
AD A059 929 LOcIcuCEo—CALIFORNIA Co BLMBAa F/S 9/2
SUSART Of 1977 INOLPENDCNT RESEARCH ON USfl ORIENTED REMOTE CO——Ele C t))
fl. 75 A w LINSAMO. D 5*1111

UNCLASSIFIED LR—U*4Q P4.

ii _
END

D A T E
FILMED

I 2_7~

L N

I .0 ~:
iioi~~ ~~25

2 2

I.’
i~~ IIlI~

18

11111 ‘ .25 IL4 flIfl~

MI’ I’’ ,‘ ‘ ~I~ ‘I~ ,~ t IJ I I ’ , r 4 ~~~ I~t~I’I
4 ! . ! ! ! I I ! 1, 41 ’ ! Al I I ,! 1 / . 1 4 1 !,!? ,‘ II

~ ~~2*t!~~~~~~
-

-. I

‘~~~~~~ I. ~~~~~~~~~ I
~fl P v u i~ i~ _ _ _ _ _iiUbAllhi Ii IJ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

I I~J~IL~ r~~~~~~~~~~~~~~~~~~ —-——-

UAU~JJJ ..~~~~~ BURI A N K, C A L I F O R N I A , U. S.A.

D D1~¼

78 09 1.1 058

L O C K H E E D •

r) , V p~~, I O p 4 or ~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~ ~~~~~~~~~~ ‘~~~

/
r

REPORT NO.~~I LR-28464J

DATE 7-lIe.-.78

MO DEL dependen t Researc h

— 1~o

~ OF 1977 INDEPE TDEUT R~~EARCH ON
~ ,psER ORIEIifED .REI.IOTE COKPUTfl~1
L ~~~~~~~~~~~~~~~~ ~- - ? ~~~~~~~~~~~~~ J

I _.
~ - .

~~~~~~~~ ~~~~ ~ /
I i  )  JO I ,‘ - ‘. ~ .—‘ í

REFERENCE 21-3715 5890 ~~~~~~~~~~~~~ ‘ . ~
—

.

CONTRACT NUMBER(S) ________________________________________________

PREP~~ED ~Y e~(t ~Z~-i-~ci a~ic/
/ /: : J R. w.~L1ngar4~ ~ciJ Conip . App . ~ipec., Sr.

_ ..4_~ Sá ttI~tou/Aiia1ysis Progr azmning
>. PREPARED ______________________________C-.- 

/ D./Sa ikij S d .  Corzzp. App. Programmer

~ inni1a~Eion Analysis Progrannning

APPROVED BY -

• P. Weinber ger / Group Engineer
. 1  

Sinnil ation Analysis Progra.nuning

C-,
APPROV ED BY f~ 

‘~~ ‘~

I ~~~~ 
,- J .  ‘D. Little , Department Manager
Scientific Analytical Programming

APPR OVED BY 
R’~~B. Ferry, / anager
Scient ific ~~omputing Division

D D C
DIS11UBt~~ ON STATEME7’Tr 

~ 1
App~oved foi ~~h~.ic iel.o .g.I ~ O Ct 18 

~~~Dj~trj buti~~ Unlimit.d p 1’! I
~i U~~~i llTI

RE VISIONS A
REV. NO. DATE REV. BY PAGES1 AFFECTED REMARKS

~OftM 402 2 1
1~ -, . -.

.
~~~~ ~J ~_)

- :~ ~



LR 28~60

FORWARD

This document Is a report of the third year ’s accomplishments on
the Calac independent research task ent itled , “User Oriented Remote Com-
put ing ” (project nunther 7701150). The authors are indebted to Thomas R .
Jones for the many constructive suggestions he made , and especially to
Howard Weinberger for his constant interest and advice dur ing the course of
this task.

—
~~~~~~

,. /
/

a:~ U
vS’IPt $1

•~~~~~~ *ViIL 1
~~~~:~ 

-

i
LOCKHEED



LR 2814.60

ABSTRACT

‘JThe usefulness of computers in solving scientific problems is a

function of the ease with which users can communicate with existing hard-

ware and software. This research is aimed at improving such man-computer

communication. Specifically, a computer system has been designed and
partially implemented which will provide a software interface between

users , possibly inexperienced In computer processing techniques, and
available programs and analysis systems.

This system, denoted ASSIST (A Sc~~n±ific Software Interface

~ystem for Terminal users), aids users in accessing and utilizing existing

applications software from remote terminals. The system provides three

basic functions. It helps users find programs relevant to their problems;

it assists them in preparing required input data; and it aids in the

actual submittal of programs and data for computer processing. In addi-

tion, the system monitors usage of the facilities to ensure the efficient

and proper use of available computer resources.

The basic approach has been to des ign a language which pro-
grammers can use to describe progr am characteristics ( function , input
format , submittal requirements, etc.). These descriptions can then be

interactively interpreted by ASSIST to aid individuals wishing to use any

available program. Thus, the user has a helpful interface with which he

can converse while he is trying to find, prepare input for, or submit a

program.

0

In addition to improving ASSIST, a major portion of the current
research has been directed at determining the proper hardware/software/firm-
ware configuration to support it and other user oriented interactive cap-
abilities. ~

ii
LOCKHEED



LR 281~6O

TABLE OF CONTENTS

~~ge

FORWARD i

ABSTRACT ii

TABLE OF CONTENTS iii

INTRODUcTION iv

1.0 ASSIST flvfpROVEIv~E~NTS 1-1

1.1 PROGRAM SELECTION i-I.

1.2 INPUT PREPARATIO N 1-2

1 .3 PRC~RAt4 ~flJBMITTAL 1_ 14

1.3.1 NESTED MACRO CALLS 1-6

1.3.2 CHARACTER STRING MANIPULATION 1-6

1.3.3 ARITHMgTIC CA PABILITIES 1-7

1.3.11. PROGRAMMER’S A IDS 1-7

1.3.5 RESPONSE IMPROVEMENT 1-7
1.3.6 OTITh~R FEA TIJRE~ UNDER DEVELOPMENT 1-8

l.1~ USAGE MONITOR ING AND CONTROL 110

1)4.1 MONITORING RUNPROG USAGE 11O

1)4 .2 ACTIVITY REPORTING 1-12

2.0 EVALUATION OF COMPUT ING ENVIRONMENTS 2-1

2.1 EVALUATION CRITERIA 2-2

2.1.1 CAPABILITI~~ 2-2

2.1.2 EASE OF USE 2-12

2.1.3 EFFICIENCY 2-13

2.1)4 AVA ILABILITY 2_lI4

2 .1.5 EXPANDABILITY 2-1~4

2.1.6 RE~ PONB IVENFBS 2_ 111.
2.2 EVALUATION OF ENVIRONMENTS 2-15

2.2.1 CENTRALIZED ENVIRONMENTS 2-15

2.2.2 HIERARCHICALLY DECENTRALIZED ENVIRONMENTS 2-18
2 .2.3 NON HIERARCHICALLY CONNECTED ENVIRONMENTS 2-22
2.2.11. UNCONNECTED ENVIRONMENTS 2-22

3.0 C(~~CLUSIONS AND RECOMMENDATI ONS 3-1
REFERENCES R-1

iii
L O C K H E E D  



IR 2A460

INTRODUCTION

Technological advances in hardware have made computers practical

and economical tools for ever increasing numbers of users. More and more

people with less and less prograrnin.ing experience will be using computers
in the years to come. No longer can systems be designed without consid-

eration of these ultimate users. The effectiveness of future systems will

be measured by the ease which man can communicate with them.

Although a great quantity of problem solving software is avail-

~ibLe today, most is usable only by those with backgrounds in computin~ .

Non-programming users at Calac traditionally depended upon professional

programmers as their interface with existing software. In the computing

environm ent prior to 1975, it was the professional programmer who directly

accessed both the computer and the library of existing programs. A non-

programming user, with a problem to solve, would explain it to some pro-

grammer who would perform the necessary tasks to prepare a computer

acceptable form of the problem (i.e., put together program and data with

required system control information). The programmer would then accom-

plish the actual computer processing arid return the results to the user.

rhis mode of operation had obvious inefficiencies for many kinds of pro-

blem solving. There were often delays in processing and errors due to

misunderstandings. With more and more people requiring more and more

computer processing there was clearly a need to put them in closer contact

with the computer.

As a consequence of th is conclusion , a Direct Computer Access
System, DCAS, was established which logically extended the computer to
allow access to it through remote terminals. Initially DCAS existed only

as rj subset of IBM’s Time Sharing Option (TSO). Although this gave a user

direct access to the computer, it did not improve his access to the
library of programs. This research has dealt primarily with the task of

extending DCAS to improve the user ’s ability to directly utilize th is

iv
L O C K H E E D



1J ~ 281460

collection of existing applications software. In effect, the iroal has

been to automate the interface function previously provided by the pro-

grammer. In order to accomplish this the programmer must be provided with

some means for transferring his t Tknowledge~
t (or information in his keeping)

regarding the use of specific analysis software to DCAS. ASSIST is that

augmentation of TSO which gives DCAS this capability.

ASSIST has been designed to bring together information regarding

existing application programs and potential users in an interactive envi-

ronment (see Figure 1). For each program to be made available through

A~SL3T, certain descriptive information is provided by a pro~rammer . This

information includes a general program description, a complete and precise

input specification, and certain job control information necessary for

running the program on the coniputer. The user can then interact with

various components of ASSIST, which have access to this programmer sup-

plied information, for solving some problem. If he needs information re-

garding the availability of certain software, he can access the Program

Selection component. This will tell him about existing programs in a

particular category he selects. Once he knows which program to run he may

elect to access the Input Preparation component to assist him In preparing

his data. He may ask to be prompted for every quantity needed or merely

to have his data checked for completeness and, to some degree, correctness.

Finally the user can access the Program Submittal component which will

automatically create all necessary job control information and submit the

specified program and data for execution.

During 1975 a preliminary design of ASSIST was completed. The

component of the system which assists users In submitting programs was

developed and put into controlled use for testing. This work is described

in the report, “Engineer Oriented Remote Computing” (LR 27518). In 1976

an initial production version of /~SSIST, containing extensive users aids

for program submittal, was completed and put into use. Other aids were

implemented and several more were designed Including software to help

V
L O C K H E E D



i~ I~D~~~~~
H

Figure 1. ASSIST

~.OCKHEEO 
vi



LB 28~6O

users in preparing program inpu t data . A detailed account of the 1976
progress on the various components of t 515 I can be found in the report ,
“Summary of 1976 Independent Research on Engineer Oriented Remote Lomputing ”
(LB 2~/ t) 5 ).

The specific objectives for 1977 were two-told . The first was to
improve the overall capabilities and performance characteristics of ASSIST,

and the second was to find a more suitable computing environment for hosting

ASSIST and other interactive capabilities. In particular, the feasibility

of a disl.ributed computing approach was evaluated. This report is divided

into two major sections , the first being a description of A.S~1I~T improve-
rr ent~; , ar i~ the second an evaluation of various computing environments.

vii
LOCKHEED



LE :‘~
)
~~O

5FCTION 1.0

ASSIST Ij11~ oVE~Ern S

The basic design of J ~SSIST was accomplished in 1975 and has re-
inained relatively unchanged since that time. Implementation of the var-

ious components of the design have proceeded according to gr~-atest need.

Of the four major components of the system,

o program selection

o input preparation

o program submittal

o usage monitoring and control

only program submittal has achieved full operational status. The others

exist in various stages of completeness. This section gives the present

staLii~; of each component and describes in detail the accomplishments of

1977.

1.1 PROGRAM SELECTION

The purpose of this component of ASSIST is to provide informa-
Lion to the user regarding available applications software. The nature

of this information will be such that he may determine which, if any,

available programs might be applicable to a given problem. Program titles,

abstracts, development and revIsion dates, names of responsible pro-

grammers, and program identification (Reference File) numbers are examples

of the information to be provided. Additionally, this information will

be made conveniently accessible from a terminal. Specifically, a user

will be able to give a keyword and a list of prograDi titles will be

searched for the occurrence of the word given. The program titles corre-

sponding to matched keywords are returned to the user. He may then list

the abstract and other information desired for selected programs. One of

the primary advantages of such a capability is that it provides an effec-

tive means for disseminating information regarding available software

1-1
LOCKHEED



LR ~

throughout a large community of 1~~er:~.

i’his component was developed by creating an on-line data set
with an entry for each of the PSI (Program Setup Instruction ) macros

accessibi through the program submittal component . In some cases there
may be more than one macro for a given available program, but there is

always at least one. The entry for a given macro contains its name (a one

to eight character identification),  a title , the name of the responsible

programmer , and the program reference file (RF ) number of the program
accessed by the macro. This RF number is a key into an ecisting date ha~e
of program description information , the Program ~~f e r e n c e  F i l . Thi s ~at~
base is maintained by the Scientific Computing I) ivision and contains t~
remainder of pertinent information for applications programs.

During 1977 the feasibility of linking the Program Reference

File directly to the ~~I macro data base was studied . This would have
allowed interactive users direct access to Reference File information.
Also studied was the feasibility of extending the dat a base searching
capability to include Boolean combinations of keywords. Studies of user

needs, however, cast doubts as to the importance of these capabilities in

relation to the computer resources that would be required to support them.
Consequently, no improvements have been made to the program selection com-

ponent of ASSIST, and none is contemplated until a more definitive assess-

ment of uaer needs can be obtained.

INRJT PREPARATION

The purpose of this component of ASSIST is to aid the user in

preparing input data for a program he has chosen to run. It will do three
things for the user. It will tell him what input quantities are required

for a given program; it will enable him to provide those values in a con-
venient manner (without requiring that he know the specific data formats

required by the program); and it will check the data he provides both for

1-2
LOC KHEED



:~ 28t460

comp leteness and correctness.  ~‘u.rthermore , this component can be used
inter act ively, pr ompting the user wti er i necessary and allowing him to
correct errors as th~ y are discovered. The effect  of this component is to
put a user ’s gu ide to a program on-line and in such a way that the user
can converse with it.

The approach taken for this component is basically t he same as

that used for program submittal (See Section 1.3). In particular a language

has been rieveloped which allows programmers to describe program input

re (lulrerrLents. Actually this language is just an extension of the ~~I

‘T1:~Lcr’, I ~s~ea~’e Siflce the fuwl amerital reuoircirients of this component are

identical with those of pr ogram submittal . Sarne iy, it must interact with
a user , providing nurse information and. obtaining other information , and
based on that , construct a data set . In the case o~ ~ gram submittal,
the data set built is job stream input while in tac case of input prepar a-
t~ on , iL is a dat a set for input to some program . These r f lfferences in no

‘f ray  a f f e c t  the logical operation of the component of ASSIST which inter-
pret s programmer written descriptions and interacts with users.  All that

is requi red , therefore , to be able to provide assistance to the user in
input generation is to add certain constructs to the existing macro
lareruage . in particular , cons tiiicts are needed which allow the descrip-
Lion of required input par ameterE , including types and ranges of accept-
able values , and the format in which the program expects them to be given.

ilith such an expanded macro language, a progr ammer can describe
the input requirements for any program in such a way that data prepared
for that program can be automatically checked for completeness and correct-
ness , and, if desired , the input can be prepared in an interactiv~- mode .
In the latter case , information will be requested of the user thro .~,h an
input riescription (ID) macro written by a programmer. Normally, th is
request will be ‘ list of input parameters for which the user must supply
values. Additional messages can be displayed to the user at the discretion
of the programmer writing the ID macro . The user can ask for a description

1-3
LOC K HEED 



1J~ ~?~ L~6O

of any parameter requested and the values he supplies will le checked for

proper type (e .g., character, integer, etc.) and limits (e.g., O~ X~ 10)

according to information specified in the ID macro. The user will be

immediately notified of any errors and allowed to correct them. The input

values will then be formatted as required by the program . When this com-
ponent is used just to check a prepared data set, the data set must be

properly formatted. In this case, a list of all discovered errors will be

returned to the user. The use of this component coulu result in signifi-

cant savings of computer resources by helping users to prepare program

input ln,ta which are correct the f i r s t  time .

A soft ware specification for the extended macro language was
developed during 1976. The design , coding and testing of the required
software modules began in l~Y(( and continued into .1 977 . These activities

were suspended , however , when results of the computing environments study

(see Section 2)  indicated that n major hardware/software configuration
change might prov e beneficial .  It was decided to defer further develop-

ment efforts on the input preparation component until the future computing
( ‘nvironment for ASSIST was established.

1.3 PROGRAM SUBMITTAL

rrhe purpose of thin component of ASSIST is to simplify the task

of program submittal by automatically generating the necessary job control

information required by the operating system for program execution. The

fundamental concept is that non-programming users should not be required

to learn the details of interfacing with the operating system in order to

run jobs on the computer . The users should be able to communicate their

needs in terms meaningful to them not in the language of the operating
system. For example, a user desiring plot output should merely have to
say , “ PLOTS” or respond affirmat ively to the question , “Do you want the
output plotted? ” rather than hav e to know how to appropr iately modify the
Dl) (Dat a Definition ) statement of the associated plot fi le.  Such capabil-

1 ~1~LOCKHEED



LR 28460

ities could be of great benefit to the experienced programmer as well, for

even with a knowledge of JCL (Job Control Language), it might be far
simpler to allow ASSIST to automatically generate necessary control in-
formation. Certainly there is much less chance of error for either the

experienced or inexperienced user when the program setup and control in-

formation are produced automatically.

The approach taken in this research for assisting users in pro-
gram submittal has been to design a language , and interpreter for it ,
which can be used by programmers for expressing the information necessary
for running programs on the computer . This language , known as the PSI
(Program Setup Instructions) Macro language, is an augmented job control

language (JCL ) which allows construction of generalized sets of JCL for
the ThM operat ing system. The interpreter acts as a preprocessor or macro
processor, expanding programs written in this language into complete and
valid job s to be executed on the computer .

In a typical case , a programmer who is familiar with a particu-
lar program and the JCL required to run it will develop a generalized set
of job control instructions called a 1-GI macro . This RII  macro will then
be placed in an on-line library and, hence, will be available to all users

through the RI macro processor known as RIJNPROG. Once a PSI macro has
been so created for a given program, users can run that program by access-

ing RUNPROG, without regard to any JCL concerns . Furthermore , changes
that may be required in the JCL due to program modifications, system changes ,
or operational considerations can be usually made in the single version of

p the generalized JCL in the PSI macro library without requiring any change
on the part of the users. In cases where programming changes were made,

all users will automatically get access to the latest version of the pro-

gram. Thus, this component of ASSIST can help not only the user in pro-

gram submittal, but the programmer in program maintenance as well ,

During the first year (1975 ) of this research effort, the origi-

1-5
LOCK HE ED



LR 28460

nal l’s Lgn of the program submittal component (RUNPROG ) was developed and
a preliminary version with limited capabilities was put into production
use. In 1976, the capabilities of this production version were expanded
in accordance with the original specifications . The initial design of
RIJNPROG underwent a minor revision during 1977 and several new features
were added to the production configuration along with capabilities which
were part of the original design. A general description of the modifica-

tions and enhancements made during the third year of this research project

is given below. A complete description of the current capabilities of

RUNPROG can be found in the ”Programmer ’s Guide to ASSIST ” .

1.3.1 Nested Macro Calls

The capability to invoke one PSI macro from within another macro
was added to the production version. Part of the original design, this

feature is particular ly useful because it allows different PSI macros to
access (i .e.,  ‘CALL’)  a common set of augmented JCL stat ements (i.e., a
PSI macro), thereby eliminating the need for including these statements in
each individual macro.

1.3.2 Character String Manipulation

Three new functions not in the original design were added to

greatly enhance the character string handling facilities of the macro
language. The capabilities to:

1) concatenate character strings (CON CAT),
2 )  search a given string for a particular configuration

or substring ( INDEX ) and

3) determine the current length of a character string ( LEM~TH)
have been implemented in the production version . These new functions are

very similar to their PL/ I counterparts and along with the substring func-
tion ( SUBSTR ) give the user a full range of character string manipulation
capabilities.

1-6
LOCKHEED



LR 28~46O

I
1.3.3 Arithmetic Capabilities

Due to core limitations , the ability to evaluate arbitrary
expressions could not be implemented in the production version . In order
to compensate for this lack of arithmetic capability, three new functions
have been provided: ADD , SUB and MUTT. These functions allow the user to
perfarm the arithmetic operations of:

1) addition ,
2)  subtract ion and

3) multiplication,
respectively and are helpful in partially overcoming one of the most
severe limitations of the macro language .

1.3. 14 J~ ogrammer ’s Aids

Several utility capabilities have also been added to RTJNPROG.

The ABEND statement produces a symbol table dump of all macro variables

and their current values and is helpful as a diagnostic tool in debugging

PSI macros.

The DATE and TIME functions return the current date and time in

the following formats:

DATE: MM-DD-YY where MM - month
DD - day

YY - year

TIME : hh:min :ss where hh - hour
mm - minute

ss - second

1.3.5 Response Improvement

The original implementation of RUNPROG as an executable load
module called from within a command clist has been discarded in order to

1-7
L OCKHEED



LR 28460

decrease the elapsed time spent within the RUNPROG processor. Allocation

and freeing of data sets from TSO is a slow and costly process and RUNPROG
requires several data sets to be allocated during execution . Alternate

approaches which could remedy this problem included allocating data sets

when a user first logs on and doing this allocation from within the pro-

cessor itself. Both of these methods were studied and it was decided that

a combination of these methods would be used. This change allowed the con-

version of RUTNPROG from a command clist to a command, procedure and elimi-
nated the time necessary to allocate data sets from TSO thereby greatly
reducing elapsed time spent executing RUNPROG .

1.3.6 Other Features Under Development

In conjunction with the usage monitoring and control component ,
the capability to monitor the use of RTJNPROG is under development. This

function will collect data regarding the use of the program submittal

component (RUNPROG ) and should provide statistical information for evalu-

ating RUNPROG.

Several capabilities included in the original design at RIJNPROG

are also under development. These include:

1) expanding the number of allowable relational

operators ,
2) extending the compound conditional statement

and

3) allowing TSO dat a sets to be copied into the
control file being built.

At present , only the ‘= ‘ (equal ) and ‘ ‘ = ‘ (not equal) relational

operators are allowed in the evaluation of a logical expression . This set
of allowable relational operators will be expanded so that other conditions

may be tested (e.g., ‘>‘ (greater than) and ‘< ‘ (less than).

The complete compound conditional statement has the following

format :

1-8
LOC KHEED



i~i~ 281460

TY condit Lon TI[1~N statement

E1~ E statement

The capability to execute a statement or group of statements if the tested

condition is false (i.e., an 1SVE clause) will be developed to allow use

of the complete format of the conditional statement.

During 1977, the ability to copy a TSO data set into the control

file being built was studied and developed. However, during the testing

phase several problems occurred concerning the use of system routines and

implementation was delayed until further tests could be made. This feature

is still in the test phase.

The concept of being able to execute the RUNPROG processor in

the batch mode when TSO is not active has been studied and partially

developed. Designed originally for a terminal-oriented, time-shared

environment, this enhancement would allow the user to access the PSI

macro library and execute the RUNPROG processor even when P30 is not
available.

Other enhancements to R UNPR OG which will be studied or developed
include off-loading inactive macros from the PSI macro library, consolida-
tion of the current error messages into a comprehensive scheme and a

method of copyIng user-supplied input variables and their values to the

control file being built.

1-9
LOC K H E E D



I’ 2HI~(/

1.14 USAGE MONITORING AND CONTROL

The purpose of this component of ASS IST is to ensure the eff i-
d ent usage of available computer resources by developing adequate system

controls and through the monitoring of user activity. Since extens ive
computer software and hardware resources have been made available to non -
progr amming users , there is a need to prevent inadvertent misuse due to
lack of computer experience . As a minimum, sufficient information must be
collected in order to determine whether the resources are being efficiently
utilized. The information so collected, since it will reflect user activity,
will also be valuable for guiding efforts to improve the effi~ iency of

ASSIST itself.

The accomplishments toward pr evention of accidental misuse of
resources were designed and implemented within the Program Submittal and

Input Preparation components of ASSIST. By their very nature these com-

ponents eliminate many sources of user errors. The Program Submittal

component automatically determines many required parameters, and both

components have capabilities for checking the correctness of user supplied

values. In the case of program submittal , the computer resources requested

(e.G. core, t ime , lines of output, etc.) can be controlled, and, in the
case of input preparation , the execution of runs with erroneous dat a can
be prevented.

1.14.1 Monitoring RUNPROG Usage

Beyond these capabilities, the primary method for ensuring the

efficient use of resources has been through the collect1a~ and analysis of
dat a relating to user activity. ~ ich of the relevant data is available for

terminal sessions just as it is for normal batch work through the standard

account ing procedures . In 1976 , an experimental module was designed and

developed to collect information regarding jobs processed by the Program

Submittal component (i .e.  RUN PROG). Because the addition of this function

1-10
L O C K H E E D



~iould hav e only aggravated the already poor re~ponse time, it wa~ decided
that implementation of the user monitoring 1 inction he de]ayed .

During the last quarter of 1977, the ITogram Submittal component
underwent a minor design revision which improved response time signifi-
cantly (see Section 1 .3 .5) .  This improvement allowed the User Monitoring
component to be implemented . However , it also requ ired a change in the
design of the monitoring of user activity.

In order to prevent contamination when collectirii~ information
about user activity, two new functions were i d ent i f i e d  and incorporated

into the User Monitoring module . One function prevents sinrultaneous ip-
date of the same record by several users and the other prevents a user
fr om interrupting the update process.

~iIhen two or more users are allowed access to th e  same data Lase ,
there is always the possibility that they will attempt to update the san~’~
record at the same time , the result being that  only one will he successful .
Recognition of this problem led to the first  funct ion whi ch  uueu ~ s u sers ,
allows only one user at a time to update the data base and the : les
user s .

Initial implementation of’ the f i rst  function 1emonstr’~ted tb’ TiC ’

b r  the second. If’ a user is queued and attempt s an attent on i ru err
hr abnormally terminates from the processor but does not vacate hi4 s pos i-
tion in the queue . Because the user will never perform the upda 4 e and be

removed from the queue (i.e. dequeued) ,  all users behind him wil l  r main
waiting in the queue until it is forcibly emptied ( i . e ., an 1PL occurs).
The second function disables the attention interrupt handler when a user

enters the queue and enables it when the user exits the queue thereby
avoiding a possible bottleneck in the system.

Testin~ of these new functions is expected to be completed in

1-11
L O C K H E E D



~Gb~

early 107h ; implementation is scheduled for the s~ rori I qiJ:Lr l 1 .

Activity Reporting

A coLlectio n of data is meaningless unless it is presented in
such a way that useful Information can be der ived from It , thus the flee( 1
for reports. A ser ies of MARK TV report s are bei ng des igned to provide
st at ist ica l  Information to aid in the evaluation of the use of’ ASSIST and
to provide summary information to a l l  management decisions regarding,

iir’ction s of fu tur e growt h for the system.

1-12
L O C K H E E D



LR 28)460

SF2CTI(AJ 2

EVAL !JAT IGS OF’ UO’II’IJTIWi ENV~~ ON1r~ N’I~

It has been a major premise of this research that greater pro-
ductivity among engineers and other computer users can be achieved, by
providing capabilities enabling these individuals to directly access the

existing computing har dware and. software. It has not been a purpose to

determine the validity of this premise although it should be pointed out
that ample supporting evidence does exist. A study by Integrated Systems
Support, Inc. on “A Production Environment Evaluation of Interactive Program-

ming ” (16 ) demonstrated both an increase in user productivity and a decrease

in overall computing costs by providing users with direct interactive

access to the computer through remote terminals . Furthermore, question-
naires distributed to users at Calac indicated a feeling of greater pro-

luc tivit y when direct computer access capabilities were available .

The extent to which direct access capab ilities are provided ,
the specific functions to be performed , and the means of doing it have
been the subject of this research task and other related efforts over the
past several years. The result of these efforts has been the development
of’ the computer based system , DCAS (Direct Computer Access System). In

its present implementation UCAS exists in a centralized environment.

Specifically, the system functions are imbedded within ThM’s TSO (Time

Sharing Option ) portion of the operating system OS/’ir~T’l on a 360/91

computer .

Unfortunately, the present system does not adequately sa t i s fy

current needs and has very little growth potential. It’ s capabilities are

far too limited, it is difficult to use, and It is unresponsive to the

user. In addition, the present hardware is unreliable and t}i’~ system
software (i.e. TSo) is highly inefficient. Even with all these drawbacks

users generally agree that DCAS is far superior to past methods of opera-
tion where computer processing was done in a batch mode by (or with the

2-1
LOCKHEED



bE

as sistance of )  professional programmers.

Since it seemed to be only the particular implementation and not

the basic system design that limited the effectiveness of DCAS, th is
year’s research was directed at investigating the feasibility of imple-

menting DCAS within other hardware/software/firmware environments. In

particular, various forms of distributed computing environments were

studied and evaluated. This section is devoted to that evaluation.

2.1 EVALUATI ON CRIT~~IA

Six areas were selected as a basis for judgin~’ system effecti~-

ness. Specifically, the environments were evaluated with regard to how

well they could support systems which would provide the required cap-

abilities, be easy to use, efficiently utilize computer resources , be

reliable, offer growth potential, and be responsive to the users. These

criteria are more fully discussed in the following sections .

2.1.1 Capabilities

It is probably of primary importance that the specific cap-

abilities of the system be precisely established. This is a particularly

difficult task since needs are influenced by available capabilities. It
is usually difficult to express needs independently from existing tools.

When asked what their needs are in order to be able to do computing more

effectively, users respond by saying such things as,

“We need a bigger computer .” (or worse , “We need a CDC 7600. ”)
“We need remote terminals.” (or worse , “We need some I-f? 2641A ’s ” )
“We need a time sharing system. ” (or worse , “We need TSO.~t )

When expressed in functional terms the need for a larger computer becomes
a need for the means to solve larger problems or for solving them faster.

Likewise, the need for remote terminals might become the need to be able
to conveniently communicate with the computer from remote locations .

2-2
LOCKHEED



LR 2L~L~.6O

Finally, requesting a timesharing system probably indicates the need for
some interactive computing capabilities .

In order to find the best means for providing direct access capa-

bilities , needs must be expressed in a functional, tool-ir.deperident manner.

It must also be understood that user needs will continually grow (and even

change). Increased capabilities create new needs and obsolete others. What-

ever might be determined to be today’s needs will probably be out-of-date in

the not-to-distant future.

With these thoughts in mind the following capabilities have been

established as the set required to satisfy user needs for computer processing

at the present . These capabilities stated as functional requirements, are

based upon user provided information and two years of experience with the
present implementation of DCAS . The functions can be divided into nine areas.

1) data set creation and manipulation

2) computer program development

3) batch program submittal

)4) interactive program execution

5) command set processing
6) user communication

7) document preparation

8) system management
9) system access

The functions can further be divided into essential and desired

capabilities. Those classified as essential must be realizable in order for

a computing environment to be acceptable . The environment will then be

rated according to how well it is suited for providing essential capabilities

and how many desired features it is capable of supporting. In the following

sections the functional requirements are described . Essential functions are

noted with an asterisk (*) .

2-3
L O C K H E E D



I~[~ 2~~u 1e

2.1.1.1 Data Set Creation and Manipulation

This is a fundamental capability which must be provided to the

user. He must be able to create, identify, and store sets of data. hirth e r

more , he must be able to retrieve , modify, and display these data sets .

A data set is defined here to be any collection of data. It could

be numeric, textual (including lower case letters and special symbols) , or

an actual computer program. The data sets themselves consist of lines

(records ) which may be of any size . The lines (records ) 01’ a data set m~ ’j i ’
all of one size or of varying sizes. A given user may nr u~ tc and k ee ’
several data sets . This collection will be referred to as his  library of

data sets .

The specific data set handling functions are :

* A) create - form and identify a data set by entering information
into the system .

B) reidentify - give a new name or an alias to an existing data
set

~ c) store - retain a data set within the system identified by i ts
name

~ D) retrieve - fetch a data set with a specified name
* E) list - display the contents of a data set or a portion thereof ’

* F) delete - remove a data set from the system
* G) copy - duplicate a data set or a portion of it optionally

rearranging and/or eliminating certain columns (fields ) of

lines (records) in the copy

H) describe-as - associate a textual description with a data set
I) protect - prevent access to and/or modification of and/or

deletion of’ a data set except by authorized users

2 -~~
LOCKHEED



LI 2~ l~~O

J) modify - change contents of a data set as follows :

* 1) insert - add one or more lines (records ) to a data set
at some location

2) replace - substitute one or more lines (records) with
another line (record) or set of lines (records )

~ 3) delete - remove one or more lines (records) from a data

set

move - transfer one or more lines (records) from one

place to another within a data set

* 5) copy - duplicate one or more lines (records) one or more

times from the current or other data set into the current

data set at some location

6) search-for - find the first occurrence, first n occur-

rences, or all occurrences of a string within a range of

lines of a data set, optionally limiting the search to

certain column s (fields) within the lines (records)

7) change - alter one or more lines (records) of a data set

as follows :

a) insert - place one or more additional characters at

some point within a line (reco~’d)

b) delete - remove one or more existing characters from

a line (record)

* c) alter - replace one string with another string in

one or more lines (records) optionally limiting

replacements to certain columns (fields) within the

lines (records)
K) undo - restore data set to the form it had just prior to

execution of the last command or last n commands

~ L) list-catalogue - display the names, and optionally descrip-
tions , of all data sets in a user ’s library

M) compare - test two data sets , or portions thereof , to see if

they are identical and list any differences , optionally ape-

cifying the columria (fields ) in the lines (records ) to be cam-

pared

2-5
LOC K HEED



LB ~~~

N) shift - move one or more lines (records), or portions jier~(I

a specified number of columns (positions) right or Lelt

o) sort - rearrange lines (records) or a data set into either

ascending or descending order based upon a selected range of

columns (field) in the lines (records)

F) check - test a data set for compliance with some established

format

2.1.1.2 Program Development

Users must be able to interactively create and check out computer

programs. As a minimum , these capabilities must be available b r  une ‘~ nui~J ’~

programming language. It is also highly desirable that these capabilities

be available for PL/I, Assembler Language, and APL. The specific functions

needed are as follows:

A) scan - syntactically check a statement or set of’ statements

for compliance with the rules of the particular language

B) compile - generate object code from a given source statement

program displaying any compilation errors to the user
C) assemble - cause an Assembler Language program to be assembled

(i.e., generate object code)

D) link - generate a load module from a given object module

E) debug - test a program for proper execution and locate program-

ming errors as follows :

1) execute - cause execution of the program to begin at a

specified statement and optionally specify where execu-

tion is to stop

2) interrupt - cause execution to cease immediately

3) list-varIables - display the current value(s) of program

variable(s)

1~) change-value - modify the value of a variable or set of

variables

5) list - display a statement or set of’ statements

2-6
L O C K H E E D



LB ~B1,~
(

6) modify - change (including all subfunctions described as

part of the “modify” function under “Data Set Creation

and Manipulation ”) the contents of the program
7) set-stop - designate a statement in the program where

execution will stop whenever the statement is reached

8) remove-stop - remove the designation that execution should

stop at some statement

9) trace-variables - display the value of a specified varia-

ble whenever the value changes

10) trace-flow - display indication of each transfer of

control during program execution

2.1.1.3 Batch Processing

Capabilities must be provided to allow users to perform batch pro-

cessing of computer programs. The specific functions needed are as follows:

* A) submit - cause a program to be submitted for batch execution

~ B) list-output - display the output of a job run in batch mode

~ c) determine-status - return the current status of a job submitted

for batch execution

* D) cancel - cause a job submitted for batch execution to be can-

celled

E) scan - syntactically check job control statements

* i) save-output - put output from a job into a data set

o) access-data-set - provide access to a data set from a job

executing in a batch mode

H) plot - display plot output

2-7
LOCK H E E D



~B 2hh4 , ()

2.l. l. I~ Interactive Program Execution

Users need to be able to create and run interactive programs . The

specific functions needed are as follows:

A) run - call up and execute a program interactively

B) suspend - cause an interactive program to temporarily halt

execution

resume - cause a suspended interactive program to resume

execution
0 U) cancel - t,ermjnate execi:t~ on of an interactive program

H) access—data—set . ~ro’i de accc S t~~ r i r t ~. ‘a t ~“ ‘~i r ‘v ’’

executing Interactively

F) calculate - determine and display the result of a specified

numerical calculation

G) plot - generate and display a plot from data given

2.1.1.5 Command ~et Processing

A capability to execute sets of interactive commands as a group

must be provided . Ideally, the command language will be sufficiently rich

to allow a full programming capability at this level. That is, logical

testing, branching, looping, and input/output constructs should be part of

the command language. Specific functions needed are the following:

* A) execute - execute a set of interactive commands

B) suspend - cause the execution of a command set to be tempor-

arily halted

C) resume - cause the execution of a suspended command set to

resume

D) scan - syntactically check statements of the command language

2-8
LOCK HE ED



~~h.(~
()

2.1.1.6 User Communication

It must be possible for those maintaining the system to communicate

with users and for users to communicate with each other and the system oper-

ator. The following specific functions are required:

* A) send - send a message to a user, a set of users or the system

operator

* B) hold-messages - cause messages (except those sent by the oper-

ator) to be held in the user ’s message file rather than be

displayed immediately

* c) list-messages - display and delete all messages in  the user ’r~
message file

D) associate-message - cause a message to be associated with a

data set such that any time the data set is accessed the
message is sent to the user accessing it

2.1.1.7 Document Preparation

Capabilities are needed to enable users to create, modify, and

maintain textual documents through the system. All functions described in

section 2.1.1.1 on “Data Set Creation and Manipulation” must be available

for document data sets , and in addition the following functions are required:
A) format - specify which lines are to be formatted before dis-

playing and which are to be displayed as they are by use of

the following functions:

1) set-line-width - cause lines making up paragraphs (to be
formatted) to be adjusted so that each line will contain

as many words of the text as possible without exceeding

the line width specified
2) start-paragraph - cause a new paragraph to begin at a

specified point
3) center-line - cause line to be centered on page
Li.) indent - specify mariner of indention for a paragraph

2-9
L O C K H E E D



T P  2P1 (()

5) suppress—window-lines - nr ’ ‘u~ h~ r ’
graph from being the last line on a page or the last l~~e

of a paragraph from being the first line on a page

B) set-page-depth - cause all pages to have the size specified

C) title - cause a title to be put on every page

D) number-pages - cause all but the first page to be sequentially

numbered

E) set-spacing - specify number of blank lines to be inserted

between lines of text

2. 1.li~ ~3ystem Management

Capabilities must be provided to control access to and use of the

system including the reporting of resource usage information . It must be

possible to specify for each user an identification which will be the name

by which the system knows the user . Also , the capability to establish a

password for a user which will restrict unauthorized access , and to specify,

for each user, a set of valid account numbers for the purpose of charging

the computing resources expended . Additionally, a capability to define for

each user his limits of access and use of resources is require(1 (i.e., the

functions and the types and amounts of resources he is allowed to use).

Finally, it must be possible to keep any other information about users as

required (e.g., this may include his organization identification , address,

phone number and the like). The specific functions required to maintain all

this user information arid, monitor resource utilization are as follows:
0 A) add-user - enter a new user and his information set to the

system

* ~) change-information - modify the user information

* c) delete-user - remove a user from the set of’ authorized users
* D) list-users - generate a list of all users or a subset thereof,

optionally listing any of the user associated information

* E) cancel-user - terminate the session of an active user

2-10
LOCK HEED



LB 281460

* F) charge - determine and optionally display the computer

resources expended by a user for the current session or over

some period of time

* G) report-resource-usage - generate a report containing all

computer resource usage by all or a subset of all users over

some period of time

H) report-function-usage - generate a report containing statis-

tics on usage of all system functions over some period of

time (including response)

* I)  send-broadcast-message - enter a message into a broadcast

data set which is displayed to all users each time they log

on to the system

* j) delete-broadcast-message - remove a message from the broad-

cast data set

K) monitor-user-activity - cause all terminal input and output

of a user to be displayed or printed elsewhere

2.1.1.9 System Access

The means to identify oneself to the system in order to gain access

to its capabilities and to specify to which account the expenditure of re-

sources is to be charged must be provided. The following functions are re-

quired:

* A) logon - gain access to the system by specifying user identi-

fication , possibly a password , and the account number to which
computing resource expenditures are to be charged

B) change-account - specify that all subsequent work is to be

charged to the new account number specified

* c) logoff - exit from the system

2-11
LOCKHEED



u~

2.1.2 Ease of Use

A system can provide all essential capabilities and still be

difficult to use. An important feature of’ any system , therefore , is Its
ease of use . Ease of use encompasses many varied concepts including the
following:

A) Learning - Can the system be easily learned? Can an individual

learn how to use it on his own or is formal training required ?

How long does it take to become proficient?

B) Prompting - Is the user prompted when he fails to supply re-

quired information?

C) Thtoring - Can the user obtain help from the system when i~e

doesn ’t know how to do something?
D) Use of Abbreviations - Can the user abbreviate commands?

Can he abbreviate other information such as his data set

name s?

E) Editing Data Sets - Are there features to facilitate the

modification of data sets?

1) Can lines of’ a data set be referred to by line numbers

(whether or not the numbers are part 01’ the data set

i t se l f )?

2) Can a line or set of lines be modified merely by dis-

playing them, making physical changes in them (including

overty’ping, inserting, or replacing characters), and re-

entering them to the system?

3) Can a block of lines be entered a once~
Ii.) Are the results of changes automatically displayed to

the user ?

5) Can lines of any length be handled?

6) Can logical tabulation points be established ?

7) Are various character sets available?

2-12
L O C K H E E D



LR 2~~ 1!)

F) Entering Commands - Can a previously entere’~ command be re-

entered , possibly modifying it , without completely retyping

it?

G) Use of’ Physical Devices - Are the devices available easy to
use?

H) Viewing Computer Output - Can the user move about within his

output?

I) Entering Data - Can data be remotely entered without typing

(e.g., from tape)?

J) Locally Storing Data - Can ‘lata b€ stored at the users local
site (remote from the central facil ty) in other thu~ prii

4
~ed

form (e.g., on tape)~
K) Transferring Data - Can data be easily transferred to a site

outside of the environment of the system :

L) Displaying Information - Can the cursor on a terminal be

controlled from an interactive program? Are various character

sets available on the terminals? Do terminals have blinking ,

half’ bright, inverse video , upside down , 90 degree , etc .

display features?

M) Sending Messages - Can messages be sent even when the rest of

the system is inoperative?

N) Submitting to Batch - Can batch submittals be made without

knowing the job control language of the host computer?

2.1.3 Efficiency

An important consideration of any system is its cost in terms of

computer resources utilized . The computing environment must make possible

the efficient Implementation of’ the required system functions . In particu-

lar, the most used functions must be capable of the highest degree of effi-

ciency in their implementation .

2-13
L O C K H E E D

-A



L~H ~4j1 ~4

2.1.1k Availability

Availability refers to the degree to which a user has acces” to
the computing capabilities he needs . This encompasses two attributes of tt

computing environment . The f irst  is its capacity . There must be sul 1 i.c.iei t

computing power and numbers of terminals and other peripheral hardware to

serve the needs of the users during times of peak system activity. The second

attribute is system reliability . The system must be kept running at or above

the 98% level during prime shift hours. Furthermore , the computing enviro’~-

merit should be such that it contributes toward implementatiwi of a sysi..-~r

which can continue to operate at some level i~veh when portIons of the ~ia ’ d -

ware and/or software are not functioning .

2.1.5 H cpandability

Another important attribute of any computing environment is i ts
flexibility in terms of size and capabilities . Can the system be easily

expanded to handle more users? Can its size be diminished if the work load

decreases? Can new capabilities be easily incorporated into the system ?

The system must be capable of growing or shrinking in a cost ef fec t ive

manlier as changes in the work load and needs of the users occur.

2.l.( Responsiveness

Finally the speed with which the system can act upon user requests

must be considered . This is possibly one of the most critical factors

contributing toward user satisfaction. Naturally, the time it takes to com-

plete a task depends upon its complexity, but the computing environment must

be such that users are not frustrated by unreasonable delays in servicing

requests. As a minimum , the system must be capable of responding to trivial

or fundamental requests within one second 90% of the time and within two

second s 99% of the time .

2~ 11+
LOC KHEED

• - —- -



J~h

2.2 EVALUATION OF COMJ&JTIflG E~ V1RONM}~T2

Four basic types of computing environments will be discussed and

evaluated in this section . There are, naturally, many other ways of

classifying environments, and all combinations of’ those to be described are
possible . A complete description of computer interconnection structures

has been attempted by Anderson and Jensen (1).

A computing environment can be centralized or decentralized . If it

is decentralized it can be hierarchically organized or not , if it is non-

hierachical, it can be connected or unconnected . Thus, the four cla:;ses nf

environment s which will be evaluated are :

A) centralized

B) hierarchically decentralized

c) non hierarchically connected

D) unconnected

2.2.1 Centralized Environments

A centralized environment is one in which a single computer (agent)

performs all system functions . This is essentially the present DCM environ-

ment where a number of terminals are connected to a central computer (an IBM

360/91) and operate in a time sharing mode (TSo). The centralized environment

is depicted in Figure 2.

Because of the power of the central computer, this environment has

the potential to provide almost every desired capability . In fact, time

sharing systems exist for most large machines which already provide most of

the desired capabilities as specified in section 2.1.1. Thus, very little

new software development would be required in such an environment. Although

there is no inherent reason that systems implemented in a centralized environ-

ment should be diff icult to use , experience with one such system, TSO, has

shown that ease of’ use is not necessarily guaranteed in such an environment .

2-15
LOCKHEED



ij~

r[ COMPUTER

// /

~~~rminal 
~~~~~~~~

Figure 2. Centralized Environment

2-16
LOCKHEED

— - -.- ~~~~- -



Lr~. ~~~~

The more capabilities a system has the more likely it is to be difficult

to use. Hence , there may be tradeoffs between “capabilities” and “ease of

use” in the evaluation of a computing environment . In a centralized environ-

ment, however, it is clear that these two criteria can be satisfactorily met .

The next evaluation criterion is efficiency . Centralized environ-

ments which service many simultaneous users operate , by necessity , in time

sharing mode , and time sharing is inherently inefficient. In particular,

there is a significant overhead associated with swapping users in and out

of main memory and in keeping track of all active users. A significant

utii~zation of computer resources is also required to control the time shar-

in~ activity itself. Although computers exist which have been designed to

operate efficiently in a time sharing environment, such is not the case with

large scale computers of the IBM 360/370 variety.

As far as availability is concerned the centralized environment

suffers from the problem that when the host machine is not operating, the

entire system is unavailable for use. Thus, system availability is dependent

upon the reliability of the central host . Experience with the IBM 360/91
has shown this to be a serious problem .

The expandability or growth potential in a centralized environment

is likewise limited by the host machine . Once the capacity of the machine

is reached the system cannot grow easily. Also, should a decrease in

interactive usage occur, the unused capacity of the central machine might be

wasted .

The final criterion is responsiveness. Responsiveness in a centra-

lized environment is primarily a function of the efficiency of’ the central

host. Experience with TSO on the IBM 360/91 has shown that acceptable re-

sponse is attainable only through allocation of considerable amounts of
machine resources.

2- 17
LOCKHEED

- ,—~- --- — -- 



J~F~ ~~~hi

‘J’he centralized ezivlrormnient can be considered a reasonabic

approach only if e f f i c i e n t , and thereby responsi ve , hard ware and : ;oI 1w ;~re

can be acquired for interactive use. Even then the questions of’ sycte rn
availability (reliability) and expandability (growth potential) mur~t be

carefully considered .

2.2.2 Hierarchically Decentralized Environments

decentralization can imply many different concepts . It can su~ge~ i.

tbttt the computir~ hardware is geographically d.~stributed , •k in t data is ;i

t r i l u t e d  among variou s computers , or tJr ’ t the ~ ,n~uti rig fiinc~ ier ic n r c  d i e -  r

buted among various pieces of hard ware . iii t1i i~ di3cussi-in an criv~ruIu . .~ t

will be considered to be decentralized if the last of these is true even

when hardware is riot geographically distributed and when all data is centrally

con trolled . borrowing from C. V. Ravi ( i ~~ , an environment i~ said to be

decentralized whenever computing functions (tasks) are distributed among

different computing agents (hardware, software , and firmware components).

~itretchirig this point even the so crtlled centralized environment previously

discussed is actually decentralized because certain trivi’~l computing

functions (such as data entry and simple editing) are performed by the ter-

minals . Certainly in the case of intelligent terminals one would have to

call the environment decentralized . For the current discussion an environ-

ment will be considered to be decentralized only if si gni f ican t  computing

f’unctioris are performed by agents other than the central host processor.

A decentralized environment is hierarchically organized if the

computing agents are divided into levels , if each agent is connected by a
• communications link t o  an agent of the next higher level , and if there is

single agent at the top level. In other words, the environment is a tree
structure with the branches being lines of communication and where agents at
one level control sets of’ agents at the next lower level. For the purpose

of this discussion , an environment will be considered to be hierarachical

only If no other lines of communication exist . in particular , comimmicatiori

2-18
L O C K H E E D



Lb ?~~k.J~ j

lines between agents two or more levels apart or between agents at the sau’•

level are not permitted . A simple and typical hierarchically distributed

environment is depicted in Figure 3.

Environments of this type are capable of supporting the full range

of’ required capabilities since access to the central host , even if ’  indirect ,
is always possible . Hierarchically distributed environments can promote ease

of use for certain sets of users . They may be able to use simpler, J imited

systems residing on intermediate computers rather than relying on a complex ,
all encompassing system residing on the mainframe host. In f;ict , in such an

environment there is the possibil i ty of develop ing or acquir i ng hi ghly
specia ti zed , easy to use systems for particular classes of users .

Eff ic iency can be much better in a distr ibuted environment than in

the centralized case because much of the processing can be accomplished by

Less costly hardware located (at least logically ii not physically) closer

to the user . Certain editing functions, for example , might he accomplished
directly by a termin al , compilation of’ source code mig h t be dune on a mini-

computer , and small calculations might be handled by a micro -processor with-

in a terminal . The of f - loading  of these , arid possibly other such functions ,
wou ld greatly reduce the amount and fr equency of data transfer between the

user and the central computer . This would also reduce the time sharing over-

head burden and thereby improve the overall system efficiency or cost effect-

iveness.

Avai lability of the syatem in a distributed environment is signi-

ficantly improved over the centralized case. it is no longer tru e th ’it all

users are dependent upon a single piece of computing hardware . If si gnifi-

cant processing capability has been off-loaded , then at least that processing

can continue regardless of the state of the central computer. ~3ystem avail-

ability is a function of the extent to which processing capabilities have been

distributed and the redundancy built into the hardware configuration . In a

distributed environment it might be reasonable to have an extra mini-computer

in case one malfunctions while having and extra large mai nframe is usually

2 -1 9
L O C K HE E D



~-e)~4J C i

M A I N F R A M E
H OST

COMPUTER

Intermediate Intermediate
Computer Computer

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Figure 3. Hierarchically Decentralized Environment

2-20
LOCKHEED

_ -- —--- ‘ _ _

Lb ?~~L’.

iin: rac t~icel .

The distributed environment is also easily expandable (or contract-

able) since min i -o r micro-computers could be added (or subtracted) as work
load conditions changed.

l’inially, with regard to responsiveness, the distributed environment

has great advantage over the centralized case. For computing functions which

have been assumed by intelligent terminals (terminals with micro-processors),

the user no longer operates in a time sharing mode. Hence, his response is

usually instan taneous , in other cases computing functions may be performed by
mini-computers which have been designed for interactive time sharing and are

hence more responsive . h owever, there will undoubtedly be some functions

which will take longer to accomplish . For example, any function reqpiring

the transfer of information between the terminal and the mainframe host, or
between agents non hierarchically connected, will be less responsive . This

fact opens the question of where data should be stored in such an environment.

Obviously they should be stored as close as possible to the computing agent
which needs access to them . If a set of data is needed at more than one

level in the hierarchy, it should probably be stored at the highest level it
is needed . While this policy will facilitate central control of data, it
mi ght also require great amounts of data transfer . This could have adverse
effects on both efficiency and responsiveness.

Clearly , a hierarchically decentralized environment can support a
complete interactive computing system. Determining the proper configuration

for particular needs , however, is not likely to be an easy matter . The suita-
bility of such an environment and the proper distribution of functions among

agents will be largely determined by data transfer requirements .

2-21
LOC K HEED

~i’ ;~~~ k~(j

2.2.3 Non-Hierarchically Connected Environments

This class of environments includes all those which are fully

connected but not hierarchically organized . Each computing agent is linked

by a communications line to another agent but there are no discernable levels
in such an environment. A ring structure like that depicted in Figure)~ is

a good example of a non-hierarchically connected environment. The capabili-

ties supportable , ease of use , availability, and expandability characteris-
tics are essentially the same as for hierarchically connected environment~s.
Efficiency and responsiveness on the other hand are dependent upon the

specific functions considered . T:,rp ictt~ ly , such an envir onrnern i . ~i i v. :.

good response for some functions , namely those d i r e c t L y aVailable on tnc •~

to which he is connected . The system responsiveness to other funnci•ions de-

pends upon the number of communication paths which must be travelled and the
amount of information which must be transmitted . Responsiveness can be im-

proved by adding con~n’mications lines , but this will tend to decrease overall

system efficiency . Maintaining central control of data, or central control

of’ anything for that matter, in such an environment is d i f f i cu l t since there
is rio top level computing agent. This would appear to be a serious problem
in cases where many users are involved in a single project. if solvable at

all, it is likely to adversely affect system efficiency.

2.3.I~ Un connected Environments

This last classification of environments is one inn which no lines

of communicat ion exist between computing agents . Figur e 5 depicts this case.
There is nothing inherent in such ann environment to limit ease of use, and

ef’f’iciency, respons iveness , and overall availability are at maximum levels.
Since there are no connections between agents, system overhead is minimized

and failure of one agent in no way affects the others. Likewise, the system

can be easily expanded since adding a new agent can be done without consider-
ation of the rest of’ the environment. The problem with this environment, of’

course, is that users are greatly limited in the capabilities available to

2-22
LOCKHEED

2?~1 44~~

CO MPUT E R

COMPUTER COMPUTER

COMPUTER ___________

I”IpU.r(~
It. I i~~~’ :1. ~~~~

LOCK HE ED

LE 2~in4 u

I
them, In particular, they can use only those functions available on the
computing agents to whi ch they have access. Moreover , managing data or
users at a global level is not possible, and communication among users is
not supportable .

I

2-2k
LOC K HEED

i~i~ 2~~ii1i~

COMPUTER

~~~~~~~

na

~~~~~~~~~~~~~~~~~~~~~~~
ermEaI

COMPUTER COMPUTER

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

COMPUTER

Figur e 5. Unconnected Environment

2-25L O C K H E E D



?~

SECTION 3.0

CONCLUSIONS A1’~D RECO~ v1E~ DA~1r1Ofl~

The results of the computing environments study are summarized in
the table shown in Figure 6. Only the fully connected decentralized environ-
ments score at acceptable levels for all evaluation criteria, with the
hierarchical organization having a slight edge. I)ecentralization appears to

offer significant potential for both improving service to interactive users

and reducing computing costs. Based on this conc~~sionn the lc~llowinng re-

commendations are made.

CENTRA L I Z ED + ~.J ~
,,/ , . -- -

HI ERA RCHI CA L LY 
~/ ~~ v’’~ ~ 

+ +
DEC ENTRALIZ E D

NON-HIERARCHICAL LY 
~/ ‘~

/., ,
~,/ 

+ + +
UNCON NECT E D

UNC ON NECT E D — + + + +

+ IDEAL
+ ABOVE ACCEPTABLE LEVE I

v’ ACCEPTABLE
— BARELY ACCEPTABLE
— UNACCEPTABLE

I ‘‘Al( 1,

— I
LOCK HE ~~D



LP 2~~4/.i

1) Establish a precise and complete specification of user re-
quirements for interactive computing. Althongh such a specification was

produced as part of this research task , it should be reviewed by end user

organizations and modified as necessary to ensure that it truly reflects
user needs. Furthermore, user requirements need to be ordered in terms of’

relative importance so tradeoffs can be properly evaluated .

2) Determine the best configuration of computing hardware and
software to sat isfy the established user needs. This must be a joint effort
involving Scientific Computing, Computer Systems, and all end user organiza-
tions.

3) Develop a plan for acquisition of any hardware and software
necessary to build a prototype of the configuration selected .

I~) Prepare a plan for evaluating the effectiveness of the prototype

configuration for satisfying users ’ needs for interactive computing .

3-2
LOCKHEED

- ‘ - -~~~~~~~~~~ - ~~ -- - -



LI-: ;

I
REFEREN CES

1. Anderson , C. A. and Jensen, E. D., “Computer Interconnection

Structures : Taxonomy, Characteristics and Examples,” Computing
Surveys, Vol. 7, No. 14, Dec. 1975 , pp. 197-213.

2. Ashenhurat , R. L., “Centralized or Decentralized Computing - Or Maybe

Some of Both?” How to Make Computers Easier to Use, IEEE Compeon

75, Sept. 1975, pp. 59-60.

3. Davis , R. M., “The Systems of the l’jèlL ’s - A Ii. S. Perspective ,”
Nat ional Bureau of ~Jtandards, Nov. 1975.

I4~ D ’Oliveira , C. R., “An Analysis of Computer Decentralization,”

Massachusetts Inst. of Tech., Cambridge Lab . for Computer Science ,

Oct . 1977.

5. Doll , D. H . ,  “Relating Networks to Three Kinds of Distributed Function ,”

Data Communications, March 1977, pp. 37-142.

6. Eckhouse , Jr ., R. H., Stankovic , J. A., and Van Dam, A., “Issues in
Distributed Processing - An Overview of Two Workshops,” Computer,
Vol. II, No. 1, Jan. 1978, pp. 22-26.

7. Grossberg , M., Wiesen, R. A. and Yntema, B. B., “An Experiment on
Problem Solving with Delayed Computer Responses,” IEEE Trans. Man
and Cybernetics, March 1976, pp. 219-222.

8. lyle, E. L., “The Programmer ’s Workbench - A Machine for Software

Development ,” CACM, Vol. 20, No. 10, Oct. 1977, pp. 7146-753.

R-l
LOCKHEE D

I 
S -.



Lr< ? 
)4(~~,

I
9. Lingard , R. W., “Engineer Oriented Remote Computing,” LR 27518,

Lockheed-California Company, Burbank , California, Dec . 1975.

10. , “Summary of 1976 Independent Research on Engineering Oriented

Remote Computing,” LR 28005, Lockheed-California Company, Burbank ,

California, June 1977.

ii. Martin, J.., Design of Man-Com puter Dialogues, Prentice Hall, Inc.,

Englewood Cliffs, New Jersey, 1973.

12. Melendez, K. J. and Johnson , R. T., “Evalnation of the UNIX Time-
Sharing System,” Los Aloamos Scientific Lab., New Mexico , Apr.

1977.

13. Miller, L. A. and Thomas, J. C., “Behaviorial Issues in the Use of

Interactive Systems,” IBM Thomas J. Watson Research Center,
Yorktown Heights, New York , Dec. 1976.

114. Ravi , C. V., “The Structure and Characteristics of Distributed Systems,”

Proc. 2nd International Conference on Software Engineering, Oct .

1976.

15. Reaser, J .  M. and Carrow, J. C., “Interactive Programming : Summary of

an Evaluation arid Some Management Considerations,” Integrated
Systems Support, Inc., Falls Church , Virginia, March 1975.

16. Reaser, J. M., Priesman, I. and Gill, J. F., “A Production Environment

Evaluation of Interactive Programming , ” Integrated Systems Support ,
Inc., Falls Church, Virginia, Dec . 19714.

17. Rockhart, J. F., Bullen , C. V. and Leventer, J. S., “Centralization
Vs. Decentralization of Information Systems: A Preliminary Model

for Decision Making , ” Massachusetts Inst. of Tech., Sloan School

of Management, July 1977 .

R-2
LOCK HEED 

--



LB ~~~~~

18. Walton, J. B . ,  “Performance Evaluation of the Lincoln Laboratory Time
Sharing System,” Massachusetts Inst. of Tech., Lexington Lincoln

Lab., May 1976.

19. Weinberg, G. M., The Psycholo~~ of Computer Programming, Van Nostrand
Reinhold Company , New York , 1971.

R-3
LOCK H E E D

_ _  -~~~~~ --—--- -



E N G I N E E R I N G  R E P O R T  I N I T I A L  D I S T R I B U T I O N  L I S T  
I~ ~~~ 

LB 28460
ISL E L PM 4 -Ui / , ,  - 1 OF 3

T I T I  F MUFIl L F I 1)10 I V  ( I A ’ ,’~ hA i l

SUMMARY OF 1977 INDEPENDENT R~~EARCI{ 
I .R. 

- 
UNCLASSIFIED 7-14-78 

-

ON US ER ORIENTED REMOTE C0M1~UTING APPHO;;~~~~~ 

27~3
’ -

I R F O I N A F I N G  I ) R O A N I ZA T IO N  ( I ITL E & DEPT. NO .) - 
D IV IS I  N ENGINéE F1

Scientific Analytical Programming (80-36)
Scientific Computing Division

_______ _____________ COM E NC I A L  LNI i IN(ERIN( .  ~
-

WI / I  W O (CO ME NC IA L  ENG l NE E f t I~~ c . A~~ A H R EP O R T S )

_
1 I ~~~~~~~ W Q Rj K U I F ) I R~~~~~~~~~~~~~ W A  

- Y~~ L~~~~~
O( M A R K ~ , ROD CT V A L U A T I O N  

~~~~~~~~~~~~~~

LEGAL URA N C H - P A T E N T S E C T I O N (S T A T E A N Y R E S T R I C T I O N S)

_______________ _____________________ ~ e “ i
LIMITATION ON ACCESS TO DATA:

UNLESS L IM I FAT IONS ON SUBS LOUENT RELEASE OF THIS REPORT AR E STATED BELOW . COPIES WILL BE MADE F R E E L Y

ACCESSIBLE TO ALL CORPORATION EMPLOYEES (IF L IMITED , SUBSEOUEN1 Hi LEASE TO OTHI- R ORGANIZATIONS

REQUIRES COMPL E n O N OF FORM /229 I

L IMI FED TO

RI A ()N

DATE ON WHICH LIMI TAT ION MAY BE L IFTED

WOULD IT BE BENEFIC IAL TO CALAC TO RELEASE THIS REPORT TO THE PUBLIC V IA NA A/DoD L I B R A R I E S 1 ’
$~Y ES UNO

(ANSWER THIS QUESTION FOR INDEPENDENT RESEARCH OR INDEPENDENT DEVELOPMENT FUNDED REPORTS ONLY I

DISTRIBUTION PUT “ X ” IN PROPER COLUMN S /
1 . ASSIGN COPY NO TO HARD COPIES ONLY //~ ~/ / T Y P F ~~~~~~~~~~~ ~//CO

~ EXTEHNALCO ~~ES)ND~CATE TRANSMITTER
LAST

— & ORCLE COPY NO. OF REPORTS AL READV D Tf BUTED J4
~

m’#-
~ ~~~~~o~/ -

I N D I C A T E WHERE I I t E D I I
M A S T E H DREPO RTS S E RV I C E S GROUP IOPUBL ICA lION S ER V IC ES GROUP , PROJICI

_ _ _ - - 1~(TO BE TRANSMITTED BY
1 V I T A L RECORDS REPORTS SERVICES GROUP! X

— ~~ -- - - • -

2 REPORTS SERVICES GROUP -
_ _ _

~~~~~~~~
3, 4 CENTRAL  L IBRARY x x

-- T - I
- 5 ~~~~~~~~~~~~~~~~~~ 70-01 ~3__~~L__ 

~~~ ~c ~~~~~~~~~~~~~~~~~~~ ~, ~

6
--

D. L. Bickel
-

8611 6~~ A-i X X ~~~~~~

7 B. L. Bivena 80-36 67 A-i X X ~ - -

- -
8 R. N. ~~atko~~ch 70-10 ~~3 A-1 X ~~~~~~~~~~~~

~~~~~~~ ±.- ~~~~~~ - ~~~ 6 i~~~~~ -1~~~~~~~~~ x x~~~~~~ 4~~~
10 C. A .~~~~~on 70 80 A-i  X X

-- 
ii 

- 
A. L. Byrnee 75-141 63 A-i x x 

______

• 12 L. C. Cowglll 75-72 63 A-i X X 
-~~~~~~~ — —

13 D. R. Crawford 
- - - 

80-37 67 A-i 
- - 

X X — —

114 A. R. Curt Is 
- 

72-71 311 B-6 x x

15 R. D. Elliott 
— 75-141 6 3  _A~.1 . .  - - -

16 H. H. Mars 83-01 ~~ A-i. )~ 
X -C A L A C  FORM 5759.5



LB 281460
ENGINEERING REPORT INITIAL DISTRIBUTION LIST I~ I I ’ l l )  N - - — -—

ISLE 1PM 401)  I A , t  OF 3 -—
I t T )  I MO D E L  ‘,t ( l ) t t I I V )  ASS . DATE

— 
I.R. ~~UN CLASS1FIED 

- 7-114-78
AI ’PI l(JVAL 

- ________________________________ -— -

‘ L II ,INM I IN( . (iHOA NI / A F I ON  ( T I T I r & r)rPT. NO .) — 
D I V I S I O N  L NG I NE E H

- -  - _______ C O M M E R C I A L  L N C . 1 N E E R I N O
WA 

21 3715 -- 5890..,, 
( C O M M E R C I A L  ENG I NEL R I NG  UR A N CH  R E P O R T S )

( 1  A 55 W D I 4 F~ 1)1 1 ) 1  II L .W A .
- PRODUCT E V A L U A T I O N  GROUP

L E G A L  U RA NC H  P A T E N T  S E C T I O N  I S T A T E  A N Y  R E S TR I CT I O N S I

LIMITATION ON ACCESS TO DATA:
UNL ESS L I M I T A T I O N S  ON SUBSEQUENT RELEASE OF THIS REPORT ARE- S T A T E D  BELOW , COPIES W I L L  BE MADE F R E E L Y

ACCESSIBLE . TO ALL  CORPORATION EMPLOYEES ( I F  L I M I T E D . SUBSEQUENT RELEASE TO OTHER ORGANIZATIONS

R E Q U I R E S  COMPLETION OF FORM /229 . )

L IMITED TO

HE ASON

DATE ON WHICH LIMITATION MAY HI 1 1 1 1 1 1 )  
—

WOULD IT BE BENEFICIAL  TO CALAC T O R I  I LAS E THIS 1EPOHT TO FHI PUB LIC VIA NASA,Uu O L I B R A R ) [ S ?  D Y E S  ONO
(ANSWER IRIS QU ESTION FOR INDEPEND E NT HESEA I I ’ . lI Oil INDEPI NUt Ni D E V E L O P M E N T  F UNDED R E P O R T S  ONLY I

D ISTRIBUTION - 
P 1 1’  ‘‘ 0 ’  IN ‘HOPER ( OLI IMNS

F) 
/yv / / 7/ ~~J

101,1( / 5 1 1  W HI R l  I I I  I 0 F I i I
M / 0 ,F I  I [ ] i . i  I I I ’ ., ‘.1 F IV I I  I ‘~ 1 .1 1 1)1

I HV I I  IS  ‘ .1101/P . I’I I I I  I T 
I I

- ‘I 4 . I

17 B. Harris , Jr. (GELAC ~7-l14 h-lB 2714 
,, • 4

1~ D. 11. Janda 75-71 90 A-l ; , X X~ ,
19 F .  W .  Johnson 75-73 90 A-]. x X~

20 T. R. Jones 80-36 67 A-i 
I 

x x
- — - —  

~
t _ 1

___ 1- ‘ +
21 D. K. Kawamoto - 80-314 67 A-i ~ X X ’

22 1’. H. Kretsinger 80-36 67 A-i 
, 

X X 
- -

23 
- - 

J. G. Lewolt 75-71 63 A-i X X 
-

~~~~~ 

-

- -

214 B. W. L1n~ard 80-36 67 A-]. X X

25
--

J. D. Llttle 80-36 67 A-i X X
* 4

26 .i. J. bicas 80-34 67 A-i X X
_ _ _ _ _

27 R. F. O’Connell 75-71 63 A-i X X
- _____ —

28 H . B. Ostrom 75-72 63 A-i X X

29
- - H. H. Plank 70-01 63 A-i

I
X X

—- - —-

30 N. A. Radovcioh 75-71 63 A-i X X
‘

—- . , —

31 3. W. Robin son 80-01
-

67
-

A-I. L -
X X

-~~~~~~ — —
I A l A ’ F I l M 5759.5

- - - - • - - ---- --

,R 21’~ t4.~~(
ENGINEERING REPORT INITIAL DISTRIBUTION LIST I W I

I 1PM 4 1 .1/I ‘I” ,) ~,l ‘~~F 3
T I H I MD I I I ‘ . 1 I I) I~~I I / I I, ’ , ’ , NA Il

I .H . IJH C L,AZSIJ ” iEU - 7— l14— 7~- - - - -

‘ 1,1(10, 1 INC I t I ICA NI /A T I N N (T IT I r & NI PT N C) (~ I VI S IO N L N G I N~~ER

- — - -~ C O M M E R C I AL E N G I N E E RI NG
/ I tI / 1 / 1 21 3715 ICOMMEF. ’ IA L E N G I N E ER I NG HHI~~NC*f I 4 E PO HT ~~1

I I 0’~ ’~ W O O F 1) 1 1 1 1 1 0
-

W A
‘I MI’ I’ “, PF*OUUCT E V A L U A T I O N GRO U P

L EGA L B RA N C H P A T E N T SEt L I O N (S T A T E A N Y F 4 E ST R I C I IU?~~5)

L IM ’TAT ION ON ACCESS TO DATA

ti N) F ‘‘, [I M I T A T I O N S (iN SI.aBSEOUEN T D L I I AS E OF THIS REPORT A RE ,~~A ! (I, BLLOW COPIES WILL Iii M/~I,I F R) E l
/51 ,1 I ‘;~~IHLF TO ALL CORP ORATION EMPL OY E I ‘~ IF L IM ITE U, SUBSE Ow N ((I F LEASE Fl) 1 1 1 1 1 1 II ORE A N I Z A T INN’.
III N IJ I I I F T , COMPI F FION OF FORM /229 I

I I M I T L E) F I J

(I I A ’ ,IJN

DA lE ON W HICH LIMI (A nON MAY HE L I I F ID —
WOUL D 1 1 1 1 1 HERE F IC IAL TO CALAC TO 11) I I A ’ ,I T HIS HE POll F I (J THU. PUB LI C V I A NASA/ t i N l I1UI1~l4 I l ~~ DV I ‘ , (JNO
(A NSWER 11115 OUI- ST (ON F OH INDEPENDENT (II ‘ L ARC H 1)11 IN))) I’L NDLNT DL VLL O PMI NT F (1001 1, DI PUll IS 1)1) I V

- -
DI S T F I I B I) T I O r j

- - - - — j 1 - 1 “ 0 ’ ’ I ’) ‘D II I N (.,C, *1) ’ , /
1 A SSIGN (O i / NO (U HARD COPIES (.)NLY N /__

~~~ 
I ~~t~~I_______

1) /~/ ////I I I F  W i l l  HI I I I  I 0 I I I
fill, ’, I I  II I J I l l  l’OIl I’ , ‘ ,I 1 1 / 1 1 . 1 ‘ , .P(,IIII’ I /

C A r t O N  ‘ .1 1 , - l I N E ’ , 1 .1, 11) 1 ’ , ( ‘ 1 1 , 1 1  1 I

- - - - - ‘

~ 1 ~ 

‘ —

32 h • H. ~~ aiki F3O-36 67 A-i 
, . ~ X~~~X 4

33 J .  E. Sherman (u ~~c )  19—140 102 
- - 

y 
,~ x ~

, ,

314 C . H . ~m1th 80—01 67 A—i ~, 
X X 

, , *

35 J. F’. Stroud 
— 

75 -‘142 63 A—i ‘ ! x x 
*

36 F. P . Webster 86-10 67 A-i X ‘ X

37 

- 

H. 1’ . Welnbe rger 80-36 67 A-i X X 

—

M. I. White 80—36 67 A—i X X 
, I. *

/Y’/) ~A - I

11,~ ‘
~~~~‘‘~~~~~~~~~~~~~~~~~~

‘
~~~~~

‘-“ 

4 - * ~
,

__________________ 

-

~ 

-•

= 

- 

~~~~~~~~~~~~~ 

- -A l A ’ . I I~~I~~~ ~~~~~~~~

- — - - —a — - . -—- - ‘- - - -

