

Report Number 5

ECOLOGICAL RELATIONSHIPS BETWEEN ARBOVIRUSES, ECTOPARASITES AND VERTEBRATES IN ETHIOPIA

By

George E. Watson, John S. Ash, Owen L. Wood

Department of Vertebrate Zoology National Museum of Natural History, Wash BC Smithsonian Institution Washington, D. C. 20560

31 August 1978

Final Technical Report September 1, 1971 through June 30, 1978

This document has been approved for public release; its distribution is unlimited

> Prepared for Microbiology Program Office of Naval Research Arlington, Virginia 22217

78 10 11 020

DC FILE COPY

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered) : UNCLASSIFIED READ INSTRUCTIONS REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM 1. REPORT NUMBER 2. GOVT ACCESSION NO. S. RECIPIENT'S CATALOG NUMBER 5 1 MPID TYPE OF REPORT & PERIOD COVERED 4. TITLE (and Subtilie) Final Report, September 1, 6 ECOLOGICAL RELATIONSHIPS BETWEEN ARBOVIRUSES, 1971 through June 30, 1978 ECTOPARASITES AND VERTEBRATES IN ETHIOPIA PERFORMING ORG. REPORT NUMBER Sap 71 - 30 Jun 7. AUTHOR(s) N00014 - 76 - C - Ø546, George E. /Watson, John S. Ash, Owen L Wood N00014-67-A-0399-0009 9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS National Museum of Natural History NR 136-916 Smithsonian Institution Washington, D.C. 20560 11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 2 August 31, 1978 Microbiology Program S. NUMBER OF PADES Office of Naval Research Arlington, Virginia 22217 156 15. SECURITY CLASS. (of this report) 14. MONITORING AGENCY NAME & ADDRESS(II dillerent from Controlling Office) Unclassified 154. DECLASSIFICATION DOWN GRADING 16. DISTRIBUTION STATEMENT (of this Report) This document has been approved for public release; its distribution is unlimited 17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, If different from Report) 18. SUPPLEMENTARY NOTES 19. KEY WORDS (Continue on reverse side if necessary and identify by block number) Ethiopia, arbovirus, virus isolation, serology, disease, public health, vertebrates, birds, mammals, reptiles, humans, distribution, ecological relationships, ectoparasites, mosquitoes, ticks 29. ASSIRACT (Continue on reverse side if necessary and identity by block number) Five topographically and ecologically diverse study sites that on the basis of human serological testing showed the highest antibody rates in Ethiopia were resurveyed in order to identify the natural vertebrate reservoirs and vectors of arboviruses infecting man. From fall 1969 until spring 1977, when personnel associated with NAMRU-5 were evacuated, over 80,000 animals were captured, 16,163 sera were obtained, 48,995 birds were banded for studies of population turnover and movements, and 4,946 < DD 1 JAN 73 1473 EDITION OF I NOV 65 IS OBSOLETE Unclassified/August 31, 1978 5 N 0102- LF- 014- 0001 SECURITY CLASSIFICATION OF THIS PAGE (When Date Katere

20. vertebrate voucher specimens (3,195 birds, 971 bats, 372 other mammals and 408 reptiles and amphibians) and large numbers of ectoparasites (especially mosquitoes and ticks) were collected.

Of 15,243 serological test results available (13,115 birds, 926 bats, 796 other mammals, 259 reptiles, and 147 amphibians), significant antibody levels were found in 2 species of <u>Agama</u> lizards, 45 species in 22 families of birds, 7 species of fruitbats, 1 insectivorous bat, 2 species of primates, the domestic cat, and 1 rodent; shrews warrant further study. Antibodies to the following viruses were involved: West Nile, Ntaya, Banzi (or Uganda S), Zika, Spondweni and Wesselsbron.

Virus isolation, which had not been completed when the project ended, revealed 30 isolations from wild vertebrates including West Nile, dugbe, Arumowot, Abu Mina and Bunya viruses. Three strains remain unidentified and three others were abandoned in Ethiopia. Germiston virus was isolated from sentinel mice and Congo, Thogoto, dugbe and Jos viruses from ticks.

OC EVIT SACIAL SILITY CODES	UELUSION 10	Balts Sertime PA
USTIFICATION DI DISTRIBUTION / AYAILASILITY COBER Bist. AYAIL 636, M SPECIAL	NANNOUNCE	secti soccient / 13
DT DISTRIBUTIOR / AYAILASILITY COBER Bist. AYAIL 636, M SPECIAL	USTIFICATIO	1
DISTRIBUTIOR ATAILASILITT COBER BIST. AVAIL 636/ M SPECIAL		
Bist. AYAIL est, & SPECIAL	an energy and	
	OISTRIBUT	IOR / AYAILASILITY COSES
	BISTRIBUT	IOR AYAILASILIIT COBEL AVAIL COL M SPECIAL

Table of Contents

ï

.

Introduction	1
Objectives and Benefits	4
Review of Literature on Arboviruses in Africa	6
Tick-borne Arboviruses	7
Mosquito-borne Arboviruses	8
Study Areas	5
Rift Valley 1	5
Awash Valley 1	5
Gambela	6
Didessa 1	6
Bulcha Forest 1	6
Kelam 1	6
Methods of Field and Laboratory Operation	7
Animal Capture	7
Collection of Blood 2	20
HemagglutinationInhibition Testing (HAI) 2	22
ComplementFixation Testing (CF) 2	:3
Neutralization Testing 2	4
Virus Isolation Studies 2	25
Serological Results from Wild Vertebrates 2	8
Amphibians and Reptiles 2	8
Birds 2	8
Mammals 3	0
Retested Birds 3	0
Seasonal Variation in Antibody Titers 3	13
Neutralization Testing of Avian Sera 3	13
mo 10 11 020	

28 JO II

Serological Results from Human Samples	35
HemagglutinationInhibition (HAI)	35
ComplementFixation (CF) Testing	38
Neutralization Testing	40
Virus Isolation	42
Wild Vertebrates	42
Sentinel Mice	42
Mosquitoes	43
Ticks	44
Related Biological Studies	45
Bird Blood Parasites	45
Zoogeography: Faunal Mapping	46
Collections	48
Bird Banding Studies	48
Population Studies	50
Life History and Distribution Studies of Birds	51
Discussion and Conclusions	52
Acknowledgements	55
Appendix I Serological Results from Ethiopia	57
Birds	57
Amphibians	102
Reptiles	102
Mammals (Excluding Bats)	105
Bats	111
Appendix II: Tables	117
1. Days Spent in the Study Areas, November 1969 to April 1970	117
 Summary of Serological Tests by Hemagglutination Inhibition 	118

	3.	Birds Showing Significant Serological Reactions	120
	4.	Comparison of Significant Serological Results Within Bird Species at Different Study Sites	123
	5.	Families and Species of Bats with Significant Antibody Titers	124
	6.	Comparison of Significant Serological Results Within Bat Species at Different Study Sites	125
	7.	Families and Species of Other Mammals with Significant Antibody Titers	126
	8.	Serological Results from Birds Bled More than Once	127
	9.	Seasonal Incidence of Antibody Prevalence in <u>Turdus</u> pelios	129
	10.	Neutralization Test Results of HAI Positive Bird Sera Adult Mice Receiving 50-100 LD ₅₀ of Virus	130
	11.	Neutralization Test Results of HAI Positive Bird Sera in Suckling Mice Receiving 25 LD ₅₀ of Virus	131
	12.	Cross Reaction Pattern by Neutralization Test Among Ethiopian Bird Sera Neutralizing More than One Group B Virus	132
	13.	Human Sera HAI Test Results	134
	14.	Positive HAI Human Sera CF Test Results	136
	15.	Neutralization Test Results of HAI Positive Human Sera in Suckling Mice Receiving 100 LD ₅₀ of Virus	137
	16.	Virus Isolates from Wild Vertebrates and Sentinel Mice in Ethiopia	139
	17.	Seasonal Population Fluctuations of <u>Turdus pelios</u>	140
	18.	Seasonal Weight Changes in <u>Streptopelia</u> decipiens	141
Bibl	Bibliography		
	Tec	hnical Reports	142
	Pub	lications from Project	143
	Ref	erences	147

Figures

1.	Distribution of Black Kite Milvus migrans in Ethiopia	151
2.	Distribution of African Thrush <u>Turdus pelios</u> in Ethiopia	152
3.	Foreign Localities Where Birds Banded in Ethiopia Were Subsequently Recovered or Where Birds Recovered in Ethiopia Were Previously Banded	153

Standard Distribution List

Introduction

Arboviruses are a large and diverse group of almost 400 different agents which are transmitted by the bite of blood sucking arthropods, such as mosquitoes, small biting flies and ticks. Most arboviruses have a natural cycle which involves passage among wild bird and other vertebrate reservoirs by means of vector arthropods, which may also in turn occasionally feed on man and infect him. Of the 400 registered arboviruses, 80 are known to cause human disease, and many of them are transmitted by several vector species. The vertebrate hosts include a broad range of mammals, birds, reptiles and amphibia. Unfortunately, because of the limited geographic distribution of some arboviruses, and the expense of intensive long-term investigations, the natural hosts and infection cycles have not been identified for many of them. Moreover, information derived from studies of one ecosystem may not be applicable to another, where the topography, climate, fauna and flora are quite different. Thus, there is great need for continued work on arbovirus-host-vector relationships, not only to unravel the epidemiological and epizootiological features of the diseases, but also for the practical object of protecting man from infection through control of the important animal-to-man vectors.

Arboviruses pathogenic for man are found in all parts of the world. While some are found only in discrete regions of single continents, others such as West Nile and Congo-Crimean hemorrhagic fever virus, cover areas as broad as Africa, Europe, and Central and Southeast Asia. Migrating birds, and ticks that they carry, have been implicated as responsible for the long distance dissemination of those arboviruses. Particularly vulnerable to infections caused by arboviruses are large contingents of non-indigenous personnel temporarily working on civilian development projects and foreign military personnel conducting operations in the tropical and semitropical rural areas where arthropod vectors may be active much of the year.

For this reason, arbovirus research has involved and should continue to involve long-term field studies aimed at the isolation and identification of agents from arthropod vectors and vertebrate hosts, and from infected humans. One of the goals of such field studies has been to map geographic distribution of the agents, their vectors and their wild hosts.

Ethiopia was chosen as the site for a long-term multidisciplinary arbovirus survey in 1969 because of its past evidence of arbovirus infection, its key location in northeast Africa in a transition zone between the Sahara desert and the sub-Saharan tropics, its ecological and altitudinal diversity and the presence of a well-equipped and well-staffed U. S. Government Naval Medical Research Unit (NAMRU-5). The survey was started under an Office of Naval Research contract with the University of Washington, Seattle and continued after 1971 under another ONR contract with the Smithsonian Institution. Field work and laboratory serology and isolation in Ethiopia lasted until April 1977 when political events forced NAMRU-5 to close and evacuate all personnel, data and specimens within four days. Much vital material was lost or had to be abandoned during the hurried evacuation.

Dr. John S. Ash, an ecologist whose previous experience had been with bird ecology and ectoparasites, headed the field team in Ethiopia, and functioned as head of NAMRU-5's Medical Ecology Division. Other scientists who worked directly on the program were employed by the U. S. Navy and consisted of virologists Drs. Wesley K. Ota, and Owen H. Wood and entomologist Vernon H. Lee.

In May 1977 Dr. Ash was restationed at the Smithsonian Institution in order to prepare for publication the data that he had collected. He in collaboration

with Dr. Owen Wood, who was restationed at the Yale Arbovirus Research Unit (YARU) in New Haven, Connecticut, prepared most of this report.

Serologic surveys in humans revealed an extensive arbovirus distribution in Ethiopia, with antibody rates being particularly high in residents of the western lowlands of Ilubabor Province and the valleys of the Didessa, Blue Nile, Awash, and Omo rivers. Antibody patterns point to the presence in these areas of viruses belonging to the A, B, and Bunyamwera groups, and the high rate of plurally-reactive sera suggested that each group may be represented by several agents. Four group B viruses (yellow fever, West Nile, Zika, and Ntaya) had been recovered from animal and arthropod sources in Ethiopia, but isolation studies were not sufficiently intensive to reveal which members of the other two groups were present. However, it was reasonable to expect, by virtue of their prevalance in neighboring countries, that chikungunya, O'nyongnyong, Sindbis, Ibesha, and Germiston viruses would be endemic in Ethiopia. The presence of such a variety of medically important arboviruses in a limited geographical area afforded an ideal opportunity to extend work on their natural host ranges and to attempt to identify those factors contributing to their maintenance in nature.

The range of illness produced by pathogenic arboviruses is broad, ranging from a mild headache and fever, through a dengue-like illness with severe muscle and joint pain, to death from severe infection of encephalitis or hemorrhagic fever. Dengue and dengue-like viruses can spread very rapidly when mosquito densities are high and outbreaks commonly involve thousands of cases. Encephalitic complications do not reach such high numbers, but demand much more in the way of hospital care. Hemorrhagic disease may not only endanger the patient, but also the medical staff. Blood and body fluids from patients with Crimean hemorrhagic fever have caused hospital outbreaks in which doctors and nurses were infected

and subsequently died.

At times wide scale epidemics of arbovirus disease may occur. For example O'Nyong-nyong was implicated as the causative agent in an estimated 5 million cases of dengue-like disease in East and Central Africa during recent years. In September and October of 1977, an estimated 30,000 cases of an active flu-like illness, caused by Rift Valley fever virus, were reported in the east central delta region of Egypt. Complications included hemorrhage, encephalitis and blindness, but with a mortality rate of less than 1%. This outbreak is of particular relevance to large-scale U. S. operations, in that Rift Valley fever virus is highly infectious and rapidly disabling, and there is presently no federally approved vaccine for it.

4

The recent discovery of highly potent viruses in Africa, such as Lassa and Marburg, emphasize the need for broad surveys in a quest for arboviruses in wild vertebrates in tropical regions.

Objectives and Benefits:

The primary objectives of the arbovirus study in Ethiopia were:

- To identify the natural vertebrate hosts of arboviruses infecting man in Ethiopia, through:
 - a. systematic examination and identification of animal species inhabiting endemic areas;
 - b. determination of the immune status of the material collected.
- To assess the relative importance of naturally infected vertebrates as virus disseminators, through:
 - a. estimation of population densities;
 - b. determination of attractiveness to arthropods of hosts known to be naturally infected;

- estimation of population "turnover" rates and their significance in providing a continual pool of susceptibles;
- d. determination of the level and duration of viremias resulting from peripheral inoculation of virus.

Resulting from la and lb are presented in this report; results from 2a, 2b, and 2c are referred to in this report but await analysis; field research involved in 2d was not completed because of the premature termination of the project. The great bulk of the material collected for virus isolation from wild vertebrates was not yet processed before it had to be abandoned in Ethiopia. Similary the results from nearly 1000 sera were also lost.

Secondary benefits deriving from the work included:

- Information on the geographic distribution of mammals, birds, amphibia and reptiles in Ethiopia.
- Data on animal dispersal and migration, feeding habits, behavior towards traps, and the localization and characterization of microhabitats.
- Information on the influence of climatic conditions, altitude and vegetation on animal distribution.
- 4. Identification of ectoparasites infesting animals.

Much of the data collected under these headings has been published (see bibliography).

Review of Literature on Arboviruses in Africa

To determine what arboviruses are present in an area one can either try to isolate the viruses or look for antibody to them. Virus isolation unequivocally establishes the presence of a virus in a locality, but says little by itself concerning the threat of virus disease or infection. Antibody on the other hand establishes that infection has taken place but the questions of where and when have to be determined by epidemiologic methods. In the case of group B arbovirus (flaviviruses) even antibody may not be completely specific and one may still need virus isolations to pinpoint the infecting agent. Antibody studies or serologic surveys are quick and inexpensive compared with virus isolation provided they can give the answers desired. However, one can of course test for antibody only when one has the antigen in hand and one cannot expect to discover new viruses in this fashion. For this reason in considering the literature of African arboviruses isolation data is mentioned along with serologic survey data just as virus isolations were carried out as part of the serologic study reported below. The following review of the literature on African arboviruses is incomplete, but covers the main points of significance.

Serologic surveys for arbovirus antibody in Africa have been carried out since 1927. Early surveys attempted to delineate the extent of yellow fever. Virus neutralization testing in rhesus monkeys and later in mice was the principle testing method. Although the complement-fixation (CF) test was available, it was felt that the CF antibodies did not persist long enough after infection to make the test useful as a survey test. The development of the hemagglutination-inhibition (HI) test in 1958 greatly extended the numbers of sera that could be surveyed by reducing testing time from 14 days to 2 days. At the same time the HI test offered as good retrospective characteristics as the neutralization test.

In the course of yellow fever investigations, numerous other arboviruses were discovered. A program to assess the public health importance of these "agents was initiated by The Rockfeller Foundation in 1951. Through this program substantial support was given to three African laboratories in Ibadan, Nigeria; Johannesburg, South Africa; and Entebbe, Uganda. The Institute Pasteur supported several laboratories in the French-speaking areas of Africa and in Ethiopia. The principal laboratory of this system has been the Institut Pasteur de Dakar in Senegal. The bulk of the arbovirus data in Africa has come from these laboratories and the literature represents fully as much the areas of effort as the actual distribution of the viruses. Lack of reports of a virus from a given area may indicate only that the area has not been surveyed. Data from sub-Saharan laboratories indicates that many arboviruses are widely distributed in Africa.

Tick-borne Arboviruses

The tick-borne arboviruses have been found through sub-Saharan Africa. Congo virus was shown to occur in Nigeria and Uganda soon after its original isolation in the Congo. It was also shown to cause severe disease before it was shown to be identical with Crimean hemorrhagic fever (Moore, <u>et al</u>, 1975).¹ Now its range extends from Pakistan to Yugoslavia as well. In Africa few serologic surveys for Congo virus have been done because the virus neither hemagglutinates nor is specifically neutralized without special extraction of antigen and sera. A serologic survey has been done in Nigeria (David-West, <u>et al</u>, 1974). Congo virus isolations have been made from ticks in the Central African Empire (Sureau, <u>et al</u>, 1976b), in Ethiopia (Wood, <u>et al</u>, 1978) and in Kenya (Metselaar, <u>et al</u>, 1974). Numerous isolation from ticks and cattle have been made in Nigeria (Williams, <u>et al</u>, 1972.)

¹Bibliographic references may be found in two lists. Citations for papers emanating directly from this project are cited on pages 143-146; senior authors are Ash, Ashford, Fry, Wood. Full references for papers by other authors cited, principally in this Literature Review, pp. 6-14, and in the Methods Section, pages 17-27, are given on pages 147-150.

Another tick-borne virus, Thogoto has also been shown capable of causing severe disease (Moore, <u>et al</u>, 1975) but since the 2 patients from whom the virus has been isolated failed to demonstrate antibody, serologic survey data would be difficult to interpret. Thogoto virus has been isolated in Kenya the Central African Empire (Sureau, <u>et al</u>, 1976a), Ethiopia, (Wood, <u>et al</u>, 1978) and Egypt (Williams, <u>et al</u>, 1972).

Two tick-borne viruses Jos and Dugbe, both named for their original isolation sites in Nigeria, have not yet been shown to cause human disease. Both viruses were isolated in Ethiopia and the Central African Empire. Numerous isolations have been in Nigeria, (William, <u>et al</u>, 1972), Kenya (Solberg and Aldo, 1976). A serologic survey for Dugbe antibody in Nigeria seemed to indicate that antibody is rare in man and therefore the virus does not readily infect man, (Moore, <u>et al</u>, 1975). However, when viruses are isolated directly from ticks, Dugbe virus is by far the most frequent isolate.

Bhanja virus, although named for its original isolation site in India has a range which takes it across sub-Saharan African. It has been isolated in Nigeria, Senegal and the Central African Empire. Although the virus is known to have produced mild to moderate disease after a laboratory infection in the United States, little is known about its desease potential in Africa.

Mosquito-borne Arboviruses

Viruses carried by mosquitoes vary much more widely in their range, due in part widely differing habitat requirements of the mosquito vectors. Yellow fever virus requires for example, vectors of the genus <u>Aedes</u> and the most efficient vectors are in the subgroup <u>Stegomyia</u>. These mosquitoes breed in confined spaces, waterpots, leaf axils, treeholes and rock holes. In Africa the virus is maintained in a forest cycle involving <u>Colobus</u> monkeys and the tree-hole breeding mosquito <u>Aedes africanus</u>. Serie's work on the yellow fever outbreak in Ethiopia

showed that this cycle can be entered by baboons, <u>Papio</u>, which then carry the virus to human habitations, and start transmission cycle with the leaf-axilbreeding mosquito, <u>Aedes simpsoni</u>, which then transmits the virus to man (Serie, <u>et al</u>, 1968).

Mosquito-borne viruses are also limited in their distribution by the distribution of reservoir hosts to maintain the virus and supply blood meals which infect mosquitoes. While some arboviruses may be transmitted transovarially in mosquitoes, to date only in the California group of viruses of North America has transovarial transmission been shown to play a major role in the transmission cycle of a virus. Two important Group B viruses, yellow fever and West Nile have been recently transmitted transovarially in the laboratory at Yale. However, field occurrence of transovarial transmission in Africa has not yet been investigated. Studies reported here, including those done by NAMRU-5, have assumed the necessity of a virus-containing blood meal to infect every generation of mosquitoes. Much field work has been done and still needs to be done to identify these reservoir hosts and link their viremias to epidemics.

Yellow fever and West Nile viruses provide an informative contrast in the way mosquito-borne viruses are limited by reservoir hosts as well as vector distribution. In most reports, yellow fever has been said to be limited to primate reserviors. Workers in the Central African Empire have shown the one species of wild rat, <u>Steatomys</u> could circulate enough virus to infect mosquitoes (Chippaux, <u>et al</u>, 1970). However, this rat is a forest dweller and this rat, alone of all the rodents tested showed viremia. Thus, the endemic area of yellow fever seems limited to forested areas where a monkey and possibly a <u>Steatomys</u> population can maintain the virus. By contrast, West Nile virus can produce viremias in birds, some of which migrate over great distances while they are actively viremic (Watson, <u>et al</u>, 1971). Laboratory evidence for the bird

viremia attainable and the levels necessary to infect mosquitoes comes principally from South Africa. As little as 100 mouse LD_{50} of virus circulating in bird blood will infect 10% of the mosquitoes feeding on the birds (McIntosh, <u>et al</u>, 1969). Other workers have not been as successful in measuring bird viremias, however, virus has been isolated from bird tissues and blood from South Africa to Europe and into Asia Minor (Work, 1971). Widespread human disease has recently occurred in South Africa when abnormal rains increased Culex populations to high levels (McIntosh, et al, 1976).

Viruses which have African reservoir patterns somewhat similar to yellow fever are O'Nyong nyong, chikungunya, dengue. Primate reservoirs appear to be necessary. Chikungunya use the forest Aedes as vectors. O'Nyong nyong can be more widespread and occur in large outbreaks because it is carried by the much more numerous Anopheles mosquitoes. Dengue may be confined to human population; it uses peridomestic Aedes aegypti mosquitoes as does urban yellow fever. These three viruses produce clinically indistinguishable disease and in the absence of virus isolation or serology all might be reported as dengue. World War II reports of dengue in East Africa were based on clinical evidence alone. Dengue virus has been isolated in Nigeria (Carey, et al, 1971). Chikungunya and O'Nyong nyong were originally isolated in Kenya and Tanzania (McCrae, et al, 1971) but have also been found in the Central African Empire (Chippaux, et al, 1968). Chikungunya has been isolated in Nigeria (Moore, et al, 1974) and Senegal (Roche and Robin, 1967). Serologic studies indicate antibody to Chikungunya virus in Ethiopia (Rodhain, <u>et al</u>, 1972, Rodhain, <u>et al</u>, 1975), Rhodesia (Swanepoel and Crotchshak, 1974), Cameroon (Brottes, et al, 1966) and Uganda (Henderson, et al, 1972). Serologic surveys pose certain problems of interpretation with these three viruses. Dengue virus belongs to the flavivirus group and when more than one flavivirus is active in an area, one finds many multiply-reactive sera which cannot establish past infection with any particular flavivirus. Chikungunya and O'Nyong nyong virus are very closely related

alphaviruses and antibody to chikungunya cross reacts with O'Nyong nyong virus. This finding has led to speculation that perhaps O'Nyong nyong virus was a one-time adaptation of Chikungunya virus to an <u>Anopheles</u> vector and the virus has now disappeared. No O'Nyong nyong isolations have been made in the 1970's but there is not yet sufficient evidence to justify claims of permanent demise of the virus.

Other viruses have distribution features in common with yellow fever but do not produce serious human disease. Flaviviruses in this category serve to make the results of serologic surveys difficult to interpret unless testing is done against several different flaviviruses. Zika virus distribution often parellels that of yellow fever although Zika range extends beyond African forests and into Asia. Banzi and Uganda S viruses also occur in forested areas, but are capable of spread by <u>Culex</u> mosquitoes which allows them to circulate in open savannah as well.

Other important mosquito-borne viruses have distribution patterns more similar to West Nile. Vectors which inhabit more open and drier areas are involved and birds and small mammals may serve as reservoir hosts. Flaviviruses in this category include Wesselsbron and Spondweni. They may produce mild febrile disease with myalgia, but no widespread epidemic disease due to either has yet been demonstrated. However, Wesselsbron can be an important veterinary pathogen in that it carries high morbidity and mortality in sheep (Munz, 1973). Wesselsbron epizootics may resemble outbreaks of Rift Valley Fever, a bunyavirus whose epidemic potential has been recently demonstrated in Egypt. Neutralizing antibody to both Wesselsbron and Spondweni has been found in South Africa, Mozambique and Angola (Kokernot, <u>et al</u>, 1965). Wesselsbron antibody also occurs in Nigeria (Boorman and Draper, 1968).

Alpha viruses having similar broad distribution are Sindbis and Semliki forest virus. Sindbis occurs from northern Egypt to Capetown. Originally isolated

in Egypt it is still active along the Nile and while not responsible for widespread disease some CNS seems to have Sindbis as a cause (Abdel Wahab, 1970). Sindbis can produce a dengue-like disease when freshly introduced into an area. In the Orange River Valley of South Africa Sindbis circulated with West Nile in a widespread outbreak of dengue-like disease (McIntosh, <u>et al</u>, 1975). Sindbis can even share bird reservoir and vectors with West Nile. Semliki Forest virus has been the mainstay of viral biochemists for some years due in large part to the widely held opinion that it is a non-pathogen. Human disease has not been reported. However, a virus identical with or very similar to Semliki Forest virus has been serologically implicated in an outbreak of equine encephalitis in Senegal (Robin, <u>et al</u>, 1974).

The largest group of mosquito-borne arboviruses are the bunyaviruses. Several of these have been reported to produce fever with myalgia and rash -a syndrome easily confused with dengue. Rift Valley fever (RVF), has even produced hemorrhagic disease (Van Velden, et al, 1977) in South Africa. Unpublished data from NAMRU-3 indicate RVF to be responsible for a large epidemic of dengue-like disease with occasional fatal hemorrhagic manifestations in the apex of the Delta region near Cairo. Although the vector mosquitoes reported for RVF have been predominantely Aedes, the very high viremias in man might permit mechanical transmission by almost of any biting arthropod. The spread of RVF north of the Sahara may have important veterinary and public health consequences. Its contagiousness poses a threat for its use in biological warfare and its natural occurrence presents a real danger of widespread human and veterinary disease. Another bunyavirus capable of causing widespread febrile illness would seem to be Tataguine virus. Tataguine uses an anopheline vector system and some of the best vectors for malaria, A. gambiae and A. funestus. Tataguine has been isolated from fevers in Nigeria (Fagbami, et al, 1972) and from the Central African Empire. It has isolated from anopheline mosquitoes in Ethiopia by Ota, et al,

1976 who found antibody to Tataguine widespread in the native population. The virus needs to be examined as a possible cause of the febrile illness often ascribed to malaria in holoendemic area.

Other mosquito-borne bunyaviruses responsible for human disease are Bwamba, Pongola, Ilesha, Bangui, and Bunyamwera. Bwamba virus has been isolated and a serologic survey conducted in Nigeria (Tomori, <u>et al</u>, 1974). Pongola virus is very closely related and was isolated in Ethiopia as well as in South Africa (Ota et al, 1976). Both viruses have been isolated in Kenya (Metselaar, et al, 1974). Ilesha virus has been isolated from cases of chills and fever in Nigeria (Pearson, et al, 1973) and the Central African Empire (Chippaux, et al, 1969). Serologic surveys indicate the virus is widespread in Nigeria (Fagbami and Fabiyi, 1975). It has not yet been isolated in East Africa. Bangui virus has been isolated from a febrile itlness with rash, but as yet no distriubtion information is available outside the original site, in the Central African Empire (Digoutte, et al, 1973). Bunyamwera, the type virus of the group, was originally isolated in Uganda and has a distribution covering sub-Saharan African. The virus has caused laboratory infections with encephalitis, but natural disease seems to be fever, rash and myalgia (EAVRI reports 1960-3). All of the above bunyaviruses may contribute to the fevers of unknown origin problem in Africa. Virus isolations and serologic surveys have not been as frequent or as widespread as for the alpha- and flaviviruses.

Bunyaviruses transmitted by sandflies can cause widespread febrile disease if vector populations are high enough. The phlebotomus fever viruses caused significant morbidity among troops in the Mediterranean area during World War II. These viruses were studied extensively at NAMRU-3 and there male phlebotomines were shown to be infected although not blood fed. This was the first hint of transovarial transmission in the bunyavirus (Schmidt, et al, 1971).

Several bunyaviruses are known to be transmitted by <u>Culicoides</u> mosquitoes. They are serologically very closely related but their significance for human disease is as yet unknown. In addition to isolation in Nigeria (Causey, <u>et al</u>, 1972) Simbu group viruses have been isolated in Ethiopia and Kenya. <u>Culicoides</u> are also major vectors for orbiviruses which are important veterinary pathogens, but in Africa no orbivirus outbreaks in man have yet occurred.

Study Areas

Five topographically and ecologically diverse areas were selected in Ethiopia, based on the results of the earlier human serological survey which showed them to have the highest arbovirus antibody rates in the country. Some of these were discrete and confined to a limited area. Others, for various reasons, involved several sites over a wider areas. The areas are briefly described below and Table l¹shows by month and year the number of days each site was visited during the study. One additional site was visited only once during the study.

Rift Valley, Shoa Province

a. Abiata, 07°37°N, 38°39'E, 1590 m, lies on the open, heavily grazed shores of an alkaline lake, with scattered trees, the remnants of a rich <u>Acacia</u> woodland. The area has a large resident population of Arussi Galla people.
b. Koka, 08°27'N, 39°06'E, 1700 m, is an <u>Acacia</u> and <u>Balanites</u> woodland bordering a large reservoir resulting from the damming of the Awash River, and surrounded by open farmland resulting from degraded woodland. The large resident human population is Shoa Galla people.

c. Shalla, O7°30'N, 38°30'E, 1560 m, is a deep alkaline lake, close to Abiata, only visited occasionally to sample breeding water birds on its basalt islands.

Awash Valley, Harar and Wollo Provinces.

a. Bahadu (site 1) 10°06'N, 40°36'E, 600 m, is a hot dry region of marshy grassland with riverine <u>Ficus</u> and shrubs in the open lacustrine flood-plain of the Awash River, bordered by semi-desert scrub on arid and rocky land. A large population of semi-nomadic Afar people seasonally inhabit the area together with their animals.

a' Bahadu (site 2), an area of dense Acacia woodland and permanent swamp about

1 All tables appear in Appendix II, pages 117-141.

10 km north of the above site, was used on a few occasions to sample woodland species.

b. Filwoha, 10°00'N, 40°32'E, an area of dense riverine <u>Tamarix</u> woodland, was worked on one 6-day period.

c. Aseita, 11°33!N , 41°26'E, 1260 m, is an <u>Acacia</u> woodland, with small areas of swamp and open grass and shrubby ground, adjoining cultivated land in a loop of the Awash River. Nearby are large areas of irregular cotton adjoining the desert. The local human population consists of semi-nomadic Afar tribesmen, and large numbers of migrant highland workers.

<u>Gambela</u>, Illubabor Province, 08°15'N, 34°35'E, 515 m, is a faunistically rich hot and humid area, consisting of marshy grassland with sorghum and maize plantations bordering the Baro River, and <u>Combretum/Terminalia</u> woodland on the surrounding higher ground. A small patch of planted riverine forest lies nearby. The local people are Anuaks with a large mixed population of other tribes.

<u>Didessa</u>, Wollega Province, 09°02!N, 36°09'E, 1200 m, is on the edge of the Didessa River gorge at the transition zone between three main habitat types; dense, luxuriant tropical deciduous forest, <u>Combretum/Terminalia</u> woodland, and savanna/farmland derived from the other two. A small local resident Shankala population is being augmented with inceasing numbers of migrant workers. <u>Bulcha Forest</u>, Sidamo Province, 06°11'N, 38°10'E, 1320 m, is close to a small river flowing through extensive riverine forest into the east side of Lake Abaya, adjoining mixed <u>Acacia/Combretum/Terminalia</u> woodland. The forest area is subject to seasonal flooding. It is inhabited by a small local population of seasonally nomadic Gughe people.

<u>Kelam</u>, Gemu-Gofa Province, O4°44'N, 35°58'E, 420 m, is a mission station compound with plantings of mixed trees and agricultural crops on the bare banks of the Omo River. It was visited on only one occasion.

Methods of Field and Laboratory Operation

In all the study areas, except Gambela Dr. Ash set up a field laboratory and camp, usually for periods of 14-16 days at a time. Semi-permanent sites were used, so that the same habitat area was being sampled on each occasion. At Gambela, operations were conducted from a permanent NAMRU-5 field laboratory building with more elaborate facilities. The area round each camp was netted for birds and trapped for mammals. The numbers of each in operation at one time depended on the anticipated size of the catch, e.g. at times 3 or 4 nets caught all the birds that could be handled; at other times up to 75 nets each 12 m long, were in operation.

Animal Capture

Birds for bleeding and population monitoring were caught almost exclusively in mist mets. Successful capture of many species depended upon an intimate knowledge of their feeding and habitat preferences and their habits and ecology. Success with elusive species continued to improve with experience. Bats were all caught at night, also with mist nets, and this method proved to be much more productive than the time consuming one of searching for their diurnal quarters, although it is likely that some species were missed by this technique. Mammals were caught in baited cage traps or in some cases were shot.

A permanent field technician accompanied Dr. Ash on each field trip, and in each area groups of temporary field assistants were trained, of which varying numbers were employed on subsequent visits depending on the workload at the time. When operations continued night and day it even became necessary to develop a shift system.

Nets and traps were visited regularly and all captured animals were returned to the field laboratory in cloth holding bags. In very hot conditions netting operations sometimes had to be suspended in the middle of the days, for netting birds died very rapidly in the heat. Nets were normally maintained in use throughout the night, although it was usually necessary to raise the lower panels to permit larger nocturnally active mammals to pass under them.

Netting under these conditions in a tropical environment presented special hazards: there were many predators alert to birds entangled in nets. In this respect coucals <u>Centropus spp</u>. were the most troublesome but hawks, owls, ground hornbills, shrikes, jackals, mongoose species, leopards, snakes, and in water, crocodiles, presented problems at times. Occasionally the sheer numbers of "unwanted" birds present in an area, especially weavers of the genera, <u>Quelea</u>, <u>Euplectes</u>, and <u>Ploceus</u> necessitated furling the nets to avoid capturing them. More direct hazards to the nets themselves resulted from animals moving through them. In the case of domestic animals it was sometimes necessary to employ net guards to drive approaching animals away; wild animals such as packs of baboons running through nets, troops of monkeys feeding and defaecating overhead and fouling nets, warthogs, hippoptamuses large birds such as geese and many others, damaged nets; under some conditions huge numbers of beetles, and such other insects as locusts, dragonflies and sphingids had to be removed from nets.

Dr. Ash personally examined, identified and recorded every animal captured, and processed data from all those from which blood samples were taken. The initial objective was to obtain a sample of 50 sera from each species of wild vertebrate in each of the five areas. It soon became obvious that this target was unrealistically ambitious for the time and personnel available. It thus became necessary to modify the sampling technique, by reducing the efforts but to make sure to spread the samples taken from each species over the different

months of the year, and secondly, by ceasing to collect further samples in any particular area from any species for which the first 30 samples were consistently negative (i.e. showed no serological antibody titers to group-B arboviruses).

The general policy was to undertake a broad serological survey of wild vertebrates, to indicate which species could most profitably be studied in greater detail for virus isolation attempts. Haphazard collections of tissue from such a wide range of species, as exists in the wild vertebrate fauna of Ethiopa, would have been extremely expensive in time, labor and materials, as well as resulting in the death of an unacceptably large number of animals.

All birds, except for large numbers of the more numerous local residents, were marked prior to release with individually numbered metal leg bands to obtain information on local movements, migration, population turnovers, longevity, and the results from rebleeding. Each bird was summarily examined for ticks, and most of those found were collected (Hoogstraal and Ash in prep.); an early attempt was also made to obtain blood smears from 10 individuals of each species in each area for hemoparasitological survey (Ashford, et al, 1976). Estimates of seasonal population changes were obtained from attempts to assess the numbers of each species present every day of field operations in each area, by means of trapping totals and regular observations.

Countrywide, a mapping scheme was developed to plot the distribution of all wild vertebrates on the basis of a one quarter of a degree square grid, so that the distribution of any important potential reservoir or amplifying hosts would be known. This scheme was extended to cover all important arthropod vectors (mosquitoes and ticks).

The correct identification of the vertebrates being sampled was of paramount importance. In most cases the birds were well known, and presented few

problems, although for certain groups, notably the sunbirds and <u>Euplectes</u>, the characters distinguishing the various sex and age groups within and between various sepcies, were totally unknown, and it was several years before adequate identification keys were formulated. In some cases voucher specimens were retained and deposited in the British Museum before 1971 or National Museum of Natural History, Smithsonian Institution, after 1971. Small mammals, including bats, reptiles, and amphibians, presented greater problems in identification and it was necessary to collect many more for subsequent museum determination.

Collection of blood

All blood was obtained in sterile disposable plastic syringes, the choice of needle and syringe depending on the size of the animal being bled. Birds were handled and usually bled from the jugular, but in those individuals in which this vein was difficult to find - notably the dark-skinned doves- the radial vein on the underside of the wing was used, or exceptionally, cardiac puncture via the intersternal arch was resorted to. In the case of large birds such as flamingos, eagles and geese, two persons were required to hold and bleed the bird. It was usually necessary to rest small birds after bleeding to allow them to recover before release, but all birds were routinely held for a time to check that the perforated vein or heart did not rupture. A ruptured heart invariably resulted in death, but bleeding from ruptured veins could be stopped by finger pressure. From the beginning every effort was made to avoid casualties, and for this reason only small quantities of blood were removed. The method also permitted subsequent collection of additional blood samples.

Small mammals, including bats, and most reptiles and amphibia, were held in the same way as birds, but were bled by cardiac puncture, the needle being

inserted directly into the heart through the sternum. Snakes and larger mammals (squirrel, mongoose) were anesthetised first. Primates were shot and bled from the heart immediately.

In practically all cases cotton swabs soaked in 70% alcohol were used to brush aside feathers or hair to ensure that the site of insertion of the needle was quite visible.

Whole blood was diluted (see below) with 10% normal saline after being transferred to a plugged sterile glass vial. It was then left standing to separate, ringed with an applicator, and spun down on a hand-centrifuge (10 mins. at <u>ca</u>. 4000 rpm). The sera were temporarily stored in a gas-operated refrigerator in the field and transferred to a freezer at-70 °C on return to the virology laboratory at NAMRU-5.

The amount of dilution depended upon the size of the blood sample; the scale adopted in general being as follows, where the first figures show the size of the sample in ml, and the second in parentheses, the multiples of saline added: 0.20(x4), 0.25-0.30(x3), 0.35-0.75(x2), 0.8x1.0(x1), 1.0 + (ni1).

Hemagglutination-Inhibition Testing (HAI)

The HAI test as developed by Clarke and Casals (1958) was performed on all sera. Acetone extraction was chosen over kaolin since kaolin varies from batch to batch. Sera were brought to a 1:10 final dilution in isotonic NaCl prior to acetone treatment, with adjustments made in the dilution procedure for specimens diluted in the field and then twelve volumes of acetone at -10°C were added to the diluted sera in an ice bath. The sera were shaken and centrifuged at 4°C for 10 minutes at 2,000 G, the acetone was decanted, and equal amounts of cold fresh acetone were added and the pellet resuspended by vigorous shaking. The sera were again centrifuged in the cold, and the acetone decanted, and then dried under vacuum. The samples of dired sera were then rehydrated to the original volume of the 1:10 dilution using pH 9 borate saline, stored overnight at 4°C to assist in rehydration, and on the following day shaken virgorously and then centrifuged for 15 minutes at 2,000 G. The supernate was removed and stored for use in the HAI test.

The test was performed by the micro method using the Linbro 96 well round bottom plates type 220-24. Virus antigens were prepared by the sucrose acetone method of Clarke and Casals (1958) and were used at dilutions containing 8 or 16 hemagglutinating units. Virus antigen titrations were done routinely in each test and antigen controls were included. Tests were repeated as indicated by the controls.

The antigens used at the outset of studies were yellow fever, West Nile, Ntaya, Zika, Semliki Forest, Chikungunya and dengue type 1, but such a large number of tests used most of the serum sample. In order to save enough serum to confirm HAI results by neutralization the antigens were reduced to West Nile, Nyaya, and Zika. When Dr. Wood assumed direction of the testing in 1974, over 10,000 sera had been tested against the 3 antigens, and it was decided to continue testing against these antigens followed by neutralization testing in mice and in tissue culture when available.

The HAI tests were performed in the following manner. From the 1:10 dilution of sera obtained in acetone treatment, three serial two-fold dilutions were made in pH 9 borate saline, and for each serum, 4 dilutions were made in test tubes 1:10, 1:20, 1:40 and 1:80. One 0.025 ml drop of each dilution was added to each well in the micro-plate, so that each plate held 24 sera and a separate plate was used for each antigen. The antigen added to all wells on a plate contained 4-8 hemagglutinating units. The plates were incubated overnight at 4°C, and on the following day they were warmed and two drops of male goose cells were added to each well. The goose cells were suspended in a phosphate buffer of a composition such that when mixed in equal parts with pH 9 borate saline the optimal hemagglutinating pH was reached for a particular antigen. The buffers for goose cells were prepared according to the method described by Hammon and Sather (1972). The plates were incubated for 1 hour at 37°C and then read.

Complement-Fixation Testing (CF)

The CF technique has not been applied successfully to avian sera by most workers. Therefore, only human and other mammalian sera were tested by CF in the present study. The test was performed as modified by Casals (1967) with the following exceptions. Sheep cells were obtained from local fat-tailed sheep. The cells were drawn into Alsevers solution, defibrinated by shaking with glass beads, and allowed to equilibrate for 24 hours before use. The micro plates used were Linbro V-bottoms type 220-25, and all antigen and serum dilutions were made in test tubes rather than with diluting loops. Sera were initially diluted 1:4, inactivated for 20 minutes at 60°C, and then added to plates as 0.025 ml drops followed by the same amount of diluted complement and antigen. Plates were held at 4°C overnight, and on the following day they were brought to room temperature (22°C) and sensitized sheep cells were added at the rate of one 0.025 ml drop to each well. The plates were incubated at 37°C for 30 minutes, placed at 4°C for 3 hours, and then read. Complement controls included the standard complement titration incubated with the test together with 3 two-fold dilutions of the dilution of complement used in the test.

Neutralization Testing

Neutralization testing of bird sera was undertaken as a mouse protection test because of the limited quantity of serum and the numbers of viruses surveyed. Sera were diluted 1:4 in PBS and inactivated at 56°C for 30 minutes. Viruses were titrated in 1-day-old mice and LD_{50} 's calculated for each virus stock by the method of Reed and Muench (1938). The virus stocks were diluted in pH 9 borate saline with 0.75% bovine serum albumin (BABS) to contain 50 mouse LD_{50} 's and mixed in equal parts with the diluted sera to give 25 LD_{50} final concentration. In this way it was possible to approximate the more widely used method reacting 100 LD_{50} 's of virus with undiluted sera: the earlier work of Reeves and Hammon (1962) had shown the neutralization antibody of avian sera was detectable only with low virus dosage. After 1-hour incubation at 22°C the virus serum mixture was inoculated intracerebrally into a litter of 1-day old mice, and the mice were held for 21 days to determine protection rates. The Group B viruses tested were: West Nile, Zika, Ntaya, Wesselsbron, Spondweni, and Banzi.

Human and other mammalian sera were collected in greater volumes and were therefore amenable to conventional neutralization testing, which was carried out in mice using a constant serum-virus dilution method. Sera were diluted

1:10 and mixed in equal volumes with serial 10-fold dilutions of virus and incubated for 1 hour at 22°C; the dilutions were then transferred to an ice bath and injected into 1-day old mice at two litters per dilution. Litter size was standarized at eight infant mice, and in each test a control titration of the virus in normal mouse serum was included. LD_{50} 's for each sera were calculated at 21 days by the method of Reed and Muench (<u>loc. cit.</u>) and compared with the virus titration. A 100-fold reduction in the virus titer was considered specific neutralization.

Virus Isolation Studies

The HAI results were used as a basis for determining which wild vertebrates had high percentages of antibody positive individuals, and these species were selected for sampling for virus isolation attempts. In the absence of such clues it would only have been possible to sample at random for virus isolation the large number of birds and mammals being captured. The production of mouse litters in Ethiopia peaked at 300 litters/week, from which there were also other demands, and was only sustained at this level for the last two years. Beginning in 1975, samples of brain, kidney, liver and spleen tissues and blood were collected from examples of the selected species. The tissues were frozen in liquid nitrogen in the field and transported to the NAMRU-5 laboratory for testing. Here they were ground by mortar and pestle and made into approximately a 10% suspension in BABS containing 500 units of penicillin and 500 mu of streptomycin per ml. Specimens were centrifuged for 30 minutes at 1000G and the supernates were injected intracranially into 1-day-old mice, one litter per specimen and 0.02 ml per mouse. The remainder of the supernate was stored at -70°C until all the injected mice survived for 21 days or until material was needed for reinjection.

Dead or sick mice were collected and stored frozen at -70°C. Later, they

were thawed and the brains aseptically removed and ground by mortar and pestle into an approximate 10% suspension in BABS. Suspensions were then centrifuged for 30 minutes at 1000G and injected intracranially into 1-day-old mice. The mice receiving mouse brain injection were observed for signs of CNS disease on death, and those affected were frozen and considered to represent passage one (PI) of the virus. Viral isolates were taken through 3 passages routinely. P3 material usually consisted of 5 litters of mice, and those were passed through a 0.4 mu millipore filter and cultured to make sure bacteria were not responsible for mouse deaths. Bacteriologically sterile P3 material in BABS with 500 units of penicillin and 500 mu of streptomycin per ml was injected into 20 litters of day old mice to prepare immunizing antigen for weanling mice. The brains were harvested when 10-20% of the mice had died, and were weighed and ground as a 10% suspension in 0.85% saline in a Vurtis homogenizer. The brain suspension was then centrifuged for one hour at 8500G, to provide a clear flesh colored solution. This solution was aliquoted into 5 parts, of which two parts were set aside for inactivation when patterns of mouse deaths suggested a Group B virus might be present. Viruses were inactivated by adding one part of a 1% v/v aqueous solution of Betapropiolactone (BPL) to nine parts of clarified mouse brain solution and holding overnight at 4°C.

Weanling mice at 4-6 weeks old were injected once a week with 0.5 ml of antigen intraperitoneally (IP). For virus suspected to be Group B, the mice received their first two injections as BPL inactivated antigen. This was necessary since the most commonly reported Group B virus in African birds, West Nile, would often kill all adult mice. After 5 IP injections mice were held for a week and then exsanguinated by cardiac puncture. From 100 mice, 40 ml of serum was obtained, and this was then tested by CF against the original antigen used to immunize the mice. If a reaction was obtained, 15 ml of the

serum was aliquoted as 1.0 ml amounts, lyophilized and sent to YARU along with a similar quantity of antigen.

Once an antigen antibody CF system had been established for an unknown and presumed viral isolate, preliminary identification attempts were made in Ethiopia, using antisera made to multiple arboviruses obtained from the reagents branch of the National Institutes of Health (NIH). Twenty-one sera were used which permitted screening for over 150 different arboviruses. All unknown antigens reacting in a homologous CF test were tested against these 21 pools of antisera each containing antibodies to six or more viruses. Reactions were recorded and forwarded to YARU to aid in making a final identification.

The antisera used were Group A, Group B, Polyvalent Bunyamwera, Polyvalent California, Polyvalent Kemorovo, Phlebotomus Fever Group, Quaranfil Group, Simbu Group, VSV Group, Polyvalent Anopheles A, Polyvalent Bwamba, Polyvalent Congo, Polyvalent Palyam, Polyvalent Rabies, Polyvalent Sera numbers: 1, 4, 7, 8, 10, and 12. When tick agents were tested, Jos antiserum was also included. For Congo polyvalent antisera the components were available in Ethiopia, but as a rule specific identification had to be carried out with monospecific antisera at YARU.

Serological Results from Wild Vertebrates

A total of 16163 sera were collected from vertebrates animals and tested serologically in Ethiopia, but the results from 920 sera were lost during the evacuation. Of the 15243 serum test results available, 13115 were from birds 926 bats, 796 mammals other than bats, 259 reptiles and 147 amphibians (Appendix I). The serological results of Hemagglutination Inhibition Testing are summarized by animal family in Table 2. An additional 651 sera were processed from humans.

Amphibians and Reptiles

No amphibians showed a high percentage of antibody reaction. Among the reptiles only results from 200 individuals of two <u>Agama</u> lizard species were significant. Of 164 <u>A</u>. <u>agama</u> tested, 32 or 19.5%, were positive; of 36 <u>A</u>. <u>doriae</u>, 6 or 16.7% were positive; 34% of the positive ones were monospecific to Ntaya.

Birds

There are 827 species of birds from 81 families that occur in Ethiopia, but only about half of these occur in the study areas. Sera were obtained from 391 (47.3%) of the species found in the country, and from 62 (76.5%) of the families.

When those species and families of birds are considered for which there are samples of 10 or more individuals and where 10% or more of them have positive antibody titers, it is found that there is wide representation. Altogether 45 species in 22 families are in this category, representing 11.5% of the families examined. The species and families of greatest significance in arbovirus cycles are listed in Table 3. A curious fact which emerges from these data, by comparing Table 3 with Appendix I, is that in some families, a single
species stands out as being important, e.g. <u>Nectarinia senegalensis</u> in the Nectariniidae, whereas other species within the same family are of apparently little importance; in other families, e.g. the Columbidae, a large proportion of the species possess antibody titers. This phenomenon emphasizes the need for broad surveys in attempts to locate the key vertebrate species in natural cycles of transmission.

Various attempts have been made to categorize the affected species ecologically in terms of habitat preference, feeding and roosting habits, and vulnerability to ticks and mosquitoes, without any common factor emerging. With more knowledge about the identity of the infecting agents and the arthropod vectors involved it may be possible to obtain clues which would enable some attempt at ecological segregation to be made.

An attempt to compare the infection rates between areas are thwarted by the unevenness of the sample sizes and the variation in vertebrate species distribution. In an effort to overcome the difficulties, those species with samples of 10 or more individuals and with "infection rates" of 10% or more are listed in Table 4. The totals for each locality suggests that Gambela was highest with 30.6%, followed by Awash Valley (19.8%), Bulcha (19.4%), Didessa (15.8%) and Rift Valley (=Koka) with 7.1%. However, caution is needed in the interpretation of these data; if for example, the totals for only the two species <u>Turtur afer</u> and <u>Camaroptera brevicaudata</u> which occur in all areas are considered, the order changed, with Awash Valley (17.6%), Gambela (8.7%), Bulcha (6.9%), and Koka with 1.4%.

The remarkable degree of variation within the same species from one area to another is also demonstrated in Table 4. Some, such as <u>Milvus migrans</u>, have a consistently high percentage of positives in the areas in which they were sampled, whilst others, such as <u>Turtur afer</u>, have a very wide range. It is difficult to account for these differences, unless they are connected with the

relative abundance or differences in geographic distribution of arthropod transmitters.

Mammals

There are 73 species of bats from 9 families known in Ethiopia, but only about 70% of these are recorded from the study areas. Sera were obtained from 44 of the species (60.3%) and 8 of the families (88.9%).

When the data for bats in Table 2 are examined and compared with Table 5 which shows the families and species with significant antibody titers, a striking point emerges. In the fruit bats, family Pteropodidae, 613 individuals were examined, of which 16.5% were positive; whereas in the insectivorous bats, all other bat families, 313 individuals were examined, of which 5.1% were positive. Clearly all seven species of fruit bats are of potential importance, but of the insectivorous bats only one species (2.7%) among the 37 species was positive at the 10 percent level (Table 5). The infection rates in fruit bats also vary within species in much the same way as they do for birds (Table 6).

Among the other mammals (Tables 2 and 7) only four species in three families show significant antibody titers. The two Cercopithecidae monkeys, <u>Papio anubis</u> and <u>Ceropithecus aethiops</u>, are of particular interest. Forty percent of the feral domestic cats examined at Gambela were positive, suggesting that this is an animal which would repay further attention. The situation in the rodent family, Muridae, is remarkable, for only one species, <u>Arvicanthis nilotica</u>, of the ten species checked in this family, showed significant antibody titer.

Retested Birds

A number of birds after being captured and bled for serological testing were recaptured and rebled on subsequent occasions in their original locality. A total of 24 individuals of 7 species were involved, and their repeat serologies (Table 8) show several patterns of test results as follows:

- a.) Serology negative at both initial and subsequent testings.
 Six <u>Streptopelia</u> <u>decipiens</u> in this category were rebled with negative results after 10 days (1 bird), after 4 months (4 birds) and 12 months (1 bird); an adult <u>Ceryle maxima</u> was still negative 11 months later, a <u>Pogoniulus pusillus</u> after 5 months, and 4 <u>Turdus pelios</u>, all first bled as adults, were still negative after 13, 24, 41, and 54 months respectively.
- b.) Serology negative at first bleeding but positive at subsequent bleeding: One <u>Burhinus senegalensis</u> of uncertain age, but older than a juvenile, was positive 17 months later; a <u>Streptopelia</u> <u>decipiens</u> of similar age was positive 20 months later; 5 <u>Turdus</u> <u>pelios</u>, all first bled as adults, were positive at 10, 14, 17, 38, and 43 months later. These results conclusively that adult birds can be infected.
- c.) Serology positive at first bleeding but negative or with lower antibody titers at a later date: One <u>Melierax metabates</u> with a result of WN3-N2-Z2 read WN3-N0-Z2 5 months later, indicating a reduction in antibody to Nyaya; a <u>Dryoscopus gambensis</u> decreased from 3-0-1 to 2-2-0 after 5 months (the increase in Ntaya suggests a reinfection); 5 <u>Turdus pelios</u>, of which 4 were first bled as adults, showed antibody decreases as follows: 4-2-4 to 2-0-2 after 6 months; 2-3-0 to 0-0-0 after 8 months; 2-2-3 to 0-0-0 after 8 months; 1-1-0 to 0-0-0 after 11 months; 0-1-2 to 0-0-0 after 35 months. These figures suggest that a decline in antibody titers in the order of 2 points per 6 months may be expected assuming that there has been no intervening reinfection.

- d.) Serology positive at first bleeding but showing antibody increase at subsequent bleeding: Two <u>Dryoscopus gambensis</u>, of which one was included in c above, showed antibody increase from 3-0-1 to 2-2-0 in 5 months and 2-1-1 to 4-2-4 in 48 months; 4 adult <u>Turdus</u> <u>pelios</u> changed from 4-0-0 to 3-0-1 in 14 months, 4-2-2 to 1-4-3 in 15 months, 3-0-1 to 3-1-2 in 16 months and 2-2-2 to 2-3-0 in 20 months. These results further support the finding that adult birds can be infected, and also indicate that it is not unusual for birds to be repeatedly infected in their lifetimes.
- e.) Serology remaining unchanged at subsequent bleeding: One adult <u>Turdus pelios</u> at 2-0-2 had the same titers 5 months later.
- f.) Fluctuating antibody titers: Four <u>Turdus pelios</u> were bled on 3, 3, 4, and 5 occasions respectively. One post-juvenile decreased from 0-1-2 to 0-0-0 after 35 months, then increased to 4-2-4 14 months later, decreased to 2-0-2 six months later and was at this same level a further five months later; an adult decreased from 1-1-0 to 0-0-0 after 11 months, and had increased to 2-1-1 after another 38 months; an adult at 2-2-2 changed to 2-3-0 after 20 months, decreased to 0-0-0 8 months later, and then increased to 4-3-3 ten months later; the final bird increased from 0-0-0 to 4-0-0 after 43 months and decreased to 3-0-1 14 months later. Two of these thrushes are of particular interest in that each must have been infected on at least two occasions. Multiple infections are not surprising in the first three <u>Turdus pelios</u> which were from Bulcha, where 51% of all the birds examined of this species were positive.

Seasonal Variation in Antibody Titers

Owing to the variation in sample size on a monthly and regional basis it is difficult to examine the possibility of seasonal variations in antibody titers. The figures for <u>Turdus pelios</u> are presented in Table 9, where the total overall figures might suggest that the proportion of birds with antibodies was low at the height of the dry season, and increase noticeably with the onset of rains, but this is not borne out by an examination of the individual figures from each of the areas. At Didessa the percentage of positive birds is highest in the first quarter of the year, at Bulcha they are highest in the third quarter, at Gambela in the second and third quarters, and in the Rift Valley in the last.

Neutralization Testing of Avian Sera

It was recognized early in the study that many sera had HAI antibody which reacted to more than one Group B virus, so that virus neutralization testing was necessary to confirm which one was responsible. In most viral infections, neutralizing antibody is accepted as proof of exposure to specific viruses. However, workers at YARU cautioned informally against regarding even neutralizing antibody as complete proof, in the case of Group B viruses, and recommended a program of virus isolation as necessary additional information for certain identification.

In addition because the original study program involved live release of all birds and animals surveyed, individual serum sample volumes were often small. Micro-neutralization testing in cell culture was prepared for, but not put into operation because of the need to concentrate on isolation procedures. Neutralzation testing was therefore only carried out on larger rerun samples.

HAI positive sera having at least an 0.5 ml volume were selected for testing in mice. Prior to 1974, 33 sera were tested in adult mice using 50 to 100 adult mouse LD_{50} 's of virus (Table 10). But because virus LD_{50} titers differ between adult and infant mice, and because work by Reeves and Hammon (1962) has indicated that avian sera neutralization activity is weak, it was decided a more sensitive test would result from using suckling mice and 25 suckling mouse LD_{50} of virus. The results of the suckling mouse system testing 276 sera in suckling mice are presented in Tables 11 and 12. The sera had monospecific and crossreacting anitbody at titers from 1/10 to 1/80. In as much as sera tested in adult mice prior to 1974 were chosen for high titer as well as high volume, the results in Table 10 cannot be compared directly with those in Tables 11 and 12.

The predominant neutralizing antibody in avian sera was antibody to West Nile virus and this virus seems to have avian cycles in all the study sites. Ntaya virus antibodies are found less frequently and yet are almost three-times more frequent than any of the other group B virus antibodies. Since Ntaya was originally chosen because it had been isolated in Ethiopia (Serie, 1968) and because it had one of the widest cross reactions among the Group B viruses, it cannot be concluded that all the Ntaya neutralizing antibody was specific. However, a total of 11 sera, representing all the study areas, showed antibody to Ntaya and might indicate its presence in Ethiopa. The results also suggest Banzi, or its close relative Uganda S, may circulate at Bulcha, Gambela, Aseita, and Bahadu. The relatively small samples of sera tests from Didessa, Koka and Abiata may account for the apparent absences of Banzi from these localities. Zika neutralization antibody was found in birds only in Gambela, yet Zika HAI antibody was found in the same material in other study areas, and human sera neutralized Zika virus at Didessa. The two avian sera that neutralized Zika also neutralized West Nile and Ntaya viruses to a lesser degree, and therefore the tests are of less value in establishing the presence of Zika virus in Gambela than they would have been if they had been monospecific. Likewise, the sera that neutralized Spondweni virus from Aseita also neutralized Banzi and Ntaya viruses and thus offers little proof of the presence of Spondweni at that site.

The serum from Gambela which neutralized Wesselsbron also neutralized Ntaya virus to a very limited extent, protecting only 1 of 8 mice. This result is worth noting because Wesselsbron virus causes veterinary disease much like that seen with Rift Valley Fever virus. The virus has not been shown to cause severe human disease, but like Rift Valley it cannot be generally studied outside Africa. Information on Wesselsbron coming out of South Africa is worth following up to assess its disease potential.

The results of neutralization testing in adult mice show a somewhat similar picture (Table 10). The combined Banzi and Uganda S antibody is more frequent than when Banzi alone was tested for in suckling mice. Uganda S antibody is found in two Koka sera, West Nile antibody was found in all the study areas being worked prior to 1974. Aseita area came into use later. Negative sera in HAI tests were tested in adult and suckling mice and did not neutralized virus.

Serological Results from Human Samples

Great difficulties attended the collection of blood samples from most of the peoples of Ethiopia. However, after long acquaintance with the local people in the study areas Dr. Ash was able to obtain samples for serological testing. Additional samples for virus isolation were collected from febrile patients.

Hemagglutination-Inhibition (HAI)

The results from human sera from Didessa, Koka, Bulcha and Bahadu used in HAI testing are listed in Table 13. They suggest that additional testing would have been desirable, but further testing is no longer possible as the sera collections were abandoned in Ethiopia.

Because the Didessa and Bulcha sites were involved in the 1962-1964 yellow fever outbreak, data from individuals 12 years old or less are segregated. Gambela was surveyed independently during a study of a fever of unknown origin,

so that additional samples were not taken for this study.

At the Didessa site there may have been further yellow fever infection since the 1962-64 epidemic. One of the HAI positive sera from an 8 year old girl also neutralized $10^{2.1}$ mouse LD_{50} 's of yellow fever antigen. Although the titers are low, the fact that all three tests were monospecifically positive seems to indicate experience with yellow fever virus. However, unlikely though it may be for a resident Shankala girl, infections may have been acquired in travel elsewhere, and the possibility of fever vaccination in the area near a missionary clinic cannot be entirely eliminated.

A second HAI positive serum is not CF or neutralization positive and may represent a very early infection, or more likely, an antibody to a Group B virus other than those in the test. Large numbers of HAI positive adults bear out the supposition that it was an epidemic area of yellow fever. Zika virus often travels with yellow fever and it, too, is found in Didessa. West Nile has also been present as shown neutralizing antibodies in adults. West Nile antibody titers are low at Didessa; all 27 sera reacted to only 1/10. Three adult sera specifically neutralized West Nile virus but no neutralizing antibody was found in the children's sera. Likewise only three adults' sera showed CF antibody. Possibly these results indicate a West Nile transmission cycle; either long past or in an early stage, but more likely many of the low titers represent antibody to a Group B virus other than those tested and may be really a cross reaction.

Dengue antibody titers are also low. The sera from Didessa were not tested by neutralization. However, other sera from Koka showing HAI antibody to dengue did not show neutralizing activity. If engue were being transmitted in these areas higher HAI titers and the presence of neutralizing antibody would exist.

It would seem that there has been transmission of Zika virus in Didessa

because of the presence of sera with HAI titers of greater than 1/10 and neutralizing antibody. Similarly chikungunya virus seems to have been present there also since the majority of the HAI positive sera were 1:80. Chikungunya neutralizations were not done.

The presence of the three viruses in Didessa are sufficient to account for the large number of multiple reactive sera, and there is the possibility that another Group B virus may also be present.

Koka is not known to have been affected by the yellow fever outbreak of 1962-64, and at present there are no ecologic features in the area that would favor yellow fever transmission, nor has there been a local vaccination campaign. Nonetheless, the adult antibody titers are real because the HAI monospecific positives and some of the multiply reactive sera neutralized yellow fever virus.

In sera from both adults and children there is low-titered HAI antibody to West Nile virus. In the sera from both age groups the HAI multiple reactors neutralized West Nile virus, whereas the three monospecific HAI positive sera did not. All the sera were tested in neutralization against West Nile, Yellow fever, and dengue I, and the presence of neutralizing antibody to West Nile indicates that man is infected by this virus. Several isolations from resident birds confirm a natural cycle of West Nile virus in this area.

Zika virus HAI antibody in Koka poses the same problem as yellow fever antibody since the two viruses share vectors. One of the sera reacted at 1/40 in HAI but the others were 1/10. Dengue antibody titers were low also and were not confirmed by neutralization. Chikungunya antibody was almost absent being represented by only one adult serum reacting at 1/10.

Yellow fever is supposed to have occurred in the forested Bulcha area. The serum collection was taken from the Guji people who live in the forest. While many of the sera were multiple reactors in the HAI test, only three neutralized

yellow fever and no neutralization occurred for West Nile and Zika. There were high HAI titers for West Nile monospecific and the virus has been isolated from birds taken in the area. Neutralizing antibody should have been detectable even in small samples of sera. No neutralizing antibody was present for either Zika or Dengue but the large number of cross-reacting HAI sera suggest the presence of a Group B virus other than those tested.

A bird serum from Bulcha neutralized Banzi, so that virus, or its very close relative Uganda S, might have been active in the area, but human sera were not checked against these viruses.

The HAI test on the 51 sera collected from Afar people in Bahadu showed only that multiple Group B infections occur at a very early age. Two children's sera from Aseita had high monospecific HAI titers to West Nile. Six adult sera neutralized West Nile virus. Certainly one of the Group B viruses active in the region is West Nile.

In addition because of the presence of <u>Culex thalassius</u> mosquitoes and the known presence of migrant birds from Asia in Ethiopia, the possibility of the occurrence of Japanese encephalitis (JBE) was considered. In a check for neutralizing antibody three adults and one child had monospecific JBE neutralizing antibody. However because JBE and West Nile are very close antigenically much work would be needed to substantiate this finding. Three sera also neutralized Ntaya virus and Banzi neutralization antibodies were found in birds so that candidate Group B agents are available to account for Group B multiple reactive sera, but definite results do not seem possible without the sera which were abandoned in Ethiopia.

Compliment-Fixation (CF) Testing

Sera positive in the HAI test were tested against West Nile, Zika, yellow fever and chikungunya antigens by CF. The rational was the reported decline in

yellow fever CF antibody following injection (Strode, 1951). A positive CF was evidence of a recent infection. While antibody decline has not yet been disproved for yellow fever, CF antibody to dengue virus has been demonstrated 20 years after infection and antibody to St. Louis encephalitis five years after infection (Evan, <u>et al</u>, 1974). There appears to be no information for West Nile, Zika and chikungunya viruses. However, one should probably not use CF as evidence of recent infection in any area where several Group B viruses circulate or until studies are undertaken with more Group B viruses to show antibody duration.

The CF results are presented in Table 14. Since the CF is less specific than HAI test, the West Nile HAI monospecific positive sera in Bahadu would reinforce West Nile HAI results obtained there. West Nile is one of the infecting viruses that causes the universal Group B cross-reacting antibody. At Bahadu two sera reacted with yellow fever and two with West Nile, but most sera were either multiple reactive or anticomplimentary. The Bulcha sera were from the forest-dwelling Guji people so that much of the anticomplimentary activity may have been due to malaria. There was much less anticomplimentary and less multiple reactive sera at Koka, ie. only 10 multiple reactive as compared with 35 by HAI. Also there appeared to be no CF antibody in children to yellow fever and Zika, but there was to West Nile proving additional evidence that West Nile virus has circulated in the Koka area. In Koka adult sera, the CF pattern for yellow fever and West Nile parallelled the HAI pattern, but less CF antibody than HAI antibody was found to Zika virus. At Didessa there was moderate CF antibody to yellow fever. About half of the adults with yellow fever neutralizing antibody also had CF antibody. Restimulation by yellow fever exposure or exposure to another Group B virus is possible, and yellow fever CF antibody seems to have persisted for several years. There was surprisingly little CF antibody to West Nile if the 1/10 HAI West Nile positive sera really resulted from West Nile

infection.

In all areas the numbers of sera reacting with chikungunya virus was high and the vast majority were reactions at only 1/8. However, in the absence of neutralization data these results should be interpreted with caution.

Neutralization Testing

Virus neutralization tests on human sera also showed that West Nile virus infected man at Didessa, Koka, and Bahadu (Table 15, compare Table 13). However, in the absence of clinical findings and paired sera, neutralization data do not indicate clinical disease, but only that infections have occurred. There was surprisingly little neutralizing antibody in the sera collected at the Bulcha site yet there were a large number of cross reacting HAI sera. The most likely explanation would seem to be that the viruses used in the test were not the viruses responsible for the HAI antibody and that there may have been an outbreak of a still unknown Group B virus different from yellow fever, West Nile, Zika and dengue. However, neutralizing antibody to dengue does not appear in any study site, and dengue antibody were only found in an occasional 1/10 HAI titer as monospecific antibody in the sera collected as part of the Ethiopia Government Yellow Fever Vaccination Program in Sidamo Province.

Some Japanese B encephalitis (JBE) antibody testing was undertaken on avian and human sera at Bahadu. The human antibody appeared monospecific in the traditional method of neutralization testing and three sera currently at YARU will be tested in a kinetic neutralization test to ascertain that it is not West Nile. Until this test is positive, no assertions should be made about the presence of JBE in Africa.

A child's serum from Didessa provides additional evidence that yellow fever was still being transmitted in the old epidemic area, and emphasizes the fact that yellow fever must still be considered when evaluating any reports of hemorrhagic

disease in Ethiopia populations. While the circulation of the three viruses used in the test, yellow fever, West Nile, and Zika are enough to explain the multiple reactive neutralization antibody sera, the possibility of the circulation of one or more other Group B viruses is not excluded and demonstrates the need for virus isolation as well as serology.

Virus Isolation

After the initial serological survey, it was feasible to begin isolation of virus from some of the animal hosts that showed a higer rate of previous infection through serology. Isolations were run on wild vertebrates, sentinel mice, mosquitoes and ticks. Termination of the field work curtailed this portion of the study but continued laboratory work on isolations is in progress under Dr. Owen Wood at Yale where some of the material salvaged from Ethiopia has been sent.

Wild Vertebrates

West Nile, isolated from seven species of birds on ten occasions from Koka material and twice from Bulcha, was the only Group B virus found so far in birds (Table 16). A large amount of unprocessed material collected from these and others regular sites was abandoned in Ethiopia when the laboratory personnel were evacuated, but some samples at first and second passage level in suckling mice were later recovered and are now at the Yale Arbovirus Research Unit (YARU) awaiting further processing. Six additional isolates need data matching (Table 16).

One other virus, Dugbe, recognized previously as widespread in Africian ticks, was isolated from seven species of birds on 13 occasions and one mouse in Ethiopia. Ten of the isolations from birds were from Koka, two from Bulcha and one from Aseita; the mouse was from Gambela.

There were two Arumowot isolates from rodents at Aseita, an Abu Mina isolate from a bird at Dubte, near Aseita, and a Bunya virus from a bird at Bulcha. Three isolates are still under study for identification, and three were abandoned in Ethiopia before they could be identified (Table 16).

Sentinel Mice

In attempts to obtain virus isolates resulting from direct infections of

uninfected material, litters of new-born mice were exposed to mosquitoes. Two procedures were adopted using new-born litters of pregnant white laboratory mice taken into the field:

- a.) Litters were exposed night and day as bait for continual feeding by mosquitoes;
- b.) litters were exposed only at night in small wire cages, open at the top, bottom and sides, under different conditions of habitat and height.

From the mouse litters exposed to mosquitoes at Bulcha, where in November 1976 both the infant mice and mothers died in the field, one isolate has been obtained. This isolate, Ethan 4872, appears by compliment fixation to be Germiston virus, a human pathenogen in South Africa. Antigen prepared from five other viral isolations from exposed mice reacted in compliment fixation with Ethan 4872 and also appear to be Germiston.

On return from the field, all litters were maintained in the laboratory, and all ailing and dead mice were processed for virus isolation. It is not known at present how much of this material has been salvaged from the NAMRU-5 laboratory in Ethiopia.

Mosquitoes

As mosquitoes were almost certainly the most important anthropod vectors in arbovirus transmission in Ethiopia, large numbers were captured for virus isolation attempts. Dr. Vernon Lee routinely examined large pools of mosquitoes from the study areas at different times of the year. His results are being prepared for publication. Dr. Ash augmented these catches by the use of mosquito traps baited with birds and mammals. In order to capture a broadly representative sample, trapping was spaced throughout the year, in various habitat types, and at a variety of heights from ground level in open areas to the tree-tops in forests. All mosquitoes were identified by Dr. Lee, and all larger catches were preserved for virus isolation. This important part of the project cannot be completed until it is known how much of the arthropod material has been salvaged from Ethiopia, and until Dr. Lee, who is at present engaged in a new project in Indonesia, has time to devote to it.

Ticks

As part of the NAMRU-5 program for study of Crimean-Congo hemorrhagic fever (CCHF) and other tick-borne viruses in Ethiopia, ticks were collected from vertebrates for isolation, especially in the southern and western parts of the country. A total of 6,777 ticks were collected from domestic animals and vegetation and grouped into 410 pools. The ticks were processed for testing in 4-day old mice. Isolates were screened by CF (Casals 1967) and identifications confirmed at Yale University. Twenty-five virus strains were found including Congo Virus (1), Thogoto Virus (1) dugbe virus (7) and Jos virus (8) from <u>Amblyomma</u>, <u>Hyalomma</u>, and <u>Rhipicephalus</u> ticks, a mouse and a warbler. Ten additional strains await identification. The details were reported recently by Wood et. al. (1978).

Related Biological Studies

While the field collections of blood samples and laboratory testing for serology and virus isolation were under way, a number of related field and laboratory studies on the vertebrate hosts were also in progress. These studies have resulted in a number of publications and have considerably expanded our knowledge and understanding of the distribution and ecology of vertebrates in Ethiopia. This knowledge has been and will continue to be of great value in interpreting the virological results of the study.

Bird Blood Parasites

There is evidence from earlier work that in some species of birds, weakened or ailing ones are more liable to heavy infestations of endo- and ectoparasites (Ash, 1960). If a correlation could be demonstrated between parasitemias and arboviral infections, then a rapid method of survey for possible reservoir or *amplifying vertebrate hosts would be available*. With this objective, over 8000 smears were collected from mammals, birds, reptiles and amphibia in the study areas. The results of examination of the first 5000 of these have been published, and compared with the serological results from the same species, and in most cases the same individuals (Ashford, <u>et al</u>, 1976). Detailed analysis failed to indicate any correlations (the relevant data are deposited at the Smithsonian Institution).

Zoogeography: Faunal Mapping

In the intensive surveys in the special study areas the serological results soon indicated that certain families and species of birds and mammals were of potential significance in arbovirus cycles. The status of the many species yet to be examined was not known. It was therefore important to plot the distribution of all wild vertebrates and arthropod vectors throughout the country in order to delineate areas where arboviral infections may be circulating.

At this stage "Distribution Map Scheme for Ethiopia" was initiated. The ultimate objective being to produce a series of overlay maps for the countryside distribution of vertebrate vectors and arboviruses. The source material for the maps was to be new observations by Dr. Ash, observations supplied by voluntary contributors abstracted data from published and unpublished literature, and distributional data from collections in museums.

As the mapping scheme was of peripheral interest to the main objectives of the arbovirus project and because mapping all fauna was obviously too large a task for one person, various sections were apportioned amongst other people who had interests in particular groups. Dr. Ash was responsible for birds and ticks from wild vertebrates, of which the 840 bird maps have been completed for eventual publication, and a paper on the tick distribution and host-parasite relations is currently in preparation in collaboraboration with Dr. Harry Hoogstraal of NAMRU-3. All the other wild vertebrate data to which the arbovirus project contributed much information, became the responsibility of Dr. M. J. Largen of Addis Ababa University, Dr. D. Koch of the Senckenberg Institute Frankfurt am Main, West Germany, and Dr. D. W. Yalden of the University of Manchester, U. K.; these are being published in a series of papers, of which the first dealing with the bats has been published, the second on rodents is in press, and the others are in

preparation. Mr. P. Neri, an entomologist with NAMRU-5, collated all the mosquito data and has completed the maps ready for publication. The scheme maps were adopted widely for use in Ethiopia, by the Wildlife Conservation Department for plotting the distribution of game animals, by the United Nations Food and Agriculture Organization for plotting pests of agricultural crops, the Ethiopia Institute for Agricultural Research for plotting rodent pests and agricultural fungal diseases, by botanists, entomologists and others.

The mapping grid used was based on a one degree square, and each square or part of one throughout the country was allotted a number; each square was then divided into four of which each quarter was lettered A, B, C, D. The squares were thus lettered 1A, 1B, 1C, 1D, 2A ... and so on through 132B. Being a quarter of a degree square each small square was thus about 1173 square miles or 3140 $\rm km^2$. This was deemed to be smallest practical unit that could be used in a country the size of Ethiopia, and with such limited manpower.

Samples maps are shown for two species which are apparently of importance in arbovirus transmission cycles. The Black Kite, <u>Milvus migrans</u>, is a common and widespread breeding resident in Ethiopia, whose numbers are augmented by large numbers of Paleartic migrants in September-April (Fig. 1).¹ The African Thrush <u>Turdus pelios</u>, is a breeding resident, mostly below 1500 m, which is subject to local migratory movements (or, more probably, post-nuptial dispersal) (Fig. 2).

Some information is available from 400 of the 486 squares covering the country, but the quantity of data from each varies greatly. Dr. Ash personally visited 249 of the squares. Those covered by the project study areas are very well known; others have only been visited on one accasion. The obstacles to complete coverage are mainly the distances involved, the difficulty in travelling to and within some regions, and the fact that throughout the duration of the

All figures appear on pages 151-153.

project there was always warfare in one or other part of the country.

Collections

Certain groups of mammals and birds were poorly known in Ethiopia and indeed, in Africa as a whole. It was therefore necessary to collect voucher specimens for some species. The opportunity was also taken to collect series of some difficult groups in order to establish characters to identify them. Specimens of little known species were also collected, and wherever possible any casualties resulting from netting or bleeding were preserved.

The total of 4946 vertebrates collected comprised 3195 birds, 971 bats, 372 mammals other than bats, and 408 reptiles and amphibia. The majority of the specimens are deposited in the Smithsonian Institution, with a few others in the British Museum, and the University Museum of Addis Ababa.

Large collections of ectoparasites including ticks, and hippoboscid, streblid and nycteribiid flies were sent to Dr. Hoogstraal in Cairo. Fleas were sent to Dr. Robert Traub, at the Smithsonian Institution.

In a further attempt to obtain information on the general ecology of birds, it is necessary to know where they spend their time feeding in order to assess their availability to various species of ticks and mosquitoes at different times of the day. With this in view, the crop and gizzard contents of over 3000 birds were preserved but these had to be abandoned unstudied, in Ethiopia.

Bird Banding Studies

About half the birds caught alive were marked with sequentially numbered and addressed leg bands. The main purposes of this operation were to:

- a.) Individually identify bled birds on subsequent recapture.
- b.) Assess age longevity of individuals in the sampled populations.
- c.) Obtain information on population turnover in the study area.

- d.) Seek data on local movements and intra-African migration of local species.
- e.) Trace sources of Palearctic migrants visiting or migrating through the study areas.

At the close of the project in April 1977, a total of 48,995 birds of 494 species had been banded since October 1969. A number of birds banded in Ethiopia have been reported from overseas in Europe and Asia, and others have been found elsewhere in Africa. All European, Asian and Africian national banding schemes were asked to provide data on recoveries in Ethiopia and these, together with those resulting from the present study or by members of the public now total 96. More can be expected from the banded birds which are still alive. Recoveries come from 23 countries (Germany, Poland, Finland, Bulgaria, Yugoslavia, Austria, Denmark, Greece, Hungary, Lithuania, Rumania, Sweden, USSR, Iran, Lebanon, Syria, Kuwait, Saudi Arabia, Kenya, South Africa, Sudan, Mozambique, Uganda) (Fig. 3). At least 32 species are involved in this total, of which 26 are Palearctic immigrants and 6 are of African origin.

Of particular interest ornithologically and in terms of the possible transference and maintenance of arbovirus infections, either from northern regions to the tropics or vice versa, is the number of migrants recurring in the study areas subsequent seasons. Several individuals have occurred in different years, and one bird returned to the same study area in at least its fifth migratory season. Up to the end of 1976, individuals of 28 species had been recorded more than once after intervening return visits to the Palearctic region; there were 87 records of birds on their first known revisit, 39 on their second, 17 on their third, 9 on their fourth and 1 on its fifth.

The thousands of recaptures of local non-migratory banded birds provided a huge amount of data for subsequent study. Included in these are individuals which were bled on several occasions and individuals recaptured up to six years

after being first bled; also there are data on which population turn-over rates could be assessed, based on the seasonal relative abundance of recaptured banded birds and newcomers to the area. General analyses of these data are not warranted for this report, but they would be worthwhile at a later stage in the case of individual bird species known to be important in the maintenance, or as amplifiers, of arbovirus reservoirs.

The totals for individual species banded, full details for every recovery reported, and other data, are included in a series of eight reports (Ash, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978).

Population Studies

At an early stage it was judged to be important to obtain an understanding of the natural history of the vertebrate species in each of the study areas. Firstly, it was necessary to obtain an indication of absolute and relative numbers, for clearly a common species with a high potential for being a host of an arbovirus would be more important than either a species in small numbers, but which had a high potential, or an abundant species with a low potential. An estimate of the numbers present within the study area was obtained on each day of every visit from 1970 for all species of birds and larger mammals. This estimate was based on daily transect counts and the numbers of each species captured. When sufficient data became available to list the vertebrate hosts of potential importance, and when there was information on the seasonal incidence of arbovirus activity, valuable information on bird and mammal numbers in the area would be at hand. A detailed analysis of populations and seasonal and annual changes is not justified at present, but one example for a thrush, Turdus pelios, a species with high antibody titers and from which viruses were isolated is given in Table 17.

Information on population structure, for a particular sex or age group

might be important in a virus transmission cycle. For this reason as far as it was possible, all captured animals were aged and sexed. It was also believed that some measure of condition of the animal might be of some importance in judging whether a particular species was being affected by a virus. Possibly weight could be used as an indication of condition, so samples of every species caught, often very large samples, were weighed. About 40,000 weight are now stored for future reference and study, if required, but in the case of birds these are unlikely to be significant in terms of arboviruses. Daily weight ranges of 35-30% are not uncommon in individual birds and the variation of the weights of individuals about the mean for the species is so great that using weights as a measure of condition is probably valueless. The weights for one species, <u>Streptopelia decipiens</u> are shown in Table 18 as an example of the types of data available.

Copies of all the information obtained for the censuses, weights and seasonal and geographical distribution of animals, involving some 6,000 pages, will be deposited in the archives of the Smithsonian Institution. As time permits various facets of these will be prepared for publication.

Life History and Distribution Studies of Birds

As Dr. Ash travelled in Ethiopia and trapped birds on each of the study areas, new data on life history and distribution were accumulated. Some of this information has already been published in a series of papers (Project Bibliography 1) and more are in process. Dr. Ash anticipates that eventually he will be able to complete the text for a checklist of the birds of Ethiopia to accompany the already completed distribution maps.

Discussion and Conclusions

The initial broad serological survey of vertebrates in Ethiopia has shown that a small field team (one man with an assistant) is able to capture alive and examine at least 1000 animals per month in East Africa. Adequate samples can be obtained for serology with minimum mortality of the vertebrate hosts being bled.

An approach towards elucidating the problem, which of the large numbers of vertebrate species occurring in tropical areas are most likely to be acting as reservoir or amplifying hosts for arboviruses, was successful in a broad serological survey. The serological results indicated the species with high antibody titers, and subsequent sampling of these selected species for virus isolation was providing large numbers of isolates. Unfortunately, just as the field and laboratory study had reached the point of maximum return in terms of virus isolates, it had to be terminated due to the Unit's eviction from Ethiopia, and much of the recently collected and recently processed material had to be abandoned or was lost in Addis Ababa.

The species examined serologically that showed the highest titers were found in the reptiles (2 species), birds (46 species in 21 families), bats (5 species in 2 families) and other mammals (4 species in 3 families). Many of the species involved are widespread in Africa, so that an examination of these would make a good starting point in any further examination of wild vertebrate reservoir hosts to arboviruses in Africa. In addition, their numbers are small enough to be within the capacity of modest laboratory facilities. The isolation of further viruses from these species would create a problem, but this could be mitigated if the large numbers of bird sera retrieved from Ethiopia were tested for, say, Sindbis, Germiston, Tataguine, chikunguaya, Bunyamwera, and Rift Valley fever viruses.

Neutralization testing shows that West Nile virus is widespread in Ethiopia and infects man. From outbreaks in East Africa and Israel it is known to cause widespread fever with a dengue-like disease and encephalitis. Although of no direct concern to the military, yellow fever is shown to be present in its old epidemic axis in the Didessa and upper Omo River systems. In view of the poor results of the Ethiopian vaccination program, yellow fever would still need to be considered in any future outbreak of epidemic hemorrhagic diseases.

From the bird data, it would seem that both Benzi and Wesselsbron viruses may also occur, although they are less prevalent than West Nile. The Ntaya virus antibody may be real since the virus was isolated in Ethiopia by the Institut Pasteur. Zika virus also would seem to be present and infecting humans on occasion, since there are some nonspecific high-titered human sera; also, Zika seems to be associated with the vector systems of yellow fever which are known to exist in Ethiopia. Of these viruses only Wesselsbron causes dengue-like disease, but any of the others will produce febrile conditions, and all will cause antibody patterns very difficult to interpret where they occur as second infections. There is also the possibility that a further, and as yet unknown, Group B virus occurs.

Dengue viruses do not seem to be widespread. Dengue-like disease in Ethiopia may be due to chikungunya or O'Nyong-nyong viruses, and a few HAI positive sera tested by neutralization are protective against them both. This is suggestive of chikungunya, since experimentally produced antisera to this virus protects against O'Nyong-nyong but not visa-versa.

The study had reached a maximum return stage at its forced conclusion. However, much of the technology, experience and information is directly transferable to other studies and could save another laboratory much time in getting into operation. One may but hope that there will soon be another African laboratory to continue the project human arbovirus studied planned for Ethiopia. Should this ever develop, the primary need is for an overall plan and set of objectives to coordinate the roles of the personnel (virologist, entomologist, clinician, zoologist/ecologist) involved, within an agreed practical framework and with particular emphasis on the laboratory facilities necessary to process the blood and other tissue samples. All of these factors were deficient to some degree in Ethiopia, and singularly or collectively militated against an earlier successful conclusion of the project.

Acknowledgments

A number of persons contributed significantly to the success of this project both in the field in Ethiopia and in scientific and administrative capacities in the United States. J. R. Schmidt, then head of NAMRU-5 in Addis Ababa, originally conceived the arbovirus program in Ethiopia and subsequently followed and aided its progress. Harry Hoogstraal suggested that Dr. Ash should put it into operation; and Captain Donald Kent and Arthur J. Emery, Jr., made it administratively possible within NAMRU and ONR. The contract was initially funded through Thomas R. Grayson at the University of Washington, Seattle. Dr. Ash is indebted to David Snow, Derek Goodwin, Malcolm Largen, John Farrand, Jr., Henry Setzer, Brian Robbins, Harry Hoogstraal for help with identifications. Successive heads of the Virology Division at NAMRU-5, Drs. Vance Vorndam, Westley T. Ota, and particularly Dr. Owen L. Wood, processed the material Dr. Ash collected over the years and he is especially indebted to their many technicians notably Mrs. Edeltrout Popp and Mrs. Pamela Berhanu for their help. Suzanne Pamboukian was largely responsible for biological record keeping in Ethiopia, and most of the vertebrate specimens were prepared by Aurora Clidoro, Enanu Haile and Mekuria Ayele.

In the field, Mekuria Ayele provided Dr. Ash long service as a field technician and interpreter. Dr. Ash's thanks also go to the enumerable field assistants and local authorities who provided so much help. In particular, he holds fondest memories for the friendliness and hospitality of the multitudes of Ethiopian people upon whose lives he impinged. He also wishes to thank the following who helped in various ways: Almaz Bennet, Dorothea B. Curcio, Joyce deBass, Dr. James Harwell, Dr. John LaCroix, Dr. Vern Lee, Dr. E. McConnell, P. Neri and Katherine Pruitt, Mary Rowland.

Not least, Dr. Ash's wife and daughter tolerated his long absences from home, and on the occasions they accompanied him did much to increase the productivity of the occasions.

Dr. Watson is grateful to Martha Lanum, Dorothea B. Curcio, David Short, John Beavers, and Dolores Osborn whose administrative assistance at the Smithsonian facilitated scientific work in the field and to Arthur J. Emery of ONR who sustained interest and support for the project for so long. APPENDIX I. SEROLOGICAL RESULTS FROM ETHIOPIA: BIRDS

	Serological results										
U&B ¹ Ref.	Species	Locality	Total Tested	Total +ve ²	%+ve ²	Di13	WN ²	4 Nt ⁵	Z ⁶	Log. No. ⁷	
	PELECANIDAE										
7	Pelecanus <u>onocrotalus</u>	Shalla	27	0	0						
8	Pelecanus rufescens	Gambela	1	1	100	ND 1+1	4 4	2 0	4 3	16434 (a & b	
	PHALACROCORACIDAE										
11	Phalacrocorax carbo	Abiata	1	0	0						
	ANHINGIDAE										
14	<u>Anhing</u> a <u>rufa</u>	Abiata Bulcha	6 1	0 0	0 0						
	ARDEIDAE										
17	Ixobrychus minutus	Abiata Koka	7 3	0 2	0 66.7	1+1	1	•)	0	19266	
		Gambela	3	0	0	NU	'	0	0	19305	
18	Ixobrychus sturmii	Koka	1	0	0						
19	Nycticorax nycticorax	Koka	1	0	0						
20	Nycticorax leuconotus	Gambela	2	1	50	1+1	4	0	0	16501	
21	<u>Ardeola</u> <u>ralloides</u>	Abiata Koka Gambela	17 2 4	0 1 1	0 50 25	ND 1+1	1 0	0 2	0	19239 10386	
22	Ardeola ibis	Abiata	13	2	15.4	1+1	2	1	1	10509	
		Koka Aseita	2 3	0 2	0 66.7	ND ND	3	0	0	17884 17962	
23	Butorides striatus	Abiata Koka	3 2	0 2	0 100	1+1 ND	4	4	4	11669	
		Bahadu Aseita	2 4	0 4	0 100	ND ND ND ND	4044	2144	0043	17293 17329 17933 17934	
		Gambela	8	7	87.5	1+1	4	3	2	6724 Cont.	

Notal Ref.SpeciesLocalityTestedIotal TestedIotal +ve#+veDil.NNNTZLog. No1+14406732 1+11+144210340 NDND4416266 18805 NDND44416266 18805 ND44418819 18805 ND44418819 18819 ND4441884124Egretta andexAbiata10025Egretta albaAbiata20026Egretta anzettaAbiata10028Egretta schistaceaKoka100 <th>1101</th> <th>,</th> <th colspan="11">Total Total Serological results</th>	1101	,	Total Total Serological results										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ref	f. Species	Locality	Tested	+ve	%+ve	Dil.	WN	NT	Z	Log. No.		
24Egretta ardesiacaAbiata10025Egretta albaAbiata20026Egretta intermediaAbiata10027Egretta garzettaKoka10028Egretta schistaceaKoka10029Ardea cinereaAbiata10030Ardea melanocephalaGambela2150ND102129							1+1 1+1 ND ND ND ND	4 4 4 4 4 4	4 4 4 4 4 4	0 2 4 3 4 4	6732 10340 16266 18805 18819 18841		
25Egretta albaAbiata20026Egretta intermediaAbiata10027Egretta garzettaKoka10028Egretta schistaceaKoka10029Ardea cinereaAbiata10030Ardea melanocephalaGambela2150ND102129	24	Egretta ardesiaca	Abiata	1	0	0							
26Egretta intermediaAbiata10027Egretta garzettaKoka10028Egretta schistaceaKoka10029Ardea cinereaAbiata10030Ardea melanocephalaGambela2150ND102129	25	Egretta alba	Abiata	2	0	0							
27Egretta garzettaKoka10028Egretta schistaceaKoka10029Ardea cinereaAbiata10030Ardea melanocephalaGambela2150ND102129	26	Egretta intermedia	Abiata	1	0	0							
28Egretta schistaceaKoka10029Ardea cinereaAbiata10030Ardea melanocephalaGambela2150ND102129	27	Egretta garzetta	Koka	1	0	0							
29Ardea cinereaAbiata10030Ardea melanocephalaGambela2150ND102129	28	Egretta <u>schistace</u> a	Koka	1	0	0							
30 <u>Ardea melanocephala</u> Gambela 2 1 50 ND 1 0 0 2129	29	Ardea cinerea	Abiata	1	0	0							
	30	Ardea melanocephala	Gambela	2	1	50	ND	1	0	0	2129		
SCOPIDAE Aseita 1 1 100 ND 3 0 0 17950 34 Scopus unbretta Aseita 1 1 100 ND 3 0 0 17950 Gambela 1 1 100 1+2 0 3 10448 Bulcha 2 1 50 1+1 3 0 13719	34	SCOPIDAE Scopus unbretta	Aseita Gambela Bulcha	1 1 2	1 1 1	100 100 50	ND 1+2 1+1	3 0 3	0000	0 3 0	17950 10448 13719		
CICONIIDAE		CICONIIDAE											
37 <u>Ciconia abdimii</u> Shalla 17 0 0	37	Ciconia abdimii	Shalla	17	0	0							
41 Leptoptilos crumeniferus Abiata 1 1 1 100 ND 4 4 4 15058	41	Leptoptilos crumeniferus	Abiata	1	1	100	ND	4	4	4	15058		
THRESKIORNITHIDAE		THRESKIORNITHIDAE											
46BostrychiahagedashGambela200Bulcha100	46	<u>Bostrychia</u> <u>hagedash</u>	Gambela Bulcha	2 1	0 0	0							
47 <u>Plegadis falcinellus</u> Abiata 2 0 0	47	Plegadis falcinellus	Abiata	2	0	0							
PHOENICOPTERIDAE		PHOENICOPTERIDAE											
50 <u>Phoenicopterus</u> ruber Abiata 8 0 0	50	Phoenicopterus ruber	Abiata	8	0	0					Cont		

					Serological results								
Ref.	Species	Locality	Tested	iotal +ve	%+ve	Dil.	WN	lit	Z	Log. No.			
51	Phoenicopterus minor	Abiata Koka	1 26	0 1	0 3.8	ND	0	0	2	19043			
	ANATIDAE												
52	Dendrocygna bicolor	Abiata	4	0	0								
53	Dendrocygna viduata	Koka Aseita	6 4	0 0	0 0								
55	Alopechen aegyptiaca	Abiata Koka Bahadu Bulcha	15 7 2 2	0 0 0	0 0 0 0								
61	Anas penelope	Koka	1	0	0								
64	Anas capensis	Abiata	11	0	0								
67	Anas acuta	Abiata	3	C	0								
69	Anas hottentota	Abiata Koka	5 4	00	0			•					
70	Anas querquedula	Abiata Koka	5 1	1 0	20.0	1+3	2	0	0	7180			
71	Anas clypeata	Koka	2	0	0								
72	Netta erythrophthalma	Abiata	1	0	0								
	ACCIPITRIDAE												
79	Aviceda cuculoides	Bulcha	2	0	0								
82	Elanus caeruleus	Koka Bahadu	2 1	1 0	50 0	ND	0	1	0	19195			
83	Chelictinia riocourii	Kelam	2	1	50	ND	1	0	1	18584			
84	<u>Milvus migrans</u>	Bahadu Aseita Gambela	5 3 11	0 1 4	0 33.3 36.4	ND ND ND ND	4 4 2 1	24000	1 3 0 1	17961 16249 16250 16251 18816			

						Serological results						
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	NT	Z	Log. No.		
		Didessa	15	5	33.3	1+2 1+1 1+1 1+1 1+1	2 3 2 4	00040	0 0 0 4 0	5374 11948 11950 11952		
		Bulcha	14	3	21.4	ND 1+2 ND 1+1	4 2 2 2	002	0000	14288 13657 16581 18248		
		Kelam	1	0	0							
88	Necrosyrtes monachus	Bahadu Didessa	1 3	1 0	100 0	1+2	2	0	0	11220		
89	<u>Gyps</u> <u>africanus</u>	Bahadu	1	1	100	ND	2	0	0	18503		
97	Terathopius ecaudatus	Bulcha	1	1	100	1+1	2	0	2	7425		
99	<u>Circus</u> aeruginosus	Koka	1	0	0							
100	Circus macrourus	Koka Bulcha	2 1	1 0	50 0	ND	4	4	2	14623		
101	<u>Circus</u> pygargus	Koka	2	1	50	ND	4	3.	3	15546		
102	<u>Melierax</u> <u>metabate</u> s	Koka Bahadu Didessa	3 1 1	1 0 0	33.3	ND	4	1	3	19362		
		Bulcha	4	4	100	ND ND 1+1 ND	3 3 4 3	2 2 4 0	0 2 4 2	14831 17652 18280 18314		
104	<u>Meliera</u> x <u>gaba</u> r	Abiata Koka Bahadu	1 2 1	0 1 1	0 50 100	1+1 ND	4 2	4 3	2 4	12469 7925		
109	Accipiter minullus	Bulcha	7	2	28.6	1+2 1+1	3 2	1 0	3 0	7540 13618		
110	<u>Accipite</u> r <u>tachir</u> o	Aseita Gambela Didessa Bulcha	1 1 2 9	0 0 1 4	0 0 50 44.5	ND 1+2 ND 1+1 ND	4 4 2 4	1 0 1 0 2	0 0 2 0 3	16898 13595 17570 17647 18272 Cont.		

						Serological results					
Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	NT	Z	Log. No.	
112	<u>Accipiter</u> <u>badius</u>	Koka Bahadu Bulcha	1 19 7	0 1 2	0 5.3 28.6	1+3 1+4 ND	4 0	002	021	15392 7369 16653	
115	<u>Buteo</u> <u>bute</u> o	Aseita Didessa	2 1	0 0	0 0	ND	4	2		10033	
129	Lophoaetus_occipitalis	Abiata Koka	1 3	1 2	100 66.7	1+1 ND	2 4	2 4	2 3	6986 15887	
		Bahadu Gambela Bulcha	1 1 1	1 1 1	100 100 100	ND ND ND ND 1+1	2 2 4 3 4	0 0 4 2 3	1 1 4 2 2	19198 18468 16480 17685 (a & b)	
	FALCONIDAE										
138	Falco ardosiaceus	Didessa Bulcha	1	0 1	0 100	ND	4	1	2	16696	
140	Falco chicquera	Gambela	2	1	50	1+1	4	3	4	18840	
142	Falco • cuvieri	Koka	1	0	0						
148	Falco peregrinus	Abiata	1	1	100	1+2	1	1	1	7111	
	PHASIANIDAE										
152	<u>Francolinu</u> s <u>sephaena</u>	Bulcha	13	6	46.2	1+1 1+1 1+1 ND 1+3 ND	0 2 2 4 3 0	1 3 4 3 4 2	1 4 3 4 0	7520 9554 12947 16730 17608 18256	
156	Francolinus clappertoni	Koka	21	2	9.5	1+1	0	0	3	9002	
		Didessa	2	0	0	1+1	2	0	2	12429	
160	Francolinus squamatus	Didessa Bulcha	1 2	1 0	100 0	1+1	4	4	4	11903	
161	<u>Coturnix</u> c <u>oturnix</u>	Koka	1	0	0						
	NUMIDIDAE										
										Cont.	

					Serological results								
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.			
165	Numida meleagris	Abiata Koka Pahadu	1 4 1	0 1 0	25.0 0	1+1	1	3	3	8750			
	TURNICIDAE												
167	Turnix sylvatica	Koka	1	0	0								
	RALLIDAE												
184	Gallinula chloropus	Didessa	1	0	0								
186	Porphyrio alleni	Gambela	3	0	0								
	JACANIDAE												
198	Actophilornis <u>africana</u>	Koka Gambela	1 37	0 1	0 2.7	1+1	2	0	0	10466			
	ROSTRATULIDAE												
200	<u>Rostratula</u> <u>benghalensis</u>	Abiata Koka Gambela	2 5 8	0 0 2	0 0 25.0	1+2 1+2	3 2	4 0	2 0	16422			
	CHARADRIIDAE												
203	Vanellus spinosus	Abiata	45	2	4.4	1+1 1+4	0	2	0	7037 7139			
		Koka Bahadu Aseita Gambela	10 1 5 2	0 0 0	0000			-					
207	Vanellus senegallus	Gambela Didessa Bulcha	2 2 1	1 0 0	50 0 0	ND	4	3	2	16282			
211	Pluvialis squatarola	Koka	۱	0	0								
212	<u>Charadrius hiaticula</u>	Abiata Koka	13 22	0	0 0					Cont.			

	All and the last rest.			T		Serological results							
Ref.	Species	Locality	Tested	+ve	%+ve	Dil.	WN	Nt	Z	Log. No.			
213	<u>Charadrius</u> <u>dubius</u>	Abiata Koka Gambela	2 42 14	0 1 0	0 2.4 0	1+2	2	3	1	11355			
214	<u>Charadriu</u> s <u>pecuariu</u> s	Abiata Koka	4 37	0 0	0 0								
215	<u>Charadriu</u> s <u>tricollaris</u>	Koka Bahadu	22 1	0 0	0 0								
216	<u>Charadrius</u> <u>alexandrinus</u>	Koka Abiata	7 1	0 0	0 0								
220	<u>Charadrius</u> <u>asiaticus</u>	Koka	1	0	0								
223	Limosa limosa	Abiata Koka	1 2	0 1	0 50	1+1	1	0	0				
225	Tringa nebularia	Abiata Koka	11 2	0 0	0 0								
226	<u>Tringa</u> stagnatilis	Abiata	48	3	6.2	1+1 1+1 1+2	2 4 2	0 3 0	0 2 0	6865 7031 7201			
227	<u>Tring</u> a <u>glareol</u> a	Abiata Bahadu Aseita Gambela	49 1 5 2	1 1 0 0	2.0 100 0 0	1+2 1+2	1 0	2 1	0	6910 18480			
228	Tringa ochropus	Abiata Koka Aseita Didessa	9 12 1 2	1 1 0 0	11.1 8.3 0 0	1+2 1+1	4 4	1 3	1 4	10593 19201			
229	<u>Tringa</u> <u>hypoleucas</u>	Abiata Koka Bahadu Aseita Gambela	44 5 3 1 8	0 0 0 2	0 0 0 25.0	1+1 1+1	0 1	0	1 0	18692 18712			
230	<u>Tringa</u> <u>totanus</u>	Abiata Koka	11 6	0 0	0					Cont.			

						Serological results						
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.		
232	<u>Tring</u> a <u>terek</u>	Abiata	5	0	0							
234	<u>Gallinag</u> o <u>media</u>	Aseita	1	0	0							
235	<u>Gallinago</u> gallinago	Abiata Aseita	49 1	0 0	0 0							
238	<u>Calidris</u> alpina	Koka	1	0	0							
239	<u>Calidris</u> ferruginea	Abiata	47	0	0							
240	<u>Calidris minuta</u>	Abiata	48	1	2.1	1+3	1	3	4	7091		
242	<u>Calidris temminckii</u>	Koka	1	0	0							
242a	<u>Calidris</u> melanotos	Koka	1	0	0							
245	Philomachus pugnax	Abiata	50	0	0							
	RECURVIROSTRIDAE											
246	Himantopus himantopus	Abiata Koka	17 7	0 0	0 0							
247	Recurvirostra avosetta	Abiata Koka	11 1	0 0	0 0							
	BURHINIDAE											
251	Burhinus senegalensis	Abiata Koka	3 12	0 3	0 25.0	ND 1+1	0 3	0 2	1 4	7645 12388		
		Aseita Gambela	2 12	1 6	50 50.0	N D N D N D N D N D N D N D	1 4 4 4 4 4 4 4	0 3 4 2 3 2 0 4	0 4 3 4 4 2 4	15961 17387 16472 17421 17432 17519 18683 18808		
252	Burhinus capensis	Bulcha	3	1	33.3	1+1	4	3	0	14889		
	GLAREOLIDAE									Cont		
										conc.		
						Serological results						
-------------	--	-------------------	-----------------	--------------	--------------	--	---	-------------	-------------	---	--	
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	NT	Z	Log. No.		
253	<u>Pluvianu</u> s <u>aegyptius</u>	Gambela	25	10	40.0	1+1 1+1 1+1 1+1 1+1 1+1 1+2 1+2 1+1 1+1	2 2 3 1 2 2 1 1 1	2030000000	1022001000	13974 17411 17507 17509 18686 18708 18708 18749 18750 18768 18775		
257	<u>Curosriu</u> s <u>cinctus</u>	Koka Bulcha	2 3	0 1	0 33	1+2	2	0	0	18361		
25 9	<u>Glareola</u> pratincola	Koka	2	0	0							
	LARIDAE											
267	Larus ridibundus	Abiata	4	.0	0							
269	Larus cirrhocephalus	Abiata	3	0	0							
273	<u>Sterna</u> <u>nilotic</u> a	Abiata	1	0	0							
281	<u>Sterna hybrida</u>	Abiata	1	0	0							
282	Sterna leucoptera	Abiata	17	0	0							
	RYNCHOPIDAE											
285	Rynchops flavirostris	Gambela	2	0	0							
	PTEROCL IDIDAE											
287	Pterocles exustus	Koka	17	0	0							
290	<u>Pterocle</u> s <u>lichtensteini</u> i	Filwoha Aseita	5 3	2 1	40.0 33.3	1+1 1+1 ND	4 4 2	4 1 0	4 0 1	13517 13529 17906		
291	<u>Pterocle</u> s <u>quadricinctu</u> s	Koka Bahadu	10 1	1	10.0 100	ND ND	0 4	1 4	0 4	19024 15368 Cont.		

		Serological results								
U&B Ref.	Species	Locality	Total Tested	Total +ve	‰+ve	Dil.	WN	NT	Z	Log. No.
		Gambela	2	1	50	1+4	2	2	3	17422
	COLUMBIDAE									
294	<u>Columba guine</u> a	Koka Didessa	1 4	1 1	100 25.0	1+1 1+1	4 3	4 0	4	18161 11899
296	<u>Streptopelia</u> <u>turtu</u> r	Koka Aseita	2 2	1 0	50 0	1+4	4	4	3	18051
297	<u>Streptopelia</u> <u>lugens</u>	Koka	9	2	22.2	1+1 ND	4 0	2 1	2 0	12327 18930
		Bulcha Addis Ababa	1 45	0 6	0	ND ND 1+1 1+1 1+1	201010	0200000	0 2 0 1 0 1	15466 15476 15481 15484 15487 15497
298	<u>Streptopelia</u> <u>semitorguat</u> a	Abiata Koka	1 49	0 4	0 8.2	1+1 1+1 1+1	3 0 4	0 1 4	004	6122 11575 11619
		Gambela	15	6	40.0	ND ND ND ND ND ND	1 4 3 2 2 4	0 4 3 2 0 4	0422042	15865 13111 13778 13982 13983 16245
		Didessa	27	4	14.8	ND ND ND	4 2 3 4	3 0 4 2	3 0 4 2	14190 14286 14319
		Bulcha	61	3	4.9	ND 1+1 ND ND	3 2 0 4	2224	2304	14334 12040 14918 17677
		Addis Ababa	9	0	0	10	-	4	-	17077
299	<u>Streptopeli</u> a <u>decipien</u> s	Abiata Koka	43 213	0 22	0 10.3	1+1 1+1 1+1 1+1 1+1 1+1 1+1	0 3 4 3 4	0 3 2 2 4	3 4 2 3 2 4	6123 6177 11390 11439 11447 12207 Cont.

1190			Total	Total		Servio	gica	i re	Suit	
Ref.	Species	Locality	Tested	+ve	%+ve	Dil.	WN	Nt	Z	Log. No
									-	
						1+1	2	1	1	12202
						1.1	2	1	2	12303
						1+1	2	4	2	12338
						ND	2	0	0	15547
						ND	3	0	0 .	15610
						ND	4	0	0	15667
						ND	4	1	3	15692
						ND	3	0	0	15697
						ND	3	3	3	15700
						1+1	3	3	0	15816
						1+1	2	5	2	15010
						174	2	0	2	15057
						ND	3	U	U	15854
						ND	4	2	3	15910
						ND	4	1	2	15917
						ND	4	0	0	15675
						ND	2	0	0	18413
						ND	2	0	0	18420
		Rahadu	124	10	32 2	ND	0	3	2	7752
		ballauu	124	40	32.2	ND	0	5	5	7752
						NU	U	2	4	1153
						ND	2	3	4	//59
						ND	3	4	4	7763
						ND	4	4	4	7808
						ND	1	2	4	7820
						ND	0	1	3	7862
						ND	0	1	3	7862
						ND	0	2	2	7865
						ND	0	0	2	7896
						ND	2	2	2	7090
						ND	4	5	5	7900
						ND	U	1	4	/989
						1+1	1	4	4	11149
						1+1	4	4	4	11157
						1+1	0	4	4	11163
						1+2	2	2	2	11184
						1+1	0	3	0	11186
						1+1	3	4	3	11190
						1+1	0	4	3	11191
						1+1	0	4	4	11192
						1+1	0	3	4	11200
						1.1	2	2	2	11200
						1+1	2	2	2	11209
						1+1	1	3	3	11250
						1+1	1	4	2	11272
						1+1	3	3	3	11318
						1+1	3	4	4	12642
						1+1	3	3	2	12691
						1+1	2	3	2	13279
						1+1	3	3	2	13308
						ND	2	0	õ	13372
						NU	2	0	0	13372

						Serolo	gica	1 re	sult	ts
U&B			Total	Total					_	
Ref.	Species	Locality	Tested	+ve	%+ve	Dil.	WN	Nt	Z	Log. No.
						ND	2	0	0	13307
						ND	2	0	2	13397
						ND	4	4	4	15308
						ND	3	2	2	15364
						ND	2	2	2	15372
						ND	2	ī	2	15373
						ND	ō	2	ō	15374
						ND	4	4	4	15432
						ND	2	2	2	15433
						ND	3	2	3	15439
		Aseita	117	41	35.0	ND	4	3	3	16003
						1+1	3	0	0	16032
						ND	2	3	3	16075
						1+2	4	3	2	16085
						ND	4	3	3	16103
						ND	3	0	0	16118
						1+1	3	3	3	16124
						ND	3	2	3	16133
						1+1	2	0	0	16134
						1+1	4	4	4	16136
						1+2	1	0	0	16151
						ND	1	0	0	10153
						1.2	2	0	u a	10150
						IT2	3	4	3	16108
						ND	4	4	4	16100
						ND	1	0	0	16206
						1+1	4	4	4	16208
						ND	2	1	i	17077
						ND	õ	ò	i	17124
						ND	1	Õ	i	17139
						ND	1	0	0	17143
						ND	3	2	1	17144
						ND	0	0	1	17172
						ND	0	0	1	17184
						ND	3	0	0	17208
						ND	2	0	2	17229
						ND	4	2	4	17261
						ND	2	0	3	17288
						ND	3	0	0	17296
						ND	3	0	0	17299
						ND	2	1	4	17315
						1+1	2	i	0	17354
						ND	4	2	2	17357
						ND	4	4	4	17367
						ND	4	3	4	17386
						ND	4	2	3	17822
						ND	4	4	3	17825
										Cont.

						Serola	ogica	l re	sul	ts
U&B Ref.	Species	Locality	Total Tested	lotal +ve	%+ve	Dil.	WN	Nt	z	Log. No.
Ref.	Species	Gambela	85	+ve 28	<u>%+ve</u> 32.9	Dil. ND ND ND ND ND ND ND ND ND ND	WN 043232221242332433022222211112	Nt 042232220300022220000000000000000000000	Z 2 2 0 1 3 3 2 2 0 0 3 0 0 0 0 3 2 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Log. No. 17908 17921 13136 13785 13814 13816 13823 13825 13854 14014 16231 16236 16238 16239 16240 16241 16382 16401 18703 18731 18732 18733 18739 18740 18742 18765 18766 18778 18785
		Didessa Kelam	1 10	08	0 80.0	ND ND ND ND ND ND ND	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	0 0 0 0 0 0 0 1 0	1 1 0 1 0 0 1 0	18536 18546 18558 18577 18606 18610 18637 18641
300	<u>Streptopeli</u> a <u>vinace</u> a	Gambela	80	24	30.0	1+1 ND ND ND ND ND ND ND	3 4 3 2 2 3 2 2 4 4	3 4 3 3 3 2 2 3 4 4	3423222222	13786 13810 13811 13812 13813 13815 13821 13824 13828 13828 13830 Cont.

t

					S	erolog	ical	res	ults	5
U&I Re	B f. Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
		Didessa	24	1	4.2	1+2 ND ND ND ND ND ND ND ND ND 1+1 1+1 ND	4 3 2 2 4 2 3 4 2 2 4 4 4 2 2	332221440042433	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	13831 13832 13856 13881 13882 13948 16234 16235 16242 16279 16317 16378 16378 16379 17506 16958
301	<u>Streptopeli</u> a <u>capicola</u>	Abiata Koka	1 1	0 1	0 100	1+2	3	1	2	18901
302	<u>Streptopeli</u> a <u>roseogrisea</u>	Bahadu Aseita Dubte	1 31 18	0 15 2	0 48.4 11.1	ND ND 1+1 ND ND ND ND ND 1+1 1+1 1+1 1+1 1+3 1+2	3 2 1 2 3 4 4 3 3 4 3 2 4 4 4 4 4 4 4 4 4	0 0 0 1 3 4 2 2 3 0 0 4 0 3 4 0	2 2 0 0 2 2 4 3 3 4 0 0 4 0 4 4 0	17140 17234 17260 17279 17309 17313 17314 17346 17404 17405 17877 17885 17887 17887 17887 17890 17939 17559
303	<u>Streptopelia</u> <u>senegalensis</u>	Abiata Koka Bahadu Aseita	7 43 4 13	0 0 0 0	0 0 0 0			ÿ		
304	<u>Oen</u> a <u>capensis</u>	Abiata Koka	5 51	0 9	0 17.7	1+3 1+3 1+4 1+2	2 2 3 2	2 4 4 1	3 2 3 1	11356 11366 11411 11458 Cont

				S	erolog	jical	res	ults	
U &B		Total	Tota1						
Ref. Species	Locality	Tested	+ve	%+ve	Dil.	WN	Nt	Ζ	Log. No.
Ref. Species	<u>Locality</u> Bahadu Aseita Gambela	<u>Tested</u> 86 13 55	9 9 2 20	%+ve 10.5 15.4 36.4	Dil. 1+2 1+2 1+1 1+2 1+3 1+2 1+4 1+3 1+1 1+2 1+3 1+1 1+2 1+3 1+1 1+2 1+3 1+1 1+2 1+3 1+1 1+2 1+4 1+3 1+1 1+2 1+4 1+1 1+2 1+3 1+1 1+2 1+2 1+3 1+1 1+2 1+2 1+3 1+1 1+2 1+2 1+2 1+2 1+2 1+2 1+2	WN 3 3 0 3 2 2 3 1 4 3 0 2 3 4 1 2 4 0 2 3 4 1 2 4 0 2 3 4 1 0 2 3 4 1 0 2 3 4 1 0 2 3 4 1 0 2 3 4 1 2 3 0 3 2 2 3 4 1 4 3 0 2 3 4 1 4 3 0 2 3 4 1 4 3 0 2 3 4 1 4 3 0 2 3 4 1 4 3 0 2 3 4 1 4 3 0 2 3 4 1 4 3 0 2 3 4 1 1 4 3 0 2 3 4 1 1 2 3 4 1 1 2 4 0 2 3 4 1 1 2 4 0 2 3 4 1 1 2 4 0 1 2 4 0 1 2 4 1 1 2 4 0 1 1 2 4 1 1 2 4 1 1 2 4 0 1 2 4 1 1 2 4 0 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1	Nt 2334230142102410044	Z 2203040240001 3000040	Log. No. 11514 11515 11558 11603 11605 7768 7773 7918 15351 15399 15420 15421 15445 15446 17185 17188 13782 13834 13874
					1+2 1+2 1+2 1+2 1+2 1+4 1+3 1+1 1+1 1+2 1+2 1+2 1+2 1+2 1+2 1+2 1+2	0 2 3 4 3 4 3 3 4 4 2 1 0 1 4 4 4 4 4 4	30444324441114443	20404234440114443	13933 13935 13940 13966 14076 14088 16254 16257 16258 16307 16334 16356 16358 16418 16428 16428 16485 18771
305 <u>Turtur tympanistria</u>	Koka Gambela Didessa Bulcha	19 7 9 49	1 0 0 2	5.3 0 4.1	1+2 1+2 1+2	1 2 1	0	031	19011 13599 12953
306 <u>Turtur afe</u> r	Koka Bahadu	13 10	0 6	0 60.0	1+1 1+3 1+2 1+3 1+3 1+1	2 4 3 0 3 3	3 4 1 4 4 4	3 4 2 4 4 1	9298 12490 12544 12553 12596 15967 Cont.

		Serological results Total Total								
Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	NT	Z	Log. No.
		Aseita	46	11	23.9	1+1 1+1 1+2 ND ND 1+1 ND 1+1 1+2 1+1	4 1 3 1 1 0 3 4 2	4 0 1 0 1 0 2 0 4 0 2	4 0 1 2 0 0 2 4 1 2	15968 16018 16138 17093 17094 17106 17359 17364 17777 17846 17863
		Gambela	31	4	12.9	1+1 1+2 1+2 1+1	00000	0 0 2 3	1 0 YF1 0	2241 2269 10179 17427
		Didessa Bulcha	18 50	1 1	5.6 2	1+1 1+3 1+2 1+1	4 1 0	4 2 0	4 2 0 0NN1	14342 9548 17594
307	<u>Turtur</u> <u>chalcospilo</u> s	Bulcha	52	4	7.7	1+2 1+2 1+1 1+1	1 4 2 4	0 4 2 4	0 4 3 4	13633 12896 16736 16737
308	Turtur abyssinicus	Gambela	21	0	0					
309	<u>Aplopelia</u> <u>larvata</u>	Didessa Bulcha	1 34	0 0	0 0					
310	Treron australis	Didessa	10	1	10.0	1+1	4	0	0	11850
311	<u>Treron</u> waalia	Bahadu	38	10	26.3	1+1 1+1 1+2 1+2 1+1 1+2 1+1 1+1 1+1 ND ND	4 4 1 4 0 1 0 4 1	4 4 0 1 1 1 2 2 0	4 4 0 1 0 2 3 2 0	11230 11262 11267 13411 18473 18484 18489 18490 18492 18514
		Gambela	3	1	33.3	ND	ò	2	2	13053
	PSITTACIDAE									
316	Agapornís taranta	Abiata	2	0	0					Cont

72

		Serological results								
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	HN	Nt	Z	Log. No.
		Koka	1	0	0					
	MUSOPHAGIDAE									
322	Crinifer zonurus	Didessa	1	1	100	1+1	4	1	3	19171
	CUCULIDAE									
323	Clamator glandarius	Koka	1	0	0					
324	<u>Clamator jacobinu</u> s	Koka Bahadu Gambela Bulcha	1 1 1 1	1 0 0 0	100 0 0	1+2	2	0	0	18159
325	<u>Clamator levaillantii</u>	Bulcha	2	0	0					
327	Cuculus clamosus	Bulcha	1	0	0					
329	<u>Chrysococcy</u> x <u>klaa</u> s	Abiata Koka Bahadu Gambela Bulcha	2 5 2 1 9	0 0 0 0	000000					
330	<u>Chrysococcyx</u> <u>capriu</u> s	Abiata Koka Bahadu Gambela Didessa	1 6 7 9 1							
334	<u>Centropus</u> <u>monachu</u> s	Gambela	7	3	42.8	1+1 1+1 1+2	3 4 4	0 0 2	0 0 2	2090 13115 17419
		Didessa	4	1	25.0	1+1	4	3	4	8407
336	<u>Centropus</u> <u>superciliosu</u> s	Abiata Koka Bahadu	1 8 49	0 0 5	0 0 10.2	1+3 1+1 1+1 1+1 1+1	00123	30324	03201	18493 9319 11284 13253 13354
		Kelam	1	1	100	ND	2	0	0	18580

TYTONIDAE

						Serological results				
Ref.	Species	Locality	Tested	totai +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
337	<u>Tyt</u> o <u>alb</u> a	Abiata Koka Bahadu	1 3 2	0 0 1	0 0 50	1+1	3	0	0	15367
	STRIGIDAE									
338	<u>Otus scops</u>	Koka Filwoha	5 9	0 9	0 100	1+1 1+2 1+1 1+2 1+1 1+1 1+1 1+2 1+1 1+1	4 2 2 3 4 3 4 4 4	3 0 2 3 2 0 4	4 1 1 2 4 0 2 4	13450 13451 13477 13481 13482 13483 13484 13532 13533
		Bulcha	3	1	33.3	1+1	2	0	0	15036
339	<u>Otus leucotis</u>	Abiata Koka Bahadu	1 1 1	0 0 1	0 0 100	1+2	0	2	2	11251
341	Bubo africanus	Bahadu Didessa Bulcha	1 1 1	0 1 1	0 100 100	ND ND	4 0	3 0	3 2	14255 1861
348	Asio flammeus	Abiata	1	0	0					
	CAPRIMULGIDAE									
350	Caprimulgus europaeus	Abiata	1	0	0					
351	Caprimulgus aegyptius	Koka	1	0	0					
352	Caprimulgus nubicus	Bulcha	1	0	0					
353	<u>Caprimulgu</u> s <u>fraenatu</u> s	Abiata Bahadu Bulcha	2 1 4	0 0 0	0 0 0					
354	Caprimulgus donaldsoni	Bulcha	1	0	0					
355	Caprimulgus poliocephalus	Abiata Bulcha	1	0 0	0					
356	Caprimulgus inornatus	Koka	2	0	0				10.00	Cont.

						Serological results				
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
		Bahadu Aseita Gambela Didessa Bulcha	4 4 1 1 3	0 1 0 0	0 25.0 0 33.3	1+3 1+2	2	2	2	17857
359	Caprimulgus clarus	Koka Bahadu	31 48	0 5	0 10.4	1+2 1+2	0 0	2	2	8089 8104
		Aseita	31	6	19.5	1+2 1+1 1+4 1+2 1+2 1+2 1+2 1+2 1+2 1+2	3 0 2 4 4 1 2 3 4	4 2 4 4 0 0 4 4	4 4 2 4 4 0 1 3 4	9477 11197 11263 15984 15990 16013 16144 16180 16069
		Bulcha	36	1	2.8	ND	0	2	0	1851
360	Caprimulgus climacurus	Gambela	10	1	10.0	1+2	4	3	4	17446
361	Macrodipteryx longipennis	Gambela Didessa	4 20	0 0	0 0					
	APODIDAE									
365	<u>Apus niansa</u> e	Koka	1	0	0					
	COLIIDAE									
371	<u>Colius</u> <u>Striatus</u>	Koka Aseita Gambela	50 5 53	1 1 4	2.0 25.0 7.5	1+1 1+1 ND 1+1 1+2	24004	1 4 0 3 4	2 4 1 YF2 2 4	9144 16127 2045 2270 2401
		Didessa Bulcha	25 22	0 1	0 4.5	1+2 1+5 1+1	02	3 0 1	3 0 D4 3	13998 1771 18243
373	Colius macrourus	Koka Bulcha	10 21	0	0					
										Cont.

						Serological results				
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
	TROGONIDAE									
374	<u>Apaloderma</u> narina	Didessa Bulcha	1 3	0 0	0 0					
	ALCEDINIDAE									
375	Ceryle maxima	Gambela	7	1	14.3	ND	4	0	2	18776
376	Ceryle rudis	Abiata Bahadu	49 9	1 3	2.1 33.3	1+1 ND 1+1 1+4	0 1 2 0	1 2 4 2	4 3 0 2	6987 7913 13355 18495
		Gambela	49	0	0					
377	Alcedo semitorquata	Didessa	11	1	9.1	1+2	0	0	1	19055
378	<u>Alcedo</u> <u>cristata</u>	Abiata Koka Bahadu Gambela	22 10 52 52	0 0 0 2	0 0 0 3.8	1+3	0	2	0	10163
		Didessa	3	0	0	1+4	2	4	3	10211
379	<u>Ceyx picta</u>	Abiata Koka Bahadu	7 24 50	0 0 3	0 0 6.0	1+3 1+4 1+4	030	2 4 3	2 4 0	7958 11166 11202
		Gambela	52	2	3.8	1+2	2	2	2 1	2 2619
		Didessa Bulcha	29 45	0 0	0 0	1		5		10100
380	<u>Halcyon</u> <u>senegalensis</u>	Abiata Koka Bahadu Gambela Didessa Bulcha	12 8 49 26 2 2	0 0 0 0 1	0 0 0 0 50	1+2	1	0	0	7284
381	Halcyon chelicuti	Didessa Bulcha	20 6	1 0	5.0	1+2	0	0	1	19060
383	Halcyon leucocephala	Abiata	12	1	8.3	1+2	4	4	4	11111
										Cont.

and a state of the state of the

						Serol	ogic	al r	esults	
U&B			Total	Total						
Ref.	Species	Locality	Tested	+ve	%+ve	Dil.	WN	Nt	Z	Log. No.
		Koka Bahadu Aseita	6 49 26	0 0 3	0 0 11.5	1+1 1+1	3 2 2	000	0 0	16017 16081
		Gambela Didessa Bulcha	28 12 1	1 0 0	3.6 0 0	1+1	1	0	0	16087
	MEROPIDAE									
385	Merops superciliosus	Abiata Gambela	1 1	0 0	0 0					
387	Merops nubicus	Abiata	55	2	3.6	1+2 1+2	3 1	0 0	1 0	10985 11013
		Koka Bahadu Didessa Bulcha	3 67 13 15	0 11 1 2	0 16.4 7.7 13.3	1+2 1+3 1+3 1+2 1+2 1+1 1+1 1+1 1+1 1+2 1+2 1+2 1+2	4 0 2 2 0 2 2 0 0 2 0 0 2 0 1 0	4 0 2 2 1 0 4 0 3 2 2 0 4	4 2 2 1 0 1 1 0 0 0 1 0	5120 7982 8001 8048 8109 11328 13331 13334 13346 15333 15335 17059 15032
200	No	Dahada	22	2	15.0	1+2	0	3	0	15033
388	merops albicollis	Banadu	20	3	15.0	1+2 1+2 1+2	1	1	3 0 4	9285 15283 15436
		Aseita	2	1	50	1+2	2	0	0	17792
389	Merops pusillus	Abiata Koka Bahadu	5 20 36	0 1 2	0 5.0 5.6	1+4 1+2 1+4	300	4 0 0	3 4 2	11556 4808 8081
		Aseita	13	2	15.4	1+3 1+3	4	2 4	3	17845
		Gambela	24	3	12.5	1+1 1+3 1+3	3 0 4	4 2 3	3 0 3	2727 10212 17426
		Didessa Bulcha	40 1	0 0	0 0					Cont.

					S	erolog	ical	res	ults	
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
390	<u>Merops lafresnayii</u>	Didessa Bulcha	10 35	0 2	0 5.7	1+1 1+2	0	0 1	3 0	7517 18348
392	<u>Merops</u> <u>bulock</u> i	Gambela	13	2	15.4	1+2 1+2	4 0	4 2	4 0	16325 16415
	CORACIIDAE									
395	<u>Coracias</u> abyssinica	Bahadu	4	1	25.0	ND	3	0	2	8066
398	<u>Eurystomu</u> s <u>glaucuru</u> s	Bulcha	7	1	14.3	1+2	2	0	0	14946
	UPUPIDAE									
399	<u>Upupa epops</u>	Abiata Koka	1 23	0 2	0 8.3	1+1 1+2	4	2	2	11423
		Bahadu	13	6.	46.2	1+2 1+2 1+2 1+1 1+1 1+1	2 1 2 0 2	1 1 4 3	2 1 4 4	7902 7950 11156 11172 18504
		Aseita	26	6	23.1	1+2 1+1 1+1 1+1 1+1 1+2 1+1	- 3 0 4 4 4 2	4 1 0 2 2 1	4 0 2 3 3 2	16216 17233 17883 17938 17952 17952
		Didessa	1	1	100	1+1	2	3	3	11926
	PHOENICULIDAE									
400	<u>Phoeniculus</u> purpureus	Abiata Koka Bahadu	4 2 2	0 0 0	0 0 0					
402	<u>Phoeniculus</u> <u>aterrimus</u>	Koka Bahadu Bulcha	3 2 3	0 0 0	0 0 0					
	BUCEROTIDAE									C +
										LONT

					Ser	ologic	al r	esul	ts	
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
404	<u>Tocku</u> s <u>nasutu</u> s	Bulcha	6	2	33.3	ND ND	2 0	3 4	3 0	13714 13764
405	Tockus erythrorhynchus	Abiata Bahadu	2 3	0 1	0 33.3	1+1	4	3	3	12536
406	<u>Tocku</u> s <u>decken</u> i	Koka Bulcha	1 14	1	100 7.1	1+1 1+1	3 0	1 4	2 0	11307 9717
409	Tockus <u>alboterminatu</u> s	Didessa	1	0	0					
410	Bycanistes brevis	Bulcha	1	0	0					
	CAPITONIDAE									
412	<u>Lybiu</u> s <u>bidentatu</u> s	Gambela Didessa Bulcha	7 5 4	0 0 0	0 0 0					
413	<u>Lybiu</u> s <u>guifsobalito</u>	Abiata Koka Bahadu Gambela Didessa Bulcha	2 2 15 27 6 18	0 0 1 1 0 1	0 6.7 3.7 0 5.5	ND 1+1 1+2	0 1 2	0 1 0	0 0 0	7999 13839 18386
415	<u>Lybiu</u> s <u>undatu</u> s	Didessa	9	0	0					
416	Lybius melanocephalus	Bahadu	1	0	0					
417	Lybius leucomelas	Koka Bulcha	24 5	0 0	0 0					
418	<u>Pogoniulu</u> s <u>pusillus</u>	Bahadu Bulcha	11 50	0 0	0 0					
419	<u>Pogoniulu</u> s <u>chrysoconus</u>	Gambela Didessa Bulcha	1 1 3	0 0 0	0 0 0					
422	Trachyphonus erythrocephalus	Bulcha	3	1	33.3	1+1	2	2	3	11985
	INDICATORIDAE									Cont

						Serolo	gica	1 re	sults	
U&B Ref.	Species	Locality	Total Tested	lotal +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
423	Indicator variegatus	Bulcha	20	0	0					
424	Indicator indicator	Koka Bahadu Gambala	13 1	0	0					
		Didessa Bulcha	8 13	0 1	0 7.7	1+1	0	2	0	12908
425	Indicator minor	Koka Gambela Didessa Bulcha	6 7 9 17	0 1 0 0	0 14.3 0 0	1+2	3	3	3	16461
427	Prodotiscus regulus	Bulcha	1	0	0					
	PICIDAE									
430	<u>Campether</u> a <u>nubic</u> a	Abiata Koka Bahadu Filwoha Gambela Didessa Bulcha	5 12 4 1 4 7	0 0 1 0 0	0 0 25.0 0 0	1+2	2	0	2	13475
431	<u>Campethera</u> <u>cailliauti</u> i	Didessa	3	0	0					
432	<u>Dendropico</u> s <u>fuscescens</u>	Abiata Aseita Gambela Didessa Bulcha	4 3 1 8 7	0 0 0 0 0	0 0 0 0					
435	<u>Mesopico</u> s <u>goertae</u>	Abiata Koka Bahadu Gambela	1 10 16 3	0 0 1 0	0 0 6.2 0	1+2	0	3	3	12558
436	<u>Thripia</u> s <u>namaquus</u>	Abiata Koka Bahadu Bulcha	4 1 3 2	0 0 1 0	0 0 33.3 0	1+1	2	2	2	12548

ALAUDIDAE

80

					Ser	ologic	al r	esul	ts	
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
441	<u>Mirafra</u> <u>rufocinnamomea</u>	Didessa	4	0	0					
456	Eremopteris leucotis	Abiata Koka	2 30	0 1	0 3.3	1+2	4	4	4	18107
	HIRUNDINIDAE									
461	<u>Ripari</u> a <u>paludicol</u> a	Koka	49	2	4.1	1+4 1+2	1 0	0 2	0 0	8685 8761
464	<u>Hirund</u> o <u>smithii</u>	Koka Bahadu	40 51	1 5	2.5 9.8	1+2 1+4 1+4 1+3 1+3	0 4 0 1	2 2 0 1 0 0	0 3 3 0 0 0	15608 11024 12655 18424 18432
		Gambela Didessa	18 38	1 2	5.5 5.3	1+2 1+3 1+3 1+4	4 0 2	400	4 2 0	18469 16271 6322 16974
465	<u>Hirund</u> o <u>aethiopic</u> a	Koka Bahadu Gambela	3 10 2	0 0 0	0 0 0					
467	<u>Hirundo</u> <u>senegalensis</u>	Didessa	2	0	0					
468	<u>Hirund</u> o <u>daurica</u>	Gambela Didessa	1 9	0 1	0 11.1	1+2	4	0	0	6457
469	Hirundo abyssinica	Didessa Bulcha	19 1	0 0	0 0					
470	<u>Hirund</u> o griseopyga	Gambela	1	0	0					
474	<u>Psalidoprocn</u> e <u>pristoptera</u>	Didessa Bulcha	10 5	0 0	0 0					
	MOTACILLIDAE									
476	Motacilla flava	Gambela Bulcha	1 4	0 0	0 0					
478	Motacilla clara	Didessa	2	0	0					
480	<u>Motacilla</u> <u>aguimp</u>	Koka Gambela Didessa	13 6 2	0 0 0	0 0 0					Cont.

					S	erolog	ical	res	ult	s
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No
482	<u>Anthus</u> novaeseelandiae	Abiata Koka	3 51	0 3	0 5.9	1+2 1+2 1+2	0 0 0	0000	2 1 2	8612 8891 9060
483	Anthus leucophrys	Koka Bahadu Didessa	9 1 5	0 0 0	0 0 0					
486	Anthus trivialis	Didessa	2	0	0					
492	CAMPEPHAGIDAE <u>Campephag</u> a <u>phoenicea</u>	Koka Gambela Didessa Bulcha	2 1 4 63	0 0 0 2	0 0 0 3.2	ND ND	03	1 3	1 3	1615 1907
493	Campephaga flava	Bulcha	1	0	0					
	PYCNONOTIDAE									
494	Pycnonotus barbatus	Abiata Koka	2 34	0 2	0 5.9	1+2 1+2	0	0	2	12283 18951
		Bahadu Gambela Didessa Bulcha	77 51 49	0 1 0 2	0 2.0 0 3.6	1+1 ND	0	0	2	2133 VF2 1512
		burcha	55	L	5.0	1+1	0	2	õ	11966
496	Chlorocichla flavicollis	Didessa	13	C	0					
497	Phyllastrephus strepitans	Bulcha	46	1	2.2	ND	0	2	0	1548
498	Eurocephalus <u>ruppell</u> i	Abiata Koka Bulcha	2 3 13	0 0 0	0000					
499	Prionops plumata	Bulcha	28	2	7.1	ND ND	1 2	2 1	2 0	1530 1543
500	<u>Nilaus</u> <u>afe</u> r	Koka	9	2	22.2	1+2 1+2	4 4	4 3	4	18114 18144
										Cont.

						Sero	logic	al r	esul	ts
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
		Bulcha	2	1	50	1+2	4	2	3	17745
502	Dryoscopus gambensis	Abiata Koka Didessa	2 1 6	1 1 2	50 100 33.3	1+1 ND 1+2 1+1	2 2 4 4	2 0 4 3	0 0 4 2	10860 19214 6413 16800
		Bulcha	34	21	61.7	ND ND ND 1+2 1+2 1+1 1+1 1+2 1+2 1+2 1+2 1+2 1+2	4220230242434443342432	3320140140432441022432	2 2 2 1 1 3 2 2 4 0 4 4 4 4 4 4 4 3 1 4 0 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1562 1622 1639 7306 7325 7477 12879 12886 12910 13637 14992 16566 16582 16718 17626 16582 16718 17626 17681 18220 18245 18355 18355 18376 18395
503	Tchagra minuta	Didessa	11	0	0					
505	<u>Tchagra</u> <u>senegalla</u>	Koka Filwoha Aseita	11 1 3	1 1 3	9.1 100 100	1+1 1+2 1+1 1+2 1+1	4 3 3 4 4	2 1 0 1 2	2 0 0 0 2	11636 13470 15965 16184 17850
		Gambela Didessa	4 14	1 2	25.0 14.3	1+1 1+1 1+2	2 2 0	1 0 0	2 0 2	10382 5180 8392
		Bulcha	12	2	16.7	1+2 1+1	2 1	0	0 2	12998 16742
508	Laniarius aethiopicus	Koka	28	2	10.7	1+1 1+2 1+1	4 2 4	3 0 4	3 3 3	11486 18986 15889
		Bahadu Didessa Bulcha	3 4 22	0 1 3	0 25.0 13.6	1+1 1+1 1+1 1+1 1+1	4 2 3 2	2202	2 3 0 2	16982 9628 16601 16613
509	Laniarius erythrogaster	Gambela	4	0	0					Cont.

						Serolo	gica	1 re	sults	
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
510	<u>Laniarius</u> funebris	Koka Bulcha	10 51	1 12	10.0 23.1	1+2 1+2 1+1 1+1 1+1 ND 1+5 ND 1+1 1+1 1+2 1+2 1+2	1 0 3 1 2 0 2 4 1 4 2 1 1	0 1 4 0 2 1 2 4 0 0 2 0 0	0 1 4 0 1 1 4 YF1 0 0 0	18969 7326 12053 12883 12884 1585 1748 1966 16744 17663 18319 18366 18392
511	<u>Malaconotus</u> sulfureopectus	Koka Bahadu Bulcha	28 1 46	1 0 4	3.6 0 8.7	1+2 1+3 1+2 1+2	2 0 0	0 3 2 2	0 0 0	18908 14719 18335 18356
512	<u>Malacanotis</u> <u>blanchot</u> i	Bulcha	6	2	33.3	1+2 ND	2	0	0	18355 18365 16781
513	<u>Laniu</u> s <u>collurio</u>	Koka Bulcha	1	0 0	0 0	1+1	0	1	0	18250
516	Lanius excubitorius	Abiata Koka	22 18	1 0	4.5	1+1	2	1	2	19006
519	Lanius collaris	Didessa	8	0	0					
521	Lanius nobicus	Bulcha	1	0	0					
	MUSCICAPIDAE (TURDINAE)									
523	Saxicola rubetra	Bulcha	1	0	0					
524	<u>Saxicola</u> torguata	Bulcha	1	0	0					
525	Oenanthe oenanthe	Bulcha	1	0	0					
527	Oenanthe pleschanka	Bulcha	4	0	0					
531	Oenanthe isabellina	Bulcha	3	1	33.3	ND	0	4	1	1856
534	<u>Oenanthe</u> <u>bottae</u>	Abiata	1	0	0					Cont.

84

.

					5	erolog	ical	res	ults	
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	7.	Log. No.
538	<u>Cercomela</u> <u>familiaris</u>	Koka Didessa	1 13	0 3	0 23.1	1+4 1+3	0	0	3 2	8329 6242
		Bulcha	1	0	0	1+4	2	0	0	10039
540	Myrmecocichla cinnamomoeiventris	Didessa	3	0	0					
544	Monticola saxatilis	Bulcha	1	0	0					
546	Monticola rufocinerea	Didessa	2	0	0					
549	Cercotrichas podobe	Bahadu	4	0	0					
551	Cercotrichas leucophrys	Bulcha	2	0	0					
552	Cichladusa guttata	Bulcha	2	1	50	ND	1	0	1 YF1 D1	1893
553	Cossypha natalensis	Bulcha	40	0	0					
554	<u>Cossypha semirofa</u>	Koka Didessa Bulcha	12 24 27	0 1 1	0 4.2 3.7	1+2 ND	3 3	0 3	0 2 YF2	9800 1590
555	<u>Cossypha</u> <u>heuglini</u>	Bulcha	50	2	4.0	1+2 1+2	1 2	0 0	0 0	18360 18377
557	<u>Cossypha</u> niveicapilla	Gambela Didessa	14 20	1 0	7.1 0	1+1	1	0	0	18718
558	Luscinia megarhynchos	Koka Gambela	1 2	0 0	0 0					
559	Luscinia luscinia	Bulcha	1	1	0	ND	0	4	0	1546
563	Turdus pelios	Abiata	10	3	30.0	1+2 1+1 1+1	2	0	0	10748 10961 11094
		Koka	42	9	21.4	1+1 1+1 1+1 ND 1+1 ND ND ND	+332234100	1000021000	7 0 0 0 0 3 1 0 1 1	11643 15582 18037 18890 18100 18926 19215 18987 19360 Cont.

						Serolo	ogica	1 re	sults	
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
		Bahadu Gambela	1 139	0 63	0	1+1 1+2 1+2 1+1 1+1 1+1 1+1 1+1 1+1 1+2 1+2	44340131304443320334403023012244410443244444341144	3434023133344212033420001222020341021112033040034	3 4 2 4 2 1 2 0 1 0 2 3 2 2 2 2 2 3 4 3 4 2 0 1 2 0 0 7 2 0 0 3 4 0 1 2 0 0 3 4 0 1 2 0 0 4 0 0 0 4 0 0 0 4 0 0 0 4 0 0 0 0	2284 2333 2344 2377 2393 2399 2034 2079 2092 2100 2112 2188 2194 2252 2400 2614 2631 2643 10130 10131 10132 10133 10197 10367 10406 10407 10449 10450 13024 13058 13058 13058 13058 13059 13065 13075 13006 13024 13024 13058 13059 13065 13075 13005 13075 13100 13120 13121 13203 13204 13221 13817 13927 14032 14078 14086 14081 16230

10 D			Tatal	Tatal		Serolo	ogica	l re	sults	
lef.	Species	Locality	Tested	+ve	%+ve	Dil.	WN	Nt	7.	Log. No
		Didessa	49	20	40.8	ND 1+1 1+2 1+1 ND 1+1 1+1 ND 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+	342334444223320442332443122423430	23110412211111441221400010201401	0 4 2 0 4 2 1 4 1 2 2 0 1 4 4 1 2 3 1 3 0 1 0 2 1 4 0 2 4 1 0 2 4 1 0 2 1 0 1 0 2 1 0 1 0 2 1 0 1 0 1 0 1	16308 16403 16432 16433 16453 16464 16469 16470 17511 18668 18684 18729 18791 18832 3619 3686 3747 5245 8366 9912 10056 14193 16789 16873 16927 16931 17005 17008 17010 17052 17053 19118 19132
		Bulcha	106	54	50.9	ND ND 1+5 ND ND ND ND ND 1+2 1+1 1+2 1+4 1+1	3004401301212034	214401411342042	2 0 1 3 2 0 YF1 2 YF1 2 YF1 2 YF1 2 YF1 2 2 2 4 2	19136 1552 1563 1731 1750 1810 1876 1938 1939 1972 1983 7336 7363 7404 7480 9560
										Cont.

						Serolo	ogica	1 re	sults	
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
						1+1 ND ND 1+2 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1 1+1	40222424431323442411244443224241224444222	3122342422022233220014240000301400222000	1 0 2 1 0 4 3 4 2 2 0 2 3 0 0 3 0 3 0 0 1 4 4 4 0 1 0 2 3 2 3 3 0 0 3 3 3 1 2 1 2 1 2 1 0 1 2 3 2 3 0 0 3 3 1 1 2 1 2 1 2 1 1 2 1 2 1 2 1 2 1 2	13620 13634 13692 13744 12788 12932 12982 14698 14793 14796 14835 14849 14859 14859 14859 14822 14928 14954 14960 15001 15006 16548 16589 16643 16669 16709 16725 16729 16746 16748 16747 17601 17614 17665 18271 18276 18284 18303 18310 18339 18364 18394
564 <u>T</u>	urdus <u>olivaceu</u> s	Abiata Bulcha	1 19	1 9	100 47.4	1+2 1+1 ND ND ND ND	0 4 0 3 2 3	0 3 1 3 3 3 3	1 0 0 0 0 1	10504 14884 1486 1500 1503 1592 Cont.

						Sero	logic	al r	esults	
U&B Ref.	Snecies	Locality	Total Tested	Total +ve	%+ve	Dil.	MM	Nt	Z	Log. No.
		Addis Ababa	2	0	0	ND ND ND ND	2 4 3 4	0 2 2 4	1 3 2 4	13696 16541 16694 18351
567	Turdus piaggiae	Bulcha	2	0	0					
	MUSCICAPIDAE (TIMALIINAE)									
568	Alcippe abyssinica	Bulcha	1	0	ŋ					
574	Turdoides leuconygius	Didessa Bulcha	7 9	1 0	14.3 0	1+1	0	0	2	11920
576	Turdoides rubiginosus	Abiata Koka Bahadu	1 34 15	0 0 2	0 0 13.3	ND	0	0	2	7976
		Aseita	6	2	33.3	1+2	2	3	3	12516
		Pulcha	39	2	5.1	1+1 1+2 ND	3 2 1	0 2 0	0 2 0	18359 1489
	MUSCICAPIDAE (SYLVIINAE)									
578	Bradypterus baboecola	Gambela	1	0	С					
579a	Bradypterus alfredi	Bulcha	2	0	0					
581	Locustella luscinioides	Bahadu	2	0	0					
585	Acrocephalus palustris	Gambela Bulcha	1	0 0	0					
586	Acrocephalus scirpaceus	Bahadu Gambela	2 1	00	0					
588	Acrocephalus arundinaceus	Gambela	1	0	0					
589	Acrocephalus baeticatus	Koka	1	0	0					
590	Acrocephalus	Bahadu	50	0	0					
	gracifirostris	Gambela	1	0	0					
591	Chloropeta natalensis	Didessa	9	1	11.1	1+4	0	2	2	14094

					S	erolog	ical	res	ults	
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	NT	Ζ	Log No.
592	<u>Sphenoeacus</u> <u>mentalis</u>	Gambela Didessa	2 7	0 1	0 14.3	1+1	1	0	1	19155
599	<u>Sylvia</u> borin	Bulcha	1	0	0			•		
600	<u>Sylvia</u> <u>atricapill</u> a	Bulcha	37	1	2.7	1+1 ND	2 0	0 0	0 0 D2 SF2	1915 1991
601	<u>Sylvia</u> communis	Koka Bulcha	1 17	0 1	0 5.9	1+3	3	0	0	
602	<u>Sylvia</u> curruca	Koka Bulcha	1 1	0 0	0 0					
605	<u>Sylvia mystacea</u>	Koka Bahadu	1 2	0 0	0 0					
608	Phylloscopus collybita	Koka	1	0	0					
611	<u>Cisticola</u> erythrops	Koka Gambela	14 46	0 4	0 8.7	1+3 1+4	4	02	0	2039 13027
		Didessa	50	2	4.0	1+5 1+3 1+3 1+3	3003	3 () 1 2	2 4 2 2	13994 16452 8367
		Bulcha	4	0	0	113	3	2	2	10040
613	<u>Cisticol</u> a <u>chiniana</u>	Abiata Koka Bahadu	10 54 54	0 1 4	0 1.9 7.4	1+3 1+2 1+2 1+4	0002	0304	1 0 1 3	8841 4907 4985 7951
		Bulcha	34	1	2.9	1+3	ò	4	0	14709
614	<u>Cisticola</u> galactotes	Gambela	16	1	6.2	1+5	0	1	0	13101
616	<u>Cisticol</u> a <u>natalensis</u>	Gambela Didessa	2 26	0 0	0 0					
620	<u>Cisticola</u> <u>brachyptera</u>	Gambela Didessa	13 50	0 1	0 2	1+4	0	0	4	8345
622	<u>Cisticol</u> a <u>juncidis</u>	Koka Bahadu	1 5	0 0	0 0					
627	<u>Prini</u> a <u>subflava</u>	Abiata Koka	9 33	0 0	0 0					Cont
										cont.

110.0	Serological results									
Ref.	Species	Locality	Tested	total +ve_	%+ve	Dil.	WN	Nt	Z	Log. No.
		Gambela Didessa	24 37	0 1	0 2.7	1+2	2	4	4	3771
629	<u>Heliolais</u> erythroptera	Gambela Didessa	1	0 0	0 0					
633	<u>Phyllolai</u> s <u>pulchell</u> a	Abiata Koka Bulcha	5 28 6	0 0 0	0 0 0					
634	<u>Camaropter</u> <u>brevicaudata</u>	Abiata Koka Bahadu Filwoha Gambela Didessa Bulcha	4 57 44 8 15 36 37	0 1 1 0 0 5	0 1.8 2.3 12.5 0 0 13.5	1+1 1+4 1+5 ND ND ND ND 1+5	0 3 4 1 1 3 3 0	0 4 4 2 1 3 3 3	3 4 3 0 0 1 3 YF2 2	11651 11151 13478 1497 1507 1560 1633 1814
636	<u>Eremomela</u> icteropygialis	Abiata Koka	1 6	0 0	0 0					
638	Eremomela <u>canescen</u> s	Didessa Bulcha	6 2	0 0	0 0					
639	<u>Sylviett</u> a <u>brachyur</u> a	Bahadu Aseita	14 20	0 2	0 10.0	1+3 1+3	2	0	0	17222
		Gambela Didessa	5 11	0 3	0 27.3	1+2 1+5	2	2	2	5247 11913
		Bulcha	1	0	0	1+4	0	2	2	14208
640	<u>Syviett</u> a <u>whyti</u> i	Abiata Koka Bulcha	4 23 34	0 0 1	0 0 2.9	1+4	3	3	2	11974
	MUSCICAPIDAE (MUSCICAPIN	AE)								
646	Muscicapa adusta	Didessa	8	1	12.5	1+2	2	3	0	2892
										Cont.

U&B Ref.SpeciesLocalityTotal TestedTotal TestedTotal tveTotal %+veDil.WNNtZLog. No647Myioparus plumbeusBulcha8112.51+431116701650Melaenornis edolinidesKoka19000000650Melaenornis edolinidesKoka1900000651Bradornis microrhynchusKoka10001+222312826652Bradornis microrhynchusKoka10000000653Bradornis pallidusGambela60000000654Hyliota flavigasterGambela10000000				Serological results							
647 Myioparus plumbeus Bulcha 8 1 12.5 1+4 3 1 1 16701 650 Melaenornis edolinides Koka 19 0 1+2 2 2 3 1 12826 1+2 2 2 3 12826 1 1 0 0 1 1 1 </th <th>U&B Ref.</th> <th>Species</th> <th>Locality</th> <th>Total Tested</th> <th>Total +ve</th> <th>%+ve</th> <th>Dil.</th> <th>WN</th> <th>Nt</th> <th>Z</th> <th>Log. No.</th>	U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
650Melaenornis edolinidesKoka19 Didessa0 17 210 220 9.50 0 9.53 1+23 223 	647	Myioparus plumbeus	Bulcha	8	1	12.5	1+4	3	1	1	16701
652Bradornis microrhynchusKoka100Abiata300653Bradornis pallidusGambela600654Hyliota flavigasterGambela100Didessa200	650	<u>Melaenornis</u> <u>edolinides</u>	Koka Didessa Bulcha	19 17 21	0 0 2	0 0 9.5	ND 1+2	32	3 2	3 YF2 3	1519 12826
653Bradornis pallidusGambela600Didessa1800654Hyliota flavigasterGambela100Didessa200	6 52	Bradornis microrhynchus	Koka Abiata	1 3	0 0	0 0					
654 <u>Hyliota</u> <u>flavigaster</u> Gambela 1 0 0 Didessa 2 0 0	653	<u>Bradornis</u> <u>pallidu</u> s	Gambela Didessa	6 18	0 0	0 0					
	654	<u>Hyliot</u> a <u>flavigaster</u>	Gambela Didessa	1 2	0 0	0 0					
655 Batis orientalis Koka 8 1 12.5 1+2 3 0 18867 Didessa 5 2 40.0 1+3 4 1 2 16822	655	<u>Batis</u> <u>orientalis</u>	Koka Didessa	8 5	1 2	12.5 40.0	1+2 1+3	342	0	0 2	18867 16822
Bulcha 8 0 0			Bulcha	8	0	0	1+3	2	0	1	0258
657 <u>Batis minor</u> Koka 4 1 25.0 1+4 2 0 0 8923 Didessa 4 0 0	657	<u>Bati</u> s <u>mino</u> r	Koka Didessa	4 4	1 0	25.0 0	1+4	2	0	0	8923
Bulcha 10 2 20.0 1+2 1 0 0 1796 1+3 4 4 4 17610			Bulcha	10	2	20.0	1+2 1+3	1 4	0 4	0 4	1796 17610
658 <u>Platysteira cyanea</u> Koka 2 2 100 1+4 2 0 0 12239 1+3 1 0 0 18936	658	<u>Platysteira</u> <u>cyanea</u>	Koka	2	2	100	1+4 1+3	2	0	0	12239 18936
Didessa 4 0 0 Bulcha 42 2 4.8 1+4 3 0 0 16668 1+3 2 0 0 18215			Didessa Bulcha	4 42	0 2	0 4.8	1+4 1+3	3 2	0 0	0 0	16668 18215
660 Terpsiphone viridis Koka 22 0 0 Abiata 1 0 1 SF1 D1 2665 0	660	<u>Terpsiphon</u> e <u>viridis</u>	Koka Abiata Bahadu Gambela Didossa	22 1 35 24	0 0 1 1	0 0 2.8 4.2	1+4 1+2	20	3 0	4 1 SF1 D1	7903 2665
Bulcha 29 1 3.4 1+3 2 0 0 18221			Bulcha	29	ĩ	3.4	1+3	2	0	0	18221
PARIDAE		PARIDAE									
662 <u>Parus leucomelas</u> Abiata 3 0 0 Gambela 5 0 0	662	Parus <u>leucomela</u> s	Abiata Gambela	3 5	0 0	0					
NECTARINIIDAE		NECTARINIIDAE									Cont

					5	erolog	ical	res	ults	
U&B Ref.	Species	Locality	Tested	total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
667	Anthreptes orientalis	Bulcha	4	0	0					
668	Anthreptes collaris	Bulcha	53	1	1.9	1+5	4	4	4	7394
670	Anthreptes metallicus	Bahadu	49	۸	8.2	1+5 1+1 1+4 1+3	2 2 2 3	2 3 0 0	2 1 0 0	11137 13351 15263 15280
671	Nectarinia <u>olivace</u> a	Bulcha	20	0	0					
673	<u>Nectarinia</u> <u>senegalensi</u> s	Gambela Didessa	14 29	1 5	7.1 17.2	1+5 1+3 1+3 1+3 1+3	1 3 0 0 1	1 1 2 1 0	1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	13089 19061 19091 19116 19145
		Bulcha	ġ	1	11.0	1+3 1+2	0	1	0	19166
675	<u>Nectarinia</u> <u>venusta</u>	Koka Gambela Didessa Bulcha	1 2 10 1	0000	0 0 0 0					
678	<u>Nectarinia</u> <u>mariquensis</u>	Koka Aseita Bulcha	47 1 18	0 0 0	C 0 0					
679	<u>Nectarinia</u> <u>habessinic</u> a	Koka Bahadu	13 41	0 3	0 7.3	1+3 1+3	34	02	03	15418 15449
		Aseita	11	3	27.3	1+3 1+3 1+3 1+4	0 4 2 4	202	0 2 0 4	17142 17190 17226
680	Nectarinia cuprea	Gambela Didessa	33 45	0 0	00					
683	<u>Nectarinia pulchella</u>	Abiata Koka Bahadu Gambela Bulcha	8 54 54 6 45	00000	00000					
	ZOSTEROPIDAE									
687	Zosterops abyssinica	Didessa Bulcha	48 1	0	00					Cont.

		Serological results								
Ref	. Species	Locality	Tested	lotal +ve	%+ve	Dil.	WN	Nt	7.	Log. No.
688	<u>Zosterop</u> s <u>abyssinica</u>	Gambela	51	2	3.9	1+2 1+2 1+5	1 0 2	200	0 0 0	2232 2236 13955
	EMERIZIDAE									
695	<u>Emheriza</u> <u>forbesi</u>	Gambela Didessa	1 7	0 1	0 14.3	1+2	1	0	0	19152
696	<u>Emberiza</u> <u>tahapis</u> i	Didessa Bulcha	33 1	0 0	0 0					
	FRINGILLIDAE									
698	Serinus mozambicus	Gambela	52	1	1.9	1+2	4	4	3 D1	2409
		Didessa Bulcha	50 20	0 0	0	1+2	0	0	0 01	2582
699	<u>Serinus</u> <u>atrogularis</u>	Koka Bulcha	38 11	0 0	0 0					
700	Serinus leucopygius	Gambela	12	2	16.7	1+2 1+5	0 0	0 1	4 0	2700 13063
702	<u>Serinus</u> <u>dorsostriatus</u>	Koka	32	0	0					
705	<u>Serinu</u> s <u>citrinelloides</u>	Koka Gambela Didessa	51 1 50	0 0 2	0 0 4.0	1+4 1+3	0	0 3	4 0	9845 9864
708	Serinus tristriatus	Addis Ababa	1	0	n					
709	<u>Serinu</u> s <u>reichard</u> i	Gambela Didessa	1 2	0 0	0 0					
	ESTRILDIDAE									
710	<u>Vidua</u> macroura	Koka Bahadu Aseita Gambela Didessa	5 1 13 50 31	0 0 1 0 0	0 0 7.6 0	1+2	0	0	3	17859
713	<u>Vidua</u> paradisaea	Didessa	16	1	6.2	1+3	0	0	2	17015 Cont.

		Serological results								
U&B Ref. Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.	
715 <u>Hypocher</u> a <u>chalybeat</u> a	Abiata Koka Bahadu Aseita	1 8 1 48	0 1 0 3	0 12.5 0 6.2	1+3 1+3 1+3	3 0 0	2 4 4	3 0 0	11550 17132 17194	
	Gambela Didessa	16 16	1 0	6.2 0	1+3	0	0	4	17262 13155	
716 <u>Mandingo</u> a <u>nitidula</u>	Didessa Bulcha	6 33	0	0						
718 <u>Amadin</u> a <u>fasciat</u> a	Abiata Koka Aseita	3 11 1	0 0 0	0 0 0						
721 <u>Pytelia</u> <u>phoenicopter</u> a	Gambela	29	3	10.3	1+4 1+4 1+4	1 0 0	0	031	13091 13106 13172	
	Didessa	48	0	0	114	U	0		13172	
723 <u>Estrilda paludicol</u> a	Gambela Didessa Bulcha	50 63 8	0 0 0	0 0 0						
724 <u>Estrild</u> a <u>rhodopyga</u>	Abiata Koka Bahadu Bulcha	13 38 7 1	0 0 0 0	0 0 0 0						
726 Estrilda astrild	Gambela Didessa	14 5	0 0	0 0						
727 Estrilda erythronotos	Bulcha	1	0	0						
728 Uraeginthus ianthinogaster	Bulcha	19	1	5.3	1+3	1	0	0	18222	
729 <u>Uraeginthu</u> s <u>bengalu</u> s	Abiata Koka Gambela Bulcha	21 30 25 49	0 1 0 0	0 3.3 0 0	1+3	2	2	1	11554	
731 <u>Lagonostict</u> a <u>larvata</u>	Gambela Didessa	14 48	0 0	00						
732 <u>Lagonostict</u> a <u>rufopicta</u>	Gambela Didessa	44 10	0 1	0 10.0	1+5	2	2	0	14116	
733 <u>Lagonostict</u> a <u>senegala</u>	Abiata Koka Bahadu	12 15 39	0 0 1	0 0 2.6	1+5	4	0	0	12535 Cont	

						Serol	ogica	1 re	sults	
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
		Filwoha	10	0	ŋ					
		Gambela	1	0	0					
		Didessa	7	0	0					
		Bulcha	32	0	0					
734	Lagonosticta rhodopareia	Gambela	7	0	0					
		Didessa	14	0	0					
		Bulcha	6	0	0					
735	Lagonosticta rubricata	Didessa	46	0	0					
		Bulcha	22	n	0					
736	Amandava subflava	Didessa	6	0	0					
738	Lonchura malabarica	Bahadu	16	1	6.2	1+3	0	1	0	18426
740	Lonchura fringilloides	Didessa	3	0	0					
741	Lonchura bicolor	Bulcha	9	0	0					
742	Lonchura cucullata	Gambela	50	1	2	1+2	3	2	3	2243
		Didessa	50	0	0					
		Bulcha	19	0	0					
	PLOCEIDAE									
743	Amblyospiza albifrons	Gambela	27	1	3.7	1+1	0	0	2	18759
		Didessa	9	i	11.1	1+1	0	õ	2	8209
		Bulcha	9	i	11.1	1+2	3	4	ō	18357
744	Ploceus baglafecht	Didessa	54	1	1.9	1+2	2	0	0	16803
		Addis Ababa	1	0	0					
745	Ploceus puteolus	Koka	50	1	2.0	1+2	C	2	0	15598
		Bahadu	45	1	2.2	1+3	4	4	4	11150
		Gambela	8	0	0					
		Bulcha	10	0	0					
747	Ploceus galbula	Abiata	1	0	0					
		Koka	52	2	3.8	ND	0	0	2	7665
		Bahadu	55	3	5.7	ND	0	0	2	7797
						ND	0	0	2	7798
						1+2	0	0	2	8085
748	Ploceus taeniopterus	Gambela	73	4	5.5	1+1	0	1	0	2022
						1+1	0	1	0	2124
						1+1	0	0	1	2128
						1+1	0	4	0	2087
		1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 - 1945 -		11-						Cont.

Serological res								resu	lts	
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
		Bulcha	46	3	6.5	1+3 1+1 ND	0 0 0	2 2 0	0 1 1	14693 16655 1964
749	<u>Ploceus</u> <u>intermediu</u> s	Abiata Koka Bahadu Bulcha	21 33 51 49	0 0 0 2	0 0 4.1	1+3 1+2	0 2	3 4	0 2	14882 14907
750	Ploceus velatus	Bulcha	55	0	0					
751	Ploceus spekei	Abiata	8	0	0					
752	<u>Ploceus</u> <u>cucullatus</u>	Koka Bahadu Gambela Didessa	50 54 50 52	0 1 0 0	0 1.9 0 0	1+1	3	3	4	4858
755	Ploceus rubiginosus	Abiata Koka	41 4	1 0	2.4 0	1+1	0	2	0	10675
756	<u>Ploceus</u> <u>superciliosus</u>	Gambela Didessa	7 50	0 1	0 2.0	1+3	0	1	0	9813
757	Ploceus <u>ocularis</u>	Abiata Koka	1 49	0 2	0 4.1	1+2	0	1	0	8527
		Didessa Bulcha	6 54	0 3	0 5.6	ND 1+2 1+2	3 0 3	2 0 0	2 1 0	1614 7551 12952
758	Ploceus nigricollis	Gambela	9	0	0					
759	<u>Malimbus</u> <u>rubricep</u> s	Abiata Bulcha	1 12	0 0	0 0					
760	<u>Quelea</u> <u>cardinalis</u>	Abiata Gambela	1	0	0 0					
761	Quelea erythrops	Gambela Didessa	51 58	0 0	0 0					
762	Quelea <u>quelea</u>	Koka Bahadu Gambela Didessa	64 51 3 1	0 1 0 0	0 2.0 0 0	1+1	0	1	1	4969
763	Euplectes afer	Koka	5	0	0					Cont.

					Serological results							
U&B Ref.	Species	Locality	Tested	+ve	%+ve	<u>Dil.</u>	WN	Nt	Z	Log. No.		
		Bahadu Gambela	13 12	1 0	7.7	1+4	3	4	4	11206		
764	Euplectes albonotatus	Abiata Koka	23 3	0 0	0 0							
765	Euplectes ardens	Gambela Didessa	4 47	0 3	0 6.4	1+1 1+4 1+3	4 0 1	3 0 2	2 3 2	5338 8311 8331		
766	Euplectes axillaris	Gambela Didessa	17 1	0 0	0 0							
768	<u>Euplectes</u> <u>gierowii</u>	Gambela Didessa	4 53	1 2	25.0 3.8	1+2 1+2 1+2	3 0 0	3 2 0	0 0 1	10440 14174 19068		
769	Euplectes hordeaceus	Gambela	76	2	2.6	1+2	3	2	3	5962		
		Didessa	9	0	0	1+1	3	0	0	5963		
770	Euplectes macrourus	Gambela Didessa	24 18	1 1	4.2 5.6	1+3 1+2	0 3	0 2	2 2	10202 14360		
771	Euplectes franciscanus	Koka Bahadu	50 49	0 2	0 4.1	1+2 1+1	0	4	0 0 YF1 D	4914 1 5023		
		Gambela	53	1	1.9	1+2	4	0	0	5643		
772	Anomalospiza imberbis	Gambela	3	0	0							
774	Bubalornis niger	Abiata	5	0	0							
775	Dinemellia dinemelli	Abiata	1	0	0							
776	<u>Plocepasse</u> r <u>mahali</u>	Abiata Koka Bulcha	45 8 19	0 0 0	0 0 0							
783	Passer griseus	Gambela	1	0	0							
784	<u>Passer</u> <u>swainsonii</u>	Abiata Koka Bahadu Aseita	23 37 26 23	0 1 1 3	0 2.7 3.8 13.0	1+1 1+2 1+2 1+2 1+2	0 4 1 4 4	0 0 0 3 4	1 0 0 4 4	8872 9349 17113 17795 17797 Cont.		

						Sero	loaic	al r	esults		
Ref.	Species	Locality	Tested	total +ve	″+ve	Dil.	WN	Nt	Z	Log. No.	
		Gambela Didessa	4	1	25.0	1+1	0	0	1	5616	
		Bulcha	27	1	3.2	1+2	3	0	C	17683	
786	Passer luteus	Aseita	4	1	25.0	1+3	3	2	0	17948	
787	<u>Passe</u> r <u>eminibe</u> y	Koka Bahadu	10 46	0 3	0 6.5	1+3 1+4 1+3	3 2 1	2 4 1	1 2 0	11177 11215 15454	
789	Petronia pyrgita	Abiata Bulcha	1 16	0 0	0 0						
790	<u>Petronia</u> <u>dentata</u>	Didessa	43	2	4.2	1+1 1+1	0 0	0 1	4 2	3741 8229	
	STURNIDAE										
793	Onychognathus morio	Bulcha	3	0	0						
798	Lamprotornis splendidus	Didessa	۱	0	0			•			
799	Lamprotronis chloropterus	Gambela	6	1	16.7	1+1 1+1	0 4	0 4	0 D1 4	2319 16505	
800	Lamprotornis chalybaeus	Abiata Koka Bahadu	19 31 57	0 0 4	0 0 7.0	ND 1+1 1+1 1+1	4 2 0 0	4 0 1 1	4 0 0	7935 11165 13340 13344	
		Didessa Bulcha	5 10	0 1	0 10.0	1+1	2	0	3	12017	
801	<u>Lamprotornis</u> purpuropterus	Abiata Koka Bahadu Filwoha Aseita	6 24 5 5 26	0 0 2 7	0 0 40.0 26.7	1+1 1+1 1+2 1+1 1+1 1+1 1+1 ND 1+1	4 0 2 2 4 2 3 2 2	200000000	1 4 0 0 0 0 0 0	13487 13476 16064 16082 16083 16084 16140 17248 17882	
		Gambela Bulcha	3 3	0	0		-			Cont.	
			Serological results								
------	---	--	-----------------------------	--------------	------------------	--	---	---	--	---	--
Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.	
802	<u>Cinnyricinclus</u> <u>leucogaste</u> r	Didessa Bulcha	5 6	0 0	0 0						
809	Spero superbus	Abiata Koka	22 18	0 1	0 5.6	1+2	2	3	4	9016	
811	<u>Creatophor</u> a <u>cinerea</u>	Abiata Koka Bahadu	33 19 52	0 1 11	0 5.3 21.1	1+1 1+1 1+2 1+1 1+1 1+1 1+1 1+1 1+2 1+1 1+2 1+2	0 1 2 0 0 1 0 3 0 1 4	1 0 0 2 1 0 1 2 2 0 3	2 0 2 0 0 0 0 0 0 0 1 0 0 3	8861 11254 11297 13307 13343 13347 13350 13359 13360 13374 13384 13384	
814	Buphagus erthrorhynchus	Koka	29	3	10.3	1+1 1+2 1+2	1 0 4	1 1 3	0 0 3	11374 18976 11663	
		Bahadu Bulcha	4 3	0 2	0 66.6	1+1 1+1	2 2	0 0	2 2	16713 16714	
	ORIOLIDAE										
815	Oriolus oriolus	Bahadu	1	0	0						
817	<u>Oriolus</u> <u>larvatus</u>	Abiata Koka Bulcha	2 1 15	0 0 1	0 0 6.7	1+1	2	2	2	16654	
	DICRURIDAE										
819	<u>Dicruru</u> s <u>adsmilis</u>	Abiata Koka Bahadu Gambela Didessa Bulcha	8 13 1 4 7 9								

CORVIDAE

Cont.

			Serological results										
U&B Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.			
004	<u></u>	Kalan	,	0	0								
824	Lorvus ruficollis	Kelam	. 1	0	0								
825	Corvus capensis	Kelam	1	0	0								
826	Corvus rhipidurus	Bulcha	1	0	0								

•

SEROLOGICAL RESULTS FROM ETHIOPIA: BIRDS

		Serological result								
Species	Locality	Tested	+ve	%+ve	Dil.	WN	Nt	Z	Log. No.	
BUFONIDAE										
<u>Bufo</u> <u>regularis</u>	Abiata Bahadu Gambela Didessa Bulcha	1 9 55 28 9	0 0 1 1 0	0 0 1.8 3.6 0	1+1 1+2	3 0	0 4	0 2	5828 10116	
RHACOPHORIDAE										
Kassina <u>senegalensis</u>	Gambela Didessa	1	0	0 0						
RANIDAE										
<u>Dicroglossus</u> <u>occipitalis</u>	Gambela	1	ŋ	0						
<u>Hylarana</u> galamensis	Gambela	7	0	0						
<u>Ptychaden</u> a <u>anchieta</u> e	Bahadu Gambela Bulcha	2 6 6	0 1 0	0 16.7 0	1+2	0	1	0	10470	
Ptychadena huguettae	Gambela	3	0	0						
<u>Ptychadena</u> taenioscelis	Gambela	15	0	0						
Ptychadena sp.	Gambela	1	0	0						
Phrynobatrachus natalensis	Bulcha	1	0	0						
Unidentified Frogs	Gambela	1	Û	0						
SEROLOGICAL RESULTS FROM E	THIOPIA:	REPTILES								
TESTUDINIDAE										
<u>Kinixy</u> s <u>bellian</u> a	Gambela Bulcha	2 5	0 1	0 20.0	1+5	2	3	4	12972	
CROCODYLIDAE										
Crocodylus niloticus	Gambela	2	0	0					Cont	

	Serological results								
Species	Locality	Total Tested	Total +ve	%+ve	Dil.	MM	Nt	7	Log. No.
AGAMIDAE									
Agama agama	Gambela	164	32	19.5	1+1	0	1	0	2098
					1+2	0	4	0	5861
					1+2	0	4	0	5002
					1+1	0	4	0	5972
					1+2	0	1	0	5873
					1+2	0	A	0	5875
					1+1	0	2	0	5877
					1+4	0	2	ñ	5879
					1+3	n	2	n	5889
					1+2	0	4	0	5891
					1+2	0	4	0	5892
					1+1	0	2	Õ	5893
					1+3	0	4	0	5894
					1+2	0	4	0	5896
					1+3	0	4	0	5897
					1+1	0	4	0	5898
					1+2	0	4	0	5899
					1+2	0	4	0	5901
					1+1	0	4	0	5902
					1+1	0	4	C	5903
					1+1	0	2	0	5905
					1+2	0	2	0	9168
					1+2	0	2	0	9172
					1+2	0	3	1	9189
					1+2	2	2	4	9222
					1+4	0	4	2	10245
					1+2	0	3	0	10257
					1+2	0	3	0	10274
					1+2	0	3	0	10297
					1+2	0	2	0	10305
					1+5	3	2	0	10306
Acomo device	Dideess	20	r	16 7	1.4	0	2	0	0410
Agama dortae	Didessa	36	c	10.7	1+4	0	3	0	8418
					ND	2	4	1	9888
					1+2	2	2	2	14120
					1+2	0	2	ñ	14152
					1+2	n	2	0	14187
CHAMELIONIDAE									
Chamaeleo senegalensis	Gambola	5	0	0					
Chamaered Senegarensis	Didessa	17	0	0					
									Cont
									cont.

	Serological results								
Species	Locality	Total Tested	Total +ve	%+ve	<u>Dil.</u>	WN	Nt	Z	Log. No.
Unidentified chamaeleon	Bahadu	1	0	0					
SCINCIDAE									
<u>Mabuya</u> guinquetaeniata	Gambela Didessa	3 2	0 0	0 0					
<u>Mabuy</u> a <u>striata</u>	Gambela	1	0	0					
Unidentified Skink	Didessa	1	0	0					
VARANIDAE									
<u>Varanu</u> s sp.	Bahadu Gambela Bulcha	1 3 1	1 0 0	100 0 0	1+3	0	2	1	11213
Unidentified Lizards	Gambela Didessa	1 7	0 0	0 0					
COLUBRIDAE									
Philothamnus irregularis	Didessa	1	0	0					
Grayia tholloni	Gambela	1	1	100	1+1	3	0	2	13148
Psammophis sibilans	Didessa	1	0	o					
<pre>Psammophis (sibilans?)</pre>	Gambela	1	0	0					
VIPERIDAE									
<u>Atractaspis</u> microlepidota	Gambela	1	0	0					
Atractaspis irregularis	Didessa	1	0	0					
Unidentified Snakes	Didessa	1	0	0					

	e	xcluding	bats						
				S	erolog	ical	res	ults	
Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
SOBICIDAE									
SURICIDAE									
<u>Crocidura</u> sp.A	Koka	2	2	100	1+2	4	4	4	12477
	Didessa	1	1	100	1+1	0	4	4	11857
<u>Crocidur</u> a sp.B	Didessa	1	1	100	1+3	3	3	3	11933
<u>Crocidura</u> sp.	Koka	1	1	100	1+1	4	4	3	14089
Unidentified Shrew sp.	Koka	2	2	100	1+1 1+4	4 4	4 4	4 2	9112 18003
CERCOPITHECIDAE									
Papio anubis	Awash Nat.								
•	Park	172	44	25.8	ND ND ND ND ND ND ND ND ND ND ND ND ND N	3444243342344041	0301001010000000	2412013030022221	14364 14366 14367 14369 14371 14374 14375 14385 14385 14386 14393 14394 14395 14404 14410 14412 14417
					ND ND ND ND ND ND ND	34344442	02002100	2 3 0 1 4 2 1 2	14418 14423 14428 14432 14433 14437 14438 14442
					ND ND ND ND ND	432432	4 0 0 0 1 0	4 0 2 4 0	14444 14445 14446 14447 14448 14452 Cont.

		Serological results							
Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
					ND ND ND ND ND	4 4 3 4 1	1 0 0 0 0 0 0	2 1 1 0 2	14457 14458 14461 14463 14471 15782
					ND ND ND ND ND ND	00233434	0020000	2 3 2 2 0 2 2	15783 15784 15787 15791 15792 15803 15806
	Didessa	6	5	83.3	ND ND ND ND ND	4 2 2 0 1 0	220020	2 0 4 2 2 4	2945 3680 3697 3790 11866(a & t
	Bulcha	9	9	100	ND ND ND 1+1 1+1 1+1 ND ND ND	4 1 1 2 1 0 2 4 0 0	4 3 1 4 2 0 3 4 0 0	4 YF4 D3 4 3 4 4 4 4 4 4 2 4	1944 7315 7350 7559 7560 9768 12080 a 12080 b 16509 17653
<u>Papi</u> o <u>hamadrya</u> s	Awash Nat. Park	70	0	C					
<u>Papi</u> o <u>anub</u> is <u>x</u> <u>hamadrya</u> s	Awash Nat. Park	9	1	11.1	ND	0	0	1	15771
<u>Cercopithecus</u> <u>aethiop</u> s	Bahadu Aseita	1 3	0 2	0 66.7	ND 1+2 ND ND	4 4 3 3	2 2 0 0	4 3 2 1	17126 a 17126 b 17339 a 17339 b
	Didessa	9	8	88.9	ND ND ND ND ND ND ND	02000000	2100000	3 YF1 D3 4 4 4 4 4 4 4 4	2906 2946 2947 3735 3736 3743 3744 Cont.

excluding bats

SEROLOGICAL RESULTS FROM ETHIOPIA: MAMMALS

Serological results Total Total Species Locality %+ve Tested Dil. +ve WN Nt Ζ Log. No. ND 0 0 3 3745 2 Bulcha 52 43 82.7 ND 0 3 1521 ND 3 4 4 YF4 D2 1522 ND 1 0 2 1523 22 0 ND 0 1524 0 ND 1 1525 2 0 ND 1 1526 1 ND 2 1 1527 ND 4 4 4 YF4 D2 1528 0 0 ND 2 1529 22222223 22233 ND 4 D1 1571 4 YF3 D2 1572 ND ND 4 YF2 D2 1573 ND 4 YF3 D2 1574 ND 4 YF3 D2 1575 43 ND 4 YF4 D2 1576 ND 4 YF3 1577 ND 4 4 YF3 D3 1598 3 3 ND 4 YF4 D2 1599 ND 4 4 YF3 D3 1600 4223 3 ND 4 YF3 D2 1601 3 ND 4 YF4 D2 1602 3 4 YF4 D2 1603 ND ND 3 4 4 YF3 D3 1604 4 ND 4 4 YF3 D3 1605 4 4 4 YF4 D3 1710 ND SF3 4 YF1 D1 1711 ND 3 4 3 2 1720 ND 4 0 0 3 ND 1744 3 1 4 YF4 D2 1766 ND 0 2 2 3 0 ND 4 1767 1 ND 4 1768 ND 4 4 1780 4 YF4 D4 1862 ND 4 ND 4 422200 4 YF4 D3 1945 0 ND 4 7456 1+1 0 4 7482 ND 0 4 7490 0 343232 ND 7513 0 ND 7556 0 0 ND 7562 4 4 9599 1+1 22 ND 1 13612 2 ND 13672 Cont.

SEROLOGICAL RESULTS FROM ETHIOPIA: MAMMALS

excluding bats

			Serological results							
Species	Locality	Tested	total +ve	%+ve	Dil.	WN	Nt	Ζ	Log. No.	
SCIURIDAE <u>Xeru</u> s <u>erythropus</u>	Gambela	2	2	100	1+1 ND	4 4	2 4	1 4	13043 13177	
MURIDAE										
<u>Tatera</u> <u>robusta</u>	Kelam	2	0	0						
<u>Tatera s</u> p.	Koka Aseita Bulcha Kelam	25 1 1 9	0 0 0 2	0 0 22.2	ND ND	2 4	0 4	0 4	18611 18624	
Thamnomys macmillani	Koka	1	0	0						
<u>Oenomys</u> <u>hyoxanthus</u>	Koka Gambela Didessa	1 3 1	0 0 0	0 0 0						
Arvicanthis niloticus	Koka	48	2	4.2	1+1	0	0	1	8877	
	Bahadu	4	2	50.0	1+1	2 2	32	3	18482	
	Aseita	13	3	23.1	1+2 ND	1 2	000	0	16179 17284	
	Gambela	38	3	7.9	1+1 1+1 1+2	003	0 0 3	2 2 3	5725 5726 10159	
	Didessa Bulcha Kelam	2 1 31	0 0 19	0 61.3	ND ND ND ND ND ND ND ND ND ND ND	2 2 1 1 2 4 1 1 2 1 1 2 1 1	0 2 0 0 0 3 1 0 0 0 0 0	0 1 0 0 4 0 0 0 0 1 0	18529 18531 18532 18533 18535 18539 18545 18545 18547 18548 18550 18552 18554	

excluding bats

.

excluding bats

		Serological results								
Species	Locality	Tested	+ve	%+ve	Dil.	WN	Nt	Z	Log. No.	
					ND ND ND ND ND ND	1 1 1 2 1 3	0 0 0 0 0 2	0 0 0 2 0 1	18555 18556 18564 18586 18594 18595 18626	
<u>Lemniscomy</u> s <u>striatus</u>	Gambela Didessa	6 5	0 0	0 0						
Rattus rattus	Didessa	48	0	0						
<u>Mastomy</u> s <u>natalensis</u>	Abiata Koka Bahadu Gambela	10 20 2 49	0 0 1 6	0 50.0 12.2	1+2 1+1 1+1 1+1 1+1 1+1 1+1 1+2	0 1 2 1 0 2 2	1231224	0 2 3 2 3 2 0	18510 5708 5711 5719 5837 10237 10352	
	Didessa Bulcha Kelam	37 3 1	1 0 1	2.7 0 100	1+2 ND	0 1	2 0	0 0	10108 18588	
Mus sp.A	Abiata Koka Gambela Didessa	1 1 7 2	0 0 0	0 0 0 0						
<u>Acomy</u> s <u>dimidiatus</u>	Bulcha Kelam	3 2	0 0	0 0						
Dendromus melanotus	Didessa	1	0	0						
Unidentified Rodents	Bahadu Gambela Didessa Bulcha	1 42 9 2	0 1 0 0	0 2.4 0 0	1+2	0	0	2	5798	
CANIDAE										
Canis domesticus	Gambela	2	2	100	ND ND	1 0	0	1	13087 13103 Cont.	

					Serol	ogica	al re	esults	
Species	Locality	Tested	lotal +ve	%+ve	Dil.	WN	Nt	2	Log. No.
VIVERRIDAE									
<u>Genett</u> a sp.	Gambela Bulcha	2 1	2 1	100 100	1+1	0	0	2	7340
Atilax paludinosus	Gambela	1	0	0					
Ichneumia albicauda	Gambela	1	0	0					
Unidentified Mongoose sp.	Gambela	2	1	50	1+1	3	4	4	10434
FELIDAE									
Felis libyca	Bahadu	1	0	0					
<u>Feli</u> s <u>domesticu</u> s	Gambela .	10	4	40.0	ND ND 1+1 1+1	0 1 4 4	0 0 4 0	1 0 3 0	13026 13036 13049 13052
SUIDAE									
Potamochoerus porcus	Didessa	1	0	0					
Phacochoerus aethiopicus	Bahadu Gambela	1	0	0					

excluding bats

5

	Serological result									
Ref.	Species	Locality	Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
	PTEROPODIDAE									
2	<u>Epomophorus</u> <u>minor</u>	Abiata Koka	8 61	0 4	0 6.6	1+1 ND ND	4 4 4	4 4 3	2 4 2	11625 14632 14680
		Bahadu	89	26	29.9	1+1 1+1 ND 1+1 1+2 1+1 1+1 1+1 1+1 1+1 1+1	42401332223321204300113	32203433204344423220024	2 2 4 3 3 4 3 4 3 0 2 2 4 4 3 1 4 2 3 1 0 4 3 1 0 4 3 1 0 4 3 1 0 2 2 4 4 3 1 4 3 1 4 3 1 4 3 4 3 4 3 4 3 4 3	15956 7819 8007 9322 9340 9341 9383 9384 9385 9402 9483 9484 11164 11201 11210 11271 11286 11289 11291 11303 11308 11309 11311
		Aseita	10	2	20.0	1+1 1+2 1+1 1+1 1+1 1+1 1+1	3 0 4 3 4 2	4 2 4 4 2 0	4 3 4 3 0	12679 12684 12685 15292 15995 16170
4	Epomophorus labiatus anurus	Bahadu Aseita	2 8	1 3	50.0 37.5	1+2 1+1 ND	2 1 3 4	3000	2032	11269 17158 17242 17243
		Gambela Didessa Bulcha	1 1 30	0 0 2	0 0 6.7	1+1 ND	00	000	2 2	16569 17583
2/4	E. <u>minor/labiatu</u> s <u>anuru</u> s	Bahadu	23	6	26.1	1+1 1+1 1+2	1 2 3	0 1 3	0 1 0	15324 15327 15341

1 Reference number from Largen, Kock and Yalden, 1974, Catalogue of the Mammals of Ethiopia. 1. Chiroptera.

SEROLOGICAL RESULTS FROM ETHIOPIA: BATS Serological results

LKY Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
		Aseita	29	5	17.2	1+3 1+3 ND 1+1 ND ND 1+4 ND	2 4 2 1 4 0 2 0	1 2 1 4 0 0	1 3 4 2 3 2 1 2	15384 15385 15405 16212 17295 17298 17301 17305
5	<u>Epomophoru</u> s <u>gambianu</u> s	Gambela	39	13	33.3	1+1 1+1 ND ND ND ND ND ND ND ND	2 1 2 1 3 1 3 2 0 2 1 0	1 0 0 1 2 0 2 2 0 0 0 0	2 3 1 0 2 3 0 3 3 1 0 1 2	6496 6638 13082 17526 18781 18782 18795 18812 18833 18834 18835 18845 18845
		Didessa	20	3	15.0	ND ND ND	3 0 2	0 1 1	2 1 2	17043 19085 19143
		Bulcha	56	6	10.7	1+2 1+2 1+1 ND ND 1+1	1 1 1 0 2	2 3 2 1 0	3 3 2 1 3 1	9681 12051 12103 13007 17651 17725
6	<u>Micropteropus pusillus</u> .	Aseita Gambela	1 97	0 12	0	1+1 1+2 1+2 1+1 1+2 1+1 1+1 1+3 1+4 1+4 1+2 1+1	02000002022	420044302220	0 3 2 YF2 2 YF2 4 3 1 3 0 2 0	2085 2296 2704 2711 2742 2745 2775 10226 16347 16372 16447 18849
		Didessa	77	2	2.6	ND 1+1	2 2	1	1 YF1 D2 2	2 2967 8233
		Bulcha	2	0	0					Cont.

			Serological results							
LKY Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
7	<u>Eidolon helvum</u>	Gambela	5	3	60.0	ND 1+1 ND	4 4 4	4 0 0	4 0 4	16437 16478 16496 a
		Didessa	3	2	66.7	1+1 ND	4 3	2 2 2	4	16496 b 16928
		Bulcha	۱	0	0	NU	4	3	4	17006
8	Rousettus aegyptiacus	Koka	3	2	66.7		2	1	2	19225
		Gambela Didessa	1 26	1 6	100 23.1	ND 1+1 1+1 1+1 1+1 1+1 1+1 ND	3420022	0400021	2 4 2 1 2 2	17512 3721 3722 3723 3724 3730 16847
		Bulcha	6	1	16.7	1+1	ō	i	2	12145
9	Rousettus angolensis	Didessa	13	٦.	7.7	1+2	4	3	3	6284
	EMBALLONURIDAE									
13	Taphozous perforatus	Gambela	1	0	0					
14	Taphozous nudiventris	Abiata	1	0	0					
15	Taphozous mauritainus	Gambela	3	1	33.3	1+3	4	3	4 YF4 D1	2257
	NYCTERIDAE									
17	Nycteris thebaica	Didessa	1	0	0					
18	Nycteris hispida	Bahadu Filwoha	2 1	0 0	0 0					
18a	Nycteris parisii	Aseita	1	0	0					
19	Nycteris aethiopica	Didessa	1	0	0					
	MEGADERMATIDAE									
20	Lavia frons	Filwoha Gambela Kelam	1 18 1	1 1 0	100 5.6 0	1+1 1+2	2 1	0	4 0	13453 16406
										Cont.

				Serological results						
LKY Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
21	<u>Cardioderma</u> cor	Bahadu Aseita Bulcha Kelam	7 10 1 1	0 1 0 0	0 10.0 0 0	1+4	1	0	0	17245
	RHINOLOPHIDAE									
22	Rhinolophus Clivosus	Didessa	31	1	3.2	1+4	0	0	2	8283
23	Rhinolophus Landeri	Koka Gambela Bulcha	1 10 3	0 0 0	0 0 0					
25	Rhinolophus simulator	Abiata	1	0	0					
26	Rhinolophus blasii	Koka	2	0	0					
27	Rhinolophus fumigatus	Gambela Didessa	1 6	0 0	0 0					
	Rhinolophs sp.	Didessa	15	1	6.7	1+4	4	3	3	14120
	HIPPOSIDERIDAE									
29	Hipposideros caffer	Gambela	2	0	0					
30	Hipposideros ruber	Didessa Gambela	1 1	0 0	0 0					
31	<u>Hipposideros</u> <u>commersoni</u>	Koka	1	0	0					
34	<u>Triaenop</u> s <u>persicu</u> s	Koka Bahadu	2 3	0 0	0 0					
	VESPERTILIONIDAE									
37	Eptesicus samalicus	Abiata Didessa Bulcha	3 1 8	0 0 0	0 0 0					
38	<u>Eptesicu</u> s <u>capensis</u>	Abiata Koka Didessa	1 1 1	0 0 0	0 0 0					Cont.

114

			Serological results							
LKY Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	NW	Nt	Z	Log. No.
39	Eptesicus guiniensis	Gambela	3	0	0					
40	<u>Pipistrellu</u> s <u>nanus</u>	Gambela Didessa Bulcha	1 4 3	0 0 0	0 0 0					
41	<u>Pipistrellus</u> <u>kuhli</u>	Bulcha	7	1	14.3	1+3	2	2	2	9606
42	Pipistrellus rusticus	Gambela Didessa	18 1	0 0	0 0					
43	Pipistrellus reuppelli	Bahadu	2	0	0					
45	Glauconycteris variegata	Didessa	1	0	0					
46	Laephotis wintoni	Koka	4	1	25.0	1+5	2	0	0	12374
51	Nycticeius schlieffeni	Gambela	1	0	0					
52	Nycticeius hindei	Didessa Bulcha	2 2	0 1	0 50	ND	0	2	2	1587
53	Nycticeius hirundo	Gambela Didessa Bulcha	11 1 1	0 0 0	0 0 0	1+3	0	0	0 D2	2674
54	Myotis tricolor	Abiata	1	0	0					
58	Scotophilus nigrita	Abiata	17	2	11.8	1+2	2	0	0	10498
		Koka Gambela Bahadu Bulcha	4 1 1 6	0 0 0	0 0 0 0	1+2		۷	2	15129
59	Scotophilus leucogaster	Gambela	31	1	3.2	1+2	0	2	2	2758
	MOLOSSIDAE									
64	<u>Tadarida</u> pumila	Abiata Koka Gambela	4 1 7	0 0 0	0 0 0					
65	Tadarida nigeriae	Bulcha	1	0	0					
68	Tadarida condylura	Koka Gambela	1	0 0	0 0					Cont.

					5	eroloo	ical	res	ults	
LKY Ref.	Species	Locality	Total Tested	Total +ve	%+ve	Dil.	WN	Nt	Z	Log. No.
				A Design of the second s						
69	Tadarida nanula	Gambela	1	0	0					
	<u>Tadarida</u> sp.	Koka Bahadu	3 1	0 0	0 0					
	Unidentified Fruit Bats	Bulcha	1	0	0					
	Unidentified Insectivorous Bats	Koka Bahadu Filwoha Gambela	1 6 2 10	0 1 1 1	0 16.7 50 10.0	1+3 1+2 1+2	1 4 3	0 4 2	1 4 0	18464 13497 10446
		Didessa Bulcha	2 4	1 0	50 0	1+4	4	3	2	14118

APPENDIX II

Table 1. Days spent in the Study Areas, November 1969 to April 1977

Area	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Abiata					16			Si iba		42	4		62
Koka	2	6	42	40	14	2	7	6	28	35	1	19	202
Shalla					4	3	1						8
Total Rift Valley	2	6	42	40	34	5	8	6	28	77	5	19	272
Bahadu	14	12		25	17	14				21	12	1	116
Filwoha										6			6
Aseita		15	14			1			16	7	14	10	77
Total Awash Valley	14	27	14	25	17	15			16	34	26	11	199
Gambela	6	14		13	12	15	18	26				34	138
Didessa	20	38	12		14	9	22	6					121
Bulcha	18	13	23			23	12			1	58	20	168
Kelam			12										12
TOTAL	60	98	103	78	77	67	60	38	44	112	89	84	910

Tatle 2. Summary of Serological Tests by Hemagglutination - Inhibition

Family	species examined	individuals examined	positives	percentage
Amphibia amphibiana				
Ampribia - ampribians	1	100	2	•
Buronidae - todas	1	102	2	2
Rhacophoridae - tree toads	1	2	0	0
Ranidae - frogs	6	43	1	2
Reptilia - reptiles				
Testudinidae - tortoises	1	7	1	14
Crocodylidae - crocodiles	i	2	ò	0
Anamidae - lizards	2	200	12	10
Chamaelionidae - chamaeleons	ĩ	22	0	10
Scincidae - skinks	i	7	0	0
Varanidae - monitors	i	7	õ	0
Colubridae - "barmloss snakes"	2	1	1	25
Viponidao - vipons	5	4	1	25
viperidae - vipers	2	2	0	0
Aves - birds				
Pelecanidae - pelicans	2	28	1	3.6
Phalacrocoracidae - cormorants	1	1	0	0
Anhingidae - darters	1	7	0	0
Ardeidae - egrets, herons	14	86	23	26.7
Scopidae - hammerkop	1	4	3	75
Ciconiidae - storks	2	18	ĩ	5.6
Threskiornithidae - ibises, spoonbills	2	4	Ô	0
Phoeniconteridae - flamingoes	2	35	ĩ	29
Anatidae - ducks geese	10	73	i	1 4
Accinitridae - kites vultures buzzards	10	15		1.4
eanles	17	138	43	31.2
Falconidae - falcons	4	6	3	50
Phasianidae - francolins quail	Å	40	a	22.5
Numididae - guineafowl	ī	40	1	16.7
Turnicidae - button quail	i	1	0	10.7
Rallidae - rails crakes	2	Å	0	Õ
Jacanidao - jacanac	1	20	0	2 6
Postratulidae - nainted chine		30	2	12.0
Chanadniidae - painteu shipe	i i	225	2	13.3
Scolopacidae - provers	16	233	11	2.6
Scolopacidae - waders	10	427	11	2.0
Recurvinostridae - stilts, avocets	2	30	11	24 4
Burninidae - thickknees	2	32	11	34.4
Glareolidae - pratincoles, coursers	3	32	11	34.4
Laridae - gulls, terns	5	26	0	0
Rynchopidae - skimmers	!	2	0	42 1
Pteroclididae - sandgrouse	3	38	16	42.1
Columbidae - pigeons, doves	17	1588	332	20.9
Psittacidae - parrots	1	1	0	0
Musophagidae - turacos	1		1	100
Cuculidae - cuckoos	8	121	11	9.1
Tytonidae - barn owls	1	6	1	16.7
Strigidae - owls	4	24	13	54.2
Caprimulgidae - nightjars	10	208	15	7.2
Apodidae - swifts	1	1	0	0
Coliidae - mousebirds	2	186	7	3.8

118

1	1	0
		ч.
-		-

Table 2. Summary of Serological T ests by Hemagglutination - Inhibition - cont.

Aves - Birds	species examined	individuals examined	positives	percentage
Trogonidae - trogons	1	4	0	2 7
Alcedinidae - kingtisners	8	730	20	2.1
meropidae - bee-eaters	0	3/4	32	10.0
Loraciidae - rollers	2	11	15	27.0
Upupidae - noopoes	1	54	15	27.0
Phoeniculidae - wood noopoes	2	10	U	17.0
Bucerotidae - hornbills	5	28	5	17.9
Capitonidae - barbets	8	194	4	2.1
Indicatoridae - honeyguides	4	104	2	1.9
Picidae - woodpeckers	5	103	3	3.0
Alaudidae - larks	2	36	10	2.8
Hirundinidae - swallows	8	259	12	4.6
Motacillidae - wagtails, pipits	6	99	3	3.0
Campephagidae - cuckoo-shrikes	2	71	2	2.8
Pycnonotidae - bulbuls	3	327	6	1.8
Laniidae - shrikes	15	404	68	16.8
Muscicapidae (Turdinae) - thrushes	22	602	170	28.2
Muscicapidae (Timaliinae) - babblers	3	112	7	6.3
Muscicapidae (Sylviinae) - warblers	30	994	33	3.3
Muscicapidae (Muscicapinae) -				
flycatchers	10	319	17	5.3
Paridae - tits	1	8	0	0
Nectariniidae - sunbirds	10	568	18	3.2
Zosteropidae - white-eyes	2	100	2	2.0
Emberizidae - buntings	2	42	1	2.4
Fringillidae - finches	7	321	5	1.6
Estrildidae - waxbills, firefinches	22	1161	16	1.4
Ploceidae - weavers	35	2145	56	2.6
Sturnidae - starlings oxpeckers	9	395	33	8.4
Oriolidae - orioles	2	19	1	5.3
Dicruridae - drongos	1	42	0	0
Corvidae - crows	3	3	0	0
Mammalia - Mammals				main?
Pteropodidae - fruit bats	7	612	101	16.5
Emballonuridae - sheath-tailed bats	3	5	1	20.0
Nycteridae - slit-faced bats	4	6	0	0
Megadermatidae - false vampires	2	39	3	7.7
Rhinolophidae - horseshoe bats	5	70	2	2.9
Hipposideridae - leaf-nosed bats	4	10	0	0
Vespertilionidae - mouse-eared and				
pistrelle bats	15	138	6	4.3
Molossidae - free-tailed bats	4	20	0	0
Soricidae - shrews	3	7	7	100
Cercopithecidae - monkey, baboons	3	331	112	33.8
(includes 1 hybrid)				
Sciuridae - squirrels	1	2	2	100
Muridae - mice	10	433	41	9.5
Canidae - dogs	1	2	2	100
Viverridae - genets mongoose	3	7	2	28.3
Felidae - cats	2	11	4	36.4
Suidae - pigs	2	3	0	0

Family Species	No. examined	No. positive	Percentage
Ardeidae	86	23	26.7
Ixobrychus minutus Ardeola ibis Butorides striatus	13 18 19	2 4 13	15.4 22.2 68.4
Accipitridae	77	26	33.8
Milvus migrans Accipiter tachiro Accipiter badius	49 13 27	13 5 3	26.5 38.5 11.1
Phasianidae	46	10	21.7
Francolinus sephaena	13	6	46.2
Rostratulidae	15	2	13.3
Rostratula benghalensis	15	2	13.3
Burhinidae	32	11	34.4
Burhinus senegelensis	29	10	34.5
Glareolidae	32	11	34.4
Pluvianus aegyptius	25	10	40.0
Pteroclididae	38	6	15.8
Pterocles quadricinctus	13	3	23.1
Columbidae	1578	332	21.0
Streptopelia lugens Streptopelia semitorquata Streptopelia decipiens Streptopelia vinacea Streptopelia rosegorisea Oena capensis Turtur afer Treron australis Treron waalia	55 162 593 104 50 210 168 10 41	8 17 139 25 17 40 23 1 11	14.5 10.5 23.4 24.0 34.0 19.0 13.7 10.0 26.8
Cuculidae	121	11	10.0
Centropus monachus Centropus superciliosus	11 59	4 6	36.4 10.2

Table 3. Birds Showing Significant Serological Reactions

Family Species		Total examined	Total positive	Percentage
Strigidae		23	13	56.5
Otus s	cops	17	10	58.8
Caprimulgidae		208	15	7.2
Caprim Caprim	ulgus inornatus ulgus climacurus	15 10	2 1	13.3 10.0
Meropidae		374	32	8.6
Merops Merops Merops	nubicus albicollis bulocki	153 22 13	16 4 2	10.5 18.2 15.4
Upupidae		54	15	27.8
Upupa	epops	54	15	27.8
Bucerotidae		28	5	17.9
Tockus	deckeni	15	2	13.3
Hirundinidae		259	12	4.6
Hirund	o daurica	10	1	1.0.0
Laniidae		404	68	16.8
Nilaus Dryosc Tchagr Laniar Laniar	afer opus gambensis a senegalla ius aethiopicus ius funebris	11 43 45 57 61	3 25 10 7 13	27.3 58.1 22.2 12.3 21.3
Muscicapidae (Turdinae)	602	170	28.2
Cercom Turdus Turdus	ela familiaris pelios olivaceus	15 347 22	3 149 10	20.0 42.9 45.5
Muscicapidae (Muscicapinae)	319	17	5.3
Batis Batis	orientalis minor	21 18	3 3	14.3 16.7
Nectariniidae		568	18	3.2
Nectar	inia senegalensis	52	7	13.5

Table 3. Birds Showing Significant Serological Reactions - cont.

Family Species	Total examined	Total positive	Percentage
Fringillidae	321	5	1.6
Serinus leucopygius	12	2	16.7
Sturnidae			
Lamprotornis purpuropterus Creatophora cinerea Buphagus erythrorhynchus	72 104 36	9 12 5	12.5 11.5 13.9

Table 3. Birds Showing Significant Serological Reactions - cont.

Total 45 species in 22 families

Table 4. Comparison of Significant Serological Results Within Bird Species at Different Study Sites.

Species	Rift Valley exam. pos.%	Gambela exam. pos.%	Awash Valley exam. pos.%	Bulcha exam. pos.%	Didessa exam. pos.%
Milvus migrans		11-4-35.4		14-3-21.4	15-5-33.3
Burhinus senegalensis	15-3-20.0	12-6-50.0			
Streptopelia semitorquata	50-4- 8.0	15-6-40.0		61-3- 4.9	27-4-14.8
Streptopelia decipiens	256-22- 8.6	85-28-32.0	241-81-33.6		
Streptopelia vinacea		80-24-30.0			24-1- 4.2
Oena capensis	56-9-16.1	55-20-36.4	99-11-11.1		
Turtur afer	13-0- 0	31-4-12.9	56-17-30.4	50-1- 2.0	18-1- 5.6
Caprimulgus clarus	31-0- 0		79-11-13.9	36-1- 2.8	
Merops nubicus	58-2- 3.4		67-11-16.4	15-2-13.3	13-1- 7.7
Merops pusillus	24-1- 4.2	19-3-15.8	49-4 - 8.2		40-0- 0
Upupa epops	24-2- 8.3		39-12-30.8		
Tchagra senegala	11-1- 9.1			12-2-16.7	14-2-14.3
Laniarius aethiopicus	28-3-10.7			22-3-13.6	
Turdus pelios	52-12-23.1	139-63-45.3		106-54-50.9	49-20-40.8
Turdoides rubiginosus	35-0- 0		21-4 -19.0	39- 2- 5.1	
Camaroptera brevicaudata	61-1- 1.6	15-0 -0	52-2 - 3.8	37- 5-13.5	36-0 -0
Sylvietta brachyura			34-2 - 5.9		11-3 - 27.3
Nectarinia senegalensis		14-1 - 7.1			29-5 - 17.2
Nectarinia habessinica	13-0- 0		52-6 -11.5		
Pytelia phoenicoptera		29-3 -10.3			48-0 - 0
Lagonosticta rufopicta		44-0 -0			10-1 -10.0
Lamprotornis chalybaeus	50-0- 0		57-4 - 7.0	10-1-10.0	
Lamprotornis purpuropterus	30-0_0		36-9 -25.0		
Creatophora cinerea	52-1- 1.9		52-11-21.1		
Totals	859-61- 7.1	520-159-30.6	934-185-19.8	387-75-19.4	273-42-15.8

Table 5. Families and species of bats with Significant Antibody Titers

Family, Species	No. examined	No. positive	Percentage
Pteropodidae	612	101	16.5
Epomophorus minor	168	32	19.0
Epomophorus labiatus Epomophorus gambianus	42 115	22	14.3
Micropteropus pusillus Eidolon helvum	177 9	14 5	7.9
Rousettus aegyptiacus Rousettus angolensis	36	10	27.8
Magadaumatidae	15	1	7.7
regadernia ci dae	39	3	1.1
Lavia frons	20	2	10.0

Table 6. Comparison of Significant Serological Results Within Bat Species at Different Study Sites*

Species	Rift Valley	Gambela	Awash Valley	Bulcha	Didessa
Epomophorus minor	69-4-5.8		99-28-28.3	- el este	
Epomorphus gambianus		39-13-33.3		56-6-10.7	20-3-15.0
Micropteropus pusillus		97-12-12.4			77-2- 2.6
Totals	69-4-5.8	136-25-18.4	99-28-28.3	56-6-10.7	97-5- 5.2

.

Numbers refer to number examined number positive percentage positive Table 7. Families and species of other mammals with Significant Antibody Titers

+

Cercopithe	ecidae 112 - 331 - 33.8	
	Papio anubis Cercopithecus aethiops	187 - 58 - 31.0 65 - 53 - 81.5
(Muridae)		
	Arvicanthis nilotica	137 - 29 - 21.2
Felidae	4 - 11 - 36.4	
	Felis domesticus	10 - 4 - 40.0

*Numbers refer to number examined number positive percentage positive Table 8. Serological results from birds bled more than once.

. . .

					Reg	sulto	:				
Locality	Age	Date	Serum No.	Dil. ¹	WN2	Nt3	Z ⁴				
Melierax metabates											
Bulcha "	Ad Ad	20.vi.74 25.xi.74	17652 18314	ND ND	3 3	2 0	2 2				
Burhinus senegalensis											
Gambela "	PJ Ad	12.xii.72 14.v.74	14008 17432	1+1 ND	0 4	0 3	0 4				
Streptopelia decipi	ens										
Koka "	PJ Ad	31.iii.71 26.iii.72	8833 12182	1+1 1+2	0 0	0 0	0 0				
Abiata "	PJ PJ	13.x.71 23.x.71	10516 10817	1+1 1+1	0 0	0 0	0 0				
Bahadu "	PJ Ađ	29.i.71 17.x.72	8111 13397	N D N D	Q 2	0 0	0 0				
Aseita "" "" "	Ad Ad Ad Ad Ad Ad Ad	6.xi.73 23.iii.74 4.xi.73 27.iii.74 12.xi.73 19.iii.74 5.xi.73 26.iii.74	16104 17258 16046 17384 16200 17219 16074 17356	1+2 1+1 ND 1+2 ND 1+1 ND	0 0 0 0 0 0 0	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0				
<u>Ceryle maxima</u>											
Gambela "	Ad Ad	14.v.74 26.iv.75	17425 18807	1+3 1+2	0 0	0 0	0 0				
Pogoniulus pusillus											
Bulcha "	PJ Ad	19.i.74 17.vi.74	16535 17600	1+3 1+2	0 0	0 0	0 0				
Dryoscopus gambensi	s										
Bulcha " "	? ? Ad	22.vi.74 19.xi.74 18.xi.70 17.xi.74	17681 18245 7306 18220	1+1 1+1 1+2 1+2	3 2 2 4	0 2 1 2	1} 0} 1 4]				

¹Dilution, ²West Nile, ³Ntaya, ⁴Zika.

Ad Ad	8.iii.71 20.ix.75	8528 19315	1+2 ND	0 0	0 0	0 0
PJ Ad Ad Ad Ad Ad Ad Ad	25.vi.70 12.vii.71 27.vii.70 15.ii.74 15.vi.75 18.ii.74 16.vi.75 30.i.72 16.vi.75	6255 10081 6281 16789 19118 16873 19136 11770 19133	1+2 1+1 1+2 1+1 1+1 1+1 1+1 1+2 ND	0 0 4 3 3 0 0	0 0 0 0 0 1 0	0 0 0 1 1 2 0 0
Ad Ad PJ Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad Ad	19.iii.73 21.yi.74 17.xii.69 10.xi.72 25.i.74 17.vi.74 29.xi.74 24.xi.70 20.xi.72 15.xii.69 21.xi.70 21.i.74 21.xi.70 3.vii.72 25.iii.73 28.i.74 9.vii.72 18.iii.73 13.vi.71	14793 17665 1939 13604 16669 17601 18364 7424 13721 1876 7365 16589 7363 12788 14955 16747 12982 14779 9738	1+1 1+1 ND 1+1 1+2 1+2 1+2 1+1 ND 1+1 1+2 1+1 1+2 1+1 1+2 1+1 1+2 1+1 1+2 1+1 1+2 1+1 1+1	4 1 0 0 4 2 2 0 0 1 0 2 2 2 0 4 2 0 0	2 4 1 0 2 0 0 0 0 1 0 1 2 3 0 3 2 0 0	232042200012003300
	Ad PAdAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	Ad 8.iii.71 Ad 20.ix.75 PJ 25.vi.70 Ad 12.vii.71 Ad 27.vii.70 Ad 15.ii.74 Ad 15.vi.75 Ad 16.vi.75 Ad 16.vi.75 Ad 16.vi.75 Ad 16.vi.75 Ad 21.yi.74 PJ 17.xii.69 Ad 10.xi.72 Ad 25.i.74 Ad 27.vi.74 Ad 27.vi.74 Ad 29.xi.74 Ad 29.xi.74 Ad 29.xi.74 Ad 29.xi.74 Ad 20.xi.72 Ad 21.xi.70 Ad 21.xi.72 Ad 25.iii.73 Ad 28.i.74 Ad 9.vii.72 Ad 13.vi.71	Ad 8.iii.71 8528 Ad 20.ix.75 19315 PJ 25.vi.70 6255 Ad 12.vii.71 10081 Ad 27.vii.70 6281 Ad 15.ii.74 16789 Ad 15.vi.75 19118 Ad 15.vi.75 19136 Ad 16.vi.75 19136 Ad 16.vi.75 19133 Ad 16.vi.75 19133 Ad 19.iii.73 14793 Ad 21.vi.74 17665 PJ 17.xii.69 1939 Ad 10.xi.72 13604 Ad 25.i.74 16669 Ad 29.xi.74 18364 Ad 29.xi.74 18364 Ad 20.xi.72 13721 Ad 20.xi.72 13721 Ad 15.xii.69 1876 Ad 21.xi.70 7363 Ad 21.xi.70 7363 Ad 25.iii.73 14955 Ad 28.i.74 16747 <td>Ad 8.iii.71 8528 1+2 Ad 20.ix.75 19315 ND PJ 25.vi.70 6255 1+2 Ad 12.vii.71 10081 1+1 Ad 27.vii.70 6281 1+2 Ad 15.ii.74 16789 1+1 Ad 15.vi.75 19118 1+1 Ad 15.vi.75 19136 1+1 Ad 16.vi.75 19136 1+1 Ad 30.i.72 11770 1+2 Ad 16.vi.75 19133 ND Ad 16.vi.75 19133 ND Ad 19.iii.73 14793 1+1 Ad 21.vi.74 17665 1+1 PJ 17.xii.69 1939 ND Ad 10.xi.72 13604 1+1 Ad 29.xi.74 18669 1+1 Ad 29.xi.74 18364 1+2 Ad 20.xi.72 13721 ND Ad 15.xii.69 1876 ND Ad</td> <td>Ad 8.iii.71 8528 1+2 0 Ad 20.ix.75 19315 ND 0 PJ 25.vi.70 6255 1+2 0 Ad 12.vii.71 10081 1+1 0 Ad 27.vii.70 6281 1+2 0 Ad 15.ii.74 16789 1+1 4 Ad 15.vi.75 19118 1+1 3 Ad 18.ii.74 16873 ND 3 Ad 16.vi.75 19136 1+1 3 Ad 30.i.72 11770 1+2 0 Ad 16.vi.75 19133 ND 0 Ad 16.vi.75 19133 ND 0 Ad 10.xi.72 13604 1+1 1 PJ 17.xii.69 1939 ND 0 Ad 10.xi.72 13604 1+1 0 Ad 29.xi.74 18364 1+2 2 Ad 29.xi.74 18364 1+2 2 Ad <t< td=""><td>Ad 8.iii.71 8528 1+2 0 0 Ad 20.ix.75 19315 ND 0 0 PJ 25.vi.70 6255 1+2 0 0 Ad 12.vii.71 10081 1+1 0 0 Ad 27.vii.70 6281 1+2 0 0 Ad 15.ii.74 16789 1+1 4 0 Ad 15.vi.75 19118 1+1 3 0 Ad 18.ii.74 16873 ND 3 0 Ad 16.vi.75 19136 1+1 3 1 Ad 30.i.72 11770 1+2 0 0 Ad 16.vi.75 19133 ND 0 0 Ad 19.iii.73 14793 1+1 4 2 Ad 21.vi.74 17665 1+1 1 4 PJ 17.xii.69 1939 ND 0 1 Ad 10.xi.72 13604 1+1 0 0</td></t<></td>	Ad 8.iii.71 8528 1+2 Ad 20.ix.75 19315 ND PJ 25.vi.70 6255 1+2 Ad 12.vii.71 10081 1+1 Ad 27.vii.70 6281 1+2 Ad 15.ii.74 16789 1+1 Ad 15.vi.75 19118 1+1 Ad 15.vi.75 19136 1+1 Ad 16.vi.75 19136 1+1 Ad 30.i.72 11770 1+2 Ad 16.vi.75 19133 ND Ad 16.vi.75 19133 ND Ad 19.iii.73 14793 1+1 Ad 21.vi.74 17665 1+1 PJ 17.xii.69 1939 ND Ad 10.xi.72 13604 1+1 Ad 29.xi.74 18669 1+1 Ad 29.xi.74 18364 1+2 Ad 20.xi.72 13721 ND Ad 15.xii.69 1876 ND Ad	Ad 8.iii.71 8528 1+2 0 Ad 20.ix.75 19315 ND 0 PJ 25.vi.70 6255 1+2 0 Ad 12.vii.71 10081 1+1 0 Ad 27.vii.70 6281 1+2 0 Ad 15.ii.74 16789 1+1 4 Ad 15.vi.75 19118 1+1 3 Ad 18.ii.74 16873 ND 3 Ad 16.vi.75 19136 1+1 3 Ad 30.i.72 11770 1+2 0 Ad 16.vi.75 19133 ND 0 Ad 16.vi.75 19133 ND 0 Ad 10.xi.72 13604 1+1 1 PJ 17.xii.69 1939 ND 0 Ad 10.xi.72 13604 1+1 0 Ad 29.xi.74 18364 1+2 2 Ad 29.xi.74 18364 1+2 2 Ad <t< td=""><td>Ad 8.iii.71 8528 1+2 0 0 Ad 20.ix.75 19315 ND 0 0 PJ 25.vi.70 6255 1+2 0 0 Ad 12.vii.71 10081 1+1 0 0 Ad 27.vii.70 6281 1+2 0 0 Ad 15.ii.74 16789 1+1 4 0 Ad 15.vi.75 19118 1+1 3 0 Ad 18.ii.74 16873 ND 3 0 Ad 16.vi.75 19136 1+1 3 1 Ad 30.i.72 11770 1+2 0 0 Ad 16.vi.75 19133 ND 0 0 Ad 19.iii.73 14793 1+1 4 2 Ad 21.vi.74 17665 1+1 1 4 PJ 17.xii.69 1939 ND 0 1 Ad 10.xi.72 13604 1+1 0 0</td></t<>	Ad 8.iii.71 8528 1+2 0 0 Ad 20.ix.75 19315 ND 0 0 PJ 25.vi.70 6255 1+2 0 0 Ad 12.vii.71 10081 1+1 0 0 Ad 27.vii.70 6281 1+2 0 0 Ad 15.ii.74 16789 1+1 4 0 Ad 15.vi.75 19118 1+1 3 0 Ad 18.ii.74 16873 ND 3 0 Ad 16.vi.75 19136 1+1 3 1 Ad 30.i.72 11770 1+2 0 0 Ad 16.vi.75 19133 ND 0 0 Ad 19.iii.73 14793 1+1 4 2 Ad 21.vi.74 17665 1+1 1 4 PJ 17.xii.69 1939 ND 0 1 Ad 10.xi.72 13604 1+1 0 0

Table 8. Serological results from birds bled more than once - Cont.

128

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Total
Bulcha: Examined Positive %	13 10 8	1 0 0	20 12 60	:	:	13 4 31	4 3 75	:	-	0 - -	42 19 45	15 6 40	108 54 50
Gambela: Examined Positive %	25 7 28	6 3 50	:	7 5 71	2 1 50	1 0 0	23 16 70	14 8 57				62 23 37	140 63 45
Didessa: Examined Positive %	6 1 17	18 10 56	7 3 43	-	4 1 25	6 3 50	8 2 25	0 - -	:	-		:	49 20 41
Rift Valley: Examin Positi %	ed 0 ve - -	0 - -	6 0 0	3 0 0	14 3 21	0 - -	0 - -	0 - -	15 3 20	11 4 36	0 - -	1 1 100	50 11 22
Total: Examined Positive %	44 18 41	25 13 52	33 15 45	10 5 50	20 5 25	20 7 35	35 21 60	14 8 57	15 3 20	11 4 36	42 19 45	78 30 38	347 148 43

Table 9. Seasonal incidence of antibody prevalence in Turdus pelios.

Note: Included in this table are 2 sera from Bulcha and 1 from Gambela which were not tested, but it is not known from which months they should be deducted. In the Rift Valley 2 further birds were tested, of which 1 was positive, but it is not known into which month(s) these should be placed.

		Number	of	Sera Prot	ecting	Any	Mice
<u>Locality</u>	<u>No. Tested</u>	Banzi	Wesselshron	Spondweni	Uganda S	Zika	West Nile
Bahadu	16	2			1		1
Gambela	7				1		1
Bulcha	1						1
Koka	7				2		3
Didessa	2						2

Table 10. Neutralization Test Results of HAI Positive Bird Sera in Adult Mice Receiving 50-100 $\rm LD_{50}$ of Virus.*

*Where more than one virus was neutralized only that virus showing greatest neutralization was tabulated.

Table 11. Neutralization Test Results of HAI Positive Bird Sera in Suckling Mice Receiving 25 ${\rm LD}_{50}$ of Virus.*

<u>Locality</u>	<u>No. Tested</u>	Banzi	Wesselsbron	Spondweni	Zika	West Nile	Ntaya
Aseita	82	1	0	1	0	17	4
Bahadu	36	1	0	0	0	7	1
Gambela	51	1	1	0	2	15	3
Bulcha	57	1	0	0	0	13	1
Didessa	23	0	0	0	0	5	1
Koka	22	0	0	0	0	5	1
Abiata	5	0	0	0	0	3	0
Total	276	4	1	1	2	65	11

Number of Sera Protecting at least 50% of Mice

*Where more than one virus was neutralized only that virus showing greatest neutralization was tabulated.

<u>Localit</u> y	<u>No. Tested</u>	Banzi	Wesselsbron	Spondweni	Zika	West Nile	Ntaya
Aseita	11	4/8	0.40	4/4		1	5/8
		8/8	3/8		1/8	1/8	8/8 7/8
			4/8			5/8 8/8 6/8 8/8 6/8 7/8 5/8	6/8 1/8 1/8 2/8 3/8 6/8 5/7
Bahadu	8				1/5		5/7
						8/8	6/8
						6/8 7/8 5/8 7/8	3/8 5/8 2/8 2/8
		5/8			1/8 5/8	8/8 5/8	4/8 5/8
Gambela	12		5/8		7/7 7/8	4/8 5/8	1/8 4/8 1/8
					3/8	6/8 8/8 4/8 7/8 6/8 5/8	5/8 1/8 7/8 1/8 5/8 3/8 1/8
					2/8 1/8	7/8 8/8	3/8 6/7
Bulcha	9	6/8			1/8	2/8 4/8 6/8 6/8 7/8 4/8 8/8 8/8	1/8 2/8 2/8 4/8 1/8 1/8 6/8
					4/8	8/8	5/8

Table 12. Cross Reaction Pattern by Neutralization Test among Ethiopian Bird Sera Neutralizing more than One Group B Virus.

Table 12. Cross Reaction Pattern by Neutralization Test among Ethiopia Bord Sera Neutralizing more than One Group B Virus - cont.

Locality	<u>No. Tested</u>	Banzi	Wesselsbron	Spondweni	Zika	West Nile	Ntaya
Didessa	3					4/8 7/8 5/8	6/8 2/8 1/8
Koka	3					6/8 5/8 5/8	1/8 2/8 1/8
Aseita	2					7/8 7/8	1/8 2/8

•

Table 13. Human Sera HAI Test Results

3.8% 1.6% 0.8% No. % Chikungunya 000 8 -00-2 -000 0 -32.9% 21.2% 5.6% 9.0% S Group B ∞ Reactive ∞ Reactive 69 28 ~ 4.3% 2.3% 9.0% 20 anbuag No. ~ N00 6 0 000 3 00 9 8.1% 3.2% 4.5% 3.8% 20 **Z**ika No. 11 3 4000 0-02 9 000 5 0-4 8.6% 7.2% 3.8% 3.8% No. % SI'N JESW 8 e 0000 6000 6 5 m000 000 3.3% 2.3% 1.6% 1.3% 20 Yellow Fever No. ONMN 0000 S _ 2 000 0 1 Serum Titer Total Total Total Total 20 20 80 80 10 80 80 80 80 20 10 10 20 80 80 ~ 1 ~ 1 ~ 1 Number Tested 210 125 132 78 Locality Age Adults Adults Didessa under 12 years under 12 years Koka

134

Table 13. Human Sera HAI Test Results - cont.

svnugunyid)	No. %	0-	3 6.5%		0		0		0
Viqrjium SvijcesA	. %		73.9%		28.6%		100%		83.3%
g dhoug	Nc	7.5	34		2		39		10
pengue	No. %	211.22.23	0		0		0		0
Zika	No. %		C		0		0		0
9ſŕN J29₩	0. %		19.6%		14.6%				16.7%
	Z	- 1990	6 %	-000	-		0	00	2
Yellow Fever	No. %	-	1 2.2		0		0		0
Serum	Titer	10 20 80	Total	10 20 80	Total	10 20 80 80	Total	10 20 80	[ota]
Number	Tested	46		~		66		~1	
Locality	Age	Bulcha Adults		under 12 years		Bahadu Adults		under 12 years	

135
Lo	ocality Age	Number Tested		Yellow Fever		West Nile		Zika		Group B Multiply Reactive		Chikungunya		Anticomplimentar
D	idessa													
	Adults	117	21	17.9%	3	2.6%	4	3.4%	28	23.9%	30	25.6%	33	28.2%
	under 12 years	30	3	10.0%	0		2	6.6%	12	40.0%	18	60.0%	2	6.6%
Ko	oka													
	Adults	132	3	4.4%	5	7.4%	2	2.9%	6	8.8%	7	10.3%	6	8.8%
	under 12 years	18	0		2	11.1%	0		4	22.2%	6	33.3%	2	11.1%
Bu	lcha													
	Adults	38	1	2.6%	1	2.6%	0		10	26.3%	12	31.6%	14	36.8%
	under 12 years	3	0		0		0		1	33.3%	1	33.3%	1	33.3%
Ba	ahadu													
	Adults	39	0		4	10.3%	0		1	2.6%	4	10.3%	6	15.4%
	under 12 years	12	0		1	8.3%	1	8.3%	2	16.6%	1	8.3%	3	25.0%

Table 14. Positive HAI Human Sera CF Test Results

Table 15. Neutralization Test Results of HAI Positive Human Sera in Suckling Mice Receiving 100 $LD_{F,0}$ of Virus.

nc					Ser	a Prote	ctir	ng Mice				
Locality				Yêllow Fever		ƏILN 1SƏM	e112	2117	I sugae I	Group B V[dit[uM	Reactive	8 əsənaqat zufifadqəsn3
Age	Tested	Antibody*	No.	%	No.	8	No.	8	No. %	No.	8	No. %
Didessa												
Adults	111	NT NT + CF	22	18.8% 20.5%	~-	1.7% 0.9%	50	4.2%	Not Tested	0 m	2.6%	Not Tested
		Total	46	39.3%	e	2.6%	٢	5.9%		e	2.6%	
of wohin		NT	0		0		0		Not	0		Not
years	30	NT + CF	-	3.3%	0		0		lested	0		lested
		Total	-	3.3%	0		0			0		
Koka												
Adults	68	NT + CF	90	8.8%	- ~	1.5%		Not Tested	00	0-	1.5%	Not Tested
		Total	6	13.2%	e	4.4%			0	-	1.5%	
under 12		NT	0		-	5.6%	-	Vot	0	0		Not
years	18	NT + CF	0		-	5.6%		nancal	0	0		lested
		Total	0		2	11.2%			0	0		
Bulcha												
Adults	38	NT + CF	e o	7.9%	00		00		00	00		Not Tested
		Total	e	7.9%	0		0		0	0		

Table 15. Neutralization Test Results of HAI Positive Human Sera in Suckling Mice Receiving 100 LD₅₀ of Virus. - cont.

snali eudəduq ^{əe}		7.9%		7.9%	8.3%		8.3%
S Japanese B		e	0	e	-	0	-
e Reactive			20.5%	20.5%		8.3	8.3%
. β droup β γ[dij[μΜ		0	ω	80	0	-	-
ی Deugue I ج		0	0	0	0	0	0
ج • کالاء پو		0	0	0	0	0	с
ƏILN 1SƏM			15.8%	15.8%			
ž		0	9	9	0	0	0
S . Yellow Fever %			Not Tested		Not Tested	Not Tested	
Antibody*		IN	NT + CF	Total	NT	NT + CF	Total
Number Tested			39				
-ocality Age	Sahadu		Adults		CL 2000	years	

*NT = Neutralizing antibody alone, NT + CF = Neutralizing antibody plus CF antibody.

Table 16. Virus Isolates from Wild Vertebrates and Sentinel Mice in Ethiopia.

Species	Age	Locality	Date	Tissue	Virus	Ref. No.
Ardeola ralloides	hA	Koka	22 ix 75	Whole blood	Duabe	4732/19216
Milvus migrans	17	ii ii	10. ix. 76	" "	West Nile	4812/19622
Melieray metabates		n	23 ix 75	P 0	Duche	4739/19362
Francolinus clappertoni	Ad	u	10. ix. 76	и и	West Nile	4813/19623
Strentonelia deciniens	714	Aseita	12 xii 75	u u	Durabe	4534/19473
Streptopella roseogrisea	17	Dubte	9 ix 74	Serum	Abu Mina	626/17555
Dryoscopus gambensis		Bulcha	22 ix 74	Whole blood	Duabe	3785/19291
" "		u	22.17.14	Serum	West Nile	1334/18395
		Koka	22 iv 75	Whole blood	Dughe	1736/103/7
u u		Rulcha	6 ji 76		Dugbe	4/50/1954/
		Koka	20 viji 76		missing	4456/19550
Tehagra conegala		II II	29.VIII./0		Ducho	4/04/19090
" "		н	14.17.75		ugue	4740/19307
laniarius aethionicus			23 iv 75		u	4/41/153/0
		u	23.14.75	Poolod tissue	Wast Nila	4757/19549
		н	н	Whole blood		4767/19595
				Realed ticcue	Wast Nila	4/00/19090
Lanianius funchais		Dulaha	6 11 76	Foored Lissue	Rest Nile	4011/19021
Laniarius iuneoris		buicha	0.11.70	blood	bunyas	3230/ 19533
и и		Koka	31.viii.76	Whole blood	West Nile	4771/19597
				Pooled tissue	West Nile	4772/19597
Turdus pelios		Bulcha		Kidney	West Nile	4152/18394
u u	Ad	Koka	30.iv.75	Serum	West Nile	3307/19045
n n		"		Whole blood	Dugbe	4731/19215
n n		u		Liver	West Nile	3662/19330
n n		н		Whole blood	West Nile	4733/19330
n n			22.ix.75		Dugbe	4734/19335
n n		"	"	Pooled tissue	ñ	4735/19346
11 II		н	23.ix.75	Serum	Dugbe	4738/19360
u u	Ad	16	31.viii.76	Whole blood	West Nile	4769/19596
u u		11	n	Pooled tissue	missing	4770/19596
u u	Juv.		n	Whole blood	West Nile	4773/19598
n n		n	"	Pooled tissue	missing	4774/19598
a a	14	u	9.ix.76	Whole blood	West Nile	4808/19620
11 H	17	н	н -	Whole blood	*	4809/19620
SUnidentified, probably		н	26viii-12ix76	Pooled tissue	West Nile +	4810/19621
Turdus pelios			u	Whole blood	u u	4811/19621
		н	0	Whole blood		4812/19622
u u			0	Pooled tissue		4813/19623
			"	Whole blood	и и	4814/19623
Bubalornis niger		н		Whole blood	West Nile	4766/19594
Arvicanthis niloticus		Aseita	27.30.ix.74	Kidney	In progress	792/55640
11 11		"	30.ix.74	Serum	Arumowot	798/55646
<i>u</i> n			"	ü	Arumowot	808/55651
Arvicanthis niloticus		Kelam	12.111.75	u	In progress	3024/59995
Mastomys natalgnsis		Gambela	27.iv.75	Whole blood	Dugbe	4255/62060

§Identified by electron microscopy. *Does not react with Group A, Group B, or Dugbe (Congo group) by CF. +Identified by CF.

Month	Rift Valley	Gambela	Didessa	Bulcha	Totals
Jan	4/0/0*	7/210/30/0	20/13/0.7	19/55/2.9	50/278/5.6
Feb	7/0/0	15/450/30.0	39/9/0/2	13/27/2.1	74/486/6.6
Mar	29/12/0.4			23/84/3.7	52/96/1.8
Apr	32/22/0.7	13/33/2.5			45/55/1.2
May		20/64/3.2			20/64/3.2
June		17/85/5.0	24/40/1.7	25/29/1.2	66/154/2.3
Jul		24/103/4.3	22/10/0.5	12/4/0.3	58/117/2.0
Aug	6/14/2.3	27/111/4.1	6/1/0.2		39/126/3.2
Sep	29/14/0.5				29/14/0.5
Oct	82/57/0.7				82/57/0.7
Nov	5/6/1.2			50/66/1.3	55/72/1.3
Dec	20/3/0.2	37/383/10.4		14/25/1.8	71/411/5.8

*Numbers refer to days in field/total birds seen/birds per day.

				Study Sit	es					
Month	Rift	t Valley	Awash	Valley	Gar	mbela	Ke	lam	Tot	ta1
	N	wt	N	wt	N	wt	N	wt	N	wt
Jan			47	144.8					47	144.8
Feb										
Mar	42	152.1					1	138.5	43	151.8
Apr	21	150.6	6	137.2	37	131.1			64	138.1
May			8	144.0	1	154.0			9	145.1
Jun			1	162.6					1	162.6
Jul	10	160.4			2	157.0			12	159.8
Aug										
Sep	112									
Oct	112	166.9	2	150.3		•			114	166.6
Nov	4	179.6	30	142.9					34	147.3
Dec	34	161.5			17	132.8			51	151.9
Total	223	161.7	94	144.0	57	132.9	1	138.5	375	152.8

Table 18. Seasonal Weight Changes in Streptopelia decipiens

Bibliography

Technical Reports

Watson, George E. and John S. Ash 1972

Ecological Relationships between Arboviruses, Ectoparasites and Vertebrates in Ethiopia, Annual Report No. 1, 31 August 1972

Watson, George E. and John S. Ash 1973

Ecological Relationships between Arboviruses, Ectoparasites and Vertebrates in Ethiopia, Annual Report No. 2, 31 August 1973.

Watson, George E. and John S. Ash 1974

Ecological Relationships between Arboviruses, Ectoparasites and Vertebrates in Ethiopia, Annual Report No. 3, 31 August 1974

Watson, George E. and John S. Ash 1975

 Ecological Relationships between Arboviruses, Ectoparasites
and Vertebrates in Ethiopia, Annual Report No. 4, 26 September 1975

Watson, George E.

1977

Letter to Arthur J. Emery, Jr. Interim Progress Report 21 October 1977

Publications from Project

Ash, J.S.	1970.	Bag Records as Indicators of Population Trends in Partridges. <u>Trans. VIII Game Biologists International</u> Congress, 357-360.
	1970.	Observations on Decreasing Population of Red-backed Shrikes. Brit. Birds, 63:185-205, 225-239.
	1970.	Observations from Rab. Larus, 21-22:121-129.
	1971.	Birds Ringed in Ethiopia, 1969-1970. NAMRU mimeographed report, pp. 8.
	1971.	Review: Identification Guide to European Passerines by Lars Svensson. <u>Bird Study</u> , 18:119.
	1972.	Distribution Map Scheme for Ethiopia. <u>Ibis</u> , 114:109.
	1972.	Charadriiform Birds in the Ethiopian Rift Valley. <u>Walia</u> , 4:14-18.
	1972.	Bird-Ringing Report in Ethiopia 1969-1971. NAMRU mimeo- graphed report, pp. 19.
	1973.	-Luscinia luscinia and L. megarhynchos in Ethiopia. Ibis, 115:267-269.
	1973.	Bird-Ringing in Ethiopia, 1969-1972. NAMRU mimeographed report, pp. 15.
	1973.	Six Species of Birds New to Ethiopia. <u>Bull. Brit</u> . <u>Orn</u> . <u>Cl</u> ., 93:3-6.
	1974.	The Boran Cisticola in Ethiopia. <u>Bull. Brit. Orn. Cl</u> ., 94:24-26.
	1974.	Bird-Ringing in Ethiopia, 1969-1973. NAMRU mimeographed report, pp. 17.
	1975.	Bird-Ringing in Ethiopia, 1969-1974. NAMRU mimeographed report, pp. 14.
	1976.	Ecological Relationships Between Arboviruses, Vectors and Vertebrates in Ethiopia: Preliminary Report, Abstract: Ethiop. Med. Jour., 14:123.

Ash, J.S.	1976.	Bird-Ringing in Ethiopia, Report No. 5, 1969-1975. NAMRU-5 Technical Report No. 1:1-17.
	1977.	The First Breeding of the Ruddy Sheld-Duck, <u>Tadorna</u> <u>ferruginea</u> , South of the Sahara. <u>Bull</u> . <u>Brit</u> . <u>Orn</u> . <u>Cl</u> ., 97:56-59.
	1977.	Four Species of Birds New to Ethiopia and Other Notes. Bull. Brit. Orn. Cl., 97:4-9.
	1977.	Turtle Dove Migration in Southern Europe, the Middle East and North Africa. <u>Brit</u> . <u>Birds</u> , 70:504-506.
	1977.	Bird-Ringing in Ethiopia, Report No. 6, 1969-1976. NAMRU mimeographed report,
	1978.	Bird-Ringing in Ethiopia, Report No. 7, 1969-1977. NAMRU mimeographed report, pp
	1978.	A Basra Reed Warbler, <u>Acrocephalus arundinaceus griseldis</u> , in Mozambique. <u>Bull. Brit. Orn. Cl., 98(1):29-30.</u>
	1978.	Inland and Coastal Occurrences of Broad-billed Sandpipers, Limicola falcinellus, in Ethiopia and Djibouti. <u>Bull</u> . Brit. <u>Orn. Cl</u> ., 98(1):24-26.
	1978.	Ethiopia as a Presumed Wintering Area for the Eastern Grasshopper Warbler, <u>Locustella naevia straminea</u> . <u>Bull</u> . <u>Brit. Orn. Cl</u> ., 98(1):2-24.
	1978.	Sarothrura Crakes in Ethiopia. <u>Bull. Brit. Orn. Cl.</u> , 98(1):26-29.
	1978.	The Undescribed Female of Harwood's Francolin, <u>Francolinus</u> <u>harwoodi</u> and Other Observations on the Species. <u>Bull</u> . <u>Brit. Orn. Cl</u> ., 98:50-55.
Ash, J.S.	and Ashf	Ford, O.M. 1977. Great Black-headed Gulls (<u>Larus ichthyaetus</u>) and Red-necked Phalaropes (<u>Phalaropus lobatus</u>) Inland in Ethiopia. <u>Jour. Ea. Afr. Nat. Hist. Soc. & Nat</u> . <u>Mus</u> ., Vol. 31, No. 162:1-3.
Ash, J.S.	and Howe	ell, T.R. 1977. The Bald Ibis or Waldrapp <u>Geronticus</u> <u>eremita(L)</u> in Ethiopia. <u>Bull</u> . <u>Brit</u> . <u>Orn</u> . <u>Cl</u> ., 97:104.
Ash, J.S.	and McCo	onnell, E. 1976. A Biological Distribution Map for Ethiopia. <u>Ethiop</u> . <u>Med</u> . <u>Jour</u> ., 13:37-39.

Ash, J.S. and Monk, J.F. 1974. Obituary: K.D. Smith. Ibis, 116:235-236.

Ash, J.S. and Watson, G.E. 1974. <u>Locustella naevia</u> in Ethiopia. <u>Bull</u>. <u>Brit. Orn. Cl.</u>, 94:39-40.

- Ash, J.S., Erard, C. and Prevost, J. 1974. Statut et distribution de <u>Streptopelia reichenowi</u> en Ethiopie. <u>L'Oiseau et R.F.O.</u>, 44:340-345.
- Ashford, R.W., Palmer, T.T., Ash, J.S. and Bray, R.S. 1976. Blood Parasites of Ethiopian Birds. 1. General Survey. <u>Jour</u>. <u>Wildl</u>. Diseases, 12:409-426.
- Fry, C.H., Ash, J.S. and Ferguson-Lees, I.J. 1970. Spring weights of some Palearctic migrants at Lake Chad. <u>Ibis</u>, 112:58-82.
- Fry, C.H., Ferguson-Lees, I.J. and Ash, J.S. 1969. Mite lesions in Sedge Warblers and Bee-eaters in Africa. <u>Ibis</u>, 111:611-612.

Wood, O.L., Lee, V.H., Ash, J.S., Shope, R.E. and Casals, J. 1978. Viruses Isolated from Ixodid Ticks in Ethiopia. <u>Amer. Jour.</u> Tropical Med. Hygiene, 27:600-604.

Lecture:

Ash, J.S. 1974. Autumn migration in eastern Ethiopia. 16th Intern'l. Ornithological Congress, Canberra, Australia.

In Press:

Ash, J.S. and Ash, J.W. Personalities: Dr. Stephanie Tyler. Brit. Birds.

Ash, J.S. An Albinistic Carmine Bee-eater from Ethiopia. Ostrich.

A New Species of Serin from Ethiopia. Ibis.

- The Present Situation of Prince Ruspoli's Turaco, <u>Tauraco</u> ruspoli, in Ethiopia. <u>Bull. Brit. Orn. Cl</u>.
 - The Status of Palearctic Migrant Birds in Ethiopia in Relation to the Distribution of Arboviruses. <u>Proc. Sym. on the</u> <u>study of Transcontinental Connections of Migratory Birds</u> and their role in distribution of Arbovirus.

Migrational Status of Palearctic Birds in Ethiopia. Ostrich.

In Draft:

Ash, J.S. A Migration of Palearctic Birds Inland in Ethiopia.

New Birds from Djibouti.

The Birds of Ethiopia. (Book)

The Migrant Bird Community of an Ethiopian Woodland in Midwinter.

Kingfisher Migration in Ethiopia.

Further Evidence for "Ortstreue" from Ethiopia.

The distribution of Three Little Known birds in Ethiopia: <u>Hirundo</u> megaensis, <u>Zavatariornis</u> stresemanni and <u>Spreo</u> albicollis.

Ornithological Observations from Yemen.

Ash, J.S., Dowsett, R.J., Fry, C.H., Lemaire, F. and Watson, G.E. Taxonomic Complexities among <u>Acrocephalus</u> Warblers.

Ash, J.S. and Hoogstraal, H.H. Ticks on Birds from Ethiopia.

Ash, J.S. and Watson, G.E. Taxonomic and Faunistic Notes from Ethiopia.

Ash, J.S. and Wood, O.L. Human Arbovirus Activity and Distribution in Wild Ethiopian Vertebrates. I. Birds; II. Mammals, Reptiles, Amphibia; III. Man.

Farrand, J. and Ash, J.S. The Identification of the Species of Euplectes in Ethiopia.

References

Abdel-Wahab, K.S. 1970. Arboviruses and central nervous system disorders in Egypt. Acta Virol. (Praha) 14: 501-506. Abdel-Wahab, K.S. and I.Z. Imam 1970. Antibodies to arboviruses in rodent sera. J. Egypt Public Health Assoc. 45: 370-375. Ash, J.S. 1960. A study of the Mallophaga of birds with particular reference to their ecology. Ibis, 102: 93-110. Boorman, J.P. and C.C. Draper. 1968. Isolations of arboviruses in the Lagos area of Nigeria, and a survey of antibodies to them in man and animals. Trans. Roy. Soc. Trop. Med. Hyg. 62: 269-277. Brottes, H., A. Richenback, P. Bres., J.J. Salaoun, and L. Ferrara. 1966. Arboviruses in the Camercon. Isolation from mosquitoes. Bull. WHO 35: 811-825. Carey, D.E., O.R. Causey, S. Reddy, and A.R. Cooke. 1971. Dengue viruses from febrile patients in Nigeria, 1964-68. Lancet 1(690): 105-106. Casals, J. 1967. Immunological techniques for animal viruses. Pp. 113-198 in K. Maramorosch and H. Koprowski eds., Methods in Virology, vol. 3. Academic Press, New York and London. Causey, O.R., G.E. Kemp, C.E. Causey and V.H. Lee. 1972. Isolations of Simbu-group viruses in Ibadan, Nigeria 1964-69, including the new types Sango, Shamonda, Sabo and Shuni. Ann. Trop. Med. Parasitol. 66: 357-362. Chippaux, A., C. Chippaux-Hyppolite, P. Clergeaud and P. Bres. 1969. Isolation of 2 human strains of Ilesha virus in the Central African Republic. Bull. Soc. Med. Afr. Noire Lang Fr. 14:88-92. Chippaux, A., C. Chippaux-Hyppolite, Diederich and Decoux. 1970. Study of an animal reservoir in the cycle of some arboviruses in Central Africa. II. Experimental viremia in wild rodents with yellow fever and West Nile viruses. Bull. Soc. Pathol. Exot. 63: 173-180. Chippaux, A. and C. Chippaux-Hyppolite. 1968. Signs of the spread of o'nyongnyong virus in the Central African Republic. Med. Trop. (Mars) 28: 346-362. Clarke, D.H. and J. Casals. 1958. Techniques for hemagglutination and hemagglutination-inhibition with arthropod-borne viruses. Amer. J. Trop. Med. Hygiene 7:561-573.

David-West, T.S., A.R. Cooke and A.S. David-West. 1974. Seroepidemiology of Congo virus (related to the virus of Crimean Haemorrhagic fever) in Nigeria. Bull. WHO 51: 543-546.

Digoutte, J.P., Y. Robin and V.J. Gagnard. 1973. Bangui virus (HB 70-754), A new virus isolated from a case of acute exanthemata. Ann. Microbiol. (Paris) 124: 147-153.

Evans, A., F. Cox, G. Nankervis, E. Opton, R. Shope, A.V. Wells and B. West. 1974. A Health and Seroepidemiological Survey of a Community in Barbados. Int. J. Epidem. 3: 167-175.

Fagbami, A.H., T.P. Monath, O. Tomori, V.H. Lee and A. Fayiyi. 1972. Studies on Tataguine infection in Nigeria. Trop. Geogr. Med. 24: 298-302.

Fagbami, A.H. and A. Fabiyi. 1975. A survey for Ilesha Bunyamwera group virus antibodies in sera from domestic animals and humans in three ecological zones of Nigeria. Virologie 26:27.

Henderson, B.E., A.W. McCrae, B.G. Kirya, Y. Ssenkubuge and S.D. Sempala. 1972. Arbovirus epizootics involving man, mosquitoes and vertebrates at Lunyo, Uganda, 1968. Ann. Trop. Med. Parasitol. 66: 343-355.

Kokernot, R.H., E.L. Szlamp, J. Levitt, B.M. McIntosh. 1965. Survey for antibodies against arthropod-borne viruses in the sera of indigenous residents of the Caprivi Strip and Bechuanaland Protectorate. Trans. Roy. Soc. Trop. Med. Hyg. 59: 553-562.

Largen, M.J. 1974. The status of the genus <u>Afrixalus</u> (Amphibia, Anura, Ityperoliidae) in Ethiopia, including descriptions of two new species. Mon. Zeitschr. Ital. 5: 111-127.

Largen, M.J., D. Kock and D.W. Yalden. 1974. Catalogue of the mammals of Ethiopia. 1. Chiroptera. Mon. Zeitschr. Ital. 5: 221-298.

McCrae, A.W., B.E. Henderson, B.G. Kirya and S.D. Sempala. 1971. Chikungunya virus in the Entebbe area of Uganda: Isolations and epidemiology. Trans. Roy. Soc. Trop. Med. Hyg. 65: 152-168.

McIntosh, B.M., W. Madsen and D.B. Dickinson. 1969. Ecological studies on Sindbis and West Nile viruses in South Africa. VI. The antibody response of wild birds. S. Afr. J. Med. Sci. 34: 83-91.

McIntosh, B.M., P.G. Jupp, I. Dos Santos and G.M. Meenehan. 1976. Epidemics of West Nile and Sindbis viruses in South Africa with <u>Culex</u> univittatus as vector. S. Afr. J. Med. Sci. 72: 295-300.

Metselaar, D., B.E. Henderson, G.B. Kirya, P.M. Tukei and A. De. Geus. 1974. Isolation of arboviruses in Kenya, 1966-1971. Trans. Roy. Soc. Trop. Med. Hyg. 68: 114-123. Moore, D.L., S. Reddy, F.M. Akinkugbe, V.H. Lee, T.S. David-West, O.R. Causey and D.E. Carey. 1974. An Epidemic of chikungunya fever at Ibadan, Nigeria, 1969. Ann. Trop. Med. Parasitol. 68: 59-68.

Moore, D.L., O.R. Causey, D.E. Carey, S. Reddy, A.R. Cooke, F.M. Akinkugbe, T.S. David-West and G.E. Kemp. 1975. Arthropod-borne viral infections of man in Nigeria, 1964-1970. Ann. Trop. Med. Parasitol. 69: 49-64.

Munz, E. 1973. African zoonoses caused by viruses. Munch. Med. Wochenschr. 115: 1-9.

Ota, W.K., H.M. Watkins, P. Neri, M.L. Schmidt and J.R. Schmidt. 1976. Arbovirus recoveries from mosquitoes collected in Gambela, Illubabor Province, Ethiopia, 1970. J. Med. Entomol. 13: 173-178.

Pearson, C.A., D.L. Moore and T.S. David-West. 1973. Virus studies in "Ilesha Shakes". West Afr. Med. J. 22: 10-22.

Reed, L.J. and H. Muench. 1938. A simple method of estimating fifty percent end points. Amer. J. Hygiene 27: 493-497.

Reeves, W.C. and W. McD. Hammon. 1962. Epidemiology of the Arthropod-borne Viral . Encephalitides in Kern County, California 1943-1952. Univ. Calif. Press, Berkeley and Los Angeles.

Roche, S. and Y. Robin. 1967. Human infections by chikungunya virus in Rufisque (Senegal), Oct-Nov. 1966. Bull. Soc. Med. Afr. Noire. Lang. Fr. 12: 490-496.

Rodhain, F., P. Ardoin, D. Metselaar, A.M. Salmon and C. Hannoun. 1975. An epidemiologic and serologic study of arboviruses in Lake Rudolf Basin. Trop. Geogr. Med. 27: 307-312.

Rodhain, F., C. Hannoun and D. Metselaar. 1972. Epidemiological and serological study of the arboviruses in the lower valley of the Omo (Southern Ethiopia). Bull. WHO 47: 295-304.

Schmidt, J.R., M.L. Schmidt and M.I. Said. 1971. Phlebotomus fever in Egypt. Isolation of Phlebotomus fever viruses from Phlebotomus papatasi. Am. J. Trop. Med. Hyg. 20: 483-490.

Serie, C., L. Andral, J. Casals, M.C. Williams, P. Bres and P. Neri. 1968. Studies on yellow fever in Ethiopia. 5. Isolation of virus strains from arthropod vectors. Bull. WHO 38: 873-877.

Solberg, I.M. and I.A. Aldo. 1976. Viral isolates from Ixodid ticks of wild animals in Kenya. Pp. 412-421 in Wildlife Diseases. Page, L.A. (ed.), Plenum Press, New York.

Strode, G.K. (ed.) 1951. Yellow Fever. McGraw Hill, New York, Toronto, London.

- Sureau, P., J.P. Cornet, M. Germain, J.L. Camicas and Y. Robin. 1976a. Survey of tick-borne arboviruses in the Central African Republic (1973-1974). Isolation of Dugbe, CHF/Congo, Jos and Bhanja viruses. Bull. Soc. Pathol. Exot. 69: 28-33.
- Sureau, P., P. Ravisse, M. Germain, A. Rickenbach, J.P. Cornet, J. Fabre, C. Jan and Y. Robin. 1976b. Isolationof Thogoto virus from Amblyomma and Boophilus ticks in Central Africa. Bull. Soc. Pathol. Exot. 69: 207-212.
- Swanepoel, R., and J.G. Crotchshank. 1974. Arthropod vorne viruses of medical importance in Rhodesia, 1968-1973. Cent. Afr. Med. J. 20: 71-79.
- Tomori, O., T.P. Monath, V. Lee, A. Fagbami and A. Fabiyi. 1974. Bwamba virus infection: A sero-survey of vertebrates in five ecological zones in Nigeria. Trans. Roy. Soc. Trop. Med. Hyg. 68: 461-465.
- Van Velden, D.J.J., J.D. Meyer, J. Olivier, J.H.S. Gear and B. McIntosh. 1977. Rift Valley Fever Affecting Humans in South Africa. South African Mediese Tydskrif 22:867.
- Watson, G.E., R.E. Shope and M.N. Kaiser. 1972. An ectoparasite and virus survey of migratory birds in the eastern Mediterranean. Pp. 176-180 in Cherepanov, A. Transcontinental Connections of Migratory Birds and their Role in the Distribution of Arboviruses. Nauka, Novosibirsk.
- Williams, R.W., O.R. Causey and G.E. Kemp. 1972. Ixodid ticks from domestic livestock in Ibadan, Nigeria as carriers of viral agents. J. Med. Entomol. 9: 443-445.
- Wood, O.L., V.H. Lee, J.S. Ash and J. Casals. 1978. Crimean-Congo hemorrhagic fever, Thogoto, Dugbe, and Jos viruses isolated from ixodid ticks in Ethiopia. Amer. J. Trop. Med. Hygiene 27: 600-604.
- Work, T.H. 1971. On the Japanese B--West Nile virus complex or an arbovirus problem of six continents. Am. J. Trop. Med. Hyg. 20: 169-186.
- Yalden, D.W., M.J. Largen and D. Kock. 1976. Catalogue of the Mammals of Ethiopia. 2. Insectivora and Rodentia. Mon. Zeitschr. Ital. 8: 1-118.

00 00 00	-36-	+-37	+3		C 39)°+	-40)°+	-41	-	-4	20-1	8°-										
		++	-		9	-	-	-	-	_	7	1	-										
-17°		++	-	$\left \right $	01	+	-+	-	-	-	-		7°-	_									
	$\left \right $	+4	+	$\left \cdot \right $	0	++	-+		-	_	-	-+	f	F	1gu lac	re k K	l. ite	Dis	str Ail	ibut	mic	1 01	f
-16°		A	-		0	1+	-	-	-	-	-		16°3-	i	n E	thi	opi	a.		-us		1 41	<u>,</u>
┥┽┽┼┽┿		12	+	0	0	-		+	-	-	-	-	<										
-15 ^e			0		0	+	1	1	0	-	-		15										
				0	0	-		-	2	2	-		-9										
-14°		P	1	0	0	0	0	-	-	9	Y		14	1 01		• 1	15	• ,	1.6	0 1	15	• •	100
╽┽┼┼┼┼┿			10	0				0	-	-	-	2	-	\rightarrow		-+	-+	<u>}</u>	-		7	4	40
-13°	-15			0	2		-	-		0	-	2	2	4		-+	-	×	-	-	-	+	-13°
	1 T				2+	0	-+	_	-	_	-	0	5	1	-	-	4	-	-	-+	-		+
12°		1 m	10	0	4	5	0		-	-	0	2		7			-+	-		-+	+	-	-12°-
	0	-F	10		T	-	0	-	0	-	2		5				-	_	-		-+	-	+
					0	0	-	0	2		સુ	-	5	_		-	-	_				4	-1'1°:
			0		0	0	0	0	0		0	-	4		Y	4	_	-	\cap	-	4	-+-	+
10°	-		2	2	3	-		0	-	_		9	1	-		-		_			-		-10°-
+-+-+	0	10	0	0	0	9	0	9	0	0		0	0	9			_					-	-+-
9°	00	0	1	0	1	0	0	10	0	0	0		0	0		-							- 9°.
100	0	9	7	0/		0	2	_		0	0	0				-		>					+
	00	00	<u>'</u> ,	0	0	0	0		0	0	0	G			0							-	-02
000	0	00	10	0	1	0	_	-	ø	-	a	0	-		0	_		-	-	-		-	4
70 20	00	\geq	10	0		9/	0	3	0	0	-	$\left \right\rangle$	6	-	0				-			4	-7°-
	0	20	10	0	0	0	0	0	0	0	-	4	-	-				-	-	-	X		-+
-6°			10/		0	-	_	_			0		P	0				-	+	X			- 6°-
H	5	00	Q	0		0	G	_		-	0	3	-	0	a	0			Y	-	-		
5°	712	00	0	9		0	0	0	0	-		0	-	-	0	0	8	Y	-	-	-	-	-5°.
$\ - + - + - + - + - + - + - + - + - + - $	93	20	0	9	9	0	-		9	-		0	-	K			-	-	+	-		-	
40	0	R		9	-	-	0	0	2	-		0	1	1_	-	-	-	-	-	-	-	-	+4°-
30+360+350+	- 360 -	- 370	10	0	0	0	1	00-		0 -	F.	20 -	+,	30-	+ 4	20 -	L,	50.	+.	160.	+	70-	- 48

153 + 0 Figure 3. Foreign localities where birds banded in Ethiopia (dotted area in Africa) were subsequently recovered or where birds recovered in Ethiopia were previously banded. A Pelecanus onocrotalus (2), B Ardea cinerea, C Ardeola ralloides, D (=hatched area in Europe) Ciconia ciconia, (51), E Ciconia nigra (2), F Phoenicopterus ruber(2), G

Phoenicopterus minor, H Milvus migrans (2), J Buteo buteo, K Calidris ferruginea, L Calidris minuta, M Philomachus pugnax, N Tringa terek, O Pluvianus aegyptius, P Larus fuscus (5), Q Sterna caspia, R Ceryle rudis, S Halcyon leucocephala (2), T Upupa epops, U Luscinia megarhynchos, V Sylvia atricapilla (3), W Acrocephalus griseldis, X Acrocephalus scirpaceus, Y Hirundo rustica (4), Z Riparia riparia, a Lanius nubicus, b Oriolus oriolus, c Sturnus vulgaris, d Streptopelia turtur (2), e Motacilla flava.

OFFICE OF NAVAL RESEARCH MICROBIOLOGY PROGRAM STANDARD DISTRIBUTION LIST

Number of Copies:	
(12)	Administrator, Defense Documentation Center Cameron Station Alexandria, VA 22314
(6)	Director, Naval Research Laboratory Attention: Technical Information Division Code 2627 Washington, DC 20375
(6)	Code 102D1 (ONRL DOC) Office of Naval Research 800 N. Quincy Street Arlington, VA 22217
(3)	Office of Naval Research Department of the Navy Code 443 800 N. Quincy Street Arlington, VA 22217
(1)	Commanding Officer (Code 00) Naval Medical Research & Developement Command National Naval Medical Center Bethesda, MD 20014
(1)	Naval Medical Research & Development Command Code 46 National Naval Medical Center Bethesda, MD 20014
(2)	Technical Reference Library Naval Medical Research Institute National Naval Medical Center Bethesda, MD 20014
(2)	Office of Naval Research Code 200 800 N. Quincy Street Arlington, VA 22217
(1)	Office of Naval Research Branch Officer Building 114, Section D. 666 Summer Street Boston, MA 02210

Enclosure (3) 7/24/78

STANDARD DISTRIBUTION LIST (Cont'd)

Number of Copies:	
(1)	Office of Naval Research Branch Office 536 South Clark Street Chicago, IL 60605
(1)	Office of Naval Research Branch Office 1030 East Green Street Pasadena, CA 91106
(1)	Commanding Officer U. S. Naval Medical Research Unit #2 Box 14 APO, San Francisco 96263
(1)	Commanding Officer U. S. Naval Medical Research Unit #3 FPO, NY 09527
(1)	Officer in Charge Submarine Medical Research Laboratory U. S. Naval Submarine Base, New London Groton, CT 06342
(1)	Scientific Library Naval Biosciences Laboratory Naval Supply Center Oakland, CA 94625
(1)	Scientific Library Naval Aerospace Medical Research Institute Naval Aerospace Medical Center Pensacola, FL 32512
(1)	Commanding Officer U. S. Naval Air Development Center ATTN: Aerospace Medical Research Department Johnsville, Warminster, PA 18974
(1)	Commanding General U. S. Army Medical Research & Development Command Fort Detrick Frederick, MD 21701 ATTN: MEDDH-Sr

2

Enclosure (3)

STANDARD DISTRIBUTION LIST (Cont'd)

Number of Copies:	
(1)	Director of Life Sciences Air Force Office of Scientific Research Bolling Air Force Base Washington, D. C. 20032
(1)	STIC-22 4301 Suitland Road Washington, D. C. 20390
(1)	Director Walter Reed Army Institute of Research Walter Reed Army Medical Center Washington, D. C. 20012

3

Enclosure (3)