FOIE-MELLON UNIV PITTSBURGH A

MANAGEMENT SCIENC-=ETC F/8 12/1
TREELESS SEARCHES. (U)
OCT 76 C E BLAIR: R 8 JEROSLOW

NOOO14=78=Cu0621
UNCLASSIFIED MERR=-39¢

N
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIlllIIIIIIIII‘IIIIII||IIIIII|IIII =

DATE
FILMED

12-78

DD

2 1=

fl2 ¢ '~ 2

TN
i, ="
L2 flis nie

£§E§

ADAQ 59907

-

DOG FILE cOPY

Carnegie-Mellon University

PITTSBURGH, PENNSYLVANIA 15213

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATIQQI;V

WILLIAM LARIMER MELLON, FOUNDER

L/\ =
(i)ganagement $ciences Research Report, No. 396
P
5

T

JTREELESS SEARCHES #

e e e

_(“»h]Blair and R.G.]Jerosmlnw ' f
- . ! SR S—— ¥
m\"oe”mb-r, 1976 |

ADAO599 ¢

2 i Al e
'))) /‘ s ‘\ :>t\'

J e .__M},lu..,,,f:._

NDC FILE copy

S JNDOGLN-NE-T-0b 53
YNSF-GP AN SV 4 e 1

This report wééwbrepared as part of the activities of the Management
Sciences Research Group, Carnegie-Mellon University, under Crant

#fGP 37510 X1 of the National Science Foundation and Contract

N00014-75-C-0621 NRO47-048 with the U.S. Office of Naval Research.
Reproduction in whole or in part is permitted for any purpose of the

U.S. Government.
Management Science Research Group
Graduate School of Industrial Administration
Carnegie-Mellon University
Pittsburgh, Pennsylvania 15213

8 10 02 045
FO5 45,0 |

-

-

Abstract

We demonstrate that there are natural heuristics for partial
enumeration, that are not based on tree structures for guiding the
enumerative search, nor can these heuristics be inplemented in any
tree-search framework. We also provide means for '"redrawing the tree,"
when the current state of a tree search makes it desirable to utilize

a different tree representation of current inform: tion.

Key Words

AGCESSION for
1. Integer programming g Weite Section
Buff céchon

2. Branch-and-bound od

AHNOUNCTD e C
\, CATON ""W

3. Implicit enumeration

e ——— T s

TREELESS SEARCHES

by C.E. Blair and R.G. Jeroslow

0. Introduction

The most successful algorithms to date for the practical solution
of integer programs are based on methods of partial enumeration, and
often derive their fathoming power from linear programs and cutting-
planes (see e.g., [1]). Here we examine some basic conceptions of
how partial enumerations proceed, and identify '"hidden assumptions'"
which can lead to overlooking devices that are likely to limit the
size of the enumeration.

Specifically, we demonstrate that there are natural heuristics
for partial enumeration, which entail enumerative searches that are
pot based on tree structures for guiding the next state of the
search. In addition, we provide means for ''redrawing the tree,"
Tree-redrawing involves, first, the consolidation or "merging' of
alternative problems which can be combined into on: without much loss
of information; and second, the representation of the set of merged
subproblems via a tree structure which does not require very many
new nodes or new linear programs to be evaluated.

From a practical perspective, the techniques of this paper can be
useful when a search has '"mushroomed," and become excessively large
in a certain way, specifically the same relativel' few variables are

branched on again and again at many different paris of 'he tree.

2.
This kind of phenomenon has been observed in practice, usually in
connection with integer programs which failed to run successfully
by automatic methods, until they were restarted with a (ifferent set
of initial branchings specified in advance.

1. Treeless searches

In a tree-guided partial enumeration for bivalent integer programs,
at any given point of time the current state of the search can be
represented by the set of bottommost nodes of a tree (the '"leaves" of
the tree) that denote partial solutions, both unfathomed and fathomed.
The tree structure itself describes the history of the search.

In Figure 1, let Aj denote the condition x, - 1 and A, denote

]]

x, = 0; also temporarily abbreviate the letters AI’A as A,B,C.

3 23
Then Figure 1 constitutes the tree structure behind the search in which

’A

the first branching variable was x From the tree, we see that x

1° 2
was the branching variable on the branch X, = 0; thereafter x, was
the branching variable on both branches X, = 1 and X, = 0. Similarly,
X, was the branching variable on the branch X, = 1; and x, thereafter

was the branching variable for both x, = 1 and Xy = 0. In Figure 1,

3
no bottommost partial solution has been fathomed.

The tree of Figure 1 tells us the entire history of how we
obtained the eight bottommost nodes, just below which we have written
the status of fixed variables in an obvious symbolism. However, it is
really the leaves themselves which aid in specifying the current state

of the searchj the history 1s interesting only if it helps us to resolve

the integer program,

ABC

ABC

ABC

ABC ABC

Figure 1

—ad

4,

We may have current indications that at the node denoted ABC

the setting x. = 1 may be of very little value (for one such

1
indication, see Sec. 2. below). The criterion value of the

associated linear program at ABC may be very little changed if

the implicit constraint X, = 1 is replaced by 0 < x. < 1. Possibly

1
the setting X = 0 is also of little value at th. In such a case,
instead of proceeding ''forward" and chosing another branching

variable at ABC, we may actually want to move "backward" and merge

nodes ABC and ABC into one node.

The difficulty with merging the nodes ABC and KBC into a new node
BC, is that thesc nodes occur at very different parts of the tree
structure. Had the historical order of fixing variables first been B
and then C, followed by A and K, there would be no difficulty; we

would simply decide that x. was not the proper branching variable at

1
node BC, and we would chose another. However, BC is not the historical
order, and now if we desire to keep the tree structure we simply can't

do the merge that intuitively we ought now to do. Obviously, the tree

structure has to go.

Indeed, the tree structure has to 30, but no' simply to save
one linear program, by combining two nodes to one. The nodes ABC
and ABC can be o similar, that virtually the samc branching variable:
will be chosen in refining each node, so that whole sections of the

search tree will become unnecessarily duplicated.

5.

From Figure 1, when we chose x, as the first branching variable,

1
It was because the dichotomy X | versus * 0 appeared then to be
very significant, probably because one of the two alternatives was
likely to be easily fathomed. However, given BC representing the

settings x, = 1 and Xy = 1, evidently the effect of the variable x_ isa

2 1

now inconsiderable. This would be the case, for cxample, 1f the
location of a warehouse at site 2(x2 = 1) or site 3(x3 = 1) 18 unlikely
to be helpful, given the overall aituation, and in view of this fact,
the location of a warehouse at site 1 (x1 = 1) or not (x1 = 0) is
clearly a crucial decision; but if both site 2 and site 3 are
(unexpectedly) utilized, then a warehouse at site 1 might be somewhat
useful, but only marginally so.

Oripinally, the state of our current scarch can be represented in

terms of the bottommost nodes of the tree of Figure 1, in this way:
(1) ABC V ABC V ABC V ABC V ABC V ABC V ABC V ABC

Suppose that the following merges are found to be advantageous and are
performed:

(2a) ABC and ABC to BC

(2b) ABC and ABC to AB

(2¢) ABC and ARC to AC

Then the state of the search will be represonted y:

(3) BC V AB V ABC V AC V ABC

which has only five subproblems in place of eight. U,.n reaching (3),
with no further merges possible, the search can be resumed only by
again moving 'forward," i.e., by chosing some one subproblem and
branching on a new variable.

Is there a tree structure with (3) as its lesves? To put the

question another way, if we had in advance tlie kncwledge we now have,

about the relative affect of different branchings from different
nodes, could we have figured out the '"right" variable to branch on
at the start and subsequently?

The answer to this question is '"no,'" since a1y one branching
variable at the top of the tree gives some letter P such that either
P or P must occur in all leaves of the tree, but no such letter P
exists for (3).

Our analysis just previous of course does not demonstrate that
a good enumerative search must of necessity diver:e from a tree
structure during at'least some parts of the search; possibly most such
searches do have tree representations for their histories. We have
seen, however, that guiding a search by refcrence to a tree structure
requires a special effort in representing past evients, and can pet
in the way of natural heuristics.

[t 18 certainly true that treeless searches can require more
"bookkeeping' than a LIFO ("depth-first') strate:y, but the latter

has been proven decidedly inferior to flexible bicktracking [5] and

e

e -

7.

is not used in most commercial codes. Fast list-processing subroutines
that save whole linear programs are often to be preferred to simplistic

approaches.

2. Merging and '""reverse penalties."

Merging is possible when two nodes have descriptions

) Mari@ o Me-ntie

and A oes A

1452 Sy)

that are identical except for exactly one "opposition," in which
Aj(r) is opposite Xj(r). (In (4), the order in which the description
i{s written i{s immaterial (Aj(l)Aj(Z) and AJ(Z)Aj(l) are viewed as the
same logical condition), and certainly has nothing to do with the
historical order of fixing variables). If a merging is performed,
it will result in a node described as Aj(l)Aj(Z) o Aj(r-l)'
Mergings may be iterated, with, e.g., ABC and ABC merged to AB,
ABC and ABC merged to AB; and then AB and AB merged to A. Also A
and A can be merged to @, signifying that no variable has been fixed
at any value,

When would the merging of the two nodes described in (4) be
advantageous? -this important question can be rephrased in a more

useful way as follows: 1f we examined a node A ess A

A
(1) 3(2)
wvhen would we decide pot to branch on variable xj(r

had any reasonable alternative? Clearly, we would not branch on

J(x-1)°’
X provided we

x i1f the less promising of the two resulting subproblems after

(o)

[

branching is not "significantly" less promisiag thaa A](I)Aj(z)"' A'('_l)

frtaelt, with "sigoultlcance” posstibly measured hy a4 “threshold of Fresende'

A - 0.-Here A can be determined by a piior expectal lon modified with

exponential smoothing by criterion value changes actually experienced.
The linear program assoclated with Aj(l)Aj(Z) alale Aj(r-l)

has a value for each different right-hand-side, and as this right-hand-

§(x) =0 to xj(r) = 1, this value

is given by a function f(w) of the value w of xj(r) =

assuming a minimizing program, we know that f(w) is a piecewise linear

side is parametrically varied from x

w. From theory,

convex function of w in the interval 0 < w < 1, and clearly the linear

programming value at A ...Aj (r-1) is the minimum value v of

145

f(w) on the interval 0 < w < 1, since the constraint 0 < x <1

)
occurs among those of the linear program. The rightward slope SD of
f(w) at w = 0 is easily obtained via parametric liiear programming, or
by use of suitable reduced costs (as done in [2], [3]); and similarly
one easily computes the leftward slop SU of f(w) at w=1,

Clearly, by the convexity of f, if SD - 0 then v is also the value
of the problem at Aj(l)Aj(Z) ¥ Aj(r_l)xj(r), and the optimum at this

latter node (which already has x integral) is optimal for

i(r)
Aj(l)Aj(Z) oo Aj(r-l); so merging is recommended, because we would never
have branched on xj(r) given the situation at the node AI(I)A1(2)"'Aj(r-l)’

Again, if S 0, the situation favors a merpe.

u -
Now assume SD - 0 and SU 0, let iy dcenote the value of the

program at node A

Aj(r-l)Aj(r)’ and 1t Yu denote the

Jri

9.
value at Aj(l)Aj(Z) Ao Aj(r-1)Aj(r)' From convexity, we have both
f(w) > SDw + v and f(w) > SU(w-l) + vy It follows at once
that
(5) v > min {max(Spw + vD,SU(w-l) + VU] | 0<w< 1}

- S v -
5% ~ %™ %%

Consequently, merging is certainly recommended ii *he right-hand-
side of (5) plu: A exceeds maX{vD,vU] (in a mirimizing problem).

The right-hand-side in (5) leads to a '"reverse penalty,'" and was

derived by virtually reversing the analysis that provides ordinary

up-down penaltics [l]. Just as penalties provided a lower bound

on criterion deterioration after branching, reverse penalties provide

an upper bound (n criterion improvement after merging. Reverse~.
penalties are therefore conservative, and merging may be recommended
even when the previous reverse penalty fails to signal this fact.

As with penalties, one obtains better reverse penalties if several
pivots are performed in parametric programming.

Clearly, after the merging of the two nodes described in (4),
xj(r) should not be used as a branching variable, unless no very
promising branching variable is available. This simplc rule is
probably sufficient to avoid cycling in many cases, but cycling can
occur when e.g., @ 18 branched to AVA and then A and A are merged to
@. To insure rigorously against cycling, one may store a representation

of every node which resulted from a merge, and a list of variables for

10.

the merges resulting in this node; one then forbids a ;érge which
repeats a variable in the list.

In examinin~ the current state of the search, and looking for
all possible merges for a specific current node, the whole set of
current nodes must be scanned. 1t is not difficul! to write conditions
for detecting possible "partners" for the given node, and to update
these dynamically; however, this practice results in a 1ist of current
notes being associated with each current node. It is probably more
efficient to simply note the length of each current node, to compare

nodes of a specific length against the one or two nodes just created,

and see if they lave precisely one opposition: on. then applies reverse

penalties to tha: one opposition if they do.

3. The systema.ic use of merging.

To understand the theoretical limits of the branch-merge-and-
bound methods w: have outlined above, a cerrain degree of abstraction
is necessary.

We shall find it helpful to say that a logical condition

..‘v
(6) B,V B,V B,

is a (disjuncti-e) normal form tautology, o n.f.t., {1 each

uk(| k« t) In the conjunctlion ol atomle lettorvu Alauullhvlr

containing both an A, and A,), and 1f (1)

) k J)

18 always true whether each A, 18 true or false. We shall call (6)

negations A (with no B

11,

exclude e.ch other, i.e.,

a disjoint tautology if each pair Bh’Bk

some letter Aj occurs in both B, and Bh but in opposition. By

h
definition, @ i: a disjoint tautology.

Theorem: The rcpeated use of branching and merging produces disjoint
tautologies., Mcreover, any disjoint tautology cai be obtained in

this manner,

Proof: 4ince @ is a disjoint tautology, to prove the first assertion

we need only establish that branching and merging preserve the disjointness
of a disjoint tautology (6). For branching, the result is immediate.

For merging, suppose that Bh and Bk are merged into P, and let B_ be

other than Bh or Bk' Then the truth value of Bp A P 1is that of

Bp A (B, V B), i.e., that of (Bp A BV (up A B,), hence Bp A B is always
false. Thereforc Bp and B must have at lea:t one letter in opposition.
For the second assertion, let [Al, Az,...,At} contain all the
letters occurring in any Bk (1< k<t), By repeated branching, one
k2 . 2
obtains a disjoint tautology of which the general term is Al A2 ...At .

using the abbreviation

1 (AJ if1=+1
™ i (1£14=-1

i
Each such term is consistent with exactly onc Bk in (6). By grouping
together that set of terms consistent with Bk and epeatedly meryging,

exactly “k is obtained. Q.E.D.

——r —— -

12
3.1 Non-disjoint normal form tautologies.

A consideration favoring disjoint tautologies. is that each
subproblem is more tightly constrained than in norral form tautologies
where there may be overlap among the leaves. This consideration could
become minor if certain non-disjoint n.f.t.'s can le shown to provide
more "information'" than any disjoint tautology witl the same number
of lecaves,

How much "information" a given node provides - in terms of criterion
value, closeness to integrality, etc. - depends of course on the exact
integer program to be resolved. In general, one ncde Bk can be guaranteed

to provide as much information as another Bh only f it is uniformly more

tightly constrajiied, i.e., if Bk contains all the 1ixed variables of
Bh fixed at their values for Bh (and may contain mcre fixed variables).

When this latter condition occurs, we say that B s a refinement of

k

Bh' Also, one n.f.t. is a refinement of another, 'f each of its leaves
is a refinement of at least one leaf of the other.
Here is a non-disjoint n.f.t., which po:sesse the property that

its every disjoint refinement has more leave::
(8) ABY cDV AC V AD V BC V 8D
The reader can eisily check that (8) is a tautolog-; it is clearly not
disjoint.

Suppose that the following disjoint tautology is a refinement of
(8):

6)' BV ..V B; .

'
1

Jm

13.
We shall say that Bé is unique to a leaf of (8)if it refines that leaf

and only that leaf. To prove that t' exceeds six (the number of leaves
of (8)), it clearly suffices to show: (i) Each leaf of (8) has a leaf
of (6)' that is unique to it; (ii) At least one p.ir of leaves of (8)
have at least three distinct “h 's in (6)' that ar: refinements of at
least one node of the pair and are not refinements of any leaf of (8)
not in the pair.

To establish (i), note that there are sixteen truth valuations

of the four letters A,B,C,D, and that each leaf of (8) has a valuation

that makes it true and all other leaves of (8) false. This valuation
makes at least one leaf B& of (6)' true, and clearly Bé must be unique
to the given leaf of (8).

To establish (ii), note that any refinement ol AB or of CD cannot
be a refinement of the other leaves KE, Rﬁ, ﬁé, or BD. There cannot
be only two refinements of both AB and CD in total, for then these two
would be AB and CD themselves, and hence would not be disjoint. Hence
there are at least three Bk's which are refinements of AB or CD.

This completes our proof that t' exceeds six.

There is a result analogous to the previous ' heorem for nondisjoint
n.f.t.'s, in which the simple merging operation i replaced by a "copy
and merge'" operation. Specifically, one allows s veral '"copies'" of a

given leafl to bc made, each different one of whic 1s merged with

another leaf, to which it has an opposition at a ifferent variable.

14,

The proof of the previous Theorem is then applicable, virtually unchinged
*1 +1 +1

except for the fact that one copy of A A1 cee A1 is made for each Bk

in (6) with which it is consistent. The branch-copy-merge-and-bound

approach can, in theory, produce any n.f.t., di¢joint or not.

4. Redrawing the tree.

The concept of merging can also be used to iuggest alternate tree
structures for a tree-based search already underay.

We illustrate the technique by an example. Suppose the tree of
Figure 1 has the advantageous merges (2a) to (2c), after which the
state of the search would be given by 3). (In jeneral, we allow th:
case in which no merges are advantageous, or in vhich one chose: to

do no merges).

To represent the current state (3) at least partially in
tree form, there would have to be a 'first" branching variable with
corresponding letter P, such that P or D occurs in each leaf. As
noted in Section 1, no such letter exists for (3). But if e¢.g., we
wished to branch on X,» we can artificially have joth I and B occur
in each leaf, by viewing AC (which is the only leif not containing B)
as XBG \ KﬁE, which causes an increase in the numier of leaves. (We
will see in Figure 2 that this "unmerging" need n .t lead us back to
the original tre. of Figure 1).

The general situation in tree re-drawing is : milar to that of
the example. The search to the present point of time is unsatisfactory;
one has picked up information indicating that certain variables,
branched on lower in the tree, may be more 'significant" that the

variables branchcd on by the automatic procedure toward the top of the

N e

15.
tree. One wants to perform merges and proceed with a treeless search;
one first performs these merges, at least symbolic.lly, but the
necessity of using a branching code forces u; to tree redrawing.

After one hus selected the variable xj that one wishes to make
the first branching variable, every leaf Bk, in which neither Aj

or Zj appears, must be doubled to become BkAj Vv BkAj ; then this

technique is repcated inductively with the resulting branches for

A, and A , and whatever variables are viewed as good choices for

b]

""second" branching variables. 1In principle any first branching

variable xJ can be chosen,

Clearly, th¢ consideration of avoiding very many ""doublings"
leads to chosing a branching variable xj such that the number of
leaves in which «ither Aj or Zj appear (i.e., the number of leaves
which will not have to be doubled) is large, if not maximum. This
approach to limiting the choice of branching variable is also in
accordance with the observation, that one really does not have good
information throughout the tree about a variable branched on only at
a few places. 1In our specific example, all three of the letters
A,B,C or their negations appear in all but one leaf, so the choice of
first branching variable is left to other heuristics,quite possibly
involving the observed criterion value d-terioration with each

branching on a given variable.

Suppose that X, is chosen as first branching variable in (3).

- -

Then we view AC a two duplicates ABC V Zﬁé, and consequently, on the

branch x, = 1 we have the problem BC V ABC V ABC = #=(CV ACV AC }

16.
the method is repeated on C V AC V AC. This time, C and C occur
in each leaf, so Xy is the branching variable. For Xy 0, we have

only C; the method terminates. For Xq = 1, we must consider

AC VAC = Co(A VA), and we repeat with AV A, which is a simple

branching on X
On the branch X, = 0, we have the problem

AB VABC VABC = B+ (A VAC V AC), hence the method applies to

AV AC V AC and the branching variable is x etc. The results are

1’
shown in Figure 2, where nodes which are not among the leaves of

(3) are branched to on dotted lines.

In Figure 2, we have six nodes, in place of the five leaves
of (3) or the eight leaves of Figure 1. Only the values of the
two "artifical" nodes ABC and ABC cannot be obtained by merging
alone, and would necessitate solving a new linear program.-One may
tentatively use the value of the merged problem AC for fathoming
at both these nodes, and one never needs to actually solve either of
the two additional linear programs, unless a backtracking heuristic
selects one of these for further examination.

For related tree redrawing techniques in more restrictive

circumstances, tce [2], [3] or [6].

ABC

Figure 2

ABC

17.
5. Refinements.

In our examples and discussion above, the individual atomic
letters Aj resp, Xj’ which were conjoined to form leaves, represented

xj = 1 resp. xj 0. For more generality, the atomic letters can
represent any system of linear inequalities and ecualities, such
that repeated branching exhausts all the logicai |ossibilities.

For instance, in bivalent programming cne ma - add atomic letters
“jk representiny Xy =%y and Eik represer ting Vi 1 - %, This
is the '"cross-branching'" that the second author iiatroduced in [4];
it is useful when, for instance, there are prior expectations as to
when two projects are likely to be done together if at all (xj = xh),
or are basically opposed projects (xj =1 - xk).

In the present framework, the cross-branching allows a novel
merging in addition to the obvious merges 1ike Bjcjk and Biajk to Bi’

for a leaf Bi' Specifically, we have the '"two o) positions merge"

of BiAjAk and BinAh to Bicjk’ as well as kiAth and BiXiAh to Biajk.
Just as with ordinary branching, the cross-brancliing reduces dimension
by one.
6. Ackiowledgcments.

The second author has been influenced by Fied Glover's
emphasi: on the need to re-cxamine the basic coi ceptions behind
enumera’ ive aluorithms [2].

We particularly wish to thank Roger } eddin of UNIVAC for an
interesting discussion of problems arisin; duri 1g trec-searches
for solving integer programs from industr/, in /hich he pointed

out thc frequ 'ncy of tree structures with multi le occurrences of

branching on rhe same set variables. The term ‘tree redrawing' is his.

Carnegie-Me lon University
University «f Tllinois
October 8, 976

References

R.S. Garfinkel and G.L. Nemhauser, Integcr Programming, John
Wiley & Sons, New York, 1972. 390+ pp.

F. Glover and L. Tangedahl, "Dynamic Strategies for Branch and
Bound," OMEGA 4 (1976), pp. 1-6. Given as an invited talk by
F. Glover at the Workship in Integer Programming, University of
Bonn, September 1975.

F. Glover and L. Tangedahl, '"Dynamic Branch and Bound Strategies
Using Tree Manipulations,'" talk at the Fifth Annual Meeting,
American Institute of Decision Sciences, Western Regional Con-
ference, March 1976. Available as a manuscript, 4pp.

R.G. Jeroslow, '"Cross-branching in Bivalc¢nt Programming,'" MSRR
no. 331, GSTA, Carnegie-Mcllon University, March 1974,

C.J. Piper, Computational Studies in Optimiziny and Postoptimizing
Linear Programs in O-1 Variables, Ph.D. dissertation, GSIA, Carnegie-
MelTlon University, T1975.

N. Ph. Tuan, "A Flexible Tree Search Method for Integer Programming
Problems," Operations Research 19 (1971), pp. 115-119.

.] B b s e b il L A anen Hieie s eret)
Sl L e L s e e SR
- « EAD INSTRUC 110N
REFORT DOCUMENTATION PAGE], D RE COMPLETING 1OKM]
i WEPOMY ML ER eI i 'P GOVT ACCESSION uoT Y RECIPIL T'8 CATALOG NUL O R H
M.S.R.R. 1396 i .J i
'l 1L and S’uhtlll.)m - ol i iR i i l; ;;':"' 0 ll'l;:)l-!‘l'] pl“H;U UVERED]
: Octol (|
Treeless Searche s ‘ ctober, 1976 ¥
tl PO nr ol I_N‘;‘l";_i‘()—‘it lix HoOUMRCR i
l , M.S. . R. f
.
LI THORG i i i e "l CONTR. T OROKANT NUMDE A(a) '
{ y 014~ -C=- :
C.E. Blair and 1k.G. Jeroslow ’ NOOO 14-75-C-0621 i
| !
1] N R i . - £ - o
CrAFORMING IRGANIZ TION NaME AND ADL 4ESS 10 PROGCH M ELEMENT, 2HUJSC [1 ASK 1
' AREA . WORK UNIT NUMBERS
GSIA i
§ = NR 04%7-048 !
{ ')
Carnegie-Mellon University, Pittsburgh, PA S L P TG e <i
" NWTHOLLN G OFFICE 4AME AND ADDRESS i RULPOI DATE H
Personnel and Training Research Programs i
Office of Naval R h (Code 458 iy astober, 1976 2
] ce of Naval Researc ode) 15 “NuMB' OF PAGES ’
{ Arlington, Virginia 22217 17 !
Fra WONITORING AGENCY 1 AME 8 ADORESS(IT oifterent from Contiolling Office) | 18 SECU: Y CLASS. (of in's csp) _]
] '
{ | Unclassified
{ '4 - . ———— e -
Tir . pECE SHIPICATION GOWNG. «OING
i SCHE! jLE i
e o R 2 e e T . el -
T TUSTRIB 1 O STATE o al o e Hepuit)
I
!
& . y .
.’I 1T MUY (N ‘ST’;I‘} N ! n.‘;‘.‘:;ua.c—l‘.ﬂ-;unl in .l;lo;'l' J?l, " :M’H:;;Im r)n;;;)v w i R 4;

PO

(8 SULF _EMENTARY NO

, b
}
i
Al_’ wi \'- O'NL)'. é.;l‘\""r‘n;;.v ~:'v"~. side 11 n‘.c’.h rary .;m—!'dv M-/ 0/ YN 1.’&';3’;;)-— T TS T e i "
Integer programming, Branch-and-bound, Implicit enumeration. 1
!
]
Y] (L m-unu- » ... tie 1 ncu-c‘.ry wnd qaentily v, mh nuﬂ owr) i i I o i J
we d«-monstrate (hat there are natural heuristics for pariial enumeration,

that are not based on tree structures for guiding the enumerative search, nor'
can these heuri-;tics be hnpl(mentesl'(i an {/(gree search framework., We also, ¢
provide geans for redrawing the tree, en the current state of a tree I
search makes it desirable to utilize a different tree representation of

current information.r(!

| | bl

DD .7 ™, 172 & Tonor inovesisomsoLE Y

L] ‘o
b A 1 < o e eam——— a SRR — - oP
it g SECURITY CLASL, /ICATIC OF THIS PAGZ (When Data Ritersd)

