
UNCLASSIFIED 
SECURITY CLASSIFICATION OF THIS *• * ,•    when ttmim t, <*,~ i 

DOCUMENTATION PAGE 

<8-i 355 H 
GOVT   ACCFSSION  NO 

KI-AD INSTRUCTIONS 
BEFORE ( OMPLETfNG FORM 

J      RECIPIENT'S  CATALOG   NuMHff* 

4      TITLE fand iuöml.j 

DJ ^ALYSIS AND RESIGN OF  FAULT-TOLERANT 
COMPUTER systths, 

s    TYPE OF REPORT « PERIOD CO^EREO 

7 A •   ..        M     . •     CONTRACT OR GRANT NtjMbr M'V 

CO ^-* *•>   BRora*ii BhiMiiiT. ES55BT*Tä aapr,a*n hünm nno<i<*> T 
AREA  4   WORK_JJüIT   NUMBERS 

9    PERFORMING ORGANIZATION NAME AND AOORESS 

University of Southern California 
Electronic  Sciences  Laboratory 
Los Angeles,  California    90007 6II02F 

»•  CONTROLLING OFFICE NAME AND ADDRF SS 

Air Force Office of Scientific Research/NM 
Boiling AFB, Washington, DC  20332 

12      REPORT   DATE 

August   I,   1978 
1 i      NUMBER OF  PAGES 

2o 
n     MONITORING AGfcN'.Y  NAME   ft   XoDRCSS/ff   l"     it iTQfc Wg 

tTTT • * ir, 
15     SECURITY CLASS   fot iht» tmp»ti> 

UNCLASSIFIED 
r 
urn 

IS*     OECL ASSlFlCATlON   0O*NG»A*JlNG 
SCMEOULE 

XMMMM* '*** ""•  Hmpntl, 

CL, 

B       DliTHIBIjTIQM   STA[ tMf Mt   fl **'« 

ApprovecTTor  public  release;   distribution unlimited. 

LJU t mtrtfrmJ* — I—d 1» BÜälJfc >7      DISTRIBUTION STATEMENT  f.,/ ffta aWti —«—dinHhit PI,  // different trom Hep»rt) 

'*      SUPPLEMENTARY   NOTES 

19      KEY  WORDS tContlftu» or* ftlfTM «Id« ff MCtMtfy  «nrl Identity by hlark  number/ 

Bit-sliced microporcessors 
Communication networks 
Connecting networks 
Fault diagnosis 
FauIt-tolerant computIng 

Graph models 
Microprocessors 
Mult[processors 
Recovery * 
Test generation 

JÖ      ABSTRAC»J  jEnrtMl III MMTM  • »<*• // MMNMJ *nrf Identity by blnrk number} 

This report describes the first-year results of an investigation of 
fault-tolerant computer systems.  A new method for measuring recovery time 
in fault-tolerant multiprocessors was developed.  A complete characterization 
of optimally t-step recoverable systems was obtained, and certain graph 
transformations that simplify recovery analysis were studied.  Some 
diagnosabiI Ity properties of n-cube interconnection networks were derived. 
A study of fault tolerance in large connecting networks was Initiated using 
a new concept of dynamic full access.  A design theory based on recursive^ 

%«^ DD , 'En U73 0/0 ^   (e it ALAS SIFIED •.. 



UNCLASSIFIED 
StCuHlTV CLASSIFICATION OF   THIS PAOE/Whmn Omim hnimrmiii 

^ 

20.  Abstract continued 

M 
component expansion capabilities was developed for MSI/LSI systems.  The 
use of similar recursive methods for test pattern generation was also 
Initiated.  Promising results were obtained for testing bit-sliced 
microprocessors and related components.^ 

1 UNCLASSIFIED 



AFüSK TR- 7 8 - J 3 5 5 

1977-73 Annual Technical Report 

Air Force Office of Scientific Research 

Grant No. AFOSR-77-3352 

ANALYSIS AND DESIGN OF FAULT-TOLERANT COMPVTEP SYSTEMS 

Prepared 
by 

John P. Hayes 

Electronic Sciences Laboratory 
University of Southern California 
Los Angeles, California '90007 

August 1, 1978 

;)99 
„A for »u*n« nlM"! 



^^^^^^^ 

f.   «./ o 
/ 

TABLE  OF  CONTENTS ^ 

i"»'J* 

Abstract   i 

1. Research objective*  1 

2. Research accomplishments   

2.1 Recovery modeling in multiprocessor systems. ... 2 

2.2 Communication networks for multi-microprocessors . 4 

2.3 Design and testing of MSI ar.d LSI systems  7 

2.4 References  11 

3. Publication»  13 

4. Personnel  14 

5. Interactions  15 

6. Summary and future plans  1*3 

Appendix:  "Fault recover/ in mu1 tiprocessor networks** . . . 1? 

I 



ABSTRACT 

This report describes the first-year results of an investigation of 

fault-tolerant computer systems.  A new method for measuring recovery 

time in fault-tolerant multiprocessors was developed.  A complete characterization 

of optimally t-step recoverable systems was obtained, and certain graph 

transformations that simplify recovery analysis were studied.  Some 

diagnosabiiity properties of r.-cube interconnection networks were derived. 

A study of fault tolerance in large connecting networks was initiated using 

a new concept of dynamic fill access.  A design theory based on recursive 

component expansion japabilities was developed for MSI/LSI systems.  The 

use af similar recursive methods for test pattern generation was also 

initiated.  Promising results were obtained for testing oit-sliced 

microprocessors and relate*! components. 



1.  RESEARCH OBJECTIVES 

The purpose of this research project is to develop methods for the 

analysis and synthesis of complex fault-tolerant computer systems.  It 

is motivated by recent rapid developments in large-scale integration (LSI) 

technology, especially the introduction of microprocessors, which are 

expected to increase greatly the use of multiple computer systems that are 

required to be highly reliable.  The research is particularly concerned with 

dynamic reconfiguration and recover/ in the event of failures, topics 

which have received relatively little research attention in the past. 

It is intended to develop specific measure of the cost and complexity of 

reconfiguration and recovery, and to derive efficient fault tolerance 

algorithms based on these measures.  Various graph theoretical and 

algebraic tools are used in this research, with the facility graph model 

[1], developed by the Principal Investigator, serving as a starting point. 

The special problems associated with the design of systems containing 

many microprocessors, particularly the problem of mterprocessor communication, 

are also being investigated. 



2.  RESEARCH ACCOMPLISHMENTS 

During 1977-78 results were obtained in three main areas: 

(1) Recovery modeling in multiprocessor systems 

(2) Communication networks for multi-microprocessors 

(3) Design and testing of MSI and LSI systems 

These results are described in detail in the following subsections 

2.1  Recovery modeling in multiprocessor systems [2,   3] 

A new method for characterizing the recovery time of fault-tolerant 

multiprocessor systems was developed.  The system is represented by a 

facility graph G in which nodes correspond to processors and edges 

correspond to communication links [1J.  The fault-free nodes include nodes 

actively engaged in data processing and nodes acting as standby spares. 

A fault is represented by the removal of a node and its associated edges 

from G .  Faults are tolerated by reconfiguring the pattern of active and 

spare nodes in G so that there always exists an active subnetwork that is 

isomorphic, that is, has the same (logical) interconnection structure, as 

a certain minimum configuration G, called the basic system.  G. can be 

taken as the minimum fault-free system needed to perform a particular set 

of tasks. 

A system G is called k-fault-tolerant (k-FT) t-step recoverable (t-SR) 

if it can recover from up to k faults by changing the states of at most t 

fault-free nodes,  k is clearly a measure of the amount of damage the 

Reference [3] forms an appendix to this report 



system can tolerate.  A state change e.g., from spare to active, typically 

involves the establishment of new logical paths in the system, and the 

transfer of programs and data between the affected nodes.  If n state changes 

of average duration c are required to recover from a particular fault, then 

nc is the total recovery time.  Thus the parameter t defined above is 

proportional to the maximum recovery time required by G . 

Clearly t ^  k.  A case of particular interest, corresponding to a 

class of systems with minimum recovery time, is where t = k.  In such 

systems recovery from t faults is achieved by immediate replacement of 

each failed node by a fault-free spare.  G  is defined to be optimally 

t-SR with respect to an n-node basic system G, if 

(1) G  is t-FT/t-SR with respect to G. 

(2) G^ contains the minimum number of nodes, viz. n + t 

(3) G  contains the fewest edges among all systems satisfying 

conditions (1) and (2) 

In [3] we prove that the optimal t-SR realization of every G. is unique, 

and that it has a surprisingly simple structure.  Figure la shows an 

example of a basic graph I, consisting of four processors arranged in a 

OPT 
ring.  Figure lb shows the corresponding optimal 2-SR graph I_   .  It 

consists of I with two additional spare nodes, labeled s  and s , and 

additional edges connecting s  and s. to all nodes, including each other. 

OPT 
Every fault graph formed by removing one or two nodes from I.   contains 

a subgraph isomorphic to I  (the 2-FT property).  Furthermore, each such 

subgraph can be chosen so that it differs from the original active subgraph 

in at most two nodes (the 2-SP property). 



(a) 

(b) 

Figure 1.  (a)  A 4-node basic system I..  (b)  The corresponding 

optimal 2-SP. system I, 
OPT 



Optimal t-SR systems have the disadvantage that the number of edges 

connected to some nodes (the node degree) may be very large.  Since this 

represents the  number of parallel data paths to a processor, it is often 

severely restricted by physical considerations, for example, microprocessor 

pin limitations.  Thus nonoptimal fault-tolerant systems with limited node 

fanout are of interest.  We have investigated a class of graph transformations, 

called line graph transformations, which lead to t-SR designs with nodes 

of lower degree than the corresponding optimal t-SR systems [31.  We have 

also shown that line graph transformations greatly simplify the computation 

of the parameters k and t. 

2.2  Communication networks for multi-microprocessors [4] 

An extensive survey of systems containing many microprocessors was 

completed.  Two major communications structures for such systems were 

identified; the hierarchical bus organization represented by Cm* [5], and 

the n-cube organization proposed by several researchers [6, 7].  Most of 

the published work in this area deals with unimplemented paper designs 

with little analytical basis.  System reliability and fault tolerance have 

also been largely ignored. 

A network organization with a relatively sound analytical basis is 

the binary n-cube structure [7],  This contains 2  processors whose logical 

interconnection structure can be represented by an n-dimensional cube. 

Figure 2a shows the structure of the 3-cube.  We have investigated several 

aspects of the fault tolerance of n-cube networks.  Using the approach of 



(a) 

(b) 

IX 
"Through" 

state  of  S 
"Cross" 

state  of  S 

(c) 

Figure 2.  (a)  3-cube network.  (b)  Implementation of a 3-cube network 
(c)  States of the switch S. 



Preparata et al. [8] we have shown that the diagnosability of an n-cube 

system is n for n ^_  3, where the diagnosability of a system is defined 

as the largest number k such that the ,ystem is one-step k-fault diagnosable [4 

N-cube arrays can be implemented using connecting networks of the 

type long used in telephone exchanges [9].  Figure 2b shows one such 

implementation of the 3-cube using twelve switches denoted 3.  Each S may 

be considered to have two states, the "through" and "cross" states depicted 

in Figure 2c.  We have begun investigating the fault tolerance properties 

of connecting networks of this kind.  A study of actual circuits used for 

3 [10] indicates that most faults in the network can be modeled by switches 

that are stuck at the through state (s-a-T) or stuck at the cross state 

(s-a-X) . 

We have defined a connecting network M to have the dynamic full access 

property if each processor P. can be connected to any other proces -or P. 

via a finite (but unspecified) number of passes through the connecting 

network.  This is a generalization of the usual full access property [3] . 

N is said to be k-fault tolerant (k-FT) with respect to the foregoing s-a-T/X 

fault model if the failure of k or fewer switches in N does not destroy the 

dynamic full access property.  We have begun investigating the conditions 

for N to be k-FT.  It is hoped that tiiis work will lead to methods for 

designing efficient and fault-tolerant communication networks for large 

multi-microprocessor systems. 

2.3  Design and testing of MSI and LSI systems [11, 12] 

Most existing analytical tools are inadequate for dealing with 

digital components above the gate and flip-flop levels, which correspond 



to small-scale integration (SSI) in current technology.  There is at present 

no adequate theory for the design or testing of MSI and LSI devices, 

although the need for such a theory has long been recognized.  Perhaps 

the only LSI device for which a promising theory  of testing is emerging 

is the semiconductor random access memory (MM) [131. 

We have observed that a significant property of components at all 

complexity levels is expansibility, which is the ability of components of 

a given type to be interconnected in a systematic way to form larger 

components of the same type [121.  The larger component performs the same 

operation as its constituent elements, but processes more and/or bigger 

operands.  Many MSI and LSI design rules are merely recipes for component 

expansion, e.g., how to build a 1-out-of-tl decoder using 1-out-of-n 

decoders where N > n, or how to build an M x M PAM using n x m RAM IC's 

where :i > n or M > ra [14].  Expansibility plays a particularly important 

role in the architecture of microcomputers.  The major design problems 

revolve around the number, size and interconnections of the ROM's, PAM's 

and 10 interface circuits used, problems which are intimately associated with 

the expansibility of these components. With bit-slice architecture the CPU 

(microprocessor) becomes an expandable design component.  Two mam expansion 

techniques havo been identifiod, expansion by composition and by replication 

[12].  Expansion methods, which correspond to design rules, can be concisely 

defined by recursive equations.  For example, a typical MSI component, a 

ripple-carry adder can be defined as follows: 

Basis,  ADD^^. V cin; . XQVQ  • »^ * y.c^, x ® fQ  ®  C^ 

ADDoti+l(X0:n' W «W " ADDJ:1(V V ACD>l,n' htm'   V' 

ADDl=n(Xl:n' *l,a« Cir.> • 



^ 

Here x. and y denote input data lines, and c. denotes a carry line. 

We have proposed a classification scheme for expansion algorithms based 

on three parameters:  the presence of feedback, the use of constant inputs 

or outputs, and the logical depth of the interconnections used.  We have 

shown that most standard components can be expanded using FS2 algorithms 

which allow neither feedback nor constant input/output values, and which 

require two (the minimum number) logic levels.  Some other useful 

expansion methods have also been identified [12]. 

We have  also demonstrated that recursive techniques can be used fcr 

test pattern generation.  As a simple illustration consider the n-input 

AND function AND .  Let T (xrt, x,, ..., x  ,) be a Boolean function denoting 0       1 n-1 

the   (unique)   set of  test patterns  for stuck-type  faults   in AND  ;   T  (X)   -  1 

if and only if X is a  test pattern.     We can define  the  tests  for AND 

recursively as   follows. 

Basis:     T2(x0,   *XJ   - xr/l  • x^  • XQXI 

Tn+1(V   Xl V   * Tn(V   Xl Xn-l)Xn  *  Vl   •••   »«-A 

We have started  to extend  this  test generation philosophy  to obtain efficient 

and  systematic  test procedures  for MSI/LSI  systems.     Besides  leading  to 

analytic  testing  methods,   this   approach  has   the  added  advantage of  being 

relatively   independent of  such   factors   as  word  size,   making   it  possible 

to analyze  all   members  of  a  family  of  components  simultaneously. 

We  have  carried out  a study   (unpublished)   of   the   feasibility  of  this 

general   approach  for   testing  bit-sliced microprocessors.     We  use  as   the 

basic  component  the   1-bit processor  cell  M shown   in  Figure   3.     M has 

most of  the major   features  of  a  commerical  bLt-sliced  microprocessor,   such 

as   the   Intel   3002   2-bit processor   [141   or   the  Am2901   4-bit processor   [16] 
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(only the shift function and the status flags have been omitted).  it 

contains two registers A and T and two complex cot inational circuits, 

a multiplexer and an arithmetic-logic unit ALU.  Using the most general 

functional fault model, which allows anbtrary functional changes in the 

individual registers and combinational circuits, we have shown that M 

can be tested with t ss 100 test patterns.  Furthermore, a k-bit processor 

array constructed from k  copies of M can also be tested with t tests, 

independent of k, and the array tests can be easily derived from those of 

the individual cell. 
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5.  INTERACTIONS 

Meetings with Air Force Personnel 

J. P. Hayes met with Dr. Joseph Bran, AFOSR Directorate of Mathematical 

and Information Sciences, in Los Angeles, on January 30, 1978.  Current 

progress and future plans for the project being reported here were reviewed. 

J. P. Hayes met with Mr. Armand Vito of RADC (ISCA) in Marina Del Rey, 

California on April 6, 1978 to discuss research topics of mutual interest. 

J. P. Hayes visited RADC, Rome, 'New York, May 12-13, 1978.  He met 

with Mr. Murray Kesselman (ISCA) who provided him with a detailed overview 

of Air Force research interests in the areas of computer architecture and 

fault-tolerant computing.  He also met with Lt. Michael Troutman (ISCA) 

and discussed the Air Force sponsored Total System Design (TSD) and 

Multi-Microprocessor System (MMS) projects.  Dr. Hayes had an opportunity 

to see some of RADC's research facilities, including its QM-1 and STARAN computers 

Attendance at FTCS-8 

J. P. Hayes and R. Yanney attended the 1978 International Symposium 

on Fault-Tolerant Computing (FTCS-8) in Toulouse, France, June 21-23, 1978. 

This is the major annual conference on research in fault tolerance. 

Approximately 350 researchers from 25 countries attended FTCS-8.  The paper 

"Fault recovery in multiprocessor networks" (see Apprendix) was presented 

at this conference. 
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6.  SUMMARY AKD FUTURE PLANS 

We have developed a new model for measuring the recovery time of a 

fault-tolerant system based on the facility graph concept.  Necessary and 

sufficient conditions for an arbitrary system to be k-step recoverable were 

obtained.  A survey of communication networks for multi-microprocessors 

was carried out.  The diagnosability of the n-cube interconnection network 

was characterized.  An analysis of _he fault tolerance properties of connecting 

networks was initiated using the concept of dynamic full access.  A 

design theory for MSI/LSI systems based on a formal definition of recursive 

expansibility was developed.  It was shown that this approach can be used 

for test pattern generation for a variety of complex systems including 

bit-sliced microprocessors. 

In the area of reconfiguration and recovery we propose to investigate 

strategies for achieving fault tolerance in distributed systems when the 

individual processors have limited information about the system as a whole. 

We also intend to study graceful degradation in such systems.  We propose 

to continue our analysis of communication networks for multi-microprocessors, 

wi . the aim of complete!/ ...aracterizir.g their fault tolerar.ce properties. 

We plan to extend our analysis of bit-sliced microprocessors to include 

all the features of real systems.  We further aim to extend it to other 

bit-sliced components such as microprogram sequencers and RAM's so that 

ultiMt«l) V«  ir. Ml! KsttJ illy generate a near-optinai test set for complete 

microcomp ;-..-:  • ,• .  felt-sUciftf tl äinology.  Finally, we hope to use our 

knowledge of ttM test retirements of Lit-sliced microcomputers to analyze 

non-bit-sliced systems. 
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FAULT RECOVERY IN  MULTIPROCESSOR  NETWORKS * 

John P. HAYES Raif YANNEY 
Department of Electrical Engineering 

University of  Southern California 
Los Angeles,  California 90007 USA 

Hughes Aircraft Company 
Culver City. California 90230 USA 

ABSTRACT 

A method for characterizing dynamic  reconfig- 
iration and recovery in fault-tolerant networks of 
processors is proposed.    A  network is represented 
by a graph Gf whose nodes correspond to process- 
ors and whose edges correspond to communication 
links.     Each node or edge has three major states: 
active,   inactive (spare) and failed.    Gf tolerates a 
fault F by activating spare nodes and edges to re- 
configure around the failed components so that an 
active subnetwork isomorphic to a basic system Gb 
is maintained.    Gf is called k-fault-tolerant (k-FT; 
t-step recoverable (t-SR) if it can recover from k or 
:ewer node failures by changing the states ofatmost 
t fault-free nodes,   e. g.,   by activating t spare nodes. 
Thus t is a measure of system recovery time.    A 
t-FT system is called optimalty t-SR if it contains t 
spare nodes and the minimum number of edges that 
permit t-step recovery from all tolerated faults. 
Necessary and sufficient conditions for Gr to be op- 
timally t-SR with respect to an arbitrary network Gb 
are obtained.     Techniques for achieving t-step re- 
covery where t > k are discussed,   with particula r 
reference to networks with restricted  node fanou», 
a constraint imposed by most microprocessors.    A 
g rapn transformation technique based on line graphs 
is described that simplifies the calculation of k and 
t. 

L    INTRODUCTION 

Most previous research in fault-tolerant com- 
puter design has been concerned either with system 
reliability or fault diagnosis.    Other important as- 
pects of system behavior,   notably recovery,   have 
received little attention,   even though they play a 
central  role in fault tolerance.     In *his paper a 
graph theoretical model for faul*  recovery in com- 
plex systems is presented.     The model ts particu- 
'ar'y applicable to large multiprocessors.     Systems 
containing thousands of microprocessors have been 
proposed  recently and are likely to proliferate in the 
future [ I, 2).    It can be expected »hat many of these 
multimicroprocessor systems will have fault toler- 
ance as a major design goat. 

A  system is modeled here by a graph whose 
node»  represent hardware components,   --.',.,   pro- 
cessors or computers,   and whose edges  represent 
communication links,   e.g.,   switching networks or 
buses.     Similar models have been used previously 

This  research was  supported by th« Air Force 
Office of Scientific Research u-.der Grant No. 
AFOSR-77-3352,   by the Joint Services  Electronics 
Program under Contract F44'i^0-7o-C-0Q61,  and 
ay a Fe'lowship from Hughes Aircraft Company. 

in the analysis of computer network reliability [3], 
self-diagnosability [4],   and fault tolerance [5],   These 
are all primarily structural  rather ti.an behavioral 
models,   since   the graphs used represent the physical 
or logical interconnection structure of the system un- 
der consideration.    As such they are to be contrasted 
with models such as Petri nets or state graphs that 
are primarily behavioral [6], 

II.     RECOVERY MODEL 

Following [5],   a computer system is described 
by a (facility) graph whose nodes  represent (micro-) 
processors and whose edges  represent communica- 
tion paths.    All nodes are assumed tQ be of the same 
type and to have the same processing abilities. Edges 
are assumed to be undirected.    A fault is represented 
by the removal of nodes and edges from the graph. 

Definition 1:   A basic graph G. is a graph that repre- 
sents the minimum system configuration needed to 
perform a certain set of tasks.     Thus a basic system 
cannot tolerate any faults. 

Definition 2:   A  redundant graph Gr with  respect to a 
basic graph Gb is one that contains Gb as a proper 
subgraph.    In other words,   a proper subgraph G^ of 
Gr is isomorphic to Gb,   denoted G'0 E Gb.    Gr is 
viewed as a fault-tolerant realization of Gb. 

At any time,   some subgraph Gb • G,. of Gr repre- 
sents an active system engaged in data processing. 
The  remaining part of Gr ,   denoted Gf- Gb,   repre- 
sents either unused (spare) or unusable (faulty) com- 
ponents.     Thus every node x of Gr can be viewed as 
having three possible states: 

(1) active,   that is x € Gw 

(2) spare 

(3) faulty . 

Definition 3 [5):    Gf is k-fault tolerant (k-FT) with 
respect to G.t if the  removal of any k nodes (and the 
edges connected to those nodes)  from Gr  results in a 
graph that contains Gb. 

It is assumed that the systems of interest con- 
tain a mechanism for continuous self-diagnosis.    For 
example,   each node may be regularly tested by one 
or more of its neighboring nodes.     The precise man- 
ner m which diagnosis is achieved is not of d.rect in- 
terest here.    Once a faulty active node is detected,   a 
process of recovery is initiated which involves  re- 
plad ng the active subsystem Gb by another subsystem 
GJ • Gt which contains no faulty nodes.    This means 
that  if G[ contains k faulty nodes,   at least k previous- 
ly spare nodes must be changed to the active state 
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and must be included in G*.     The manner in which 
the new active subsystem G* is determined consti- 
tutes the  recovery strategy.     In this paper aspects 
of recovery are considered that are largely indepen- 
dent of the particular recovery strategy employed. 
Note that recovery is being viewed primarily as a 
process of reconfiguration around the faulty nodes. 
The possible changes of state that a node can exper- 
ience during system operation are illustrated in 
Fig.   1. 

tolerates a given fault F,   it is necessary to determine 
if the graph C' representing the faulty system contains 
a subgraph isomorphic to G5.    This is the well-known 
subgraph isomorphism problem.    It may be necessary 
to examine all subgraphs of Gr that are isomorphic to 
Gb in order to determine if Gr is l-SR with respect to 
Ge.    While the general subgraph isomorphism problem 
is computationally very complex,   efficient (polynom- 
ial time) algorithms are known for many special class- 
es of graphs,   while efficient heuristic procedures are 
known for the general case [?}• 

Fig.   1.    State diagram for a system node. 

The recovery process often involves a consid- 
erable amount of information transfer among the 
system nodes.     For example,   a spare node s that is 
being activated to replace a defective node x must 
be provided with all information defining the func- 
tions of x,   as well as the status of x at the last 
known (error-free) check-point.    This information 
is transferred to s from x or from some other pro- 
cessor that stores the status of x,   e.g.,   a system 
supervisor.    The number of fault-free nodes whose 
state or identity is changed when forming G*  from 
Gb is taken as a measure of system  recovery time, 
and leads to the following definition. 

Definition 4:   Gr is t-step recoverable ft-SR) with 
respect to Gb if Gr is t-FT with respect to Gs and G. 
can recover from any fault affecting k 3 t nodes by 
changing the state or identity of at most t fault-free 
nodes. 

In many cases  recovery can be accomplished by re- 
placing the k faulty nodes of G£ by k spare nodes. 
Spare nodes are assumed to be fault-free when they 
are first activated;   they may subsequently become 
faulty and require replacement.     It may also be ne- 
cessary to replace active nodes as well,   either by 
changing active nodes to spares,   or requiring an 
active node to assume the identity of another active 
node.     The parameter t defined above is independent 
of the recovery strategy R used and the choice of 
the initial active configuration G'b.    It states that 
some R and G^ exist making t-step recovery possi- 
ble for ail sequences of up to t faults. 

Example  li    Consider the graphs shown in Fig. 2. 
Hp is clearly .1 -FT with respect to Hb since if GJ 
comprises nodes B and C,   the system can recover 
in one step by replacing the faulty node R 'C) by the 
»pare node D (A).    Note that if the subgraph consist- 
ing of A and B is chosen as Gb,   recovery requires 
two steps in the event of the failure of node B,    In 
this case,   the active node A must also be  replaced 
by one of the spare nodes C or D. a 

C 
o 

D 
o 

H, H> 

Fig. 2.    Example- of a  system Hf that is  1      "ep 
recoverable wifh  respect to H 

The calculation of the fault tolera i re- 
covery measures k and t tor arbitrary ,jhs Gf 
and 0_ is very difficult.    In order to finu out if Gf 

III.    OPTIMAL t-STEP RECOVERY 

It is clearly desirable that G£ and G* should share 
as many unaltered nodes as possible in order to mini- 
mize the recovery time. The fastest recovery will be 
achieved when none of the fault-free active nodes of 
Gb are affected in forming G* exactly t  spare 
nodes are used to replace the t faulty nodes. 

Definition 5:    Gr is optimally t-SR with respect to the 
n-node system Gb  if 

(1) Gr is t-step recoverable with respect to Gb; 

(2) G. contains the minimum possible number of 
nodes,   namely,   n + t; 

(3) Gf contains the fewest edges among alt  redundant 
systems satisfying (1) and (2). 

We now show that every nontrivial connected basic 
system Gb has a unique and easily-characterized op- 
timal t-SR  realization G?'\ 

Theorem 1:     Let GJ'r be formed from G. as  follows. 
Introduce t spare nodes •., sa, . . . , st and introduce 
edges connecting each s: to every node in Gb and the 
t-1 nodes s, where i I j.    Gr is optimally t-SR with re- 
spect to Gb if and only if Gf • G^T. 

Proof:   First we show that GJ'T is t-SR if Gb is the 
original active subsystem.     Let x be any faulty node. 
x can be replaced in one step by any spare node s., 
since s, is adjacent to all the nodes that are adjacent 
to x.    Any sequence of t node failures can be toler- 
ated similarly,   since every node in Gjf",   including 
the t original spares,   can be  replaced by a spare in 
one step.     Thus the t spares allow t faulty nodes in Gb 
to be replaced in t steps,   implying that GJ" is t-SR 
with respect to Gb. 

Let G* be any optimal t-SR system.     We now 
show that  G* contains a subgraph isomorphic to G9*T, 
hence G* • G°'r.     Let G{ be the initial active subsys- 
tem of dfg   so that CJ a Gb.     Let the t nodes of Gf-C} 
be designated sr, s*, ...» sf.    It remains to show that 
each i* is adjacent to every node of Gf,    Suppose by 
way of contradiction that s,',: is not adjacent to y.:. 
There are two possible cases: 

Case  I:   y*: € G^'.   (Since Gb is nontrivial,   G;   contains 
at least two nodes, )    Let yj; C G^' and let yv and y£ be 
adjacent.    Suppose that a sequence of t nodes failures 
occurs affecting y^' and each of the spare nodes acti- 
vated to replace y*.    At some point t? must be used 
to replace y* since Gt' i3 t-SR and only t spare nodes 
are available,   including s[:.    However s.: is cot adja- 
cent to yf and fffS is an edg • of G^',   hence s.   cannot 
replace y*.    Consequently Gt-   is not t-SR,   a contra- 
diction.    Thus if must be adjacent to every node of 
or« 
Cue 2:   y* € 0*-C«,   i.e. yf Again consider a 
sequence of t node failures.    After fewer than t-1 
failures either s/ or Sj: must be activated,   say if. 
if has at least one neighbor zjj' which is part of the 
currently active system.    Suppose that all subsequent 
faults  involve z£ and its  replacements.     Eventually 
•i  will be the only nonfaulty spare node available to 
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replace if.     Since sf ia not adjacent to s* (which is 
now part of the active subsystem),   sr^ cannot take the 
rote of if,   hence Gf cannot tolerate the t-fault in 
question,   a contradiction.     Thus  sj! is adjacent to 
every node sf 4 i*. 

We have shown therefore that the spare nodes 
of G* are connected to every node of G^: so G,,: and 
Gj'T are isomorphic.    Hence every optimal t-SR 
system is isomorphic to G°'r. a 

Example 2:    Fig. 3a shows a basic graph Ib,   and 
Fig. 3b shows the corresponding optimal 2-SR sys- 
tem i%PT obtained by the procedure described in 
Theorem 1. 0 

Fig. 2 is K3,   and K(K3) =KV 

(a) 

Fig. 3.   (a) A basic graph !„.    (b)  The correspond 
ing optimal 2-SR graph f|*T 

Optimal t-SR  systems can aLso be character- 
ized in terms of their clique graphs.     Let Ka denote 
a complete graph of n nodes,   i. e. ,   an n-node graph 
containing all possible edges. 

Definition 6 [8]:    A clique of a graph G is a maximal 
complete subgraph of G.     The clique graph K(C) of 
G is the intersection graph formed by the cliques of 
G,   i.e.,   there is a one-to-one correspondence be- 
tween the cliques of G and the nodes of K(G),  and 
two nodes in K(G) are adjacent if and only if the in- 
tersection of the corresponding cliques in G is non- 
empty. 

Theorem 2:     If G. is an optimal t-SR realization of 
some Gb,   then K.(Gr)  is complete. 

Proof:     Suppose KfGp) is not complete.     Then 0f 

has two cliques C    and Ca which have no node in 
common.     There exists a spare node in the initial 
configuration of Gr which is not adjacent to any 
nodes in C« or Ca.    Hence Gp cannot be isomorphic 
to G?ff and so,   by Th.  1,   it is not optimally t-SR,   a 
contradiction.     Hence K(Gr) must be complete.        Q 

Fig. 4 »hows the clique graphs for Hp and P3
pf 

from fly, 2 and 3,   respectively.    Hr has three 
cliques isomorphic *o K,,     Since two of these 
cliques are disjoint,   K{Hr) is not complete.     If 
has four cliques isomorphic to Kv   hence K(If *)• 
K-j    Note that the optimal  1-SR graph for H¥ in 

Fig. 4. 

(b) 

Clique graphs    (a)   for Hp of Fig. 2 
(b)   for P2*

r of Fig. 3. 

IV.   GENERALIZED t-STE? RECOVERY 

The optimal t-SR design considered ;n the pre- 
ceding section have the disadvantage that the maxi- 
mum node degree in Gf*T can be very large.    If Gb 
contains n nodes then the spare nodes s,  in G°fT have 
degree n+t-1,   which is the maximum possible degree 
in an (n + t)-node graph.     Node degree corresponds to 
the number of input/output ports of a processor,   or 
its fanout,   and this is usually limited by physical 
considerations.     In the case of microprocessors,   the 
number of parallel data paths that can be connected 
to the microprocessor is severely restricted by in- 
tegrated circuit pin limitations.     Thus it is of inter- 
est to consider nonoptimal redundant systems in 
which node degree is limited. 

In the definition of t-SR given earlier it was as- 
sumed that the system was required to tolerate up to 
t faults.     We now give a more general definition in 
which the number of faults tolerated and the number 
of recovery steps are distinguished. 

Definition 7:    Gp is k-fault tolerant t-step recoverable 
(k-FT/t-SRf with respect to G^ if Gp can recover 
from up to k faults in Gp in at most t recovery steps, 
that is,   by changing node states or identities at most 
t times. 

In general,   k « t.     When k • t the system will also 
be called simply t-SR conforming with the earlier 
definition. 

F^cample 3:    Fig. 5 shows three different 1-FT reali- 
zations of the basic graph C«g«   which is the cycle 
with 12 nodes.     Fig. 5a shows the optimal 1-FT/l-SR 
graph as defined by Th.  1.     Note that the central 
'•spare" node has degree  12.     Fig. 5b shows another 
1-FT/l-SR version of Cgg which contains two spare 
nodes and so is nonoptimal;   however,   its maximum 
node degree is only 6.     The graph in Fig. 5c is the 
1-FT realisation of CM which,   as proven in [b], con- 
tains the minimum number of edges.    It also has the 
smallest possible node degrees,   however,   it is 8-SR. 



Thus there are fundamental tradeoffs Involving the 
number of spares, the maximum node degree, and 
the maximum number of recovery steps t. 

fa) 

(b> 

(c) 

Fig. 5.    Three  1-FT/t-SR  realizations of Cia 

As noted in fj2,   the computation of k and t for 
arbitrary k-FT/t-SR  systems is  very difficult. 
There are two possible ways in which this computa- 
tional complexity problem can be avoided. 

(1) 

(2) 

: 

We can restrict our attention to graphs with pro 
perties such as structural  regularity which 
simplify fault analysis. 

We can attempt to transform the given graphs 
into graphs 'hat are easy to analyze,   and are 
such that the fault tolerance properties of the 
original graphs can be obtained from 'he trans- 
formed graphs. 

In the remainder of this paper,   v/e examine a 
special class of graphs called line graphs for which 
fault analysis» is  relatively easy.     .V.oreover,   an arbi- 
trary graph can readily be converted in'o a line graph 
by the addition of nodes and edges in].     First we de- 
fine and characterize line graphs, 

Definition H [H]:    The line q raph of a graph G,   denoted 
L(G),   is a graph whose nodes are in one-to-one cor- 
respondence with the edges of G.     Two nodes in L(G) 
are adjacent if and only if the corresponding edges of 
G are adjacent.     If H is a line graph,   then there exists 
a graph G such that L(G) is isomorphic to H.    G is 
called the  root graph of H and 'Anil be der i   ed by Lr'<H). 

It is obvious that every graph has a line graph, 
however it is not necessary for every graph to be a 
line graph of another graph.     Very efficient algorithms 
are known for determining if G is a line graph and,   if 
it is,   tor generating its  root graph [ri].     Line graphs 
have been studied extensively;   the following theorem 
summarizes their major characteristics.     Let K.     de- 
note the star graph [8] which contains ntl  nodes,  'and 
n edges,   with n of the nodes joined to the  remaining 
node. 

Theorem  3 \'6\:    Properties of line graphs. 

(a) If G, and Ga are any two nontrtvtal connected 
graphs except K, and K 3, then L<GX) is isomorphic *o 
L(Ga) if and only if G: is' isomorphic to G-, 

(b) G is isomorphic to L(G) u and only if G is a 
cycle. 

(c) If G is a line graph then the ed^es of G can 
be partitioned into complete subgraphs   [C.l  in such a 
way that no node lies in more *han two of the subgraphs, 
and there is a one-to-one correspondence between fCt ] 
and the nodes of L*:(G). 

(d) Line graphs of regular graphs with degree d 
are  regular with degree 2(d-l). 

Example 4:    Fig. (> illustrates Th. 3c.     The complete 
subgraphs [Cj]  in the line graph L(J) correspond to th« 
nodes  (x, } in its  root graph J. c 

Def. 8 implies that we can define a function L 
that transforms a graph into its line graph,   and a func- 
tion L" l that transforms a line ^jraph into if«  roo' 
graph.     The following notation is also useful 

L,M(G) = L(LS(G)) 

L"(l + 1,(G) =  L'SL'SG)) 

where i* 1.    MenonflQ] has shown that I.-,(G) has 
fewer nodes than G if G is not a cycle or a path, hence 
LÄl(G)  is usually simpler than G.     We witl now siiow 
that if a redundant system Gf in a line graph,   many of 
its properties pertaining to fault tolerance can be de- 
termined with less computation from L*!(G j. 

Theorem 4:     If Gf is k-FT with respect to Gb,   then 
L(Gp) is k-FT with respect to L(G6j. 

Proof:     Th.  3c implies that & one 
dence exists between the nodes   f 
f C, } of the complete subgraphs of LfG 
f C,} include 

to-one correspon- 
x, T of Qff and a tubs«4 

t) where   the 
Suppose a k-fautt in 

moving these J nodes from G , 

;;v 



UCp • H'c H to P.. 

Ul 

c,^ 

<b) 

Fig.'*,   fa*  A graph J.    fb)   It« line graph LU) show- 
mg 'he ^mp'«»» subgraphs  rC, ] of I-(JJ 
that correspond to the node» fxt) of J. 

Since Gp is k- FT with respect to G% and j £ k,  we 
conclude that G%cGp'.    Hence 

UCb) c UC) c H 

implying that M,  which represents L(GP) with a k- 
fault present,   contains a subgraph isomurphic to 
U^j,    It follows that L(Ci) is k-FT with respect to 
L(G;. O 

Note that the converse of Th. 4 is false. 

Theorem 5:    If G, is k-SF with respect to G^,   then 
LfGr) is k-FT/(2kd-k)-SR   with respect to L(G^ 
where d is the largest degiee of any node in G,. 

Proof:   As in the proof of Th, 4,   mvtiry set of k nodes 
in Ll<Jr) is contained mjO complete subgraphs C • 
[C|tCgi..., C.} which correspond to nodes X i 
[mv x7,..., x. ] in Ot.    Since G, is k-SR,  Cr can re- 
cover from the removal of X in \* most k steps* i.e., 
by changing the state or identity of at most k fault- 
free nodes.     Every clique in J-fGp) contains at most 
d nodes.    Hence \. f>.) can recover from a k-faul* in 
C by deactivating at most kd-k faut'-free nodes in C( 

i.e.,   by removing C#  and by changing the states or 
identities   >i an additional kd nodes *o replace C. 
Hence L(Gj can recover from a k-fauit m at most 
2kd-k steps. *3 

J-.xarr.ple  •):    Figs« 7a and 7b show *wo 'me graphs 
WL and P,.    Consider the problem of determining 

si .*••* of k and t sich »hat Pf is k-FT/t-SR with re- 
spec* *o P,.    The problem is greatly simplified i! 
we  replace P. and P, by their root graphs LTV P.) and 
I" fPj which appear in  Figs. 7c and 7d,   respective- 
ly.    By  Th.  I,   I."1'P.« is optimally I - SP with re^nf' 
fo L"-'Pfc).     The max.mum node degree   if I"'<P,) is 
three,   hence by Th. 5,   Pf is  l-FT/5-:>R with respect 

Fig. 7.    (a)   The redundant graph Pf.   (b)   T!.e basic 
graph Ps*   (c)   The root graph L-»(Pr|.   (d| 
The root graph LTVPj. 

Theorems 4 and h can also be used to construct 
k-FT/t-SF  systems with nodes of lower degree than 
the corresponding optimal t-5H  systems,   the case of 
regular basic graphs.    (A graph is regular if ill its 
nodes have the same degree d. )    The reduction in the 
node tie^re* of G   becomes more apparent as 4    in- 
creases.    The following example illustrates th;s. 

F.xarnple ',:    Suppose a 1 -FT  realization of a certain 
regular graph Q, ll req jired where Q% lias 20 -odes of 
degree 8.     rig. Ha shows 1.TVQ.).    (Wsj omit the dia- 
gram for Q, because ol its complexity.)    L'sing Th.  1 
the graph I." -<C/f) shown in Fig. ll can be cons* ructed. 
I-"MQr* is An 'optimal)   1-SP  realization of Lr'-\3.\. 
Now constr ic» the line graph Qf of I":(Qr),   which by 
Th. 5,   is a  I -FT/9-SP  realization of the original sys- 
tem O..    Qr has 2s nwi-»,  and  I 2 is its maxirr. .m 
node degree.    While Q. has far more spare nudes»hau 
the optimal  1-SP  realisation of Qb,   the latter contains 
nodes with degree 20. T 
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Fig. 8.   (a)   The graph L" • (Q,j.    (b)   An optimal 
1-SR  realization of L'KQJ. 
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