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EFFECTS OF HYDROGE N ON AN ISOTROPIC ELASTIC

PROPERTIES OF bcc Ti—ALLOYS

L. A. Ahlberg , 0. Buck , and N. E. Paton
Rock wel l Intern ~tIona 1 Science Center
Thousand Oak s , Cali fornia 91360 USA

The relatively large effects of hydrogen on yield strength, Young ’s

modulus (and its temperature dependence) and the l attice parameter of

metastable (bcc) Ti— alloys have been known for some time (1—4). In this class

of material s, the room temperature sol ubility of H is quite large , so that

hydride formation does not interfere with the measurements. Some of the work

(2) showed that both yield strength and Young ’s modulus decrease with

increasing H content, while the l attice parameter increases. These results

have been interpreted in terms of a predominantly electronic interaction

between H and the host lattice. It is now know (5) from the H dependence of

second order elastic constant s and the lattice parameter, as well as third

order elastic constants, that the observed changes in second order constants

can be separated into those due to vol ume changes and those from intrinsic

alloying modifications of the interatomic forces, the latter being basical ly

electronic in nature. Since third order elastic constants for the Ti—V system

have been dctermined recently (6), it seemed worthwhile to measure the

hydrogen sensitivi ty of the (anisotropic) second order elastic constant s (a

combination of which determines the Young ’s modulus). Such info rmation would

allow us to obtain insight into the physical effects of H on the alloy system

and its effect on the plastic deformation of bcc metals (7). The present note

reports on some of our observations on the Ti-V-H system.
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As described earlier (8), an ultra sonic phase compari son technique

was used to determine both the values of the pure-mode ultrasonic sound

vel ocities (at about 12 MHz) and their dependence on H and temperature. From

these data , the second order elastic consta nts C~ can be determined (9). The

specimen used for these measurements was a single crystal of Ti— 40V alloy

which was cut to expose a parallel pair of 11001 faces (0.516 cm apart) and a

parallel pair of 11101 faces (0.848 cm apart). This specimen was charged in a

micro—Sieverts apparatus with various amounts of H at 800°C.

Table I summarizes the second order elastic constants C11 and C44,

as well as important combinations of C1~ such as 
C1 = (C 11 — C 12) /2 (a shear

constant) and B = (C11 + 2 C12)/3 (the bulk modulus), as a function of four

hydrogen l evels. Furthermore, the anisotropy factor A = C44/C’, whh.h is a

measure of the lattice instability , is given in Tabl e I. This quantity A is

of some interest to the present studies since the rnetastable Ti-V alloys

undergo a lattice transformation [the atherma l f3 ~~w transformation (10)] at

low temperatures, which seems to be affected by the presence of H (3). As was

pointed out by Zener (11), bcc lattices with a large A tend to be unstable and

effects of H on A should give an indication of the transformation behavior of

the alloy . As seen from Table I, C1 is the elastic property that is most

severely affected by H (in the average about -2.6% per a/o H). Therefore, A

is rapidly Increasing with H, indicating that the lattice becomes more

unstable. We also noticed that the attenuation of the acoustic signal , that

is used to determine C , increases sharply with Increasing H concentration.

This attenuation Is caused by the /3 *w transformation , as discussed earlier

(1—4). Thus, the large changes In A , C’ , and the attenuation suggest

3
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strongly that the ~3 *~~transfo rmation temperature is raised with increasing H

concentration.

Table II summarizes the temperature dependence of the quantities

given in Table I. Particularly noticeable is the change in sign for dC11/dT

and dC ’ /dT (and therefore dA/di) with increasing H concentration. It is now

clear that the change in temperature behavior of the Young ’s modulus with

increasing H, as observed on both Ti—V (3) and Ti—Mo (2.4) alloys at roan

temperature , is mainly due to either the contribution from dC11/dT or dC’ /dT

or both.

Based on the present second order elastic constants data and their

changes with H concentration , we can now separate the extent to which the

observed changes are caused by the intrinsic allo ying effect (isovolumetric

changes) from those due to the lattice parameter change , which accompanies the

addition of hydrogen. This was recently demonstrated for the NbH system (5),

where It was postulated that any elastic modulus M is a function of H

concentration , c, and the average lattice spac i ng , a, so that the total change

with c can be written as

dM ~M ~Ml da
+~~~~~~~~~~~~~~ (1)

Rewriting Equation (1) yields the rel ative intrinsic alloying effect

13M 1 dM 1 ~ da 2M c  M d c  M~~~1J dc ()

wi t h
• l aM da B d M 3  da 3M a a

~~ 
dc M a~ a

4
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where dM/dp is the pressure der ivative of a modulus M and a the lattice

parameter. dM/dp have been measured recently (6) for 0 a/a H and are given in

Table III. da/adc was determined in the present i nvestigation to be da/adc =

6.9 x i~
—
~ per a/a H. We thus are able to estimate the intrins ic alloying

effect for M = C11, C44, B, and C’ with the results given in Tabl e IV . As

one might expect, these intrinsic effects (electronic in nature) of H on the

moduli M turn out to be positive and those due to the lattice parameter change

are all negative.

These results open up further avenues of research. For instance ,

the authors believe that an accurate knowl edge of the anisotropic elastic

modul i will be useful to determine the H dependent shear stress r, necessary

to move a disl ocation on the appropriate slip pl ane (12). On the other hand ,

the data may give us a better understanding on the effects of H on the /3 ~~w

transformation. Our results show that the anisotropy factor A increases with

increasing H concentration. As indicated in Fig.l , pl otting A as a function

of V concentration and as a function of H in Ti—40V yields (at low H

concentrations) basical ly the same sl ope for both curves if the addition of 1

a/o Fl is equivalent to the extraction of 1 a/o V. Such an equivalence was

speculated about earlier (3) wIthout quantitative proof. The meaning of this

observation would be that the hydrogen attracts basicall y one electron from

the vanadium . Furthermore, we should note that the effects of H on C ’ are so

large [In particular in respect to NbH (5)] that there is good reason to

bel ieve that the H (actual ly H , If the prev i ous statement is valid) gives

ri se to a large tetragonal distortion of the Ti—V lattice (13).

5
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TABLE I

An i sotropic second order elastic constants of Ti-40V , doped with H, at 22.5°C.
I

All values , except A (dimensionless), in 1011 dyn/cm2.

O a/oH 2.4 a/oH 3.6 a/oH 4.8 a/oH

C11 14.88 14.77 14.65 14.45
C44 4.053 4.076 4.085 4.104

C 2.399 2.293 2.223 2.114
B 11.880 11.710 11.690 11.630
A 1.690 1.780 1.840 1.940

TABLE I I
Temperature derivatives of the second order elastic constants

of Ti—40V doped with H, at 22.5°C. Units of first four

derivatives in iO~ dyn/cm
2 °C. dA/dT: in

0 a/oH 2.4 a/oH 3.6 a/oH 4.8 a/oH

dC11/dT -17.84 -10.43 —4.37 +9.33

dC/ 44/dT -4.18 -4.04 -3.77 -2.88

dC /dT —6.71 -1.60 +0.44 +7.88

dB/dT -8.89 -8.30 -4.96 -1.18

dA/dT +2.99 —0.52 —2.06 -8.60
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TABLE III

Pressure der ivatives of second ~- ier elastic constants of Ti —3 8 .5V ,
from Reference 6 (al l units dimensionless).

dC11/dP dC44/dP dC~/dP dB/dP

4.63 0-431 0.533 3.92

TABLE IV

The effects of H on the modul i on Ti—40V (all units in iO~~ per a/oH )

1st co lumn : measured values.
2nd Column: changes due to lattice expansion.
3rd column : Changes due to intrinsic effects.

1 dM 1. aMflda 1 aMM uIc~ _ _ _ _ _ _ _ _

C 11 —6.02 —7.65 +1.63

C44 +2.42 —0.26 +2.68

C’ — 2.47 -5.46 +2.99

B —2.73 —8. 11 +5.98

8
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a/O H in Ti-40V
6 4 2 0 SC78-1916
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V in T1V

Fig . 1. The change of anisotropy factor with vanadium in Ti-V (6) and
hydrogen concentration in Ti-40V.
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