728 1.828 19824. 2612intervals
p

the algorithm 512 752 980 752 1608

P

P TABLE 5

Overall cost for different methods at different
noise levels

p

p

I
p 
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Name Title Area Office Phone

R.B. Asher Assist. Prof. Detection and Estim. 1503-ES 742-3537
SE

K.S. Chao Assoc. Prof. Nonlinear Circuits 150A-EE 742-3469
EE and Systems

D.L. Gustafson Assoc . Prof. Microprocessors 150B—EE 742-3530
EE

M .O. Hagler Prof . SE Optical Signal 103B—EE 742—3470
Proc .

L R .  Hunt Prof.  Math Math . Syst. Theory 265—Math 742—2566

S.R. Liberty Assoc . Prof. Stochastic Control 201B—EE 742—3441
EE & Stat. and Estimation

J. Murray Assist. Prof. Multi—dimensional 258—EE 742—3528
EE Digital Filters

T. Newman Assoc . Prof. Pattern 1107—BA 742—2571
Math & C.S. Recognition

J. Prabhakar Assoc. Prof. Communications 104-SE 742—3506
SE

R. Saeks Prof.—EE and Circuits and 258A—EE 742—3528
Math Systems

L. Tung Lect. -EE Math. Systems 258A—EE 742—3528
Theory

D.L. Vines Prof.-EE Computers 15l—EE 742-3536

3. Walkup Assoc. Prof. Optical Systems & 260B-~EE 742-3500
EE Communications

PHYSICAL ELECTRONICS

M. Gundersen Assoc. Prof. Quantum 260A-EE 742-3501
EE Electronics

A. Kwatra Lect.-EE Optics & Quantum 205—SE 742—3502
Electronics
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W. Portnoy Prof.-EE Solid State & 152—EE 742—3532
Bio-Med. Elec.

J. Reichert Assoc . Prof .  Optics & Quantum 203—ES 742-3502
SE Electronics

F. Williams Asst. Prof. Interaction of 258B-EE 742—3501
EE. Light with Matter

ELECTROMAGNETICS

M. Hagler Prof.-EE Plasma lO3B—EE 742—3470

N. Kristiansen Horn Prof. Plasma 103A-EE 742-3468
EE

E. Kunhardt Asst. Prof. Nonlinear 260C-EE 742-3545
EE Phenomena

r. Trost Assoc . Prof. Antennas & 102—EE 742—3505
EE Propagation

PO ?ER

T. Burk es Assoc. Prof.  Power 105C-EE 742-3533
EE Conditioning

J. Craig Prof . -EE E].ectro—Mech. lol-EE 742-3529
Devices

M. Kristiansen Horn Prof. High Power 103A—EE 742-3468
EE Switching

E. Kunhardt Asst. Prof. High Power 260C-EE 742—3545
EE Switching

S. Liberty Assoc. Prof. Solar Energy 201B—EE 742—3441
SE

J. Reichert Assoc. Prof. Solar Energy 203—SE 742—3502
SE 
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Syster~

Principal 
. 

Annual
Invest. Agency Title Duration Funding

Saeks AFOSR 
- - 

I~ soluticxi Space... 1 yr. 19,257

Liberty ~~R Statistical Performance 1 yr . 30,000
Analysis...

Q~ao NSF ~o~~irn~~ ion ~~~~~~~ 2 yrs. 18,’lo

Walkup/Hagler ~FOSR Space-Variant Optical 1 yr. 75,440
Systen~

Saeks/Levan AFOSR Syuip . on Oper. Thy. of 1 yr. 4,468
Networks and Systems

Asher ~~~L Estirration in ?~a~tive 1 yr. 44,330
Optics

son RADC Phased Array Antennea . 1 yr. 5,000
Analysis

Asher SORF Nonlinear Estimation 1 yr. 5,000
and Detection

Saeks Ce~R Assoc. Joint Services 1½ yrs. 173,500
Electronics Prog.

~~tal Annual Fwiding in
Syst~ re S375~705

Physical Electra~ice

Qi~ ersen S0~ ’ St~z1i~~ in Transient 1 yr. 8,000 
- .  ——

Discharges

G,zidersen Laser !~ search 1 yr . 50,000

G~ dersen NSF Inovati’ue Infrared 2 yrs. 17,500
Detector

~~ichert AFOSR Analysis of U~stab1e 1 yr. 45,219
Optical Pesonators
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1Portrx y NSF Semiconductor Device... 1 yr. 13,800

willi~~ / AF~DSR 5t~~{e~ in Transient 1 yr. 49,995
Gtniderse.n Discharges

WiUia~ Research Driven Reman Proc. 1 yr. 10,000
Corp.

Portxy DOE Switching Device Anal. 1 yr. 9,962

Portixy I~~~ Microelectronics SyTTp. 1 yr. 1,000

Portnoy SORF • Seni~~nductor Device... 1 yr. 6,283

Total Annual Funding in Physical
Electronics $211,759

~~ectraM~ ietics

Kristiansen/ NSF ~~ Plasma Heating 1 yr. 37,044
Hagler

Kristiansen AF~~R Dense P1a~ Ta Heating 1 yr. 99,222
~~~ Rad. Gen.

Xristiansen DOE Small Tordidal Plasma 1 yr . 2,500

Rristiansen ~~RI High Pc~~ r ~~ Heating 1 yr . 2,525

Total Annual Funding in
Ei.ectr gnetics $141,291

Craig TPL P~~~r Systan Stt~iies 1 yr . 8,000

Kristianaen DOE Laser Trigger~~ Spark 1 yr. 50,088
Gap

&~rkes DCX S Bean Laser Su~~ort 1 yr. 15,250

Kristiansen AFC~ R High P~~ r Switch 0ev. 1 yr . 50,382

AFWL Analysis of Pulse P~~~r 1 yr. 63,000

~riatian.en XE Surfa~~ F].aabover t.~th. 1 yr. 59,459 
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Bu.rkes NSt~C High Power Switches 1 yr. 39,841

Reichert E~~A Crosby-ton Solar
P P~~~r Project 2 yrs . 600,000*

Total Annual Funding in Pc~~r $886,020

Other Areas
p

Seacat SORF Research and Develo~mant 1 yr. 16,775

Kuhrthardt NSF Undergraduate Research 1 yr. 17,980
p Part .

Total Annual Funding In Other
Areas $34,755

p
p

Total Annual Ftn~ding $1,649,530

p

*The DepartrEnt of Electrical ~ igineering is the prima contractor on the
Crosbyton Solar Power Project which is funded at about $1,500,000 annually .
Of this aircunt about $600 ,000 is spent in the depar1m~nt with the resainder

• spent in other dsparthents at ~~xas Tech and/or subcx ntracted.
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Computer Laboratories:

CDC 1604 facility : hands-on facility for both education
and research 108-EE

CDC 3600 facility: under development 162—EE

Hybrid Computer facility : minis , micros , and analog
facilities 157—~~

Bio-medical Systems: includes instrumentation and microprocessor
application facilities 215—EE

Circuits and Systems Laboratory : the think tank 258-EE

Optical Systems Laboratories :

Holographic Optics : primarily used for multiplex holography
research 110 and 103—EE

Optical S:gnaJ. Processing: research in optical and digital
image processing 2l6-EE

PHYSICAL ELECTRONICS

Laser Laboratory : infrared laser research 262-EE

In tegrated Circuit Laboratory : fabrication facility for SSI
and special purpose devices 209-EE

Laser Laboratory: interaction of light with matter 260-EE

ELECTROMAGNETICS

Plasma Laboratories :

Laser/Plasma facility: plasma heating via laser plasma
interaction 1I3 EE

Tokamak facility: radio frequency heating of toroidal
plasmas 1.17—SE

Electromagnetics Laboratory: nonlinear wave studies ].ll-EE

Antenna Laboratory : radio meteorology and ionspheric
studies West of the

Medical School
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POWER

Hi gh Voltage Laboratory : pulsed power studies North of Textile
Building

Solar Energy Laboratory : another think tank 205-EE

High Power Switching Laboratory : electron beam initiated
spark gap 105-ES
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