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Statement of the Problem

Representation Is a key problem in computer systems. This manifests itself

in many independent ways: the accuracy, the validity , the efficiency in human

productivi ty, problems of design representation in the creation of new systems,

etc. The research undertaken in this project invo l ves one aspect of the

representation issue; the production of highly efficient program representations

for machine execution. This representation corresponds to a machine language

In that it represents the comands which are interpreted by a machine. However,

unl ike conventional machine language approaches the representation is tailored

to particular higher level language environments . The problem then is to find

ways of synthesizing such very efficient language representations. We call

languages thus derived, Di rectly Executed Languages or DELs.

Research Sumary

A computer Is largely defined by its Instruction set. Of course, other issues

such as space, power, algorithms used, may be Important In certain appl ications

but the user basically sees the instruction set of the machine. The instruction

set, thus, Is the Interface between programs and resources. The program is a

sequence of instructions that accomplish a desired user end. The instructions

are interpreted by a control unit which activates the system’s resources (data

• paths) to cause proper transformations to occur.

The Instruction set is referred to as the architecture of the processor.

It is actually a language whose usefulness is best measured by the space It

requires to represent a program and time required to interpret these representations.

Recent developments in technology allow a great deal more flexibility in control

4-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ - -



unit structure while a variety of current research efforts have brought additional

understanding in the nature of the instruction set. The purpose of our research

was to explore these developments , especiall y the relationsh ip between an

arbitrary higher level language program representation and an “ideal” architecture

for that language .

Specificall y our research addressed two important issues in the design of

optimal languages for direct execution in an interpreti ve system: binding the

operand identi fiers in an executable instruction unit to the arguments of the

routine implementing the operator defined by that instruction ; and binding operand

Identifiers in an executable instruction unit to the arguments of the routine

Implementi ng the operator defined by that instruction ; and bi nding operand

identifiers to execution variables. These issues are central to the performance

of a system, both in space and time.

Historically, some form of “machine lan guage” is used as the directly

executable medium for a computi ng system. These languages traditionally are

construtined to a single “n-address” Instruction format; this leads to an

excessive number of “overhead” instructions that do nothing but move values from

one storage resource to another being imbedded in the executable instruction stream.

We have developed techniq ues to reduce this overhead by increasing the number of

Instruction formats available at the directly executed language level [10].

Machine languages are also constricted wi th respect to the manner in which

operands can be “addressed” wi thin an instruction . Usually, some form of indexed

base-register scheme is availab le, along with a direct addressing mechanism for a

few, “special” storage cells (i.e., registers, and perhaps the zeroth page of

maIn store). We developed a different identIfication mechanism--based on the

Contour Model of Johnston. Usi ng our scheme, only N bits are needed to encode

_ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _  _ _ _



any identifiers in a scope containing less than 2**N distinct identifiers .

Together, these two resul ts lead to di rectly executed langua ge designs

which are optima l in the sense that: (1) k executable instructions are required

to implement a source statement containing k functional operators; (2) the space

required to represent the executable form of a source statement containing k

distinct funcitonal operators and v distinct variables approaches F*k + N*v --
where there are less than 2**F distinct functional operators in the scope of

definition for the source statement, and less than 2**N distinct variables in

this scope; (3) the time needed to execute the representation of a source

statement containing k functional operators , d distinct variables in its domain ,

and r distinct vari ables in its range approaches d + r + k; where time is

measured in memory references.

In order to test the above resul ts a novel di rectly executed language

(DEltran) [ 9 J tailored specifically to the FORTRAN source language , EMMY

host, and scientific programi ng was constructed. DELtran is “transformationally

complete” in that:

(1) Code generation is linear with respect to the number of operators

in a FORTRAN program.

(2) Only k DEltran instruction units are needed to represent a FORTRAN

statement containing k functional operators.

(3) The space needed to represent a FORTRAN statement approaches N*v+F*k__

where v is the number of distinct variables in the statement, and

N and F are the least integers such that there are less than 2**N

distinct variables and 2**F distinct operators in the relevant scope

of definition .

In addition , DELtran is “transparent” in that there Is a 1-I correspondence

between DEL tran operators and control constructs and FORTRAN operators and

L - _ _ _ _ _  _ _
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control constructs , and “invertible ” in that all sensible sequences of DELtran

instruction units have a direct FORTRAN analogue.

The performance and vi tal statistics of DELtran on the host EMMY ( 8 ] Is

interesting1 especiall y when compared to the 370 performance on the same system.

The table below is constructed using a version of the well-known Whetstone

benchmark and widely accepted and used for FORTRAN machine evaluation . The

EMMY host system referred to in the table is a very small system--the processor

consists of one board wi th 305 circuit modules and 4096 32 bit words of Interpretive

storage. It is clear that the DELtran performance is significantly superior to

the 370 in every measure .

DEltran vs. System 370 Comparison for the Whetstone Benchmark

Whetstone Source -- 80 statements (static)
—— 15,233 statements (dynamic)

- —— 8,624 bits (excluding coments)
System 370 DELtran ratio

FORTRAN-IV opt 2 37O/Deltran

Program Size (static) 12,944 bits 2,428 bits 5.3:1
Instruction Executed 101 ,016 i.u. 21 ,843 i.u. 4.6:1
Instruction/Statment 6.6 1.4 4.6:1
Memory References 220,561 ref. 46,939 ref. 4.7:1
EMMY Execution Time 0.70 sec. 0.14 sec. 5: 1
(370 emulation approxima tes 360 Model 50) -

Interpreter Size 2,100 words 800 words 2.6:1
(excludes I/O)
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