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This experiment measured human thresholds for divergence change in the
form of sinusoidal expansion and contraction of dowrward-moving 16-line
elanent patterns on the face of an oscilloscope. The adbjective was to
determine whether blur pattern divergence change sensitivity was acute
enough to be of any practical value in visual orientation using display
information. \

In order to more fully characterize this potential visual capability
thresholds were measured at five different frequencies of divergence chanae
(1/4, 1/2, 1, 2 and 4 hz.) and at two different vertical pattern welocities
(8 and 16°/sec). This also allowed separate assessments of the contributions
of variables related to the form of the motion math and of those related
to pattern notion per se. Also, a foveal and a peripheral retinal locus
were studied and divergence changes were superimposed either upon parallel
pattern motion or ypon a patterm motion that diverged ten degrees at the
display extremes, thus providing a check of the generalizability to other
parts of the retina and of the visual field.

bservers proved to be very sensitive to divergence change and could easily
use it for visual orientation improvement in a large number of situations.
Sensitivity was greater for higher-frequency oscillations and for slower-
moving pattems. A comparison of high-velocity and high-frequency pattems
with low-velocity and low-frequency patterns which would have the same
element paths but slower iotion indicated that either motion sensitivity
per se or form information such as path curvature could underly the
abtained thresholds.

Foveal viewing provided the best sensitivity; however, the 30-degree
peripheral condition was not far behind. Diwvergence change was only
slightly more detectable when it was superimposed on parallel rather than
diverging trajectories, indicating that divergence change in parts of the
blur pattern that already have divergence 15 still useable.
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INTRODUCTION

When an observer and a part of his environment are in
relative motion with angular velocities that exceed a few
degrees per second, there is appreciable motion-produced
blurring of the textures that he sees. Textural elements
such as points appear to be elongated in the direction of
motion. The resultant blur patterns, patterns of semi-
parallel streaks, are uniquely related to certain aspects of
the motions that produced them and often the observer is able to
perceptually assess his own history of motion using the
information that is present in them. The first prerequisite
of course is that he is able to detect the pertinent
information. The present study is addressed to this issue
and asks whether, when there is a small change in the
divergence angle between the blur lines, the human observer
is able to detect it.

Such divergence changes occur primarily when the
observer and the target change separation; they can occur
under various conditions of eye movement or when a craft
rolls or pitehs (Harrington and Harrington, 1977).

The major questions that were addressed in this study
were: 1) To what degree are human observers sensitive to
changes in divergence of simulated blur patterns? 2) Is
divergence change information useful in the periphery of
the retina as well as the fovea? 3) What are the effects on
blur pattern divergence sensitivity of the frequency of
divergence change and of the angular velocities of the
elements producing the blur patterns? In practice divergence
of a blur pattern can change very slowly as when a pilot
flies lower and lower when landing or it can change quite
rapidly as when a pilot flies over a sharp rise in the
ground.

The simulation was carried out using hybrid computer-
generated patterns displayed on an oscilloscope. These
patterns consisted of 16 illuminated elements that moved
down the screen with an angular velocity of 8°/second or 16°/
second. The elements of the pattern would alternately
diverge and then converge as downward movement continued as
though each was mounted on the bellows of a sinusoidally
squeezed accordian that moved also in the downward direction.
The purpose of this choice of stimulus for measuring
divergence change thresholds was to allow more easy general-
ization from these parameters to the more complex situations
encountered in practical design. Sinusoidal expansions
and contractions of the pattern were chosen because with




fourier analysis it is possible to break down any complex
divergence cnange into component sinuscidal changes. Then,
knowing the frequency response of the human operator, we
can assess his ability to process divergence change under
the particular conditions in question.

In the experiment reported here five different
frequencies of sinusoidal divergence change were employed
and also two different angular velocities of pattern
movement were used.

DESCRIPTION OF THE EXPERIMENT

Subjects

There were ten subjects for this experiment; all were
students at the University of Nevada, Reno, and they were
paid for their participation. Subjects were run individual-
ly for a total of approximately five hours. All had normal
visual acuity.

Procedure

During a session subjects were seated in a darkened
viewing booth 29 inches from a 5-inch diameter circular
scope and familiarized with the two fixation points
(central and peripheral - 30° left) that they would use
during the experimental trials. Subjects' eyes were
monitored to ensure their maintaining the appropriate
fixation.

There were two sub-experiments conducted using the
same subjects. The first considered thresholds for
detecting divergence change (thresholds being the points
at which the subjects changed their judgments about the
pattern) with angular velocity (8 and 16° /sec) and frequency
of horizontal oscillation (L/4; L/2, 1, 2, or 4 hertz)
varying. One fixation point (central) and one divergence
value (0° at the beginning of a trial) were used. The
second sub-experiment determined threshold for divergence
change with speed held constant (at 16°/sec); two fixation
points were used (central and 30° peripheral), and there were
two divergence values at the beginning of a trial (0° and
10°). Figure 1 shows two different displays, one where
divergence change is superimposed on parallel trajectories
(0° divergence angle) and one where divergence change is
superimposed on a 10° divergence of the element trajectories.
Five frequencies of oscillation were again used.




At the start of a trial subjects were shown a pattern
of moving elements on the screen and instructed to "Say
no, if the elements appear to be moving along a path with
a constant angle; say yes, if the elements appear to be
moving along a path with a constantly changing angle. During
each trial, a pattern of elements moving along a constant
path may gradually begin to move along a changing path.
As soon as you notice any amount of change, respond with
"yes"...(a sample was given)...A pattern of elements
moving along a changing path may begin to move along a
constant path. As soon as you notice the path becoming
more constant, say "no"...(a sample was given)... Sometimes
the pattern of elements will remain the same during the
entire trial. Therefore, you must be somewhat certain that
you notice a change before you respond."

Threshold was measured as the mean stopping point
(averaged over the ascending and descending trials), and
analysis was based on these means (summing over the twenty
trials per condition).

Equipment and Stimulus Generation

The stimuli were electronically generated and presented
on an oscilloscope. Figure 2 shows the arrangement. In
common synchronization with a digital clock a vertical
sawtooth provided the downward motion of the trace, a
16-step generator provided the horizontal levels necessary
for each of the 16 vertical sweeps to be positioned and a
32-step square pulse generator stepped through a memory
that was loaded to provide one "on" location per vertical
line, thus giving one element on each vertical line when
the trace modulation was turned on. Divergence of the
vertical lines employed in other experiments was induced
by mixing some of the vertical signal with the horizontal
signal so that as the trace moved downward its horizontal
component increased to spread out the lines at the bottom.
Curvature of the patterns, employed in a previous experi-
ment, was produced by introducing a controlled amount
of signal from a memory that had been programmed to give the
appropriated magnitudes of offset, into the horizontal
deflection. Curvature change was previously brought about
by sinusoidally attenuating the horizontal signal to the
oscilloscope. In this experiment divergence change was
caused by sinusoidally attenuating the horizontal gain of
the oscilloscope.

In this experiment the rate of pattern advance was
variable, assuming one of two values under control of the
experimenter. Subjectively the impression was of up-and-
down motion imposed upon the flow of the elements as though
one were looking at individual elongated bars on the ground
below a helicopter changing altitude sinusoidally while




in forward flight (see Figure 2).

RESULTS

Two analyses of variance were performed. The results
of the first appear in Table 1 where the effects of
subjects, angular velocity of the pattern and frequency of
lateral pattern oscillation are assessed. All of the main
effects are highly significant but the interactions are not
except for velocity and frequency.

The second analysis measured the effects on threshold
of four variables: subjects, whether the pattern had a
constant divergence even when no oscillation was present,
central versus peripheral viewing and frequency with which
the pattern oscillated horizontally. The results of this
analysis appear in Table 2. Again, all of the main effects
are significant but only the fixation by frequency inter-
action appears to be.

In Figure 3 the effects of horizontal oscillation
frequency on threshold for the detection of divergent-
covergent (or expansion-contraction frequency) oscillations
are shown for the two separate pattern velocities. Chang-
ing the frequency of oscillation has a pronounced and
regular effect on threshold with the higher frequencies
being detected at much lower amplitudes.

Also in Figure 3 it can be seen that decreasing the
pattern velocity allows detection at a more sensitive level
with this advantage being regularly stronger as the
frequency of horizontal oscillation is lowered.

In Figure 4 the effects of peripheral vs central
viewing and of whether the divergence oscillation was
superimposed on a constant divergence (10° divergence angle)
as opposed to being superimposed on otherwise parallel
trajectories (0° divergence angle) are shown again at the
five different frequencies of oscillation.

Central viewing shows an appreciable advantage over
peripheral viewing which seems to decline as the horizontal
oscillation frequency increases. Also there is a small
but regular tendency for threshoclds to be lower when the
oscillation is superimposed on parallel trajectories rather
than appearing on trajectories that are already diverged.

Table 3 shows reformulated results from an earlier
experiment on the detection of curvature change. These are
included here for comparison with the present results. This
will be undertaken in the discussion section.
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Table 1

ANALYSIS OF VARIANCE SUMMARY
SOURCE DF S8 MS P
Subjects 9 2,176.67 241.85 <00
Angular Velocity 1L 228.31 228.31 <.01
Error (1) 9 11525 12.81
Frequency 4 12,0823 3,012.83 <.01
Vel.x Freq. 4 323.64 80.91 <.105
Exrxor (2) 72 2,463.47 34.21

i o



Table
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ANALYSIS OF VARIANCE SUMMARY

SOURCE DF SS MS P
Subjects 9 8072577 B96.97 <101
Initial Divergence il 257 .87 25387 N.S.
Frror (1) 9 481.25 53047

Fixations il 8,689.57 81,1689, 57 <.01
B, x Ei. 1 12.65 12,65 N.S
Error (2) 18 2 a1 61 118.98

Frequency 4 53,5767 V3,394, 2 <.01
Div. x Fregq. 4 137.96 34.49 N.S.
Eix. % Ered. 4 2,;,164.39 541.10 <. 01
Bivi. X B, 4 225100 Sl NS
Exror 144 7,786.05 54.07
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Table 3

CURVATURE CHANGE (mm)

Central Viewing

hz 8°/sec 16°/sec
1/4 746 Vs T
1/2 51,7 7.6
1 3.6 SYS
2 2.8 3.3
4 2.3 2.8
Peripheral Viewing
(30° Left)

hz 8°/sec 16°/sec
1/4 10.2 13.5
1/2 14 10.4
1 5148 AN
2 4.8 Gon L
4 3 4.6




DISCUSSION

The major finding of this experiment was that the blur 4

pattern parameter of divergence change is well within the

range of human useability. In the following the effects of

the separate variables under study on this useability will

be discussed and, although the experiments were not geared

toward discovering the underlying mechanisms of divergence

change detection per se some information pertinent to the

question of mechanisms was forthcoming and will be noted as

well.

Frequency of Oscillation

Figure 3 shows the relation between the expansion-
contraction frequency and threshold for the detection of
horizontal oscillation (divergence change threshold). A
There is a very strong relationship with thresholds appear-
ing to decrease asymptotically to approximately one
millimeter foveally. This value is one of the most
impressive that was encountered in the investigations on
blur patterns so far. Translated from the experimental
context to actuality this distance would correspond to a
movement 100 feet below a pilot of on the order of 1.5
inches which in turn would signal a change in altitude of
about two feet. It is possible that this figure could be
significantly improved if the grain of the blur pattern
were made appreciably finer as in fact happens with
naturally-occurring blur patterns. Previous work of
Harrington (1967) showed that as static lines with disparate
slopes (such as are found in divergent or convergent blur
patterns) are packed more closely together, it becomes
easier and easier for observers to detect the divergence.
The blur patterns used in this experiment were somewhat
coarse the elements being packed with an approximate
density of only one element per square inch. This is a
much coarser pattern than one would be likely to encounter
in nature except under very unusual circumstances.

There are several possible explanations for why the
threshold rises so dramatically at the slower horizontal
oscillation frequencies below 2 hertz. One of these is
that the horizontal component of velocity becomes too slow
to be detected by a human visual system. It seems unlikely
perhaps that the visual system would partition the motions
of the particles into horizontal and vertical components in
the same way an oscilloscope does and presently there is no
completely definite answer as to whether or not this could
happen, but there are experiments which hint strongly at
this alternative. Psychophysically Hershberger, Stewart
and Laughlin (1976) experimentally pitted cues that would
lead to perception of one direction of projected rotary
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motion against cues that should cause perception of motion
in the orthosonal direction. Their analysis indicated that
both horizontal-related cues and vertical-related cues had
significant effects but that there was no interaction,
implying that in this case there was functional independence
between some horizontally tuned system and a vertically
tuned one. Physiologically also there are an infinity of
possible mechanisms based on current knowledge that could
lead to a horizontal-vertical dichotomy in processing.

When the data of this experiment is compared with
psychophysical data from velocity threshold experiments there
is a close match under the speculation that horizontal move-
ment is the pertinent stimulus variable in divergence
change detection. When the sinusoidal oscillation used here
to produce divergence change has a frequency of one hertz
then the corresponding excursion on the display in the
horizontal direction corresponds to a visual angle of about
5 minutes of arc which implies that the horizontal velocity
component is about 5 minutes of arc per second. At one-
quarter the frequency, or 1/4 hertz, the velocity is only
about one minute per second. Aubert (1886) measured
velocity thresholds for moving lines and found that with a
stationary point visible nearby the thresholds were on the
order of one or two degrees per second and that without a
stationary reference point they were twice that high. Thus
it appears evident that the horizontal velocity component
could well be the key variable 1in divergence change
detection and, as Figure 3 shows, that a lack of adequate
velocity sensitivity could lead to the sharp rise in thres-
hold evident at lower oscillation frequencies. If this is
true however the explanation fails to encompass the
significant and reqular difference between divergence
change detection in the faster 16 degrees/second patterns
and those with half that vertical velocity.

In the curvature change experiment reported elsewhere
(Harrington and Harrington, 1978) it was found that thres-
holds conceivably could have been limited by the amount of
curvature in the patterns if one entertained the parallel
assumption that to detect curvature change, cbservers were
simply attending to the alternate emergences of concave-
right and then concave-left curvature and that the amount of
curvature present when below-threshold curvature changes
were present was simply inadequate for detection. Compar-
ison with the data of Pettee (1978) and with Valle (1956)
for detection thresholds for curvature of static lines as a
function of line length showed that such could be the case.
Similarly here calculations show that the maximum curvatures
on the screen at threshold values of divergence change are
in the appropriate threshold range.
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As was the case in the curvature change experiment, it
is possible to isolate the variable of absolute curvature
present on the screen even though maximum curvature in the
patterns does depend upon the frequency of the horizontal
component of oscillation because a sinusoidal track of
higher frequency necessarily has sharper curves at the
peaks and although the curvatures of the trajectories
depends on the velocity of the pattern. A faster vertical
component stretches the sinusoidal trajectory out and there-
by lessens the sharpness of its curvature. This separation
of trajectory curvature from frequency and velocity is done
by comparing patterns of similar frequency and velocity
with the responses to patterns of half the horizontal
frequency and half the vertical velocity. The result is
that the trajectories traced by the elements is exactly the
same and thus has the same inherent curvatures; the elements
merely move on that pattern twice as fast. Figure 5 shows
such a comparison in which the data seen plotted in Figure 3
have been replotted shifting the l6degree per second curve
one unit to the left to bring respective patterns of the two
classes into vertical alignment such that each vertically
aligned pair will have identical trajectories. When this
comparison was made for the curvature change data it was
found that there were no differences in curvature thres-
holds for the two patterns if the shapes of the trajectories
in the patterns were the same; therefore, trajectory
curvature was potentially implicated. Here however it is
clear that even though two given patterns may have identical
paths of travel for their elements the pattern exhibiting
the higher frequency and higher vertical velocity will be
detected more easily.

Figure 6 however suggests that the shape of the pattern
may interact with the vigour of its internal dynamics. The
comparisons of like-shaped but different-speeded patterns
of Figure 5 are replotted to show that the relation between
trajectory shape and the difference between threshold
responses for different-speed patterns exhibits roughly
asymptotic behavior as the sinusoidal element paths on the
screen become shorter and concurrently the curvatures of the
patterns become sharper. The possible importance of the
vigour of relative motion, meaning primarily the frequency
of the horizontal component, can also be inferred from
Figure 7 comparing the results of the curvature
change experiment with those from this divergence change
study. Compare in terms of their differing pattern para-
meters, the displays from the two experiments. For a given
vertical pattern velocity and a given horizontal oscillation
frequency the curvature change patterns will have more
overall curvature since all of the tracks have a specific
and equal amplitude of oscillation. The divergence change
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paths however never have any curvature of the central motion
path since the display divides the curvatures in one direc-
tion that lie on the left of the display from their mirror
image changes on the right. Maximum curvature eqgual to the
corresponding measure for curvature in the curvature change
experiment is found to be one cm. from each extreme
horizontal margin of the display with intermediate amounts
of curvature being found between the center and the extremes.
However the divergence change patterns trade this relative
lack of overall curvature for considerably more relative
internal motion. While elements in curvature change dis-
plays always move horizontally together a particular
distance, elements in the divergence change displays on
opposite sides of the screen move away from each other
producing twice the amount of relative movement.

Figure 7 compares threshold responses for horizontal
oscillation for the divergence change and the curvature
change experiments. Results are quite comparable at higher
frequencies of horizontal oscillation but when this side-
to-side drift becomes slower, then there is considerably
more sensitivity to divergence change even though the
overall pattern curvature is less and the frequency of
oscillation is the same. It would seem that greater
relative motion in the pattern may be responsible for the
greater sensitivity. Perhaps the most tenable speculation
about this interaction would be that at higher frequencies
the dynamics of the eye movement systems and feedback
systems, having poor low-frequency responses, pass the higher
frequencies adequately but are likely to drift along with
the lower frequencies. In the divergence change situation
there is relative movement of twice the veclocity because
the elements are moving apart from each other and this
movement cannot be ignored by a visual system that has
trouble keeping track of the positions of slowly-moving
things because there is relative movement on the retina in
both directions, so that rather than keeping track of
absolute position, now the task becomes one of keeping
track of relative position. Kinchla (1967) has speculated
on the basis of his work that there are two kinds of motion
perception. The first is "absolute" wherein there is no
external reference and the second is "relative" in which
some external reference is present in the patterns. Here
the curvature change patterns have attributes of the
former and the divergence change patterns have attributes
of the latter. Related to this dichotomy and bearing on
the experimental results is the finding of Gottsdanker (1962)
that acceleration detection is better if there is a nearby
stationary landmark in the pattern. In these experiments
of course the landmark would be a nearby pattern element
that, in addition to being stationary, moved toward some
other element, thus making the reference even more emphatical-
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ly point to relative movement between the two. Whether
these latter contributions to the idea of relative versus
absolute movement would show an interaction with movement
frequency is not known; however, the dynamic characteristics
of the visual system in general would suggest it.

Fixation

The patterns were projected onto different retinal
areas in order to determine whether the use of the blur
pattern parameters under study would be feasible in
peripheral vision. Figure 8 shows that there is a definite
central viewing advantage. Whereas it was previously noted
that threshold in central viewing would asymptote at on
the order of one millimeter of peak-to-peak excursion it
can be seen in the figure that in the periphery the
threshold peak-to-peak excursion of an element 1 cm from
the edge of the display would asymptote at perhaps four or
five times that value and that at lower frequencies of
oscillation the peripheral retina, while still fairly
sensitive, shows an even greater disadvantage.

This difference probably results, in terms of the
previous discussion of mechanisms, from the lesser peri-
pheral acuity and sensitivity to curvature and components of
lateral velocity in the pattern and was an expected finding.

The implication of this central-peripheral difference
and of the absolute sensitivities in general is that for
very sensitive perceptual tasks involving divergence
change, for example altitude change detections, foveal
viewing should be employed but that for coarser judgments
a display in the periphery of the visual field would be
adequate.

Diverqgence Bias

Since the major emphasis of the experiment has been
toward investigating patterns that might be seen directly
below or in certain other restricted viewing areas, and
because the divergence was superimposed on parallel
trajectories such as are found directly below a craft, a
separate condition was included to provide an initial test
of the generality of the foregoing results. In this
condition the divergence change oscillations were super-
imposed on trajectories that had a maximum at the outer
extents of the screen of 10 degrees divergence. This case
would be encountered in actual flight if for example the
pilot were to look to the front of the craft or to the front
and to the side as he flew over a small hill.
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The results of this phase of the investigation are
shown in Figure 4. The extremely small decrease in
sensitivity to divergence change with the 10° divergent
trajectory may be the most important point emerging from
the figure in that a high degree of similarity apparently
exists between these separate locations in the visual field
and thus the generalizability of the results likely
includes the majority of the other portions of the visual

field as well. However a small but regular advantage can be
seen of the parallel modulated pattern over the one whose
bias divergence was 10 degrees. It is felt that this is

probably due to the fact that parallel trajectories are a
very special case and as such have divergence change cues
peculiar to themselves such as uniformity of acceleration

up and down the patterns. If this is true then the
advantage seen is probably not a function of the amount of
"carrier divergence" upon which the changes are superimposed
(which would correspond to different angles of regard

around in the visual field). Experiments employing other
values of modulated divergence would need to be carried out
to answer this point.

Subjective Appearance

Viewing the divergence change patterns when the change
was above threshold gave pronounced visual impressions of
a surface that moved sinusoidally closer and farther away
as it moved along beneath (or beside depending on the
viewer's perceptual set). When the divergence change was
below threshold the appearance was of flying over a surface
looking down and maintaining a straight and level attitude.
When the ten-degree divergence was present the impression
was the same except that the surface involved appeared to
be tilted.

The visual sensations were by-and-large what would be
predicted by the "decoding principles" of Johannson (1972).
Johannson notes that a number of his movement patterns,
employing only a few elements in each case, obeyed his
principle of minimum object change where the preferred
perception is to see an object that does not change its
own dimensions but rather changes its location or orienta-
tion. This in fact was the case in this experiment and a
rigid surface perhaps analagous to the ground or to a
subway wall was seen.
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Display with divergence change superimposed on parallel trajectories

Display with divergence change trajectories superimposed on 10° of divergence

FIGURE 1
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FIGURE 2

Schematic diagram of the synthetic blur pattern generator.
In common synchronization with the clock, vertical lines on
the display are produced by the vertical sweep generator,
displaced successively from left to right by the 1l6-line
generator and modulated to produce one element per line by
the 32-step generator, the memory and the intensity modulator.
Divergence change is produced by mixXxing sinusoidally varying

amounts of sweep siagnal with the horizontal displacement

generator's signal.
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