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ABSTPRACT

This report describes the first-year results of an investigation of
fault-tolerant computer systems. A new method for measuring recovery
time in fault-tolerant multiprocessors was developed. A complete characterizaticn
of optimally t-step recoverable systems was obtained, and certain gragh
transformations that simplify recovery analysis were studied. Some
diagnosability properties of n-cube interconnection networks were derived.
A study of fault tolerance in large connecting networks was initiated using
a new concept of dynamic full access. A design theory based on recursive
compornent expansion capabilities was developed for MSI/LSI systems. The
use of similar recursive methods for test pattern generation was also
initiated., Promising results were obtaired for testing bit-sliced

microprocessors and related components.




l. RESEARCH OBJECTIVES

The purpose of this research project is to develop methods for the
analysis and synthesis of complex fault-tolerant computer systems. It
is motivated by recent rapid developments in large-scale integration (LSI)
technology, especially the introduction of microprocessors, which are
expected to increase greatly the use of multiple computer systems that are
required to be highly reliable. The research is particularly concerned with
dynamic reconfiguration and recovery in the event of failures, topics
which have received relatively little research attention in the past.
It is intended to develop specific measure of the cost and complexity of
reconfiqguration and recovery, and to derive efficient fault tolerance
algorithms based on these measures. Yarious graph theoretical and
algebraic tools are used in this research, with the facility graph model
(1], developed by the Principal Investigator, serving as a starting point,
The special problems associated with the design of systems containing
many microprocessors, particularly the problem of interprocessor communication,

are also being investigated.
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2. RESEARCH ACCOMPLISHMENTS

During 1977-78 results were obtained in three main areas:
(1) Recovery modeling in multiprocessor systems
(2) Communication networks for multi-microprocessors
(3) Design and testing of MSI and LSI systems
These results are described in detail in the following subsections.

2.1 Recovery modeling in multiprocessor systems (2, 3]1

A new method for characterizing the recovery time of fault~tolerant
multiprocessor systems was developed. The system is represented by a
facility graph Gr in which nodes correspond to processors and edges
correspond to communication links [l]. The fault-free nodes include nodes
actively engaged in data processing and nodes acting as standby spares.

A fault is represented by the removal of a node and its associated edges

from Gr' Faults are tolerated by reconfiguring the pattern of active and
spare nodes in Gr so that there always exists an active subnetwork that is
isomorphic, that is, hags the same (logical) interconnection structure, as

a certain minimum configquration Gb called the kasic system. G,_ can be

b

taken as the minimum fault-free system needed to perform a particular set
of tasks.

A system Gr is called k-fault-tolerant (k-FT) t~step recoverable (t-SR)
1€ it can recover from up to k faults by changing the states of at most t

fault~free nodes. k is clearly a measure of the amount of damage the

1Reference [3] forms an appendix to this report.




system can tolerate. A state change e.g., from spare to active, typically
involves the establishment of new logical paths in the system, and the
transfer of programs and data between the affected nodes. If n state changes
of average duration ¢ are required to recover from a particular fault, then
nc is the total recovery time. Thus the parameter t defined above is
proportional to the maximum recovery time required by Gr'

Clearly t > k. A case of particular interest, corresponding to a
class of systems with minimum recovery time, is where t = k. In such
systems recovery from t faults is achieved by immediate replacement of
each failed node by a fault-free spare. Gr is defined to be optimally
t-SR with respect to an n-node basic system Gb if

(1) Gr is t-FT/t-SR with respect to Gb

(2) G, contains the minimum number of nodes, viz. n + t

(3) Gr contains the fewest edges among all systems satisfying

conditions (1) and (2)
In [3] we prove that the optimal t-SR realization of every Gb is unique,

and that it has a surprisingly simple structure. Figure la shows an

example of a basic graph Ib consisting of four processors arranged in a

OPT

ring. Figure lb shows the corresponding optimal 2-SR graph 12 R

consists of I, with two additional spare nodes, labeled s, and s and

b l 2!

additional edges connecting sl and s, to all nodes, including each other.

Every fault graph formed by removing one or two nodes from IzoPT contains
a subgraph isomorphic to 12 {the 2-FT property). Furthermore, each such

subgraph can be chosen so that it differs from the original active subgraph

in at most two nodes (the 2~SP property).




(a)

(b)

Figure 1. (a) A 4-node basic system Ib' (b) The correspending

OPT

optimal 2-SR system Ib ;




Optimal t-SR systems have the disadvantage that the number of edges
connected to some nodes (the node degree) may be very large. Since this
represents the number of parallel data paths to a processor, it is often
severely restricted by physical considerations, for example, microprocessor
pin limitations. Thus nonoptimal fault-tolerant systems with limited node
fanout are of interest. We have investigated a class of graph transformations,
called line graph transformations, which lead to t-SR designs with nodes
of lower degree than the corresponding optimal t-SR systems [3]. We have
also shown that line graph transformations greatly simplify the computation

of the parameters k and t.

2.2 Communication networks for multi-microprocessors [4]

An extensive survey of systems containing many microprocessors was
completed. Two major communications structures for such systems were
identified; the hierarchical bus organization represented by Cm* [5], and
the n-cube organization proposed by several researchers i6, 7]. Most of
the published work in this area deals with unimplemented paper designs
with little analytical basis. System reliability and fault tolerance have
also been largely ignored.

A network organization with a relatively sound analytical basis 1is
the binary n-cube structure (7). This contains 2n processors whose logical
interconnection structure can be represented by an n-dimensional cube.
Figure 2a shows the structure of the 3-cube. We have investigated several

aspects of the fault tolerance of n-cube networks. Using the approach of
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Preparata et al. [8] we have shown that the diagnosability of an n-cube

system is n for n > 3, where the diagnosability of a system is defired

&
-

as the largest number k such that the system is one-step k-fault diagnosable
N-cube arrays can be implemented using ccnnecting networks cf the
type long used in telephone exchanges {9]). Figure 2b shows one such
implementation of the 3-cube using twelve switches denoted S. Each S may
be considered to have two states, the "through" and "cross" states depicted
in Figure 2c. We have begun investigating the fault tolerance properties
of conneétinq networks of this kind. A study of acrual circuits used for
S [10] indicates that most faults in the network can be modeled by switches
that are stuck at the through state (s-a-T) or stuck at the cross state
(s-a=X).
We have defined a connecting network N to have the dynamic full access
property if each processor Pi can be connected to any other proces:or Pj
via a finite (but unspecified) number of passes through the connecting
network. This is a generalization of the usual full access property (9],
N is said to be k-fault tolerant (k-FT) with respect to the foregoing s-a-T/X
fault model if the failure of k or fewer switches in N does not destroy the
dynamic full access property. We have begqun investigating the conditions
for N to be k-FT. It is hoped that this work will lead to methuds for
designing efficient and fault-tolerant communication networks for large

multi-microprocessor systems.

2.3 Design and testing of MSI and LSI systems [ll, 12]

Most existing analytical tools are inadequate for dealing with

digital components above the gate and flip-flop levels, which correspond




to small-scale integration (SSI) in current techrology., There is at present
no adequate theory for the design or testing of MSI and L3I devices,
although the need for such a theory has long been recognized. Perhaps
the only LSI device for which a promising theory of testing is emerging
is the semiconductor random access memory (PAM) [13].

We have observed that a significant property of components at all
complexity levels is expansibility, which is the ability of components of
a given type to be interconnected in a systematic way to form larger
components of the same type [12]. The larger compcnent performs the same
operation as its constituent elements, but processes more and/or bigger
operands., Many MSI and LSI design rules are merely recipes for component
expansion, e.g., how to build a l-out-of-li decoder using l-out-of-n
decoders where N > n, or how to build an N x ¥ PAM using n x m RAM IC's
where 3 > nor M > m [14). Expansibility plays a particularly impcrtart
role in the architecture of microcomputers. The major design problems
revolve around the number, size and interconnections of the ROM's, FAM's
and I0 interface circuits used, problems which are intimately associated with
the expansibilicy of these components. With bit-slice architecture the CPFU
(microprocessoriﬂbeccmes an expandable design component. Two main expansion
tachniques have been identified, expansion by composition and by replication
[12]. Expansion methods, which correspond to design rules, can be concisely
defined by recursive equations. For example, a typical MSI component, a

ripple-carry adder can be defined as follows:
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denotes a carry line.

Here X and ' denote input data lines, and c

5

We have proposed a classification scheme for expansion algorithms based
on three parameters: the presence of feedback, the use of constant inputs
or outputs, and the logical depth of the interconnections used. We have
shown that most standard components can be expanded using FS2 algorithms
which allow neither feedback nor constant input/output values, and which
require two (the minimum number) logic levels. Some other ussful

expansion methods have also been identified [12}.

ol

We have also demonstrated that recursive techniques can be used fcr

test pattern generation. As a simple illustration consider the n-input l

: n n " E
AND function AND . Let T (xo, X s xn—l) be a Boolean function denoting

URE
the (unique) set of test patterns for stuck-type faults in ANDn: Tn(x) =1
if and only if X is a test pattern. We can define the tests for anp"”

recursively as follows.

: 2 - -

B ¢ ’ 9
asis T (xo xl) = xuxl + xoxl + 0%
nrl

T lln Bor nane B Y= 'r"(xo, x

0 1 TR ¢ )xn + X X

1
We have started to extend this test generation philosophy to obtain efficient
ard systematic test procedures for MSI/LSI systems. Besides leading to
analytic testing methods, this approach has the added advantage of being
relatively independent of such factors as word size, making it possible
to analyze all members of a family of components simultanecusly.

We have carried out a study (unpublished} of the feasibility of this
general approach for testing bit-sliced microprocessors. We use as the
basic component the l-bit processor cell M shown in Fiqure 3. M has
most of the major features of a commerical bit-sliced microprocessor, such

as the Intel 3002 2-bit processor {l4] or the Am290l 4-bit processor [16]
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Figure 3. Processor cell M used for analyzing bit-sliced microprocessors.
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(only the shift function and the status flags have been omitted). It
contains two registers A and T and two complex coi inational circuits,

2 multiplexer and an arithmetic-logic unit ALU. Using the most general
functional fault model, which allows aribtrary functional changes in the
individual registers and combinational circuits, we have shown that “
can be tested with t = 100 test patterns. Furthermore, a k-bit grocessor
array constructed from X copies of M can also be tested with t tests,

independent of k, and the array tests can bDe easily derived from those of

the individual cell.
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5. INTERACTIONS

Meetings with Air Force Personnel

J. P. Hayes met with Dr. Joseph Bram, AFOSR Directorate of Mathematical
and Information Sciences, in Los Angeles, on January 30, 1978. Current

progress and future plans for the project being reported here were reviewed.

J. P. Hayes met with Mr. Armand Vito of RADC (ISCA) in Marina Del Rey,

California on April 6, 1978 to discuss research topics of mutual interest.

J. P. Hayes visited RADC, Rome, New York, May 12-13, 1978. He met
with Mr., Murray Kesselman (ISCA) who provided him with a detailed overview
of Air Force research interests in the areas of computer architecture and
fault-tolerant computing. He also met with Lt. Michael Troutman (ISCA)
and discussed the Air Force sponsored Total System Design (TSD) and

Multi-Microprocessor System (MMS) projects. Dr. Hayes had an opportunity

to see some of RADC's research facilities, including its QM-1 and STARAN computers.

Attendance at FTCS-8

J. P. Hayes and R. Yanney attended the 1978 International Symposium
on Fault-Tolerant Computing (FTCS-8) in Toulouse, France, June 21-23, 1978.
This is the major annual conference on research in fault tolerance.
Approximately 350 researchers from 25 countries attended FTCS-8. The paper
"Fault recovery in multiprocessor networks" (see Apprendix) was presented

at this conference.
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6. SUMMARY AND FUTURE PLANS

We have developed a new model for measuring the reccvery time of a
fault-tolerant system based on the facility graph concept. HNecessary and
sufficient conditions for an arbitrary system to be k-step reccoverable were
cbtained. A survey cof communication networks for multi-microprocessocrs
was carried out. The diagnosability of the n-cube interconnection network
was characterized. An analysis of che fault tolerance prcperties of connecting
networks was initiated using the concept of dynamic full access. A
design theory for MSI/LSI systems based on a formal definition of recursive
expansibility was developed. It was shown that this approach car be used
for test pattern generation for a variety of complex systems including
bit-sliced microprocessors.

In the area of reconfiguration and recovery we propose to investigate
strategies for achieving fault rtolerance in distributed systems when the
individual processors have limited information about the system as a whole.
We alsc intend to study graceful degradation in such systems. We propose
to continue our analysis of communication rnetworks for multi-microprccessors,
wi-i the aim of completely cnaracterizing their fault tolerarnce properties.
He plan %o extend our analysis of bit-sliced microprocessors to include
all the features of real systems. We further aim to extend it to other
bit-sliced components such as microprogram sequerncers and RAM's so that

ultimately we carn automarically Generate a near-optimal test set for complete

microcomputers that use birt-slicing technology. Finally, we hope toc use our
knowledge of the test requirements of Lit-sljiced microcomputers to analyze

non-bit-sliced systems.
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FAULT RECOVERY IN MULTIPROCESSOR NETWORKS *

John P. HAYES

Department of Electrical Engineering
University of Southern California
Los Angeles. Califorma 90007 USA

ABSTRACT

A method for characterizing dynamic reconfig-
uration and recovery in fault-tolerant networks of
processors is proposed. A network is represented
by a graph G, whose nodes correspond to process-
ors and whose edges correspond to comumunication
links. Each node or edge has three major states:
active, inactive (spare) and failed. G, tolerates a
fault F by activating spare nodes and edges to re-
configure around the failed components so that an
active subnetwork lsomorphic to a basic system G,
is maintalned. G, is called k-fault-tolerant (k-FT)
t-step recoverable (t-SR} if it can recover from k or
fewer node failures by changing the states ofatmost
t fault-free nodes, e, y., by activating t spare nodes.
Thus t ls a measure of system recovery time, A
t-FT systemn i1s called optimally t-SR if it contains t
spare nodes and the minimum number of edges that
permit t-step recovery from all tolerated faults.
Necessary and sufficient conditions for G, to be op-
timally t-SR with respect to an arbitrary network G,
are obtained, Techniques for achieving t-step re-
covery where t >k are discussed, with particular
reference to networks with restricted node fanout,

a constraint imposed by most microprocessors. A

graph transformaticn technique based on line graphs
is described that simplifies the calculation of k and

t.

1. INTRODUCTION

Most previous research in fault-tolerant com-
puter design has been concerned either with system
reliability or fault diagnosis. Other important as-
pects of systermn behavior, notably recovery, have
received little attention, even though they play a
central role ln fault tolerance. In this paper a
graph theoretical model for faul®* recovery in com-
plex systems |ls presented. The model is particu-
larly applicable to large multiprocessors. Systerns
containing thousands of microprocessors have been
proposed recently and are lizely to proliferate Inthe
future (I, 2]. ft can be expected that many of these
multlmicroprocessor systems wiil have fault toler-
ance as a major design goal.

A system |ls modeled here by a graph whose
nodes reprasent hardware components, e, g., pro-
cessors or computers, and whose edges represent
communication links, e.g., switching networks or
buses. Similar models have been used previously

This research was supported by the Air Force
Office of Sclentific Research uader Grant No,
AFOSR-77-3352, by the Joint Services Electronics
Program under Contract F44620-76-C-00¢41, and
by a Fellowship from Hughes Aircraft Company.
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In the analysis of computer netwark reliability [3],
self-diagnosability (4], and fault tolerance [5]. These
are all primarily structural rather than behavioral
models, since the graphs used represent the physical
or logical interconnection structure of the system un-
der consideration. As such they are to be contrasted
with models such as Petri nets or state graphs that
are primarily behavioral [6].

Il. RECOVERY MODEL

Following [5]. a computer system ls described
by a (facility) graph whose nodes represent (micro-)
processors and whose edges represent communica-
tion paths. All nodes are assumed to be of the same
type and to have the same processing abilities. Edges
are assumed to be undirected. A fault is represented
by the removal of nodes and edges from the graph,

Definition !: A basic graph G, is a graph that repre-

sents the minimum system configuration needed to
perform a certain set of tasks. Thus a basic system
cannot tolerate any faults,

Definition 2: A redundant graph G, with respec’ to a

basic graph G is one that contains G, as a proper
subgraph, In other words, a proper subgraph G/ of
G, is isomorphic to G,, denoted G} = G,. G, is
viewed as a fault-tolerant realization of G,.

At any time, some subgraph G{s G, of G, repre-
sents an active system engaged in data processing,
The remaining part of G,, denoted G -G/, repre-
sents either unused (spare) or unusabie (fauity) com-
ponents. Thus every node x of G, can be viewed as
having three possible states:

(1) active, that is x€ G
(2) spare
(3) faulty .

Definition 3 [5]: G_ s k-fault tolersat (k-FT) with

respect to G, if the removal of any k nodes {and the
edges connected to those nodes) from G, results in a
graph that contains G,.

It is assumed that the systems of interest con-
tain a mechanism for continuous self-diagnosis, For
example, each node may be regulariy tested by one
or more of its nelghboring nodes. The precise man-
ner in which diagnosis is achieved is not of d:rect in-
terest here. Once a faulty active node is detected, a
process of recovery is initlated which Involves re-
plad ng the active subsystem G! by ancther subsystem
G, 8 G, which contains no faulty nodes, This means
that If G{ contalns k fauity nodes, at least k previous-
iy spare nodes must be changed to the active state




and must be included in G]. The manner in which
the new active subsystem G is determined consti-
tutes the recovery strategy. In this paper aspects
of recovery are considered that are largely indepen-
dent of the particular recovery strategy employed.
Note that recovery is being viewed primarily as a
process of reconfiguration around the faulty nodes.
The possible changes of state that a node can exper-
ience during system operation are illustrated in

Fig. 1.

\>

Fig. 1., State diagram for a system node.

The recovery process often involves a consid-
erable amount of information transfer among the
systern nodes. For example, a spare node s that is
being activated to replace a defective node x must
be provided with all information defining the func-
tions of x, as well as the status of x at the last
known (error-free) check-point. This information
is transferred to s from x or from some other pro.
cessor that stores the status of x, e.g., a system
supervisor. The numbter of fault-free nodes whose
state or identity is changed when forming G; from
G! is taken as a measure of system recovery time,
and leads to tne following definition.

Definition 4: G, is t-step recoverable (t-SR) with
respect to G, if G, is t-F | with respect to G, and G,
can recover from any fault affecting k st nodes by
changing the state or identity of at most t fault-free
nodes.

In many cases recovery can be accomplished by re-
placing the k faulty nodes of G{ by k spare nodes.
Spare nodes are assumed to be fault-free when they
are first activated; they may subsequently become
faulty and require replacement. It may also be ne-
cessary to replace active nodes as well, either by
changing active nodes to spares, or requiring an
active node to assume the identity of another active
node. The parameter t defined above 1s independent
of the recovery strategy R used and the choice of
the initial active configuration G|, It states that
some R and GJ exist making t-step recovery possi-
ble for all sequences of up to t faults,

Example 1: Copsider the graphs shown in Fig. 2.

H, is clearly 1-FT with respect to H, since if Gy
comprises nodes B and C, the system can recover
in one step by replacing the faulty node B (C) by the
spare node D (A). DNote that if the subgraph consist-
ing of A and B is chosen as G|, recovery requires
two steps in the event of the failure of node B, In
this case, the active node A must also be replaced

by one of the spare nodes C or D. c

A B C D

(o, O O O o0—-0
H, H,

Flg. 2. Example of a system H, that is 1 ‘ep
recoverable with respect to H.

The calculation of the fault tolera 1 re-
covery measures k and t for arbitrary shs G,
and G, is very difficult, In order to fino out If G,

tolerates a given fault F, it is necessary to determine
if the graph G; representing the faulty system contains
a subgraph isomorphic to G,, This is the well-known
subgraph isomorphism problem. It may be necessary
to examine all subgraphs of G, that are isomorphic to
G, in order to determine if G, is 1-SR with respect to
G,. While the general subgraph isomorphism problem
is computationally very ccmplex, efficient (polynom-
ial time) algorithms are known for many special class-
es of graphs, while efficient heuristic procedures are
known forthe general case [7].

III. OPTIMAL t-STEP RECOVERY

It is clearly desirable that G{ and G! should share
as many unaltered nodes as possible in order to mini-
mize the recovery time. The fastest recovery will be
achieved when none of the fault-free active nodes of
G{ are affected in forming Gy, i.e.,, exactly t spare
nodes are used to replace the t faulty nodes.

Definition 5: G, is optimally t-SR with respect to the

n-node system G, if
(1) G, is t-step recoverable with respect to G;

(2) G, contains the minimum possible number of
nodes, namely, n+t;

(3) G, contains the fewest edges amoang all redundant
systems satisfying (1) and (2).

We now show that every nontrivial connected basic
system G, has a unique and easily-characterized op-
timal t-SR realization G{*",

Theorem 1: Let GP*' be formed from G, as follows,

Introduce t spare nodes s, 5,,..., 8, and introduce
edges connecting each s, to every node in G, and the
t-1 nodes s, where i #j. G, is optimally t-SR withre-
spect to G, if and only if G, = G'',

Proof: First we show that G*" is t-SR if G, is the

original actlve subsystemn. Let x be any faulty node.
x can be replaced in one step by any spare node s,
since 3, is adjacent to all the nodes that are adjacent
to x, Any sequence of t node failures can be toler-
ated similarly, since every node in G}’", including
the t original spares, can be replaced by a spare in
one step. Thus the t spares allow t faulty noces in G
to be replaced in t steps, implying that G3*" is t-SR
with respect to G,.

Let Gf be any optimal t-SR system. We now
show that G contains a subgraph isomorphic to G,
hence GY = G”'. Let G be the initial active subsys-
tem of Gf, so that Gf w G,. Let the t nodes of GJ-G;
be designated s¥, s¥,...,s7. It remains to show that
each s; is adjacent to every node of G'. Suppose by
way of contradiction that s;" is not adjacent to y..
There are two possible cases:

Case 1: y;“e GY. (Since G, is nontrivial, G contains

at least two nodes.) Let y, € G and let y and y. be
adjacent. Suppose that a sequence of t nodes failures
occurs affecting yi and each of the spare nodes acti-
vated to replace y’. At some point s; must be used

to replace y since G, is t-SR and only ¢ spare nodes
are available, lncluding s'. However s is not adja-
cent to y¥ and y?y! is an edge of G}, hence s!’ cannot
replace y?. Consequently G; is not t-SR, a contra-

di’::tion. Thus s must be adjacent to every node of
.

Case 2: y} €G/-G], i.e., y =8]. Again considera

sequence of t node failures, After fewer than t.l
failures either s or sy must be activated, say s%,

s has at least one neighbor z° which is part of the
currently active system. Suppose that all subsequent
faults involve zf' and its replacements. Eventually
s, will be the only nonfau!ty spare node avallable to




replace z¥. Since s is not adjacent to s} (which is

now part of the active subsystem), st cannot take the
role of z}, hence G; cannat tolerate the t-fault in
question, a contradxcnon. Thus s;" is adjacent to
every node 5] # 5",

We have shown therefore that the spare nodes

of G} are connected to every node of G| s0 G;" and
G°" are isomorphic, Hence every optimal t-SR

system is isomorphic to G, o
Example 2: Fig. 3a shows a basic graph [,, and

Fig. 3b shows the corresponding optimai 2-SR sys-
tem I obtained by the procedure d:scribed in
Theorem i. o

x x

1
O

Z
0O

X x
3
(b)

Fig. 3. (a) A basic graph [,. (b) The correspond-
ing optimal 2-SR graph I’

Optimal t-SR systems can algo be character-
ized in terms of their clique graphs. Let K denote
a complete graph of n nodes, i.e., an n-node graph
containing ail possible edges.

Definition 6 {8]: A ciioue of a graph G is a maximal
compiete subgraph of G. The clique graph K(G) of
G is the intersection graph formed by the ciiques of
G, i.e., there is a cne-to-one correspondeace be-
tween the cliques of G and the nodes of K(G), and

two nodes la K(G) are adjacent if and only if the in-
tersection of the corresponding cliques in G is non-

empty,

Theorem 2: If G is an optimai t-SR realization of
some G, then K(G,) is complete,

Proof: Suppose K(G,) is not complete. Then G,
has two cliques C, and C, which have no node tn
common. There exwu a spare node in the initial
configuration of G, which is not adjacent to any
nodes ln C, or C,. Hence G, cannot be isomarphic
to G2*' and’ so, by Th. 1, it i3 not optimally t-SR, a
cantradlctlon. Hence K(G,) must be compiete. o)

Fig. 4 shows the clique graphs for H, and B’
from Flgs. 2 and 3, respectively. H_has three
cliques lsomorphic to K5, Slnce two of these
cliques are disjoint, K(H,) is not complete. g
has four cliques llomorphlc to K, hence K(P’ )w
K, Note that the optimai 1-SR graph for H, in

Fig. 2 is K, and K(K,) =K,.

)

""'-\.,_‘_‘__
—

(a)

O

(b)

Fig.4. Clique graphs (a) for H, of Fig. 2. ]
(b) for I}’" of Fig. 3.

IV, GENERALIZED t-STEP RECOVERY 7

The optimai t-SR design considered in the pre-
ceding section have the disadvantage that the maxi-
mum node degree in G’ can be very large. If G,
containg n nodes then the spare nodes s, in G" have
degree ntt-1, which is the maximum possible degree
in an (n+t)-node graph, Node degree corresponds to
the number of input/output ports of a processcr, or
its fanout, and this is usuaiiy limited by physicai
considerations, In the case of microprocessors, the
number of parailel data paths that can be connected
to the microprocessor is severely restricted by in-
tegrated circuit pin iimitations., Thus it is of inter-
est to consider nonoptimal redundant systems in
which node degree is limited.

In the definition of t-SR given earlier it was as-
sumed that the system was required to tolerate up to
t faults, We now give a more general definition in
which the number of faults tolerated and the number
of recovery steps are distinguished,

Definltloa 7: G, is k-fauit tolerant t-step recoverable
(k-FT/t-SR) with respect to G, if G, can recover
from up to k fauits in G_ in at most t recovery steps,
that is, by changing node states or identities at most
t times,

In general, kst, When k=t the system will also
be calied simply t-SR conforming with the earlier
definition,

Example 3: Fig. 5 shows three differeat 1-FT reali-
zations of the basic graph C,,, which is the cycle
with 12 nodes. Fig. 5a shows the optimai 1-FT/1-SR
graph as defined by Th. 1. Note that the central
"spare' node has degree 12, Fig. 5b shows another
1-FT/1-SR version of C,; which coatains two spare
nodes and so is nonoptimal; however, its maximum
node degree is only 6. The graph in Fig, 5¢c is the
1-FT realization of C,, which, as proven in [$], con-
tains the minimum aumber of edges. It aiso has the
smaiiest possible node degrees, however, it is 8-SR,

g - = =
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Thus there are fuadamental tradeoffs involving the In the remainder of this paper, we cxarnine a

number of spares, the maximum node degree, and special class of graphs called line graphs for which

the maximum aumber of recovery steps t. fault analysis is relatively easy. Moreover, an arhi-
trary graph can readily be converted into a line grapn
by the additina of nodes and edyes [8]. First we de-
fine and characterize line graphs,

Definition 8 [4]: The line zraoh of a graph G, denaoted
L(CG), 13 a graph whose nodes are in one-to=one cor-
respondence with Lthe edges of G, Two nodes in LIG)
are adjacent if and oaly if the corresponding edges of
G are adjacent. If}1is a line graph, then there exists
a graph G such that L{CQ) is isomorphic to H. G is

called the root graph of H and will be derwted by Lo HH),

It is obvious that every graph has a line graph,

however it is not necessary for every graph to ke a
line graph of another graph. Very efficient algorithms
are known for determining if G is a line graph and, if
it is, for generating its root grapn [9]. Line graphs
have been studied extensively; the following theorem
summarizes their major characteristics, Let K,  de-

(a) note the star graph [81 which contains nti nodas, and
a edges, with n of the nodes joined to the rermaining
node,

Theorem 3 [8]: Properties of tine graphs,

(a) If G, and G, are any two nontrivial connected
graphs except K, and K ,, then L(G,) is isomorphic to
L(G,) if and only if G, is isomorphic to G,.

(b) G is isomorphic to L{Q) if and only if G is a
cycle.

{c) If G is a line graph then the edzes of G can
be partitioned into complete subgraphs {C,1 in such a
way that no node lies in more than t'wo of the subgraphs,
and there is a one-to-one correspondence between (C )
and the nodes of Lr{G),

(d) Line graphs of regular graphs with degree d
are regutar with degree 2(d-1).

(b)

Exarnple 4: Fig, b itlustrates Th, 3c. The cnmplete
subgraphs {C,} in the line graph I.(J) correspond to the
nodes (x,} in its root graph J. c

Def. 8 implies that we can define a function L
that transforms a graph into its line graph, and a fuac-
tion L*! that transforms a line graph into its root
graph. The following notation is also useful

Li*Y ) = LiLioy

e T T B AT

where i z 1. Menon [10] has shown that I7(G) has
{ewer andes than G if G is not a cycle or a path, herce
L"YG) is usually simpler than G, We will now show
that if a reduadant system G, in a line graph, maay of
its properties pertaining to fault talerance can be de-
termined with less computation from L-'(G,).

(c)
Fig. 5. Three 1-FT/t-SR realizatinas of C,

Thenrem 4: If G is k-FT with respect to G, then
As noted in §2, the computation of k and t for L{G)) is k-FT with respect to L(G,).
arbitrary k-FT/t-SR systems is very difficult, X -
There are two possible ways in which this computa- .;35’2‘." "rht- 3: :mPl””h‘ha‘d‘ 0“{"{"0["(‘5 CO"’;’-SPOE'
i lexit hi B ided, ence exists be'ween the nodes {x,) of G, and a subset
tional complexity prohlern can be avoide {C‘} of the sompiate TRbgEsphe of L(G,) s

(1) We can restrict our attention to graphs withpro- C,} include all nodes of G,. Suppose a k-fault in
perties such as structural regularity which L.{C.r} effectively eliminates a set S of k nodes to form
simplify fault analysis. a new graph H. Let C,,C,,...,C, be any set of j3k

{2) We can attempt to transform the given grapha mq:mb:n "f.”:'-.} ‘hlrl_ contain S, and tet H be the re-
into graphs that are easy to analyze, and are " td"’ removing C,, Cas 200 €, from L{G,). There are
such that the fault tolerance praperties of the ) nodes x,, X;,...,%, in G, such that x, corresponds to

original graphs can be obtained from the trans- <, “} LIG)fori=1,2,.,.,j. If G} is the result of re-
formed graphs. moviang these | nodes from G,, then




L(G?) = H'c U.

(h)

Fig.t. (a) A graph J,
iny the complete subgraphs C ] of L(J)

that correspond to the nodes {x,) of J,

Since G, i3 k- FT with respect to G, and j 3k, we
conclude that G, £ G,'. Hence

»
L(Cb) < L(Gr) cH

implylng that i{, which represents L(G,) with a k-
fault present, contains a subgraph isomorphic to
LiG,). It follows that L(C') s k=FT with respect to
L(G)). c

Note that the converse of Th. 4 is false.

Theorem S: If G, is k-SF with respect to G,, then
i3 k-FT/(2kd-k)-SR with respect to L(G)
where d is the largest degsree of any node in G,.

Proof: As in the proof of Th, 4, every set of k nodes
in E(C,) is contained in j s k complete subgraphs C=
{C,Chevv-,C,) which correspond to nodes X =
{%0%30000.%,] in G,. Since G, is k-SR, G, can re-
cover from the removai of X in at most k steps, i.e.,
by changing the state or identity of at most k fault-
free nodes. Every ciique in L(G,) contains at mos®
4 nodes. Hence L(G,) can recover from a k«fault in
C by deactivating at most kd-k fault-free nndes in C,
ise., by removiag C, and hy changing the states or
identities ot an additional kd nodes to replace C,
Hence L(G,) can recover from a k=fault in at most
Zkd <k steps, 8

Fxample 5: Figs. 7a and 7b show *wn line graphs
F', and P,. Consider the problem of determining
values ol k and t such that P, is k-FT/t-SR with re-
spect to P, The problem is greatly simplified if

we treplace P, and P, by their root graphs L*Y(B) and
=YP,) which appear in Figs., 7c and 7d, respective-
ive By Th. I, I74P) is opimally 1-SR with respect
tn L"4P,). The max.mum node degree of 1=} P ) is

three, hence by Th, 5, P, is 1-FT/5-5R with respect

{b) lts line graph L{J) show-

(h)

(<)
%\—é
(d)

Fig. 7. (a) The redundant graph P,. (L) The basic
graph P . (c) The root graph L"YP,). (d)
The root graph LY P,).

Thenrems 4 and 5 can also be used to construct
k-FT/t-SR systems with nodes of lower degree than
the corresponding optimal t-SR systems, the case of
regular basic graphs., (A graph is regular if all its
nodes have the same degree d,) The reduction in the
node degree of G becomes more apparent as 4 in-
creases. The following example itlustrates this.

Example ¢: Suppose a 1-FT realization of a certain
regular graph Q, is required where Q, has 20 nodes of
degree 8, Fig. Ba shows L7HQ,)., (We omit the dia-
gram for Q, because cf its complexity.) Using Th. i
the graph |74 Q,) showa in Flg. &b can be consructed,
1.=4Q,) is an {optimal) {-SR realization of L=:(Q,).
Now construct the line graph Q, of I=%Q,), which by
Th. 5, Is a |-FT/93-SP realization of the original sys-
tem Q,. Q, has 25 nodes, and (2 is its maxim:m
node degree. While Q, has far more spare nodesthan
the optimal 1-SP realization of Q,, the latter contains
nodes with degree 20, Q

g o—— =
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(b)

Fig. 8. (a) The graph I=1(QJ. (b) An optimal

zl

3'

[-SR realization of L"-(Q,).
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