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Statement of ihe Problem

Representation is a key problem in computer systems. This manifests itself
in many independent ways: the accuracy, the validity, the efficiency in human
productivity, problems of design representation in the creation of new systems,
etc. The research undertaken in this project involves one aspect of the
representation issue; the production of highly efficient program representations
for machine execution. This representation corresponds to a machine language
in that it represents the commands which are interpreted by a machine. However,
unlike conventional machine language approaches the representation is tailored
to particular higher level language environments. The problem then is to find
ways of synthesizing such very efficient language representations. We call

languages thus derived, D{rectly Executed Languages or DELs.

Research Summary

A computer is largely defined by its instruction set. Of course, other issues
such as space, power, algorithms used, may be important in certain applications
but the user basically sees the instruction set of the machine. The instruction
set, thus, is the interface between programs and resources. The program is a
sequence of instructions that accomplish a desired user end. The instructions
are interpreted by a control unit which activates the system's resources (data
paths) to cause proper transformations to occur.

The instruction set is referred to as the architecture of the processor.
It is actually a language whose usefulness is best measured by the space it
requires to represent a program and time required to interpret these representations.

Recent developments in technology allow a great deal more flexibility in control
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unit structure while a variety of current research efforts have brought additional
understanding in the nature of the instruction set. The purpose of our research
was to explore these developments, especially the relationship between an
arbitrary higher level language program representation and an "ideal" architecture
for that language.

Specifically our research addressed two important issues in the design of
optimal languages for direct execution in an interpreti&e system: binding the
operand identifiers in an executable instruction unit to the arguments of the
routine implementing the operator defined by that instruction; and binding operand
identifiers in an executable instruction unit to the arguments of the routine
implementing the operator defined by that instruction; and binding operand
identifiers to execution variables. These issues are central to the performance
of a system, both in space and time.

Historically, some form of "machine language" is used as the directly
executable medium for a computing system. These languages traditionally are
constratined to a single "n-address" instruction format; this leads to an
excessive number of "overhead" instructions that do nothing but move values from
one storage resource to another being imbedded in the executable instruction stream.
We have developed techniques to reduce this overhead by increasing the number of
instruction formats available at the directly executed language level [ 10].

Machine languages are also constricted with respect to the manner in which
operands can be "addressed" within an instruction. Usually, some form of indexed
base-register scheme is available, along with a direct addressing mechanism for a
few, "special" storage cells (i.e., registers, and perhaps the zeroth page of
main store). We developed a different identification mechanism--based on the

Contour Model of Johnston. Using our scheme, only N bits are needed to encode
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any identifiers in a scope containing less than 2**N distinct identifiers.
Together, these two results lead to directly executed language designs
which are optimal in the sense that: (1) k executable instructions are required
to implement a source statement containing k functional operators; (2) the space
required to represent the executable form of a source statement containing k
distinct funcitonal operators and v digtinct variables approaches F*k + N*v --
Qhere there are less than 2**F distinct functional operafors in the scope of
definition for the source statement, and less than 2**N distinct variables in
this scope; (3) the time needed to execute the representation of a source
statement containing k functional operators, d distinct variables in its domain,
and r distinct variables in its range approaches d + r + k; where time is
measured in memory references.
In order to test the above results a novel directly executed language
(DELtran) [ 9 ] tailored specifically to the FORTRAN source language, EMMY
host, and scientific programming was constructed. DELtran is "transformationally
complete" in that:
(1) Code generation is linear with respect to the number of operators
in a FORTRAN program.
(2) Only k DELtran instruction units are needed to represent a FORTRAN
statement containing k functional operators.
(3) The space needed to represent a FORTRAN statement approaches N*v+F*k--
where v is the number of distinct varjables in the statement, and
N and F are the least integers such that there are less than 2**N
distinct variables and 2**F distinct operators in the relevant scope
of definition. .
In addition, DELtran is "transparent" in that there is a 1-1 correspondence

between DELtran operators and control constructs and FORTRAN operators and




control constructs, and "invertible" in that all sensible sequences of DELtran
1nstructioﬁ units ﬁave a direct FORTRAN aha]ogue.

The performance and vital statistics of DELtran on the host EMMY [ 8 ] is
interesting, especially when compared to the 370 performance on the same system.
The table below is constructed using a version of the well-known Whetstone
benchmark and'widely accepted and used for FORTRAN machine evaluation. The
EMMY host system referred to in the table is a very small system--the processor
consists of one board with 305 circuit modules and 4096 32 bit words of interpretive
storage. It is clear that the DELtran performance is significantly superior to

the 370 in every measure.

DELtran vs. System 370 Comparison for the Whetstone Benchmark

Whetstone Source -- 80 statements (static)
-- 15,233 statements (dynamic) "
-- 8,624 bits (excluding comments)

System 370 DELtran ratio
FORTRAN-1V opt 2 370/Deltran

Program Size (static) 12,944 bits 2,428 bits 5.3:1
Instruction Executed 101,016 1i.u. 21,843 i.u. 4.6:1
Instruction/Statment 6.6 1.4 4.6:1
Memory References 220,561 ref. 46,939 ref. 4.7:1
EMMY Execution Time 0.70 sec. ~ 0.14 sec. 5:1
(370 emulation approximates 360 Model 50)

Interpreter Size 2,100 words 800 words 2.6:1
(excludes 1/0) ;
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