
1k
-

.VUflqr~ ~~~~~~ (sh y PtTT$p* ji~~~ MAN*StI~ NT ICT ENC—fle F,. ~~TREELESS SFARCI.CS .Cu)
OCT 76 C E SLAIN. N • JflOtOwUNCLASSIFIED N(Nt—3fl

NI

IC

III
T i

• A l

t O ~~~ IL~~
’

~ ~HI~
I . I IIOI~0

lflI~8

11111’ .25 MIIa•4 HIIU•6

r~ ; I ~’,’ ’j I ~y ~~~~~~~~~~~
A l ~~~ lI ! l l I ~l

L~1IEL

Carnegie -Mellon Universit y D 0 Cc_I,
PITTSBURGH, PENNSYLVANIA ~S2~3 -

~~ ~~~
16 1~”~ U

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATIdN
W II.LIAM I.ARIMER MELLON, FOUNDER


~~~~1~~ a~~~ tent $ciences Research Rep~~t,,No. 396

ID
~~~frl(EEI :ESs SEARCHES —

~~~~~~c .E ./ B i a i r  Mid R.G./Jeros1~w

/‘I
~
)Octob

~~
1 l976~~~~

~~~~~~ ~~~~~~

I
. I — TI 4L)

~
- -

‘• • ____
~4 ~~~~~~~~

.—
——

- -

Li... ~ -r ~
191~3

~~~~~~~: /~~~

~ (jj~1 [~/~) ~~~~~~~~

‘ 

j_ 
~~ — 0 ~ £ t-.~ :

‘

I v/ V ~ 
— & P 

~~~ “1 ~~~~

‘ i’F
This report was prepa red as part of the activities of the M~inagement
Sciences Research Group , Carnegie-Mellon University , un ler (;rant
!~C,P 37510 Xl of the Nationa l Science Foundation and Contract
N00014-75-C-0621 NR047-048 with the U.S. Office of Nava l. Research.
Reproduction in whole or in part is permitted for any purpose of the
U.S. Goverrisent.

Management Science Research Group ’’

Graduate School of Industrial Administration
Carnegie-Mellon University

Pittsburgh , Pennsylvania 15213

1

78 10 02 045
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

AI,stract

We demonstrate tha t there are natura l heurisi ics for partial

enumeration , that are not based on tree structure~ for guiding the

enumerative search , nor can these heuristics be istplemented in any

tree-search framework. We also provide means for “redrawing the tree ,”

when the current state of a tree search makes it desirable to utilize

a different tree representation of current inform tion.

Key Words ___ __.•l í
1. Integer progranining w~~ ~~~~~

‘~ “1

2. Branch-and -I-sound r j ~~” rD
y)p4

3 Implicit emmeration
,,_, \

~ _&*.._.!

TRE E LESS SEARCHE S

by C.E. Blair and ~.G. Jeroslow

0. Introduction

The most successful algorithms to date for the practical solution

of integer programs are based on methods of partial enumeration, and

often derive their fathoming power from linear program~ and cutting-

planes (see e.g., [1]). Here we examine some basic conceptions of

how partial enumerations proceed , and identify “hidden assumptions”

which can lead to overlooking devices that are likely to limit th e

si’,~e of the enumeration.

Specifically, we demonstrate that there are natural heuristics

for partial enumeration, which entail enumerative searches that are

u~.i
based on tree structures for guiding the next state of the

search. In addition , we provide means for “redrawing the t ree.”

Tree-redrawing I nvolves, first , the consolidation r “merging” of

a lternative problems which can be combined in to On - without much loss

of information; and second , the representation of the set of merged

subproblems via a tree structure wh i ch does not rc quire very many

new nodes or new linear programs to be evaluated.

From a practica l perspective , the techniques of this paper can be

useful when a search has “mushroomed ,” and become exceshively large

in a certain way , specifically the same relativel’ few variables are

branched on again and again at many differeni pari s of the tree.

j I

2.

This kind of phenomenon has been observed in practice , usually in

connectiolL with inleger programs which failed to run successfully

by automatic methods , until they were restarted with a different set

of initial branchings specified in advance .

1. Treeless searches

In a tree-guided partia l enumeration for bivalent integer ~‘ogram s,

at any given point of time the current state of the search can be

represented by the set of bottoninost nodes of a tree (the “leaves” of

the tree) that denote partial solutions , both unfathoined and fathomed .

The tree structure itself describes the history ol the search.

In Figure 1 , let A~ denote the condition I and denote

x
1

= 0; also temporarily abbreviate the letters A
1 1A2,A

3
as A ,B,C.

Then Figure 1 constitutes the tree structure behind the search in which

the first bran tiing variable was x1
. From the tree, we see that x

2

was the branching variable on the branch x
1

= 0; thereaf ter x
3

was

the branching variable on both branches x2
= 1 and x

2
0. Similarly,

x
3
was the branching variable on the branch x

1
1 and x

2
thereafter

was the branching variable for both x3
= I and x3

0. In Figure 1

no bottommost partial solution has been fathomed .

The tree f Figure 1 tells us the entire hi ;tory of how we

obtained the eight bottonvnost nodes, just below which we have written

the status of fixed variables in an obvious symbolism. However, it is

really the leaves themselves which aid in specifying the current state

of the search l the history is interesting only if it helps us to resolve

the integer program.

A A

C C B

B I B I c

ABC AI~C ABC ABC ABC kBC ABC ABC

I I

Figure 1

4.

We nay have current Indications that at the node denoted ABC

the setting x 1
I may be ui. very little value (hr one such

indication , see Sec. 2. below). The criterion va l ue of the

associated linear program at ARC may be very little changed if

the imp licit constraint = 1 is replaced by 0 < x
1

< 1. Possibly

the setting x1 = 0 is also of little value at ABC. In such a case,

instead of proceeding “forward” and chosing another branching

variable at ABC , we may actually want to move “bacIn~ard” and merge

nodes ABC and ABC Into one node .

The difficulty with merging the nodes ABC an’t ABC into a new node

BC, is tha t these nodes occur at very d i f fe ren t parts of the tree

structure . Had the historical order of fixing variables first been B

and the n C , followed by A and A , there would be no d i f f icul ty; we

would simply decide tha t x1 was not the proper bra nching variable at

node BC, and we would chose another. However, BC is not the historical

order , and now if we desire to keep the tree structure we simply can’t

do the merge that intuitively we ought now to do. Obviously, the tree

structure has to go.

Indeed , the t ree st ruc ture has to ~o , but no. simply to save

one l inear program , by combining two nodes to one . The nodes ABC

a rid ABC can be ~o simila r , tha t v i r tua l l y the same branching variab1e~
w i l l be chosen i n r e f In i n g each node , s~, that whole sections of the

sea rrh treo will become unnecessarily duplicated .

5.

l~roin Figure 1 , when we chose as the first branching variable ,

1t w,is hv nunt’ the di chotomy x
1

I versus x
1

fl appeared then to be

very sign i I leant , probabl y because one of the two a’ternatives was

like ly to be easil y fathomed. However, given BC representing the

settings x2
= I and x3 1, evidently the effect of the variable x

1
is

now inconsiderable. This would be the case, for example, if the

location of a warehouse at site 2(x 2 I) or site 3(x
3

— 1) is unlikely

to be helpful , given the overall situation , and in view of this fact ,

the locat ’f on of a warehouse at site 1 (x1 I) or not (x 1 — 0) is

clearly a crucial decision; but if both site 2 and site 3 are

(unexpectedly) ut i l ized , then a warehouse at site 1 mi ght be somewhat

useful , hut oni’ marginally so.

Ort l~inal l y , the state of our current s’~arch can be represented in

terms of the bottosmiost nodes of the tree o Figure 1, in this way:

(1) ABC V ABC V ABC V ABC V ABC V ABC V ABC V ABC

Suppose tha t the following merges are found to be advantageous and are

performed :

(2a) ABC and ABC to BC

(2b) ABC and ABC to AR

(!c ‘I ABC and AR(to A~

Then the stntc (‘1 tlti sczireli w i l l be repre~~ntc~d ‘y:

(3) RC V A B V i ~B C V n C V ABC

which has only five subprobletns in place of eight. U~~n reaching (3),

with no further merges possible, the search can be resumed only by

again moving “forward ,” i.e., by chosing some one subprob leni and

branching on a new variable.

Is there a tree structure with (3) as its leaves? To put the

question another way , if we had in advance th e km wledge we now have,

about the relative affect of different brancliings from different

nodes , could we have figured out the “righ t” variable to branch on

at the start and subsequently?

The answer to this question is ‘~no,” since aiy one branching

variable at the op of the tree gives some letter P such that either

P or P must occur in all leaves of the tree , but rio si ch letter P

exists for (3).

Our analysis just previous of course does not demonstrate that

a good enumerative search must of necessity diver~e frot i a tree

structure during at least some parts of the search; pos’~ibly most such

searches do have tree representations for their h storiea. We have

seen , however , that guiding a search by reforence to a tree structure

requires a specia l effort in representing p;.nt ev nts , and can get

in the way of natura l heuristics.

Et is certainly true that treeless searches can require more

“bookkeeping” than a LIFO (“depth-first”) strate ~y , but the latter

has been proven decidedly infer ior to flexible b icktracking ~ ~) and

7.

is not used in most cosmercial codes. Fast list-processing subroutines

that save whole linear program s are often to be preferred to simplistic

approaches.

2. Merging and “reverse penalties,”

Merging is possible when two nodes have descriptions

(4) A
J(1)

Ik
J(2)

. . . A
j(r l) Aj(r)

and A
j(1) AJ(2) ... AJ (r_l)Aj(r)

that are identica l except for exactly one “opposition,” in which

A
J ()

is opposite Aj(r)~ (In (4) , the order in which the description

La written is imaterial (A
J(1)

A
J(2)

and A
j(2) AJ(1) are viewed as the

same logical condition), arid certainly has nothing to do with the

historical order of fixing variables). If a merging t. performed,

it ~.iII result in a node described as Aj (j) AJ(2) ~~~~
A~~ 7,_ 1~ .

Me rgings may be itera ted , wi th , e.g., ABC and ABC merged to AB,

ABC and ABC merged to AB; and then AB and AB merged to A. Also A

and A can be merged to 0, signifying that no variable has been fixed

at any value.

When would the merging of the two nodes described in (4) be

advantageous?-this important question can be rephrased in a more

useful way as follows: if we examined a node A
J(1)

A
J(2)

• , •

when would we decide
~~~ 

to branch on variable Xj(r)I provided we

had any reasonable alternative? Clearly, we would not branch on

if the less promising of the two resulting subproblems after



8.

branching I s  ilot “signif Ic antl y ” IvHs promising thou A 1(()A 1(2)... 
A 1 (,_ 1)

Ii se ll • w i  l i t  ‘‘ signi I I~~ t i i t . ’’ ~wi~i iiiiI y in. ’~~si i I e . i I sy  ~ ‘ I lii .sli ,shsl dl IF ~ t~ iui e’’

A 0. —Here A can he determ l tu~d l’y a p ’ f o r  eYpe ct a l Ion ,‘,od l fiad W I t h

exponential smoothing by criterion value changes a tually experienced.

The linear program associated with Aj(1)AJ(2) A~~1~_1~

has a value for each different right-hand-side , and as this right-hand-

side is parametrically varied from X j ( )  = 0 to X
j ( )  

1 this value

is given by a function f(w) of the value w of X
j ( r )  

— w. From theory ,

assuming a minimizing program, we know that f(w) i~ a piecewise linear

convex function of w in the interval 0 < w < 1, and clearly the linear

prograsining value at A
J(l)

A
J (2)~~~

A
j(r l) is the minimum value v of

f(w) on the interval 0 < w 1, since the constraint 0 Xj ( )  ‘C I

occurs among those of the linear program . The riglitward elope S
D 
of

f(v ) at w 0 is easily obtained via parametric li iear prograimning, or

by use of suitable reduced costs (as done in F 2 ]~ F 3 1); and similarly

one easily computes the leftward slop S~ of f(w) a~ w I.

Clearly , by the convexity of f, if SD 0 the~ v i~ also the value

of the problem at A j ( 1)A j ( 2 ) ~~• Aj(r_l)Aj(r)) and the optimum at this

latter  node (which already has X
j ( r )  

integral) is optimal for

A J( 1) Aj ( 2 ) ... ~~~~~~~~ so merging is reconsnended, because we would never

have branched on ~C
1 ( )  

given the situation at the ode A
Rl)

A I(2i~
••A j (r_l)~

Again , if S
~ 

0, the situation favors a mevj~e.

Now ntmev S~ 0 and S~ 0 , let V1) th ,iote t h e  va lue  of the

program at node A J(1)A .(2) A
j(r_i)

Aj(r)t and ~. i .  v~ ‘lenote the



9.

value at A~ (1)
A
1(2) 

... Aj(r_l)Aj(r)~ From convexity , we have both

f(w) > S~w + vD 
and f (w)  > S

~
(w_l) + v

~
. It follows at once

that

(5) v > mm {maxf SDW + vD,SU
(w l) + v

0 ) 0 < w < l}

= 

S
DVU 

- S
U
V
D 

- S
D
S
U

S
0

_ S
u

Consequently, merging is certainly recommend d J he right-hand -

side of (5) p1w A exceeds m8XCvD,
v
U
) (in a mii’imizing problem).

The right-hand-side in (5) leads to a “reverse penalty ,” and was

derived by virtually reversing the analysis that provides ordinary

up-down penalties E l ]. Just as penalties provided a lower bound

on criterion deterioration after branchi ng, reverse penalties provide

an upper bound ~n criterion improvement a f ter  merging. Reverse

pena lties are therefore conservative , and merging may be recoemended

even when the previous reverse penalty fails to signal this fact.

As with penalties , one obtains better reverse penaltie s if several

pivots are performed in parametric prograusning.

Clearly ,  after the merging of the two nodes described i~ (ti ) ,

X j ( )  should not be used as a branching variable , unle~ s no very

promising branching variable is available. This simp l rule is

probably suffic ient to avoid cycling in many cases , but cycling can

occur when e .g . ,  0 is branched to AVA arid then A :tnd A are merged to

0. To insure ri gorously against cycling, one may store a representation

of e very node which resulted from a meTge, ;ind a list of variable. for



10.
the merges resulting in this node; one then forbids a merge which

repeats a variable in the list.

In examinin’ the current state of the r;earch , and looking for

all possible merges for a specific current node, th e whole set of

current nodes mu ;t be scanned. It La not di fficul t to write conditions

for detecting possible “partners” for t;he given node, and to update

these dynamically; however, this practice results in a list of current

notes being associated with each current node. It is probably more

efficient to simply note the length of each current node, to compare

nodes of a specific length against the one or two nodes just created ,

and see if they h ave precisely one opponitio i: oru• then app lies reverse

penalties to tha ’: one opposition if they do.

3. The systema~ic use of merging.

To underst.ind the theoretical limits of the branch—merge-and-

bound methods w~ have outlined above, a cer’:ain degree of abstraction

is necessary.

We shall find it helpful to say that a logical condition

(6) 8~V B2V...V ~
is a (dtsjunct i e) norma l form tautology, ot n.f.t ., It each

( I 
— 

k t ) I Iii,. (
~in lith E I t  on iii a tinn i , I elIi ‘ii A tu tu I he I r

negations A
1 
(wi th no 

~k 
con l u i n i n g  both an A~ and A~)~ and i f  (i i)

is always true whether each A
1 
is true or f;.lqe. We shall call (6)



11.

a disjoint tautology if each pair Bh,Bk 
exclude e tch other, i.e.,

some let ter  A~ occurs in both Bh and Bh but in opposition . By

definition, 0 1 a disjoint tautology.

Theorem: The n peated use of branching and mergitig produces disjoint

tautologies. Mt reover, any disjoint tautology cat be obtained in

this niartiter.

Proof: since 0 is a disjoint tautology , to prove the first assertion

we need only establish that branching and merging preserve the disjointness

of a disjoint tautology (6),. For branching , the result is ininediate.

For merging, suppose that B
h and are merged into P, and let B be

other than Bh or Bk. Then the truth value of B t P is that of

B A (Bh V Bk ) ,  i .e ., that of (B A B
k) V U: A Bk

), hence B A I~ is always

false.  There fore B and B mu st have at lea .t one lette r in opposition.

For the second a~ sertion , let C A 1, A2 , . ..  ,A~l contain all the

letters occurring in any B ( 1 k < t ). By repeated branching, onek +1 +1 #1
obtains a disjoint tautology of which the general term is A

1 A2 ...A

using the abbreviation

(A i f i - + l
A ~ -~

A if I — I

Each such ter~i is consistent with exactly one Bk 
I (6). 8y grouping

together tha t set of terms consistent with B1 and 
u.peat ed ly merging,

txa t ~~‘~‘ 

~k ~ 
i)))tLL I flt’d. 

Q.I~.D.



12.
3.1 Non-disjoint normal form tautologies.

A considerat ion favor ing  d is jo in t  tautologies is tha t each

subproblem is more tightly constrained than in nor ta l  form tautologies

where there may be overlap among the leaves. This :onsideration could

become minor if certain non-disjoint n.f.t.’s can le shown to provide

more “Inforinition” than any disjoint tautology with the same number

of leaves .

Ib ’w much “information” a given node provides in terms of criterion

value , closeness to integrality, etc. - depends of course on the exact

integer program to be resolved. In general, one ri de Bk can be guaranteed

to provide as much information as another B
h 

only f it Is uni formly a~~re

tightly constrai *d, i.e., if B~ contains all the ixed ,ariables of

B
h 

fixed at their values for 8
h (and may contain mere fixed variables).

When this  l a t t e r  condition occurs , we say that B
k 

S a refinement of

Bh. Also , one n.f.t. is a refinement of another , f each of its leaves

Is a re finement  of a t  least one leaf of the other .

Here is a n ’n-di~ joint n.ft. , which po~sesse the property t hat

its every disjoi it re l inenient has more leave;:

(8) AB V CDV ~~~V ~r5V ~~~V ~~

The reader can eusily check that (8) is a tautolog’; it is clearly not

d i s jo in t .

Suppose tha t the following disjo4~nt tautology is a refinement of

(8) :

(6) ’ B~~V ...V B~ -



-.5

13.

We shall  say that  B~ is unique to a leaf of (8)if it refines that leaf

and only that leaf. To prove that t ’ exceeds six (the number of leaves

of ( 8 ) ) ,  i t  clearly s u f f i c e s  to show : (I. ) Each le Lf of (8) has a leaf

of (6)’ that is unique to it; (ii) At least one p. ir of leaves of (8)

have at least  three d ist i n c t  ‘ s i n  ( 6 ) ’  tha t ar r e f i ne m e n ts  of at

least  one node of the pair  and are not re f ine ments of any  leaf of (8)

not in the pair.

To establish (i), note that there are sixteen truth valuations

of the four letters A ,B,C,D, arid that each leaf of (8) has a valuation

that makes it true and al l  other leaves of (8) fa l se .  This valuat ion

makes at least one leaf B~ of (6)’ true, and clearl y B
1~ 
must be unique

to the given leaf of (8).

To establish (ii), note that any refinement ni AB or of CD cannot

be a refinement of the other leaves AC , AD , BC, or BD. There cannot

be only two refinements of both AR and CD in total • for  then these two

would be AR and CD themselves, and hence would noi be disjoint. Hence

there are at least three B
k
’s which are refinement~ of AB or CD.

This completes our proof that t ’ exceeds six .

There is a result analogous to the previous heorem for nondiajoint

n.f.t.’s, in which the simple merging operation I rep laced by a “copy

and merge” opera t ion .  Speci f ica l l y ,  one a l l o w s  ~; vera l “copies” of a

given leaf to b made , each different one o whIt is merged with

another Leaf , ti’ which It has an opposit ion at a huferent vari;ibIe.



14.

The proof of the previous Theorem is then appli ab]e , virtually unch inged
+1 +1 4-1

except for the fact  that  one copy of A 1 A 1 . . - is made for each B
~

in (6) with which it is consistent. The branch-copy-merge-and-bound

approach can , in theory , produce any n. 1.t., di~ join t or not.

4 .  Redrawing the tree.

The concept of merging can also be used to ;ugge~ t alternate tree

structures for a tree-based search already under lay .

We illustrate the technique by an example. Suppose the tree of

Figure 1 has the advantageous merges (1a) to (2c ,’ , after which the

sta te of the search would be given by ~3). 
(In ~enera l , we allow th

case in which no merges are advaritageons , or in 4hich one rhose ; to

do no me rges).

To represent the current state (3) at least partially in

tree form, therL would have to be a “first” branthing variable with

corresponding le tter P , such that P or P occurs i each leaf. As

noted in Section 1 , no such letter exists for (3). But if e.g., we

wished to branch on x2, we can artifici t i l y have )oth I: and B occur

In cacti h-al , by viewing AC (which Is the only It t f  not containing B)

as ABC V ARC , wh ich causes an increase in tie ru.mi er of leaves. (We

will see in Figure 2 that this “urimerging” tr eed n t iea’l us back to

the origina l tre . ni Figure 1).

The general situation in tree re-drawitig is rmila r to that of

the example. The search to the present point of t ime is unsatisfactory;

one has picked up information indicating that certain variables,

branched on lower in the tree , may be more “ sign i f i can t ” that  the

varlahies hranch’ d on by the automatic proci dure toward the top of the



15.

tree. One wants to perform merges and proceed wi t it a treeless search;

one first perform s these merges , at least symbolic .mll y, but the

necessi ty of us lug a branching code forces U;  to t ree r e d r a w i n g .

After one h .ms selected the va r i ab le  x
1 

tha t one w i sh e s  to make

the first branching variable , every lea f Bk, In which neithe r A~

or A
1 

appears , must be doubled to become Bk~
. V BkA I 

; then this

technique is repeated inductive ly with the resulting branche s for

A
1 
and ~~ and whatever variables are viewed as good choices for

“second” branching variables . In principle ~~~~~~~ f i t s t  branching

variable x can be chosen.

Clearly,  the consideration of avoiding very many “doublings”

leads to chosing a branching variable x~ such that the ntsnber of

leaves in which • ither A . or A~ appear (I.e., the number of 1eave~

which will not h.mve to be doubled) is large , if not maximum. Thi ;

approach to l i m i t i n g  the choice of branch ing vari ab le i~ a l so  in

accordance with the observation , that one reall y does not have good

information throughout the tree about a variable br anched on only at

a few places . In  our s p e c i f i c  examp le , a l l  t h r e e  o h the l e t t e r s

A ,B,C or their negations appear in all but one lea f , so the choice of

first branching variab l~ is left to other heuristic ;,quite possibly

involving the observe d r i t e r i o n  value d -t e r i or a t i o u  w i t h  each

branching on a give n va r i a b l e .

Suppose that x
2 is chosen as f i r s t  b r a n c h i n g  v i r i a b l e  in  ( 3 ) .

Then we view AC a two d u p l i c a t e s  ABC V ABC , and con s e q uen t l y ,  on the

branch x2 1 we have t h e  problem BC V ARC V ARC • 1 (  C /  AC V AC );



16.

the method is repeated on C ‘I AC V AC . This time , C and C occur

in each leaf , so is the t,ranching variable. For x
3 

0, we have

only C; the met hod term inatte;. For x
3 

= 1, we must consider

AC V AC C.( A V A ) ,  and w° repeat with A V A , whi ch i s a simple

bran ching on x
~
.

On the bran h x
2 

= 0, we have the problem

AB V ABC V Añc = B .  ( A V A C  V AC ) ,  hence the method app lies to

A V AC V AC and the branching variable is x1 ; etc. The results are

shown in Figure 2, where nodes which are not among the leaves of

(3) are braoched to on dotted lines.

in Figure 2, we have six nodes , in p lace of the f ive leaves

of (‘3) or the ei ght leaves of Figure 1. Onl y the values of the

two “artilical” nodes ABC and ABC cannot be obtained by merg ing

alon e, and woule necessitate solving a new linear program . -One may

ten ta tivel y use the value of the merged problem AC for fathoming

at both these nedes , and one never need s to ac tuall y solve either of

the two additional linear programs , unless a backtracking heuristic

selects one of these for further examination.

For related tree redrawi ng techniques in more restrictive

ircumntaine’i , -c 1 2 1 , I 1 1 or ~ -



B B

/ 
- -

BC ~~~~~~~~~~~~ AB ‘
~~ C

ABC ABC AB C ABC

F i gure 2



17.
5. Ref inements .

In our examples and d i s c u s s i on  above , the  i n d i v i d u a l a t mi i

l e t t e r s  A~ resp .  A .,  which  we re con jo ined  to fo rm l e a v e . ,  r ep r e sen ted

x - I rest ) . X - 0 . For more g e n e r a l i t y,  t i r e  a t  ‘‘ml c l i t  t .  r s ‘.an
I I

represent any s’.stem of linear inequalities m d  e ua lit i .’s , such

tha t  repeated branch ing exhaus ts a l l  the l o~ ica r o ssib ilitles .

For i n s t a n ce , in b i v a l e n t  progransiiing t o e  ma add • t om ic  l i t t e r

Hk representini~, 
x = x and C. represer ting . = 1 - x . Thisj h jk ,j k

is the “cross-branching” tha t the second aut hor I itroduced in [4 1~
it is usef u l when , for ins tan ce , there are Prior expectations as to

when two p r o j e c t s  are like ly to be done together If at a l l  (x
1 

= x
h

) ,

or are basi call y opposed projec ts (X
j 

= 1 - X
k
).

In the present framework , the cross-branching allows a novel

merging in addition to the obvious merges like B (~~~. and B C 
k 

to B . ,i jk I j
for a leaf B . . Speci f ica l l y ,  we have the “two ° p o s i t i o n s  merge”

o f B
1
A~A a n d B A A t o B C  , as well a s l A A a n d li .A A t O B C

k~k i j h  i)k i j h  i i h  i j

Just a s wi th ordina ry branch ing, the cross-branching reduces dimension

by one .

6. Acki owledg inents.

Th second author has been influenced by Fi~id Clover ’s

emphasi ; on the need to re-examine the bar ic cot :eptions behind

vnumera ive a l~~orithms [ 2 1-

We partla ular ly  wish to  thank Roger I eddin of ITh IVAC for an

interesting discussion of problems arisin~ dun ig tree-searches

b r  so l ving Intege r  programs from indust r i , in ihich lie pointed

out the f req im ‘ncy of t ree  ‘;t ruc tu res  w i th  m u l t i  le occurrences  of

b r a n c hin g  on he same set va r i ab les .  The term tree redrawing” is h i s .

Carne ; ie-Me Ion Univers i ty
University f Illino is
October 8, 976



I-

References

1 . R . S .  C a r f i n k e l and C .L. N emhauser , Intege r_ Pr ogra num i~~~ , John
Wiley  & Sons , New York , 1972. 390+ pp.

2. F. Clove r and L. Tangedahi , “Dynamic Strategies for Branch and
Bound ,” OMEGA 4 (1976),  pp.  1-6. Given as an i nv i ted  t a l k  by
F. Clover at the Workship in Integer Pro;’rammiimg, Univer si ty of
Bonn , Septembe r 1975.

1. F. Cl over and L. Tangedahl , “Dynami c Branch and Bound Strategies
Using Tree Manipulations ,” talk at the Fifth Annua l Meeting,
American Institute of Decision Sciences , Weste rn Regiona l Con-
ference , March 1976. AvaI lable as a man’iscripi , 4pp.

4. R.C. Jeroslr,w , “Cross -branch ing  in Biva l i nt Pr egramnring ,” MSRR
no. 331 , GSTA , Carn egie-Mel lon  Iiniversit ’ , Mari b 1974.

5. C.J. Piper , Computationa l Studies in Opt i mizinl an’! Postoptimizing
Linear Programs in 0-1 V a r i a b l e s ,  Ph. D. d i s s e r t a t i o n , CSIA , (~arnegie-
Mellon UnT v e rs it y ,  1975.

6. N .  Ph. Tuan , “A F l e x i b l e  ‘t ree Search Meth od for  In t ege r  Programming
Problems ,” Operations Research 19 (1971),  pp. 115- 119.

-



[ - 

*.‘ORT ~xj cuM I NTA 1iON I~A(,r 
- 

COM PL I i t  ~4M 
-

~~~~i i  •~~~~ , s~N t.ØJ) Ac C I  ~.SION lOl l ~~t l  CPU f’s ~~A5 A LOO MU

M.S.R.R . ‘196

4 .. ., S..i isst.i
-

~ lvPI 0 NVPOST & PLkIUL4 j t ~~~~

Treeless Searche Octohie r, 197 (

& P1 PP a NO 0P~ Pt ~ “ “ 14
M. S.~~.R . 396

1 1 ~. r ,.
-

~~~~~~~~~ c~óte~~ T O ’ ö 7 ~I~~~~pl,,M& V f4( - . )

C .E. Blair and I . ; . . Jero slow I N00W4- 75-C-062 1

i 41  M N ’ . P 4 * 4 1  ~ N P1 .P4~ A P4 L  *CJt V.1 ~5 
- 

I ppi f N IL W INI ‘I— ’.. J (  r An  -

AP IA *055 U N I I  ~luu,wPs
CSIA 

NR U’+7-048

Carne~ Ie-Me1lon ~~~~~~~~~~~~~~~ g~~ ~~~~~~~~~~~~ 
._____ 4I I  • ..‘ ‘ . N ~ 1)1 P , C t  4 A~~~I * in  AO OPI SS I . R I P O  OA TI

Personne l and T ra i n i n g  Research  Programs
O f f i c e  of Nava l Re search (Code 458) 

~~~~~~~~~~~~~~ 
- -

i Arlington , Virginia 22217 1/
‘A C J F 4 I I O R I N C . A C . t NC V , V . (; O~~~P5S(l i ‘ Cf.,..., I, ,, ., (ni .0HIn~~ OShoS)

—
~~Th SF 1 C L A SS. (n, ~~~- . 1

Uncla ~si f ied

flu O~ C I ~s , p CA t m oH ’ o m, p.(. ,(CHU
5Cr,? 1L~

P. l S~~~~4 I R i) . ~U ’ *~~F • i T I ~

I ‘ - i i , (il S~ A T p 14 ~~~~~~~~~~ •~~~~ •‘S in kIn- I 4 ’ . I I II1l •rW~ Sr.., I ‘ m M) —

5 - ;u t r I UP N r~~ui . - i .) ’
—

II p L ‘. . u-4 0 (n , ,.. . . •4 ,.. ~~.. ... v .., ~ (l~ i i - 6~ U ; . - .* .nm,b.,)

In teger programming, Br snch-and-bound , I m p l i c i t enn uuue ra t i o n .

An~ ~ , , i i .V . •~ n. .••~~-~ 0 ~., cmi,- u ~ ~~~~
~~~~~We de monstrate  that tTrere are natura l heuristics for partial entaneration ,

that are not based on tree structures for guiding the en umerative search , nor ’
- can these heuristics be ~~~~~~~~~~~~~~~~~~~~~~~~~~~ framework. We-~~1~~

provi de rena f o r  ‘~redrawing the tree~~ when the current state of a tree
search makes it desirable to utilize a different tree representation of
current information.~~—

~~~0~~~~~~ ~~~~~~~~~~~~ —. - . — — — —
DD ~

~~
t T I O P 4 UI M V $& iS n•sot V

I 1 .‘
S ‘4 i i i, ~~

, U, 4 I I I — . JJ~~JessifIm~d - -
ISCUPItY C’ .&$i, ,’ ICAT , 0? 1N~I PAG S (*M.,, I’. .

-s

