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INTRODUCTION

I'he problem of equalizing a channel whose channel-correlation matrix has a large
cigenvalue spread is well-known. Adaptive gradient ulg()nlllmsl 2 are among the simplest to
implement. but the rate of convergence (ROC) of these algorithms is determined largely by
the ratio of the maximum to minimum eigenvalues of the channcl-correlation matrix.3
Alternative algorithms have been proposed which orthogonalize the above matrix. In parti-
cular, Godard4 through application of Kalman filter theory, has derived an adaptive self-
orthogonalizing algorithm which has extremely rapid convergence properties. As discussed
in Reference S, the Godard algorithm involves estimating the inverse of the channel-
correlation matrix through an iterative matrix equation. Lven though the Godard algorithm
converges rapidly, the number of operations per update for this algorithm depends on the
square of the number of equalizer taps, which creates implementation difficulties for large
length equalizers. Gitlin and M'.u.'cv5 have proposed an adaptive self-orthogonalizing
algorithm which provides a compromise between computational complexity and speed of
convergence. This algorithm consists of approximating the inverse of the channel-correlation
matrix by a Toeplitz matrix and involves only one matrix multiplication. Reference S
presents a comparison between some of the different adaptive orthogonalizing algorithms.

A relatively new class of adaptive algorithms also provides self-orthogonalizing
capabilities and only requires a number of operations per update that depends linearly on
the length of the filter.0.7.8.9.10, 11 These algorithms are called adaptive lattice (AL)
algorithms and generate a set of orthogonal signal components which can be used as inputs
to equalizer gain controls. These components are generated through a Gram-Schmidt type
ol ()rlhug(muli/ulion.()-l“'l I' These AL algorithms have been proposed for use in such arcas
as speech, sonar signal processing, noise cancelling and parameter estimation,0.7.8.9.10,11
and Makhoul in References 10 and 11 has suggested they be used also in adaptive equaliza-
tion. This report examines, via computer simulation, the performance of AL algorithms
as applied to channel equalization.

ADAPTIVE LATTICE EQUALIZATION

As pointed out in Reference S, the main component in the majority of adaptive
equalization algorithms is the estimated gradient tap adjustment algorithm. This is true
also for the AL algorithms examined in this report and, therefore. we present a brief review
of the estimated gradient algorithm.

ESTIMATLED GRADIENT ALGORITHM

The estimated gradient tap adjustment algorithm is given by:

Che1 =Cp-oyep Xy, (1)

In Equation 1, ('n is the N-length vector representing the n-th iteration estimate of the
optimum (minimum mean square error) N-tap equalizer; a, is a positive parameter denoted
as the step size; e, is the instantancous difference between the equalizer output (y, ) and the
value of the transmitted data symbel (a):and X, is the N-length vector of received data




samples ir: the equalizer delay line at the n-th iteration.* The components of X,, will be
denoted as lxnlk b where k = 1, ..., N. The received data samples x . are given as
the superposition of a corruptive white noise sequence w,
filter h; operating upon the transmitted data symbols:

n

, and the output of a linear channel

= ‘ . h. 5
Xn Z ap_jhi+w, . (2)
i

In Equation 2, the hi represent the channel impulse response and the noise sequence O is
defined to have a variance o<,

The convergence properties of Equation 1 have been studied by a number of
authors2-3:12 under different assumptions concerning the dependence of @« upon n. In
many applications of Equation 1 to digital adaptive equalization, o, is held constant3 and
Equation 1 becomes the familiar least-mean-squares (LMS) algorithm.< As n — <o, the mean
weight vector converges to the optimal tap vector given by

lim  E(C n)=C0m : (3)

n —» oo
where E(+) denotes expectation and (‘opt is the optimum weight vector given by the dis-
crete Wiener matrix equation

) = xl]

('()Pl N A B . (4)

In Equation 4, A is the N X N positive-definite Toeplitz channel-correlation matrix
¥ T

A=EXX,;) . (5)
and B is the N-length vector

B=E@X,) . (6)
As the tap vector evolves according to Equation 1, the mean square error e€(n) evolves as

T £ AT : o

€(n) €opt + E((C opt L 1 opt Cy)) (7)

where €opt is the minimum mean square error (MMSE) and is given by
=1-BT ¢

Copt I-B" ( opt (8)
It is assumed the data symbol sequence is uncorrelated and has unity power.

As discussed in References 3 and S, the convergence of €n is strongly dependent
upon the ratio R of the largest-to-smallest eigenvalues of the A matrix;i.c., R = Amux’/’\min‘

Therefore, large values of R (heavy channel distortion) can lead to excessively long conver-
gence times when Equation 1 is used to update the C,,- Basically this is because the
components of X generally are not orthogonal.  This implies that premultiplying the
estimated gradient (chn) in Equation | by A'] (or an estimate of A™") potentially will

*In this report we will consider only the training part of equalization when the transmitted data symbols
are known at the receiver.




offer a significant time improviment in the convergence of Equation 1. This approach is
employed in the algorithms of Godard4 and Gitlin and Mugccs and ('hangl«z has suggested
transforming X, to 4 new vector Z with orthonormal components. Unfortunately, these
algorithms have computational and/or storage requirements which grow as the square of the
number of equalizer taps.

ADAPTIVE LATTICE ALGORITHMS

As an alternative to the self-orthogonalization algorithms discussed previously.,
Makhoul 1011 g suggested the use of AL algorithms for adaptive equalization. Given an
cqualizer input sequence x,,, the AL algorithms generate an orthogonal set of signals which
will be denoted as by, (n), where m =1, .. .. N. Although a number of AL algorithms have
been proposed 10.1 for performing this orthogonalization, concentration will be directed to
the basic lattice structure shown in Figures 1 and 2. This particular lattice structure was
originally proposed by Itakura and Saito!S for performing speech analysis. The ortho-
gonalization of X” 1s done in this lattice through the recursions

hlln)fll(ni:x” (9a)
fi(m) = L n) - Ko b (- 1) (9b)
hmﬂ(n);-KmIm(n)+hm(n— 1) (9¢)

where m =1, .. . N=1. The fyj(n) and byy(n) in Equation 9 are called the forward and

backward error residuals of the lattice 101114 respectively, and their properties will be
discussed presently. The K, in Equation 9 arc known as the reflection coetficients and
may be determined by a number of methods!4 which produce identical results when Xp 18 4
statistically stationary sequence. The method used for choosing the Ky, in this report was

originally proposed by Burp“’ and consists of minimizing the sum of the vanances of the
backward and forward residuals, denoted as l;(l"%Hl(l))) + E(b2 1 (m). with respect to K,

g : : 4 m+ n’
I'he result for the K, 1s given by !4
20 _(n)yb,_ (m-~1))
- g ), 41 pa L P
- — 5 , I<m<N-I (10)
E(5(m) + E(br(n -1))

As discussed in References 6 through 11 and 14 and 15, when Xp, 18 stationary the
residuals by g (n) and £ 4 1 (n) in Equation 9 are equivalent to the backward and forward
crror residuals of an m-point 1-step linear prediction filter. That is,

m
= - m) 7
UMSTLTES D ! W} *n-m+j , 1<m<N-1 (11a)
=1
m

y . 4 m) { "

fne1 (M = x, z WJ( Xn-j , 1<m<N-| (11b)

=1

proon
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Figure 1. Basic lattice structure.
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Figure 2. The m-th stage of the basic lattice structure.

where the W:-'“’ are the 1-step predictor coefficients obtained from the normal cquam(ms' 7

m

Z W‘j””q,(p-“=¢dp} JI<p<sm . (12)
=1

In Equation 12 Am = ¢(p -j) is the p. j-th element of the channel correlation matrix. Given
the basic orthogonality property of MMSE residuals, namely,

l:(x“_|hm+|(n))'0 , 0 €< m-1 , (13)

itis casily seen from kEquation Ila that

JJF m

‘0
l:(hmtn)l)](n)): € sJo=mM=23,...,N (14)

n

R ol e
E(xg),j=m=1

where €,y represents the MMSE of an m-point -step linear prediction filter. Thercfore,
the bm(n) represent a set of N orthogonal signals which can now be used as the inputs to
equalizer gain controls.* However, it remains to be seen how the lattice algorithm of
Equation 9 and Equation 10 can be implemented adaptively.

*It should be noted that an additional set of N orthogonal signals, f,, (n + m - N), wherem =1,.. N~ 1,
15 also available from the lattice algorithm, as can be seen by using a similar argument as that which led to
Equation 14

6




IMPLEMENTATION

We will use the algorithm below, proposed by Makhoul 1011
tion of the AL algornthm presented by Griftiths.” Specitically I\'“I in Equations 9 and
FO s replaced by K (n) and updated according to the following adaptive algorithm

which is a modifica

: ; a |
I\mln# 1) l\m(nH g 'm”(n)l) (114)*1 m)bmﬂ(n)‘

)I“‘“H])

I<m<s<N-1 . (15)

In Equation 15, acis the normalized su p size of the adaptive algorithm and is nslmlui to
0O << a << 2 for stability |U I Also, ”ﬁ)“” is the n-th iteration estimate of the sum E ll L)
+ I(I)I—L(n - 1)). The o5 m; are updated as follows:

) 1
o5(n) (1 - u)u“(n-lﬂu .l)fh —l);

m l m

Ilsm<N-1 . (l16)

Fquations 9015 and 16 are the AL algorithm which provides the orthogonal signal compo-
nents be(n). Gaven the backward and forward residuals at the n-th update. Kmim 1)
is computed from Equations 15 and 16, The backward and torward residuals at the (i1 )-st
update are then computed from Equation 9 using the updated retlection coefficients
I\'“HH 1) and so on

Equations 15 and 16 provide noisy estimates of the optimal K m Values as given by
Equation 10, The variance of these estimates is reduced as a = O (which also results in an
increase in the convergence time of Equations 15 and 16). However, due to the successive
orthogonalization which is intrinsic to the lattice structure, it is expected that the conver-
gencee rate of Equations 1S and 16 will not be limited by the ratio R, as is the case with
Equation 1. This is indeed displayed by simulations presented in the next section,
Stimulation Results.

Let us examine two specific adaptive algorithms for estimating the MMSL equalizer
tap coefficients. The first algorithm, illustrated in Figure 3, has recently been proposed by
Griffiths? and is given by

VI(n)-' u”—(;l(n)hltn) . (17a)
Vi) = Vm_l(n)—(;m(n)I)m(n) , 2<ms<N . (17b)

The tap coefficients, (;m(n) . are updated according to:

: ¢ o

(.m(n‘rl)~-(-m(n)+——~’——— Vm(n)hm(n) , 1<sm<N |, (18a)
7ﬁ](n)

5

Ym(n) =l - u)y;ntn l)+uhl~"(n) , lsm<sN | (18b)
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Figure 3. Adaptive lattice algorithm of Griffiths.?

As discussed in Reference 9, the sequence Vm(n) represents the output error se
quence of an m-tap equalizer. Therefore,

_y(m)

= 7 9
Vm(n) 4, n (19)

where y:,'“’ is the output sequence of the m-tap equalizer. Note that the value 71;;1(”' 1s the
n-th iteration estimate of the power, lz(hﬁ,(n)), of the orthogonal signal component b (n)
This umUmncnl is fed directly into the m-th equalizer tap, Gy as shown in Figure 3
Griffiths” points out that the convergence rate of the overall AL algorithm (represented by
Equations 9 and 15 through 1&) should be relatively insensitive to the eigenvalue ratio R,
especially when compared to Equation 1. This observation is valid, evidenced by the results
of the simulations in the next section.

A sccond adaptive algorithm for adjusting the equalizer taps, suggested by
Makhoul, !0 ig illustrated in Figure 4. This algorithm is given by:

N
Vn(n)=a, - E Gy (M by, (n) (20)
m=1

where the tap coethcients are updated according to

o
(.m(nfli G+ e |VN‘”)|’,“‘“)| 4 (2la)
Tin()
Al $ i # ) s
Y = (1 -(H‘/,"“'ll*“'Uhl““‘ll'“ - (21b)
l<m=<N

As can be seen from Equations 20 and 21 and Figure 4, V(n) represents the error output
sequence from an N-tap equalizer.
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Figure 4. Adaptive lattice algorithm of Makhoul,!0:1!

The AL algorithm represented by Equations 9 and 15 through 18, will be referred to
as AL) and the AL algorithm represented by Equations 9, 15 through 16, 20 and 21, will
be referred to as AL2. The main difference between the two algorithms is that in AL1 cach
individual error sequence (Vm(m for m=1,....N)is available, whereas AL2 only provides
the N-tap equalizer output error sequence. This property of ALIL, as noted in Reference 9,
makes it potentially useful for purposes of determining the optimum number of taps for use
in a time-varying environment. Specifically, since the time constant of the overall adaptive
lattice configuration is proportional to the number of stugcs.x later stages will have larger
time constants and. therefore. will not be able to track a highly dynamic input. Thus. the

3 ; e 3
= (n) fform=1... N, will have a minimum for

sequence of error expectations. E {Vm

some m

A number of other properties of adaptive and fixed-structure lattice algorithms
are presented in References 8 through 11.

SIMULATION RESULTS

Results of ALT and AL2 computer simulations are presented in this section for two
channels representing heavy distortion (R = 11.21). In all simulations 11-tap equalizers
were used and the symbol sequence a, was a random sequence of bipolar signals (a, = ¢ 1),
suttably delayed so that the optimal taps (given by Equation 4) were symmetric about the
center of the equalizer. Also. the channel impulse response in all cases was the raised-cosine
pulse. detined by

‘ '/z(l+<.us{27r(1-N”—l)/W}). I<Ki1<2N_+1 (22a)
h’ :
l 0. otherwise (22b)

Yy

where W Equation 22a was varied to provide different values for the eigenvalue ratio R.

['he results of the simulations for the two different channels are presented in Figures
5and 6. All plots were generated by ensemble averaging the squared error output of the
cquahizer over 200 individual learning curves. For purposes of comparison, the gradient
algorithm of Equation 1 was also simulated. FFor the gradient algorithm, the step size was




-r

ARE ERROR

U

DF QUTPUT MEAN SQL

L \'\710 C

LOG10 OF OUTPUT MEAN

CHANNEL-CORRELATION MATRIX EIGENVALUE RATIO - 11

11 TAP EQUALIZER, NOISE VARIANCE - 001

GRADIENT

- ALGORITHM
OPTIMUM

0GC
10
2.0 i
Figure ¢

0.0

16 ks

20 {—
RERAN PR
0 100

3.0 |[—

Figure 6. Comparison by simulation of convergence properties for eigenvalue ratio

100

Comparison by sumulation of convergence properties for eigenvalue ratio

200 300 400 500 600 700 800 900
NUMBER OF ITERATIONS

CHANNEL-CORRELATION MATRIX EIGENVALUE RATIO - 21
11 TAP EQUALIZER, NOISE VARIANCE 001

GRADIENT
ALGORITHM

OPTIMUM

200 300 400 500 600 700 800 900
NUMBER OF ITERATIONS




chosen to be o = 0.02 for the lattice algonthms o was chosen to be 0.025. Expertumentation
has shown that these values of a provided a good trade-off between quick convergence and
stability. The initial equalizer tap values for cach simulation was the zero vector. In
.’l(l‘(hll()ll. the mitial values for the Km(n) coetficients in Lquation 'S were zero, and the
o) and the i) were mitialized to umty

The simulation results for AL channel equahization of high distortion communication
channels are shown in Figures S and 6. Several points are of immediate interest. First, the
mitial convergence behaviors AL and AL2 are faster than for the gradient estimation
cqualizer, and are hincar, rather than convex. Second, there s a noticeable difference i
the steady state MSE levels between ALL (which updates the € ) according to the stage
WISC CITOrS VI(II)) and ALY (which updates the hi(n) using only the final crror V(n))

Fhese results do not necessarily establish the supenority of AL over AL for equalizer n
plementations since very little analysis has been done on optimizing the Littice and equalizer
parameters. However, several different o values were used i addition to the one used for
Figures 5 and 6 and a similar reduced MSE value resulted from ALL Another Hportant
result is seen from comparing the ALL curves in Figures S and 6. The ALL equalizer con
verges for both the R=11 and R=21 channels in approximately equal times and thus exhibits
the cigenvalue msensitivity which theory suggests. The gradient estimate equahizer, on the
other hand, required an increasing number of iterations to reach convergence as the
cigenvalue ratio was increased

CONCLUSIONS

In this report, the application of adaptive lattice algorithms to channel equalization
has been considered. Unlike the majority of proposed self-orthogonalizing algorithms, the
AL algonithms only require a number of operations per update which is lincar with respect
to the number of equalizer taps. Furthermore, the rate of convergence of AL algorithms
appears inghly msensitive to the cigenvalue disparity of the channel-correlation matrix
Of the two AL algorithms investigated, the algorithm ALT which minimized the stage-
wise errors of the equalizer possesses a much lower steady-state MSE than the algorithm
AL2 which nimimized only the final equalizer error. This excess mean square ¢rror in
steady state may be attributed to the fact that the cqualizer tap coctficients may be noisier
when mininnzing only the final error. However, at present this relationship is not well
understood and s an arca for further investigation.
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