
-

/
AD A059 968 5TANFORD UNIV CALIF DIGITAL SYSTEMS LAB FIG 9/2

DIRECTLY EXECUTED LANGUAGES. (U)
SEP 78 N 4 FLYNN DAAG2 9— 76—G—0001

UNCLASSIFIED ARO—12958.11—EL NL
P~~~r END
4D4

059968 ___________ ___________ ___________ FILMED

— —

~2s7B

SIC~~~~T M r ~~~~~~ FIC~~~~ON OF THI S PAGE ~~~~~ ~~~~ ~~~~~~~~
/~~~

-

~~~~~~~~~~~~

/9~L~~~~[REPORT DOCUMENTATION PAGE ____ BE ETIN G FORM
BER 2. 3OVT ACCESSION NO I NUMBER

_ _ _ _ _ _ _ _ _ _  

____ I .
T~ re~~ r j  ~~~~~~~ 

. f R~~~~
’
PERlOD COV EREU

— 

Final Xep.rt

~> Direct lY Execu ed Lan~ ua~~~~J. 15 Jul 75Xi 14~~
J8J

7 
~~~~~~~ — . 

-
B. C O N T R A C T OR GRANT NUMBER(.)

Michael J.~4lynn (~~~~~~~~~ DAAG2 9—76—G~OOOl f ~I — .-.
~ ——~~~~

— .— .- —— —--.--————- —-—-—-—

B. PERFORM ING O R G A N I Z A T I O N NAM E AND ADDRESS 10. PROGRAM ELEMENT. PROJECT. TASK

I~,
Stanford Univers i ty
Stanfo rd, Califor nia 91~3O5

II. CONTROL L ING OFFICE NAME AND ADDRESS .
.~~ .t2.~~~~ pG~~T .DM* ’

•~~~ U . S. Army ~esearch O f f i c e /‘ , Sep 78 /
~~~ F. 2. Pc~x 12211 1 ~~~~~~~~~~~~~~~~~ AGE S

Fesearch Triangle Park , .0 2~ 7O9 6
II. M ON ITORING AGENCY N A M E  & A D O R S S S ( l l  dl ff.r.n t Iron, Cont,oltlr.d Off.c.) IS. SECURITY CLASS. (of fill. r.porf)

(/ ~ ) 1 U~~~1assi fled

~
—7/ 0. I ISa OECLA SSIF ICAT IO NIDOW NGRAD ING.______ _—t j SCHEDULE

a— 15. O I ST R I B J T I O N  STATEMENT (of Thu R.poru) ED t) (~C) ~c;rcved for pub l ic  re lease;  dis tr ibut ior.  unlimited. f~~~~ f?flfl
OCT 16 1978

17 D I STRI B U Ti ON S T A T EM ENT (of lb. .b.t,.cl .nt.r.d Sn Block 20. II dlIl.r. nl Iron, R.porf) 
~~~~~~~~~~~~~~ U 1.~,3Y~

’ B
1)

i~ S U P P L EM E N T A R y NOTES

The -:iew, :pinicns , an~ zr fir.dings containe~i in this report are those of the
auth:r(s) and shou1~ r~ct be c~’nrtrue d as an cfficial Department of the Arn~r
position , pclicy , ~r ie’ision , unless so designated by other documentation .

19. K E Y WORDS (Conri n,~. O~~ ~~~~ l ’ *• aid. If n.c...ary ,d Id.r,lIIy br block nu~~b.r)

AB S T R A C T (Continua on r.s’~ ra• aid. ii n.rø..ary id id.nhlfy by block nuaub.,)

The research addressed two important issues in the des ign of optima l languages f
direct execut ion in an interpretive system: binding the ope rand identif iers in
an executable instruction unit to the arguments of the routine implementing the
operator defined by tha t instruction ; and binding operand i dentifiers in an exec
table instruction unit to the arguments of the routine implementing the operator
def ined by that instruction ; and binding operand i dentifiers to execution variab l s.
These iss ues are centra l to the performance of a system , both in space and time .This rennrt

~“ ~f L3g9 ~~~ rp 3. . IL~ uf Lilib s tu ay .
DD ~~~~~~~~

1473 EDIT ION OF I N 0
Ly~~~~

~r c Sk a ss i f ied
.~~ • •—— . S~~Ct IRITY CL*ssIrIcaTL o KoT TH IS PAGE (R7i n D~ ia Eni.,.dI

.

~

. _ _ _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~

,
~
i.-

-

DIRECTLY EXECUTED LANGUAGES

Final Report

Prepared For

Department of the Army
U.S. Army Research Office

Contract No. DAAG29-76-G-000l

July 15, 1975 - July 14, 1978

by

Michael J. Flynn
Digital Systems Laboratory

Department of Electrica l Engineering Duff SEth . 0
Stanford Uni versity ~~ rn~oUNc(O 0
Stanford, CA 94305 JUSTIFICATION

DY
DISTR!BU1~~~YMU3~ l ~II

—, —
~~~~~ - ,aj4~.~~ — • - - - . ‘ .- 3 ,4&.. . - , - - - .~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~.,._-‘.dseas~~~~

A



~~w—— 
~~~~~~~~~~~~~~~~~~~~~~~ ~~

- —-- .—--—---

Statement of the Problem

Representation Is a key problem in computer systems. This manifests itself

in many independent ways: the accuracy, the validity , the efficiency in human

productivi ty, problems of design representation in the creation of new systems,

etc. The research undertaken in this project invo l ves one aspect of the

representation issue; the production of highly efficient program representations

for machine execution. This representation corresponds to a machine language

In that it represents the comands which are interpreted by a machine. However,

unl ike conventional machine language approaches the representation is tailored

to particular higher level language environments . The problem then is to find

ways of synthesizing such very efficient language representations. We call

languages thus derived, Di rectly Executed Languages or DELs.

Research Sumary

A computer Is largely defined by its Instruction set. Of course, other issues

such as space, power, algorithms used, may be Important In certain appl ications

but the user basically sees the instruction set of the machine. The instruction

set, thus, Is the Interface between programs and resources. The program is a

sequence of instructions that accomplish a desired user end. The instructions

are interpreted by a control unit which activates the system’s resources (data

• paths) to cause proper transformations to occur.

The Instruction set is referred to as the architecture of the processor.

It is actually a language whose usefulness is best measured by the space It

requires to represent a program and time required to interpret these representations.

Recent developments in technology allow a great deal more flexibility in control

4-~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ - -

unit structure while a variety of current research efforts have brought additional

understanding in the nature of the instruction set. The purpose of our research

was to explore these developments , especiall y the relationsh ip between an

arbitrary higher level language program representation and an “ideal” architecture

for that language .

Specificall y our research addressed two important issues in the design of

optimal languages for direct execution in an interpreti ve system: binding the

operand identi fiers in an executable instruction unit to the arguments of the

routine implementing the operator defined by that instruction ; and binding operand

Identifiers in an executable instruction unit to the arguments of the routine

Implementi ng the operator defined by that instruction ; and bi nding operand

identifiers to execution variables. These issues are central to the performance

of a system, both in space and time.

Historically, some form of “machine lan guage” is used as the directly

executable medium for a computi ng system. These languages traditionally are

construtined to a single “n-address” Instruction format; this leads to an

excessive number of “overhead” instructions that do nothing but move values from

one storage resource to another being imbedded in the executable instruction stream.

We have developed techniq ues to reduce this overhead by increasing the number of

Instruction formats available at the directly executed language level [10].

Machine languages are also constricted wi th respect to the manner in which

operands can be “addressed” wi thin an instruction . Usually, some form of indexed

base-register scheme is availab le, along with a direct addressing mechanism for a

few, “special” storage cells (i.e., registers, and perhaps the zeroth page of

maIn store). We developed a different identIfication mechanism--based on the

Contour Model of Johnston. Usi ng our scheme, only N bits are needed to encode

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

any identifiers in a scope containing less than 2**N distinct identifiers .

Together, these two resul ts lead to di rectly executed langua ge designs

which are optima l in the sense that: (1) k executable instructions are required

to implement a source statement containing k functional operators; (2) the space

required to represent the executable form of a source statement containing k

distinct funcitonal operators and v distinct variables approaches F*k + N*v --
where there are less than 2**F distinct functional operators in the scope of

definition for the source statement, and less than 2**N distinct variables in

this scope; (3) the time needed to execute the representation of a source

statement containing k functional operators , d distinct variables in its domain ,

and r distinct vari ables in its range approaches d + r + k; where time is

measured in memory references.

In order to test the above resul ts a novel di rectly executed language

(DEltran) [9 J tailored specifically to the FORTRAN source language , EMMY

host, and scientific programi ng was constructed. DELtran is “transformationally

complete” in that:

(1) Code generation is linear with respect to the number of operators

in a FORTRAN program.

(2) Only k DEltran instruction units are needed to represent a FORTRAN

statement containing k functional operators.

(3) The space needed to represent a FORTRAN statement approaches N*v+F*k__

where v is the number of distinct variables in the statement, and

N and F are the least integers such that there are less than 2**N

distinct variables and 2**F distinct operators in the relevant scope

of definition .

In addition , DELtran is “transparent” in that there Is a 1-I correspondence

between DEL tran operators and control constructs and FORTRAN operators and

L - _ _ _ _ _ _ _

r~ ~~~
— -

~~~ 
—.—

control constructs , and “invertible ” in that all sensible sequences of DELtran

instruction units have a direct FORTRAN analogue.

The performance and vi tal statistics of DELtran on the host EMMY ( 8 ] Is

interesting1 especiall y when compared to the 370 performance on the same system.

The table below is constructed using a version of the well-known Whetstone

benchmark and widely accepted and used for FORTRAN machine evaluation . The

EMMY host system referred to in the table is a very small system--the processor

consists of one board wi th 305 circuit modules and 4096 32 bit words of Interpretive

storage. It is clear that the DELtran performance is significantly superior to

the 370 in every measure .

DEltran vs. System 370 Comparison for the Whetstone Benchmark

Whetstone Source -- 80 statements (static)
—— 15,233 statements (dynamic)

- —— 8,624 bits (excluding coments)
System 370 DELtran ratio

FORTRAN-IV opt 2 37O/Deltran

Program Size (static) 12,944 bits 2,428 bits 5.3:1
Instruction Executed 101 ,016 i.u. 21 ,843 i.u. 4.6:1
Instruction/Statment 6.6 1.4 4.6:1
Memory References 220,561 ref. 46,939 ref. 4.7:1
EMMY Execution Time 0.70 sec. 0.14 sec. 5: 1
(370 emulation approxima tes 360 Model 50) -

Interpreter Size 2,100 words 800 words 2.6:1
(excludes I/O)



PublIcati ons

(1) h edges, Thomas S., “EMMY/360 Cross Assembler” , Digital Systems Laboratory
TN 74, Stanford Univers i ty, Stanford, CA , December 1975.

(2) Wallach , Walter A., “EMMYXL User ’s Guide ” , Digital Systems Laboratory
TN 84, Stanford University , Stanford, CA , March 1976.

[3) Poistra , John. D., “EMMYPL User’s Manual” , Digital Systems Laboratory TN 86,
Stanford Univers i ty, Stanford , CA , April 1976.

[4) Wal lach , Wa l ter A., “EMMY/UNIBIJS Interface , Preliminary Specification ” ,
Digita l Systems Laboratory TN 88, Stanford University , Stanford , CA ,
June 1976.

[51 WaI lach , Walter A., “Virtual Addressing for the EMMY/360” , Digital Systems
Laboratory TN 89, Stanford University , Stanford , CA , June 1976.

[6) Wallach , Wal ter A., “EMMY/360 Functional Characteristics ” , Digital Systems
Laboratory TR 114 , Stanford University , Stanford , CA , June 1976.

(7] Hoevel , Lee and Wal lach , Wal ter, “Emulation Oriented Software Firs t Development” ,
Digital Systems Laboratory TN 95, Stanford Un i versity , Stanford , CA ,
August 1976.

(8) Flynn , M. J. , “The Interpreti ve Interface: Resources & Program Representation
in Computer Organization ” , Proceedings of the Symposium on Hiah Speed
Computers and Algori thm Organization (Academic Press), Apri l 13-15 , 1977,
University of Illinois , Champaign , Ill ., pp. 41—69 .

(9) Hoevel , Lee, “DELtran Principles of Operation : A Di rectly Executed Language
for FORTRAN-I l” , Digital Systems Laboratory TN 108, Stanford University ,
Stanford, CA, tlarch 1977.

(10) Hoevel , L. W. and Flynn , M. J., “The Structure of Di rectly Executed Languages:
A New Theory of Interpretive System Design ” , Digital Systems Laboratory
TR 130, Stanford Univers i ty, Stanford, CA , March 1977.

[Il) Flynn, M. J., “Computer Organization and Architecture ” , Lecture Notes on Advanced
Operating~ Systems, 1978 (Pub. Springer- Verlag), pp. 1 7-98.

(12) Wallach , Walter A., “EMMY/36O : An Emulation of System/360 for the Stanford EMMY ” ,
The 11th Symposi um on Microprocessing, Sponsored by the ACM, IEEE Computer
Society, November 19-22, 1978.



Scientifi c Personnel

Michael J. Flynn
Professor , Electrical Engineeri ng
Stanford University

Lee W. Hoevel
(Received Ph.D. degree in Electrical Engineering
from Johns Hopkins Univers ity, June 1978)

Scott Wakefield
(to receive Ph.D. degree in Electrical Engineering June 1979)

Walter A. Wallach
(to receive degree in Electrical Engineering June 1979)

__________ ________________________


