AD=-A059 929 LOCKHEEO=-CALIFORNIA CO BURBANK F/6 9/2

SUMMARY OF 1977 INDEPENDENT RESEARCH ON USER ORIENTED REMOTE CO=-=ETC(U)

JUL 78 R ¥ LINGARD: D SAIKI '
UNCLASSIFIED LR=-28460 NL

. — — C——

e ———

=2 122

el FX
gl

B2

2 e

MICROCOPY RESOLUTION TEST CHARI
NATIONAL BUKEAL OF TANDAKL 1061 A

o

]

—
.

.
e

N
On

i — e -

ADAO 59929

DDG FILE cOPY

—@t— PR

‘ nmmmonmﬂ.!_!.!"__i U 0CT 18 (gpg H .

LocKHEED of:&:,ﬁr' P .

A DIVISION OF Lt HE Lt -_
17l
N r £i ey S
REPORT NO. -2846¢
@ DATE T=14-78
m MODEL __Independent Research
[wise. ? TITLE COPY NO. 4V
< . «SUMMARY OF 1977 INDEPENDENT RESEARCH ON
Q' "\ USER ORIENTED REMNOTE COMPUTIIG) .
<z n” - d

7 tul 72 (/X 59,
213715 5890 | /L4 2 / Ju 1de [\ i

REFERENCE
CONTRACT NUMBER(S)

Spec., Sr.

PREPARED BY] S

ZD.&Saikij Sci. Comp. App. Programmer
ation Analysis Programming

APPROVED BY %//,g,z;,d-.»j_ ot
fi. P. Weinberger,” Group Engineer
Simulation Analysis Programming

APPROVED BY ﬂ .

“J D Little, Department Manager
Scientific Analytical Programming

PRURIARY .

R. B. Ferry,/ anager
Scilentific fomputing Division

DD G
}Er'rﬂﬂﬂm

DISTRIBUWWION STATEMENT A
2303 L '
Appyoved far public releasef ‘j\ 0cT 18 (e

Distributien Unlimited rre
ubE’)‘BU’UW

DDC FILE copY

REVISIONS
REV.NO| DATE |REV.BY PAGES, AFFECTED REMARKS

:) !
FORM 4022 . ~ . VLY J

LR 28460

FORWARD

This document is a report of the third year's accomplishments on
the Calac independent research task entitled, "User Oriented Remote Com=
puting" (project number 7701150). The authors are indebted to Thomas R.
Jones for the many constructive suggestions he made, and especially to

Howard Weinberger for his constant interest and advice during the course of

this task,
mm
L]
”"e gt Seclies cx'
WRARNOURCED ‘
A
l
.o»"mmol,m LABILITY 0Ees J
T AL eae e S .
%q i :
s i
i
LOCKHEED

LR 28460

ABSTRACT

“J/The usefulness of computers in solving scientific problems is a
function of the ease with which users can communicate with existing hard-
ware and software. This research is aimed at improving such man-computer
commnication. Specifically, a computer system has been designed and
partially implemented which will provide a software interface between
users, possibly inexperienced in computer processing techniques, and

available programs and analysis systems.

This system, denoted ASSIST (A Scientific Software Interface
System for Terminal users), aids users in accessing and utilizing existing
applications software from remote terminals. The system provides three
basic functions. It helps users find programs relevant to their problems;
it assists them in preparing required input data; and it aids in the
actual submittal of programs and data for computer processing. . In addi-
tion, the system monitors usage of the facilities to ensure the efficient

and proper use of available computer resources.

The basic approach has been to design a language which pro-
grammers can use to describe program characteristics (function, input
format, submittal requirements, etc.). These descriptions can then be 4
interactively interpreted by ASSIST to aid individuals wishing to use any
available program. Thus, the user has a helpful interface with which he
can converse while he is trying to find, prepare input for, or submit a
program,

In addition to improving ASSIST, a major portion of the current
research has been directed at determining the proper hardware/software/firm-

ware configuration to support it and other user oriented interactive cap-

abilities.\

\

i1
LOCKHEED

COMBAN Y

%

I

s ——

FORWARD
ABSTRACT

TABLE OF CONTENTS

TABLE OF CONTENTS

INTRODUCTION

1.0 ASSIST IMPROVEMENTS
1.1 PROGRAM SELECTION

1.2 [INFUT

PREPARATION

1.3 PROGRAM SUBMITTAL

3 3.1

Xa3.2

3.3

1.3.4

1.3.5

1.3.6

1.k USAGE
Lol

.02

2.0 EVALUATION

NESTED MACRO CALLS

CHARACTER STRING MANIPULATION
ARITHMETIC CAPABILITIES
PROGRAMMER'S AIDS

RESPONSE IMPROVEMENT

OTHER FEATURES UNDER DEVELOPMENT
MONITORING AND CONTROL

MONITORING RUNPROG USAGE
ACTIVITY REPORTING
OF COMPUTING ENVIRONMENTS

2.1 EVALUATION CRITERIA

2.1.1
2el 2
2.1.3
2.1.h
2eleH
2.,1.6

CAPABILITIES
EASE OF USE
EFFICIENCY
AVAILABILITY
EXPANDABILITY
RES PONS IVENESS

2.2 EVALUATION OF ENVIRONMENTS

2.2,1
242,2
2.2.3
2.2.4
3.0 CONCLUSIONS
REFERENCES

LOCKHEED

P 3

CENTRALIZED ENVIRONMENTS

HIERARCHICALLY DECENTRALIZED ENVIRONMENTS
NON HIERARCHICALLY CONNECTED ENVIRONMENTS

UNCONNECTED ENVIRONMENTS
AND RECOMMENDATIONS

113

LR 28460

1-1

1-2
1-L
1-6
1-6
1-7
L=
1-7
1-8
1-10
1-10
1-12
2-1
2-2
2-2
2-12
2-13
2-14
2-14
2-1k4
2-15
2-15
2-18
2-22
2-22
3-1
R-1

TR 28460

INTRODUCTTON

Technological advances in hardware have made computers practical
and economical tools for ever increasing numbers of users. More and more
people with less and less programming experience will be using computers
in the years to come. No longer can systems be designed without consid-
eration of these ultimate users. The effectiveness of future systems will

be measured by the ease which man can communicate with them.

Although a great quantity of problem solving software is avail-
able today, most is usable only by those with backgrounds in computing.
Non-programming users at Calac traditionally depended upon professional
programmers as their interface with existing software. In the computing
environment prior to 1975, it was the professional programmer who directly
accessed both the computer and the library of existing programs. A non-
programming user, with a problem to solve, would explain it to some pro-
grammer who would perform the necessary tasks to prepare a computer
acceptable form of the problem (i.e., put together program and data with
required system control information). The programmer would then accom-
plish the actual computer processing and return the results to the user.
I'his mode of operation had obvious inefficiencies for many kinds of pro-
blem solving. There were often delays in processing and errors due to
misunderstandings. With more and more people requiring more and more
computer processing there was clearly a need to put them in closer contact

with the computer.

As a consequence of this conclusion, a Direct Computer Access
System, DCAS, was established which logically extended the computer to
allow access to it through remote terminals. Initially DCAS existed only
as a subset of IBM's Time Sharing Option (TSO). Although this gave a user
direct access to the computer, it did not improve his access to the
library of programs. This research has dealt primarily with the task of
extending DCAS to improve the user's ability to directly utilize this

iv
LOCKHEED

%

LR 28460

collection of existing applications software. 1In effect, the goal has
been to automate the interface function previously provided by the pro-
grammer, In order to accomplish this the programmer must be provided with
some means for transferring his "knowledge" (or information in his keeping)
regarding the use of specific analysis software to DCAS., ASSIST is that
augmentation of TSO which gives DCAS this capability.

ASSIST has been designed to bring together information regarding
existing application programs and potential users in an interactive envi-
ronment (see Figure 1). For each program to be made available through
ASSIST, certain descriptive information is provided by a programmer. This
information includes a general program description, a complete and precise
input specification, and certain job control informstion necessary for
running the program on the computer. The user can then interact with
various components of ASSIST, which have access to this programmer sup-
plied information, for solving some problem. If he needs information re-
garding the availability of certain software, he can access the Program
Selection component. This will tell him about existing programs in a
particular category he selects. Once he knows which program to run he may
elect to access the Input Preparation component to assist him in preparing
his data. He may ask to be prompted for every quantity needed or merely
to have his data checked for completeness and, to some degree, correctness
Finally the user can access the Program Submittal component which will
automatically create all necessary job control information and submit the

specified program and data for execution.

During 1975 a preliminary design of ASSIST was completed. The
component of the system which assists users in submitting programs was
developed and put into controlled use for testing. This work is described
in the report, "Engineer Oriented Remote Computing" (LR 27518). In 1976
an initial productioh version of ASSIST, containing extensive users aids
for program submittal, was completed and put into use. Other aids were

implemented and several more were designed including software to help

LOCKHEED

NOI LNOAXH
HOLVd HOd4
QI LLINGNS
gaor

~

HIN VI O0dd

NOI LV MO N

TOHINOD
g0°r

I

J

LVOILJIOEdS

LNEANOJNOD
TVILINGNS
WYY D04d

: INANOLHOD
i NOIIVHVddNd
V e O INdNT
sed
b
NOT LIT¥OSad DD
WYHD0dd
it NOLLOTTAS
WYHD0Hd
_
—
ISISSY
svoa

IdS VIva
LNAINI

ASSIST

Figure Ly

vi

[

enmn A

LOCKHEED

o

LR 28460

users in preparing program input data. A detailed account of the 1976
progress on the various components of ASSIST can be found in the report,
"Summary of 1976 Independent Research on Engineer Oriented Remote Computing"

(LR 28005).

The specific objectives for 1977 were two-fold. The first was to
improve the overall capabilities and performance characteristics of ASSIST,
and the second was to find a more suitable computing environment for hosting
ASSIST and other interactive capabilities. In particular, the feasibility
of g distributed computing approach was evaluated. This report is divided
into two major sections, the first being a description of ASSIST improve-

ments, and the second an evaluation of various computing environments.

vii
LOCKHEED

LR 28460

SECTION 1.0
ASSIST IMPROVEMENTS

The basic design of ASSIST was accomplished in 1975 and has re-
mained relatively unchanged since that time. Implementation of the var-
ious components of the design have proceeded according to greatest need.

Of the four major components of the system,

o program selection
o input preparation
o program submittal

o usage monitoring and control

only program submittal has achieved full operational status. The others
exist in various stages of completeness. This section gives the present
status of each component and describes in detail the accomplishments of

1977
1.1 PROGRAM SELECTION

The purpose of this component of ASSIST is to provide informa-
tion to the user regarding available applications software. The nature
of this information will be such that he may determine which, if any,
available programs might be applicable to a given problem. Program titles,
abstracts, development and revision dates, names of responsible pro-
grammers, and program identification (Reference File) numbers are examples
of the information to be provided. Additionally, this information will
be made conveniently accessible from a terminal. Specifically, a user
will be able to give a keyword and a list of program titles will be
searched for the occurrence of the word given. The program titles corre-
sponding to matched keywords are returned to the user. He may then list
the abstract and other information desired for selected programs. One of
the primary advantages of such a capability is that it provides an effec-

tive means for disseminating information regarding available software

!.OCKHEED

%

throughout a large community of users.

his component was developed by creating an on-line datsas set
with an entry for each of the PSI (Program Setup Instruction) macros
accessible through the program submittal component. TIn some cases there
may be more than one macro for a given available program, but there is
always at least one. The entry for a given macro contains its name (a one
to eight character identification), a title, the name of the responsible
programmer , and the program reference file (RF) number of the program
accessed by the macro. This RF number is a key into an existing data base
of program description information, the Program Reference I'il=. This dat:
base is maintained by the Scientific Computing Division and contains the

remainder of pertinent information for applications programs.

During 1977 the feasibility of linking the Program Reference
File directly to the PSI macro data base was studied. This would have
allowed interactive users direct access to Reference File information.
Also studied was the feasibility of extending the data base searching
capability to include Boolean combinations of keywords. Studies of user
needs, however, cast doubts as to the importance of these capabilities in
relation to the computer resources that would be required to support them.
Consequently, no improvements have been made to the program selection com-
ponent of ASSIST, and none is contemplated until a more definitive assess-

ment of user needs can be obtained.
1552 INPUT PREPARATION

The purpose of this component of ASSIST is to aid the user in
preparing input data for a program he has chosen to run, It will do three
things for the user. It will tell him what input quantities are required
for a given program; it will enable him to provide those values in a con=-
venient manner (without requiring that he know the specific data formats

required by the program); and it will check the data he provides both for

1-2
LOCKHEED

CALIRGNNIA

%

()

LR 284

0

completeness and correctness. Furthermore, this component can be used
interactively, prompting the user wuen necessary and allowing him to
correct errors as they are discovered. The effect of this component is to
put a user's guide to a program on-line and in such a way that the user

can converse with it.

The approach taken for this component is basically the same as

that used for program submittal (See Section 1.3). In particular a language

has been developed which allows programmers to describe program input
requirements. Actually this language is just an extension of the PSI
macro language since the fundamental requirements of this component are
identical with those of program submittal. Namely, it must interact with
a user, providing some information and obtaining other information, and
based on that, construct a data set. 1In the case of pirogram submittal,
the data set built is job stream input while in the case of input prepara-
tion, it is a data set for input to some program. These differences in no
way affect the logical operation of the component of ASSIST which inter-
prets programmer written descriptions and interacts with users. All that
is required, therefore, to be able to provide assistance to the user in
input generation is to add certain constructs to the existing macro
language, In particular, constructs are needed which allow the descrip-
tion of required input parameters, including types and ranges of accept-

able values, and the format in which the program expects them to be given.

With such an expanded macro language, a programmer can describe
the input requirements for any program in such a way that data prepared
for that program can be automatically checked for completeness and correct-
ness, and, if desired, the imput can be prepared in an interactive mode.
In the latter case, information will be requested of the user through an
input description (ID) macro written by a programmer. Normally, this
request will be a list of input parameters for which the user must supply
values. Additional messages can be displayed to the user at the discretion

of the programmer writing the ID macro. The user can ask for a description

1-3

LOCKHEED

-

e g -—

lnk 4)UL|>()O

of' any parameter requested and the values he supplies will be checked for
proper type (e.g., character, integer, etc.) and limits (e.g., O< X< 10)
according to information specified in the ID macro. The user will be
immediately notified of any errors and allowed to correct them. The input
values will then be formatted as required by the program. When this com-
ponent is used just to check a prepared data set, the data set must be
properly formatted. 1In this case, a list of all discovered errors will be
returned to the user. The use of this component coula result in signifi-
cant savings of computer resources by helping users to prepare program

input data which are correct the first time.

A software specification for the extended macro language was
developed during 1976. The design, coding and testing of the required
sof'tware modules began in 1976 and continued into 1977. These activities
were suspended, however, when results of the computing environments study
(see Section 2) indicated that a major hardware/softw&re confiiguration
change might prove beneficial. [t was decided to defer further develop-
ment efforts on the input preparation component until the future computing

environment for ASSIST was established.
L5 PROGRAM SUBMITTAL

The purpose of this component of ASSIST is to simplify the task
of' program submittal by automatically generating the necessary job control
information required by the operating system for program execution. The
fundamental concept is that non-programming users should not be required
to learn the details of interfacing with the operating system in order to
run jobs on the computer. The users should be able to commnicate their
needs in terms meaningful to them not in the language of the operating
system., For example, a user desiring plot output should merely have to
say, "PLOTS" or respond affirmatively to the question, "Do you want the
output plotted?" rather than have to know how to appropriately modify the
DD (Data Definition) statement of the associated plot file. Such capabil-

LOCKHEED

COMEA

0

-

LR 28460

ities could be of great benefit to the experienced programmer as well, for
even with a knowledge of JCL (Job Control Language), it might be far
simpler to allow ASSIST to automatically generate necessary control in-
formation. Certainly there is much less chance of error for either the
experienced or inexperienced user when the program setup and control in-

formation are produced automatically.

The approach taken in this research for assisting users in pro-
gram submittal has been to design a language, and interpreter for it,
which can be used by programmers for expressing the information necessary
for running programs on the computer. This language, known as the PSI
(Program Setup Instructions) Macro language, is an augmented Jjob control
language (JCL) which allows construction of generalized sets of JCL for
the IBM operating system. The interpreter acts as a preprocessor or macro
processor, expanding programs written in this language into complete and

valid jobs to be executed on the computer.

In a typical case, a programmer who is familiar with a particu-
lar program and the JCL required to run it will develop a generalized set
of job control instructions called a PSI macro. This PSI macro will then
be placed in an on-line library and, hence, will be available to all users
through the PSI macro processor known as RUNPROG. Once a PSI macro has
been so created for a given program, users can run that program by access-
ing RUNPROG, without regard to any JCL concerns. Furthermore, changes
that may be required in the JCL due to program modifications, system changes,
or operational considerations can be usually made in the single version of
the generalized JCL in the PSI macro library without requiring any change
on the part of the users. In cases where programming changes were made,
all users will automatically get access to the latest version of the pro-
gram. Thus, this component of ASSIST can help not only the user in pro-

gram submittal, but the programmer in program maintenance as well,

During the first year (1975) of this research effort, the origi-

1-5

LOCKHEED

=

LR 28L60

| nal design of the program submittal component (RUNPRCG) was developed and
a preliminary version with limited capabilities was put into production
{ use. In 1976, the capabilities of this production version were expanded
in accordance with the original specifications. The initial design of
RUNPROG underwent a minor revision during 1977 and several new features
were added to the production configuration along with capabilities which
were part of the original design. A general description of the modifica-
tions and enhancements made during the third year of this research project

| is given below. A complete description of the current capabilities of

RUNPROG can be found in the'Programmer's Guide to ASSIST".

1190 T Nested Macro Calls

The capability to invoke one PSI macro from within another macro
was added to the production version. Part of the original design, this
feature is particularly useful because it allows different PSI macros to
access (i.e., 'CALL') a common set of augmented JCL statements (i.e., a
PSI macro), thereby eliminating the need for including these statements in
each individual macro.

1.3.2 Character String Manipulation

Three new functions not in the original design were added to
greatly enhance the character string handling facilities of the macro
language. The capabilities to:

1) concatenate character strings (CONCAT),

2) search a given string for a particular configuration

or substring (INDEX) and

3) determine the current length of a character string (LENGTH)
have been implemented in the production version. These new functions are
very similar to their PL/I counterparts and along with the substring func-
tion (SUBSTR) give the user a full range of character string manipulation
capabilities.

LOCKHEED

A COMBANY

%

B e ———————

LR 28460

i BN G Arithmetic Capabilities

Due to core limitations, the ability to evaluate arbitrary
expressions could not be implemented in the production version. In order
to compensate for this lack of arithmetic capability, three new functions
have been provided: ADD, SUB and MULT. These functions allow the user to
perform the arithmetic operations of':

1) addition,
2) subtraction and
3) mltiplication,
respectively and are helpful in partially overcoming one of the most

severe limitations of the macro language.

1:3.k Programmer's Aids

Several utility capabilities have also been added to RUNPROG.
The ABEND statement produces a symbol table dump of all macro variables
and their current values and is helpful as a diagnostic tool in debugging

PSTI macros.

The DATE and TIME functions return the current date and time in

the following formats:

DATE: MM-DD-YY where MM - month
DD - day
YY - year

TIME: hh:mm:ss where hh - hour
mm - minute

ss - second

Lo3sd Response Improvement

The original implementation of RUNPROG as an executable load

module called from within a command clist has been discarded in order to

d=7

LOCKHEED

g

IR 28460

decrease the elapsed time spent within the RUNPROG processor. Allocation
and freeing of data sets from TSO is a slow and costly process and RUNPROG
requires several data sets to be allocated during execution. Alternate
approaches which could remedy this problem included allocating data sets
when a user first logs on and doing this allocation from within the pro-
cessor itself. Both of these methods were studied and it was decided that
a combination of these methods would be used. This change allowed the con-
version of RUNPROG from a command clist to a command procedure and elimi-
nated the time necessary to allocate data sets from TSO thereby greatly

reducing elapsed time spent executing RUNPROG.

1+3 46 Other Features Under Development

In conjunction with the usage monitoring and control component,
the capability to monitor the use of RUNPROG is under development. This
function will collect data regarding the use of the program submittal
component (RUNPROG) and should provide statistical information for evalu-
ating RUNPROG.

Several capabilities included in the original design at RUNPROG
are also under development. These include:
1) expanding the number of allowable relational
operators,
2) extending the compound conditional statement
and
3) allowing TSO data sets to be copied into the
control file being built.
At present, only the '=' (equal) and '™ =' (not equal) relational
operators are allowed in the evaluation of a logical expression. This set
of allowable relational operators will be expanded so that other conditions

may be tested (e.g., '>' (greater than) and '<' (less than).

The complete compound conditional statement has the following

format:

1-8

LOCKHEED

g

LR 28460

IF condition THEN statement
EISE statement
The capability to execute a statement or group of statements if the tested
condition is false (i.e., an ELSE clause) will be developed to allow use

of the complete format of the conditional statement.

During 1977, the ability to copy a TSO data set into the control
file being built was studied and developed. However, during the testing
phase several problemsoccurred concerning the use of system routines and
implementation was delayed until further tests could be made. This feature

is still in the test phase.

The concept of being able to execute the RUNPROG processor in
the batch mode when TSO is not active has been studied and partially
developed. Designed originally for a terminal-oriented, time-shared
environment, this enhancement would allow the user to access the PSIT
macro library and execute the RUNPROG processor even when TSO is not

available.

Other enhancements to RUNPROG which will be studied or developed
include off-loading inactive macros from the PSI macro library, consolida-
tion of the current error messages into a comprehensive scheme and a
method cf copying user-supplied input variables and their values to the
control file being built.

1-9

LOCKHEED

B 3

LR 28L60O

1.4 USAGE MONITORING AND CONTROL

The purpose of this component of ASSIST is to ensure the effi-
cient usage of available computer resources by developing adequate system
controls and through the monitoring of user activity. Since extensive
computer software and hardware resources have been made available to non-
programming users, there is a need to prevent inadvertent misuse due to
lack of computer experience. As a minimum, sufficient information must be
collected in order to determine whether the resources are heing efficiently
utilized. The information so collected, since it will reflect user activity,
will also bhe valuable for guiding efforts to improve the efficiency of
ASSIST itself.

The accomplishments toward prevention of accidental misuse of
resources were designed and implemented within the Program Submittal and
Input Preparation components of ASSIST. By their very nature these com-
ponents eliminate many sources of user errors. The Program Submittal
component automatically determines many required parameters, and both
components have capabilities for checking the correctness of user supplied
values. In the case of program submittal, the computer resources requested
(e.g. core, time, lines of output, etc.) can be controlled, and, in the
case of input preparation, the execution of runs with erroneous data can

be prevented.

LJE Monitoring RUNPROG Usage

Beyond these capabilities, the primary method for ensuring the
efficient use of resources has been through the collection and analysis of
data relating to user activity. Much of the relevant data is available for
terminal sessions just as it is for normal batch work through the standard
accounting procedures. In 1976, an experimental module was designed and
developed to collect information regarding jobs processed by the Program
Submittal component (i.e. RUNPROG). Because the addition of this function

1-10
LOCKHEED

Ty [51®)
LR 28460

would have only aggravated the already poor response time, it was decided

that implementation of the user monitoring function be delayed,

During the last quarter of 1977, the Program Submittal component
underwent a minor design revision which improved response time signifi-
cantly (see Section 1.3.5). This improvement allowed the User Monitoring
component to be implemented. However, it also required a change in the

design of the monitoring of user activity.

In order to prevent contamination when collecting information
about user activity, two new functions were identified and incorporated
into the User Monitoring module. One function prevents simultaneous up-
date of the same record by several users and the other prevents a user

from interrupting the update process.

When two or more users are allowed access to the same data base,
there is always the possibility that they will attempt to update the same
record at the same time, the result being that only one will be successful.
Recognition of this problem led to the first function which queuss users,
allows only one user at a time to update the data base and then deqgueues

Users.

Initial implementation of the first function demonstrated the need

for the second. If a user is queued and attempts an attention interrupt,

he abnormally terminates from the processor but does not vacate his posi-
tion in the queue, Because the user will never perform the update and be
removed from the queue (i.e. dequeued), all users behind him will remain
waiting in the queue until it is forcibly emptied (i.e., an IPL occurs).

The second function disables the attention interrupt handler when a user
enters the queue and enables it when the user exits the queue thereby

avoiding a possible bottleneck in the system.

Testing of these new functions is expected to be completed in

1-11
LOCKHEED

%

LR 28460

early 1978; implementation is scheduled for the second quarter.

1.4.2 Activity Reporting

A collection of data is meaningless unless it is presented in
such a way that useful information can be derived from it, thus the need
for reports. A series of MARK IV reports are being designed to provide
statistical information to aid in the evaluation of the use of ASSIST and
to provide summary information to aid management decisions regarding

directions of future growth for the system.

1-12
kg o

LR 28460

SECTION 2

EVALUATION OF COMPUTING ENVIRONMENTS

It has been a major premise of this research that greater pro-
ductivity among engineers and other computer users can be achieved by
providing capabilities enabling these individuals to directly access the
existing computing hardware and software. It has not been a purpose to
determine the validity of this premise although it should be pointed out
that ample supporting evidence does exist. A study by Integrated Systems
Support, Inc. on "A Production Environment Evaluation of Interactive Program-
ming" (16) demonstrated both an increase in user productivity and a decrease
in overall computing costs by providing users with direct interactive
access to the computer through remote terminals. Furthermore, question-
ngires distributed to users at Calac indieated a feeling of greater pro-

ductivity when direct computer access capabilities were available.

The extent to which direct access capabilities are provided,
the speclfic functions to be performed, and the means of doing it have
been the subject of this research task and other related efforts over the
past several years. The result of these efforts has been the development
of the computer based system, DCAS (Direct Computer Access System). In
its present implementatior)CAS exists in a centralized environment.
Specifically, the system functions are imbedded within IBM's TSO (Time
Sharing Option) portion of the operating system OS/MVT on a 360/91
computer.

Unfortunately, the present system does not adequately satisfy
current needs and has very little growth potential., 1It's capabilities are
far too limited, it is difficult to use, and it is unresponsive to the
user, In addition, the present hardware is unreliable and the system
software (i.e, TSO) is highly inefficient. Even with all these drawbacks
users generally agree that DCAS is far superior to past methods of opera-
tion where computer processing was done in a batch mode by (or with the

LOCKHEED

%

LR 28460

a

0n

sistance of) professional programmers.

Since it seemed to be only the particular implementation and not
the basic system design that limited the effectiveness of DCAS, this
year's research was directed at investigating the feasibility of imple-
menting DCAS within other hardware/software/firmware environments. In
particular, various forms of distributed computing environments were

studied and evaluated. This section is devoted to that evaluation.
2.1 EVALUATION CRITERIA

Six areas were selected as a basis for judging system effective-
ness. Specifically, the environments were evaluated with regard to how
well they could support systems which would provide the required cap-
abilities, be easy to use, efficiently utilize computer resources, be
reliable, offer growth potential, and be responsive to the users. These

criteria are more fully discussed in the following sections.

2.1.1 Capabilities

It is probably of primary importance that the specific cap-
abilities of the system be precisely established. This is a particularly
difficult task since needs are influenced by available capabilities., It
is usually difficult to express needs independently from existing tools.
When asked what their needs are in order to be able to do computing more
effectively, users respond by saying such things as,

"We need a bigger computer." (or worse, "We need a CDC 7600.")

"We need remote terminals." (or worse, "We need some HP 2641A's")

"We need a time sharing system." (or worse, "We need TSO.")
When expressed in functional terms the need for a larger computer becomes
a need for the means to solve larger problems or for solving them faster.
Likewise, the need for remote terminals might become the need to be able

to conveniently communicate with the computer from remote locations.

2-2
LOCKHEED

it

LR 28460

Finally, requesting a timesharing system probably indicates the need for

some interactive computing capabilities.

In order to find the best means for providing direct access capa-
bilities, needs must be expressed in a functional, tool-independent manner.
It must also be understood that user needs will continually grow (and even
change). Increased capabilities create new needs and obsolete others. What-
ever might be determined to be today's needs will probably be out-of-date in
the not-to-distant future.

With these thoughts in mind the following capabilities have been
established as the set required to satisfy user needs for computer processing
at the present. These capabilities stated as functional requirements, are
based upon user provided information and two years of experience with the
present implementation of DCAS. The functions can be divided into nine areas.

l) data set creation and manipulation

2) computer program development

3) batch program submittal

L) interactive program execution

5) command set processing

6) user communication

7) document preparation

8) system management

9) system access

The functions can further be divided into essential and desired
capabilities. Those classified as essential must be realizable in order for
a computing environment to be acceptable. The environment will then be
rated according to how well it is suited for providing essential capabilities
and how many desired features it is capable of supporting. In the following
sections the functional requirements are described. Essential functions are
noted with an asterisk (*).

LOCKHEED

%

LR 28460

2l kel Data Set Creation and Manipulation

This is a fundamental capability which must be provided to the
user. He must be able to create, identify, and store sets of data. Iurther-

more, he must be able to retrieve, modify, and display these data sets.

A data set is defined here to be any collection of data. It could
be numeric, textual (including lower case letters and special symbols), or
an actual computer program. The data sets themselves consist of lines
(records) which may be of any size. The lines (records) of a data set may be
all of one size or of varying sizes. A given user may create and keep
several data sets. This collection will be referred to as his library of

data sets.

The specific data set handling functions are:
* A) create - form and identify a data set by entering information
into the system.
B) reidentify - give a new name or an alias to an existing data
set

* () store - retein a data set within the system identified by its

name

* D) retrieve - fetch a data set with a specified name

* E) list - display the contents of a data set or a portion thereof
* F) delete - remove a data set from the system

% G) copy - duplicate a data set or a portion of it optionally
rearranging and/or eliminating certain columns (fields) of
lines (records) in the copy

H) describe-as - associate a textual description with a data set
1) protect - prevent access to and/or modification of and/or

deletion of a data set except by authorized users

LOCKHEED |

COMBA

%

LOCKHEED

g

LR 28460

J) modify - change contents of a data set as follows:

2)

7)

¥ 1) insert - add one or more lines (records) to a data set

at some location

replace - substitute one or more lines (records) with

another line (record) or set of lines (records)

delete - remove one or more lines (records) from a data

set

move - transfer one or more lines (records) from one

place to another within a data set

copy - duplicate one or more lines (records) one or more

times from the current or other data set into the current

data set at some location

search-for - find the first occurrence, first n occur-

rences, or all occurrences of & string within a range of

lines of a data set, optionally limiting the search to

certain columns (fields) within the lines (records)

change - alter one or more lines (records) of a data set

as follows:

a) insert - place one or more additional characters at
some point within a line (record)
b) delete - remove one or more existing characters from

a line (record)

* ¢) alter - replace one string with another string in
one or more lines (records) optionally limiting
replacements to certain columns (fields) within the

lines (records)

K) undo - restore data set to the form it had just prior to

*L)

M)

execution of the last command or last n commands
list-catalogue - display the names, and optionally descrip-
tions, of all data sets in a user's library

compare - test two data sets, or portions thereof, to see if
they are identical and list any differences, optionally spe-
cifying the columns (fields) in the lines (records) to be com-

pared

2-5

LR 28460

N) shift ~ move one or more lines (records), or portions Lhereof
a specified number of columns (positions) right or left

0) sort - rearrange lines (records) or a data set into either
ascending or descending order based upon a selected range of
columns (field) in the lines (records)

P) check - test a data set for compliance with some established

format
2.1.1.2 Program Development

Users must be able to interactively create and check out computer
programs. As a minimum, these capabilities must be available for the rOKIRAN
programming language. It is also highly desirable that these capabilities
be available for PL/I, Assembler Language, and APL. The specific functions
needed are as follows:

A) scan - syntactically check a statement or set of statements
for compliance with the rules of the particular language

B) compile - generate object code from a given source statement
program displaying any compilaticn errors to the user

C) assemble - cause an Assembler lLanguage program to be assembled
(i.e., generate object code)

D) link - generate a load module from a given object module

E) debug - test a program for proper execution and locate program-
ming errors as follows:

1) execute - cause execution of the program to begin at a
specified statement and optionally specify where execu-
tion is to stop

2) interrupt - cause execution to cease immediately

3) list-variables - display the current value(s) of program
variable(s)

4t) change-value - modify the value of a variable or set of
variables

5) list - display a statement or set of statements

2-6

LOCKHEED

LR 28460

6) modify - change (including all subfunctions described as
part of the "modify" function under "Data Set Creation
and Manipulation") the contents of the program

7) set-stop - designate a statement in the program where
execution will stop whenever the statement is reached

8) remove-stop - remove the designation that execution should
stop at some statement

9) trace-variables - display the value of a specified varia-
ble whenever the value changes

10) trace-flow - display indication of each transfer of

control during program execution
21l 3 Batch Processing

Capabilities must be provided to allow users to perform batch pro-
cessing of computer programs. The specific functions needed are as follows:
* A) submit - cause a program to be submitted for batch execution
* B) list-output - display the output of a job run in batch mode
* () determine-status - return the current status of a job submitted
for batch execution
* D) cancel - cause a job submitted for batch execution to be can-
celled
E) scan - syntactically check job control statements
* ¥) save-output - put output from a job into a data set
G) access-data-set - provide access to a data set from a job
executing in a batch mode

H) plot - display plot output

2-7

LOCKHEED

—

-

LR 28460

2.1.1.4 Interactive Program Execution

Users need to be able to create and run interactive programs. The
specific functions needed are as follows:
¥ A) run - call up and execute a program interactively
B) suspend - cause an interactive program to temporarily halt
execution
C) resume - cause a suspended interactive program to resume
execution
* D) cancel - terminate execution of an interactive program
E) access-data-set - provide access to o data set from a progran
executing interactively
F) calculate - determine and display the result of a specified
numerical calculation

G) plot - generate and display a plot from data given
2.1.1.5 Command Set Processing

A capability to execute sets of interactive commands as a group
must be provided. Ideally, the command language will be sufficiently rich
to allow a full programming capability at this level. That is, logical
testing, branching, looping, and input/output constructs should be part of
the command language. ©Specific functions needed are the following:

* A) execute - execute a set of interactive commands

B) suspend - cause the execution of a command set to be tempor-
arily halted

C) resume - cause the execution of a suspended command set to
resume

D) scan - syntactically check statements of the command language

2-8

LOCKHEED

%

LR 28460

2.1.1.6 User Commumnication

It must be possible for those maintaining the system to commnicate
with users and for users to communicate with each other and the system oper-
ator. The following specific functions are required:

* A) send - send a message to a user, a set of users or the system

operator

* B) hold-messages - cause messages (except those sent by the oper-

ator) to be held in the user's message file rather than be
displayed immediately

* C) list-messages - display and delete all messages in the user's

message file
D) associate-message - cause a message to be associated with a
data set such that any time the data set is accessed the

message is sent to the user accessing it
2.1.1.7 Document Preparstion

Cepabilities are needed to enable users to create, modify, and
maintain textual documents through the system. All functions described in
section 2.1.1.1 on "Data Set Creation and Manipulation" must be available
for document data sets, and in addition the following functions are required:

A) format - specify which lines are to be formatted before dis-
playing and which are to be displayed as they are by use of
the following functions:

1) set-line-width - cause lines making up paragraphs (to be
formatted) to be adjusted so that each line will contain
a8 many words of the text as possible without exceeding
the line width specified

2) start-paragraph - cause a new paragraph to begin at a
specified point

3) center-line - cause line to be centered on page

L) indent - specify manner of indention for a paragraph

2-9

LOCKHEED

b

IR 2RLAD

5) suppress-window-lines - prevert the firsi line of
graph from being the last line on a page or the last line
of a paragraph from being the first line on a page
B) set-page-depth - cause all pages to have the size specilied
C) title - cause a title to be put on every page
D) number-pages - cause all but the first page to be sequentially
numbered
E) set-spacing - specify number of blank lines to be inserted

between lines of text
2.1.1.8 OSystem Management

Capabilities must be provided to control access to and use of the
system including the reporting of resource usage information. It mst be
possible to specify for each user an identification which will be the name
by which the system knows the user. Also, the capability to establish a
password for a user which will restrict unauthorized access, and to specify,
for each user, a set of valid account numbers for the purpose of charging
the computing resources expended. Additionally, a capability to define for
each user his limits of access and use of resources is required (i.e., the
functions and the types and amounts of resources he is allowed to use).
Finally, it must be possible to keep any other information about users as
required (e.g., this may include his organization identification, address,
phone number and the like). The specific functions required to maintain all
this user information and monitor resource utilization are as follows:

* A) add-user - enter a new user and his information set to the

system

* B) change-information - modify the user information

* () delete-user - remove a user from the set of authorized users

* D) list-users - generate a list of all users or a subset thereof,

optionally listing any of the user associated information

* E) cancel-user - terminate the session of an active user

2-10
S T

%

LK 28460

* ¥) charge - determine and optionally display the computer
resources expended by a user for the current session or over
some period of time

* () report-resource-usage - generate a report containing all
computer resource usage by all or a subset of all users over
some period of time

H) report-function-usage - generate a report containing statis-
tics on usage of all system functions over some period of
time (including response)

* 1) send-broadcast-message - enter a message into a broadcast
data set which is displayed to all users each time they log

on to the system

*

J) delete-broadcast-message - remove a message from the broad-
cast data set
K) monitor-user-activity - cause all terminal input and output

of a user to be displayed or printed elsewhere
2.1.1.9 System Access
The means to identify oneself to the system in order to gain access

to its capabilities and to specify to which account the expenditure of re-

sources is to be charged must be provided. The following functions are re-

quired:

* A) logon - gain access to the system by specifying user identi-
fication, possibly a password, and the account number to which
computing resource expenditures are to be charged

B) change-account - specify that all subsequent work is to be
charged to the new account number specified

* () logoff - exit from the system

2-11

!.OQKH!ED

Ok A

e 1o

v

JAR P;“*FJ()

2.1.2 FEase of Use

A system can provide all essential capabilities and still be
difficult to use. An important feature of any system, therefore, is its

ease of use. Ease of use encompasses many varied concepts including the

following:

A) Learning - Can the system be easily learned? Can an individual
learn how to use it on his own or is formal training required?
How long does it take to become proficient?

B) Prompting - Is the user prompted when he fails to supply re-
quired information?

C) Tutoring - Can the user obtain help from the system when he
doesn't know how to do something?

D) Use of Abbreviations - Can the user abbreviate commands?

Can he abbreviate other information such as his data set
names?

E) Editing Data Sets - Are there features to facilitate the
modification of data sets?

1) Can lines of a data set be referred to by line numbers
(whether or not the numbers are part ot the data set
itself)?

2) Can a line or set of lines be modified merely by dis-
playing them, making physical changes in them (including
overtyping, inserting, or replacing characters), and re-
entering them to the system?

3) Can a block of lines be entered a once?

L) Are the results of changes automatically displayed to
the user?

5) Can lines of any length be handled?

6) Can logical tabulation points be established?

7) Are various character sets available?

2-12
oot g

%

LR 28460

F) Entering Commands - Can a previously entered command be re-
entered, possibly modifying it, without completely retyping
it?

G) Use of Physical Devices - Are the devices available easy to
use?

H) Viewing Computer Output - Can the user move about within his
output?

1) Entering Date - Can data be remotely entered without typing
(e.g., from tape)?

J) Locally Storing Date - Can data be stored at the users local
site (remote from the central facility) in other than printed
form (e.g., on tape)?

K) Transferring Data - Can data be easily transferred to a site
outside of the environment of the system?

L) Displaying Information - Can the cursor on & terminal be
controlled from an interactive program? Are various character
sets available on the terminuls? Do terminals have blinking,
half bright, inverse video, upside down, 90 degree, etc.
display features?

M) Sending Messages - Can messages be sent even when the rest of
the system is inoperative?

N) Submitting to Eatch - Can batch submittals be made without
knowing the job control language of the host computer?

2.1.3 Efficiency

An important consideration of any system is its cost in terms of
computer resources utilized. The computing environment must make possible
the efficient implementation of the required system functions. In particu-
lar, the most used functions must be capable of the highest degree of effi-
ciency in their implementation.

2-13
LOCKHEED

i

LR 26l#

2.1.4 Availability

Availability refers to the degree to which a user has access to
the computing capabilities he needs. This encompasses two attributes of the
computing environment. The first is its capacity. There must be sufficient
computing power and numbers of terminals and other peripheral hardware to
serve the needs of the users during times of peak system activity. The second
attribute is system reliability. The system must be kept running at or above
the 9%, level during prime shift hours. Furthermore, the computing envirorn-
ment, should be such that it contributes toward implementation of a system
which can continue to operate at some level even when portions of the hard-

ware and/or software are not functioning.

2.1:5 Fxpandability

Another important attribute of any computing environment is its
flexibility in terms of size and capabilities. Can the system be easily
expanded to handle more users? Can its size be diminished if the work load
decreases? Can new capabilities be easily incorporated into the system?
The system must be capable of growing or shrinking in a cost effective

manner as changes in the work load and needs of the users occur.

2.1.6 Responsiveness

Finally the speed with which the system can act upon user requests
mist be considered. This is possibly one of the most critical factors
contributing toward user satisfaction. Naturally, the time it takes to com-
plete a task depends upon its complexity, but the computing environment must
be such that users are not frustrated by unreasonable delays in servicing
requests. As a minimum, the system must be capable of responding to trivial
or fundamental requests within one second 90% of the time and within two
seconds 99 of the time.

2-14
tOSKnasD

%

LR 20546

2.2 EVALUATION OF COMPUTING ENVIRONMENTS

Four basic types of computing environments will be discussed and
evaluated in this section. There are, naturally, many other ways of
classifying environments, and all combinations of those to be described are
possible. A complete description of computer interconnection structures

has been attempted by Anderson and Jensen (1).

A computing environment can be centralized or decentralized. If it
is decentralized it can be hierarchically organized or not. If it is non -
hierachical, it can be connected or uncomnected. Thus, the four classes of
environments which will be evaluated are:

A) centralized
B) hierarchically decentralized
C) non hierarchically connected

D) unconnected

221 Centralized Environments

A centralized environment is one in which a single computer (agent)
performs all system functions. This is essentially the present DCAS environ-
ment where a number of terminals are connected to a central computer (an IBM
360/91) and operate in a time sharing mode (TSO). The centralized environment

is depicted in Figure 2.

Because of the power of the central computer, this environment has
the potential to provide almost every desired capability. In fact, time
sharing systems exist for most large machines which already provide most of
the desired capabilities as specified in section 2.1.1l. Thus, very little
new software development would be required in such an environment. Although
there is no inherent reason that systems implemented in a centralized environ-
ment should be difficult to use, experience with one such system, TSO, has

shown that ease of use 1s not necessarily guaranteed in such an environment.

2-15
LOCKHEED

e

LR 284€

HOST l
R
p—
\\
// S/
o
= \ (/’ :
Terminal erminal % Termina
\ 1 2 i n

Figure 2. Centralized Environment

2.16
by gty

Sre
=
‘iggﬁzgj

Li(?"l)i{—b‘

The more capabilities a system has the more likely it is to be difficult
to use. Hence, there may be tradeoffs between '"capabilities'" and "ease of
"

use in the evaluation of a computing environment. In a centralized environ-

ment, however, it is clear that these two criteria can be satisfactorily met.

The next evasluation criterion is efficiency. Centralized environ-
ments which service many simultaneous users operate, by necessity, in time
sharing mode, and time sharing is inherently inefficient. In particular,
there is a significant overhead associated with swapping users in and out
of main memory and in keeping track of all active users. A significant
utilization of computer resources is also required to control the time shar-
ing activity itself. Although computers exist which have been designed to
operate efficiently in a time sharing environment, such is not the case with

large scale computers of the IBM 360/370 variety.

As far as availability is concerned the centralized environment
suffers from the problem that when the host machine is not operating, the
entire system is unavailable for use. Thus, system availability is dependent
upon the reliability of the central host. Experience with the IBM 360/91

has shown this to be a serious problem.

The expandability or growth potential in a centralized environment
is likewise limited by the host machine. Once the capacity of the machine
is reached the system cannot grow easily. Also, should a decrease in
interactive usage occur, the unused capacity of the central machine might be

wasted.

The final criterion is responsiveness. Responsiveness in a centra-
lized environment is primarily a function of the efficiency of the central
host. Experience with TSO on the IEBM 360/91 has shown that acceptable re-
sponse is attainable only through allocation of considerable amounts of

machine resources.

LOCKHEED

LR 28l

The centralized environment can be considered a reasonable
approach only if efficient, and thereby responsive, hardware and software
can be acquired for interactive use. Even then the questions of system
availability (reliability) and expandability (growth potential) must be

carefully considered.

2.:2.2 Hierarchically Decentralized Environments

Decentralization can imply many different concepts. 1t can suggest
that the computing hardware is geographically distributed, that data is a1
tributed among various computers, or that the computing func*ions ere dig'r:
buted among various pieces of hardware. In this discussion an environment
will be considered to be decentralized if the last of these is true even
when hardware is not geographically distributed and when all data is centrally
controlled. Borrowing from C. V. Ravi (14), an environment is said to be
decentralized whenever computing functions (tasks) are distributed among
different computing agents (hardware, software, and firmware components).
Stretching this point even the so called centralized environment previously
discussed is actually decentralized because certain trivial computing
functions (such as data entry and simple editing) are performed by the ter-
minals. Certainly in the case of intelligent terminals one would have to
call the environment decentralized. For the current discussion an environ-
ment, will be considered to be decentralized only if significant computing

functions are performed by agents other than the central host processor.

A decentralized environment is hierarchically organized if the
computing agents are divided into levels, if each agent is connected by a
communications link to an agent of the next higher level, and if there is
single agent at the top level. In other words, the environment is a tree
structure with the branches being lines of communication and where agents at
one level control sets of agents at the next lower level. For the purpose
of this discussion, an environment will be considered to be hierarachical

only if no other lines of communication exist. In particular, communication

2-18
LOCKHEED

COmpAry

=

T

LR 28460

lines between agents two or more levels apart or between agents at the same
level are not permitted. A simple and typical hierarchically distributed

environment is depicted in Figure 3.

Environments of this type are capable of supporting the full range
of required capabilities since access to the central host, even if indirect,
is always possible. Hierarchically distributed environments can promote ease
of use for certain sets of users. They may be able to use simpler, limited
systems residing on intermediate computers rather than relying on a complex,
all encompassing system residing on the mainframe host. In fact, in such an
environment there is the possibility of developing or acquiring highly

specialized, easy to use systems for particular classes of users.

Efficiency can be much better in a distributed environment than in
the centralized case because much of the processing can be accomplished by
less costly hardware located (at least logically if not physically) closer
to the user. Certain editing functions, for example, might be accomplished
directly by a terminal, compilation of source code might be done on a mini-
computer, and small calculations might be handled by a micro-processor with-
in a termingl. The off-loading of these, and possibly other such functions,
would greatly reduce the amount and frequency of data transfer between the
user and the central computer. This would also reduce the time sharing over-
head burden and thereby improve the overall system efficiency or cost effect-

iveness.

Availability of the system in a distributed environment is signi-
ficantly improved over the centralized case. It is no longer true that all
users are dependent upon a single piece of computing hardware. 1f signifi-
cant processing capability has been off-loaded, then at least that processing
can continue regardless of the state of the central computer. OSystem avail-
ability is a function of the extent to which processing capabilities have been
distributed and the redundancy built into the hardware configuration. In a
distributed environment it might be reasonable to have an extra mini-computer

in case one malfunctions while having and extra large mainframe is usually

2-19
LOCKHEED

~ "3'}\?:

-

LOCKHEED

B, 3

MAINFRAME
HOST
COMPUTER
Intermediate
Computer
1
Terminal
1,01
Figure 3.

Intermediate
Computer
m

Hierarchically Decentralized Fnvironment

2-20

LR 28460

impractical.

b The distributed environment is also easily expandable (or contract-
able) since mini-or micro-computers could be added (or subtracted) as work

load conditions changed.

Finally, with regard to responsiveness, the distributed environment
has great advantage over the centralized case. For computing functions which
have been assumed by intelligent terminals (terminals with micro-processors),
the user no longer operates in a time sharing mode. Hence, his response is
usually instantaneous. In other cases computing functions may be performed by
mini-computers which have been designed for interactive time sharing and are
hence more responsive. However, there will undoubtedly be some functions
which will take longer to accomplish. For example, any function requiring
the transfer of information between the terminal and the mainframe host, or
between agents non hierarchically connected, will be less responsive. This

fact opens the question of where data should be stored in such an environment.

Obviously they should be stored as close as possible to the computing agent
which needs access to them. If a set of data is needed at more than one
level in the hierarchy, it should probably be stored at the highest level it
is needed. While this policy will facilitate central control of data, it
might also require great amounts of data transfer. This could have adverse

effecte on both efficiency and responsiveness.

Clearly, a hierarchically decentralized environment can support a
complete interactive computing system. Determining the proper configuration
for particular needs, however, is not likely to be an easy matter. The suita-
bility of such an environment and the proper distribution of functions among

agents will be largely determined by date transfer requirements.

LOCKHEED

W

-y

LK 28460

2.2,3 Non-Hierarchically Connected Environments

This class of environments includes all those which are fully
connected but not hierarchically organized. FKach computing agent is linked
by a communications line to another agent but there are no discernable levels
in such an environment. A ring structure like that depicted in Figure 4 is
a good example of & non-hiersrchically connected environment. The capabili-
ties supportable, ease of use, availability, and expandability characteris-
tics are essentially the same as for hierarchically connected environments.
Efficiency and responsiveness on the other hand are dependent upon the
specific functions considered. Typically, such an environment gives a u-e:
good response for some functions, namely those directly available on the openn
to which he is connected. The system responsiveness to other functions de-
pends upon the rumber of communication paths which must be travelled and the
amount. of information which must be transmitted. Responsiveness can be im-
proved by adding communications lines, but this will tend to decrease overall
system efficiency. Maintaining central control of data, or central control
of anything for that matter, in such an enviromment is difficult since there
is no top level computing agent. This would appear to be a serious problem
in cases where many users are involved in a single project. 1f solvable atl

all, it is likely to adversely affect system efficiency.

2.3.4 Unconnected Environments

This last classification of environments is one in which no lines
of communication exist between computing agents. Iigure 5 depicts this case.
There is nothing inherent in such an environment to limit ease of use, and
efficiency, responsiveness, and overall availability are at maximum levels.
Oince there are no comnections between agents, system overhead is minimized
and failure of one agent, in no way affects the others. ILikewise, the system
can be easily expanded since adding a new agent can be done without consider-
ation of the rest of the environment. The problem with this environment, of

course, is that users are greatly limited in the capabilities available to

2-22
LOCKHEED

oAb

,w,—%z;

COMPUTER

2

& ®

1

LR 26460

COMPUTER COMPUTER

3

COMPUTER

LOCKHEED

-——
-— -
—

S &

Figure b, Ring Structure

23

LR 28460

them. In particular, they can use only those functions available on the
computing agents to which they have access. Moreover, managing data or
users at a global level is not possible, and communication among users is

not supportable.

224
LOCKHEED

COMBANY

=

™

s &

COMPUTER
1

COMPUTER
2

LR 28L60

COMPUTER
3

LOCKHEED

=

COMPUTER
M

S &

Figure 5. Unconnected Environment

2-25

Eli(2?,),/,’ !

SECTION 3.0

CONCLUSIONS AND RECOMMENDATIONS

The results of the computing environments study are summarized in
the table shown in Figure 6. Only the fully connected decentralized environ-
ments score at acceptable levels for all evaluation criteria, with the
hierarchical organization having a slight edge. Decentralization appears to
offer significant potential for both improving service to interactive users
and reducing computing costs. Based on this conclusion the following re-

commendations are made.

A o
A %
\\é ‘;" A\ \(\ Q\e Qﬁ?
N) 3 N * N
NG & g*) Q é)
o S /8 N/ S
¥ & /& O L/ 8

CENTRALIZED . v W=l » - | -
HIERARCHICALLY " ol e :

DECENTRALIZED ViV v .
NON-HIERARCHICALLY \ P . "

UNCONNECTED % v Vv
UNCONNECTED A . » a » ¢

+ IDEAL
v+ ABOVE ACCEPTABLE LEVEL
v ACCEPTABLE
VvV - BARELY ACCEPTABLE
- UNACCEPTABLE
Figure 6
3-1

LOCKHEED

LR 28460

1) Establish a precise and complete specification of user re-
quirements for interactive computing. Although such a specification was
produced as part of this research task, it should be reviewed by end user
organizations and modified as necessary to ensure that it truly reflects
user needs. Furthermore, user requirements need to be ordered in terms of
relative importance so tradeoffs can be properly evaluated.

2) Determine the best configuration of computing hardware and
software to satisfy the established user needs. This must be a joint effort
involving Scientific Computing, Computer Systems, and all end user organiza-
tions.

3) Develop a plan for acquisition of any hardware and software
necessary to build a prototype of the configuration selected.

4) Prepare a plan for evaluating the effectiveness of the prototype

configuration for satisfying users' needs for interactive computing.

LOCKHEED

A COMEANY

i, 13

LR 28460

REFERENCES

3. Anderson, G. A. and Jensen, E. D., "Computer Interconnection
Structures: Taxonomy, Characteristics and Examples," Computing
Surveys, Vol. 7, No. 4, Dec. 1975, pp. 197-213.

2% Ashenhurst, R. L., "Centralized or Decentralized Computing - Or Maybe
Some of Both?" How to Make Computers Easier to Use, IEEE Compcon
75, Sept. 1975, pp. 59-60.

3 Davis, R. M., "The Systems of the 1980's -~ A U. S. Perspective,"
b ’

National Bureau of Standards, Nov. 1975.

L. D'Oliveira, C. R., "An Analysis of Computer Decentralization,"
Massachusetts Inst. of Tech., Cambridge Lab. for Computer Science,
Oct. 1977.

St Doll, D. R., "Relating Networks to Three Kinds of Distributed Function,"
Data Communications, March 1977, pp. 37-k2.

6. Eckhouse, Jr., R. H., Stankovic, J. A., and Van Dam, A., "Issues in
Distributed Processing - An Overview of Two Workshops," Computer,
Vol. 11, No. 1, Jan. 1978, pp. 22-26.

T Grossberg, M., Wiesen, R. A. and Yntema, D. B., "An Experiment on
Problem Solving with Delayed Computer Responses,' 1EEE Trans. Man
and Cybernetics, March 1976, pp. 219-222.

8. Ivie, E. L., "The Programmer's Workbench - A Machine for Software
Development," CACM, Vol. 20, No. 10, Oct. 1977, pp. T46-753.

LOCKHEED

%

LR 2046

9. Lingard, R. W., "Engineer Oriented Remote Computing," LR 27518,
Lockheed-California Company, Burbank, California, Dec. 1975.

10. , "Summary of 1976 Independent Research on Engineering Oriented
Remote Computing," LR 28005, Lockheed-California Company, Burbank,
California, June 1977.

135, Mertin, J., Design of Man-Computer Dialogues, Prentice Hall, Inc.,
Englewood Cliffs, New Jersey, 1973.

12. Melendez, K. J. and Johnson, R. T., "Evaluation of the UNIX Time-

"

Sharing System,
1977.

Los Aloamos Scientific Lab., New Mexico, Apr.

13. Miller, L. A. and Thomas, J. C., "Behaviorial Issues in the Use of

Interactive Systems, IBM Thomas J. Watson Research Center,

Yorktown Heights, New York, Dec. 1976.

1L, Ravi, C. V., "The Structure and Characteristics of Distributed Systems,"
Proc. 2nd International Conference on Software Engineering, Oct.
1976.

15. Reaser, J. M. and Carrow, J. C., "Interactive Programming: Summary of

an Evaluation and Some Management Considerations," Integrated

Systems Support, Inc., Falls Church, Virginia, March 1975.

16. Reaser, J. M., Priesman, I. and Gill, J. F., "A Production Environment
Evaluation of Interactive Programming," Integrated Systems Support,
Inc., Falls Church, Virginia, Dec. 197h.

17. Rockhart, J. F., Bullen, C. V. and Leventer, J. S., "Centralization
Vs. Decentralization of Information Systems: A Preliminary Model
for Decision Meking," Massachusetts Inst. of Tech., Sloan School
of Mansgement, July 1977.

R-2
LOCKHEED

B

LR 28L60

18. Walton, J. R., "Performance Evaluation of the lLincoln Laboratory Time
Sharing System," Massachusetts Inst. of Tech., Lexington Lincoln
Lab., May 1976.

19. Weinberg, G. M., The Psychology of Computer Programming, Van Nostrand
Reinhold Company, New York, 1971.

R-3
LOCKHEED

o

REPOIRT o LR 28
ENGINEERING REPORT INITIAL DISTRIBUTION LIST report no, LR 28460

(SEE EPM 4.07) PAGE __L ___OF AL
TITLEF MODE L ’ SECURITY CLASS. DATE
SUMMARY OF 1977 INDEPENDENT RESEARCH I.R. | UNCLASSIFIED _ [7-14-78
ON USER ORIENTED REMOTE COMPUTING b 4. [

AR B A

ORIGINATING ORGANIZATION (TITLE & DEPT. NO.) pivisibN ENGINFER
Scientific Analytical Programming (80-36)

Scientific Computing Division
WOJ/EWA
3715

CLASS WORK ORDER

REMARKS

5890
EWA,

E.W

——r—

COMMERCIAL ENGINEERING
(COMMERCIAL ENGINEERI

ANCH REPORTS)

‘ 7v a7 UOAC’

LEGAL BRANCH - PATENT SECTION (STATE ANY RESTRICTIONS)

LIMITATION ON ACCESS TO DATA:

/:;ot./c L)ONA/U

UNLESS LIMITATIONS ON SUBSEQUENT RELEASE OF THIS REPORT ARE STATED BELOW, COPIES WILL BE MADE FREELY

ACCESSIBLE TO ALL CORPORATION EMPLOYEES
REQUIRES COMPLETION OF FORM 7229)
LIMITED TO

REASON

DATE ON WHICH LIMITATION MAY BE LIFTED

(IF LIMITED, SUBSEQUENT RELEASE TO OTHER ORGANIZATIONS

WOULD IT BE BENEFICIAL TO CALAC TO RELEASE THIS REPORT TO THE PUBLIC VIA NAZA/DoD LIBRARIES’WYES ano

(ANSWER THIS QUESTION FOR INDEPENDENT RESEARCH OR INDEPENDENT DEVELOPMENT FUNDED REPORTS ONLY.)

A ﬁ(] DISTRIBUTION ' IN PROPER COLUMNS _
1. ASSIGN COPY NO. TO HARD COPIES ONLY
COPY 2. LIST MICROFICHE AND ABSTRACT RECIPIENTS LAST
A2 3. EXTERNAL COPIES. INDICATE TRANSMITTER
_ I a CIRCLECOPY NO. OF REPORTS ALREADY DISTRIBUTED e
INDICATE WHERE FILED
MASTER DR[P()RTS SERVICES GROUP
DPUBLICA TION SERVICES GROUP, PROJECT ‘#
I e e — e e ere e thaat s ek e e e e S e Tl
(TO BE TRANSMITTED BY) ;
ot VITALRECORDSYREFURTS SERVICESGROUE. 1 °) X) % o W e, e .
2 REPORTS SERVICES GROUP X X ‘ 1
e e e e eI e ey S W S8R
34 || centhaLLisrARy ARG SO R LN IS S R
5 |l A. N. Baker _ 70-01 63 A-1 X x,_L_u,gjﬁ £
1 \ ‘
- | |
6 | D. L, Bickel 86-11 67 A-1 || X| X | L
7 | B. L. Bivens 80-36 67 A-1 e .
8 |R.N. Bratkovich 70-10 63 Al | [x]x| |
9 P. Brunelli 28-06 146 B-1 X| X | |
10 | C. A. Burton _70-11 80 AL) | X} X
% ll A. L. Byrnes _”75:)}}_ 63 »A-l X
12 L. C. Cowgill T5-72 63 A-1 X| X
13 D. R, Crawford ~ 80-37 67 A-l X| X
_ 14 | A. R. Curtis __Te-71 311 B-6 — R e - —
15 | R. D. Elliott To-41 63 A-1 e LR R o b E D
_ 16 |H. H. Hara 8301 67 A1 | | x[x| | B - |
CALAC FORM 57595 :
i T ——— =t

REPORT NO LR 28“60
ENGINEERING REPORT INITIAL DISTRIBUTION LIST ‘ e e
(SEE EPM 4.07) PAGE 2 OF 3 -
TITeE MODEL SECURITY CLASS. OATE
1.R. | UNCLASSIFIED T-14-78

ORIGINATING ORGANIZATION (TITLE & DEPT. NO.)

21 3715 o
CLASS WORK ORDER EWA.
HREMARKS

WO/EWA

APPROVALS

DIVISION ENGINEER

COMMERCIAL ENGINEERING
(COMMERCIAL ENGINEERING BRANCH REPORTS)

PRODUCT EVALUATION GROUP

LEGAL BRANCH PATENT SECTION (STATE ANY RESTRICTIONS)

LIMITATION ON ACCESS TO DATA:
UNLESS LIMITATIONS ON SUBSEQUENT RELEASE OF THIS RE

PORT ARE STATED BELOW, COPIES WILL BE MADE FREELY

ACCESSIBLE TO ALL CORPORATION EMPLOYEES (IF LIMITED, SUBSEQUENT RELEASE TO OTHER ORGANIZATIONS

REQUIRES COMPLETION OF FORM 7229.)
LIMITED TO

REASON

DATE ON WHICH LIMITATION MAY BE LIFTED

WOULD IT BE BENEFICIAL TO CALAC TO RELEASE THIS REPORT TO THE PUBLIC VIA NASA/DoD LIBRARIES? OOYES ONO

(ANSWER THIS QUESTION FOR INDEPENDENT RESEARCH OH INDEPENDENT DEVELOPMENT FUNDED REPORTS ONLY |

DISTRIBUTION ROPER COLUMNS
1 ASSIGN COPY NO. TO HARD COPIES ONL Y LYEE
CopPY 2. LIST MICROFICHE AND ABSTRACT RECIPIENTS LAST
iy 3. EXTERNAL COPIES. INDICATE TRANSMITTER
|| 4 CIRCLECOPYNO. OF REPORTS ALREADY DISTRIBUTED.
INDICATE WHERE FILED
AASTE I DHIJ'()R IS SERVICES GROUP
DPUHLILAT!UN SERVICES GROUWP, PROJECT
17 || R. Harris, Jr. (GELAC 87-14 B-1B 274
18 D. H. Janda 75-7T1 90 A-1 X
l |
19 |F.W.Jomson 7513 90 a1 | |xlx| | | | |
| l » ‘
20 | T. R. Jones _80-36 67 A-1 B SN I o Y J(B
21 | D. K. Kawamoto 80-34 67 A-1 AML SRe e e }l,,, - +
‘ |
22 P. H. Kretsinger 80-36 67 A-l l xl xi | |
| ! T N 1
| | |
23 || J. G. Lewolt 75-T1 63 A-1 I Xy Xi T_ + 1 1
o o
24 || R. W. Lingard 80-36 67 A-1 X§ x| | o S -
| | I
25 || J. D. Little 80-36 67 A-1 X[X # |
2% | J.J. Iucas Bo-34 67 A-1 2l x| | |
e e B ; + :
27 R. F. O'Connell 75-T1 63 A-1 X| X] |
28 R. B. Ostrom e o e i L XLX
29 | R.R. Plank T-00 63 a1 f ix}xl | | R]
N N. A. Radoveich T5-TL 63 A-1 el L KL L]
31 8. W. Robinson 80-01 67 A-1 | X X '
CALAC FORM 5759-5 y o T ;i) ST T T A
N B ——.

e 2

LR 2()4',/(}

~ HREPORT NO

ENGINEERING REPORT INITIAL DISTRIBUTION LIST 3 =
(SEE FPM 4.07) PAGE 2 __of 3

Tires MODGEL SECURITY CLASS] ODATE

1) UNCLASSIFIED T-14-78
TAPPHOVALS oG i :
ORIGINATING ORGANIZATION (TITLE & DEPT. NO.) DIVISION ENGINEER
= . X e e s - - . COMMERCIAL ENGINEERING
WO/EWA 21 3715 5;;% (COMMERCIAL ENGINEERING BRANCH HEPORTS|
CLASS WORK ORDE R EWNA
HEMARKS W PRODUCT EVALUATION GROUP

LEGAL BRANCH PATENT SECTION (STATE ANY RESTRICTIONS)

LIMITATION ON ACCESS TO DATA: e Ao
UNLESS LIMITATIONS ON SUBSEQUENT RELEASE OF THIS REPORT ARE STATED BELOW. COPIES WILL BE MADE FREELY
ACCESSIBLE TO ALL CORPORATION EMPLOYEES. (IF LIMITED, SUBSEQUENT RELEASE TO OTHER ORGANIZATIONS
HEGQUIRES COMPLETION OF FORM 7229)

LIMITED TO

HEASON

DATE ON WHICH LIMITATION MAY BE LIFTED

WOULD IT BE BENEFICIAL TO CALAC TO RELEASE THIS REPORT TO THE PUELIC VIA NASA/DoD LIBRARIES? (JYES (INO
(ANSWER THIS QUESTION FOR INDEPENDENT RESEARCH OR INDEPENDENT DEVELOPMENT FUNDED REPORTS ONLY)

DISTRIBUTION
1. ASSIGN COPY NO TO HARD COPIES ONLY
COPY 2. LIST MICROFICHE AND ABSTRACT RECIBIENTS LAST
NO 3 EXTERNAL COPIES INDICATE TRANSMITTER 3
B 4. CIRCLE COPY NO. OF REPORTS ALREADY DISTRIBUTED </ :
INDICATE WHERE FILED I l\
MASTE I [JIH PORTS SERVICES GROUP | f |
OPUBLICATION SERVICES GROUP, PROJECT ‘ | | !
- i ' 4 1 1 4 + "
12 D. H. Saiki 80-36 67 A-1 I ‘ X | X | I
" + | " 4
50 ‘ | |
33 J. E. Shermsn (IMSC) 19-40 102 I XX '
s - - 4 4 " 4 + 1 " 1
‘ 1 r
3L G. E. Smith 80-01 67 A-1 ‘ X | x |
: il i | ! 4 i
35 J. F. 8troud 75-42 63 A-1 I 1x g X
- " " + 1 * "
I w ‘
36 ||F. R. Webster 86-10 67 A-1 "] 5 O N
| |
37 H. P. Weinberger 80-36 67 A-l I ix|]x
+ 4 T + 1 + " .
38 |M. L. Wnite 80-36 67 A-1 H' | X % 1 I |
e i | |
2 ¢ v (V] A)ét’r‘;. TP I CES | f |
/ 'V A SA " | | S S —
qU | Pop Lisprry via Reers Seawees |y ||
’ & N BL | } 4 | | 4 1
| |
| | |

=

e

__._._______
—_—

CALAC FORM 5759-5

