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EFFECTS OF CAVITATION ON UNDERWATER
A SHOCK LOADINGS - P ar t  I

Abs t rac t

Reported here are analytic fo rmulations , together  wi th

one-dimensional results , in an investigation of the title

subject. It is shown that either displacement or a displacement

potential may be used as the basic dependent variable for a

f i n i t e  element  ana ly s i s .  A r t i f i c i a l  damp ing is found to be

needed to suppress spurious oscillations (a numerical phenom-

enon) near cavity boundar ies .  Adequacy of the method is demon-

st rated by comparison wi th  publ ished resu l t s  of Ble ich  and

Sandler.  Some resu l t s  are g iven for  e f f e c t s  of c a v i t a t i o n  on

the performance of resilient attenuators.
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EFFECTS OF CAVITATION ON UNDERWATER
SHOCK LOADINGS - Part I

1. Introduction

1.1 Earlier Work. Motivation for the present investi gation origin-

ated with the “shock shield” proposed by Geers in Ref. 1. The

shield is a gas-filled cushion (GFC) to be fitted to the exterior

of a submarine hull. If the cushion has sufficient thickness

it can greatly reduce the magnitude of underwater shock loads

transmitted to the hull. Related concepts involving the applica-

tion of resilient elastic layers (REL) are treated by Geers in

Ref. 2.

1.2 Cavitation Effects. The two-dimensional analyses of Refs. 1

and 2 neglect possible effects of cavitaticn . It is well-known

(see Refs. 3 and 4) , however , that a hig hly compliant submerged

object will produce a negative pressure scattered wave in response

to an incident shock wave . If the shock pressure is much greater

than the hydrostatic pressure , cavitation will be induced in the

fluid. Such cavitation may significantly increase the shock load-

ing on the submerged body . It is thus evident that an adequate

investigation of the effectiveness of resilient attenuators

requires evaluation of effects of cavitation on performance.

1.3 Plan for Investigation. The present investi gation is

divided into two phases. The first phase is the subject of this

report. It involves consideration of representative one-

dimensional problems for the purpose of determining the relative

merits of alternate choices for: dependent variables , time

3 
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integration algorithms , and spatial and temporal discretization.

The one-dimensional context allows rapid and inexpensive compu-

tations and allows comparison of results with those reported by

others. An account of this phase is given in the remaining

sections of this report.

The second phase of the investigation consists of extensions

to problems in three dimensions. Reasonable limitations on com-

puter core capacity and processing time require that the problems

be axisymmetric and , thus , mathematically two-dimensional.

1.4 Fluid Model. It is known that fluids do have some capacity

for sustaining negative pressure (tension) . Some data are given

in Ref. 5. The influence of dissolved gas on the development

of cavitation is considered in Ref. 6. For the purpose of the

present investigation it is advantageous , and presumably con-

servative , to assume that the transition from the normal to the

cavitated state takes place without delay when the absolute

pressure reaches zero .

In the initial stages of this investigation the fluid was

treated as bilinear with a greatly reduced bulk modulus in the

negative pressure region. Subsequent developments disclosed

that the expected advantages of the bilinear model were not

achieved and the bulk modulus was henceforth assumed to be zero

in the cavitated region.

4
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2. Choice of Dependent Variable

2.1 Failure of the Pressure Formulation. At the outset , this

inves t iga to r  expected that  a fo rmula t ion  of the governing

equations using f lu id  pressure p as the basic dependent var iab le

would be advantageous . This expectation was based on previous

successful finite element applications to propagation problems

(e.g., see Refs . 7-9) . Prior applications did not involve cavi-

tation , but the bilinear fluid model was expected to handle

successfully cavitation effects.

At an early stage of the investigation , duplication of the

results of the example problem of Ref. 4 was attempted. These

trials gave solutions which correctly tracked the growth of the

cavi ta ted  reg ion , but  f a i l e d  to show i ts  subsequent  cont rac t ion

and co l lapse .  E f f o r t s  to discover the reason for  the f a i l u r e  of

the pressure formulation led to a simple test problem which

determines whether a proposed formulation can correctly track

the con t rac t ion  of a cav i t a ted  reg ion.  The problem is def ined

in the following section.

2.2 “Water-Hammer” Problem. The rapid pressure rise which

accompanies the sudden interruption of water flow in a closed

conduit is known as water-hammer. We here consider a flow in a

zero pressure (or a small negative pressure , if the bilinear

f l u i d  model is used) cavi ta ted  reg ion with pos i t i ve  dilatation

e0. Thus we have , for a semi-infinite region x > 0, the initial

values:
p(x ,0) 0 , (p ressure)
e(x ,O) e0 > 0 , (dilatation)

~i(x ,0) -v0 < 0. (velocity)

S
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The boundary condit ion at x = 0 is ~i (O , t )  = 0 . The exact

solution to this problem is especially simple. A shock front

propagates with constant speed ac , beginning at the closed end ,

and the fluid behind the front is at rest with uniform pressure

p 1 = c&pcv0 . Meanings of the symbols introduced are :

p = fluid density ,

c = acoustic velocity.

Factor ~ is given by

= [1 + (ce0/2v0)
2f

~ 
- (ce 0/2v 0) .

In the reg ion ahead of the shock front (x > c~ct)  the var iab les

p ,  ~i , and e ma in t a in  the i r  i n i t i a l  va lues .

2 . 3  Governing Equa t ions .  Deta i l s  concerning the governing

equations are given in Appendix A. Equa t ions  are s ta ted  in

forms suitable for any number (i.e., one , two , or three) of

spatial dimensions . Four separate formulations are developed

with the principal dependent variable being particle displacement ,

fluid pressure , velocity potential , and displacement potential

for the respective cases. The capability of each to deal with

the one-dimensional water—hammer problem is discussed separately

below.

2.4 Displacement Formulation. In this case it is convenient to

replace the displacement vector ~S by r = pd and , instead of the

dilatation e , a density - weighted condensation s = -pe is intro-

duced. The working equations (Eqs. All , A 12 , and AiD) consist

of an equation expressing I in terms of the gradient of p, one

6
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giving s as the negat ive  of the divergence of r , and the pa i r  of

a lgebraic  re la t ions  for ca lcula t ing  p f rom s ( the  b i l i n e a r  con-

s t i t u t i v e  law) . I t  is readi ly  seen tha t  the  i n i t i a l  condi t ions

of the water-hammer problem allow determination of the initial

values of r and r .  The f i r s t  may be deduced th roug h spati a l

in teg ra t ion  of the cons tan t  i n i t i a l  di latat ion e0 and the second

is known from the given i n i t i a l  ve loc i ty  -v 0 . Given these

required i n i t i a l  values and the boundary condi t ion at x = 0,

the working equat ions  s u f f i c e  to solve the prob lem .

The displacement vector is continuous , but both velocity

and p ressure  are d i scon t inuous  at  the shock f r o n t .  The p re s su re

discontinu ity is not representable by the shape functions of the

finite element method. Accordingly there must be a finite

length interval over which both the pressure rise and particle

deceleration take place. The necessity for this compromise must

be considered a defect (but not a disqualifying one) of the dis-

placement formulation. A further disadvantage , not shared by

any of the other formulations is that the princi pal dependent

variable is a vector , not a scalar . tn the axisymmetric appli-

cations planned this will double the order and bandwidth of the

stiffness matrix , resulting in a great increase in requirements

for computer storage and processing time .

2 .5 Pressure Formulation. In Appendix A the pressure formulation

is stated in term s of a second order equation (A 13) expressing

~ as the Laplacian of the dynamic component of pressure , together

with the bilinear constitutive relation (A 10). The solution

technique involves stepwise time integration for s , alternating

_ _ _ _  - • -~~~~~- -
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wi th  use of the cons t i tu t ive  re la t ion  t~ f i nd new values of p .

In view of the role played by s , it i s s l ig htly misleading to

call this the pressure f o r m u l a t i o n .  Indeed , in the absence of

cav i ta t ion  it is advantageous to use the cons t i t u t i ve  re la t ion

to eliminate s in favor of p alone . In cavitated reg ions , h ow-

ever , retaining s makes the strategem of a nonzero bulk modulus

unnecessary. Despite this advantage , both versions fail.

The reason th i s  technique f a i l s  when appl ied to the wa te r -

hammer proble m is read i ly  appa ren t .  The v a r i a b l e  s (and also p)

ha s a step d i scon t inu i ty  at the shock f r o n t .  (Cor respond ing ly ,

the second d e r i v a t i v e  s has a dipole s i n g u l a r i t y . )  We know

th at the h e i g h t  of the step depends on the i n i t i a l  (nega t ive )

value of s and on the f l u i d  ve loc i ty . The ve loc i ty , however ,

is neither explicitly nor implicitly represented in the equations .

Th ere seems to be no f u r t h e r  reason to consider  the pressure

formulati on for cavitation problems .

The bilinear fluid model with a nonvanishing bulk modulus

in th e tens ion  r e g i o n  was i n i t i a l l y  in t roduced w i t h  the expec-

tation that the pressure formulation would work. Since the

sole reason for including this complication has vanished , we

shall henceforth exclude negative pressures and correspondingly

choose ~ 0 in (A2) , (A4) , and (AlO)

2.6 Velocity Potential Formulation. Using ~ to represent the

vel oci ty  p o t e n t i a l , the gov ern ing  equa t ions  express  as the

negative of the dynamic p r e s su re  ( A 14 ) ,  s as the  n e g a t i v e  of the

Laplacian of ~ (AlS) , and p in terms of s (AlO) . In this

8
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ins tan ce the ve loc i ty  p o t e n t i a l  is con t inuous , bu t it s fir s t

der iva tives are no t. It is possible to obtain a moderately

satisfactory solution from the discreti zed equations.

2 .7 Displaceme nt Potential Formulation. Using ~ to represen t

the disp lacement potential , the gove rn ing  equa t ions exp r ess ~
as the nega t ive of the dynamic p ressure  (Al6 )  , s as the nega tiv e

of the Laplaci an of ~ (Al7) , and p in terms of s (AlO) . All of

the needed var iables appear , explicitly or implici tly, in this

formul at ion . Moreover , ‘~5 and its first derivatives are contin-

uous . The step discon t inu it ies in p , s , and u are m a n i f e s ted

as discontinuities in the second derivatives of ~~~.

.S Formulation Selection. Among the formulations considered ,

the pressure-based one is discarded as unworkable and the velo-

ci ty potential is rejected as inferior to the displacement poten-

tial on the basis of continuity . rn the remainder of this report ,

discussion of application details will be confined to the t~i

formula ti on bec aus e i t is novel . The d i sp lac emen t formu la t ion

was developed in parallel and also tested on the Bleich-Sandler

example (Ref. 4) . 
-

2.9 Discreti:ed Equations and Solution Process. The process of

f orming d i s c r e t i z e d  f i n i t e  e lement  equa t ions  f rom the correspond-

ing p a r t i a l  d i f f e r e n t i a l  equation is well known (e.g., see Ref. 7)

and w i l l  no t b e r epea ted here . We note that , based on p r i o r

experience with wave propagation problems , linear shape functions

were chosen. It was found that a lumped ‘mass ’ matrix was easier

to use and gave better performance than its consistent counterpart

.9



Details concerning the formulation of initial conditions

and the radiation boundary condition are given in Appendix B.

The considerations used for selecting a time integration algor-

ithm and the means for introducing needed artificial damping

are discussed in Appendix C.

3. The Bleich-Sandler Example

3.1 Statement of the Problem. In Ref. 4 Bleich and Sandier ,

using a bilinear fluid model , study cavitation phenomena during

one-dimensional wave propagation. They use the method of

charac teris tics and in troduce addi tional re la tions to connec t

state variables on opposite side.s of a shock front.

The numerical  example they give concerns “the response of a

horizon tal layer of mass on the surface of a half-space of fluid ,

Fig. 1. A plane pressure wave with a sudden r ise  and an expon-

en tial decay moves toward the sur face , reaching the mass at the

A~mospp, er,c
Su f ace mass W pressu re

- 
i :  ~~

/ 
_ _ _

‘ I~ ~~~~~~~~~~~~~

jUL

~ rC$$tjfp I-ItsIo ry

Fi gure 1. Particulars of Bleich-Sandler example (from Ref. 4).

t ime  t = 0. The system is subject to gravity and atmosp heric

pressure , all particles being at rest prior to arrival of the

shock. The analysis is based on the degenerate model with B = 0. ”

10
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For calculation and presentation of results Bleich and Sandier

use the time constant of pressure wave decay (
~ 1 ins) as the

time unit. The acoustic velocity c is given the convenient

value unity by choosing unit length to be the distance traveled

by the pressure wave in unit time (~ 56 in.).

3 . 2  Co mpar isons  wi th  B l e i c h - S a n d l e r  Resu l t s .  B le ich  and

Sandler present two figures summarizing their solution. First

of these traces the time history of the cavitated region in the

x - t plane. Their figure is reproduced in Fi gs. 2 and 3 below

with superposed points obtained by present analyses. For the

finite element analyses the discretized region extends from

x = 0 to a radiation boundary at x = 4. Results shown in Fig. 2

• no n-dime ns iOna l time

• 12 .

in uri Cavit a te d fluid
(due to Closure )

- 

S 

• 

-

k~ter face with
S - discOntinuity • Interfa ce with

SuS cOnhi flu ity

4 
~~ vi tate d ~eg~~~

3 Case 7
/

2

i Case )

Cas e 

04 08 1 2  

de ç t h ,

Figure 2. Bleich-Sandler example: time-history of the
cavitated region. Discrete points found by
finite element method using the displacement
formulation.
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were obtained from the displacement formulation using a node

spacing (element length) ~x = .04 and a time step h = .01. In

the absence of damping it was found that moving “islands ” of

positive pressure appeared within the cavitated reg ion. This

behavior is henceforth called “frothing .” It was found that

damping with n .16 was sufficient to supress frothing and

produce a smooth variation of the condensation s within the

cavitated reg ion.

In Fig. 3 the superposed points were obtained using the

displacement potential formulation. For these results: t~x = .01

- Ii ~ n .  ime ris onul tIme

c o m o ,essi ~e s hockS
Oh 1, - iflC a vii ah e d 1tu C

doe ‘0 c oSure

7~-

nt5rf~ce wit )’
Sfr disconti nuity Interface *ihh

discontinuity

Ca. i t ah ed Peg~~~

Case ?

2

/
cls e

_ as e ~ 
V 

non.dm,ns,onal depth . *
0 , 04 09 2 6 20 2 ’.

Fi gure 3. Bleich-Sandler example: time-history of the cavitated
region. Discrete points found by finite element
method using the displacement potential formulation .
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I
and h = .0025. To suppress frothing a value n = .0025 was

found to be sufficient.

A second Bleich-Sandler figure shows the time history of

the velocity of the surface mass layer. This is reproduced as

Figs. 4 and 5. Points obtained from present analysis using the

d i sp l acemen t  f o r m u l a t i o n  are superposed on F i g .  4 and points

13

t~. arrival of s econdar y shock at if’e surface

I’

t~,. Closure of Ca,it ed req ion

9

8

7

6

5

4
Wi)) ’ cav i t a t ion

3

2
w it hOUt
C avitation

t~ . opening Of civ ita led region 
•

02 -01 0 O l  02  03  04 05

Figure 4. Bleich-Sandler example: nondimensiona l upward velocity
of surface mass. Discrete points found by finite
element method using the displacement formulation.

from the displacement potential formulation on Fig. S . The

13
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12
• t~ ar riv al 3* secondar y shock at t he surface

tw . Closure of cavi led region

wit h cav itat i on

2~

-02  •~~ t 

ot ca , iaieo -v3on

Fi gure 5. Bleich-Sandler example: nondimensional upward
ve loc i t y  of su r face  mass .  D i s c r e t e  po in t s  found
by finite element method using the displacement
po ten t ial  fo rmula t ion .

parameters used were those given for Fi gs. 2 and 3 , respectively.

It is believed that the agreement demonstrated in Figs. 2-5

substantiates the adequacy of displacement and displacement

potential formulations for one-dimensional analyses.

14
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4. Effect of Cavitation on Resilient Attenuator Performance

We consider here the effect of cavitation on the perform-

ance of two selected attenuators. One is a GFC with an initial

thickness of 10 in. under hydrostatic pressure. The second is

an REL with modulus C1 
= 1000 psi. and an initial thickness

L0 10 in. when loaded only by atmospheric pressure . The

shock loading consists of a pressure step of amount PS followed

by exponential decay with time constant 25 ms. The hydrostatic

pressure is 
~~ 

Results are given as the quotient of the maxi-

mum dynamic pressure increment 
~~inax by the peak shock pres-

sur e

If cavitation effects are ignored the response may be found

by integrating numerically a first order ordinary differential

equation. Details are omitted here.

The response considering cavitation has been determined

using finite element modelling based on the displacement poten-

tial formulation. Results are summarized in Table 1.

Table 1. Effect of Cavitation on Attenuator Response

Values of 
~~max ’~~s

______________  
GFC REL

psia psia N.C. W.C. I N .C. W .C .

30 1000 0.21 0.69 0.71 0.76

280 750 0. 44 0. 45 0 .82 0 .82

* N C  no cavitation with cavitation

It is postulated that the relation between gage pressure
Pg and thickness L is Pg C1 (L0/L-l).

15 
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Results in Table 1 show that cavitation has little effect

on the performance of the REL considered at either hydrostatic

pressure. This is also true for the GFC at = 280 psi., but

there is severe performance degradation at 
~h 

= 30 psia. Note ,

however , that performance remains better than that of the REL.

If the hydrostatic pressure is increased significantly above

280 psia., maintaining the relation + p5 
= const ., cavitation

will not occur.

S . Conclusions

Both the displacement formulation and the displacement

potential formulation have been shown to produce acceptable

results when applied to the Bleich-Sand ler example. It is

anticipated that either formulation will provide a workable

basis for solving three-dimensional axisymmetric problems .

The scalar displacement potential will lead to a much smaller

computer storage requirement and processing time , but it may

not be easy to fit it to the framework of an existing program

such as NASTRAN , MARC , or NONSAP . No insurmountable difficulty

is antici pated in using the displacement formulation with one

of these programs .

16
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Appendix A. Governing Equations

Equations are derived here in a form independent of the

number of spatial dimensions .

Newton ’s Second Law : pÔ = -Vp + f .  (Al)

In the above :

p = fluid density ;

6 = particle displacement vector ;

V gradient operator;

p fluid absolute pressure;

f body force per unit volume .

Note tha t  the u n d e r l i n e  is used to denote a vector quantity.

Differentiation with respect to time is denoted by a superior

dot and the convective contributions to the material derivative

are neglected.

Bilinear Constitutive Law : p = -c pe , e < 0;
2 2 ( A 2 )

p -
~~~ c pe , e>0.

Here:
c acoustic velocity in fluid;

e = dilatation.

Note that c2p is the bulk modulus of the fluid. For the bilinear

fluid model B is chosen as positive and small compared with unity .

The limiting condition of zero pressure in the cavitated reg ion

• corresponds to B 0.

• Geometric identity: e = ~~ , (A3)

where the dot denotes the scalar product.

• 17
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It is possible to choose a single dependent variable

such as p and , through suitably chosen manipulations , demon-

strate that p obeys the wave equation in the uncavitated fluid

and a modified form with gc in place of c in the cavitated

region(s). Thus

2 ’p = c V p ,  p > O ;

y 2 ~ (A4)
p = 3 c  V p ,  p < 0.

A more enlig htening approach which focuses attention on

the sequential steps in time integration of the governing

equations uses auxiliary dependent variables and a set of

three equations. For this purpose we first define some addi-

tional dependent variables and then summari ze four separate

f o r m u l a t i ons .

Defini tions. In our applications the body force f appearing

in (Al) may be expressed as

(~~5)

where is the hydros tatic component of fluid pressure.

I t  i s use fu l to in t roduce  two d e n s i t y  weig ht ed v a r i a b l e s :

(A 6)

s -pe. (A7)

We also introduce two similarly wei ghted potential

functions:

a t~, (AS )

= r .  (A 9)

V Henceforth we omit explicit reference to the density factor and

f refer to r as displacement , s as condensation (Lamb ’s usage,



see Ref. 10) , ~ as velocity potential and p as displacement

potential.

Using s, the bilinear constitutive law is rewritten as

p = c2s , s > 0;
2 2 

— (AlO)
p = B c s , s < 0 .

In the computational stage a further simplification is effected

by choosing length and time units such that c = 1.

r Formulation. Using (AS) and (A6), (Al) becomes

= 

~~~~ 
(All)

Using also (A7), (A3) become s

= (A12)

When applicable initial and boundary conditions are prescribed ,

• the r formulation allows the following calculation sequence:

1. Using present values of p and 
~h’ 

calculate r from (All).

2. Using a suitable time integration al gorithm and the

current values of r and ?, find new values of r and i after

one time step.

3. Use (Al2) to find new values of s.

4. Find corresponding new values of p from (MO).

5. Return to Step 1 with new values of p and repeat the

sequence as many times as needed.

p Formulation. Determining the divergence of both sides of

(All), then calculating the second time derivative of each side

of (A12) and substituting in the preceding result gives
.

~ V~~~~p~). (Al3)
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It appears as if a sequential use of (Al3) and (AlO) in a

fashion paralleling that described above for the r formulation

would allow tracking the time history of p. The process is

workable in the absence of cavitation and has been success-

fully applied to a variety of problems (e.g. , see Refs. 7-9)

In such applications the variable s is superfluous and the

first of (A4) suffices. Reasons for the failure of this for-

mulation in a cavitated region are discussed in Art. 2.5.

~~ Formulation. Using (A8) and (All) we may deduce the result

- p . (Al4)

Fur ther , using (A8) and (A12), we may f i n d

= ~~~~ (A 15)

These two equations , followed by (AiD), may be employed sequen-

tially and repetitively to construct a time marching solution .

Al thoug h ~~~, like p, satisfies the wave equation (A4), such a

reduc tion of the equations still requires calculation of s

by in tegrating (A15) to distinguish cavitated regions .

.
~~ Formula tion. Using (A8) and (A9) we may transform (A14) into

= 

~h~~~~~’ 
(Al6)

and transform (AlS) into

s a -7 ’t. (Al7)

These two equation~ , followed by C A b ) ,  also may be used

sequentially and repetitively to find the time history of p.

20
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Appendix B. Initial and Boundary Conditions

Initial Values of ~ and.~~~ Considered here are the initial

condi tions for an uncavitated reg ion wi th hydrostatic pressure

and a dynamic pressure p resulting from a wave travelling

in the negative x direction. Thus , at time t:

p(x , t )  = I’h(~~ 
+ Pin C~ 1 t~~ 

(31)

Our immediate concern is with conditions at t = 0 . Now

= p a u / ~~x = -p(x ,O ) / c 2 . (32)

I n t e g r a t i n g  twice  g ives  the r e s u l t

I x ç Ä
‘~(x,O) = Qxu(0 ,O) - —kr p (;,O ) d ~ dX , (B3)

c
_ 

j 0 J 0

where the choice -~ (O ,O) = 0 is arbitrary . For evaluation of

~(x,0) we begin with

= 
~~~~~~~ (34)

The particle velocity is induced by the incoming wave and is

given by

= -p~~ (x,t)/c. (85)

Substituting (B5) into (B4) and integrating :
cx

~.i(x ,0) = p cu(O , 0) - 

~~~~~~~~~~~ (B6)

0

The choice of ~p (O ,O) pcu (O ,0) is useful in connection with

the radiation boundary condition considered in the next article.
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The ini tial conditions given by (33) and (B6) are based

on an incoming pressure  wave in uncavi tat ed f l u id . The mod i-

ticationS required to deduce initial conditions for the water-

hammer problem are obvious and are not detailed here.

Radia tion Boundary Condition. Representation of a semi-infinite

reg ion by the finite element method requires some strategem for

t runca t ing  the d i s c r e t i z e d  r e g i o n .  The device employed here is

an ex tension of the radiation boundary condition orig i n a l l y

introduced in Ref. 7 and successfully employed in Refs . S and 9.

The rela tions used are based on the d’Alembert solution to the

wave equation. Thus , for  an incom ing wav e :

= f(x#ct). (B7)

Similarly , for an outg oing wave :

~~~~(x ,t) = g (x-ct~~. (B8)

For our p rob lems  we may w ri te

+ 
~~~~~~~~~~ 

(39)

where ‘
~h 

is contributed by the hydrostatic pressure. If we

choose to te rmina te the re g ion at x = X
r 

(the radiation

boundary) , we r equ i r e  
~~x

(x r v t) for our boundary condition.

• Using (B7), (B8), and (B9) i t is r ead i ly  es tab l i shed  tha t

+ 

~~in ,x 
- ~i / C .  (B i D)

By ra ther ob v ious ex tens ions  of the man ipu la t ions le ad ing to

(33), the needed values of 
~h ,x and ~~~~~~~~~~~ 

may be found . The

va lue o f •
1~i is g e n e r a t e d  in the s o l u t i o n  p r o c e s s .
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Appendix C. Time Integration and Art ificial Damping

Time In tegration Algorithm. Prior experience with transient

• wave propagation studies by the finite element method (e.g.

• see Ref . 11) established the desirability of using a time

in tegration algorithm which effectively introduces damp ing that

increases wi th modal frequency. Also desirable was a method

explici tly desi gned for second-order equations. Two methods

known to meet these requirements are the Houboit method (Ref. 12)

and the Wi l son  0 me thod (Ref . 13) . Bo th of these al gorithms

can b e uncondi t i ona l l y stable . The Houbol t me thod in troduces

grea ter spurious damping than Wilson ’ s (Ref. 14). This advan-

tage is offset by the fact that the Houbolt method approximates

the second time derivative by fitting a cubic polynomial to

four equally spaced ordinates. Because of the discontinuities

inheren t in the cavitation problem the Wilson method , wh ich

utilizes only two adjacent ordinates ior each time step , was

chosen .

The nonlinear ity of the governing equations in the neig h-

borhood of a cav ity boundary neces sitates a nonstandard appli-

cation of the Wilson method. Using 0 = 1.4 the method assumes

that ~
p is a linear function of time from the current instant

for a duration 1. 4h , where h is the time step . For this appli-

cation , an in itial estimate of the forward value of ‘
~~ was bas ed

on linear ex trapolation. The estimate was improved by iteration

before proceeding to the following time step . An effect of

using this strategem was to introduce a limit on the maximum

usable time step (i.e., to s a c r i f i c e  uncondi t ional  s tab i l i ty) .
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Artificial Damping . Initial solutions using the Wilson method

showed both temporal and spatial oscillations of pressure fol-

lowing passage of the shock front in the water-hammer problem .

Since no such behavior is shown by the exact solution , i t is

c lear ly  a numerical  ar t i fac t . To suppress the unwanted oscil-

la t ion , damp ing was introduced into the governing equations.

The mechanism chosen was to modify (Al6) to read

= 

~~~~~~~~~~~~ 
(C l )

The coefficient n appearing in (Cl) was chosen by cut-and-try .

The needed value of ~ is calcula ted from (Al 7) by d i f f e r en t ia t-

ing with respect to time.

________  -- 
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