e

AD=A059 968

UNCLASSIFIED

STANFORD UNIV CALIF DIGITAL SYSTEMS LAB
DIRECTLY EXECUTED LANGUAGES. (U)
SEP 78 M J FLYNN

ARO-12958.11-EL

........ oDC

F/G6 9/2
DAA629-?6-G-0001

END

DATE
FILMED

12-718

- ‘ s
UnflucsiTied

SECURLIY.CLASSIFICATION OF THIS PAGE (When Date Entered) . . /
(7Y A& [REPORT DOCUMENTATION PAGE _ £ of T

/wmaen 2. 30VY ACCESSION NO

NUMBER

(/72958 11-€L_/ &

A e

)
'

RY & RERIOD COVERED

Fina|‘R%$ort¢
15 Jul 75204 Jul

Directly Executed Languages »

784 |

NU R

7 HOR(8)-- 8. CONTRACT OR GRANT NUMBER(s)

Michaat 4. Fiyon (/€| . DAAG29-76-G-0001 //‘ |
I y i .1r--- —— J

o RE 10. PROGRAM ELEMENT, PROJECT, TASK
9. PERFORMING ORGANIZATION NAME AND ADDRESS ARCA & WORK UNIT NUMBERS

Stanford University

Stanford, California 94305 L
11. CONTROLLING OFFICE NAME AND ADDRESS S 7 »MFOH?M)'
U. S. Army Research Office '/, Sep 78 /
BL QL Box 1223 " A3 —nomBEROF PAGES
Research Triangle Park, .iC 27709 6

ADAQ 59968

14. MONITORING AGENCY NAME & ADDRESS(if different from Controlling Otfice) 1S. SECURITY CLASS. (of thie report)

Unclassified

1Sa. DECL ASSIFICATION/ DOWNGRADING
SCHEDULE

16. DISTRIBUTION STATEMENT (of thie Report) D D C

Approved for putlic release; distribution unlimited.

.

DOC FILE COPY

D 0CT 16 1978
7 DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different from Report) u | ! u ‘ , U 'H

8. SUPPLEMENTARY NOTES
The view, opinions, and/or findings contained in this report are those of the
author(s) and should not be construed as an official Department of the Army
position, policy, or decision, unless so designated by other documentation.

19. KEY WORDS (Continue on reverse side il necessary and identify by block number)

‘1

ABSTRACT (Continue on reverse side I necessary and identify by block number)

The research addressed two important issues in the design of optimal languages fof
direct execution in an interpretive system: binding the operand identifiers in
an executable instruction unit to the arguments of the routine implementing the
operator defined by that instruction; and binding operand identifiers in an execy
table instruction unit to the arguments of the routine implementing the operator
defined by that instruction; and binding operand identifiers to execution variablps.

;:?se issues are central to the performance of a system, both in space and time.
s |

DD 385 1473 eoimiow of '"&Zé“&"yz '.J.'y:c&assified /

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

DIRECTLY EXECUTED LANGUAGES

Final Report

Prepared For

Department of the Army
U.S. Army Research Office

Contract No. DAAG29-76-G-0001

July 15, 1975 - July 14, 1978

by

Michael J. Flynn
Digital Systems Laboratory
Department of Electrtcal Engineering
Stanford University
Stanford, CA 94305

B T A R

erar A AN

[(ACCESSION for

NTIS
ooc
UNANNOUNCED

White Section
Butf Section O
(u]

JUSTIFICATION

A N5 NSRS

ANl s, i

" r e e
ISTRIUTIONAVALASRTY COBES

Dist. AvAlL and,/ur_SPEC

A

Statement of ihe Problem

Representation is a key problem in computer systems. This manifests itself
in many independent ways: the accuracy, the validity, the efficiency in human
productivity, problems of design representation in the creation of new systems,
etc. The research undertaken in this project involves one aspect of the
representation issue; the production of highly efficient program representations
for machine execution. This representation corresponds to a machine language
in that it represents the commands which are interpreted by a machine. However,
unlike conventional machine language approaches the representation is tailored
to particular higher level language environments. The problem then is to find
ways of synthesizing such very efficient language representations. We call

languages thus derived, D{rectly Executed Languages or DELs.

Research Summary

A computer is largely defined by its instruction set. Of course, other issues
such as space, power, algorithms used, may be important in certain applications
but the user basically sees the instruction set of the machine. The instruction
set, thus, is the interface between programs and resources. The program is a
sequence of instructions that accomplish a desired user end. The instructions
are interpreted by a control unit which activates the system's resources (data
paths) to cause proper transformations to occur.

The instruction set is referred to as the architecture of the processor.
It is actually a language whose usefulness is best measured by the space it
requires to represent a program and time required to interpret these representations.

Recent developments in technology allow a great deal more flexibility in control

RS L NN

unit structure while a variety of current research efforts have brought additional
understanding in the nature of the instruction set. The purpose of our research
was to explore these developments, especially the relationship between an
arbitrary higher level language program representation and an "ideal" architecture
for that language.

Specifically our research addressed two important issues in the design of
optimal languages for direct execution in an interpreti&e system: binding the
operand identifiers in an executable instruction unit to the arguments of the
routine implementing the operator defined by that instruction; and binding operand
identifiers in an executable instruction unit to the arguments of the routine
implementing the operator defined by that instruction; and binding operand
identifiers to execution variables. These issues are central to the performance
of a system, both in space and time.

Historically, some form of "machine language" is used as the directly
executable medium for a computing system. These languages traditionally are
constratined to a single "n-address" instruction format; this leads to an
excessive number of "overhead" instructions that do nothing but move values from
one storage resource to another being imbedded in the executable instruction stream.
We have developed techniques to reduce this overhead by increasing the number of
instruction formats available at the directly executed language level [10].

Machine languages are also constricted with respect to the manner in which
operands can be "addressed" within an instruction. Usually, some form of indexed
base-register scheme is available, along with a direct addressing mechanism for a
few, "special" storage cells (i.e., registers, and perhaps the zeroth page of
main store). We developed a different identification mechanism--based on the

Contour Model of Johnston. Using our scheme, only N bits are needed to encode

T

any identifiers in a scope containing less than 2**N distinct identifiers.
Together, these two results lead to directly executed language designs
which are optimal in the sense that: (1) k executable instructions are required
to implement a source statement containing k functional operators; (2) the space
required to represent the executable form of a source statement containing k
distinct funcitonal operators and v digtinct variables approaches F*k + N*v --
Qhere there are less than 2**F distinct functional operafors in the scope of
definition for the source statement, and less than 2**N distinct variables in
this scope; (3) the time needed to execute the representation of a source
statement containing k functional operators, d distinct variables in its domain,
and r distinct variables in its range approaches d + r + k; where time is
measured in memory references.
In order to test the above results a novel directly executed language
(DELtran) [9] tailored specifically to the FORTRAN source language, EMMY
host, and scientific programming was constructed. DELtran is "transformationally
complete" in that:
(1) Code generation is linear with respect to the number of operators
in a FORTRAN program.
(2) Only k DELtran instruction units are needed to represent a FORTRAN
statement containing k functional operators.
(3) The space needed to represent a FORTRAN statement approaches N*v+F*k--
where v is the number of distinct varjables in the statement, and
N and F are the least integers such that there are less than 2**N
distinct variables and 2**F distinct operators in the relevant scope
of definition. .
In addition, DELtran is "transparent" in that there is a 1-1 correspondence

between DELtran operators and control constructs and FORTRAN operators and

control constructs, and "invertible" in that all sensible sequences of DELtran
1nstructioﬁ units ﬁave a direct FORTRAN aha]ogue.

The performance and vital statistics of DELtran on the host EMMY [8] is
interesting, especially when compared to the 370 performance on the same system.
The table below is constructed using a version of the well-known Whetstone
benchmark and'widely accepted and used for FORTRAN machine evaluation. The
EMMY host system referred to in the table is a very small system--the processor
consists of one board with 305 circuit modules and 4096 32 bit words of interpretive
storage. It is clear that the DELtran performance is significantly superior to

the 370 in every measure.

DELtran vs. System 370 Comparison for the Whetstone Benchmark

Whetstone Source -- 80 statements (static)
-- 15,233 statements (dynamic) "
-- 8,624 bits (excluding comments)

System 370 DELtran ratio
FORTRAN-1V opt 2 370/Deltran

Program Size (static) 12,944 bits 2,428 bits 5.3:1
Instruction Executed 101,016 1i.u. 21,843 i.u. 4.6:1
Instruction/Statment 6.6 1.4 4.6:1
Memory References 220,561 ref. 46,939 ref. 4.7:1
EMMY Execution Time 0.70 sec. ~ 0.14 sec. 5:1
(370 emulation approximates 360 Model 50)

Interpreter Size 2,100 words 800 words 2.6:1
(excludes 1/0) ;

TSR WS T

Publications

[1] Hedges, Thomas S., "EMMY/360 Cross Assembler", Digital Systems Laboratory
TN 74, Stanford University, Stanford, CA, December 1975.

[2] wallach, Walter A., "EMMYXL User's Guide", Digital Systems Laboratory
TN 84, Stanford University, Stanford, CA, March 1976.

[3] Polstra, John D., “EMMYPL User's Manual", Digital Systems Laboratory TN 86,
Stanford University, Stanford, CA, April 1976.

[4] Wallach, Walter A., “EMMY/UNIBUS Interface, Preliminary Specification",
Digital Systems Laboratory TN 88, Stanford University, Stanford, CA,
June 1976.

[5] Wallach, Walter A., "Virtual Addressing for the EMMY/360", Digital Systems
Laboratory TN 89, Stanford University, Stanford, CA, June 1976.

[6] Wallach, Walter A., "EMMY/360 Functional Characteristics", Digital Systems
Laboratory TR 114, Stanford University, Stanford, CA, June 1976.

[7] Hoevel, Lee and Wallach, Walter, "Emulation Oriented Sofiware First Development",
Digital Systems Laboratory TN 95, Stanford University, Stanford, CA,
August 1976.

(8] Flynn, M. J., "The Interpretive Interface: Resources & Program Representation
in Computer Organization", Proceedings of the Symposium on Hich Speed
Computers and Algorithm Organization (Academic Press), April 13-15, 1977,
University of I1linois, Champaign, I11., pp. 41-69.

[9] Hoevel, Lee, "DELtran Principles of Operation: A Directly Executed Language
for FORTRAN-II", Digital Systems Laboratory TN 108, Stanford University,
Stanford, CA, March 1977.

[10] Hoevel, L. W. and Flynn, M. J., "The Structure of Directly Executed Languages:
A New Theory of Interpretive System Design", Digital Systems Laboratory
TR 130, Stanford University, Stanford, CA , March 1977.

[11] Flynn, M. J., "Computer Organization and Architecture", Lecture Notes on Advanced
Operating Systems, 1978 (Pub. Springer-Verlag), pp. 17-98.

[12] wallach, Walter A., "EMMY/360: An Emulation of System/360 for the Stanford EMMY",
The 11th Symposium on Microprocessing, Sponsored by the ACM, IEEE Computer
Society, November 19-22, 1978.

Scientific Personnel

Michael J. Flynn
Professor, Electrical Engineering
Stanford University

lLee W. Hoevel
(Received Ph.D. degree in Electrical Engineering
from Johns Hopkins University, June 1978)

Scott Wakefield
(to receive Ph.D. degree in Electrical Engineering June 1979)

Walter A. Wallach
(to receive degree in Electrical Engineering June 1979)

