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/ IDENTIFICATION PROBLEMS IN THE EXPONENTIAL FAMILY ¥

/ + Robert Patrick/Kelley*

& / msstract (/2 @/ T,

We conéider identification problems for membefs of
the exponential family, applying the results to the density
of the logistic model for life table data.

For this model we want to know the following:

1. When are the maximum likelihood estimates for
the model parameters unique;

2. What type of inferences may be made if the maxi-
mum likelihood estimates are not unique?

Noting the form of the likelihood for the logistic
model, qguestion 1 is considered for the exponential ramily.
We obtain an answer for question 1 in this context. 2pplying
this answer to the logistic model, we find that a unique
maximum likelihood estimate exists if and only if the density
is in one to one correspondence with its parameter space.

To answer question 2, we consider members of the
exponential family where the density is not in one to one
correspondence with its parameter space. AS a guiding

example of such a density, we consider the normal linear
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model of less than full rank, discussing the concepts of
estimable function and testable hypothesis, which have been
developed for this particular case. We then show that the
concept of uniform identifiability is a generalization of
the concept of an estimable function. Further, through the
idea of an identifiable set, we extend the concept of a
testable hypothesis. VWe then apply the resulting theory to

the logistic model.
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1. INTRODUCTION

Thompson (1976) introduced a logistic model for
covariate effect in the analysis of grouped life times.
Maximum likelihood is proposed as a method of estimating
the parameters of the model. It is noted that the likeli-
hood function is both concave and differentiable everywhere
on the parameter space; thus, a point is a global maximum
if and only if it is a solution to the likelihood equations.
However, in a numerical example, the likelihood equations
are linearly dependent and, to obtain a unique solution,

a constraint must be imposed on the parameters. This causes
a problem in the application of the logistic model; based

on the same data two statisticians might obtain different
maximum likelihood estimates for the parameters. One might
be able to correct the problem of non-uniqueness by a
reparameterization of the model, but, in doing so, the
physical meaning associated with the parameters might be
lost; thus, it is desirable to know the fcllowing:

1. When are the maximum likelihood estimates for
the parameter of the model unique;

2. What type of inference may be made if the maximum
likelihood estimates are not unique?

Noting the form of the likelihood for the logistic

model given in Thompson (1976), we will consider questions




1 and 2 for the exponential family and use the logistic
model as an example to illustrate the resulting theory. We

first consider background material for the exponential

family.




2. SOME PROPERTIES OF THE EXPONENTIAL FAMILY

o}

Let p be a o-finite measure on E and

(1) plyia) = exv(uTy-¢(u))

be a probakility density function with respect to u .
Families of form (1) are said to be exponential families
with natural parameter a , sce Lehmann (1959).

Now
[ plyio)duly) =1 ;
thus,
(2) ¢(a) = 1n [ eXP(aTy)d“(y) ’

or ¢(+) is the log moment generating function of p .

Let A = {a|¢(u) <=}, then A is said to be the
natural paramcter space of (1). Lehmann shows that A 3s
a convex set. For ao in Ao , the interior of A, the
moments of (1) can be obtained from (2) by differentiating

under the integral sign. In particular, if Y = (Yl""'yp)q

has density p(y;ao) then

E Yi = .3%:?— '
i u:ao
2
var Yi = §~g ’
aai u?ao
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and

w2
a ¢
a0, dQ

cov(Yi,Y.) =
] i 9 a=a,

Let t(a) be the covariance matrix of Y evaluated at o.
Then

"2
$i*) = et

90, d .
>
A basic property of the exponential family is that

the range of Y does not depend on the choice of parameter.

Lemma 1. The support of . ' is the support of Pa

for all «

Proof. Let

P (K) = [y plyia)dul(y)

P (K) = 0 implies /K exp(uTy)du = 0 ; however,
exp(aTy) >0 for all y . Therefore, PU(K) = 0 if and
only if u(K) = 0 .

At this point we need two preliminary results having

indirect implications for the exponential family.

Lemma 2. Let } be a positive semi-definite matrix,

then %q = 0 if and only if thg =0 .




(€}

Proof. 1§ may be represented as
PTAP ,

where P 1is an orthogonal matrix and £ 1is a diagonal

matrix whose entries, {i » are the eigenvalues of §; thus,

aTtg = g P Lpg = (Pg)Th(Pg)

Hence, letting Pg =V , we have

Let gTig = 0 . Now éj 0 5 J=1l,...2P, B0 that

T T T
7 = J = = ,XJ - 5
{g P APg P AV P (élvl ....pvp) 0

This proves the "if" part. The converse is obvious.

We will denote the column space of a matrix M (the
set of a linear combination of the columns of M) by Col (M)
and the rank of M (the number of linearly independent

rows in M) by Rank (M)

Lemma 3. Let Y be a random vector with covariance

k
$ . writing L= vy {Ylb?y==ci} for the smallest linear
i=1

manifold containing the support of Y , then

k T
Col(}) = _=1{y|biy=~0}

1




Proof. Let S be the support of Y and
k
LY = ] {y]h'ry=0}
. i
i=1
We will show that g is perpendicular to L* 1if and only

if g is perpendicular to Col(}) ; thus, due to the
uniqueness of the orthogonal complement of a subspace we

will have the result.

Let g be perpendicular to L* . Now, L = £°+L*
where £° 1is a fixed but arbitrary element of L ; thus,
i ; T

ng = g £° 4is constant for all £ in L . 9 L is
constant for all 4 in L implies gTy is constant for

all "y in § ; thus;

L}
o

A
Var(gTYj =g g

and, by Lemma 2, g 1is perpendicular to Col(}).

Let g be perpendicular to Col(}) then gT 1g =
Var(gTY) =0 . Var(gTY) = 0 implies there exists a con-
stant ¢ such that qTY = ¢ with probability one. By
definition, S 1is the smallest closed set which contains
Y with probability one; thus, since {gTy'=c} is closed,
S ¢ {gTy==c} « Let 8* = {y, -v, lyl,yz €S} , then
gTs==0 for all s in S* . Now, L* is the set of all
linear combinations of elements of S* ; thus, gTR* =0
for all 2* in L* .

A result like Lemma 3 is stated in Jennrich and

Moore (1975).




Corollary 1. Rank(l) = p - Rank( (bl, e

Corollary 2. Rank(l) <p if and only if there exis

! .
a vector b such that b'Y is almost surely constant.

Proof. Rank(}) <p if and only if

'1‘

Rank ( (b J R =

],...,!,k

Corollary 3. Given a density of form (1) with
covariance matrix §(o), let A be a matrix whose colurus
form an orthonormal basis for the column space of ﬁ,.(u) .

A can be chosen to be independent of the parameters a
Hence the rank and the singularity of }(a) does not vary

with a.
Proof. Apply Lemma 3 then Lemma 1.

We now consider the convexity of ¢(+«) on A.

Results on this topic may also be found in Berk (1972).

Theorem 1. ¢(+) is convex on A; furthermore,
¢$(*) 1is strictly convex on A if and only if the covar-

iance matrix, {(a), of (Y], 5 ,Yp)T is full rank.
Proof. Let o,0* be in A then for 0<A <l
exp ¢(ra+ (1-A)a*) = /[cx;)(uTy)]Alexp(u*'ly)}l-.)‘du(y)

< [/cxp((:Ty)du fyv)l A [[c;cp(u*Ty)du (y)] e




with equality holding if and only if (u-u*)TY is almost
surely (u) constant (see Royden (1968), page 113). Thus,
from (2), ¢(*) is ronvex on A.

Now, if ¢ () is not strictly convex then there
exists b = a-a* with a,a* in A such that bTY is
almost surely (p) constant. Conversely, suppose there
exists a nonzero vector b such that bTY is almost surely
(u) constant. Pick ao* in A and let a = a*+b . From
(2), #la) <> and & is in A . Now, (z-a*)>¥y is
almost surely (p) constant, so ¢ () is not strictly
convex. Thus ¢(+) 1is not strictly convex if and only
if there exists a nonzero vector b such that bTY is
almost surely (p) constant. The Theorem follows from

Corollary 2.

Corollary 4. Let £(¢) be the log likelihood of
a sample of size n taken from (1) then 2£(¢) 1is concave
on A ; furthermore, £(¢) 1is strictly concave on A if

and only if §$(a) is full rank.
1

Proof. Let vy ...yn be a random sample from (1),

then

thus
L(Aa + (1=2)a*) = (AL(a) + (1=-2) L (a*))

= =n(¢(Aa + (1=2)a*) = (A¢p(a) + (1-X)d(a*))] .




Corollary 5. Let & maximize £(¢) on A then,

assuming §$(a) 1is full rank, 35 1is unique.

Proof. A is a convex set; thus, if there exists

~
A

3, which maximize £(+) then aal+(l—a)6.2 is in A

o
ll

(0<a<l), and from Corollary 4

Q(a&l +(l—a)&2) > al(&l) +(1—a)2(&2) = l(&l) ’

which is a contradiction.

Lemma 4 (Berk (1972)). ¢(¢) 1is strictly convex on
A if and only if p(°;“l) = p(-;az) implies a, =a, for

any apsa, JGEY AN

Clearly t(q) need not be of full rank; however, in
the following we will show that if §(a) has rank r<p
then we may, by suitable transformation, obtain a family
of form (1) with r parameters and covariance matrix of

full rank. This fact was mentioned in Berk (1972).

Theorem 2. Given a density, p(yi;a) , of form (1)
with covariance matrix of less than full rank, and the
matrix A of Corollary 3, the transformed variables
Z = ATY again have a density of form (1) but with natural

parameter B==A1q and covariance matrix of full rank.

Further,

plyia) = £,(ATy;ATq)
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Proof. Suppose }(a) has rank r <p. From Lemmas

1 and 3

almost surely (u).
5 T E
Let B = (bl""'bp—r) and C = (cl,...,c )

We may write

aTY = T (AIB) (AIB)TY
= aTAATY-+aTBBTY
= aTAATY-+aTBC ’
almost surely u. Now, from (2)

6(a) = a'BC + ¢(AATq) .
Substituting in (1) we get
ply;a) = exp(aTAATY = ¢(AAT0))

Let 2Z = ATY and up* be the measure defined by

u*(B) = u({y|ATy € B})

for all r-dimensional Borel sets B . Now, by the change

of variables theorem, see for example Lehmann (1959),
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T
T exp(uTM y = 'b(AATu))du(y)
{y|a"y e B}
= [ exp(aTAz - ¢(AATa))du* (z)
B
— 4 * * (-
= [ exp(B 'z - ¢*(£))du*(z)
B
where £ = ATa and ¢*(8) = ¢ (AR) Hence
exp(uTz = h*(a)) is the density of 2 with respect to
p* . This density is a member of the exponential family
with natural parameter §.
The covariance matrix of 2. is ATIA which is of
full rank.
Next, let
m
(3) g(x:6) = exp[ Z n, (6)y, (x) =Q(6)]
k k
k=1
be a density, with respect to a g-finite measure y, ,
where Of,Og_Ep . Such densities are said to be members
of the exponential family. The following Theorem, a
statement of which may be found in Berk (1972), relates
the exponential family and the exponential family with
natural parameterization.
Theorem 3. Y = y(X) has density
(yin(8) T
£ ir = ex L N -
y (¥in(o)) ep[k=1 k(0)yk $(n(o))]
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a member of the exponential family with natural parameter

n(é) . Further,
g(x;0) = fY(w(x);n(O))
Proof. Consider the transformation Yy = wk(X) :
k=1,...,m and let &£(A) = u{x|yp(x) eA} . By the change

of variables theorem,

m
f—l exp( & nk<0)wk(x) = Q(6))du(x)
b T (A) k=1 )
m :
= [ exp( I N (8)y, - Q(8))dE(y)
A k=1
and
m
exp( L n,.(08)y, - Q(6))
fwl k k
is the density of Yl""’Ym with respect to the measure §.
Now
m
]exp( L nk(e)yk - Q(6))dE(y) =1
k=1

implies 0Q(6) = ¢(n(8)) where ¢(*) 1is the log moment
generating function of £ . Substituting in the density

of Y , and then in (3), we obtain the "Theorem.

Corollary 6. Let A be a matrix whose columns

form an orthonormal basis for the column space of the

covariance matrix of ¢Y(X) . 2 = ATW(X) has density
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fz(z;ﬁ) = cxp(BTz -¢(R)) , a member of the exponential
family with natural parameter g = ATn(O) . The covariance

matrix of Z has full rank. Further

-

g(x;0) = £,(ATY(x):ATn(6)) .

Proof. Apply Theorem 3, then Theorem 2.

In summary, applying Theorem 3 and then Corollary 4,
the log likelihood for a random sample taken from a family
of form (3) may be written as £(n(6)) where L(¢) 1is
concave. Also, from Corollary 4, 2(-) 1is strictly

concave if and only if the covariance matrix of Y = y(X)

is full rank. A density of form (3) will be said to be in

canonical form if the covariance matrix of ¢ (X) is of

full rank.
If the density of X 1is not in canonical form then
from Corollary 6 we may write the log likelihood of the

sample as Z(ATn(U)) where 2(°) is strictly concave.
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3. UNIQUENESS OF MAXIMUM LIKELIHOOD IN THE EXPONENTIAL
FAMILY

Let us now consider the maximum likelihocod problem
for families of the form (3). Suppose that 6 is a
maximum likelihood estimate for 6. When will 6 be
unique? Huzurkazar (1949) demonstrates the uniqueness of
6 in families of the form (3) where m=p . However,

from the following example, we see that m=p 1is not

”~
necessary for the uniqueness of 6 .

Example 1 (Charnes, et. al. (1975)). We wish to
model the effect of radiation on bacteria in suspension.
For each radiation does level several dilutions will be

placed on petri dishes and the number of resulting colonies

counted.
Let
xil = concentration of bacteria in suspension,
Xi2 = radiation dose,
n. = number of dilutions observed at the ith

dose level

Yi' = number of colonies counted for the jth
J dilution.

We assume that Yij

Poisson distributed random variables, Yij having expected

(j =1 R Y i=1...N) are independent

value

0. X, exp(-e2 Xia) o

17il i2
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The parameter Ul represents the number of colonies
forming, per unit volume of suspension, when rno radiation

is present; describes the radiation sensitivity of

6

2

the bacteria.
We will estimate the parameters by maximum likelihood.

The likelihood for a sample Y..(j=1...n., i=1...N 1is

15| i
proportional to
N ﬁé
121 - [Yij(ln(elxil) -Ozxiz) - leil exp(-OZXiz)] ‘

or, employing the dot notation of the analysis of variance,

N

(4) iillyi'(ln(elxil) —82Xiz) = nielxil exp(~62Xiz)]

Now, this likelihood is one from a family of the
form (3) where m=N and p=2 . If (4) has a maximum

is it unique? The likelihood equations for (4) are

N
-1 )
(5) iﬁllyi-el ™ Bekoy SRpITO R als =R
and
N
(6) £ 1¥q. % W0 R K SR = 0 .
i=1
From (5)
(7) - N N
M . -9 ;
1 izl ¥:. /121 n;X;, exp(-6,X,,) ;

=

e LML by



substituting into (6) we have

N R N
PR SRR LY
(8) Nl— = Nl—- 1
ii,nixilxiZ exp(~8,%;,) ii ¥;. %42
Let
N
Pt i S i =
g(02) = N
et i 1 b e e
then
97 (0,) =
N 2 N N 2
“CL ngX X poxp(m0,%,50) ¢ L onyX,  exp(-6,X, ) L nX, X exp(-6.X, )
i=1 i=1 i=1l
. 2
(iflnixilxi2exp(-02)(12))

Letting a; = /hixil exp(-OZXiZ) and bi = Xi2 a; then

by Schwarz inequality

N N N
o aibi)2 £ & ai i bi
i=1 i=1 i=1
by
with equality holding only if e xi2 is constant for
i
all i ; thus, assuming X, is not constant in i ,

i2

16

D,
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g’(02) > 0 . Therefore, if a solution to the likelihoocd
equations exists, it is unique.

Given a solution to the likelihood equations we will
show that it is a local, and thus unique global, maximum by
showing that the Hessian of the likelihood is negative
definite when evaluated at the solution. A matrix is
positive definite if and only if its principle minors are
positive (see Nobel (1969), page 395). The principle minors
of the negative of the Hessian of the likelihood evaluated

at the solution of the likelihood equations are

N
Am2
fapRae )
and
N sey B
A T B, o o it -
N - 3
- (izl nixilxi2 exp(-Ozxiz)) »

The first principle minor is greater than zero and by
replacing 61 by the expression given by (7) the second

is equal to

N N
. 2
LR el Ozxiz)iil niX; X, exp(=0,X;,)
N ” 2
B e B T
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which is also greater than zero; thus the Hessian of the
likelihood evaluated at the solution of the likelihood
equations 1s negative definite.

In summary we have shown that given a solution to
the likelihood equations (5) and (6) this solution is a
unique global maximum of the likelihood (4).

To demonstrate the existence of solutions in a

numerical example we consider the following data:

i 5 B D Y54

X 1 0 6 299 283 280 246 264 254

2 1 1 2 169 184

3 2 2 5 179 224 188 202 194

4 4 3 5 233 261 229 286 264

5 10 4 4 401 410 356 388

6 4 5 5 157 146 134 161 159
Using a search technique to solve (8) we obtain 62 = .4459
and, by evaluating (7) at 62 » we have @1 = 256.9.

Now, returning to the gereral discussion, suppose
() is a maximum likelihood estimate. The likelihood for
a sample of size n taken from a population of form (3) is

L£(n(6)) , where

n
L(°) = 'E

A lan(W(xi):‘) .

1

From this we observe:




=y
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Theorem 4. G is unique if and only if
(1) n(a) is the unique maximum of £(¢) on the
range of n(+<) , and
(ii) there exists no other 6 such that n(6) = n(d).

The following example illustrates the use of Theorem

4 in the logistic model of Thompson (1976).

Example 2 (Logistic Life Study Model). The log

likelihood of the logistic life study model is

n
L(B,n) = .:1 8 )‘s [yij(zijB +nj).-ln(1+exp(zij8+nj))]
) LUS .
ger]
where z?. is a vector of variables for the ith individual

1)
in the jth time interval, Sj is the set of survivors of

the jth time interval, Vj is the set of failures in the
jth time interval, Yij equals 1 if the ith jndividual is
in Vj and 0 if the ith individual is in Sj , and
(BTinl....,nm)T is a vector of unknown parameters to be
estimated.

Now, L(B,n) 1is the log likelihood of a density
which is a member of the exponential family and in this
case the function n(+¢) 1is the linear function determined

by zij8-+nj 1 cvjusj ) j=1,...,m and

L(a) = L L L. 1+ bee -
521 v.us.[y13 i 1n( exp(alj))]
g J
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For the logistic model, hypothesis (i) of Theorem 4
holds since we are maximizing a strictly concave function
over a linear manifold; and, hypothesis (ii) becomes
necessary and sufficient for a maximum likelihood estimate,
(BTEHI ...ﬂm) , to be unique.

Thus, (%Tiﬂl ...ﬂm) will be a unique maximum like-

lihood estimate if and only if the matrix

o F R G R S
VA E lb v % o 6
nll :
i | SRR S IABRR ;| SR
7 = : 5 o :
Bk B ess 030050
e 2 - oy
ST R S
z - -
i nll s g & " % 01_

is full rank.

Though Theorem 4 was stated with the exponential
family in mind, we may apply it to any problem where the
density is a composite function. 1In the following example,
we consider a modified logistic model, applying Theorem 4
to obtain conditions for the uniqueness of maximum

likelihood estimates:
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Example 3 (Modified Logistic Life Study). 1In

Thompson (1976) items censored in an interval were considered
to be not at risk in the interval; thus, no contribution

to the likelihood was obtained frcm the interval in which

an individual was censored. Thompson (1977) considers a
modification of the logistic model to obtain information

from the interval in which censoring occurred.

The log likelihood of the modified logistic model is

m
L(B, = % callZ.  B¥N.) = I n(l +exp(z,.B+n.
e j;l[V.;)S. le( 1)8 ”]) V.:S. ; A lJB n]))
Y- i T
-1
- 2 L 2n(l +exp(z,.B+n.))] .,
L, oy

J

where Lj is the set of individuals censored in the jth

interval. Now,
L(B,n) = Q(zij8+nj) o Gl chquuLj v 31 =Yresepnt)
where

LI 4n(l +expa.;.)

V.uS. 1]
32

i5%5 ©

Lin(l +expaij)]

L.
]
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thus, if f(+) 1is strictly concave then by applying the
same reasoning as in Example 2, a maximum likelihood

estimate will be unique if and only if the matrix 2 is
full rank. To show that 2(°) is strictly concave note

that

(0 ik or j#¢4
_éfgigl_ :J -(____l_,__)Z i=k; j=2
day 905y 1 +expo, 4 4w 8,
-1 1 2 4=k, =2
-2 e A ’
g (l-+expaij) ielL,
j

Thus, the matrix of second order partials of £(-) is
negative definite, and hence (see Roberts and Varberg (1973)
page 103), %(+) 1is strictly concave.

Conditions (i) and (ii) of Theorem 4 are difficult
to verify when working with a particular problem; therefore,
it is desirable to find conditions sufficient for both (i)
and (ii) which are more tractable.

Consider (i). A necessary and sufficient condition

for n(a) to be unique is that

n(0) n{al2(a) 2 £(n(8))} = {(n(8)} .
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In the case that g(x;0) is in canonical form and
Ve(n(6)) exists, a sufficient condition for (i) may be
established using the following well known fact (sce, for

example, Roberts and Varberg (1973), page 98):

Lemma 5. Let #(-) be strictly concave on A and

differentiable at ay then

2((12) 2 Q(ul) (al;‘az)
implies

(a -al)Tvn(al) > 0

2

Theorem 5. If (n(0) —n(a))TVQ(n(@)) < 0 for all

6 then r.(?)) is unique.
Proof. By assumption
n(0) ¢ faf(a-n(0))Tve(n(d) < o)
and from Lemma 5

{a]lf(a) = 2(n(6)) and o # n(d)} ¢

{al(a-n(z)))TV?‘(n(a)) > 0} ;
Thus, n(0) n{a|2(a) > 2(n(8))) = {(n(d)} .

We will illustrate Theorem 5 using Example 1.

The covariance matrix of Y] ,...,YN is a matrix with

diagonal terms 6 X.1 exp (-0

1% and off diagonal terms

2%i2)
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zero; thus, provided Xil is not zero for any i , the
density of Yl-"”’YN- is in canonical form. Now,

n(8) = (Ln(6.X,.) -6.X Ln(6.X ) -6.X.. )T
1711 P L 17N 2°N2
and
N
2(a) = X (Y. a. -n, expa.) ;
i=1 *° A
thus,
Ao Oy . 9
(n(B) =n(9)) " = (An(s=) + (6, =0.)X. . ,...,8n (=)
61 2 2° 12 1
(0, =00 X))
and
V2(n(6)) = (yl_ —nlolx11 exp(—Olez),...,yN.
- n 0 X ., exp (-6.% ))T
N 1°N1 2°N2 P
Therefore

(n(6) - n(8))Tve(n(H)) =

0 N
1 A %
ln(gz).f (yi.--niﬁlxil exp (-Ozxiz)) +
i=1
~ N ~ ~
(e, -Oz)iilxiz(yi. ~n;0;X.,exp (=8,X.,)) .

Now, from (5)
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Mo TRl 0 R Rl T L
and from (7) and (8)
N A ~
iil xiz(yi_ -6)n,X,, exp (‘02"12” =0 ;

thus, from Theorem 5 n(6) is unique.
An assumption stronger than (ii) is that n(+¢) be
one to one, this is the case in Example 1.
In fact, n(6*) = n(9) implies
* _p*
0 xil exp (-6 Xi

2) = leilexp(-02X Y ¢ L=1,css,N

1 2 i2
or
* -_— * t— 1 b —
01/0l exp ((92 Oz)xiZ) L s L=1;coeelN
Thus, assuming X is not constant in i , OI =6, and
¥ o
02 = 02 -

In summary, through application of Theorem 5 and by
showing that n(¢) 1is one to one, we have shown that
hypothesis (i) and (ii) of Theorem 4 hold; thus, the
maximum likelihood estimate for the parameters in Example 1

is unique.
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4. ESTIMABLE FUNCTIONS AND TESTABLE HYPOTHESES FOR THE
NORMAL LINEAR MODEL

From Example 2 we see that the likelihood in Thompson
(1976) will admit a unique maximum likelihood estimate if
and only if the linear transformation determined by the
matrix of covariates is one to one. Therefore, to look at
inference problems for the logistic model when the maximum
likelihood estimates are not unique, we will consider
members of the exponential family in which n(*) 1is not a
one to one function. In this case, problems of identifica-
tion, as discussed in Koopmans and Reiersgl (1950), arise.

Before we discuss the identification problem in
general, let us consider another example of a member of the
exponential family where n(+) 1is not one to one -- the
normal linear model of less than full rank.

In the normal linear model we have an n x1

dimensional random vector, Y , which we express as

Y=XB+€'

where X 1is an nxp matrix of known values, B 1is a
px1 vector of unknown parameters, and € is an n x1
vector of errors distributed as a multivariate normal with

mean 0 and variance 021 . The log likelihood for y is

T
n 2 1 (y-XB) (y-XB)
R 2 52
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or
y'x8 _ y'y _ 8'X'X@ _ntno
02 202 202 2
thus, letting
2 o2 i
n(p,0%) = (B X /o"i-—=) " ,
20
s
vily) = (y iy'y)
and
T.T
R X XB 2
0(8102) = "'r'°'\_2é£_%9/ v
20

we may write the likelihood for y as

ne,oH)Tuy) - 0@,0%) .
Now, n(B*,of) = n(ﬁ,cz) if and only if of = 02
and X(g,-8) = 0 ; thus, n(+,) is one to one if and
only if X is full rank. Therefore, the normal linear
model of less than full rank is a member of the exponential
family for which n(¢) 1is not one to one.

In the normal linear model the concepts of estimable
functions and testable hypotheses are introduced to remeady
problems caused by X being less than full rank.

We will denote the null space of the matrix M (the

set of solutions to Mx =0) by Null(M) and the row space
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of M (the set of all linear combinations of the rows of
M) by Row(M) .

An estimable function is defined as follows:
A linear function of B 1is estimable if and only if there
is a linear function of Y which is an unbiased estimate

of it. From this definition we have the following:

Theorem 6. AR is estimable if and only if

A=:XTr for some r .
Proof. 1If ATB is estimable then there exists

a vector r such that E(rTY) = r?XB = ATB for all £

thus, A = xTr .

.

Conversely, X = XTr implies E(rTY) = A
We may restate Theorem 6 as ATB is estimable if
and only if AT is in Row(X) .

Now £ 1is a maximum likelihood estimate for g 1if

and only if f solves the normal equations,

X"X8 = X°Y .

One important property of estimable functions is

given by the folloving result:
T ‘ : : ; Tz
Theorem 7. A B 1is estimable if and only if A°B

is constant for all # maximizing the likelihood.

Proof. Rao (1965, page 181).
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Another important property of estimablc.functions
concerns tests of hypotheses. A hypothesis, H, stating
that B is in S = {elee =m;, i=1,...,2} is called
testable if and only if xfe is estimable for each i .

Without loss of generality we will assume that the A.'s

3
are linearly independent.

Searle (1971) discusses testable hypotheses, showing
that the sum of squares error under a nontestable hypothesis,
where all Afﬁ are not estimable, is equal to the sum of
squares due to error. Let ~H be the hypothesis stating
that g is in 8% . Seely (1977) shows the intersection of
the sets of expected values under tﬁe null H and the

alternative ~H 1is empty if and only if H is testable.

The following is a version of Seely's result.
Theorem 8.
Xs n xs€ = ¢

if and only if Afe is estimable for each i .

Proof. Suppose for some 1i, AEB is not estimable

then, from Theorem 6, Ai is not in Row(X) ; thus, there
exists a B* in Null(X) for which Afs* 0. Let 8

be in S then Bl~+8* is in 8% ; however,

X(gy +8*) = X8, +XB* = X8, .




30
Therefore,
XS nxs€ # ¢ .

Conversely, if xs n xs€ # ¢ then there exists 81 in S

C

and 62 in 'S such that Xsl = XBZ s thus, 32 - 81 is
in Null(X) .
Now, for at least one i , A?B # A?B s+ thus,
11 i72
A?(B2 -Bl) # 0 . Therefore, Ai is not in Row(X) and,
from Theorem 6, A?B is not estimable.

The next theorem gives a more exact relationship

between XS and XSC .

Theorem 9. If AfB is not estimable for at least

T

one i then XS ¢ XSC = Col(X) . Furthermore, if AiB

is not estimable for any i then XS = xs® .

Proof. Suppose for some i that Afe is not
estimable, then from Theorem 6, Ai is not in Row(X) ;
thus, there is a 6§ in Null(X) such that Azé # 0

Let £ be in S then
; R, . : .
Ai(6+6) = Aie + Aié = m; +Ai6 9 m;
. ; c
thus, f£+8 1is in S~ . Now,
X(B+8) = XB + X6 = XB ;

hence, Xg 1is in xs® . Therefore, XS c XS~ .
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Now, Col(X) = Xs uxs® = xs€ .

Suppose ATB is not estimable for any i , then,
it

from Theorem 6, for each i , Xi is linearly independent

of the rows of X . Now, since the vectors Ai ¢

i=1l,...,% , are linearly independent, the equations in

the variable n ,

and
Xn = 0

have at least one solution for all pR. Hence, for g*

in S€ there exists n* such that g*¥ +n* is in S and

X(B* +n*) = xpg* .
Therefore, xs€ ¢ XS and the theorem follows.

We may extend the results of Theorem 8 to hypotheses

involving inequality constraints.
Theorem 10. Let
s=(8|ATg=m,, i=1 s and ATBam,, i=s+l e}
i il [ L L i il LR |

then XS nxs® = ¢ if and only if AEB is estimable for

each i .




Proof. TE A?B is not estimable for some 1 ,

then, as in the proof of Theorem 9, there exists a §&§ 1in
Null (X) such that AZ& #¢ . Let B* be in S then we
C

may find a real number r such that g* +r§ is in S~ .

Now,
¥(B* +r6) = Xp* +rxs = xp* ;

thus, XS n xs€ 7 . The proof of the converse is the
¢

same as that of the converse of Theorem 8.
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5. IDENTIFIABLE PARAMETRIC FUNCTIONS

5.1 Definitions and Properties

In the discussion of the normal linear model the
concept of an estimable function was used to solve some
of the problems associated with X being less than full
rank. To generalize this concept to functions of the
parameter of an exponential family member where n(+) is
not one to one, we considered the concept of identifi-
ability. See Theorem 17.)

Let Y be a sample with density f(y;6). From
Koopmans and Reiersgl (1950) a function h(-) of 6
will be called identifiable at 6.  if f(-;08) = £(-;0

_.0
implies h(6) = h(OO) . The significance of identifiability

is as follows: Suppose that an observation Y 1is pro-

duced according to some member of the class of densities

f(*;0), ©6€0 ., From Y we wish to make an inference
about the true 6, say 00 . The characteristic of 6,
in which we are interested, is h(6) . If h(+) 1is not
identifiable at 00 then there exists 6° such that

£(*;07) = f(+;0 but h(67) # h(Oo) . Thus, even if

0)
we could infer the density perfectly, we could still not

discriminate between h(€°) and h(eo) v

Theorem 11. If f(';eo) = f(-;el) then h is
identifiable at 00 if and only if it is identifiable
B Yy o

1
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Proof. Suppose h(°*) 1is identifiable at 00 -
By definition, h(Ol) = h(OO) , and f(-;0) = f(-;Oo)
implies h(0) = h(OO) . Hence f(+;0) = f(-;Ol) implies

h(6) = h(Ol) .

Theorem 12. In the special case that
Y = (xl,.,.,xn) is a random sample from a density

fx(x;O) then h(+) 1is identifiable at 00 1f fx(-;G) =

fx(-:eo) implies h(g8) = h(eo) z
n
Proof. Since f(x;6) = 1 f_(x.;6) , then
o ey &4

f(-;6) = £(+;6,) 1is equivalent to fx(';e) = fx(-;e )

0 0

From Theorem 12, if we are observing a random
sample from some density then the set of functions
identifiable at 00 is the same for all sample sizes and
we may check h(+¢) for identifiability at 00 + for any
particular sample size, by checking at sample size one.

Let O be a maximum likelihood estimate for 6

then, from Zehna (1966), h(a) is a maximum likelihood

estimate for h(0)

Theorem 13. h(6) is a unique maximum likelihood

estimate for h(0) only if h(+) is identifiable at 6 .

Proof. 1If h(@) is unique then h(+*) 1is constant
on {6|f(y;6) = £(y:0)} . HNow, {6|f(+;0) = £(+;0)}
c (0]f(y;0) = f(y;a)} ; thus, h(¢) is constant on

{0|£(+:0) = £(+;6)) , so h(-) is identifiable at 9.
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Now we return to g(x;6) , a density of form (3).

Theorem 14. Assuming n(a) is unique, h(a) is a
unique maximum likelihood estimate for h(6) if and only

if h(-) is identifiable at 6 .

Proof. From Theorem 3,

n
f(x;0) = I g(x;:0) =
i=1 i

nh=s

’ fY[w(xi):n(O)]

so that n(6) = n(@) implies f(+;0) = f(-;a) . Therefore,
if h is identifiable at 8, then n(8) = n(8) implies

h(e) = h(é) . The converse is given by Theorem 13.

5.2 Uniformly Identifiable Parametric Functions

Let g(x;6) be a density of form (3).

Lemma 6. Assuming g(x;68) 1is in canonical form,

then g(+;6) = g(-;OO) if and only if n(8) = n(OO) ®

Proof. From Theorem 3, g(x;6) = fY(w(X):n(O))
Since g(x;0) is in canonical form, from Theorem 1, the
function ¢(+) for fy(y;a) is strictly convex on
{a|l¢(a) <=} . Thus, from Lemma 4, g(+;0) = g(-;eo) if

and only if n(6) = n(eo) .

Theorem 15. Assuming g(x;0) to be in canonical

form, then h(+) 1is identifiable at 60 if and only if

n(g) = n(eo) implies h(g) = h(oo)
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Proof. The result follows from Lemma 6 and the

definition of identifiable at 90

The rest of this section depends on Theorem 15, so
we will restrict our attention to densities of form (3)

in canonical form.

Corollary 7. Let n(Ol) = n(Oo) then h(-) |1is
identifiable at 00 if and only if h(e) 1is identifiable

at 01 o

This follows from Theorems 11 and 15.

Koopmans and Reiersgl (1950) call h(+¢) wuniformly

identifiable if h(+) 1is identifiable at 00 for all 00

in 0. If h(+) 1is not uniformly identifiable then the set

0 = {6|h(+) is identifiable at 6}

is important.

Theorem 16. For o in n(0) 1let r(a) = h(8) ,
where n(6) = a, then 1r(¢) 1is a function from n(Oh) to
h(Oh) ; that is, h(8) = r(n(6)) for 6 in 06, .

h

Proof. r(+) 1is a function from n(Oh) to h(Oh)

since, if a n(eo) = n(el) then, from Theorem 15,

r(a) = h(6,) h(6,) .




27

Corollary 8. h(-) is uniformly identifiable if and
only if there exists a function «r(-.) such that h(6) =

r(n(6)) for all 6 in )

Proof. iIf h(-) is uniformly identifiable then

Oh = O ; thus, from Theorem 16, there exists a function

r(«) such that h(6) = r(n(6)) for all 6 in O
Conversely, if h(6) = r(n(6)) for all 6 in O ,

then from Theorem 15 hi(-) is uniformly identifiable.

Corollary 9. In the case that n(6) = M6 for a

matrix M , h(8) = ATO for some vector 6 and O = EP "

h(¢) 1is identifiable at 6 if and only if h(+¢) |is

0

uniformly identifiable.

Proof. Suppose h(+) is identifiable at 00 . then

from Theorem 15, M6 = MG, implies ATO = ATOO .

Let M6 = 0 then M(0 +00) = MOO ; thus,

— ( 8 e

A(0+00) )\)0 r SO A0 0

Thus, Aq is perpendicular to Null(M) , so AT is
in Row(M) . Therefore

ATG = rTMO

for some vector r and, from Corollary 8, n(6) = ATO is

uniformly identifiable. The converse is a special case.
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Theorem 17. In the normal linear mcdel ATB is

estimable if and only if it is uniformly identifiable.

Proof. Suppose ATB is estimable, then from

Theorem 6,
ATB = rTXB

for all g ; thus, from Corollary &, ATE is uniformly
identifiable.

Conversely 1if ATB is uniformly identifiable then,
again applying Corollary 8, there exists a function «r(-+)

such that
Y
A°B = r(Xg)

for all 8. Now, ATB being linear implies r(+¢) must be

linear; thus, there exists r such that

ATg = rixg ,

and from Theorem 6 ATB is estimable.
This result was obtained in Reiersgl (1963) by a

different method.

5.3 Comparison of Uniformly Identifiable Functions and

Those Possessing an Unbiased Estimate

From Theorem 17 we see that the concept of uniform
identifiability is one possible generalization of the con-

cept of an estimable function. Another generalization is
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those functions having an unbiased estimate.

Let Y be a sample with density f(y;6)

Theorem 18. If u(6) has an unbiased estimate,

then wu(+) is uniformly identifiable.
Proof. There exists a function 2z(+) such that
u(e) = [z(y)f(y:;e)duly)
for all 6; thus, f(-;eo) = f(-;el) implies u(eo) = u(Ol).

In the following example we look at a density where
there is a function which is unifofmly identifiable, but

does not have an unbiased estimate.

Example 4. Let YI'Y2 be independent, binary

random variables such that

' exp(Bl+82+83)
P(Y,=1) = 1 +exp (B +B,+6,)
and
exp(Bl+82-B3)
P(Y2=1) - l+exp(61+62'83) o

Letting X, = (1,1,1), X, = (1,1,-1) and B = (81,32,83)T ;

we may write the density of Yl,Y2 as
exp ylxle +y2x28 -2n(1 +exp(xlo)) -fn(1 +exp(x28)) '

which is of form (3), in canonical form.
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Now, n(*) 1is linear with coefficient matrix
X = (Xixg)T . So, from Corollary 8, the function
AT = (5,-v)xe =
0 g 3
is uniformly identifiable.
We will show that Agﬁ does not possess an unbiased

estimate. Assume there exists a function z(+,*) such

that ATB is equal to the expected value of Z(Yl’YZ) for

0
all g.
Now,
exp(ylxlﬁ) L yl-'l
lim ————u- = .
» 1 texp(X;B) i
B3+ 1 0 Yy 0
and
exp(y2X28) 0 Y, =1
lim ——mmF—= = ;
w 1 texp(X,B) -
83* 2 1 Yo 0
thus

exp(ylxlB) exp(yzxzﬁ)

lim E(z(Yl,Yz)) = lim % z(yl,yz)

B3+m 83*m 1 +exp(XlB) 1 +exp(X28)

z(1,0)

’

where the summation is over the sample space. However, the
expected value of z(Yl,Yz) is 83 for all B8 , so

z(1,0) = 1lim 33 = 4o , Now, if 2z(1,0) == then the

B -+
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expected value of z(Yl,Y ) is also <« for all B , which

2
is a contradiction.
5.4 Examples
Example 5 (Logistic life Study Model - Continued).

In example 2 we saw that a unique maximum likelihood estimate
for (GTEnl,...,nm)T exists if and only if matrix 2 is
full rank. Assuming that Z is not full ranrk, we wish to
consider the class of uniformly identifiable functions.

From Corollary 8 a function, h(+), is uniformly

identifiable if and only if there exists a function «r(-)

such that

r(Z(GTEnll---.nm)T)

=
—
—
=
—
-
-
=
~
—
{}

or, for differentiable 1r(-+) ,

T.
ZTVr(Z(B E --.nm)T) :

vh((8 iny,ein )]

thus, for linear h(+*) , h(*) is uniformly identifiable if

and only if for some vector r

where X = Vh[(ETEnl,...,nm)T] . In other words the class
of linear uniformly identifiable functions is that class of
functions whose gradients are in Row(2) .

Let X, , i=1],...,8 , span the space orthogonal to

i
. . ) L S 1o E
the row space of 2 . The functions Ai(ﬁ :nl,...,nm) ¢
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i=1l,...,8 are useful in the computation of a maximum like-
lihood estimate. As noted in Example 2, there exists a
unique fi in the range of Z(BTinl,...,nm)T which maximizes
the likelihood; thus, a maximum likelihood estimate for

T

(BTEnl,...,nm) can be found by solving

TO ~
Z(B8 :nl.---,nm)T = f .

If we solve these equations under the restriction
AI(BTEnl,...,nm)T =0, i=1,...,s , then we have a full
rank system of equations, and thus, a unique solution.

The following are examples of densities of form (3)
where n(+) 1is not a one to one function, and, like the

logistic model, satisfy hypothesis (i) of Theorem 4 for all

samples sizes.

Example 6 (Retrospective Study), Cox (1970).

We might like to estimate the conditional probability of
getting cancer given a person smokes minus the conditional
probability of getting cancer given a person does not smoke.
The ideal way to do this would be to take a sample of both
smokers and nonsmokers, follow the state of their health for
a number of years, and then, check the group to see how many
develop lung cancer. This is called a prospective study.

In practice this can be a long and expensive process; thus,
another method, called a retrospective study, is sometimes

used.




In a retrospective study we take a group of lung
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cancer patients and a control group and check to see whether

or not they smoked.

cally as follows:

no cancer
w=0

cancer
w=1

non-smokers
u=0

smokers
=]

Prospective Study

non-smokers smokers
u=0 u=1

P (w=0|u=0) P(w=0|u=1)

= _%ng I
Tao ™ "ga "5 My

P(w=1|u=0) P(w=1|u=1)

AL L =i e
Yoo " "ma e "

Retrospective Study

no cancer cancer
w=0 w=1

P(u=0|w=0) P(u=0|w=1)
At o e Sl

00t "10 12712
P(u=l|w=0) P(u=1|w=1)
P | S P,

o0 * 10 o1t ™11

We can express both studies diagramati-
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where "ij = P(u=i, w=j), i,7=0,1 . The parameter space 1is
{n = (NOO'WOI'"lO'nll)'WOO +n01 +n10 +n11 =1, O S“ij <1} ;

however, due to the nature of the data collection methods
we may obtain meaningful estimates only for the conditional
probabilities in either study.

Henceforth we confine attention to the retrospective
study. Let p, = P(u=0|w=0) , Py = P(u=0|w=1) and Ly i
the number of observations in the 1ij cell, then the log

likelihood for a retrospective sample is

E(pyeBy) = Tpg Enpy #0440 (1rpy ) BXy, S0Py #2qy fn ld-py) - J

Now, let |

ny(m = 196700 * "1

and

"2(") = "01/n01 +n11

The range of n(+) = (nl(').n2(°))T is the unit square.
l(n1(°),n2(°)) is the log likelihood of the sample as a
function of the parameters (noo,nol,nlo,nll) . The unique
maximum of £(+,¢) on the range of n(+¢) 1is
(roo/(r00'+r10). r01/(r01<+r11)) ; thus hypothesis (i) of
Theorem 4 is satisfied. However, n(+) 1is a many to one

function for each value of its range; in fact,
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n(n) = n(n*)

/m = % /n¥% and

1 1 = * * .
if and only if 00 10”00 "11/"01 1111/1101 ;

10
and thus, we will not be able to obtain a unique maximum
likelihood estimate for w.

We might wish to ask what parametric functions are

uniformly identifiable? Consider
hy () = myy/(myg+myy) = 791/ (g * 7gy)

and

hz(n) ln(nll/nlo) -Qn(nOI/noo)

Ty T
in “11“00 :
10 01

Now, hl(n) is the difference of the conditional
probability of cancer given a person smokes and the
conditional probability of cancer given a person does not
smoke, while hz(w) is the difference of the log odds of

the two conditional probabilities.

First,
Ty T ny (m) n, ()
hz(ﬂ) - ln(n—l-l—"-o—o) - ln(i—_—l—('ﬁ) o ln(l—_—z—ﬁ) H
10701 i | g

thus, from Corollary 8, hz(-) is uniformly identifiable.
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On the other hand, we will show that

0 = {nlhl(n)=:0} is a proper subset of 0 , and hence, h,;

hy

is not uniformly identifiable. With this objective in mind

SUppoOse hl(no) = 0 and write

m m
hl(") T a +HOly(n) T -P% 4
01 00 01 00

where

1= nl(n) n, (m)
nl(“) 1'“1'12(“)

y (m)

Then, hl(n) = 0 if and only if y(m) = 1 . From Corollary
8, Y(*) 1is uniformly identifiable; thus from Theorem 15,
if n(n) = n(no) then vy (m) = Y(ﬂo) and hl(n) = hl(no) -
Thus h1 is identifiable at o

Now, suppose hl(nl) # 0 . Ve want to show that Ty

is not in ohl . Let "= ("00'"01'"10’"11) and

n = (cm ,CT

3 00'”01 then n(nc) = n(nl) and

10°™11) ¢

Y(ﬂc) = Y(nl) . Now, hltnl) = hl(nc) says

o1 o1 To1 To1

To1 FCToY (M) Moy tCTge Moy YooY (M) Top * Moo

.

C(1~Y(n1)) l-v(ﬂl)

’

(Mo *CTgeY (M) ) (Mg +emy) = (mgy +mggv (M) ) (myy +7gg)
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and, since hl(nl) £ 0 , y(nl) # 1 , so
(M) +CMoY (M) (Mg +emgg) = clmgy +maaY (M) ) (Mg +744)

Thus, if hl(nl) = hl(nc) , then

2 2 2 2 2 _

n01 -c(n01 +n00{(n1)) e noor(nl) =0 .

But this last equation cannot hold for all ¢ (0<c<1l) ,
so there exists some c¢” such that n(nl) = n(nc,) but
hl(nl) 7 hl(nc,) ; thus, from Theorem 15, hl(-) is not

identifiable at My

Example 7 (The Projectile Example). In all the

preceding examples the data has been discrete. In this
example we consider a problem involving continuous data.

Let X, (i=1,...,n) be independent and identically
distributed observations of the distance traveled by a
projectile fired at elevation ©6 and initial velocity v .
Assuming no air resistance, the distance traveled is given
by v2 sin 26/g , where g 1is the gravitational constant.

Suppose the xi's are exponentially distributed with
mean v2 sin 26/qg .

Except for an additive constant, the log likelihood

can be written as 2£(n(v,0)) where
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and

n(v,6) = g/v2 sin 26 .

The parameter space is {(v,0) |6 i's in (0,m/2) and v is
in (0,«)}
2(+) has a unique maximum on (0,«), the range of

n(v,08) , in fact

The function n(+,*) 1is not one to one, so there
is no unique maximum likelihood estimate of (v,8) .

Let us now consider the first component of the
terminal velocity of the projectile, a function of the
parameter which might be of interest. Thus, h3(v,0)
= vcos 6§ . We show that h3(~) is not uniformly identifi-

able by proving Oh c {(v,0) |[Vv>0, 6 =u/4} .
3

Let (v*,0%*) be in Oh , we first show that
3

{(v,8) | n(v,8) = n(v*,8%)} = {(v*,0%)} .

Suppose n(v’,0”) = n(v*,0*) , then from Theorem 15, since

(v*,0*) is in O + h,(v’,87) = h_(v*,06*) . Thus,
h3 3 3
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(v')2 sin26” = (v*)2 sin 26%
and
vicos O = v¥ cosO*
NOw, |
(z;)Z . 2in 20% _ gin 0* cos 0*
v sin 26~ sin 6° cos 67
and
v _ cos g*
v* cos 6~ '
which implies
v’ = sin 6* _ cos @*
v¥ sin 6~ cos 6~ '
and
sin(6* -0”) = sin 8*cos 6 - cos 6* sin6” = 0 ,
or, since 6° and 6* are in (0,n/2), 67 = 6* _, Also,
v’ = v*¥ . Therefore, {(v,0) |n(v,0) = n(v*,0%)} c {(v*,0%)}

The reverse containment is obvious.

But this equivalence of sets implies that 6* = n/4 ,
since if 6* <7n/4 , let 61 = /4 + (n/4 - 6%) and v*==vl s
Hence n(v*,6%*) = n(vl,Ol) but 6* # el . A similar

argument holds if 6* > 1n/4
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6. IDENTIFIABLE SETS AND TESTABLE HYPOTHESES
6.1 Identifiable Sets
In Chapter 5 we considered the problem of making
inferences in a family of form (3), where n(*) 1is not one

to one. As an example, we looked at the normal linear model
of less than full rank, considering the concepts of estimable
functions and testable hypotheses which have been developed
for this particular case. We then showed that the uniform
identifiability of Kooprans and Reiersgl (1950) is a generali-
zation of the concept of estimable functions.

In this chapter we generalize the concept of testable
hypotheses.

Let Y be a sample with density f(y:0) . A subset

S of 0 1is called identifiable if and only if 6 in S

0

and f(+;0) = f(-;Oo) implies 6 in S . We now consider
some basic properties of identifiable sets.
Let IS(') be the indicator function of

s(IS(e) =1 for 6 1in S , 0 elsewhere).

Lemma 7. S 1is identifiable if and only if IS(-)

is uniformly identifiable.

Proof. The statement "IS(OO) =1 and f(+;0)

f(-;eo) implies Is(e) 1" 1is equivalent to "f(-.;0)

f(-:OO) implies IS(O) = Is(eo) o
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As an immediate consequence of Lemma 7, certain
results for identifiable functions also hold for identi-
fiable sets. 1In particular, if Y 1is a random sample from
some density then, by applying Lemma 7 and then Theorem 12,
the collection of identifiable sets is the same for all
sample sizes, and we may check for'identifiablity of a
particular set at a particular sample size by checking at
sample size 1.

Now, for m in the range h(*)., let Sm=={0[h(0) =m}.

Lemma 8. Sm is identifiable if and only if h(-)

is identifiable at 6 for all 6 in Sm 5

Proof. The statement "00 LSm

implies OiiSm" is equivalent to "f(+;0) = f£(-;0

and f(+;06) = i(-;oo)
0) implies

h(e) = h(OO) ; for all 60 cSm -

Corollary 10. Sm is identifiable for all m in

h(0) if and only if h(+) 1is uniformly identifiable.

Example 8 (Retrospective Study - Continued). In

Example 6 it was shown that hl(-) is not uniformly

identifiable. It was also shown that

oh1 = {n|h () =0} .

Thus, for hy(.) , Sy 1is identifiable for m=0 but is

not identifiable for any other value of m




-

52

6.2 Identifiable Sets and the Exponential Family

Let g(x;0) be a density of form (3) and S be a
subset of 0. Throughout this section we will restrict our

attention to g(x;0) 1in canonical form.

Theorem 19. Suppose g(x;0) 1s in canonical form,
then S 1is identifiable if and only if 00 in S and
n(o) = n(OO) implies 06 1is in S

Proof. MApply Lemma 6 and the definition of "S is

identifiable."

Corollary 11. S is identifiable if and only if

n(s) nn(s®) = ¢ .

Proof. The statement "n(S)r\n(SC) = ¢" is

equivalent to "6, in S and n(9) = n(OO) implies 0 is

0

ane S5e0T

Let G be a subset of n(0) then n-l(G) will

denote {6|n(0) is in G} .

Theorem 20. Suppose S 1is identifiable and R is

not, then
n"Yinsnar)) = san"tin(r)) .

Proof. The statement "n-l(n(s nR)) ¢ S nn-l(n(R))”

is equivalent to "n(6) = n(OO) and 00 in SnR implies

6 1is in Srnn-l(n(R))", which is true from Theorem 19 and
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the definition of n~1(n(R)).
The statement "n—l(n(S nR)) 2 Sr\n_l(n(R))" is

equivalent to "n(6) = n(oo) ¢« 8 in S and 00 in R implies

6 in n’l(n(Sr\R))", which is true from Theorem 19 and the
definition of n T(n(SaR)) .
1
Theorem 21. Let I be the collection of identifi-

able subsets of 0O . I 1is closed under intersection, union

and complement.

Proof. Let S and SA , A in A , be in 1I.

First, ) S, is in 1. Suppose 6, is in N s,

Aeh A€l
and n(8) = n(Oo) . Then, for all A in A4 , 60 is in SA
and n(8) = n(6,) . Thus, from Theorem 19, 6 is in 0 S,
A€l

and N s is identifiable.
Aed

Second, V) S, is in I . Suppose 6 is in
Aed ¢

U S and n(®) = n(6,.) . Then, for some A in A , 6

A 0 0
Aed
is in SA and n(6) = n(OO) ; thus, from Theorem 19, 6 is

in U Sy and U Sy is identifiable.
AEA AEA

Finally, as a direct consequence of the definition
of "S is identifiable" we see that S° is identifiable.
Let h.(s) , i=1,...,%, be functions of 6. Using

Theorem 21 we may extend the results of Lemma 8 as follows.




Theorem 22. Let S ={08|lh (8)=m.,} , i=1,...,2
S m, i i

2
N s is identifiable for all (ml,...,my) ey in

hi(O) , if and only if h.(*) 1is uniformly identifiable

for all i

I D

Proof. Suppose Sm is identifiable for all

L i

.,mp) . We show that, for every i, Sm is identi-
i i

i
(ml,..
fiable for all my in hi(O) ; thus, from Corollary 10,
hi(-) is uniformly identifiable for all i . Let 1<7j <4 ,

mj be a fixed value of my and éj = {(ml,...,mn)lmj:-mj}.

2
Now, since N Sm is identifiable for all (ml,...,mp) ;

from Theorem 21,

A
U N S,
(ml,...,ml)tAj i=1 i
is identifiable. However,
9, )
R N N n v S, "
(m.,...,m,)ed. i=1 i j i=llm,eh, (0) i
1 2 j iagst 1 4
i#j
=S . ,
m3
]
since, for any i , V) S = 0. So, S . |{is
m;eh, (0) M -

identifiable.
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Conversely, suppose hi(-) is uniformly identifiable

n
for all i . Then, from Corollary 10 and Theorem 21, ”m
i=1 i
is identifiable for all (ml,...,mn)
6.3 Generalizing Testable Hypotheses
Let S = {H|A?i==mi, i =l,.h.,2} where £ and ”2

are the parameters of a normal linear model. Now,

n(s) = ((8TxT/0%1-1/26%) | g is in S, o%>0} ; thus,

n(sy nn(s€) = ¢ if and only if XS nXs€ = ¢ . Therefore,
from Theorem 8 and Corollary 11, S 1is identifiable if
and only if ATE is estimable for 511 i , so the hypothesis
H , stating that ¢ is in S , is testable if and only if S
is identifiable.

We generalize the concept of a testable hypothesis
as follows: Let Y be a sample with density f(y;8) .
The hypothesis H , 6 in S , is testable if and only if S
is identifiable.

To see the importance of this definition, let ~H
(read not H) state that 6 is in s€® . If s is not
identifiable then there is a @ in S and a 01 in

0

. = f(-;ol) ; thus, the set of

s such that f(-;OO)

distributions under H and ~H are not disjoint. This

means that based on observed Y we cannot say whether H

or ~H 1is true.
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Certain hypothesis testing results for the normal
linear model will extend to densities g(x;0) of form (3)
in canonical form.

Searle (1971) shows that in the normal linear model
the sum of squares used in testing a hypotheses with some
estimable components and some non-estimable components 1is
the same as the sum of squares for testing that same hypothe-
sis but with the non-estimable components deleted. We may
extend Searle's result in the following way.

Suppose that S and R are both subsets of 0 ,

S being identifiable and R not. Let H state that 6

is in SnR and H”~ state that 6 1is in S nn-l(n(R)) s

Theorem 24. The maximum likelihood ratio statistic
testing H versus ~H 1is the same as testing H~ versus

~H”.

Proof. Let xl,...,xn be an observed sample from
g(x;6) . The maximum likelihood ratio statistic testing

H versus ~H 1is

n
sup 7 g(x.:0)
geSnR i=1 1

= .
sup T g(xi;e)
6e0 i=1

From Theorems 3 and 20,
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n n
sup m g(xi;O) sup m fY(W(xi);n(G))
0esSnR i=1 0esSnR i=1

n
= sup n fo(Y(x.)in(6))
g ethe i
0en "n(SnR)
! n
= sup T g(x.;0)
i=1 o

0esnn" Y (n(R))

which is the numerator of the maximum likelihood ratio
statistic testing H~ versus ~H”. The denominator is the
same for testing both hypotheses.

To see that Theorem 24 is truiy a generalization of
Searle (1971), let S ={GlA?B = ¢y i=1,...,3) and

R = {Blkfﬁ = c;s i=3+1,...,2} where ATB is estimable
for i=1,...,j , and not estimable for i=3j+1l,...,2 .
From Theorem 24 the sum of squares for H versus ~H 1is

the same as the sum of squares for H~ versus ~H” . Now,

n"Yinry)) = ((8T102)T | 8 is in X 1(X(R)) and o2 >0} .

From Theorem 9, X—I(X(R)) = Ep ; thus, n_l(n(R)) =0 , so

S nn-l(n(R)) = 8§ . Thus, the sum of squares for testing 8
in SnR 1is the same as the sum of squares for testing 8

in S .
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Example 9 (Logistic Life Study Model - Continued).

Thompson (1976) discusses the use of covariates in the
analysis of life table data, introducing a logistic model
for the conditional probability of failure in a time
interval given survival to the beginning of the interval.

\
An example is given using the following data:

Table 1

Times of Remission (weeks) of Leukemia Patients

(Gehan (1965), from Freireich et. al.)

Sample 0 6%,6,6,6,7,9*%*,10%,10,11*%,13,16,17*
(drug 6-MP) 19%*,20*,22,23,25%,32*%,32%,34%,35*%

Sample 1 1,1,2,2,3,4,4,5,5,8,8,8,8,11,11,
(control) 12,12,15,17,22,23

*Censored

Here, the covariate effect is containment in sample 0 or
sample 1. The conditional probability that individual i

fails in interval j given survival to the beginning of

the interval is represented as

exp(zijoeo 4+ ziilﬁl + nj)
1 + exp(zij BO'+zijlel +nj)

where, zijk =1 if the ith individual is in the kth class,

0 otherwise. BO and Bl are control and treatment effects

respectively and "j is the effect of the jth interval.

PO S —
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We wish to test the hypothesis s G 80 =81 , of
equal drug and control effect. Let S = {H|80==ﬁl} '
T ;
here £ = (Ho'ﬁl’nl""'nﬂ) . From Lemma 8, S 1s
identifiable if and only if 80 -6 is identifiable at §
for all B in S . The density of the logistic life study
model is of form (3), in canonical‘form, n(B) = 28 ,
and 0 = E£+2 , thus, from Corollary 9, 80 —Bl is

identifiable at £ if and only if BO-—ﬁl is uniformly
identifiable. From Corollary 8, Bo -Bl is uniformly
identifiable if and only if (1,-1,0,...,0) is in Row(Z) .
This will be the case if there is any interval with at least
one member from each class at risk in the interval. The
data in Table 1 shows 21 members from class 0 and 21 members
from class 1 at risk in the first interval. Thus H* is
testable.

We show that the likelihood ratio test of H* is

the same as that of H , 30 = 81 = 0 . Write
(B|Bg=8,=0} = {B|B, -8, =0} n{B|B,+B, =0} .

Now (1,1,0,...,0) 1is not in Row(Z) , 80 +81 is not
uniformly identifiable, and (BlBo +8, =0} is not identi-
fiable. From Theorem 24, the likelihood ratio test of H
is the same as that of H” , B 1is in {BIBO "81.=0} n

27 (z(8lgy+8,=0}) . But 2

so H” = H = H" .
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We prove this last by showing that
z{BIBO+Bl#O} € Z{8[80+81=0} . Let g* be such that
88+BI7‘0 . There is B1L , with Bg+BI=O , such that
ZBf = ZB* . Consider the equations, in the variable ¢,
|
= ook o *
BO‘+81 BO Bl
and
B = 0 .
These equations have a solution, 87, since (1,1,0,...,0) is
not in Row(Z) . ﬁ* = g* 48" ,
In summary, we have shown that H*,Bz = Bl is

testable and that its likelihood ratio test is the same as

that for H , BO = Bl =0 .




61
7. CONCLUSION

We have considered problems of identification which
arise in making inference about the exponential family when
the density is not in one to one correspondence with the
parameter space. Such problems logically precede all
questions of inference. Using data we cannot hope to
distinguish between two parametric values corresponding
to the same density.

One can assume this problem away by a reparameteri-
zation, but in doing so, the physical meaning associated
with the parameters might be lost.

As a guiding example we considered the normal linear
model of less than full rank discussing the concepts of
estimable function and testable hypothesis. Many of the
classic properties proved there have been extended to the
general exponential family through the ideas of uniformly
identifiable function and identifiable set.

These general ideas are illustrated with several
numerical and computational examples: i) a Poisson model
for the analysis of some data on the survival of bacteria
after radiation, ii) a logistic life study model,

iii) analysis of a retrospective study of cancer and
smoking and iv) a physical example involving terminal

velocity of a projectile. It is found that some parametric
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questions simply cannot be answered from data, for the
data contains no information about them, and sometimes two
questions cannot be distinguished from one another using
data. Other parametric questions can reasonably be asked

and answered in a data analysis sense.
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