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We consider iden tification problems for members of

the exponent ial f amily , apply ing the results to the density

of the logi stic m odel for  l i f e  table data .

For this  model we want  to know th e fo l lowing:

1. When are the max imum likel ihood estimates for

the model parameters unique;

2. What type of inferences may be made if the maxi-

____ mum likelihood estimates are not unique?

Notin g the fo rm of the l i ke l ihood f or the logi stic

model , question 1 is considered for tho exponential family.

We obtain an answer for question 1 in this context. App1y ir~g

this answer to the logistic model , we find that a unique

maximum likelihood estimate exists if and only if the density

is in one to one correspondence with its parameter space.

To answer question 2, we consider members of the

exponential famil y where the dens ity is not in one to one

correspondence with its parameter space. As a guiding

example of such a density, we consider the normal linear
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model of less than full rank , discussing the concepts of

estimable f u n c t i o n  and testable hypothesis , wh ich have been

developed for this particular case . We then show that the

concept of uniform identifiability is a generalization of

the concept of an estimable function . Further , through the

idea of an identifiable set, we extend the concept of a

testable hypothesis. We then apply the resulting theory to

the logistic model.

4 .
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1. INTRODUCTION

Thompson (1976) in troduced a log istic model for

covariate effect in the analys i s  of grouped l i f e  t imes.

Maximum likelihood is proposed as a method of estimating

the parameters of the model. It is noted that the likeli-

hood function is both concave and d if f e r entiable everywhere

on the parameter space; thus, a point is a g lobal maximum

if  and on ly if it is a solution to the likelihood equations.

However , in a numerical example , the l ike lihood equat ions

are l inear l y  dependent and , to obtain a unique solution,

a constraint must be imposed on the parameters. This causes

a problem in the appl ication of the logistic model ; based

on the same data two statisticians might obtain different

maximum likelihood estimates for the parameters. One might

be able to correct the problem of non—uniqueness by a

reparameterization of the model , but , in doing so, the

physical meaning associated with the parameters might be

lost ; thus , it is desirable to know the fcllowing :

1. When are the maximum likelihood estimates for

the parameter of the model uniq ue;

2. What type of inference may be made if the maximum

likelihood estimates are not unique?

Noting the form of the likelihood for the logistic

model given in Thompson (1976), we will consider questions
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1 and 2 fo r  the ex ponent ial f a m i l y  and use the log istic

model as an example to illustrate the resulting theory. We

first consider background material for the exponential

f am i 1 ~ ‘.



3

2. Soni; P ROI ’EPTI l~ 01 Till: E X l ~O~~~NT11\1 , FA~1T LY

Let p be a o—finit .e m ea s u r e  on and

(1) p ( y ; a )  exp( ~~Ty _ ~~ ( c t ) )

be a proLaLility den s i ty  f u n c t i o n  w i t h  respect  to p

Fam~.li. e~; of f o r m  (1) are sa id  to be exp on e n ti a l  f a u f l i c~

W i t h  n~ t u  r~~1 i~r~~ L~r a , see Lehruann (1959)

Now

J p (y ;~~)d p ( y )  = 1

thus ,

T(2 )  ~ (a )  in f cxp (~ y ) d~i ( y )

or ~() i s  the  ]og moment  g e n e r a t i ng  f u n c t i o n  of p

Let A {o~~q ( c t ) < a } ,  then A is sa id  to be th r .

r I , t n r a l  
~~ 

r~~~et er  ~j~ace of ( 1)  . Lebm anr i  shows t hat  A is

a conve;~ set . For 0 in A
0 
, the i n t e r i o r  of A , the

moii’’sts of ( 1 )  can  be ob t a ined  f rom (2) by di  f f c re n t i  at: I

un der  t l i r  i n te g r a l  si g n .  In p a r t i c u l ar , if Y = (Y1, . . ., Y~~~

has d e n s i ty  p ( y ;~m ) then

— a4mE Y j~~~~~~L~ii a=a 0

2
var Y. ~ ~~~~~~~~

1 23cm . c m c ~1 0

P

-

~

.:--- —
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and

.2
cov(Y.,Y.) =

1 3 1

Let ~~(i) be the covariance matrix of Y evaluated at ‘~~

Then

• 2~
= ( _ _ ~l~~~

1 3

A basic proper ty of the exponent ia l  f a m i l y  is tha t

the range of Y does no t depend on the choice of param eter.

Lemma 1. The support of ~i is the support  of P

for  all cm

Proof. Let

P cm ( K )  = 
‘K p(y;r4dp (y)

• • r TP cm ( K )  = 0 impl ies  
‘K 

e x p ( r A  y ) d ~ = 0 ; however ,

exp(cmTy) >0 for all y . Therefore , P (K) = 0 if and

only if p (I~) = 0 .

At th i s  po in t we need two prel im inary  results  hav ing

indirect implications for the exponential family.

Lemma 2. Let ~ be a positive semi-definite matrix ,

thr~n tg — 0 if  and only if gT~g 0
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Proof. ~ n a y  l e  r e p r ese nt ed  as

pTt p

where P is an orthogonal matrix and t. is a diagonal

matrix whose emi tr ie s , 
~~~

. , are the c iqe n v a l ue s  of 
~
. ; t h u s ,

T T T  Tg ~q = g P LPg = (Pq) A (Pg )

Hence , l e t t i n g  Pg = V  , we have

T 2g ~g = ~
j = l  ~

= 

Let g
T~g = 0 . Now � 0 , j = 1,... ,p, so that

= p T~ pg = pTtv = I)T(~~~v .. .  ó~ v ) ” = 0

This  proves the “if” part. The converse is obvious.

We will denote the column space of a matrix N (the

set of a linear combination of the columns of N) by Col (M)

and the rank of M (the number of linearly independen t

rows in N) by Rank (M)

Lemma 3. Let Y be a random vector with covariance

k
Wri t i ng  L = ‘J {y ~ bTy = c . }  for  the smallest  l inea r

i=1 i

manifold cont iining the support of Y , then

k
Co1(~~) = tj {y ~ b

T
y = O }

i=l
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P roof. Let S be the support of V and

k
L* = U {y j h T y = 0 }

i=l

We w i l l  show t hat g is perpendicular to L* if and only

if g is ~~rpendicular to Co1(~~) ; thus , due to the

uniqueness of the orthogonal complement of a subspacc we

will have the result.

Let q Le perpendicular to L* . Now , L = 9.~ + L
*

where ° is a fixed but arbitrary element of L ; thus ,

T T 0 • T
g 9. g 9. is constant for all 9. in L . g 2. is

constant for all ~. in L implies gTy is constant for

all  y in S ; thus ,

T . T
Var(g Y, = g ~ g = 0

and , by Lemma 2 , g is perpendicular to Col (~~).

Let g be p e r p e n d i c u l a r  to Co 1(~~) then gT~~~g =

Var(gTY) = 0 - V a r ( g TY )  = 0 implies there exists a con-

stant c such that gTy = c with probability one. By

definition , S is the smallest closed set which contains

Y with probability one; thus , since ( gTy c }  is closed ,

S c {gTy=c} . Let S~ = {y
1 
— y 2 y1

,y
2 cS} , then

gTs = 0 for  al l  s in S~ . Now , L* is the set of a l l

linear combinations of elements of S~ ; thus , gT9.* = 0

for all 9~* in L*

A result like Lemma 3 is stated in Jennrich and

Moore (1975).
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Co1Ofl~~~:/ 2 .  P a u k ( 1 )  r i f  ari d (i5i~ i f  t h e r e  e’:~~st :

a vec tor  L such t h • t  t. b~ V i ~ I n est surel y co~~St uni t .

Proof. Rank (
~~

) p if arid em il y i f

Rank((b 1,.  - - ‘“k~~~~ 
1 -

N a ry  3. Given a d e n s i t y  of 1 e r m ~ 1) w i t . F

covariance m a t r i x  ~~ ( ‘,. ) , let .  A be a mm I r i x  ~•~~O5: Ce iLl 1 5 5

form an o r t horm o r rm  1 b a s i s  f o r  t ~ e cal Wi S space of ~ . (e )

A can be chosen to he i r~de i , e n dr ~rn t  Of t h i r  a t  • : ; ‘e t er s  u

Hence the rank  an.] the s i n g u la r i t y  ~ f ~~( r j ) does not V • f ’ /

wi th c m .

P r o o f .  App l y Lenin a 3 t hen  L e n n i m a  I

We now cons ider  the cr ,r Iv& :~ i ty of ~ ( . )  on t~ -

Resu l ts  on t h i s  topic  may also be found in Ler~: (i972)

Theorem 1. q~ ( • )  is convex on C ; furthersore ,

~ ( )  is strictl y c 2 o r v e x  on ~ i f and only if t.h covar—

iance m atri x , ~~( z ) ,  of ( Y
1 1 . . . , Y ) T  is full rank.

Proof. Let cm , o * he in A then for 0 A ~ I

exp ~~( A c m + ( l _ A ) l *) fje x p ( r J Ty ) J e xp ( i z *~~y ) J
l _ A

d~i ( y )

� (f(.xr,(eTy) cl~ 1 y)  ‘ [f~~~p ((J*
T
y)dJ  (y) 1

1-A
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wi th e q u a l i t . y ho]ding i f  and on ly  i f  (u ~~s*) TY is almost

su re ly  (ii ) cons tan t  (see Roy den ( 1 9 6 8 ) ,  page 113) .  Thus ,

from ( 2 )  , ~ 
(~~) 1 s anvex on A

Now, if 4 (~~
) is not strictly convex then there

T
exists b u _ t z * with s,u~ in A such that b Y is

al most sure ly (p) constant. Conversely, suppose there

exists a nonzero vector b such tha t  bTY is almost su r e ly

(ii) constant. Pick u * in A and let a = cm * + b  . From

• T( 2 ) ,  4 ( u )  and a is in A . Now , (ct _ c z*) Y is

almost  sure l y ( p ) constant, so 4 ( . )  is not s t r i c t ly

convex . Thus 4 ( )  is not strictly convex if and only

if there exists a nonzero vector b such tha t  bTY is

almost surel y (p) constant. The Theorem follows from

Corollary 2.

Corollary 4. Let 9.(~~) be the log likelihood of

a sample of s ize  n taken from (1) then 2. (•) is concave

on A ; f u r t h e r m o r e, 2 ( ~~~~) is s t r ict l y concave on A if

and only if i(s) is full rank.

Proof. Let y1 . . .  yfl be a random samp le from ( 1),

then
n

- T i
— 

~~ cz y  — n 4(cm)
i= 1

th us

9 . ( A c x  + (1_A )cz *) — (A9.(a) + (1_X)9.(a*)

= — n ( 4 ( A c z  + (l_A )a *) — (A4i (u) + (l_A )qi (ct*))J
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C o r o l l ar y  5. Let & maximize Z(.) on A then ,

assuming ~(a) is full rank , ~ is unique .

Proof. A is a convex set; thus , if there exists

;hie b maximize 2.(.) then a&1 + (l—a )& 2 
is in A

(0  a < 1) ,  and f r o m  Corol lary  4

+ (1—a)&
2
) > a2.(&

1
) + (l—a)2. (a

2
) = 9 . ( & i ) 

~

wh ich is a contradiction .

Lemma 4 (Berk (1972)). 4 (~~) is strictly convex on

ft if and only if p ( . ; c m 1) = p(•;a
2
) implies a1 cz2 for

arty a1,cm 2 
in A

Clearly t (ct) need not be of full rank; however , in

the following we will show that if 4 (a) has rank r < p

then we m a y ,  by suitable transformation , obtain a family

of form ( 1 ) with r parameters  and covari-ince m a t r i x  of

full rank. This fact was mentioned in Berk (1972).

Theorem 2. Given a density, p(y;cm ) , of form (1)

with covariance matrix of less than full rank , and the

ma t r ix A of Coro l l ary 3, the t r ans f ormed var iables

Z = ATY aga in  have a dens ity of fo r m (1) but wi th n a t u r a l

parameter B= A~ c1 anu covar iance matrix of full rank .

Further ,

T T= 
~~~~ 

y;A a)
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Proof. Suppose ~ (a) has rank r p . From Lemmas

1 and 3

Tb .Y = c. , i = 1 , ... ,p—r

almost surely (ti).

Let B = (bl?•••~~bp_r)
T and C =

We may wri te

cm Ty = cZT ( M B ) ( M B ) TY

= ~Tj~j~Ty + UTBBTY

~~~~~ + cZTBC

almost surely p . Now, from (2 )

4(u) = cZ TBC + ql (Ap,T )

Substituting in (1) we get

T T Tp(y;a) = exp (rz APi y — 4(AA cm ))

Let Z = Pi
TY and p

~ be the measure def ined by

= p ({y~ATy~~~~})

for all r-dirnensional Borel sets B . Now, by the change

of variables theorem , see for example Lehmann (1959) ,
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T exp (ctTftA
T
y — 4(AATCL ))dP (y)

(yl A y cB }

= f exp(u
’1’Az — ~~(pJ~T ) ) j * ( )

B

= J exp( t~
’1’
z — 4*(e))dp *(z)

B

whe re 1~ = A”cm and 4*(1~) = 4(A1~) • Hence

exp(eTz — 4*(f~) ) is the density of Z with respect to

Thi s dens ity i s a member of the exponen tial fam i ly

wi th  na tu ral par ameter ~

The covar iance matrix of Z is AT4A which is of

full rank.

Next , let

m
(3) g(x ;0) = exp [ 

~ 
nk

(O) nI)
k
(x) —Q(0)]

k=l

be a density, with respect to a c-finite measure p

where 0 c 0 ~~, . Such densit ies are said to be members

of the e~ponential family. The following Theorem , a

stateme nt of which may be found in Berk (1972), relates

the exponen t ia l  fami ly  and the exponential fam i ly with

natural param eterization .

Theorem 3. Y = P(X) has density

f~~(y;ri (0)) = e x p ( ? r l
k
(O ) y

k
_ 4 (rl(O) )J

- - .  - • -  
~~~ 0~ - a -  . -- -- - - -  -
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a member of the exponential family with natural parameter

ri (0) . Further ,

g ( x ; 0 )  = f~~(n~(x);n (0))

Proof. Consider the transformation Y~, = n
~

n k (X )

k = 1 ,...,m and let f~(A) p{xkj (x) LA ) . By the change

of variables theorem ,

f_ i  exp ( 
~~ 

r j
k

( J ) I p
~~~

( x)  - Q( 9))dp (x)
n~ ( A )  k 1

= f exp(~~: 
~k~

1
~~

’k 
- Q (o))dç (y)

and

m
exp ( 1 

~k~ °~~
’k 

— 0( 0 ) )
k=1

is the density of Y
1
,. 

~~~~~ 
wi th respect to the measu re F~~.

Now

f exp( E 
~
lk
(
~~~

’k 
- 0(O))d~~(y )  = 1

imp lies QU )  = 4(n (0)) where 4 ( )  is the log moment

generating f un ct ion of ~ . Substituting in the density

of Y , and then in (3), we obtain the Y’~eorem .

Corollary 6. Let A be a matrix whose columns

form an orthonorma l basis for the colum n space of the

covariance matrix of j (X) . Z = AT*(X) has density
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= exp(I~
T
z — 4 ( ~~ ) )  , a member of the exponent ial

f a m i l y  wi th natu ral parameter ~ = A’
~
’
r~( O )  - The covariance

matrix of Z has full rank. Further

g (x;0) =

Proof. Apply Theorem 3, then Theorem 2.

In summary , app ly ing Theorem 3 and then Corol lary  4 ,

the log l ikelihood for a random sample taken from a fam ily

of form (3) may be written as 2. (ni (0)) where 9.(.) is

concave. Also, from Corollary 4, £ ( . )  is strictly

concave if and only if the covariance matrix of Y =

is full rank. A density of form (3) will be said to be in

canonical form if the covariance matrix of np (X) is of

full rank.

If the density of X is not in canonical form then

from Corol l ary 6 we may wr ite the log l ikelihood of the

samp le as c. (A
T

T I ( ( t ) )  where 9 ( — )  is strictly concave.
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3. UNIQUENESS OF MAXIHUM LIKELIHOOD Ifl THE EXPONENTIAL

FAM ILY

Let us now cons ider the maxi mum likelihood prob lem

for families of the form (3). Suppose that ~i is a

max imum likelihood estimate for 0. When will ~ be

unique? Huzurbazar (1949) demonstrates the uniqueness of

in families of the form (3) where m = p  - However,

f r om the f o l l o wing examp le, we see that m = p  is not

necessary fo r  the un iqueness of 0 -

Example 1 (Charnes , et. al. (1975)). We wish to

model the effect of radiation on bacteria in suspension .

For each radiation does level several dilutions will be

placed on petri dishes and the number of resulting colonies

counted.

Let

X .1 = concentration of bacteria in suspension ,

= rad ia t ion  dose ,

n. = number of d i lu t ions  observed at the ith
dose level

y .  . = number of colonies counted for  the 3th
1) dilution.

We assume that Y.~~(i = 1 ... fl ., i = 1 ... N) are independent

Poisson distributed random variables, Y1~ having expected

value

O1X~ 1 exp(—02 X .2) -
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The parameter ‘i
1 

represents the num ber of colonies

forming, per unit volume of suspension , when no rad iation

is presen t; 02 
describes the radiat ion sens itivi ty of

the bacteria.

We will est imate the parameters by maximum l ikel ihood .

The l ike l ihood fo r a sample Y~~ (j  = 1 . ..  ri~~’ i = 1 . . .  N is

proportional to

i~ 1 j~~l 
[Y~~~(ln (o1X11) -0 2X12) 

- o 1x~1 ex~~(-O 2x~ 2
) ]

or , employing the dot notation of the analysis of variance ,

( 4 )  
1~~~~

• 
( ln ( 0

1
X .1) - 02X .2) 

- n iO
1X.1 

exp (—0
2X . 2 ) ]

Now, this likelihood is one from a family of the

form (3) where m = N  and p = 2  . If (4) has a maximum

is it uni qu e? The l ikelihood equa tions for  ( 4 )  are

( 5)  
i=l~~~~~~

’ 
- n X ~ 1 

exp(-0
2X .2 )] = 0

and

(6) Z [-y
1

X 12 + 

~~~~~~~~~ 
exp (_e

2
X~~2)J = 0

From (5)

N N
(7) 0 1 

= 

~~~ ~
‘i. / E  n~ X~ 1 

exp (_O
2
X~ 2)
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s u b s t i t u t i n g  i n t o  ( 6 )  we have

(8) 
~~n .X.1 exp (_ O

2
X
~ 2

) 

N

.~~~~ 
ni

Xil Xi2 exp(—0 2X.2 ) E
i=l

Let
N
E n . X .  e x p ( - 0  X.

i=1 i ii 2 i2
g(02

) = 
N
E n

~
X
~ 1

X
~ 2 

exp (—0
2X.2

)
i=1

then

g ( 0
2
) =

N N N 
2— (

~~~~ rm. X .1 X .2 exp(— 0 2
X . 2

) ) 2+~~ n X
1
exp (—0

2
X
2
) 1 n.X .1X .2

exp(—0
2
X .2)

i=l 1=1

N
( ~ n . X . X . exp(-0 x •2 i 2

Letting a~ = /n
~
X1i exp(— 0 2X~ 2 ) and b

~ 
= X~~~

2 
a~ then

by Schwarz inequality

N 2 N 2 N 2E a .b .)  � ~ a. ~ b.
i=l i i  i=l i i=l i

w i t h  equal i ty hold ing only if = X
12 

is constant for

al l  i ; thus , assuming X
12 is not constant in
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g(0
2
) -‘ 0 . Therefore , i f  a solu tion to the l ikel ihood

equat ions exists, it is unique .

Given a solut ion to the l ikel ihood equa tions we w ill

show that it is a local , and thus uniqu e global , max imum by

showing that the Hessian of the likelihood is negative

definite when evaluated at the solution . A matrix is

posi t ive d e f i n i t e  if  and only if its principle minors are

posit ive (see Nobel (1969), page 395). The principle minors

of the nega t ive  of the Hess ian of the likelihood eva lua ted

at the solu tion of the l ikel ihood equations are

N —2 J
.
~~~~ 

~
‘i.0li=l

and

N — 1 N 2
.~~~~ ~~~~~ ~ n

~ X .1 X~ 2 
exp (—O

2
X
~ 2
)

i=1 i=l

~i~~l 
n~ X~ 1X~ 2 

exp(- 02X12))
2

The first principle minor is greater than zero and by

replacing 
~~ 

by the expression given by (7)  the second

is equal to

N N
~ n X .1 exp(—O

2X . 2 )~~ n.X .1X
2
2 exp

(_
~ 2

X
~ 2
)

i=l i=l

N
— ( E n.X. X . exp(-0 ~~~~• ))2

i i]. i.2 2 i2
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wh ich is also greater than zero ; thus the Hessian of the

l ike l ihood eval uated at the sol uti on of the l ikelihood

equations is negative definite .

In summary we have shown that  g iven a solution to

the l ikel ihood equa tions (5) and ( 6) t h i s  sol ution is a

unique globa l max imum of the likelihood (4).

To demonstrate the existence of solutions in a

numerical example we consider the following data:

i X . X. n. y.
ii. i2

1 1 0 6 299 28 3 280 246 264 254
2 1 1 2 169 184 ’
3 2 2 5 179 224 188 202 194
4 4 3 5 233 261 229 286 264
5 10 4 4 401 410 356 388
6 4 5 5 157 146 134 161 159

Usi ng a search technique to solve (8) we obtain 02 
= .4459

and , by evaluating (7) at 0
2 

, we have 
~l 

256.9.

Now , return ing to the general  discussion , suppose

0 is a maximum likelihood estimate . The likelihood for

a samp le of size n taken from a population of form (3) is

where

n
E 1nf ~ (q.i (x.);.)

i=1 i

From this we observe:

—4
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Theorem 4. 0 is unique if and only if

(i) n (0) is the unique maximum of 2.(•) on the

range of ri (-) , and

(ii) there exists no other 0 such that ri (0) =

The fo l low ing ex ample illustra tes the use of Theorem

4 in the logistic model of Thompson (1976).

Example 2 (Logistic Life Study Model). The log

likelihood of the logistic life study model is

n
= ~ [y.. (z. ~~~~~~~ — ln (l + exp(z. .~~+rh .))]j =1 v u s .  i) iJ 3 - 

13 3

i 3

where z’~ . is a vector of variables for the 1th individual

in the ~th time interval, S. is the set of survivors of

the ~th time interval , V. is the set of failures in the

~th t ime interva l , y
1~ 

equals 1 if the ~th individual is

in V
3 

and 0 if the ~th indiv idual is in S~ , and

~~~~~~~ ~~~r1m)
T is a vector of unknown parameters to be

estimated.

Now, L(13,n) is the log likelihood of a density

which is a member of the exponential family and in this

case the function r~(-) is the linear function determined

by z 2~~B + r~ . , i ~ V u S  , j = 1,... ,m and

m
= 

~ 
(y..~~~. —ln (1+exp (cr. . ) )]

j l V.uS. ~~ 3 1)

3 3
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For the logis t ic  model , hypothesis  ( i )  of Theorem 4

holds since we are maximizing a strictly concave function

over a linear mani fold ; and , hypothesis (ii) becomes

necessary and su f f i c i e nt for  a max imum likel ihood est imate ,
1~

~~ ~~~ 
, to be unique.

Thus , (13 . . .  r~~) will be a unique maximum like-

lihood estima te if and only if the ma t r ix

: 10. . . 0

z : 10. . - 0n1l

~lk 0 ...OlO ...0

Z
f l k  o ...olo. ..O

: 0 - . - 01

z
0 . . . 01

is full rank .

Though Theorem 4 was stated with the exponential

fami ly  in m ind , we may appl y it to any problem where the

density is a composite function. In the following example ,

we consider a modified logistic model , applying Theorem 4

to obtain conditions for the uniqueness of maximum

l ikelihood estimates :
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Example 3 (Modified Logistic Life Study). In

Thompson (1976) i tems censored in an interval were considered

to be not at . risk in the interval; thus, no contribution

to the likelihood was obtained from the interval in which

an individual was censored . Thompson (1977) considers a

modif ication of the logistic model to obtai n i n f o rmation

from the interval in which censoring occurred .

The log l ike lihood of the modi f ied logi stic model is

m
L(~~, r~) = 

~
. [ E y. .(z. .13+r~.) 

— ~ £n (1 + exp(z. . 13+r~~))
j l  V u S .  ~~ ~~ V.uS. i) 3

- 2
_i 

~ ~n (l + exp(z. .13+r~.))]
L. 13 3
3

where L. is the set of ind ividuals censored in the ~th
3

interval. Now,

L (13,n) = 
~
.(z

~~~
13+fl

~~
) ; i cV .uS

3
uL. , j 1,. ..,n)

where

m
= Z [ E y~~.u. . — 1 £n(l+expa. . )

j=l V .uS . ~ 1) V.uS. iJ
3 ]  3 ]

— 2 1 Etn (l+exp ct.. )J



22

thu s, if 9.(.) is strictly concave then by applying the

same reasoning as in Example 2, a maximum likelihood

estimate will be unique if and only if the matrix Z is

full rank . To show that 9 ( )  is strictly concave note

that

0 i~~ k or j
~~~

= — 
1 — 2 i = k , j = 2.

i. V .  S .
3 3

1 )2 i = k , j =L
l + exp cm 13 i L L .

3

Thus , the ma t r i x  of second order pa r t i a l s  of 9..(.) is

negative def ini te , and hence (see Roberts and Varberg (1973)

page 103), ~
( . )  is strictly concave .

Conditions (1) and ( ii)  of Theorem 4 are dif f icul t

to ver i f y  when working w i th  a part icu lar  problem ; t he re fo re,

i t is desirable to f ind  conditions s u f f i c i e nt for  both ( i )

and (ii) which are more tractable.

Consider (i). A necessary and sufficient condition

for 
~~(~~ ) to be unique is that

fl (O) n (cm.~ 9~(ct) � 2.(rt(0))) = (fl(0)) -
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In the  Ca,,e that y (x; 0) is in ciie n ic ~i 1 form ~r i1

V2. (r1 (0)) t- xi ~;t~ ;, a sufficien t condition for (I) may he

es tabl  i shed u~:ing the  f o l l o w i ng  wel l  known f c t c t  (see , for

examp 1 4 ’ , !~ol er  t tnd Varberq (1973), page 98)

a .  Let  2. ( ) be stri ctl y concave on A - m d

differentiable at then

? £ (z l) 1 /ci
2
)

imp i i (.
~~~;

(a
2 

- a
1
)TV2. (cr

1
) > 0

em ~~~~. If (r~ (0) 
— r~ (0) )‘V2. (r~ 

( s )) ~i 0 for all

0 then n (O) is unique .

Proof . By assumption

~ (O) c {a I (u - r~ (0) )
T

•1~~ ( (0)) ~ 0)

and f rom Lemma S

{ aI 2 . ( c m)  - P . ( r ì ( 0 ) )  and a i~ 
n ( 6 ) }

{
~ I (a- ( o ) ) T v 2 . ( ( t ) ) )  > 0 }

Thus , ~ ( O ) n ( cm l  2. (u) ~ 2. (
~~ 

( 8 ) ) )  = {i i ( 8 ) )

Wc~ w i l l  il l u s tra te  Th eor em 5 us ing Example 1.

The covari utce matr ix of 
~~~~~~~~~~~ 

is a matrix with

diagonal teri i~ ~~~~~ exp(—0
2X .2 ) and off diagonal terms
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zero; thu s , provided X~~1 is not zero for any i , the

dens i ty  of 
~
1 ’ • ’

~~N 
is in canonical form . Now,

~ (0) = ( 2 . n ( 0 1X 11) ~~~~~~~~~~~~ , 2 . n ( 01X~~~) — O
2XN2 )

and

N

i(a) = ~ (y. a. —n . exp a.)

thus,

(ri(0) - rI (O ))
T 

= (2.n (~~~) + (6
2 

-0 2 ) X 12 , . .  ., 2.n ( ~~~)

+ (6
2 

—

and

(y
1 -n

101X11 exp (—02
X12),.

— fl N
O
lxNl exp (

~~
6
2
XN2 ) ) T

Therefore

(~~(0) _n (o ))Tv2.(n ((J)) =

0 N

.~~~~ 
~~~~~~~ -n 1

61X~ 1 exp (-62X.2
) )  +

1 i=l

(0 2 0 2 ) E x . 2 (y .  _ n
~
0iX~ 1

exp (-~ 2X .2
) )

Now , from (5)
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i=l
ji. 

_ n
~~ 1

X
~ i

exP (-62X.2
)) = 0 ,

and from ( 7 )  and ( 8 )

i=l 
X12

(y
1 ~~

6
1
n
~
X
~ 1 

exp ( -6 2 X 12 ) )  = 0

thus , from Theorem 5 ri (6) is unique.

An assumption stronger than (ii) is that ri (.) be

one to one , th i s  is the case in Example 1. -

In fact , n ( O *)  = r i ( 1j )  implies

exp (—0~ X .2) = 01X . 1  exp (_ 0
2

X~~~2
) , i = 1 ,- . . .  , N

or

exp ((0
2 

— 0
~~
)X
~ 2
) = 1 , i = 1,...  ,N -

Th u s , assuming X12 is not constant in i , 0~ = 0~ and

0* — 02 2

In summary , through appl ication of Theorem 5 and by

showing that ri (- ) is one to one, we have shown that

hypothesis (i) and (ii) of Theorem 4 hold; thus, the

maximum likelihood estimate for the parameters in Example 1

is unique.
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4. ESTIMABLE FUNCTIONS AND TESTABLE HYPOTHESES FOR THE

NORMAL LINEAR MODEL

From Example 2 we see that the likelihood in Thompson

(1976) will admit a unique maximum likelihood estimate if

and only  if the linear transformation determined by the

matrix of covariates is one to one. Therefore , to look at

in ference  problems for  the logist ic  model when the maximum

likelihood estimates are not unique , we wi l l  cons ider

members of the exponential fam ily in which ri ( ) is not a

one to one function . In this case, problems of identifica-

t ion , as discussed in Koopmans and ReiersØl (1950), arise.

Before  we di scuss the identi f i c a tion problem in

general , let us consider another example of a member of the

exponential family where ri (.) is not one to one -— the

normal linear model of less than full rank .

In the normal l inear model we have an n x

dimension al ra ndom vector , Y , which we express as

Y = X8 + C

where X is an n x p matrix of known values , ~ is a

p x 1 vector of unknown parameters , and r is an n x”l

vector of errors distributed as a multivariate normal with

mean 0 and variance o2~ The log likelihood for y is

2 1 (y_X13)T(y_X8)
2 

a 2 2
C
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or 

- - 
~T T  

- _ _ _ _

thus , letting

2 T T  2 . 1 T
n (13 ,o ) = ( 1 3  x /o :-—---~ )

2o

T. T
guy) = (y •y y)

and
T T

Q ( 13,~~2) =
2o~

we may wri te the l ikelihood for y as

2 T  2
r~(8~~i ) ~p(y) 

— Q(13,ci

2 2 . 2 2Now , fl (13~~
,a
~~
) = r i ( 1 3 , o ) if and on].y if 

~~ 
= o

and X (B
~~
-B ) = 0 ; thus, rl (• ,-) is one to one if and

onl y if X is full rank . Therefore , the normal l inear

model of less than  f u l l  rank is a member of the exponent ial

fami ly  for  which  r~( . )  is not one to one.

In the normal linear model the concepts of estimable

functions and testable hypotheses are introduced to remedy

problems caused by X being less than full rank.

We will denote the null space of the matrix M (the

set of solutions to Hx=0 ) by Null(1.!) and the row space
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of M (the set of all linear combinat ions of the rows of

M) by Row (M)

An estimable function is def ined as follows:

A linear function of 13 is estimable if and only if there

is a linear function of Y which is an unbiased estimate

of it. From this definition we have the following :

Theorem 6. A T13 is estimable if and only if

~~=x Tr for  some r

Proof. If ~
T

13 is estimable then there exists

a vector r such that  E ( r TY) = rTx8 = A T13 for all ;

Tthus , A = X r
T . . T TConversely, A = X r implies E(r Y) = A 13

We may restate Theorem 6 as ~
T13 is estimable if

and only if ~
T 

is in Row(X)

Now ~ is a maximum likelihood estimate for 13 if

and only i f 13 solves the normal equations,

xTx13 = x
Ty

One important property of estimable functions is

given by the fo1lo~ ing result :

T . . .
Theorem 7. A 13 is estimable if and only if A B

is constant for all ~ maximiz ing the likelihood .

Proof. Rao (1965, page 181).
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Another important property of estimable functions

concerns tests of hypotheses. A hypothesis, H, s ta t ing

that 13 is in S {B 1AT I3 =m. , i =l ,...,9.} is called

testable if and on ly if A~~13 is estimable for each i

Without  loss of general ity we wil l  assume that the X1
t s

are li nearly independent.

Searle (1971) discusses testable hypotheses, showing

that  the sum of squares error under a nontestable hypothesis,

where all A T13 are not es timable , is equal to the sum of

squares due to error .  Let -~H be the hypothesis s tat ing

that 13 is in S~ . Seely (1977) shows the intersection of

the sets of expected values under the null H and the

alternative ‘~H is empty if and only if H is testable.

The following is a version of Seely ’s result.

Theorem 8.

xS n XS~ =

if and only if A’~13 is estimable for each i

Proof. Suppose for some i , A~~13 is not estimable

then , f ran Theorem 6 , A
~ 

is not in Row(X) ; thus , there

exists a 13* in Null (X) for which A ’fB* $ 0 . Let

be in S then 131 +13* is in Sc however ,

+ 1 3* )  = X 131 +X13* = X81
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Therefore ,

xS n XS~ ,‘~

Conversely, if XS n XS~ ~1 ~ then there exists in S

and 
~ 2 in S~ such tha t  = X 132 ; thu s , 

~2 
— is

in Null(X)

Now , f or at least one i , A~
’13 1 / A~~132 ; thus ,

— 13k
) ~~~ 0 . Therefore , A. is not in R o w ( X )  and ,

from Theorem 6, A~~13 is not estimable.

The next theorem gives a more exact relationship

Cbetween XS and XS

Theorem 9. If A~~13 is not estimable for at least

one i then XS c XS~ = Col(X) . Furthermore , if

is not estimable for  any i then XS = XS~

Proof. Suppose for some i that A~~13 is not

estimable, then f rom Theorem 6, A 1 
is not in Row(X)

thus , there is a ó in N u l i ( X )  such that X ’
~t5 � 0

Let 13 be in S then

A~~(13+6) = ATB + A~ ó = m~ + A~ 6 ~ 
m~

Cthus , 13+6 is in S . Now ,

X(8 +6) = XB + X6 = X8 ;

C Chence, X13 is in XS . Therefore, XS XS
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Now , Col (X) = XS u XS C 
=

Suppo se A~~t3 is not estimable for any i , then ,

from Theorem 6, for each i , A ’~
’ 

is l inear ly  independent

of the rows of X . Now , since the vectors

i = l ,...,9. , are l inearl y independen t, the equations in

the variable ri

A
’
~n = m. — A

’
~13 , i = 1,... ,P.

and

Xn = 0

have at least one solution for all 13 . Hence , for 13*

in S~ there exists ~ such that 13* + n~ is in S and

X ( 8 * +n *) =

Therefore , XS~ ‘ xS and the theorem follows.

We may extend the resul ts  of Theorem 8 to hypotheses

involving inequality constraints.

Theorem 10. Let

S = {8IA
’
~1 3 = m .,  i 1 ,...,s and A ’~13 �m., i = s +1,...,e}

then XS ii XS~ = 4 if and only if A~ B is estimable for

each i

-.4



32

Proof. If A~
’
13 is not estimable for some i

then, as in the proof of Theorem 9, there exists a 6 in

Null(X) such that AT6~~~~~ . Let 13* be in S then we

may f ind a real number r such that 13* + r6 is in S~

Now ,

~.(13* + r ó )  = X 13~ + rX 6 = X13*

thus , XE ~ XS~ ~ . The proof of the conv erse is the

same as that of the converse of Theorem 8.
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5. IDENTIFIABLE PARAMETRIC FUNCTIONS

5.1 Definitions and Properties

In the d iscussion of the norm al linear model the

concept ot an estimable function was used to solve some

of the prob lems associated wi th  X being less tha n f u ll

rank . To generalize this concept to functions of the

parameter of an exponent ia l  f a m i l y  member where n (- ) is

not one to one , we considered the concept of identif i-

ability . (See Theorem 17.)

Let Y be a sample w i th  dens i ty  f ( y ; 0 ) .  From

Koopinans and ReiersØl ( 1950)  a function h(.) of 0

will be called identifiable at if f( ;0) f(~~;00
)

implies h(0) = h (00
) . The sign if icance of iden tif iabi l i ty

is as follows : Suppose that an observation V is pro-

duced according to sane member of the class of densi ties

f( ;0), 0 i . From Y we w i sh to make an inference

about the true ~3 , say 0
0 

. The ch arac ter i s tic of 0 ,

in which we i~re in terested, is h P ) . If h() is not

identifiable at then there exists 0 such that

f ( ~~;EY ) = f(~~;00) but h(0 ) p~ h (00
) . Thus , even if

we could inf er the densi ty  perfec t ly ,  we could still  not

discr iminate  between h ( 0 ) and h(00)

Theorem 11. If f( ;00
) f( ;8

1
) then h is

i d e n t i f i a b l e  at  0~ if and only if it is ident i f iab le

at 01
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Proof. Suppose h() is identifiable at 0
0 

.

By definition , h(0
1
) = h ( 0 0 ) , and f(~~;0) 

=

implies h (0 ) = h ( 0
0
) . Hence f (.;O) = f(•;0

1
) implies

h ( 0 ) = h ( 01
)

Theorem 12. In the special case that

Y = (X
1
,...,X )  is a random sample from a density

then h ( s )  is iden ti f i a b l e  at 0
0 

if 
~~~~~~~~~ 

=

~~~~~~~~~ 
implies h ( 0 )  = h ( 0 0 )

n
Proof . Since f (x;0) H f~~(x.;O) , then

i=l
f ( ~~;0) = f(•;00) is equivalent to = f

x (;0 0
)

From Theorem 12, if we are observing a random

samp le from some densi ty then the set of funct ions

identifiable at 0
0 

is the same for  all sample sizes and

we may check h( - ) for identifiability at 0
0 

, for any

particular sample size, by check ing at samp le size one .

Let 0 be a maximum l ikelihood estimate for  0

then , from Zehna (1966), h(0) is a maximum likelihood

est imate f or h ( 0 )

Theorem 13. h(6) is a unique maximum likelihood

estimate for h ( 0 ) only if h(•) is identifiable at 6

Proof. If h(é) is unique then h ( )  is constant

on {0~ f(y;0) = f(y;~~) }  . Now , {OIf( .;0) = f (.;6)}

~ (OIf(y ;0) = f(y;O)} ; thus, h(•) is constant on

{OIf ( ;0) = f (•;O)} , so h(-) is identifiable at
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Now we return to g(x ;O ) , a density of form (3).

Theorem 14. Assuming ri(0) is unique , h (6) is a

unique maximum likelihood estimate for h(0) if and only

if h (~’) ib identifiable at 6

Proof. From Theorem 3,

n n
f ( x ;0 ) = H g ( x

1;0) 11
i=l i=l

so that r~(O) 
= n (8) implies f(.;0) = f(•;0) . Therefore ,

if h is identifiable at 6 , then riC O) = ri (0) implies

h(0) = h (s) . The converse is given by Theorem 13.

5.2 Uniformly Identifiable Parametric Functions

Let g(x ;0) be a density of form (3).

Lemma 6. Assuming g(x;0) is in canonical form ,

then g (~~;O) = g (-;0
0
) if and only if ri (O) = r j ( 0 0

)

Proof. From Theorem 3, g (x;0) =

Since g (x;0) is in canonical form , f rom Theorem 1, the

f u n c t ion ~p( .) for f
1

(y ;cz) is strictly convex on

{a~ 4 ( c t )  ~~ = } . Thus , f r om Lemma 4 , g (~~;0) = g ( - ~;0 0 ) if

and only if ri (0) = fl (O~~
)

Theorem 15. Assuming g(x;e) to be in canonical

torm , then h(.) is identifiable at 00 
if and only i f

ri C O ) = r~(60
) implies h(0) = h ( 0 0

)

-4
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Proof. The result follows from Lemma 6 and the

definition of identifiable at

The rest of th is section depends on Theor em 15, so

we will restrict our attention to densities of form (3)

in canonical form .

Corollary 7. Let ~ (°1
) = 

~‘°o~ 
then h(•) is

identifiable at 0
0 

if and only if h (•) is identifiable

at 01

This follows from Theorems 11 and 15.

Koopmans and ReiersØl (1950) call h(•) uniformly

identifiable if h (s) is identifiable at 0
0 for all 00

in 0. If h(S ) is not uniformly identifiable then the set

0
h 

= (0I~
1 ( )  is iden tif iable at 0 )

is important.

Theorem 16. For a in riCO ) let r(a) = h(0)

where - i C e ) = a, then r(-.) is a function from 
~~~~~ 

to

h ( O
h

) ; that  is , h(0) = r(rt (O)) for 0 in 0h

Proof. r(•) is a function from n (O
h

) to h ( O
h
)

since, if a = n (O o
) = ~ (0

1
) then , from Theorem 15,

r ( c z )  = h(0
0

) = h ( 01)
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Coro11~iry 8. h () i~; uniformly identifiable if and

only if th .r~ exists function r(•) such that h(0) =

z (ri (U )) for all U in 0

Proof. iJ ~ h(.) is uniformly identifiable then

= Li ; thus, from Theorem 16, there exists a function

r(.) such that h(0) = r(r~(0)) for all (3 in 0

Conversely, if h(0) = r(r~(0)) for all 0 in Li

then from Theorem 15 h (s) is uniformly identifiable.

Corolliry_9. In the case that ri (0) = MU for a

T P
matrix M , hP)) = A 0 for some vector 0 and 0 = E

h(•) is i d e t i f i a b l e  at 00 
if and only if h(.) is

uniformly identiiiable.

Proof. Suppose h (s) is identifiable at 0~ , then

from Theorem 1 5, MI) = MU
0 

imp lies A TO = ATO0
Let M O = 0 then 11(0 + 0~~) 

= MO 0 ; thus ,

A(O +o o) ~°o 
so A C = 0

T - TThus , ~ i s p e r p en d i c u l a r  to N u l l ( M )  , so A is

in Row(M) . Therefore

A TO = rTMO

for some vector r and , from Corollary 8 , n(O) = A TO is

uniformly identifiable. The converse is a special case.



38

Theorem 17. In the normal linear mcdel A T13 is

estimable if and only if it is u n i f o r m l y  ide nti f iab le.

Proof . Suppose A 1 13 is es t imable , then from

Theorem 6,

ATB = rT~ 13

for a l l  1 3 ;  thus , f rom Corol lary  ~~~, A ’
~
’(~ i s  u n i f o r m l y

i d e n t i f i a b l e .

Conversely if A TB is uniform ly identifiable then ,

again apply ing Coro l l a ry  8, there exists a function r(•)

such tha t

A T
B = r(X13)

for all 13 . Now , A T 13 being l inear implies  r ( . )  must . be

linear; thu s, there ex ists r such tha t

T TA 13 = r X 13

and from Theorem 6 ATB is estimable .

This result was obtained in Reiersøl (1963) by a

different method .

5.3 Comparison of Uniformly Identifiable Functions and

Those Possessing an Unbiased Est imate

From Theorem 17 we see that the concept of uniform

identifiability is one possible generalization of the con-

cept of an estimable function . Another generalization is
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those functions having an unbiased estimate.

Let V be a samp le with density f(y;O)

Theorem 18. If u(0) has an unbiased estimate ,

then u(~~i is uniformly identifiable .

Proof. There exists a function z(•) such that

u C O )  = J z ( y ) f ( y ; O ) d u ( y )

for all 0; thus, f ( ~~;00) 
= f ( ~~;O 1) implies u ( 0 0 ) = u(8

1
)

In the fo l lowing example we look at a density where

there is a f u n c t ion which is un iformly identi f i a b le, but

does not have an unbiased estimate.

Example 4. Let Y
1
,Y2 

be independent , binary

random var iab les  such tha t

exp (131+132+133
)

P(Y1=l~ = 
~ + exp(131+132+f33

)

and

exp(81+132— 133)P ( Y
2
=l) = 1+ e x p ( 1 31+13 2 — 133

)

Letting X1 
= (1,1,1), x2 

= (1 ,1,— i) and 13 = (131,8 29133)
T

we may write the density of Y1,Y2 as

exp y1X113 +y 2X~B — tn (1 + exp(X1~ )) 
- t n ( l  + exp(X

2
8 ) )

which is of form (3), in canonical form.
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Now, ri( .) is linear with coefficient matrix

X = (X~~X~~) ’1’ . So, from Corollary 8, the fu nction

= (½,— ½ )X 1 3  = 133

is uniformly identifiable.

We will show that A~~13 does not possess an unbiased

estimate . Assume there exists a function z(~~, )  such

that  A~~13 is equ al to the expected value of z ( Y 1, Y2 ) for

all 13 .

Now ,

exp(y1X1t3) 1~- y1
=l

lim
13~~~ 

l+exp(X 113) L° y1 =0

and

exp(y
2
X
213) [0 

~2
l

6 l+exp(X 213) 
= 

~~~

thus

exp (y1X113) exp(y2X213)
lim E(z(V1,Y2)) = lim~~ z (y 1,y2 ) 

1 + exp (X
18) 1 + exp(X213)

= z(l,0) ,

where the summation is over the sample space. However , the

expected value of z(Y1,Y2) is 133 for all 8 , so

z(1,O)  = lim = +~~ . Now, if z(l,0) =~~ then the
B
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expected value of z(Y
1
,Y
2
) is also for all 13 , wh ich

is a contradiction .

5.4 Examples

ExamjJe S (Logi stic life Study Model -_C o n t i n u e d ) .

In example 2 we saw t ha t  a un i que maximum l ik el i hood ~ st i ~r , t e

P. T -

for (13 :n1 1
,. •

~~‘~~m~ 
exists if and only if matrix Z is

full rank . Assum ing that Z is not f u l l  rank , we wi~;}i to

consider the class of uniformly identifiable functions.

From Coro l l a ry  8 a func tion , h(s), is u n i f orm ly

i d e n t i f i able i f and only if th ere ex i s t s  a f u n c tion r (~~)

such that

~~~~~~~~~~~~~~~~~~~~~ =

or , for differen tiable r(~~)

V h [ ( 1 3T
~

ri i~~
...,n

m )
T

1 = ZTV r ( Z ( 8 T
~~rI l , . . . , f l m ) T )

thus , for linear h(- ) , h ( •) is  u n i f o r m l y  ident i f i abl e if

and on ly if for  some vector r

A = zT

where A = V h ( ( B T
~~n 1

, . .  ~ ,~~~~) T ] . In other words the class

of linear u n i f o r m l y iden tifiable functions is that class of

function s whose qradients are in Row (Z)

Let )-~~ , i = 1,.. .,s , span the space o r t hogona l  to

the row space of Z . The func t ions  A T ( 1 3T~~r) 1,. .,n )T
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i = 1,... , s are useful in the computation of a maximum like-

lihood estimate. As noted in Example 2, there ex ists a

unique F~ in the range of Z ( f 3
T
~ n1,.. .,n )T wh ich maxim izes

the likelihood ; thus, a max imum likel ihood estima te for
T. T

(B :m i 1,.. .,rlm) can be found by solving

=

If we solve these equa tions un der the res tr iction
T T. T

A~~(13 :r I i,..., rl m) = 0 , i = 1 ,...,s , then we have a f u l l

rank system of equations, and thus , a unique solution.

The following are examples of densities of form (3)

where n() is not a one to one funct ion , and , l ike  the

log ist ic model , satisf y hypothesis ( i ) of Theorem 4 for  a l l

samples sizes.

Exa mple 6 (Ret rospect ive Study), Cox (1970).

We might l ike to es t imate  the condit ional probab ili ty of

getting cancer given a person smokes minus the conditional

probability of getting cancer given a person does not smoke .

The ideal way to do this would be to take a sample of both

smokers and nonsmokers , follow the state of their health for

a number of years , and then , check the group to see how many

develop lung cancer. This is called a prospective study .

In practice this can be a long and expensive process; thus,

another method , called a retrospective study, is sometimes

used.
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In a retrospective study we take a group of lung

cancer patient s and a con trol group and check to see whether

or not they smoked. We can express both studies diagramati-

cally as follows:

Prospective Study

non-smokers smokers

u 0 u=l

P(w=OIu=0) P(w 0~ u l )

no cancer 
~ l0w 0 = 

~oo~~~o~ 
= 

~l0~~~~ll

P(w=llu= 0) P (w=l~ u=l )

cancer li ii
= 

U00 +71 01 
= 

~ l0~~~~ll

Retrospective Study

no ca ncer cancer
w 0 w=1

P(u=OIw=0) P (u=Ojw=l)

non—smokers 
— ________ — ~~~Ol

u=0 
~~ + 71 ~ + 7 T
00 10 01 11

P(u=]~~w=0) P(u=lIw=l)

smokers iT 10 iT i l
u=l — 

1100 + ~l0 
= 

1101 + 71
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where it = P ( u i , wj), i ,j =0 ,1 . The parameter space is

{11 = (11 00 ,1101,1110 ,1111) 111 00 ~~~0l ~~~l0 ~~~l1 = 1 , 0 l}

however , due to the n a t u r e  of the da ta collection methods

we may obta in mea n i n g f u l  estim ates onl y for the cond i ti ona l

probabilities in either study.

Hencefo rth ~e confine attention to the retrospective

study. Let p
1 

= P ( u = O I w = 0 )  , p2 
= P(u=Otw=l) and r.~

the number of observations in the ij cell , then the log

l ike l ihood fo r a retrospective sample is

r
0~ 

inp
1 

+ r
10 

in (l—p
1
) +r 01 inp 2 + r 11 in (l—p 2

)

Now , let

~00”~ 00~~~~l0

and

n2
(i~) 

~0l’~~01 ~~~ll

The range of r~(.) = (ni 1
(.),r1 2

(.))T is the unit square .

is the log l i k e l i h ood of the sample as a

function of the parameters (ii 00, 7m 01 1 1110,iT 11) . The unique

maximum of i(.,.) on the range of n C . )  jg

(r 00/ (r
00 

+ r10), r01/(r01 + r 11) )  ; thus hypothesis (i) Of

Theorem 4 is satisfied . However , n ( s )  is a many to one

function for each value of its range; in fact ,
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11 (11 ) = rt (u *)

if and onl y if 71
10

/11
00 

= it~~~/ii~~~ and 1111/11
01 

= 

~il’~ ol

and thus, .~~~~ wi ll not be able to obtai n a unique maximum

likelihood estimate for U .

We might wish to ask what parametric functions are

uni formly iden ti f iabl e? Cons ider

h1(ir ) = lt ll / ( i T l0 + l T ll ) — 1101/( 7 1 00 + 1T 01 )

and

h2
(iT ) = in (1r11/n 10) —in (-n

01
/ir
00
)

= i n
11
10

11
01

Now , h1
( rr ) is the d i f f e r e n c e  of the condi tional

probability of cancer given a person smokes and the

conditional probab ility of cancer given a person does not

smoke , while h2(n) is the difference of the log odds of

the two conditional probabilities .

First ,

~11U t~0 
‘i1

C n )  
________h Cii ) = inC ) = in ( ) — inC )2 71101101 1 — r11

( -TT ) 1 — ri 2 ( vm )

thus , from Corollary 8, h2
C- . ) is uniformly identifiable.



46

On the other hand , we w i l l  show that

= (11 Ih
1

C 71) =0 ) is a proper subset of 0 , and hence ,
1

is not uniformly identifiable. With this objective in mind

suppost- 111
(11
0
) = 0 and write

— ~
‘0l 71 01

h
1
(n) - 

~~~~~ 
+ it yCU ) 

— 

~~0l ~~~‘0O

where

l — ~~1
(i r )  p

2
(11)

y ( n )  = 
ri1

(ii) 1~~~~2
( n )

Then , h 1 (rm ) = 0 if and only if yC 11 ) = 1 . From Corollary

8, y ( •) is uni f ormly i den t i f i able ; thus from Theorem 15,

if ~ (n) = r iC h 0
) then y(n) = 1 (71

0
) and h1(71) = h

1
(n
0
)

Thu s h 1 is i d e n t i f i a b l e  at

Now, suppose h1(it1) / 0 . We want to show that Il l

is not in 0
h1 

Let 11
1 

= 

~~~~~~~~~~~~~~~~~ 
and

= (c7100 , -1101,c 1T 10 , 1m 11
) , then = n (-n 1) and

Y (lT
c
) = . Now, h1

(ii
1
) = h

i
(7T
~~
) says

________________ 

71o1 — _______________ 

1101
1101 ~~~~~~ 

- 

~~~~ ~~~oo 
— 

11o1 ~~~~~ 
iT01 +iT~~

c( l  
~
y(U

l
) )  1

+ cit 00 y C ~~~
1

) )  (it oi + 
= 

~~~Ol + 71oo 1( 111~ ~ ol +
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and , since h1
(ii
1
) 

~ 0 1
~~~l

) ~ 1 50

+ ciT 00 y (11 ~~~ 
+ cit00 ) c(ii 01 + 1100

1( 1 1
1

) )  
~~0l 

+ m oo )

Thus , if h1 Cn 1
) = h

i
(7r

~~
) , then

2 2 2 2 2
1101 

- c(ii01 
+ + c i~~~y 

~~~ 
= 0

But this last equation cannot hold for all c (0 <c < 1)

so there ex ists some c such tha t  n ( n
1
) = n tn ~~~

) but

~‘ h1
(n ~~~~~) ; thus , f rom Theorem 15, h1

(~~) is not

iden ti f iable at 111

Example 7 (The Projectile Example). In all the

preceding examples the data has been discrete. In this

example we consider a problem involving continuous data.

Let X1 ( i l ,...,n) be independen t and ident ical ly

distributed observations of the distance traveled by a

projectile fired at elevak ion 0 and initial velocity v

Assuming no air resistance, the distance traveled is given

by v2 sin 2 0/g , where g is the gravitational constant.

Suppose the X
1
’s are exponentially distributed with

mean v2 sin 2 0/g

Except for an additive constant , the log likelihood

can be written as 9.(rl (v,O)) where

—
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n
£ ( A )  = ( ~~ x1

)A — nin A
i= 1

and

2 .
n (v,O) = g/v sin 2O

The parameter space is { (v ,O) 0 fs in (0 ,m /2 )  and v is

in ( 0,c~)

9.(.) has a unique maximum on (0,~~), the range of

~ (v ,0) , in fac t

n
= n/ ~i=l

The f u n c t ion n (~ , )  is not one to one , so there

is no unique maximum likelihood estimate of (v , O )

Let us now consider the f i r s t  componen t of the

terminal veloci ty  of the projectile , a funct ion of the

parameter which might be of interest. Thus, h3(v,0)

= v cos 0 . We show that h
3
(.) is not uniformly identif I-

able by proving 0
h ~ {(“, O )  l v > 0 , 0=ir/4)
3

Let (v *,0*) be in 0
h , we f i r s t  show that
3

{(v,0) r)(v, O )  = fl (v *,O*)} = ((v*,O * ) }

Suppose ri (v ,O~~) 
= fl(v*,0*) , then from Theorem 15, since

(v *,O*) is in 0 , h (v ,0 )  = h (v*,O*)  . Thus,
h3 3 3

H
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2 .
Cv ) sin 20 (v*) sin 20*

and

v cos 0 = v~ cos 0*

Now ,

v 2 
— 

sin 20* — sin 0* cos 0*
— sin 2O~ sin O cos U~

and

v cos 0*
— cos

which implies

v — sin 0* — cos 0*
sin €Y — cos

and

s i n ( O *  — O )  = sin 0* cos O~ — cos 0* sin 0 = 0

or , since O and 0* are in (0,m / 2 ) ,  0 = 0~ . Also,

= v~ . There fo re , ~ (v , O )  I ~ (v,O) = n (v*,0* ) }  c { (v *,0* ) }

The reverse containment is obvious.

But this equivalence of sets implies that 0* = it/4

since if 0* < m/4 , let 81 = m/4 + (71/4 (3*) and v~ =

Hence n (v*,8*) = ~ (v 1
, O
1

) but 0* 
~ 

01 
. A similar

argument holds if (3~ > m/ 4

~

- -~~1
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6. IDENTIfIABLE SETS AND TESTABLE HYPOTHESES

6.1 Identifiable Sets

In Chapter 5 we considered the problem of making

inferen’~es in a family of form (3), where ~
-
~ (~~~) is not one

to one. As an example, we looked at the norma l linear model

of less than full rank , consider ing the concepts of est imab le

f u n c t ions and testable hypotheses which have been developed

for this particular case. We then showed that the uniform

identifiability of Koopmans and Reiersøl (1950) is a generali-

zation of the concept of estimable functions.

In this chapter we generalize the concept of testable

hypotheses.

Let V be a sample with density f(y;0) . A subset

S of 0 is called identifiable if and only if 0
~ 

in S

and f(•;0) = f(.;0
0
) imp lies 0 in S . We now consider

some basic properties of identifiable sets.

Let I~~(~~) be the indicator  f u n c t i o n  of

S( I~~(0) = 1 for  ~3 in S , 0 elsewhere).

Lemma 7. S is identifiable if and only if

is uniformly identifiable.

Proof. The statement “I
s

( O
o

) = 1 and f ( ;0) =

f(•;00) imp lies I~~(o) = 1” is equivalent to “f(.;O) =

~(•;O ) irnpli c .s I~~(o) = I
s(O o) 

“
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As an immediate consequence of Lemma 7, certain

results for identifiable functions also hold for identi-

fiable sets. In particular , if V is a random sample from

some density then , by applying Lemm a 7 and then Theorem 12,

the collection of identifiable sets i.s the same for all

sample sizes, and we may check for identifiablity of a

particular set at a particular sample size by checking at

sample size 1 .

Now , for  m in the range h ( ~~)~ let Sm { O I h ( 0 )  = m ) .

Lemm a 8. Sm is identifiable if and only if h(s)

is identifiable at 0 for  all 0 in Sm

Proof. The statement iS and f ( ;0 )  =

implies 0 cS 1~” is equivalent to ‘f(• ;O) = f (-;0
0
) implies

h ( 0) = h ( 0
0
) , fo r all O

o CSm ~~~

“

Corollary 10. S is i d e n t i f i a b l e  fo r  a l l  m inm
h ( 0 )  i f  and only i f h ( ) is u n i f o r m l y iden~.i fiable.

Example 8 (Ret rospect ive  Study 
- 

Continued). In

Example 6 it was shown that h1
(~~) is not u n i f o r m l y

iden ti f i able.  It was also shown tha t

= {h 1h 1(h ) =0)
1

Thus, for h1 (.) S
m i s identifiable for m = 0  but is

not ident ifi ih le for any other value of m
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6 . 2  I d e n t i f i a b l e  Sets and the E xp o n e n t i a l  Fami ly

Let cj(x;O) be a density of form (3) arId S be a

subset of 0 . Throughout this section we will restrict our

attention to q (x;0) in canonical form .

Theorem 1.9. Suppose g(x;0) is in canonical form ,

then S is identifiable if and only if 00 in S and

n (0) = n)(O o ) i m pl i e s  0 is in S

Proof. Apply Lemma 6 and the definiti on of “S is

identifiable. ”

Corollary 11. S is identifiable if and only if

~~~(5) 
~~~11(5

C
) =

Proof. The statement “ri (S) ~~1(5c) = 4~ is

equivalent to “00 in S and ~ (uJ ) = n (0~~) implies 0 is

in S . “

Let G be a subset of r~(O) then ri
1
(G) will

denote f ° I n ( ° )  is in G)

Theorem 20. Suppose S is identifiable and R is

not , then

nR ) ) = S n  n
1(n (R))

Proof. The statement “n
1
(ri (S nR) ) £ S

is equivalent to “n~(0) and 0
0 in S n R  implies

0 is in S n n~~~(~~(R ))” , wh ich is true from Theorem 19 and
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the definition of

The statement ,, — l (ii (S n R)) ~ S ~ n
1 

( r i  ( R ) )”  is

equivalent to “ n i ( O )  = n (0~~) , 0 in S and 0
0 

in R impl ies

—l ,Ij i n r C ni CS n E ) ) , which is true from Theorem 19 and the

definition of ~~
‘(~~(S n R ) )

Theorem 21. Let I be the collection of identif i-

able subsets of 0 . 7 is closed under intersection , union

and complement.

Proof. Let S and S~ , A in A , be in 7 .

Firs t, fl S~ is in I. Suppose 0
0 

is in fl SAA c A

and n (0) = ri (00
) . Then , for all  A in A , 8

0 
is in S

A

and ~ (0) n (0~~) . Thus , from Theorem 19, 0 is in ñ S~

and (~ S~ is identifiable.
AcA

Second , U SA is in I . Suppose 0
0 

is in
A c A

U SA and r~( 0 )  = r j ( 0 0 ) . Then , for some A in A ‘ °~A cA

is in S
A 

and ri (0) = ~ (00
) ; thus , from Theorem 19, 0 is

in I) s~ and U SA is identifiable.
AcA

Finally,  as a direct consequence of the definition

of “S is identifiable” we see that  S~ is identifiable .

Let h1 ( )  , i = 1 , . . . , i, be functions of 0. Using

Theorem 21 we may extend the results of Lemma 8 as follows.
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Theorem 22. Let S {0Ih ~ Yi) = m . }  , i l,...,i
1

(\ Sm 
is identifiable for all (in 1,.. .,mi) , m~ in

i=l i

h1(0) , if and only if h
~~
(.) is uniformly identifiable

fo r all  i

p.
Proof. Suppose ñ S is identifiable for all

i=l i

(m1,...,m 9 ) . We show that , f o r  every i , S
~ 

is identi-

fi able for all in. in h.(0) ; thus, from Corollary 10,

h1
(.) is uniformly ident i f iable fo r  a l l  i . Let 1 

~

- j - 2 .

m be a fixed value of in . , and A .  = {(m ,...,m )I m. m }
j  j  1 n

p.
Now, since (~i S

m 
is i d e n t if i a b l e  for  all  (m

1
,...,m

9
)

i=l i

f r o m  Theorem 21 ,

p.

U (‘
~ S

(m
1
,. . .,m 9 )~~A .  i 1  ~~

is iden t i f iable . However ,

p. 2.
U ñ s  = s ~~fl ñ U S

Cm 1
, . . . ,rn p. ) i A .  i=l m~ m~ i=l  m . i h ~ ~~~ 

m
~

i�j

since , for  any i , U S = (. . So, S - is
m1ch 1 CO ) m~ mj

identifiable.
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Conversely, suppose h
1
() is uniformly identi fi ,ib lg .

n
for  all i . Then , from Coro l la ry  10 and Theo rem 2 1 , (\ 

~;

~ 
m.

is identifiable for all (m 1,...,m )

6.3 Generalizing Testable Hypotheses

Let S = {
~~I A  = r n . ,  i =1 ,.’..,i} where ~3 and ~

are the parameters of a norm al linear model. Now ,

a (S) = {((3
TxT/(J2~ _l/2a

2
) I ~ is in s, ~2 >0 ) ; thus ,

ri (S~ 
~~11 (5

C ) q if and only  i f XS n XSC = . Therefore ,

f r o m  Theorem 8 an d Corol lary  11, S is identif iab le if
T . 

.

and only if  A
~~

t3 is estimable for all 1 , so the hypothesis

H , stating that f~ is in S , is testable i f and on ly i f S

is identifiable.

We generalize the concept of a testable hypothesis

as follows: Let V be .i sample with density f(y;0)

‘Ihe hypothesis Ii , r~ ~~~ S , is testable if and o n l y  i f S

is identifiable.

To see the impor tance  of th is d e f i n it ion , let —Fl

(re ad not H ) state that  1) is in S~ . If S is not

identifiable then there is a 0
0 

in S and a 01 
in

such tha t f ( ~~;00) = f(.;01) ; thus, the set of

distributions under H and —H are not disjoint . This

means that based on observed V we cannot say whether H

or —H is true.
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Cer tain hypoth esis tes ting resu l t s  for  the normal

linear model w i l l  ex tend to den sities g(x ;0) of form ( 3)

in canonical form .

Searle (1971) shows that in the norma l linear model

the sum of squares used in testing a hypotheses with sonic

estimable components and some non—c~stimable componen ts is

the same as the sum of squares for testing that same hypothe-

sis but with the non-estimable components deleted . We may

extend Searle ’s result in the following way .

Suppose that  S and R are both subsets of 0

S being identif iable and R not . Let H state that 0

is in S nR and El ’ state tha t 0 is in S n r i 1( r i ( R ) )

Theorem 24. The maximum likelihood ratio statistic

testing H versus —H is the same as testing H versus

Proof. Let x1,...,x0 
be an observed sample f r om

g (x ;0 ) . The maximum l ikel ihood rat io st atis t ic  testing

H versus —H is
n

sup ii g(x.;0)
OcSnR i=l ~

n
sup ii g (x.;8)
OcO i=l ~

From Theorems 3 and 20,
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n n
sup 11 g (x 1;0) = sup 11 f

OcSnR i— l OcSnR i=l

n
= sup 11 f (~~(x.);n (0))

—1 i=1 V
Oc~ r i ( SnR)

n
= sup m g ( x . ;8)

—1 1=1Oc Snr i  (~~(R))

which is the numerator of the maximum l ikelihood rat io

statistic testing H versus — H .  The denominator is the

same for testing both hypotheses.

To see that Theorem 24 is truly a generalization of

Searle (1971) , let S = {0~ X
’
~~ = c1

, i= 1,...,)) and

R {~~IA  = c ,  i j+ l ,...,9.} where A~~0 is estimable

for i = l ,...,j , and not estimable for i=j+1 ,...,i

From Theorem 24 the sum of squares for H versus —EL is

the same as the sum of squa res for  H ’ versus —H’ . Now ,

= f (1~T~~ 2)
T 

(3 is in X~~~CX(R) ) and ~2 >0)

From Theorem 9, X 1 ( X ( R ) ) = E~ ; thus , ~~
1(~~(P.)) = 0 , so

S n ~—l ( r~ (R) ) = S . Thus , the sum of squares for testing B

in SaR is the same as the sum of squares for testing B

in S
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F~xamp1o 
‘) (J,~~~~s t i : L ~tu~y Mod~~1_ -_Cont i nued).

Thompson (1976) ‘i i scu~~;~~; th e use of covariates in the

ana l i~; i s  of l i f  t i h l e  d a t a , introducing a loqistic model

for the cond it ional prol~~Lility of failure in a time

interval g iven survival to the beginning of the interval.

An example is given using the following data:

Table 1

Times of Reinission (weeks) of Leukemia Patients

(Gchan (1965), from Freireich et. al.)

Sample 0 6*, 6,6,6,7 ,9* , 10*, 10,11*, 13, 16, 17*

(drug 6—MP) l9* ,20*,22 ,23,25* ,32* ,32*,34*,35*

Sample 1 1,1,2,2,3,4,4,5,5,8,8,8,8,11, 11,

(control ) 12,12, 15,17, 22 ,23

*Censored

Here , the covariate effect is containment in sample 0 or

sample 1. The conditional probability that individual i

fails in interval j given survival to the beginning of

the interval is represented as

exp (Z..000 
+ + ri

1
)

1 + ~~~~~~~~~~~~~~~~~~~~~~~~~~~

where , Zjjk = 1 if the ith individua l is in the kth class,

0 otherwise. and B
1 

are control and treatment effects

respectively and is the effect of the jth interval.
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We wish to test the hypothesis H* , 
~ 

= 131 , of

equal drug and control effect. Let S = (13 1
~~ 0 

.r

There 13 = 
~~~~~~~~~~~~~~~~~~~ 

. From Lemma 8, S is

iden ti f i a b l e  if and only  i f — 

~l is ident if i a b le at i~

for all 13 in S . The density of the logistic life study

model is of fo rm ( 3), in canonical form , r1 (13 ) =

and 0 = E2.+2 , thus, from Corollary 9, — B1 is

identifiable at B if and only if 
~~~~~~ 

is u n i f orm ly

identif iable. From Corollary 8, — is un i fo rmly

identi f i ab l e  i f and only if (l ,—1 ,0,...,0) is in Row(Z)

This will be the case if there is any interval with at least

one member from each class at risk in the interval. The 
V

data in Table 1 shows 21 members from class 0 and 21 members

from class 1 at risk in the first interval. Thus H* is

testable.

We show that the l ikelihood ra tio test of !1~ is

the same as that of H 
‘ 

= = 0 . Wri te

Now (1,1,0,...,0) is not in Row(Z) , 
~0 

+ 131 is not

uniformly i den t i f iable , and {B IB o +81 0} is not identi-

fiable. From Theorem 24, the likelihood ra tio test of H

is the same as that  of H’ , B is in ( B I B 0 
— = 0} n

But Z ’(Z{81130 +B 1 =0}) 
= Et+2

so H’ = H = Il~
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We prove th i s  last by showing tha t

z {B ~ 8 0 + 8 1~~o} £ 2( 13 1130 + 131 = 0) . Let 13* be such tha t

+ t3~ ~1 There is f3~ , with + = 0 , such that

= . Consider the equat ions , in the variable 13

+ = —
~~~~~~ 

—

and

=

These equations have a solution, 13’, since (l,1 ,0,...,o) is

not in R o w ( Z )  . = 13
*~~~~13~~

In summary , we have shown that H*,132 
= 

~l 
is

testable and that its likelihood ratio test is the same as

that for  H , 130 = B 1 = 0
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7. CONCLUSION

We have considered problem s of identification which

arise in making inference about the exponential family when

the dc r.sity i~ not in one to one correspondence with the

parameter space . Such problems logically precede all

questions of i n f e r ence .  Us ing da ta we cannot hope to

dis t ingu ish between two parametric values cor respon ding

to the same dens ity .

One can assume this problem away by a reparameteri-

zation , bu t in doing so, the physical meaning associated

with the parameters might be lost.

As a guiding example we considered the normal linear

mode l of less than f u l l  rank discussing the concepts of

estimable function and testable hypothesis. Many of the

classic properties proved there have been extended to the

general exponen tial fam ily through the ideas of un i fo rmly

identifiable function and identifiable set.

These general ideas are illustrated with several

numerical and computational examples: i) a Poisson model

for the analysis of some data on the survival of bacteria

af ter  radia tion , ii ) a logistic l i fe  study mode l,

i ii )  analysis of a retrospective study of cancer and

smoking and iv) a physical example involving terminal

velocity of a projectile . It is found that some parametric
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questions simp ly cannot be answered from data , for the

data contains no informat ion about them , an d sometimes two

questions cannot be distinguished from one another using

data. Other parametric questions can reasonably be asked

and answered in a data analysis sense.

-
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