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ABSTRACT

A new theory of steady rectilinear motion of a ship in a calm sea is

presented. This theory is applicable to displacement ships, fully-submerged

bodies , multihull vessels, and surface—effect ships. It is based on a new

integral equation for the velocity potential of the flow caused by the ship .

The actual nonlinear free—surface boundary condition and the exact boundary

condition at the ship hull, including effects of sinkage and trim , are in-

corporated into this integral equation , which also includes approximate ad hoc

corrections for effects of viscosity, spray, and wavebreaking . Two outstanding

features of the integral equation are that it is valid both on the hull surface

(as usual) and in the fluid domain , and that it immediately provides explicit

approximations for the velocity potential. First and second approximations are

given. These new approximations generalize the traditional perturbation approxi-

mations; in particular, the classical first— (Michell) and second—order thin—

ship approximations are obtained as “thin—ship limits” of these approximations .

Of particular interest is the “initial approximation” given by equation (2.22);

this new simple “linearized approximation” consists of a surface integral,

which in fact corresponds to Hogner ’s wave resistance formula, and a line integral,

which may be particularly important for blunt ship forms , and causes a drastic

reduction in the wave resistance at low Froude number .

i
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INTRODUCTION

The problem examined in the present study is that of steady rectilinear motion

of a ship in a calm sea. The paper is divided into two parts.

In Part 1, the problem of steady motion of a ship is formulated , in dimension—

• less form, as a “generalized Neumann—Kelvin problem” in a “solution domain ” bounded
by the horizontal plane - of the free surface of the undisturbed sea and some arbitrary

“fictitious hull surface1’, where the free—surface and hull boundary conditions are

enforced , respectively. The free—surface boundary condition is enforced on the un-

disturbed free surface rather than on the actual free surface for obvious reasons

of mathematical simplicity, while the hull, boundary condition is enforced on a
“fictitious hull surface ” rather than on the actual ship hull surface for the sake
of generality, and in particular because this may be an advantageous method of
accounting for the modifications in hull form associated with the sinkage and trim

experienced by the ship , and also for systematically investigating effects of hull

form modifications in the hull design process; the “fictitious hull surface” would
then generally not differ much from the actual ship hull surface , and in particular
may naturally be chosen to coincide with it. The exact forms of the “hull and free—

surface conditions”, that is including sinkage and trim , and free—surface nonlin—

earities, are used in this “generalized Neumann—Kelvin problem”, which thus is an

essentially “exact” formulation of the problem of steady motion of a ship; some

approximate ad hoc corrections for effects of the viscous boundary layer and wake

around and behind the ship, spray formation at the ship bow, and wavebreaking, are
also included in the present potential—flow theory .

A main difficulty of the problem of steady motion of a ship resides in the

free—surface boundary condition , which is nonlinear . An attempt to assess the

importance of free—surface nonlinearities is thus made in this study. Specif ically ,

a relatively simple method for experimentally assessing the nonlinear terms in the

free—surface boundary condition is proposed , and this method is used to estimate

free—surface nonlinearities at the first crest of the bow wave along the hull for

the case of wedge—ended hull forms, for which experiments have been performed by
Standing and Ogilvie; it is found that the magnitude of the disturbance velocity

caused by these “ship” models varies be tween 17% and 33% of the speed of the model ,
and the error due to linearization of the free—surface condition varies between

10% and 26% , for entrance angles varying between 10° and 30° . These findings

suggest that the free—surface boundary condition may be treated as “weakly non—

linear ”, which is indeed the fundamental assumption underlying the present theory .

1
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It also appears that free—surface nonlinearities are weak even in the immediate

vicinity of the ship bow.

In summary , the present formulation of the problem of steady motion of a ship
as a “generalized Neumann—Kelvin problem” is a straightforward extension of the
“Neumann—Kelvin model” in which Ci) potential flow is assumed , (ii) the free—surface

condition is linearized ; and (iii) effects of sinkage and trim are neglected ; this

linearized Neumann—Kelvin model and the generalized formulation presented in this

study are based upon the facts that for usual ships Ci) the value of the Reynolds

number is quite large (typically above lO
s
) and viscosity effects are confined to

a thin boundary layer except in a region of relatively limited extent at the stern

of the ship, (ii) free—surface nonlinearities appear to be weak, and (iii) sinkage

and trim are fairly small, at least for a broad class of ships operating at low or

moderate values of the Froude number.

In Part 2, an integral equation f or the velocity potential ~ of the distur-

bance flow caused by the ship is obtained by using the methods of potential theory ,

specifically by using the classical Green identity (2.7) applied to the potential ~
and the fundamental solution (Green function) G(~0,~) appropriate for the problem.

The basic properties of the fundamental function G(x
0
,x) are discussed in some de—

tail; in particular , attention is called to the fact that the function G(x0, x)
satisfies different equations and boundary conditions depending on whether z

0 
< 0

or 0 , as it is shown explicitly in equations (2.5) and (2.6). No assumption

or restriction is introduced in the course of the derivation of this new integral

equation , which is therefore essentially equivalent to the “generalized Neumann—

Kelvin problem ” formulated in Part 1; in other words, the problem of steady motion

of a ship is reformulated in “integral form”, specifically given by the integral
equation (2.14), equivalent to the “differential formulation” given in Part 1, namely

the “generalized Neumann—Kelvin problem” stated by equations (1.14—1.16).

• The integral equation (2.14) is the “key result” of the present study, and it

is discussed in some detail. In the particular case of a surface—effect ship sup—
• ported by an air cushion or a captive air bubble, the integral equation (2.14) takes

the much—simplified form given by equation (2.15). An iterative method of solution

of this integral equation for surface—effect ships is discussed; both the first and

second “iterative” approximations are given explicitly . These “iterative” approxi-

mations are compared to the classical “perturbation” approximations based on the

assumption of a “small free—surface pressure distribut ion”, to which they are
essentially equivalent , although not entirely identical.

29 03 3
5

_ _ _ _ _ _ _ _ _ _ _ _ _ _  ~~~~~~ - . . - - 



In the special case of a displacement ship , the integral equation (2.14) takes

the form given by equation (2.21). With only few minor modifications , this integral

equation for displacement ships is also valid for fully—submerged bodies and mult i—
hull vessels (catamaran , trimaran, SWATH) . The integral equations (2 .15) and (2.21)

thus encompass most existing ships; however , problems associated with lift and cavi—

tatiôn for hydrof oils , and planing ef fec ts  and spray formation for fast boats, are
not considered in this study . Two outstanding features of the new integral equation

(2.21) are (i) that it is valid not only on the ship hull surface (like the usual

integral equations of potential theory) but also in the fluid domain outside the

ship , as it is indeed necessary for incorporating the nonlinear terms in the free—

surface condition , and (ii) that it immediately provides explicit approximations

for the velocity potential ~
Of particular interest is the “initial approximation” q~ given by equation

(2.22),which is obtained by merely ignoring all the unkn own terms in the integral

equation (2.21). This new simple “linearized approximation” 
~I 

consists of a

surface integral, which in fact corresponds to the wave resistance formula proposed
.1.

by Hogner [1] in l932’ ,and a line integral, which may be particularly important for

blunt ship forms , and can be shown to cause a drastic reduction in the wave resis—

tance at low Froude number . The second approximations 
~2 and in t he ite rativ e

schemes associated with the use of the potential $~ and the Hogner potential c~~
[which are given by formulas (2 .22)  and (2 .23) , respectively] as initial approxi-

mations are given explicitly and discussed in some detail. These iterative approxi-

mations may be regarded as generalizations of the classical thin—ship perturbation

approximations; indeed , both the first—order (Michell) and the second—order thin—

ship approximations are rederived in the present study as “thin—ship limits” of the

“fine—ship (iterative) approximations” PH and

It may finally be interesting to note in this Introduction that the second “fine—

ship approximation” cf~ given by formulas (2.30a) and (2.23) only involves surface

distributions of sources — that is, neither a doublet distribution nor a line

integral is involved — on the fictitious hull surface (h), which may (but need not)

be taken as the submerged hull of the ship in position of rest , and on the undisturbed

free surface (f). Such a representation of the potential ~ in terms of surface

source distributions on (h) and (f) can also be shown to be valid for the subsequent

iterative approximations 
~ , k > 3; this is indeed shown explicitly in the

1 am indebted to Professor Som D. Sharma for pointing this fact out.

3
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particular case of the “linearized Neumann—Kelvin problem” for which the solution

~ is expressed as the limit (assuming convergence) of the sequence of iterative
V V

approximations ~ , k > 0 , def ined by ~ = 0 and the recurrence relation

(2.31), which only involves a surface source distribution on (h).

The single most important goal of any theory of steady motion of ships is on—

doubtedly the prediction of the drag , so—called “wave res istance” , experienced
by a ship as a result of its generating surface gravity waves. Exact expressions

(to be sure , within the limitations of potential—flow theory) and various explicit

approximations for the wave resistance of a displacement ship in steady motion ,

based on the new integral equation (2.21) obtained in Part 2 of this study , will
be given in Part 3, which will be presented elsewhere .

4
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Part 1: FORMULATION of the PROBLEM of STEADY MOTION of a SHIP as a GEN ERALIZED
NEUMANN-KELVIN PROBLEM

Formulation of the hydrodynamical problem

In this section , we formulate the problem of steady , rectilinear motion ,

with speed U say , of a ship at the free surface of an otherwise calm sea

assumed to be of infinite depth and lateral extent.  Water is supposed to be

homogeneous and incompressible; i ts densi ty is denoted by p . Surface tension

is neglected. Irrotational flow Is assumed ; some ad hoc corrections for  vis-

cosity e f fec ts , however , are allowed in this potent ia l—flow formulation , as it

will be seen below. The acceleration of gravity (the only body force consid-

ered) is denoted by g. The flow caused by the ship is rendered time independent

by observing it from a system of coordinates moving along with the ship; the

problem thus becomes that of determining the steady disturbance flow caused by

a fixed ship hull in an oncoming uniform stream with velocity U

A right—handed Cartesian system of coordinates (X ,Y ,Z) is def ined , as

follows : the (horizontal) plane of the undisturbed free surface is taken as

the plane Z = 0 , and the Z axis (which is thus vertical) is chosen positive

upwards; the X axis is parallel to the oncoming stream U , and pointing

downstream (I .e. towards the stern of the ship) . Naturally , in the (u sua l) case

of a ship with a longitudinal plane of symmetry —refe r red  to as the ship center—

plane _ moving without yaw or heel , so that t he ship centerplane then is a

vertical plane of symmetry for  the flow , it is most convenient to take this

centerplane as the plane Y = O  . The origin of the X axis may be chosen at

will , for Instance , at the ship bow , or at midship.

A point in the flow domain , which is denoted by (D) , then is defined by

its position vector ~ (X ,Y ,Z ) .  The flow domain Is bounded by the free surface

and the wetted hull of the ship , which are denoted by (F) and (H) , respectively.

The equation of (F) is taken as Z = E ( X ,Y ) ,  where E thus represents the

elevation of the free surface above (or below) the undisturbed level Z = 0.

The unit normal to (H) , pointing inside the ship ( i .e .  outwards for the flow
+

domain) , is denoted by N . The total f luid velocity may be expressed as

+ 7~~, where T is a unit vector parallel to the oncoming uniform stream

5
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(hence to the X axis) and in the same direction , and V~ is the disturbance

flow velocity caused by the ship ( the  assumption of i rrotat ional  f low is evidently

used here).

The “di sturbance velocity potent ial”  ~ must satisf y the Lap lace equa tion

in the flow domain (by the assumption of incompressibility) . However , we will ,
more generally , allow a dist r ibution o f sou rces in (D) , as a means fo r an ad hoc

“viscosity correction” . Justif ication of the introduction of such a distr ibution

of sources for the purpose of representing the e f fec t s  of the vort ici ty dist ri-

bution in the boundary layer and wake around and behind the ship may be found in

Landweber [ 2), where the relationship between vort ici ty and “equivalent ” source

di stributions is examined . Here , we will merely point out that the replace-

ment of the Laplace equation by a Poisson equation is “the best we can do” in

the framework of the mathematical tools of potential—flow theory. Hence, the

potential  ~ is assumed to satisf y

= 

~D ~~ (D) , ( 1.1)

where is the strength of some unknown (but supposedly given as far as the

potent ia l—flow theory is concerned) source distribution in the ship ’s boundary

layer and wake . Naturally , thi s source distribution need not be a volume

distr ibution ; f or in st ance , it can be a distr ibution over some surface in (D) .

The condition of no flow across the wetted hull surface is expressed by

(Ui+ V~) ~i = o  on (H) . However , we will also allow a flux, 0
H 
say , across

(H) as a (well—known) means of accounting for the “slowing down” of the velocity

in the boundary layer. The “hull boundary condition ! thus becomes

= — u t  .i~ 
— 

~H on (H) , (1 .2)

where ~ 0 evidently means fluid suction across (H).

The condition of no flow across the free surface is similarly somewhat

“generalized” here by also allowing a flux , 
~F say , across (F) . This might again

be useful as a means of approximately accounting for viscosity effects; the

“f ree—surface  f lux ” Q~ can also serve to approximately represent the spray

6
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whi ch may c ’fLe n be observed at the bow of ships , particularly fast

ones such as planing boats ~the use of a line d i s t r ibu t ion  of sinks along
the waterline for the purpose of representing the effects of spray is sug-

gested in Andersson [3]). The “kinematic free—surface boundary condition”

then takes the form

= (U + ~x)E x + ~~~~~ (1+4+4)
½ 

~F 
Ofl (F) , (1.3)

where 
~F 

<0 means that fluid is sucked away across (F).

For most ships, the pressure at the free surface is constant , equal to

the atmospheric pressure. However, a “free—surface pressurc distribution” will

be allowed here , mainly for the purpose of including the so—called “surface—

effect ships” (supported by an air cushion or a captive air bubble) ; the “hull

condition” (1.2) must evidently be ignored in this case of surface—effect ships.

The Bernoulli equation then yields the “dynamic free—surface boundary condition”

u~ +½ ~~~~~
2
+ g E + P / p = O o n (F), (1.4)

x F

where 
~F 

represents the deviation of the free—surface pressure from the

atmospheric pressure (the fact that ~~, E and 
~F 

vanish far upstream from the

ship was evidently used here to determine the value of the “Bernoulli constant”

in the Bernoulli equation). We may finally note here that the free—surface flux

and pressure in the free—surface conditions (1.3) and (1.4), respectively,

could possibly also be used for the purpose of roughly representing the effects

of wavebreaking.

Equat ions (1. 1) — ( 1 . 4 ) ,  to which we must add the usual radiation condition

of no waves upstream from the ship , de fine the problem of steady motion of a

ship . The unknowns are the disturbance velocity potential c~~, the free— surface

elevation E , and also the position of the ship hull (H) , which is not known

exactly beforehand due to the unknown sinkage and trim experienced by the
ship (as a result of departure of the pressure distribution at the hull

from the hy drostatic rest d is t r ibut ion) .

The ship ’ s sinkage and tr im may be determined from the equations stating

the equilibrium of the ship as a rigid body acted upon by various forces , mainly its

weight , buoyancy and hydrodynamic forces , and a propelling thrust  of some kind .

7
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The h ’dr odynamic/b uoyancy forces consist of a lift and a moment , which are
the main factors determining the ship ’s sinkage and trim (see, e.g., appendix C

in Noblesse and Dagan [ 4] ) ,  as well as the ship ’s total resistance (due to wave—

making , viscosity, wavebreaking and spray). The hydrodynamic lift and moment

(and also the wave resistance) may be obtained by integration of the pressure

dis t r ibut ion over the ship hull , and the pressure may evidently be obtained

from the velocity potential ~ by means of the Bernoulli equation.

It is thus quite clear that the equations relating the ship ’s sinkage and

trim to the potential ~ (in the manner described above) should be added to eqs.

(1.1) — (1.4) and the radiation condition in order to have a closed set of

equations , and hence a well—posed problem ; this approach is indeed used in

Peters and Stoker [5] and Wehausen [6]. However, we will rather incorporate

effects of sinkage and trim by means of an i~terative scheme, that is the “hydrody—

namical problem” , defined by eqs. (1.1) — (1.4) and the radiation condition ,

will be solved for an assumed hull surface (H); the solution ~ of this problem

may then evidently be used to evaluate the sinkage and trim, and hence obtain

a better approximation to (H), from which an improved approximation to ~ may

be obtained , and so on.

In the case of a surface—effect ship , the free—surface pressure distribution

is similarly not known precisely beforehand , due to the influence of the shape

of the free surface upon 
~F’ 

and the “hydrodynamical problem ” [with the hull

condition (L 2) being ignored] must also be coupled with additional equations for

determining 
~F 

precisely . An iterative scheme similar to that described above may

be used in this case as well.

We may therefore focus our attention on the “hydrodynamical pro~1em” defined

by eqs. (1.1) — (1.4) and the radiation condition , where (H), P~,, 
~F’ ~H 

and

are considered to be given. A fair estimate of the “viscosity hull flux”

(at least over most of the hull surface where the boundary layer is thin)

should be possible by present—day (three—dimensional turbulent) boundary—layer

methods . The terms 
~F 

and 
~D’ 

however, could only be determined empirically ,

and clearly must be regarded as means for attempting to approximately, and

empirically, take into account the effects of the separated boundary layer

and the wake at the stern of the ship , spray formation at the bow , and possibly

also wavebreaking .

8
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Formulation of the problem in dimensionless form

The first step in the investigation of the “hydrodynamical problem” - 

-

should perhaps be to reformulate it in nondimensional form. All flow variables

are made dimensionless in terms of the speed of the ship U , the acceleration

of gravity g and the density of water p . Thus, we define

= V~ /U ~ = g~~ /U2 
, e g E / U2 ‘ 1

= g~~/ U ~ , p~ = PF/pU
2 

, (1.5)

= 

~F’~ ‘ 
= 

~D U/g . J
In terms of the above dimensionless variables , eqs. (1.1) — (1.4) take

the form

= in CD) , (1.6)

= — t . i~ — on (H) , ( 1 . 7 )

= ( l +~~~) e~~
+ ~y

e
y 

- ( 1+ e~ + e~) ~ on (F) (1.8)

+ ½ IV ~I 2 + e + p~ = 0 on (F). (1.9)

The free—surface condition (1.9) may be used to determine the free—surface

elevation e, and therefore the equation of (F); we readily obtain

z = e(x ,y) = - - ½ - 
~F (1.10)

where it will be noted that the expression on the right side is evidently to

be evaluated at the free surface , so that eq. (1.10) is in fact an implicit

equation for (F) in terms of the potential P

÷Here , the convention is made that the differential operator V is defined as

~~~~~~~~ when acting upon ~ , as in the previous section, while V~ (~x~
a
y~~z

)

when applied to cf, , that is hereafter in the paper.

- 
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By using equation (1.10) to eliminate the free—surface elevation e in

equation (1.8), the boundary condition at the free surface may be expressed in

terms of the potential $ alone ; we obtain

+ ~ + ~I V~~
2) ~ 

1/~ V ~~ V ~V ~ l
2 

= - - - p~ 
- q on (F)

that is on z = — — y2 v ~I
2 

— 

~F ‘ 
(1.11)

where the notation ~F’ 
~F was used for simplicity and q is defined as

- 
q = IV(z + ‘F + 

~x +

as it may be verified . Inasmuch as 
~~ 

merely represents a correction function

to be determined empirically , we may evidently simplify condition (1.11) by

assuming q , rather than , to be given (it will be noted that we have

= in the linearized approximation).

The “hydrodynamical problem” of steady motion of a ship then consists in

finding the disturbance velocity potential ~ satisfying the Poisson equation

(1.6), the Neumann condition (1.7), the free—surface condition (1.11), and the

radiation condition.

It may be useful to cou~ ent here on the choice of U
2/g as reference length

[see equations (1.5)] instead of the ship length, L say, as it is usually done.t

The main reason for selecting the dimensionless variables (1.5) is clearly dis-

played in the resulting dimensionless equations (1.6) — (1.11), which may be seen

to be free of any parameter [such as the Froude number F = TJ/ (gL)~
’2 

, which appears

in the free—surface condition (1.9), and hence (1.11), if L is taken as reference

length]. It may easily be shown that the dimensionless variables (1.5) are the

only ones which lead to dimensionless equations for the problem of steady motion

of a ship that are free of any parameterf and in this sense, the variables (1.5)

may be said to be the “natural variables” for the problem. The most appreciable

advantage of the above dimensionless formulation, however, may be that the funda-

mental solution (the Green function) then becomes a universal function (the
2parameter g/U , usually denoted by k0 

or K, which generally appears in the ex-

pression for  the fundamental function , may simply be set equal to uni ty) . This

evidently makes it far easier for one to become acquainted with the (fairly in—

It should however be noted that the dimensionless variables (1.5) have of course
been used previously, e.g. in Eggers , Sharma and Ward [7  ] ,  and Standing [8].

‘
~Natura1ly , the Froude Number F appears as a parameter via the size of the ship, which
is inversely propor tional to F2 (so tha t “fast ships” are small , and “slow” ones are
big).

10
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tr icate) behavior of this fundamental solution , which may be helpful , in
particular for the purpose of numerical calculation .

There is another aspect of the choice of 13
2/g as reference length which

may perhaps also be discussed here. Flow past a ship hull is characterized

by the superposjtjon,and interaction , of two essentially different flow mech-

anisms. On the one hand, a ship hull, just like any other body placed in an

oncoming uniform stream, represents an obstruction to the stream , so that we

may expect regions of comparatively strong deceleration and acceleration in

the vicinity of the bow and stern of a ship (except for idealized hull forms

with cusped ends). A characteristic length of these regions of strong decel—

eration and acceleration may be taken as half the beam B/2 or the draft D,

which are roughly equal for usual ship forms. On the other hand , the presence

of the free surface causes the flow disturbance created by the ship (particularly

at the bow and stern) to be propagated away from the ship in the form of surface

waves , much like the oscillations caused by an initial displacement of a simple

pendulum from its equilibrium position. The oscillatory flow in the ship waves

mainly results from the mutual exchange between potential energy (characterized

by the gravity g ) and kinetic energy (characterized by U ), and a characteristic

length for this oscillatory flow may be taken as U 1g. Indeed , the wavelength ,

AT 
say, of the transverse waves along the track of the ship is approximately given

by 2wU2/g . Therefore, we have U
2
/g XT/6

~ 
which shows that U2/g may be regarded

as a significant characteristic length for the flow acceleration associated with

the oscillatory free—surface motion in the vicinity of the ship. The flow in the

wave pattern at a certain distance away from the ship is relatively little affected

by the ship itself, and U2/g obviously is the basic characteristic length there.

Two characteristic lengths may thus essentially be distinguished , namely

D~~B/2 and U2/g. The ratio of these characteristic lengths is U
2
/gD ~ U

2/ ( g B/2 )
F~ , where F~~~U / ( g D ) ’~~ U / ( g B/2 ) ½ is the Froude number based on the transverse

dimensions of the ship. In the “moderate—Froude—number” range, i.e. for values of

the “transverse Froude number ” FT which are neither too small nor too large in
comparison with unity, it is evident that the selection of 132/g as reference length

is certainly well justified. The value of the Froude number F based on the length

L of the ship , i.e. F = UI(gL) ½ , usually varies between .1 and .5 , while

LID and L/(B/2) usually vary between 10 and 30; this yields .3< F
T 

< 3 . The

value of the “transverse Froude number” FT thus appears to be of order unity, so

that the selection of U
2/g as reference length seems appropriate .

11 
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Investigation of free—surface nonlinearities

A readily apparent difficulty of the “hydrodynamical problem”- formulated

in the previous section stems from the free—surface condition (1.11), wh ich is
nonlinear, and holds on an unknown surface. This difficulty , however , is actually

not  as serious as it may perhaps appear at f i r s t  sight , for condition (1.11) is
“weakly nonlinear” almost everywhere in (F) , that is excep t possibly in small

regions in the neighborhood of the ship bow and stern ; by “weakly nonlinear”
is meant that the nonlinear terms in eq. (1.11) are sufficiently small compared

with the linear ones that they may be neglected in a first approximation, and

then taken into account by means of an iterative procedure (or a perturbation

scheme) as “nonlinear corrections” to the “linearized approximation”. The above

assertion that the free—surface condition is weakly nonlinear almost everywhere

in (F) will now be just i f ied.

It may be instructive to begin by briefly considering potential flow

past a fully-wetted body in an unbounded f luid (no free surface). It is well

known that the dimensionless disturbance velocity Y~ 
(~ V’s/U) caused by a

body placed in an unbounded oncoming uniform stream (with velocity U) diminishes

rapidly (like the inverse of the cube of the distance frctn the body) away from

the body , so that I~7~j << 1 everywhere in the flow field , except close to the body .

In fact , in the case of a slender body moving parallel to its major d imension ,

the regions of main flow deceleration and acceleration are confined to the immediate

neighborhoods of the forward and rearward stagnation points , so that V~ is small

compared with unity everywhere in the flow field , even at the body surface , except

in relatively small regions , approximately of the size of the transverse dimensions

of the body , fore and aft of the body. For instance, the “longitudinal” disturbance

velocity at the surface of a thin , two—dimensional body , of thickness/chord

ratio c , is approximately c along the major (middle) portion of the body , that is

except close to the fore and aft stagnation points (we have exactly $
~ 

c at

the midsection of an elliptical cylinder). The corresponding result for a slender

body , of slenderness parameter c ( characteristic transverse dimension/length) ,

— c
2
ln c [we have 

~x 
— c2ln c + 0(c 2) at the midsection of a prolate

ellipsoid in axial motion] .

One would not expect the above (evidently well—known) results to be grossly

invalidated by the presence of a free surface , so that we might readily anticipate

the assertion that the free—surface condition (1.11) is weakly nonlinear in (F)

12
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except perhaps in relatively small regions around the ship bow and stern , to be
justified . Gravity may nonetheless significantly alter the flow at the free surface

(as it is attested to by the fact that the disturbance velocity in the wave pattern

trailing behind the ship decreases like the inverse of the square root of distance ,

instead of the inverse of the cube of distance in the absence of a free surface),

and a direct assessment of the importance of free—surface rionlinearities — based

on experimental evidence — would then be proper. As a matter of fact, such an

experimental investigation was already performed by Kitazawa, Inui and Kajitani [9]

who carried out measurements of three—dimensional flow velocity components around

the Inuid ship model M21 [ F .29, L/(B/2) = 16.7, L/D = 11.6]. On the basis of

these actual flow velocity measurements , the authors concluded that the linear

approximation to the free—surface boundary condition was well established , except

perhaps at the first crest of the bow wave along the hull. Additional experimental

results would evidently be interesting. The flow velocity measurements carried

out in [ 9 ] are rather elaborate and time consuming, however , and it may then be

useful to suggest here a simpler experimental method of assessment of free—surface

nonlinearities; the purpose of this method is merely to assess the importance of

free—surface nonlinearities along the load waterline.

We consider the case of a displacement ship in steady motion without yaw and

heel. The equation of the ship hull is expressed in the form y ± f (x ,z), where

g F/13
2
) is dimensionless, like the other flow variables. The hull boundary

condition (1.7) then becomes

± 4~ 
( l + ~~~) f  + ~~f on (H) (1.12)

where the hull flux q
~ 

has been neglected here for simplicity. Equations (1.8) and

(1.9) — where and will also be neglected — and eq. (1.12) are three
algebraic equations for the three components 4~~, 

~ 
and c~ of the disturbance

velocity at the free—surface profile at the hull, i.e. along the curve defined

by y ± f ( x ,z), z= e(x,y). By solving these equations, we may obtain

1 + ~ (1-2e)~~( 1 ;e  f )  f 1 + f 2 
+ e2 

~ 2 e f + 2 f  e (f ± e )  +
x y z  L X X y z x x  z y

2 2 2 2 2 2 1 — ½+ f  e + e  f + e f I , ( 1. 13a)
X y X Z y z .i

13 
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= ± ( l + ~ ~~~ + e f ) / ( l  ; e f )  , ( 1.13b)

— (l+b
~

) ( e
~~
± fx

e
y

) / ( l  e~,f~) . (l.13c)

Along the load waterline, the disturbance velocity Vc~ can then directly be

obtained from the variables f , f , e, e , and e , which could be measuredx z x y
relatively easily.

The above equations will actually now be used to estimate the disturbance

velocity at the first crest (where ex 
0 ) of the bow wave along the hull in

the experiments on flow past vertical (f = 0) wedges reported by Standing [8]

and Ogilvie h o]. By putting f tanc~ , with c~ denoting the wedge half angle,

f = 0, e = 0, and a 0 (the free surface at the crest of the bow wave is thusz x y
supposed here to intersect the vertical hull surface perpendicularly) into eqs.

(1 . 13) ,  we easily obtain the longitudinal and lateral components , and say ,

of the disturbance velocity at the first crest of the bow wave in terms of the
*wedge half angle ~ and the elevation e of the crest of the wave above the

undisturbed level: we obtain the remarkably simple results

* * ½  * * 1/
1 + (1— 2 e ) cosa , I~y = ± (1 — 2 e ) 

2 sinct

The crest elevation e* was estimated from Fig. 5 p. 636 in t 8 3 , where

wave profiles are shown for ~ = 5
0 and 100 (hull speed U = 1.22 m/sec, draft D =

0
.73 m),  and fros~ the last photograph ( 3  15 , U = 3.49 m/sec , D = .305 m) of

Fig. 4 p. 30 in [io] . The results are shown in the table below

* * * * * 2  * 2  *e — 

~~~~ 
I4~y~ ½ I V ~ I ½ I V ~ I Ie

5
0 

.135 .15 .07 .17 .014 .10

10° .215 .26 .13 .29 .04 .20

15° .205 .26 .20 .33 .05 .26

where the magnitude I V ~* I and the kinetic energy ½! v~ ,* I
2 

of the disturbance
* 2  *

velocity, as well as the ratio ½ 1 V~ j /e have also been shown.

14
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The magnitude of the disturbance velocity at the first crest of the bow wave

along the hull is then found to vary between 17% and 33% of the speed of the ship
i *2 *model , while the ratio /2 !v4 /e , which represents the error due to neglect

of the nonlinear term ‘/ 2 jVq~ 2 in the free—surface condition (1.9), varies

between 10% and 26%. These numbers seem to indicate that the free—surface

condition may indeed be regarded as weakly nonlinear even at the first crest of

the bow wave along the hull , although it must certainly be kept in mind that they
have been obtained here for the case of wedge—ended hull forms with fairly small
entrance angles. Additional experimental evidence would be useful.

It may be interesting to note that the elevation of the first crest of the

bow wave along the hull for the cases of wedge—ended hull forms examined above
is significantly less than 1/2, which is the maximum possible elevation of the

free surfa ce, as it is well known; indeed , the Bernoulli equation (1.9), where
is taken equal to zero , may be written in the form

2e = 1 - [( 1 + ~ ) 2 + +x y z

which readily shows that e < 1/2, with e = 1/2 corresponding to a stagnation point

1 + 
~x = = = 0 at the free surface. Furthermore , we may note that the first

crest of the bow wave in these cases (see Figure 5 in (8] and the photographs of

Figure 3 in [10]) does not occur right at the bow, but at some distance downstream,

so that the free—surface elevation right at the bow is actually much less than

1/2 , and free—surface nonlinearities would then be weak even in the i=ediate neigh-

borhood of the ship bow for the cases just examined . The experimental wave profiles

reported by Gadd (11] p. 381 Figure 6 for the case of a ship hull of normal corn—

mercial form (single—screw merchant vessel of the DTMB Series 57 , with C
B

.70, L/ (B12) 14, and L/D = 17.4) show similar results: it can be estimated

from Figure 6 in [U] that .25 < e* < .28 (for .208 < F < .253), and the f irst
crest of the bow wave also appears to be located downstream from the bow. Similar

results are shown also in Figure 5 p. 553 of (9] for the Inuid model M2l
*(LI(B/2) 16.7 , LID 11.6 , F = .29, e = .29].
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Formulation of an “equivalent problem” in a “solution domain”

The derivation of the solution of the “hydrodynamical problem” in Part

two of the present paper is based on the use of an appropriate funda-

mental solution (Green function) defined in the lower—half space z < 0.

It is thus necessary to replace the free—surface boundary condition (1.11),

wh ich holds on (F) of course , by an equivalent condition on the plane z = 0.

The use of such an “equivalent free—surface condition” on the undisturbed free

surface is evidently also advantageous due to the unknown position of (F). The

hydrodynamical problem defined previously will then be replaced by an equivalent

problem in the “solution domain” bounded by the ship hull and the plane z = 0.
Each approximation to the ship ’s sinkage and trim in the iteration process

defines a new position of the ship hull, with a corresponding modification of

the solution domain . It may be advantageous to avoid these successive modif i—

cations of the solution domain — which are somewhat cumbersome , and might in

addition require excessive computing times in practice — by also replacing the

hull boundary condition (1.7), which holds on (H) of couxse , by an “equivalent

hull condition” on some fixed fictitious hull surface, (h) say ; an obvious choice

for (h) is the wetted hull of the ship in position of rest. The use of such an

“equivalent hull condition” on a fictitious hull surface may also be a convenient

means of investigating the effects of hull—form modifications in the “hull—design

process”, where (h) may then be taken as the “hull at preliminary design”, about which

small modifications are being sought (for the purpose of minimizing the ship wave

resistance, say). The two above—mentioned motivations (sinkage and trim , and

hull design) for using an equivalent hull condition on a fictitious hull (h)

evidently imply that (h) would in all cases be a surface close to the actual hull

surface Leven though in principle (h) could be chosen somewhat arbitrarily; indeed ,

in the thin—ship theory, (h) is taken as the projection of (H) onto the ship center—

plane y — 0, as it is discussed in detail in [4]}.

We thus are led to formulate an equivalent problem to the hydrodynainical

problem in a solution domain , (d) say , bounded by the fictitious hull (h) and

the por tion of the plane z = 0 ou tside (h) , which is denoted by (f) for easy ref-

erence. A rigorous approach to the formulation of such an equivalent problem

in a solution domain consists in formally introducing a one—to—one mapping of

the flow domain (D) onto the solution domain (d). Inasmuch as Cd) does not

differ very much from (D), as it was already noted , the mapping of (D) onto Cd)

would be a “near— identity mapping”. The use of a mapping is not indispensable in

16
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this case. Instead, the alternative approach based on the assumption that the

potential ~ can be continued analytically wherever it is not defined and is

needed may be used. The mapping method , in the case of a near—identity mapping,

and this more usual approach are actually equivalent , as it is shown in Joseph (12]

and Noblesse and Dagan [4]. The approach based on analytic continuation is more
expedient , and will then be used here.

The “equivalent free—surface condition” on (f) can be derived from condition

(1.11) by means of a straightforward modification, namely

— — p
F 

— q on (f), (1.14)

where q (x ,y) is defined as

q = [
~~z 

+ + (Iv~ I 2)~ 
+ ½ ~~ 7I~~ I 2 

+ 

~~~~~~~ 
- (

~~ + 
~XX~~f 

+ q ’ , (1.14a)

with (F) defined by z =  — ½ I~~I 2 - 
~F , as it is given by eq. (1.11). The

“equivalent free—surface flux” q(x ,y) at ( f )  thus includes both the “free—surface

flux” q~. , which may embody effects of spray, wavebreaking and viscosity , and the

free—surface nonlinearities, stemming from both the nonlinear terms in eq. (1.11)

and the fact that (F) differs from the plane z= 0. The formulation (1.14) of the

equivalent free—surface condition on (f) is evidently based on the fact that the

free—surf ace boundary condition is weakly nonlinear almost everywhere in (F), as it

was shown in the previous section .
The “ equivalent hull condition” on (Ii ) is similarly obtained from eq. (1.7)

by merely rewriting this equation in the form

V4~ • = — . — q on (h) , (1.15)

where is the unit normal to (h) — pointing inside — and q is defined as

4. 4. + 4.
q = (1 + V

~
)

H N — (i + 
~~h 

. n + q
11 

. (1.15a)

The “equivalent hull flux” q thus includes both the “viscosity fl ux” which

embodies effects of the viscous boundary layer on the external potential flow,

and the correction associated with the difference between (H) and (h), due to

sinkage and trim or hull—form modifications in the hull design process; evidently

if (h) (H) we merely have q E

I -

~
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It will be noted that the same notat ion q was aged ‘to represent the
“equivalent flux” on both ( f )  and (h) ; this notat ion should not cause any

conf usion however , since the precise meaning of the f lux  q is evident

from the particular boundary condition where q appears. The expression

[c
~~~ 

+ (I 74,~
2) + ½ V~ . v Iv~I 2 + + ~~p F

I F 
in eq. ( 1.14a) , and

the term 
~~~~ 

in eq. (1.15a) , at points of (F) and (H), respectively, outside

the solution domain Cd) must evidently be evaluated by means of analytic con-

tinuation of ~ outside (d); this may be accomplished in practice in various

ways , for instance by using an appropriate formula for numerical extrapolation .

The “equivalent problem” in the “solution domain ” th en is defined by the
“equivalent free—surface and hull conditions” (1.14) and (1.15) , and the Poisson

equation

q in (d) , ( 1.16)

where the same notation q was used also to represent the “domain sources”

associated with the thick boundary layer and the wake at the stern of the

ship ; the radiation condition of no waves upstream from the ship must finally

be added.

In the case of a displacement ship ~~~ 0 in eq. (1 .14 ) ] ,  the problem

defined by assuming q is zero in eqs. (1.14) , (1.15) and (1.16) , and taking

(h) as the wetted hull of the ship in position of rest , is recognized as the

“Neumann—Kelvin problem ” (this appellation was suggested by Brard [13] on account

of the fact that “the boundary condition on the hull is of Neumann ’s type ,

while the boundary condition on the free surface is that used by Lord Kelvin

when , the f i rs t  of all , he initiated the mathematical researches on ship waves” ) .

The “equivalent problem” defined here is then referred to as a “generalized

Neumann—Kelvin problem” in order to emphasize its obvious affinity with the

“Neumann—Kelvin problem”, and also to call attention to the various corrections

embodied in the nonhomogeneous terms q on the r ight sides of equations (1 .14—

1.16) , as well as to the fact that (h) may d i f f e r  from (H) .

It is implicit in the above formulation of the “equivalent problem” that

the “correction terms” q on the right sides of equations (1.14 — 1.16) are

to be treated as known nonhomogeneous term s for  the purpose of solving this
“equivalent problem”; the “generalized Neumann—Kelvin problem” defined above

then must be solved by means of an iterative procedure of some kind .

18
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Equations (1.14— 1.16) readily suggest a “natural” f i r s t  (linearized)
approximation , say, to the disturbance potential ~ : this is the approxi-

mation defined by merely ignoring the correction terms q . This first approxi-

mation would thus be the solution of the problem defined by

0 in (d) , 
- 

(l . l7a)

(1) +. n — i • n on (h) , (l .l7b ) 
-

+ ~~~ = — on ( f ) ,  (l .17c)

and the usual radiation condition . The term on the right side of equation

(l .l7c)  is the (given) f i rs t  approximation to the free—surface pressure p~, acting

on (F) in the case of a surface—effect  ship [ the influence of (F) upon p~ is(1)
neglected in the approximation p~, ]; the hull condition (l.l7b) should naturally

be ignored in the case of a sur face—effec t  ship . In the case of a displacement

ship , on the other hand , we evidently have ~~~~ 0 , while a natural choice for
(h) is the wetted hull of the ship in position of rest;  the f i rs t  approximation
~ (l) 

then is recognized as the so—called “Neumann—Kelvin approximation”.

The f irst  approximation ~~1) 
could then be used to generate a sequence of

approximations , (k > 2) say , by solving the sequence of problems defined by

~2~~(k) 
= q(k~ l) 

in (d) , ( l .l8a)

~ ~
(k) • ~~ = — . — q(k~l) on (h) , (1.18b)

~ (k) 
+ ~

(k) 
(~~

(k)
) - q

(k_l) on ( f )  (l.18c)

and the radiation condition, where the correction terms q
(1~~i) 

are based on the

previous approximations q~
l )

, ... , to ~ . In the case of a surface—effect

ship, the approximation ~~~ to the free—surface pressure 
~F 

takes into account

the influence of the free surface , the position of which is evidently determined

from the previous approximations ~~~~~~~ ~~ ~ (k—l)

In summary , the problem of steady motion of a ship has been formulated above

as a problem in partial differential equations — so—called “generalized Neumann—

Kelvin problem” — defined by eqs. (1.14—1.16). The study of this problem is pursued

in Part 2 of the present paper, where a new integral equation is formulated , and new
explicit approximate solutions are obtained.
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Part 2:  INTEGRAL EQUA.TION ax~d EXPLICIT APPROXIMAT ION S for the VELOCITY

POTENTIAL o~ the FLOW CAUSED by a SHIP in STEADY MOTION

Preliminary results concerning the fundamental solution

- The proposed solution of the “generalized Neumann—Kelvin problem ” is based
on the use of an appropriate fundamental solution (Green funct ion) . This fundamental
solution , which is usually denoted by G(~~,~~0) ,  is known to represent the linear-

ized disturbance velocity potential at point ~ (x ,y,z<O) due to a fixed unit source
at point ~0(x0,y0,z0<O) m a n  oncoming uniform stream with unit velocity (it is

emphasized that G, x and x are dimensionless as in part 1 of the present paper).

The fundamental solution G(x,x0) thus is the solution of the problem defined by

2V G = c5 (x—x
0
) in z < 0 , (2 . l a)

(Z
o
<O )

G + G = 0 on z = 0 , (2.lb)z~~~~~~

and the radiation condition , where 5(~ —~~ ) in equation (2 .la)  represents the

three—dimensional Dirac function defined as 6(~—~~) = cS (x—x 0) t S (y—y 0) 6 ( z — z 0) .

It is emphasized that z0 in equations (2.1) is supposed to be strictly negative

(although we may in fact let z0 tend to zero in the expression for the solution
G(~ ,~ 0) of the foregoing problem]. We need not be concerned with the expression

for the fundamental solution here , although we might note that a simplified new
expression for G(~~,~~0 ) was recently obtained in Noblesse [14], where a br ief survey
of known alternative expressions may also be found.

Let us now consider — for a moment — another fundamental solution , denoted
*4 .

by G (x ,x0,y0) say, representing the linearized disturbance velocity potential

at point ~ (x ,y,z<O) due to a “unit flux” at point (x0,y0) on the undisturbed free
surface z = 0 of an oncoming uniform stream with unit velocity (the same dimension—

less variables are used here as previously). The linearized approximation to the

free—surface condition (1.11) for the case of a fluid flux across the free

surface (but with = 0) takes the form 
~ 

+ 
~xx 

= — 

~~~ 
A “unit flux” across

(F) , or rather the plane z = 0 in the linear approximation , is defined by 
~~ 

=

5 (x—x0, y—y0), 
where c~(x—x 0, y—y0) represents the two—dimensional Dirac function

defined as 5(x—x0
) ô (y—y

0
). The fundamental solution G*(x ,x0,y0) then is the

solution of the problem defined by

20
~0



- w - - —
~~~

--——.- — — ---— 
-—-— 

— - - ------ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

—2.2—

V G  = 0  i n z < O , (2.2a)

+ G = — S (x—x0, y—y 0
) on z 0, (2.2b)

and the usual radiation condition.

From the physical significance of the fundamental solutions G(~ ,~ 0
) and

G(x ,x0,y0) as the (linearized) disturbance velocity potentials associated with

a “unit outflow” stemming from a submerged source at (x0,y0,z0 
< 0) and a flux

across the undisturbed free surface at (x 0 ,y 0, z0 = 0), respectively, it is

intui t ively  evident that  G(~ ,~~0
) -s~ G (~~,x0 ,y0) as 

z0 + 0. We thus expect

G 6~,x3,y0
) G6~,x0,y0,z0 

= 0) , (2.3)

as it can actually be verified from the expressions for the solutions G(~ ,~ 0
) and

C (x,x0,y0
) of the problems defined by eqs. (2.1) and (2.2), respectively (this

verification may be found in Andersson [3]). It then follows from eqs. (2.2)

and (2.3) that G(~ ,x0,y0,z0 
= 0) must satisfy the equations

72G = 0 in z < 0 , (2.4a)

(z
0

= O )

G 4~ G = — S(x—x 0, y— y 0) on z = 0 . ( 2 . 4 b )

The fundamental solution G(~ ,~ 0
) was introduced above as the (linearized)

disturbance velocity potential at point x due to a “unit outflow” at point x0
in an oncoming uniform stream with unit velocity along the x axis in the positive

direction . However G(~ ,x0
) also represents the linearized disturbance velocity

potential at point due to a “unit outflow” at point x in an oncoming

uniform stream with unit velocity along the x axis in the ~~~ative direction ,

as it is known (see, for instance, Brard [13]), and may be verified . The funda-

mental solution G6~,i~0) thus also satisfies the equations

21 
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- (z < O)
G + G  = 0  on z = 0 ,z
0 x~x0 0

V
0 G = O inz

0
< O  , 1

(z= 0)

G + G x 
= — S(x

0 
— x, y0 

— y) on z
0 

= 0
0 00

where V
0 

represents the differential operator (~ ,~~ ,~~ )  to distinguish it
x
0 

y
0 

z
0

from the operator 7 E 
~
3x’~ y ’

3z~~ 
the foregoing equations evidently correspond

to equations (2.1) and (2.4), respectively .

By interchanging the variables and in the above equations , it may then

finally be seen that G(~0,~ ) ,  that is the linearized disturbance velocity potential

at point ~0
(x0,y0,z0 < 0) due to a “unit outflow” (stemming from a submerged source

or a flux across the free surface) at point x(x ,y , z < 0) in an oncoming unit stream

along the positive direction of the x axis, satisfies the equations

V 2G = c5 (~ — in z < 0 , (2.5a)

(z
o <O)

C + G = 0 on z = 0 , (2 .5 b )z xx

V 2G = 0 in z < 0 , (2.6a)

(z
o

O)
+ C = —ô (x - x0, y — y

0
) on z = 0 , (2.6b)

It may- be api ropriate to point out here that — to the author ’s knowledge —

all previous derivations of an integral equation for the present problem are

based on equations (2.5) alone; it should however be realized that equations (2.5)

are valid only for z
0 

strictly negative, and that equations (2.6) hold for

z
0 

= 0. The derivation of the integral equation in the following section makes

use of both equations (2.5) and (2.6).
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Derivation of an integral equation from the generalized Neumann—Kelvin problem

We are now ready to derive an integral equation from the “generalized
Neumann—Kelvin problem” defined by eq. (1.16), the boundary conditions (1.14)
and (1.15), and the radiation condition . The “correction terms” q on the right

sides of these equations are regarded here as arbitrary given functions.

The derivation of the integral equation is based on the use of a well—known

Green identity, applied to the fundamental solution G(x0,x) and the disturbance
velocity potential ~~~~~ as follows

(p  72G - G V2~)dv = 

‘h 
(~ G~ 

- G ~~~ da +

(~ G - C ~~) dxdy + J (~ G
n 

- C da , (2.7)

where Cd’) is the finite domain obtained by excluding the portion of (d) outside a

certain arbitrary — but large enough to contain (h) entirely — bounding surface (a),
as it is shown in Fig. 1, (f’) is the portion of ( f )  inside (a), that is the region

of the plane z = 0 between (h) and (a), dv and da represent differential elements of

volume and area of the domain (d’) and its boundary (h) + ( f ’ )  + (a) , ~ is the unit
outward [with respect to (d’)] normal to (h) or (a), and the notation ~ E

G C(~0,~ ) ,  ~ x~
a
y~~z

)
~ 

dv E dv(~ ) ,  da E da(
~ ) ,  ~ ~~~~~ C VG . ~~, and

E V~ n was used for shortness . By using eqs . (1.14—1.16) in eq. (2.7), we obtain

2
~~V Cdv - G q d v = J ~~G d a + !  C V d a +

1 F+ C q da ÷ J (4 G + G ) dxdy + G p dxdy +
i f ’  Z XX )~~~‘ 

x

+ I C q dxdy + (~ C - C ~ )  da , (2.8)
i f’ 1a n n

+ + + 4 .  + Fwhere the notation V v(x) i n(x), q E q(x), and 
~xP F

(X ,Y) was used .

Let ~ in the integrand of the first integral on the left side of equation

(2.8) be expressed as ~ = + (~ — ~) ,  where is meant for 4(x0
). Let also

~ G ÷ c 
~ 

in the fourth integral on the right side be expressed in the form

~ G~ 
+ C = ~0(G5 + G

XX
) + (~ — 

~~
) ( C

z + G~~
) + (C - ~ G~

). Equation (2.8)

then becomes



____  

— — —~~-—— -_ — — -~~~~ -~~
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~o J  
V
2G d v  J G q d v = J  ~~G da + J  C v d a + f  G q d a  +

+ 

~0 J~’ 
(G~ + C

XX
) dxdy 

h n 

~
G
~
) 

~~c 
(
~
Gx~~ 

G
~~

)dy +

+ I G dxdy + G q dxdy + I (~G - C~ )  da - 3 , (2.9)
if’ ~ if’ 1a 

n n

where (c) and (y) are the intersection curves of (h) and (a), respectively, with

the plane z = 0 , as it is shown in Figure 1, the Green relation

J (C4~ - 

~
G
~

) dxdy =~~~~ (C~ - 
~C )  dy -

~~~~~~ 

(C~ - 4~
Gx)

was used , and 3 is defined as

I I
I (

~ 
- 
~0

)V2G dv - (~ - ~ )(G + C )  dxdy
~ z XX

We have 3 0 by equations (2.5—2.6) and the fact that ~ + 

~o as x + x
0 

[although

~ could conceivably be discontinuous in Cd’), e.g. across a vortex sheet , in a more

advanced potential—flow model than the present one , in which no such discontinuities

are allowed]. The surface integral over the surrounding surface (a) and the line

integral around the intersection curve (y) of the surface (a) with the plane z = 0

in equation (2.9) may be shown to vanish as the surrounding surface (a) becomes ever

larger. These two integrals may then be discarded , and we may in fact replace (f’)

by (f) and Cd’) by Cd) in equation (2.9), which then becomes

~O J P Y J J n~~~~~~~~~~~ X X

+ C q da + C q dxdy + C q dv , (2.10)

where C is defined as

c 
Jd 

72G dv - (C
~ 

+ C
XX
) dxdy . (2. l0a)

24



~~- - ~~. -~~ - - - - -~~~~~ . .-- --—  ~~~
. -

~~~~~
--

~~~~~~~~
-

~~
- 

r —2 6—

It may be seen from equations (2.5—2.6) that we have C 1 for points 
~o in the

solution domain , excluding the fictitious ship hull surface (h) + (c), that is for

points 
~o in the domain [Cd) + (f) — (h) — Cc)], while we have C = 0 for points

“inside the ship”, that is for ~~iflt5 in the domain [(d
i

) + (f ~ ) — (h) —

where (d
i) is the domain and the portion of the plane z 0 which are inside

the hull surface (h) + (c), as it is shown in Figure 1.

Equation (2.10) f or in t(d) + (f) — (h) — (c)] and with C 1 , or rather ,
in fact, the equation

Jh 
~ ~ da + 

‘h 
~ C da 

~ c 
(~c - G~~

) dy (2.lla)

corresponding to the case of a displacement ship 
~~ 

= 0) with the various correction

terms q (which account for free—surface nonlinearities and effects of sinkage of

trim, and may also represent “real—fluid effects”, as it was explained in Part 1 of

this study) being ignored , is well known , and is indeed often used for the purpose

of expressing the disturbance velocity potential ~ (~~~) at points 
~~ 

of the fl ow
domain — strictly outside the ship hull surface — in terms of the value of ~ on

the hull surface (h) + (c). Equation (2.10) with C = 0 , that is for points

inside the ship (but not on the hull surface), or rather the equation

0 = 

‘h 
C ~ da + 

‘h 
~ G da +

~~~ 
(
~
G
~ 

- G~~ ) dy (2 .llb )

corresponding to equation (2.lla) , is also well known. It may be interesting to note

that the method which is usually used for deriving equations (2.lla, b) is different

from that used in the present study , although both methods certainly start from the

same well—known Green identity (2.7). However, in the usual method of derivation

of equation (2.lla) for in (d), excluding (h) + (c), the Green identity (2 .7)
is applied to the domain [Cd) — C c) ] ,  where (c) — by definition — represents the

interior domain of a small sphere centered at 
~~

; on the right side of equation (2.7),

one then obtains an additional surface integral , over the boundary of Cc), whose limit
value as the radius of the sphere vanishes is equal to (—&~) .  No such “limit process”

was used (required) in the present study , where the functions C and ~ are treated

as general ized f unc tions, as it is implied by equations (2.5) and (2.6).
It may be seen from equations (2.5—2.6) and equation (2.lOa) that when is

right on the hull surface (h) + (c) we have C 1/2 , at least at points where
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(11) is smooth [more generally , the value of 4irC, or 2 rr C , at a point of (h), or (c) ,
is equal to the angle at which the domain (d), or (f), respectively, is viewed from

the point 
~~~~~~

].  Equation (2.10) for on (h) + (c) and with C = 1/2, or rather the

equation

C V da + 
jh 

~ C~ da +~~~~ (~G 
- C(

~x
) dy (2.llc)

corresponding to equations (2.lla ,b ) ,  is also well known. Indeed, equation (2.llc )

is the classical integral equation for the (linearized) Neumann—Kelvin problem , which
is given , for instance , in Wehausen [6] p. 151 equation (3.55). As a matter of fact ,

equation (2.llc) for on the hull surface , or analogous equations for similar

potential—flow problems, corresponds to the equation one usually has in mind as an

integral equation for potential—flow problems ; indeed , Stoker [15] p. 195 refers to

the (traditional) method by which equation (2.llc) for on the body surface may be

derived from the Green identity (2.7) as “the standard way of obtaining an integral

equation for a harmonic function satisfying various boundary conditions”. It will

however be noted that it is only under the assumption of a linearized free—surface

boundary condition , in which the nonlinear terms in equation (l.l4a) are ignored,

that equation (2.10) for on the hull surface , and with C = 1/2 , actually becomes

an integral equation for the potential ~(x
0
) at the ship hull surface : clearly , know-

ledge of ~ on (f) — where equation (2.10) with C 1/2 however is not valid is

required in a nonlinear theory . For a nonlinear theory of steady motion of ships,

both equations (2.10) with C = 1/2 (assuming a smooth hull surface) and C = 1 would

therefore be required , and it would in fact be necessary to use each of these equa-

tions in turn for determining b(x0
) on (h) + (c) and in Cd) . This would lead to a

fairly complicated numerical procedure in practice , which suggests that an alternative

approach might be desirable; such an approach is proposed in the present study .

This new approach is based upon the obtention of a single equation equivalent

to the system of two equations consisting of equations (2.10) with C 1/2 , valid

for on (h) + (c) , and with C 1, valid for in (d) + (f) — (h) — (c). A

straightforward derivation of this single equation equivalent to equations (2.10)

with C = 1/2 and C = 1 is suggested by the fact that one must obviously “remedy”

to the discontinuity of the value of the constant C at the ship hull surface [this

discontinuity is evidently accompanied by a corresponding discontinuity of the

values of the last two integrals on the right sides of equations (2.11), associated

with the doublet distribut ions on the hull surface (h) and along the waterline (c)].
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The discontinuity in the value of the constant C at (h) + Cc) may readily be

“remedied” by adding the expression C~~ 0 , where C~ is defined as

c~ I 
72C dv — 

I 
(C + C )  dxdy , (2.12)

i f 
z XX

- 
i i

on both sides of equation (2.10), which then becomes

(C + C
i
)
~ o J G  p~ 

dxdy + 
Jh 

V da + 
jh 

Gn da +
~~~

(c
~
G
~ 

- G
~~

) dy + 
jh 

C q da +

÷ J q dxdy + 

‘d 
C q dv + 

~o [J d
~ 

72C dv - C dxdy - J C~~ dxdy ] 
. (2.13)

Indeed , we have

C + C
i I 

V2Gdv - I (G +C )  dxdy
)d + d

i 
J f + f

i 
z XX

by equations (2.l0a) and (2.12), and equations (2.5—2.6) show that C + C~ = 1 no

matter whether the point is in Cd), on ( f) , on ( h ) ,  on Cc) , or even in (d i
) or

on (f
r
). By using the “divergence theorem”

f d~~~~~~~~~~~~~~
fh n f f~~~

z

and the Green relation

I C dxdy =~~~~C d y
i f Xx J X
i C

into equation (2.13), we finally obtain

= J C p~ dxdy ÷ C V da + J (~ - ~~ ) Cn da +~~~~ [ ( ~ - 

~O
)C
X 

- G
~~
] dy +

+ 

‘h 
C q da + f C q dxdy + 

fd 
C q dv (2.14)
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Equation (2.14) is an integral equation which may be used for determining

the disturbance velocity potential q,(~~) in the solution domain Cd), including

its boundary (h) + (c) + (f), by means of a solution procedure based on iterations,
as it will be explained in detail further on. Two essential features of the fore-

going new integral equation are that it includes nonlinear free—surface effects ,

and that it is valid for points on the hull surface (h) + Cc) as well as “out-

side ” (h), as it has already been noted. Other interesting features of the integral

equation (2.14), which is the “key result” of the present study , will be pointed out

further on.

Equation (2.14) is valid not only for in (d) + Cf ) ÷ (h) + (c), but also

for in (d
i
) + (f ~ )~ that is for “inside the ship”. The case when is

“inside the ship” may be worth further consideration . As it was noted in connection

with equation (2.lOa) we have C = 0 in this case , which evidently implies that the

expression on the right side of equation (2.10) is equal to zero, as it is indeed

shown explicitly in equation (2.llb). This ther~ shows that the integral equation

(2.14) must actually take the form 0.~~ = 0 for inside the ship . This in-

tegral equation therefore allows any arbitrary extension of the potential 
~~ 

out-

side its domain of definition Cd). Conversely , no knowledge of outside (d)

and its boundary (h) + (f) is required in equation (2.14). These results are in

agreement with what one would expect on the basis of plain conmion sense, for it would

indeed be surprising, to say the least, if information given in the domain Cd) and

on its boundary — namely the Poisson equation (1.16) and the boundary conditions

(1.14) and (1.15), together with the radiation condition — were sufficient for de—

fining 
~~ 

(and hence a flow field associated with this potential) inside the ship ,

that is outside Cd); conversely it would be equally surprising if information from

outside (d) were required for defining the flow field in (d).

It will be noted that equation (2.10) with C = 1, that is for in the solu—

tion domain Cd) strictly “outside” the hull surface (h) ÷ Cc), may readily be ob-
tained from the integral equation (2.14) by merely ignoring the term in the ex-

pression ~ — in the doublet distributions, that is in the 3rd and 4th integrals ,

in equation (2.14). That the integral equation (2.14), unlike equation (2.10), is

valid for in (d) including (h) + C c ) ,  is evidently related to the fact that the

values of the integrals involving the doublet distributions_of density (~~ 
— 4~~) _ .

on (h) and Cc) are continuous at (h) + (c) ,  unlike the corresponding integrals_with

doublet density 4._ in equation (2.l0),which are discontinuous at Ch) or (c), as it

is well known and was indeed already noted above.

28



—

—2.10—

The integral equation for surface—effect vessels

In this section we examine the integral equation (2.14) in the particular case of

a surface—effect ship supported by an air cushion or a captive air bubble. In this

case , the integral equation (2.14) takes the much—simplified form

= if C pP dxdy + if C q dxdy , (2.15)

where (f) represents the portion of the plane z = 0 where the free—surface pressure

is acting, and q is the correction associated with free—surface nonlinearities

and wavebreaking defined by equation (1.14a) as

q = 
[~~~~~ 

+ 
~xx ÷ (1~4 I

2
)~ + ~ V4 .VI 741

2 ÷ 
~~ 

+ 4y 1 2z = _ 4
~ —~

.lV4 I 
~F

— i~ +~~ 
1 + aL z ~wavebreaking (2 15a)z O

The integral equation (2.15), which obviously is a nonlinear integral equation in view

of equation (2.15a) , may be solved in a straightforward manner , at least in principle,

by using a solution method based on iterations beginning with the “initial approxi-

mation” obtained from equation (2.15) by ignoring the correction term q

and taking 
~F 

as the given initial approximation to the pressure 
~F 

acting

on the free surface (the influence of the shape of the free surface upon p is

neglected in the approximation 
~F 

). We then have

~initial~~O~ 
= JJ C( 0,x ,y, 0) 3 p~~~ (x ,y) dxdy . (2.16)

It may be worthwhile to note in passing that an alternative expression for the “initial

potential” 4initial 
is

~initial~~O~ if C ( ~ 0, x,y,0) p~~~ (x ,y) dxdy , (2.16a)

as it can be obtained from equation (2.16). It may be seen that the “initial approxi-

mation” is actually identical with the “first approximation” 4 (1) def ined
in Part 1 as the solution of equations Cl.17a), (1.17c) , and the radiation condition .
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It is also interesting to note that the approximation 4initial corresponds to the

first—order (linearized) approximation in a systematic perturbation scheme based on

the assumption of a “small free—surface pressure distribution” 
~F 

(see , e.g.,
Wehausen [6] p. 141).

The “first approximation” 4 4initial can then be used to evaluate the

correction due to free—surface nonlinearities in equations (2.15a) and (2.15). This

yields the “second approximation” ~~2) def ined as

= 4
(1)
(;) + if C(~ 0,x,y,O)q

W (x ,y) dxdy , (2.17)
f

with the first approximation q
(l) 

to the nonlinear free—surface correction term q

given by

q
(l) (x y) = (~

(l)
) + [4

l 
+ 4~~~) 

+ ( 174 W
1
2) + +V4~

1
~.V I v 4 ~

1
~ I 2 

+

÷ 4 (1) 
(~

(l)
) + 4

(1) 
(~

(l)
) 
~

x F x y F y 
= _4~ 1 

— 
1174

(1)
1
2 

— 
(1) (2. l7a)

where equation (1.17c) was used , and the term a was ignored. This iterative
~wavebreaking

procedure may be pursued , in principle , until the difference between successive approxi—

siations to 4 is less than the desired accuracy ; naturally , the influence of the shape

of the free surface upon the free—surface pressure distribution p
~ 

should be accounted

for. The term a in equation (2.l5a) , which is suggested here as a (semi—wavebreaking
empirical) ad hoc correction for approximately taking into account effects of wave—

breaking (in the event wavebreaking does occur) in the framework of potential—flow

theory , could , in principle , also be incorporated into the iterative scheme.

For most practical applications , the “second approximation” ~ (2) 
[or perhaps

even the (linearized) “first approximation” 4(]~~] may be sufficient. A notable s i-rn—
plification, which may be sufficient in practice, of the first approximation to the

nonlinear free—surface correction term qW (and consequently to the “second approxi-

mation” ~~2)
) may readily be obtained by expanding the expression on the right side

of equation (2.17a) in a Taylor series about the plane z = 0 , and retaining only

“second—order terms”, that is terms quadratic in 4 , keeping in mind that we have

4
(1) 

— o(p~~) )  in view of equation (2.16); we obtain
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q~~~ (x ,y) (j94
(i~~1

2
) — + p

) ) ( 4~~ ) 
÷ + 4~~~~(p~~ )

) + 4
)

(~~~ .)
)~~ , (2.171,)

where the expression on the right side is to be evaluated on z = 0 . The “second

approximation ” 4 (2) 
defined by equation (2.17), with the nonlinear free—surface

correction term q
(l) 

given by equation (2.17b), is identical to the second—order

approximation in the systematic perturbation scheme f or a “small free—surface pressure

distribution” mentioned previously, as it may be verified .

This “small free—surface pressure distribution” perturbation scheme could natu-
rally be pursued , in principle , beyond the second—order approximation defined by

equations (2.17) and (2.l7b), thereby providing an alternative method of solution

of the problem of steady motion of a surface—effect ship . An appealing feature of

this perturbation approach is that the successive approximations q~~~ to the non-

linear free—surface correction term q , like the first approximation q
(~~ given in

equation (2.17b), only require evaluation of 4( ~~~) on the plane z0 
= 0 , so that

the computational problem becomes two— , rather than three— , dimensional ; this feature

represents a notable advantage of the perturbation method in comparison with the

iterative procedure , which requires , in effect , that 4( ~~~) be evaluated in a free—

surface layer def ined by 0 ~ z0 > — , where ~ must be so chosen as to permit

the numerical extrapolation of 4 and its derivatives above the plane z0 
= 0

required for evaluating the first (and subsequent) approximation to the free—surface

nonlinear correction term q~~~ given in equation (2 . l7a) . A serious inconvenience

of the perturbation approach , however , resides in that the complexity of the expres-

sions f or the higher—order approximations q
(k) 

to the free—surface nonlinear cor-

rection term q increases very rapidly with k ; in this respect , the iterative

procedure , in which the expression for the term q defined by equation (2.l5a) re-

mains the same at each step of the iterations is clearly at an advantage. In sum-

mary , it may be seen that while the iterative procedure and perturbation method
are evidently very similar , they are not entirely identical; in particular , the

two alternative methods of solution generate different sequences of successive

approximations , and there are also differences in the numerical implementation

of these alternative methods.
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The integral equation for displacement ships

We now consider the particular case of a displacement ship , for which the integral

equation (2.14) takes the form

4o J G v d a + J (4_ 4
0

) G d a +~~ [C4X
_ (4 _ 4

0
)C~ ] U d s + J G (q fll

+ q~b
) dxdy +

+ 
‘h 

C(q~~ + da +

~~ 

Cq5 
ds + 

Jd 
Gq~ dv , (2.18)

in which we used the relation dy = — p ds , where ds is the differential element of arc
length along the “waterline” Cc) and U is defined as p E with ~~ representing
the unit inward normal to Cc) in the plane z = 0; in the integral equation (2.18), q

1 
re-

presents the “NonLinear free—surface correction ” term , which is given by equation (1.14a) as

[~z 
÷ 4XX 

+ ( I V 4 I 2 )~ ÷ ~V4.Vl 741 2] 
1 2 

- 

~~~~~~ 

+ 
~ XX] 

(2.19)

z = — 4 —~~l74 I z = 0

is the “Hull—Form correction” term , which is associated with the fact that the

“fictitious hull” (h) may differ from the actual ship hull (H) , and is given by
equation (l.15a) as

~hf = + 74
~~H ~~ 

— + 74
~ h ~ 

(2 .2 0)

is the correction associated with the viscous Boundary Layer aroun d the ship hull ,
is the correction associated with Spray formation , which was expressed as a line

integral along the “waterline” Cc), and and are correction terms associated

with WaveBreaking and viscosity effects in the Wake, respectively .

It will be noted that the term in the first line integral along Cc) in equa-

tion (2.18) may be expressed in the form = 4 . I + . + i , where
is the unit tangent vector to the “waterline” Cc) oriented in the counterclockwise

direction in the (x,y) plane , ~ is the unit normal vector to (h) pointing toward the

interior of the ship (as it was defined previously), and t is the unit vector tangent
+ +

to (h) mutually orthogonal to s and n and pointing downwards. From the hul] condition
1~ 

+ -(1.15) we have 4 ~~ V4 .n ~~~— i  n — q = — V _ q  , so that we have 4 4 a + 4 ,T —

2 + -~
. + 

X 5
V — qv , where ~ and t are defined as a E s • i and T E t • i , and th e in tegral

equation (2.18) may then be expressed in the form
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= 

‘h 
C V da 

~~c 
C V 2U ds + jh 

(4 - 40
)C da +

~~~ 

[G(a4 + T4
~~

) - (4 - 40)G] p ds ÷

+ J C(q~~ + q~1,)dxdy + J G(q~~ + q1,1)da 
_

~~~~~~ G [ ( q~ f + q~1)vp-q ]ds + J Gq,~dv . (2.21)

It may be noted here that in the usual case when (h) intersects the plane z = 0 ortho-

gonally we have r • I = 0 and V p along the “waterline” Cc) , while in general

we have V = pcosy along (c) if y is the angle between the normal to Cc) and the
normal to (h) at Cc). It may also be interesting to note that the factor OP multi-

plying the term in the second line integral in equation (2.21) is given by a’.i =

— (sin2ci)/2 , where a is the local angle between the x axis and the tangent vector s

to the “waterline ” Cc), so that we have 0 < au~ 
< 1/2 , and in particular OP -

~~ 0
2

both as a ~ 0 and as lal + 90 . On the other hand , the source density V p in the

first line integral is given by = —cos2ysin3a , so that we have 0 < V
2

1 U 1  < 1

and in particular V
2
U + 0 as a + 0 and \)

2
1 1.l j + 1 as 900 and y + 0 . At the

bow of a vertical—sided blunt ship (y = 0, a =—90°) we thus have \‘2 1 U 1  > > aPI

The integral equation (2.21) may easily be seen to hold also in the cases of fully—

submerged bodies , and multihull vessels (catamaran, trimaran , SWATH) with only few minor

modifications: in the case of a fully—submerged body , (h) becomes a closed surface in

the lower—half space z < 0 , (f)  becomes the whole plane z = 0 , and the line integrals

along the “waterline” Cc) must be ignored , while in the case of a multi-hull vessel , a

catamaran say, Ch) and (c) become (h1
) + (h 2 ) and Cc1) + Cc 2), respectively , and Cd)

and (f) become the portions of the lower-half space z < 0 and plane z = 0 outside

the twin hulls (h1
) and (h

2
) of the catamaran , and their intersections (c1) and (c2

)

with the plane z 0 , respectively . The integral equations (2.21) and (2.15) thus

encompass most existing ships, although problems associated with lift and cavitation

f or hydrof oils , and planing effects and spray formation for fast  boats , clearly were

not considered in this study.

A straightforward (at least in principle) method of solving the integral equation

(2.21) consists in using a solution procedure based on iterations, beginning with the

initial approximation, 4,~ say , obtained by ignoring the unknown terms in equation

(2.21), in the manner discussed in the previous section in the case of the integral

equation (2.15) for surface—effect vessels. We thus have

4I(xo) ‘h 
C(0,~) V (~~) da(~) 

~~~ 

G( 0,x ,y , O) V
2 (s) U(s) ds (2 .22)
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+ + + +
where V E n • i and p E n • i as it was defined previously. In the case of a fine

ship , for which a is small, we have V
2

1 p 1  < < k1 , and the line integral in expression -

(2.22) may be neglected in comparison with the surface integral . It is interesting that

the velocity potential , 4H say , defined by this surface integral , that is

- I + + + - 
+

4H(Xo) = J C(x 0,x) V(x) da(x) (2.23)
h

actually corresponds to the wave resistance formula proposed by Hogner [ 1 1 in 1932 as

an “interpolation” between Michell’s “thin—ship approximation” and a “flat—ship approxi-

mation” — also proposed by Hogner in [ 1 ] — analogous to Michell’s approximation . In-

deed , these “thin— and flat—ship approximations”, and also the “slender—ship approxi—
tuation of Maruo [16], Tuck [17] , and Vossers [18], can readily be derived from the Hogner

wave resistance formula corresponding to expression (2.23) for the Hogner potential 4
H

by means of appropriate assumptions , as it c~ill ba shown in detail in Part 3 of this study.

The initial approximation 4, therefore ought to provide a realistic initial approxi-

mation for solving the integral equation (2.21) iteratively if the ship hull form is

sufficiently slender. At the bow of a vertical—sided blunt ship, we have \)2p = V = 1

so that we have no a priori reason to neglect the line integral in comparison with the

surface integral (Hogner potential) in formula (2.22). As a matter of fact , it will be

shown in Part 3 of this study that the line integral in equation (2.22) causes a drastic

reduction in the value of the wave resistance at low Froude number.

The initial approximation 4~ (the notation will also be used wherever it is

more convenient) can be used to define a second approximation 
~2 

by evaluating the

various terms which have previously been neglected in the integral equation (2.21); we

thus obtain

= 

~~~~~ 
+ 
jh 

C4~ - 4~ )C~ da +
~~~ 

[G(a4
1 
+ t4~ ) - (4~ - 4~

) G ]  U ds +

+ J C~~1 
dxdy ÷ J Cq~~ da -

~~~~~~ 

Cq~f vp ds , (2 .24 )

where the nonlinear free—surface correction term q
1
1 is given by

= + + (IV4~~
2
) ÷ ~~4,.7I 74,1 21 

I 1 2 
(2 .24 a)

z = —4 —
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I I Isince we have 
~ 

+ 4 = 0 on z = 0 , and the hull—form correction term q~~ i-s

given by equation (2.20) with 4 replaced by 
~~ 

. A noteworthy simplification of

expression (2.24a) for the nonlinear free—surface correction term q~1 is that ob-

tained by using a Taylor series expansion about the plane z = 0 and retaining only

the “second—order terms”, that is the terms quadratic in 4 or its derivatives;

this yields 
-

q
1 

( 1~~~~4 1
2) - 4

I 
~~~ + ~ , (2 .2 4 b)

nl I x x z iac z

where the expression on the right side is to be evaluated on (f), that is on z = 0

It may be noted in passing that expression (2.24b) is identical to the expression ob-

tained in the classical “second—order thin—ship theory”, as it may be verified , for

instance , from equation (3.27) in Noblesse and Dagan [4 1 .

The second term on the right side of equation (2.24) represents the velocity

potential of the flow , at point 
~~~~~ 

, due to a doublet dis tr ibut ion on the hull sur-

face (h) of strength equal to the potential difference ~~~~~ 
— ~ (~~ ) , and thus cor-

responds to “interaction effects” of the hull upon itself; this doub let distribution

might then conveniently be referred to as the “hull—interaction correction ”. The third

term on the right side of equation (2.24) is a line integral along the “waterline” (c),

so that this term might be referred to as the “waterline correction”. An alternative

expression for the “hull—interaction correction ” and the “waterline correction” will be

given below. The physical significance of the fourth term on the right side of equation

(2.24) is clear : it accounts for both the nonlinear terms in the free—surface boundary

condition and the difference between the actual free surface and the undisturbed free

surface z = 0 , where the free—surface condition is enforced for mathematical sim-

plicity ; this integral may thus be referred to as the “nonlinear free—surface correction”.

The last two terms on the right side of eq. (2.24) account for the possible difference

between the actual hull surface (H) and the fictitious hull surface (h) where the hull

boundary condition is enforced. In most practical applications , these terms would be

associated with the variations in hull form due to the sinkage and trim experienced by

the ship , so that evaluation of these “hull—form corrections” would evidently require

preliminary determination of sinkage and trim . However , th � “hul l—form correction ” 
~~~

could ~~so be used in the “hull—design process ” as 3 means f~r systematically invest i—

gating hull—form modifications about some “preliminary—design hull form” taken as the

fictitious hull (h) Naturally , the “hull—form correction ” vanishes if (h) coincides

with (H), as it may be seen from equation (2.20). Although the terms q ,
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and q in equation (2.21) were ignored in expression (2.2L~ ~~nr the second approxi-

mation 4., , these ad hoc corrections for “real—fluid effects ” , which mig ht b.-~ referred

to as the “boundary layer, spray, wavebreaking1 and wake corrections ”, respectively ,

could in principle be included.

The “hull—interaction correction ” and the “waterline correction ” i~. t ~pression

(2.24) for the second approximation 
~2 involve dist ribut ion s of both sources and

doublets. An alternative expression for these correction terms — involving distri-

butions of sources alone — can be obtained , as it will now be shown . We 5egin

by considering a function t~ verifying the Laplace equation ~~~ — 0 in (d), the

linearized “Neumann—Kelvin condit ion ” + q) = 0 on (f), the “Neumann condition ”

= 

~n on the hull surface (h ) ,  ~.td ~~~~~ “radiation condition” of “no waves upstream”.
By comparing the above equationc with equations (1.16), (1.14), and (1.15), respectivel’~,

it may be shown that the integral equation (2.21) takes the form

i~0
= 

‘h~~~~~ 

da +? G~ P ’ ~L d s + J  
(~P _

~ P0
)G~~da+

+

~~~ 

[C(~ P + r
~ t

) - C~ 
- W0

)C] pds . (2.25)

By using equation (2.25), wit h t~ taken as the initial potential 
~~ 

, we may obtain

the following expression for the “hull—interaction correction” and the “waterline

correction” in expression (2.24)

- 

~~)G da +‘

~~ 

[ G ( a ~~ + T~~~~) - C~ 
- 

~~~)G ]  p ds =

CCV + e~I) da 

~ c 
G(V + e~I) vp ds , (2.26)

I ,, ,, e lwhere f ormula (2 .22 )  f or ~~ was used, and the superscript e in the term ~ is
+ 

n
meant to clearly indicat e that the term • n , which is discontinuous across

(h) since the potential 
~~ 

is associated with a distrIbution of sources on (h), must

be evaluated on the “exterior” side of the surface Ch). By substituting equation (2.26)

into equation (2 .24 ) , we obtain the following alternative expression for the second

approximation 
~2

= 
0 + CCV + 

~~~~~ 
da 

~ c 
G(V + 

~~
)
H
VU ds + 

~ 

Gq~~ dxdy f (2 . 2 7 )
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where the surface and line integrals over (h) and along (c), respectively, have been

~r~uped together , and expression (2.20) for the “hull—form correction term” q
~f 

was used .

Numerical evaluation of the second approximation 
~2 

defined by equation (2.27)

may be divided in to four basic steps , as follows : Ci) evaluate the initial approxi-

mation q~ given by formula (2.22) for some fictit ious hull surface (h) , which may

—but need not— be taken as the wetted hull of the ship in position of rest , (ii) deter-

mine the sinkage and trim experienced by the ship and the position of the hull (H)

corresponding to the approximation 4~ , Ciii) evaluate the fluid flux (v + 
~ri~H(i + 

~
7
~~I~~H

’ N across the ship hull (H) and the nonlinear free—surface correction

flux q~1 
, and finally (iv) evaluate the last three terms on the right side of ex—

pression (2.27). The computational task involved in the practical implementation of

the above four basic steps admittedly is quite considerable , but it ought to be within

present—day calculation capabilities. Although the iterative procedure described in

the foregoing could in principle be pursued further , the enormous computational task

involved in the continuation of this terative scheme drastically limits the feasi-

bility of this approach in practice. It may seem reasonable to hope , however , that

the second approximation 
~2 

, or perhap s even the initial approximation 
~ , may be

sufficiently accurate for most practical applications.

Variations about the basic iterative scheme described above may naturally be con-

sidered . In particular , it may be interesting to begin , in a first stage , by seeking

the “linearized Neumann—Kelvin potential”, which was denoted by in equations

(1.17) but will simply be denoted by ~ here , given by the solution of the linearized

integral equation

1
~0 

= + J (~) - 
~0
)G da +

~~ 
~~~~~~~ 

+ T~~~) 
- (~ - 

~0
)G] p ds , (2.28)

in which the “nonlinear free—surface correction”, the “hull-form correction”, and the

various “real—fluid effects” corrections, in the integral equation (2.21) have been

neglected , and equation (2.22) was used. The main advantage of the linearized integral

equation (2.28) in comparison with equation (2.21) is that it involves the potential

on the fictitious hull surface Ch) + (c) alone so that the solution ~ of the

linearized Neumann—Kelvin integral equation (2.28) may be sought on (h) + Cc) alone

[whereas equation (2.21) requires that  ~ be determined in some subdomain of (d)
“outside” (h)]. The iterative scheme discussed previously may be used for solving

Equation (2.20), with 4~ replaced by 
~~

, yields

= (I + 7
~I~H ~~~ 

- (I + 
~~I~h ~ 

= (V + 
~n~H 

— (V + 
~n~h
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the integral equation (2.28); specifically, the sequence of approximations

k > 0 def ined by ~ (0) 
0 and the recurrence relation

~ (k+l) 
— + J (~ (k) 

— 
k) ) C d  ~~~~~~~~~~~ + ~rt~~

1
~~) — (~ (k) 

— ~,9
(k)

) G ] d  (2.28a)

may be associated with the integral equation (2.28). By using equation (2.25), with

~i re placed by , into equation (2.28a) we may obtain the following alternative

recurrence relation

~p(k+l) ~ (k) 
+ J G(v ÷ e~ (k) ) da -

~~~~~~ 

CCV + 
e~ (k) ) Vp ds , k > 0 , (2.28b)

where equation (2.22) was used , and the notation 
e~ (k) 

means that the normal der-

ivative of the potential ~(k) 
must be evaluated on the “exterior

side ” of the hull surface (h) . Once equation (2 .28)  has been solved (within some pre-

scribed accuracy) for on (h) + (c) , one may turn to the nonlinear integral equa—

ti-on (2.21) and seek to correct the “linearized Neumann—Kelvin potential” ‘
~~ by

evaluating the “nonlinear free—surface correction” and the “hull—form (sinkage and

trim) correction”. Evaluation of these corrections for free—surface nonlinear—ties

and effects of sinkage and trim evidently requires that tD be determined “outside”

the hull surface (h) + (c); this can be done by using the equation

= ÷ C da +
~~~ 

~~~~~~~ 
+ r )  - 

~G ]  
p ds , (2 .29 )

which may be obtained from equation (2.lla), and is valid for strictly “outside”

(h) + (c). Further improvement of this Neumann—Kelvin approximation corrected (approxi-

mately) for effects of free—surface nonlinear—ties and of sinkage and trim could , in

principle, then be sought by pursuing the iterative method of solution of the nonlinear

integral equation (2.21) described previously.

Another noteworthy variation about the first—discussed iterative scheme — which

consists in using the potential 4~ given by equation (2.22) as initial approximation
for solving the integral equation (2.21) — is the iterative scheme associated with the

use of the Hogner potential ‘
~H 

given by equation (2.23) as initial approximation for

solving the integral equation (2.18) . The second approximation , ~ 
say,  in this

iterative scheme is given by
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- 

~~~~~ 
+ 

‘h 
~~~ - ~~ )G~ da 

~~~ 

[G~~ - (
~H - 

~~) G ]  p ds +

÷ ~ Gq~
1
1 

dxdy + 
~ 

Gq~~ da , - (2.30)
i f 

n 
‘h

as it can readily be obtained from equation (2.18). It can be shown — in the manner

used previously for deriving equation (2.27) — that expression (2.30) for 
~~ may

also be written in the alternative form

= 

~~~~~ 
+ 
Jh 

C(V + 
~n~H 

da + J Gq~ 1 dxdy (2.30a)

which corresponds to expression (2.27) for the second approximation 
~2 

while expres-

sion (2.30) for 4~ corresponds to expression (2.24) for 
~2 

It can also be shown

that the solution , i.e j~ , of the “linearized Neumann—Kelvin problem” can be definedV ( k)  VCO )
as the limit of the sequence of approximations ~1 , k > 0 , def ined by ~ = 0

and the recurrence relation

~(k+l ) v(k) ~

‘P0 ‘Po + CCV + eç ‘) da , k > 0 , (2.31)
h

which corresponds to the recurrence relation (2.28b) associated with the sequence of

approximations ~~~~~~~~ Comparison between expressions (2.22) and (2.23) for the initial

approximations ~~ and 
~H 

expressions (2.27) and C2.30a) for the second approxi-

mations and , and the recurrence relations (2.28b ) and (2.31) for the sequences
(k) ~(k) .of approximations ~ and ‘P show that the line integrals which appear in the

iterative approximations associated with the use of as initial approximation do

not occur in the iterative approximations associated with the use of the Hogner potential

as initial approximation , so that the latter iterative approximations may perhaps be

a little simpler to evaluate numerically than the former. The fact that there is no

line integral in the iterative scheme corresponding to the recurrence relation (2.31)

and approximations (2.23) and (2.30a) is in agreement with the resul t that no line in-

tegral occurs in the classical “thin—ship perturbation approximations”, which can be
expressed — at any order of approximation — in terms of surface distributions of
sources on the ship centerplane and on the undisturbed free surface , as it is shown in

Noblesse and Dagan [ 4]. This result thus is generalized in the iterative approximations

(2.23) and (2.30a) , which express the disturbance velocity potential ~ in terms of
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surface distributions of sources on some fictitious hull surface (h) and on the undis-

turbed free surface (higher iterative approximations ~~ , k > 3 , are aløo expressed
in terms of surface distributions of sources on (h) and (f), as it can easily be shown].

As a matter of fact , the classical “thin—ship perturbation approximations”, which
may be derived from the usual differential formulation of the problem by performing a

systematic perturbation analysis (in terms of the ship beam/length ratio as “small per-

turbation parameter”), may also be obtained from the new integral formulation of the
problem given in this study, namely the integral equation (2.18), by using a “thin—
ship iterative solution procedure”, which essentially corresponds to the “thin—ship

limit” of the iterative scheme associated with the use of the Hogner potential 
~H 

as

initial approximation , as it will now be shown. Effects of sinkage and trim will be

ignored , and we assume that the equation of the wetted hull of the ship in position of

rest — which is taken as the fictitious hull surface (h) — may be written in the form
y ± b(x ,z). The surface integral over (h) in expression (2.23) for the Hogner poten—

tial can then be transformed into a double integral over the projection (h) of Ch)

onto the ship centerplane y = 0 ; we thus obtain

~ ( ) = 2 11 G(~ ,x , y = b ( x ,z) , zJ b (x ,z) dxd zH O  
~~~ 

0 x
y

In the thin—ship limit , that is if b(x,z) < < 1 , the Hogner potential 
~H 

becomes

the classical Michell potential, 
~M 

say , given by

~ = 2~~ C(~0, x,y 0,z) b ( x ,z)dxdz

y

3y replacing 
~H 

by 
~M 

in equation (2.30a), we obtain the second approximation, 4~say , given by

~~~~~~~ 211h 0 [bx
_ 

~~ 
+ c~~ b + 

~~ 
b ]  

y = b 
+

÷ JJ G(x 0,x ,y, z”O) [l ~~~~~~ N
l 

)
~ 

— 
~~ 

+ 

~xx)] dxdy
f z = O

where the surface integral over Ch) was transformed into a double integral over (h~)~
expression (2 .24b )  — with &.~ rep laced by — for the nonlinear free—surface

flux qM
1 

was used , and the nonlinear free—surface correction integral was explicitly
written as a double integral for consistency . By using a Taylor series expansion about

the ship centerplane y = 0 , we may ob tain
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[b — + 
~~ b~ + 4~ b ] — [(b

M 
b) + (

~ b)~~ 
+ 0(b 2 )

y — b  y = O

since we have V2
4 M 0 and b 

= + 0 In the thin—ship l imit , the second
approximation 

~2 
defined above becomes the “second iterative thin—ship approximation”,

say, given by

÷ 2JJ G(~0,x,y~”O ,z) [(~ b) + (
~ b)] 

dxdz +

h y = O

÷ 
~~ 

G(~0 ,x ,y , z-0) [ ‘~~M 1 
2
) x 

- + 

~~~ z 
~ = 

dxdy

which is in agreement with the expression for the classical “second—order thin—ship

perturbation approximation”, as it may be verified by comparison with equations (3.16),

(3.28), (3.27), and (4.5) in Noblesse and Dagat [ 4]. The iterative scheme associated
with the use of the Hogner potential 

~H 
as initial approximation may thus be regarded

as a “generalized thin—ship iterative scheme”. It is however perhaps more appropriate

to refer to this iterative scheme as the “fine—ship iterative scheme”, which is in agree-

ment with the fact that the line integral in expression (2.22) for the initial approxi-

mation 
~~ 

may be neglected in comparison with the Hogner potential 
~H 

if the angle

~ between the “waterline” (c) and the x axis is sufficiently small, that is for a “fine

ship”; the Hogner potential 
~H 

and the potential 4’.j given by equations (2.23) and

(2.30a), respectively , may thus be regarded as the “first and second fine—ship (iterative)

approximations”, respectively.

It may finally be worthwhile to emphasize that the fictitious hull surface (h) may

be chosen at will — at least to a certain extent — in the present theory , and we may
naturally seek ~o take advantage of this freedom. In particular , expressions (2.27 )  and
(2.30a) for the second approximations 

~2 
and 4.~ suggest that an “equivalent Hogner hull ”

(h) which by definition would be such that the fluid flux Cv + 
~n~H 

[T + (V
~H
)H
]. N

across the actual ship hull surface (H) is zero (or sufficiently small) might be deter—

mined , say by means of some iterative procedure in which the shape of the fictitious

hull (h) is varied systematically in some appropriate manner; thus, in this approach ,

iterations would be performed with regard to the shape of the fictitious hull surface

(h) , rather than with regard to the velocity potential ~ as in the iterative schemes

discussed previously. The idea of purposely choosing the fictitious hull surface (h)

so that it differs from the actual ship hull surface (H) may also be useful outside this

“concept of the equivalent Hogner hull surface” in that choosing (h) different from (H)

would circumvent the numerical difficulties associated with the singular behavior of the

Green function C(x 0, x) when the points and coincide.
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