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EFFECTS OF CAVITATION ON UNDERWATER
SHOCK LOADINGS - Part I

Abstract

Reported here are analytic formulations, together with
one-dimensional results, in an investigation of the title
subject. It is shown that either displacement or a displacement
potential may be used as the basic dependent variable for a
finite element analysis. Artificial damping is found to be
needed to suppress spurious oscillations (a numerical phenom-
enon) near cavity boundaries. Adequacy of the method is demon-
strated by comparison with published results of Bleich and
Sandler. Some results are.given for effects of cavitation on

the performance of resilient attenuators.




EFFECTS OF CAVITATION ON UNDERWATER
SHOCK LOADINGS - Part I

1. Introduction

1.1 Earlier Work. Motivation for the present investigation origin-

ated with the '"shock shield" proposed by Geers in Ref. 1. The
shield is a gas-filled cushion (GFC) to be fitted to the exterior
of a submarine hull. If the cushion has sufficient thickness

it can greatly reduce the magnitude of underwater shock loads
transmitted to the hull. Related concepts involving the applica-
tion of resilient elastic layers (REL) are treated by Geers in

Ref. 2.

1.2 Cavitation Effects. The two-dimensional analyses of Refs. 1

and 2 neglect possible effects of cavitaticn. It is well-known
(see Refs. 3 and 4), however, that a highly compliant submerged
object will produce a negative pressure scattered wave in response
to an incident shock wave. If the shock pressure is much greater
than the hydrostatic pressure, cavitation will be induced in the
fluid. Such cavitation may significantly increase the shock load-
ing on the submerged body. It is thus evident that an adequate
investigation of the effectiveness of resilient attenuators

requires evaluation of effects of cavitation on performance.

1.3 Plan for Investigation. The present investigation is

divided into two phases. The first phase is the subject of this
report. It involves consideration of representative one-
dimensional problems for the purpose of determining the relative

merits of alternate choices for: dependent variables, time




integration algorithms, and spatial and temporal discretization.
The one-dimensional context allows rapid and inexpensive compu-
tations and allows comparison of results with those reported by
others. An account of this phase is given in the remaining
sections of this report.

The'second phase of the investigation consists of extensions
to problems in three dimensions. Reasonable limitations on com-
puter core capacity and processing time require that the problems

be axisymmetric and, thus, mathematically two-dimensional.

1.4 Fluid Model. It is known that fluids do have some capacity

for sustaining negative pressure (tension). Some data are given
in Ref. 5. The influence of dissolved gas on the development

of cavitation is considered in Ref. 6. For the purpose of the
present investigation it is advantageous, and presumably con-
servative, to assume that the transition from the normal to the
cavitated state takes place without delay when the absolute
pressure reaches zero.

In the initial stages of this investigation the fluid was
treated as bilinear with a greatly reduced bulk modulus in the
negative pressure region. Subsequent developments disclosed
that the expected advantages of the bilinear model were not
achieved and the bulk modulus was henceforth assumed to be zero

in the cavitated region.

-




2. Choice of Dependent Variable

2.1 Failure of the Pressure Formulation. At the outset, this

investigator expected that a formulation of the governing
equations using fluid pressure p as the basic dependent variable
would be advantageous. This expectation was based on previous
successful finite element applications to propagation problems
(e.g., see Refs. 7-9). Prior applications did not involve cavi-
tation, but the bilinear fluid model was expected to handle
successfully cavitation effects.

At an early stage of the investigation, duplication of the
results of the example problem of Ref. 4 was attempted. These
trials gave solutions which correctly tracked the growth of the
cavitated region, but failed to show its subsequent contraction
and collapse. Efforts to discover.the reason for the failure of
the pressure formulation led to a simple test problem which
determines whether a proposed formulation can correctly track
the contraction of a cavitated region. The problem is defined

in the following section.

2.2 '""Water-Hammer' Problem. The rapid pressure rise which

accompanies the sudden interruption of water flow in a closed
conduit is known as water-hammer. We here consider a flow in a
zero pressure (or a small negative pressure, if the bilinear
fluid model is used) cavitated region with positive dilatation

ey Thus we have, for a semi-infinite region x > 0, the initial

values:
p(x,0) = 0, (pressure)

e(x,0) = eg > 0, (dilatation)
u(x,0) = -v,<0. (velocity)




The boundary condition at x = 0 is ﬁ(O,t) = 0. The exact
solution to this problem is especially simple. A shock front
propagates with constant speed ac, beginning at the closed end,
and the fluid behind the front is at rest with uniform pressure

Py = apcv,. Meanings of the symbols introduced are:

o) fluid density,

c acoustic velocity.

Factor a is given by

o]
"

[1 + (ceo/z\ro)zj"i - (ce /2v,).

In the region ahead of the shock front (x > act) the variables

P, u, and e maintain their initial values.

2.3 Governing Equations. Details concerning the governing

equations are given in Appendix A. Equations are stated in

forms suitable for any number (i.e., one, two, or three) of
spatial dimensions. Four separate formulations are developed
with the principal dependent variable being particle displacement,
fluid pressure, velocity potential, and displacement potential

for the respective cases. The capability of each to deal with
the one-dimensional water-hammer problem is discussed separately

below.

2.4 Displacement Formulation. In this case it is convenient to

replace the displacement vector § by r = pd and, instead of the
dilatation e, a density - weighted condensation s = -pe is intro-
duced. The working equations (Eqs. All, Al12, and Al10) consist

of an equation expressing T in terms of the gradient of p, one




giving s as the negative of the divergence of r, and the pair of
algebraic relations for calculating p from s (the bilinear con-
stitutive law). It is readily seen that the initial conditions

of the water-hammer problem allow determination of the initial

values of r and r. The first may be deduced through spatial
integration of the constant initial dilatatﬂnleo and ‘the second
is known from the given initial velocity V- Given these
required initial values and the boundary condition at x = 0,
the working equations suffice to solve the problem.

The displacement vector is continuous, but both velocity
and pressure are discontinuous at the shock front. The pressure
discontinuity is not representable by the shape functions of the
finite element method. Accordingly there must be a finite
length interval over which both the pressure rise and particle
deceleration take place. The necessity for this compromise must
be considered a defect (but not a disqualifying one) of the dis-
placement formulation. A further disadvantage, not shared by
any of the other formulations is that the principal dependent
variable is a vector, not a scalar. In the axisymmetric appli-
cations planned this will double the order and bandwidth of the
stiffness matrix, resulting in a great increase in requirements

for computer storage and processing time.

2.5 Pressure Formulation. In Appendix A the pressure formulation

is stated in terms of a second order equation (A 13) expressing
5 as the Laplacian of the dynamic component of pressure, together
with the bilinear constitutive relation (A 10). The solution

technique involves stepwise time integration for s, alternating




with use of the constitutive relation to find new values of p.
In view of the role played by s, it is slightly misleading to
call this the pressure formulation. Indeed, in the absence of
cavitation it is advantageous to use the constitutive relation
to eliminate s in favor of p alone. 1In cavitated regions, how-
ever, retaining s makes the strategem of a nonzero bulk modulus
unnecessary. Despite this advantage, both versions fail.

The reason this technique fails when applied to the water-
hammer problem is readily apparent. The variable s (and also p)
has a step discontinuity at the shock front. (Correspondingly,
the second derivative s has a dipole singularity.) We know
that the height of the step depends on the initial (negative)
value of s and on the fluid velocity. The velocity, however,
is neither explicitly nor implicitly represented in the equations.
There seems to be no further reason to consider the pressure
formulation for cavitation problems.

The bilinear fluid model with a nonvanishing bulk modulus
in the tension region was initially introduced with the expec-
tation that the pressure formulation would work. Since the
sole reason for including this complication has vanished, we
shall henceforth exclude negative pressures and correspondingly

choose 8 = 0 in (A2), (A4), and (Al1l0).

2.6 Velocity Potential Formulation. Using ¢ to represent the

velocity potential, the governing equations express $ as the
negative of the dynamic pressure (Al4), s as the negative of the

Laplacian of ¢ (Al5), and p in terms of s (Al0). In this




instance the velocity potential is continuous, but its first
derivatives are not. It is possible to obtain a moderately

satisfactory solution from the discretized equations.

2.7 Displacement Potential Formulation. Using % to represent

the displacement potential, the governing equations express {

as the negative of the dynamic pressure (Al6), s as the negative
of the Laplacian of ¢ (Al7), and p in terms of s (Al0). All of
the needed variables appear, explicitly or implicitly, in this
formulation. Moreover, ¥ and its first derivatives are contin-
uous. The step discontinuities in p, s, and u are manifested

as discontinuities in the second derivatives of V.

2.8 Formulation Selection. Among the formulations considered,

the pressure-based one is discarded as unworkable and the velo-
city potential is rejected as inferior to the displacement poten-
tial on the basis of continuity. In the remainder of this report,
discussion of application details will be confined to the ¥
formulation because it is novel. The displacement formulation
was developed in parallel and also tested on the Bleich-Sandler

example (Ref. 4).

2.9 Discretized Equations and Solution Process. The process of

forming discretized finite element equations from the correspond-
ing partial differential equation is well known (e.g., see Ref. 7)
and will not be repeated here. We note that, based on prior

experience with wave propagation problems, linear shape functions
were chosen. It was found that a lumped '""mass' matrix was easier

to use and gave better performance than its consistent counterpart.

O
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Details concerning the formulation of initial conditions
and the radiation boundary condition are given in Appendix B.
The considerations used for selecting a time integration algor-
ithm and the means for introducing needed artificial damping

are discussed in Appendix C.

3. The Bleich-Sandler Example

3.1 Statement of the Problem. In Ref. 4 Bleich and Sandler,

using a bilinear fluid model, study cavitation phenomena during
one-dimensional wave propagation. They use the method of
characteristics and introduce additional relations to connect
state variables on opposite sides of a shock front.

The numerical example they give concerns 'the response of a
horizontal layer of mass on the surface of a half-space of fluid,
Fig. 1. A plane pressure wave with a sudden rise and an expon-

ential decay moves toward the surface, reaching the mass at the

Atmospheric
Surface mass W) pressuyre
8
— o I L}
| \ /
\J | iy
\tx Pressure | wave 7 TTH
/ b
/ |
-

Fluid !
half-space . 1 PP
x>0

Pressure History

Figure 1. Particulars of Bleich-Sandler example (from Ref. 4).

time t = 0. The system is subject to gravity and atmospheric
pressure, all particles being at rest prior to arrival of the

shock. The analysis is based on the degenerate model with 8 = 0."
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For calculation and presentation of results Bleich and Sandler
use the time constant of pressure wave decay (= 1 ms) as the
time unit. The acoustic velocity c is given the convenient
value unity by choosing unit length to be the distance traveled

by the pressure wave in unit time (= 56 in.).

3.2 Comparisons with Bleich-Sandler Results. Bleich and

Sandler present two figures summarizing their solution. First
of these traces the time history of the cavitated region in the
X - t plane. Their figure is reproduced in Figs. 2 and 3 below
with superposed points obtained by present analyses. For the
finite element analyses the discretized region extends from

X = 0 ta a radiation boundary at x = 4. Results shown in Fig.

{, non-dimensional time

b
\\

~ e
" ~
Characternistic %\ " el
< W _-

10 in uncavitated fluid
(due to closure)

Interface with
St discontinuity o Interface with

aiscontinuity

Cavitated Region

Case 7
/

Case 7

; non-gimensional depth, x
R A
04 [oX:} 12 1.6 20 24

Figure 2. Bleich-Sandler example: time-history of the
cavitated region. Discrete points found by
finite element method using the displacement
formulation.
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were obtained from the displacement formulation using a node
spacing (element length) 4x = .04 and a time step h = .01. In
the absence of damping it was found that moving 'islands" of
positive pressure appeared within the cavitated region. This
behavior is henceforth called "frothing." It was found that
damping with n = .16 was sufficient to sﬁpress frothing and
produce a smooth variation of the condensation s within the
cavitated region.

In Fig. 3 the superposed points were obtained using the

displacement potential formulation. For these results: Ax = .01

“t, non-dimensional time

12t
4\\\ —

i \ a—
1k ~ —
i Charactenstic \<(.,\ =
N

compressive shocks
0OF in uyncavitatead fluid
{ que 1'0 closure )

!

o

sr
! Interface with
Sk aiscontinuity Interface with

aiscontinuity

Cavitated Region
Al

non-gimensional depth, x
L i

-

04 o8 Lz« 16 20 24

Figure 3. Bleich-Sandler example: time-history of the cavitated
region. Discrete points found by finite element
method using the displacement potential formulation.
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and h = .0025. To suppress frothing a value n = .0025 was
found to be sufficient.

A second Bleich-Sandler figure shows the time history of
the velocity of the surface mass layer. This is reproduced as
Figs. 4 and 5. Points obtained from present analysis using the

displacement formulation are superposed on Fig. 4 and points

13¢

+ 's- arnival of secondary shock at the surface

+ tw, closure of cavited region

with cavitation

without
cavitation

+ t. opening of cavitated region

i 1000 Uy

-

1
-02 =01 (o] o1 02 03 Q4 oS

Figure 4. Bleich-Sandler example: nondimensional upward velocity

of surface mass. Discrete points found by finite
element method using the displacement formulation.

from the displacement potential formulation on Fig. 5. The

13
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Tty arnval of secondary snock at the surface

t

T twe closure of caviteg reqion

with cavitation

without
cavitation

41y, Jpening of cavitatea eqion

1000 Uy

i

-02 -0t 0 Q1 02 03 [oX% 05

Figure 5. Bleich-Sandler example: nondimensional upward
J velocity of surface mass. Discrete points found
by finite element method using the displacement
‘ potential formulation.

parameters used were those given for Figs. 2 and 3, respectively.

It is believed that the agreement demonstrated in Figs. 2-5
substantiates the adequacy of displacement and displacement

potential formulations for one-dimensional analyses.
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4. Effect of Cavitation on Resilient Attenuator Performance

We consider here the effect of cavitation on the perform-
ance of two selected attenuators. One is a GFC with an initial
thickness of 10 in. under hydrostatic pressure. The second is
an REL with modulus C1 = 1000 psi. and an initial ;hickness
Lo = 10 in. when loaded only by atmospheric pressure*. The
shock loading consists of a pressure step of amount P, followed
by exponential decay with time constant 25 ms. The hydrostatic
pressure is Pp- Results are given as the quotient of the maxi-

mum dynamic pressure increment Ap by the peak shock pres-

max
sure p.

If cavitation effects are ignored the response may be found
by integrating numerically a first order ordinary differential
equation. Details are omitted here.

The response considering cavitation has been determined

using finite element modelling based on the displacement poten-

tial formulation. Results are summarized in Table 1.

Table 1. Effect of Cavitation on Attenuator Response

r

; ‘ Values of Apmax/ps
|

Ph Ps GFC ; REL

;i | ; x L3 i
psia |, psia | N.C. ¥.Cx 1 NG, L
30 1000 | 0.21 | 0.69 ' ¢.71 0.76
280 750 0.44 0.45 i 0.82 | 0.82

*N.C. = no cavitation **W.C. = with cavitation

—
It is postulated that the relation between gage pressure

pg and thickness L is pg = Cl(Lo/L-l).

15




Results in Table 1 show that cavitation has little effect
on the performance of the REL considered at either hydrostatic
pressure. This is also true for the GFC at Py * 280 psi., but
there is severe performance degradation at Py - 30 psia. Note,
however, that performance remains better than that of the REL.
If the hydrostatic pressure is increased significantly above
280 psia., maintaining the relation PR, * Pg = const., cavitation

will not occur.

S. Conclusions

Both the displacement formulation and the displacement
potential formulation have been shown to produce acceptable
results when applied to the Bleich-Sandler example. It is
anticipated that either formulation will provide a workable
basis for solving three-dimensional axisymmetric problems.

The scalar displacement potential will lead to a much smaller
computer storage requirement and processing time, but it may
not be easy to fit it to the framework of an existing program
such as NASTRAN, MARC, or NONSAP. No insurmountable difficulty
is anticipated in using the displacement formulation with one

of these programs.

16




Appendix A. Governing Equations

Equations are derived here in a form independent of the
number of spatial dimensions.
Newton's Second Law: p§ = -Vp + f. (A1)
In the above:

p = fluid density;

8 = particle displacement vector;
V = gradient operator;

P = fluid absolute pressure;

f = body force per unit volume.

Note that the underline is used to denote a vector quantity.
Differentiation with respect to time is denoted by a superior
dot and the convective contributions to the material derivative
are neglected.

Bilinear Constitutive Law: p = —czpe, e 2 0;

p = -Bzczpe, e >0.

(A2)
Here:

¢ = acoustic velocity in fluid;

e = dilatation.

Note that c2

p is the bulk modulus of the fluid. For the bilinear
fluid model B is chosen as positive and small compared with unity.
The limiting condition of zero pressure in the cavitated region
corresponds to 8 = 0.

Geometric identity: e = 97-§ , (A3)

where the dot denotes the scalar product.

17
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It is possible to choose a single dependent variable
such as p and, through suitably chosen manipulations, demon-
strate that p obeys the wave equation in the uncavitated fluid
and a modified form with 8c in place of ¢ in the cavitated
region(s). Thus

- 2.2
P sV, B 28

BZCZVZp, p ¢ B,

(A4)

5

A more enlightening approach which focuses attention on
the sequential steps in time integration of the governing
equations uses auxiliary dependent variables and a set of
three equations. For this purpose we first define some addi-
tional dependent variables and then summarize four separate
formulations.

Definitions. In our applications the body force f appearing

in (Al) may be expressed as

f = th . (AS)

where Ph is the hydrostatic component of fluid pressure.

It is useful to introduce two density weighted variables:

r = p§, (A6)
s = -pe. (A7)

We also introduce two similarly weighted potential

functions:
" = 1, (A8)
Y * £, (A9)

Henceforth we omit explicit reference to the density factor and

refer to r as displacement, s as condensation (Lamb's usage,

18




see Ref. 10), ¢ as velocity potential and ¢y as displacement

potential.

Using s, the bilinear constitutive law is rewritten as

p 3 czs, g 2 0

2

2 (Al10)
8 ¢ s, s < 0.

P

In the computational stage a further simplification is effected

by choosing length and time units such that c = 1.

r Formulation. Using (AS) and (A6), (Al) becomes
¥ = Upepyl. (A11)

Using also (A7), (A3) becomes
$ = <P, (A12)

When applicable initial and boundary conditions are prescribed,
the r formulation allows the following calculation sequence:

1. Using present values of p and P> calculate i from (All).

2. Using a suitable time integration algorithm and the
current values of r and r, find new values of r and r after
one time step.

3. Use (Al12) to find new values of s.

4. Find corresponding new values of p from (Al0).

5. Return to Step 1 with new values of p and repeat the

sequence as many times as needed.

p Formulation. Determining the divergence of both sides of

(Al11), then calculating the second time derivative of each side
of (Al2) and substituting in the preceding result gives

3= vieepy). (A13)

19




A

It appears as if a sequential use of (Al3) and (Al0Q) in a
fashion paralleling that described above for the r formulation
would allow tracking the time history of p. The process is
workable in the absence of cavitation and has been success-
fully applied to a variety of problems (e.g., see Refs. 7-9).
In such applications the variable s 1is superfluous and the
first of (A4) suffices. Reasons for the failure of this for-

mulation in a cavitated region are discussed in Art. 2.5.

$ Formulation. Using (A8) and (All) we may deduce the result

¢ = Pp -~ P (A14)

b. (A15)

These two equations, followed by (A10), may be employed sequen-
tially and repetitively to construct a time marching solution.
Although 4, like p, satisfies the wave equation (A4), such a
reduction of the equations still requires calculation of s

by integrating (A15) to distinguish cavitated regions.

Y Formulation. Using (A8) and (A9) we may transform (Al4) into

b = pp - P (A16)
and transform (A1l5) into
6 3
s = -7y, (A17)

These two equations, followed by (A10), also may be used

sequentially and repetitively to find the time history of p.

20




Appendix B. Initial and Boundary Conditions

Initial Values of v andug. Considered here are the initial

conditions for an uncavitated region with hydrostatic pressure
Py, and a dynamic pressure Pin resulting from a wave travelling
in the negative x direction. Thus, at time t:

p(x,t) = Ph(x) i pin(x,t)- (B1)
Our immediate concern is with conditions at t = 0. Now

Vo = 03u/3x = -p(x,0)/c’. (82)

Integrating twice gives the result

X A
(x,0) = oxu(0,0) - - l( | p(z,0)dzdx,  (B3)
¢ 1y J0
where the choice ¥(0,0) = 0 is arbitrary. For evaluation of
&(x,O) we begin with
¥,, = ou. (B4)

X
The particle velocity is induced by the incoming wave and is
given by

ou = & S8 ¥ Aol (BS)

“Pin
Substituting (BS) into (B4) and integrating:

g

b(x,0) = pcu(0,0) - 2 Jp-m(c,o)dc- (86)
0

The choice of ¥»(0,0) = pcu(0,0) is useful in connection with

the radiation boundary condition considered in the next article.

21




The initial conditions given by (B3) and (B6) are based
Oon an incoming pressure wave in uncavitated fluid. The modi-
fications required to deduce initial conditions for the water-

hammer problem are obvious and are not detailed here.

Radiation Boundary Condition. Representation of a semi-infinite

region by the finite element method requires some strategem for
truncating the discretized region. The device employed here is
an extension of the radiation boundary condition originally

introduced in Ref. 7 and successfully employed in Refs. 8 and 9.

The relations used are based on the d'Alembert solution to the

wave equation. Thus, for an incoming wave:
binlx,t) = f(xrct). (B7)

Similarly, for an outgoing wave:

Youp (X,t) = g(x-ct). (B8)

For our problems we may write

¥ = wh + @in o+ wout' (B9)

where Yh is contributed by the hydrostatic pressure. If we
choose to terminate the region at x = X (the radiation
boundary), we require w,x(xr,t) for our boundary condition.
Using (B7), (B8), and (B9) it is readily established that
TR R R (B10)
By rather obvious extensions of the manipulations leading to

(B3), the needed values of ﬂh % and Vin. x May be found. The

value of ) is generated in the solution process.




Appendix C. Time Integration and Artificial Damping

Time Integration Algorithm. Prior experience with transient

wave propagation studies by the finite element method (e.g.,

see Ref. 11) established the desirability of using a time
integration algorithm which effectively introduces damping that
increases with modal frequency. Also desirable was a method
explicitly designed for second-order equations. Two methods
known to meet these requirements are the Houbolt method (Ref. 12)
and the Wilson 8 method (Ref. 13). Both of these algorithms

can be unconditionally stable. The Houbolt method introduces
greater spurious damping than Wilson's (Ref. 14). This advan-
tage is offset by the fact that the Houbolt method approximates

the second time derivative by fitting a cubic polynomial to

four equally spaced ordinates. Because of the discontinuities
; inherent in the cavitation problem the Wilson method, which
utilizes only two adjacent ordinates for each time step, was
chosen.

The nonlinearity of the governing equations in the neigh-

borhood of a cavity boundary necessitates a nonstandard appli-
cation of the Wilson method. Using 8 = 1.4 the method assumes
that ¢ is a linear function of time from the current instant

for a duration 1.4h, where h is the time step. For this appli-
cation, an initial estimate of the forward value of @ was based
on linear extrapolation. The estimate was improved by iteration
before proceeding to the following time step. An effect of
using this strategem was to introduce a limit on the maximum

usable time step (i.e., to sacrifice unconditional stability).




Artificial Damping. Initial solutions using the Wilson method

showed both temporal and spatial oscillations of pressure fol-
lowing passage of the shock front in the water-hammer problem.
Since no such behavior is shown by the exact solution, it is
clearly a numerical artifact. To suppress the unwanted oscil-
lation, damping was introdﬁced into the governing equations.

The mechanism chosen was to modify (Al6) to read
{[’ b= Ph Sel e né- (Cl)
The coefficient n appearing in (Cl) was chosen by cut-and-try.

The needed value of s is calculated from (Al7) by differentiat-

ing with respect to time.
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