AD=ADS9 903 ARMY ENGINEER WATERWAYS EXPERIMENT STATION VICKSBURG MISS F/¢ 9/2
THREE-DIMENSIONAL GRAPHICS COMPATIBILITY SYSTEMs VERSION 2.0, H==ETC(U)
JuL 78

_ NL

END

DATE

UNCLASSIFIED

FILMED
=78

e T

|||||'_Q o g

vl

i
! fleo
.
. [y

L25 [lig frue

B

oo}

/

MICROCOPY RESOLUTION TEST CHAR

*uwsxfoad JUSUWUISAOH B UBY] ISYJO
se suofue 03 weadoxd sTY3 juassaadad 03 0 UFSISY3Z
Lxeystadoad Aus 3a9sSS®B 03 30U S93IF8 JSYFINS
31 sY3 “sJ0J8J9Yl *JUSWUISAOCH 3Y3 03 s3uoT:q
YL *JoaJasayl spswm 9sn Lus JO uoswax Aq uosasd
16 03 JI9AS0S3BUYM LJTTTIQBIT OU JSpuUn aq TTBYS S$9983S
) Sl3 puB ‘YITMOISYZ UOT3O9UUOD UT PIaYSIUJING IO
STY3 UT PSUTBUOCD BJIBP PUB UOTFBWIOJUT aY3 JO
and asnotzaed Aue Joy A3TITFQBITNS J0 ‘A3pTIQEasn

TTTQBTT8x ‘ssausjsTdwmod AoBanOO® aYy3z FUTUISOUOD
- ‘P2TTdUT IO pessagzdxe ©sSaTIUBIIBA OU SOYBW 3USWUISAOD
gl $338B3S PI3TUN 3Y3 38Y3 Jurpusisgspun ssoadxs ayg

v.:,.w A : Y34 3usTdidosx syy Lq pssn pus pajdsoos. ST pPus
Mw C @ a m OA\ Q< : JUSWUISA0D 3Y3 £q paystuany ST mexfoxd STYL

—‘_____.,.._..._.. —— - - .
@/ THREE-DIMENS IONAL

| GRAPHICS COMPATIBILITY SYSTEM

i
—
—

Version 2.0 »

{‘pST—EQMPUTER _IMPLEMENTATION GUIDELINES)
T e R TI
|2/ S pr
| accEssion_ter i-./
"HE i Gaeton
s Dol Sostin D
dllllﬂll!(l

oumlmlll/lmmllm e
et AVAIL and/er SPECIAL_

iAs

July 5, 1978

038 100

I.

II.

3=-D GCS Verslon 2.0 Host-computer Implementation Guidelines

Introduction.

The following paragraphs develop guidelines for imple-
menting GCS on a host computer system. Included will be the
definition of computer-devendent Graphics Status Area (GSA)
initialization values, functional specifications for each
of the 3D GCS computer-dependent routines, a discussion of
factors involved in supporting 3D GCS on a computer system,
and a description of a phased sequence for bringing up GCS
on a new computer system.ri

Graphics Status Area Initialization.

In this section, each of the computer-dependent elements
of the Graphics Status Area will be listed along with the
procedures required to calculate the value, if appropriate.

KTERM GCS string terminator character. Default value 1is
the internal computer character set representation
of an ASCII backslash ("“\") character.

KUCASE Upper case shift character. Default value is the
internal computer character set representation of
an ASCII less-than (“¢(") character.

KLCASE Lower case shift character. Default value 1is the
internal computer character set representation of
an ASCII greater-than (“)>") character.

KSUBCH Subscript escape character. Default value is the
internal computer character set representation of
an ASCII underscore ("_") character.

KSUPCH Superscript escape character. Default value is the
internal computer character set representation of
an ASCII pound sign ("#") character.

EWRTFL Standard alphanumeric output file. Default value
1s the computer gsystem default alphanumeric output
Fortran file number.

KRDFL Standard alphanumeric input file. Default value is
the computer system default alphanumeric input
Fortran file number.

KOUTFL Standard graphics output file. Default value is
the computer system default graphics output Fortran
file number if one exists.

—4-

&

III.

3D _GCS Computer-dependent Routines.

This section describes the functions embodied in each of
the 3D GCS computer-dependent routines. This discussion
will include interface specifications and functional speci-
fications. Since these functions are computer-dependent,
the requirement to implement these routines in ANS Fortran
is relaxed. However, use of a higher-level language for
implementation 1s recommended for ease of maintenance. The
functions are grouped into four categories: vpacking, Job
control, character set conversion, and I/0. Within these
categorlies, the routines will be listed alphabetically.

Packing Routines

The packing routines provide for vacking and unpacking
arbltrary length bit strings (GCSBIT, GCSBTR), for packing
and unpacking single characters (GCS!1CH, GCS1PK), and for
extracting the left-most n-character wide field from a
character string (GCSSTD). Two former computer-dependent
routines, GCSPCK and GCSUPK, have been rewritten to call

GCS1CH and GCS1PK and are now device and computer system
independent.

GCSBIT (NEXT,IWIDTH,IWORD,IBITLC,IBUF)

NEXT

IWIDTH

IWORD .

IBITLC

IBUF

Comments:

1s a word contalning the bits to be packed
right-justified, zero-fill.

is the number of bits to be packed (i. e., the
number of bits in NEXT).

is the word in the buffer in which packing will
occur.

is the number of bits currently used within
IWORD.

1s an array in which the bit string 1s accumulated. i
The calling routine should provide a buffer one

word larger than the actual buffer size since

GCSBIT will leave overflow bits in this word.

This routine accumulates a packed bit string of

arbitrary length within a buffer provided by the J
calling program. This allows the formation of |
strings of bits in which the storage of the bits

ignores word boundaries.

GCSBTR (NEXT,IWIDTH,IWNORD,IBITLC,IBUF)

NEXT 1is a word in which the bits retrieved will be
placed right-justified, zero-fill.

IAIDTH 1is the number of bits to be retrieved (i. e.,
placed in NEXT).

IWORD 1is the word in the buffer from which bits are
currently belng retrieved.

IBITLC 1s the number of bits already retrieved from
IWORD.

IBUF 1s an array containing the bit string from which
blts will be retrieved. The calling routine
should provide a word of zero bits immediately
following the IBUF array.

Comments: This routlne retrieves string of bilts (up to one
word) from the packed bit string orovided by the
calling program (i. e., the buffer IBUF). Word
boundaries will be ignored during retrieval.

GCS1PK(N,INCHAR,IBUFR)

N

INCHAR

IBUFR

Comments:

1s the character position within the output
character string 1nto which the KBYTEL-width
character is to be packed.

is a word contalning one KBYTEL-width character
right-justified, zero-fill.

1s the output character string word into which
the KBYTEL-widht character will be inserted.

This routine inserts the KBYTEL-width character
contained in INCHAR into the N'h KBYTEL-width
character position of the output character string
IBUFR. Character positions are numbered left to
right. Note that KBYTEL 1s not a fixed quantity
and may vary durlng execution.

GCS1CH(N,ISTRNG,NUCHAR)

N

ISTRNG

NUCHAR

Comments:

the character posltlion within the input character
string from which the XK3YTZL-wildtb character 1is
to be extracted.

1s the input character string (maximum length is
one word).

i1s a word in which the KBYTEL-width character is
placed.

This routine extracts the N'B KBYTEL-width charac-
ter from the input character string word and places
it in the output word (NUCHAR) right-justified,
zero-f1ll. Note that KBYTEL 1s not a fixed quantity
and may vary during execution.

GCSSTD (N, ISTRNG,NUSTRG)

N

ISTRNG
NUSTRG

Comments:

is the number of left-most characters from the
input character string to comprise the output
character string.

is the input character string.

1s the left-justified output character string
padded with zero bits i1f necessary to fill the
word.

This routine places the left-most N characters

from the input character string in the output
character string word padding, if necessary, with
zero bits. Both the input and output character
strings may be of maximum length of four characters
or one word whichever 1s greater.

Job Control Routines

Only two Job control routines currently are required,
GCSJOB and GCSTBK. These routines are intended to access

opera®ing system facllities for services or to oviainu
information.

GCSJOB(JOBID,IDUSER,IROUTE,ICLASS,IDATE,ITIME)

JOBID 1s a word in which the job ID of the run will be
b returned.

IDUSER 45 a word 1o wnicn the ID oI the person executing
the program will be returned.

IROUTE 18 the routing address to which the output should
be sent.

ICLASS 1s the Jjob security classification.
IDATE 1is the date of the run.
ITIME 1is the time of the call to GCSJOB.

Comment: The GCS termlnator character is appended to the
end of each fleld of information being returned to
the calling program. The calling program has the
responsibility of insuring that the current termi-
nator 1s the default terminatsr.

A maximum of twelve characters including the GCS
terminator character are aliowed to be returned
for each field. The only exception is that the
securlty classification may be up to eight words
long.

If a parameter 1s not defined on a particular
operating system, a valid GCS text string coansist-
ing of only the default GCS text string terminator
must be provided.

90 F0 A0 3 98 90 3 96 35 36 3 3 3 36 36 3 36 6 36 56 9 48 3 3 6 3 36 36 36 3 I I 3 3 3 36 3 36 36 96 96 9 3 6 3 96 3 36 36 3 6 96 %
#unne® This routine 1s still under development, #*##%ses

#u#nnu#® The description above is subject to 9090
##uuu® change., Providing this routine is oot~ 46986 3 %
##nwu® jonal until development is completed. faafodof g

30303690 50 3090 3030 30 640 0 30 6 30 3 3 3 30 96 9 30 30 3 36 96 3 36 309036 96 36 30 30 90 I 30 30 9 9090 9 9 90 5 D

GCSTBK (IERROR)

IERROR

Comments:

contains the GCS error number.

This routine invokes the computer system error
traceback routine. It is implemented so that
tracebacks can occur when GCS errors have been
ldentifled. It 1s lmportant that the traceback
not abort execution of the program. If no
traceback functlon exists or the traceback

aborts execution of the program, this routine
should be null.

Character Set Conversion Routines

These routines provide for converting between the GCS
internal character set ASCII and the host computer internal
character set. Note that even if the host computer character
set can support both upper and lower case characters, the
mechanism must still be provided to support the GCS case
shifting function. This may require that duplicate conver-
sion tables be included whose only difference 1s that all
upper case characters be mapped to lower case when lower
case has been specified. If the host computer chaeracter set
does not support the entire ASCII speclal character graphics,
then some special characters may also differ between upper
and lower cases., If this occurs, however, the special charac-
ters (,), +5 =5 =, *, /o, <, 7, and \ must be supported in
both cases, Only the printable characters need be converted;
control characters and character indecles with no graphic
symbol associated with them need not be handled unless desired.
It should be emphasized that every attempt should be made to
accommodate the standard mapping between ASCII and the host-
computer character set defined by the host-computer manufac-
turer for the operating system being utilized.

GCSCVT(IN,IOUT)

IN 1is the charcter to be converted in host-computer
internal character set right-justified, zero-fill.

IOUT 1s a word in which the character will be placed

after belng converted to ASCII right-justified,
zero-fill.

Comments: This routine converts from host-computer internal
character set to ASCII. The case-shifting constant
willl have been added to the hcost-computer character
before this routine is called. Therefore, the
case shifting should be recognized by the magni-
tude of the character bit value.

GCSRVT(IN,IOUT)
IN 1is the character to be converted in ASCII
right-justified, zero-fill.

IOUT 1s a word in which the character will be placed
after conversion to host-computer internal
character set.

Comments:

This routine converts from ASCII to host-computer
internal character set. Since ASCII supports
both upper and lower case, it may be necessary

to map lower case characters into upper case
characters if the host-computer character set
supports only upper case.

GCSOFS (IFILCD)

IFILCD is the FPortran file number of the sequential
file to be opened.

Comments: This routine opens a file for sequential access.

;nvut(Outgut Routines

Three classes of I/O routlines are included in this
category: sequential file I/0, random file I/0, and
telecomnunications interface routines.

The sequential file I/0 routines GCSOFS, GCSRFS, GCSWFS,
and GCSCFS are required for use by devices which place plot
output on sequential files. Use of these routines 1is
required since Fortran I/0 may place undesirable control
information on a file when using unformatted I/0 (Formatted
I/0 cannot be used since it is line-oriented with line
length restrictions on some computers).

The random file I/0 routines GCSOFR, GCSRFR, GCSWFR, and
GCSCFR are required for supporting GCS segmentation and
structure facilities. These routines are required since
ANS Fortran does not have random file I/O capability.

The telecommunication routines TINPUT and TOUTPT are
required for communication between GCS device-dependent
routines and devices connected to the host-computer via
telecommunications lines. These are required since the
interface may connect directly to the operating system
telecommunications service routines.

GCSRFR(IFILCD,INDEX,IRECNR,IRECLN,IRECRD)
IFILCD 1is the Fortran file number of the random file.

INDEX 1s an array 1in which the random file index may
be maintalned.

IRECNR 1s the record number of the record to be retrieved.

IRECLN 1is the length of the record to be retrieved.

IRECRD 1s an array into which the record will be read.

Comments: This routine performs a random (direct) read of
the desired record from the specified file. If
the record is larger than the buffer array
IRECRD, only the first IRECLN words will be placed
in the buffer area, If the record 1s smaller than
the buffer area, the remaining words of the buffer
will be unchanged. If the record does not yet
exist, the buffer array will be zero-filled.

GCSRFS (IFILOD,ILENG,IBUFFR,ISTAT)

IFILCD
ILENG
IBUFFR

ISTAT

Comments:

is a Fortran file number.
specifies the length of the input buffer.

1s an array of size ILENG words into which
the data will be read.

is a status indicator. Valid values are:
O = End of file
>0 = Actual number of words read
<0 = Brror occured during the read operation.

Absolute value 1s actual number of words
read.

This routine reads the next physical record from
the file into the buffer. If the number of words
read 1s less than the buffer size, unused buffer
locations will not be modified. If the number of
words read 1s greater that the buffer size, only
the first ILENG words of the record will be placed
in the buffer. Excess words are discarded. Note
that in all cases, the number of words read will
be indicated in ISTAT. If an end-of-file is
encountered, ISTAT 1s set to zero.

GCSOFR(IFILCD,INDEX,INDXSZ)
IPILCD 1s the Fortran file number for the random file.
INDEX 1is an array in which the index for the random
file can be maintained if not maintained by
the operating system.
INDXSZ 1is the number of words in the INDEX array.

Comments: This routine opens a file for random access and
initializes the index for the file if necessary.

GCSWFS(IFILCD,LENGTH,IBUFFR,ISTAT)
IFILCD 1s a Fortran flle number.

ILENG specifies the number of words of data to be
written.

IBUFFR 1s an array containing the ILENG words of
data to be written.

ISTAT 4is a status indicator. Valid values are:

0

No error during processing.
1

Error during processing.

Comments: This routine writes the ILENG words of data in
the buffer to the flle. No other information
may be placed on the flle. Thls means that 1t
may not be possilbe to use unformatted Fortran
I/0 since control information is frequently
written to the flle along with the data. Also,
it may not be possible to tuse formatted Fortran
I/0 since the number of characters which can be
written is often limited to one 1line and end-
of-line symbols may be inserted within the data
stream. Since flles written using GCSWFS are
often read by tave drives attached to other than
the host-computer, it is important that the
information written to the flle contain no
computer-system dependent control information.

GCSCFS(IFILCD,IEOF)

IFILCD

IEOF

Comments:

1s the Fortran flle number of the sequential
file to be closed,

1s an end-of-fille request flag. If set to one,
an end-of-fille mark is written on the end of
the file. All other values 1nhibit writing of

an end-of-flle.

This routine closes the file specified in IFILCD
if required by the computer system. An end-of-
file mark must be written if IEOF has value 1.
The close operation takes place with no rewind.

GCSWFR (IFILCD,INDEX,IRECNR,IRECLN,IRECRD)

IFILCD

INDEX

IRECNR
IRECLN

IRECRD

Comments:

is the Fortran file number of the random file
to be written upon.

is an array which may be ugsed to maintaln the
index for the random file.

1s the number of the record to be written.

indicates the number of words in the record to
be writtene.

is an array of IRECLN words contalning the data
to be written.

This routine writes or rewrites the reecord
indicated. If the record did not exist before,
the record will be written. If the rscord already
exists and is belng modified, the record should

be rewritten in place.

GCSCFR(IFILCD)

IFILCD

Comments:

is a Fortran file number.

This routine closes the random file indicated
by IFILCD. Clsoing a random fille may require
invocation of an operating system support
routine to write the index on to the file.

TINPUT (ICOUNT ,IBUFFR, IPRMPT)

ICOUNT 1s the number of ASCII characters to be accepnted
from the terminal.

IBUFFR 1is a buffer into which the ASCII characters will
be placed one character per word, right-justified,
zero-f111. The buffer 1s considered to contain
ICOUNT words.

IPRMPT 18 an array containing a prompt sequence which
is used to initiate the input operation. The
first word of the array contains a count of the
number of characters in the prompt sequence and
1s also the number of words in the IPRMPT array
minus 1. The prompt characters are in the same
format as would be passed to TOUTPT.

Comments: This routine initiates an input operation which
asks for ICOUNT ASCII characters to be read from
the terminal. If less than ICOUNT characters
are received, the remaining buffer positions are
zero-filled. If more than ICOUNT characters are
recelved, excess characters are ignored. The
input operation is prefixed by sending the prompt
sequence to the terminal (if IPRMPT(1) is not
equal to zero). Preferably, this would occur as
part of the input request but,on some systems,
it may be necessary to call TOUTPT to send the
prompt to the terminal. The important thing is
to make the delay between the time the prompt
1s apparent to the terminal operator and when
input can be accepted by the operating system
indetectable to the terminal operator.

Note that input characters placed in IBUFFR must
be ASCII. If ASCII originates at the terminal,
the characters must not be modified before being
placed in the buffer. It is also important that
any characters being buffered within TOUTPT or
the operating system be sent to the terminal
prior to the prompt sequence.

—

TOUTPT (ICOUNT,IBUFFR)
ICOUNT 1is the number of characters to be transmitted
to the terminal.
IBUFFR 1s an array of ICOUNT words. Each word contains
one ASCII character, right-justified, zero-fill.
Comments: This routine transmits the ASCII characters

within IBUFFR to the terminal unmodified with

no additional characters inserted. If desirable,
the characters may be packed into buffers before
sending to the terminal. 1In this case, the
buffer should be sent when full or when TOUTPT

1s called with ICOUNT equal to zero.

Iv. 3D GCS Implementation Factors.

3D GCS makes few assumptions about the capabilities of
the computer and operating system in whose environments it
' will function. ZEssentially, 3D GCS (or even 2D GCS) can
be successfully and easily supported on any computer system
which has the following characteristics:

a) A word size of 32 bits or larger.

b) A loader which allows several libraries to be searched
during the linkage edit of the user programn.

¢) A capabllity for reading and writing direct access
(random access) files.

d) A capability for sending arbitrary length strings of
ASCII characters to a display device (required for
interactive devices only).

With these capabilities, 1t 1s a relatively straight-forward
task to bring up 3D GCS. Section V contalns a phased sequence
for accomplishing this.

Circumventing the lack of any of these capabilities or
characteristics can be a laborious undertaking and, in the
case of direct file I/0, may not even be possible. The
following paragraphs are designed to assist the implementor
in modifying 3D GCS to accommodate limitations in the host-
computer system.

Word Size

GCS was originally developed for computers whose words
consist of at least 32 bits and in which may be stored at
least four host-computer characters. There are only taree
areas in 3D GCS where this limitation is critical.

Wherever GCS mode and option names are svecified, only
the first four characters of each mode or option name are
silgnificant. 3D GCS assumes these four characters occupy
vositlions in the same word. The processing of these modes
and options takes place in many GCS routines. Besides
USBT and UPSET, included in these routines are UCOLOR,
UDOIT, UFORMT, UQUERY, all user-callable segmentation
routines, and all user-callable structure routines. These
routines all call the computer-dependent routine GCSSTD to
extract the first four characters of the option. GCSSTD
can be written to process multiple-word character strings.
However, the comparisons which take place in USET, UPSET,

® UQUERY, and the others will require code modification to
cause correct matching. An easler solution, if avallable,
1s to use double word integers.

There are several areas within GCS in which character
string constants are define and initialized by DATA
statements (e. g., UTAXIS). These will have to be located
and modified as necessary. They can frequently be found by
looking for the character strings "/4H" and "“,4H".

The third area in which GCS requires this restriction
1s in the storage of character descriptors for the GCS
character set. Bach stroke of a character 1s stored in a
24-bit field in the lower portion of a computer word as
follows:

7| 000 MMM s{ Xnag Ynag

This 24-bit fleld is split into the three 8-bit subfields
shown above. The X and Y bytes represent percentages of a
character enclosing box in sign/magnitude format.(3=1
represents negative). The MMM field has value O for a
visible stroke and has value 5 for a move. The T fleld
flags the last stroke in the character when set to 1.
While it is possible to store the character stroke in a
three-byte field, unless a computer is byte-addressable,
such a packing scheme is too inefficient to be acceptable.
Once again, use of double-word integers 1s indicated, if
avallable. If not, each stroke may be stored in two-word
table entries with the appropriate changes made to the
referencing code in GCSSIM and GCSSYM. The recommended
split is to place the opcode (MMM), termination (T), and

X flelds in one word and the Y field in another. The
termination field should be moved down so that it does not
make the contents of the word negative when referenced
arithmetically.

Cyclic Library Searches

GCS 1s organized into device-independent routines,
computer-dependent routines (which are device-independent),
and device-dependent routines. Normally, all device-
independent routines are stored in one device-independent
library, and each set of device-dependent routlines are
stored in a separate device-dependent library. The
appropriate device-dependent library 1is selected at load
time for the device to be used. A linkage editor or loader
which can search several libraries as if one (actually,
logically concatenate the libraries) is a great ald in
using GCS on a computer system. Such an editor will perform
a cyclic search to satisfy all external references. Some
linkage editors and loaders cannot search a library a second
time. Frequently, this effect can be achlieved by listing
the device-independent and device-dependent libraries twice
causing each to be searched twice. A more practical approach
might be to store the computer-devendent routines and GCSSIM
in each of the device-dependent libraries.

Direct Access I/0O

It will be very difficult to support GCS on a computer
system which does not support direct access file I/0. This
1s because both the GCS structure capability and the GCS
segmentation capability require direct access files for
storing the data. (It 1s also intended that the planned
support for Hershey characters will require that these also
be stored on a direct file). The best attempt to support
GCS on such a computer system would be to simulate direct
access filles using sequential files. It should not be
expected that GCS will function efficiently when using
structures or segmentation in this case.

Telecommunications Protocol

When sending graphics commands to a display device
connected via a telecommunications line, GCS assumes that
any number of characters can be transmitted to the display
device without sending some system-dependent end-of-line
terminator character such as a carriage return character.

At times, such lines may exceed the cavaclity of an operating
system buffer. This is not critical orovided the operating
system does not insert such an end-of-flle character arbl-
trarily within the logical stream of data. If it does, the
correctness of the picture being displayed may be thwarted.
Bvery attempt should be made to provide such a transparent
flow of characters to the terminal. If it cannot be accom-
plished, the device-dependent routines within GCS must be
modified to bracket the inserted end-of-line characters with
commands that keep the end-of-line characters from effecting
the visual output. Note: 1input operations do not require
an unlimited line length.

T

Phased Irnlementation Sequence.

The following steps describe the sequence of actions
necessary to bring 3D GCS up on 2 new computer system. It
is assumed that 3D GCS source is avallable on tape in the
form of card images.

1) Read the source tape on to disk in a form in which the
source can be manipulated using the host-computer
standard source program library maintenance procedures,
Note that for proper organization later into object
libraries, it may be necessary to store the device-
independent source programs in one flle and each set of
device-dependent source programs in separate files.
Other computer systems may allow all the source programs
to be kept together. If an INCLUDE, COPY, or *CALL
capability 1s available, the Graphics S%atus Area (GSA)
should be placed in a module which can be included and
the code in the source programs replaced with COPY's,
INCLUDE's, etc.

2) Bstablish the computer-dependent initializations for the
Graphics Status Area. Then edit these values 1into the
appropriate places in the source code where the GSA
initialization statements are located.

3) Implement the computer-dependent routines described in
this document., These should be thoroughly tested before
attempting to use them within GCS. Once debugged, the
source code should be placed with the other device-
independent source programs.

4) Compile all device-independent routines into one object
library in a form which can be searched by the loader or
linkage editor. If compilation errors are detected,
they should be corrected and this step repeated until no
compilation errors occur.

5) Compile all device-dependent routines for- the devioce
upon which development willl occur into another object
library in a form which can be searched by the loader
or linkage editor. 1If compilation errors are detected,
they should be corrected and this step repeated until
no compilation errors occur. It 1s highly recommended
that the development device selected be one for which a
set of GCS device-dependent routines already exists
even 1if this must be an alphanumeric device (alphanumeric
terminal or line printer).

6) Write a test program which invokes the basic GCS functions.
A typical such program might be as follows:

CALL USTART

CALL USET("PERCENT UNITS")
CALL UDAREA(O.,100.,0.,100,)
CALL UMOVE(O.,0.)

CALL UPEN(100.,100.)

CALL UPRINT(50.,50.,"TEXT “)
CALL UEND

STOP

END

This program will draw a diagonal line from the lower
left corner of the display surface to the upper right
corner of the display surface and will display the
word “TEXT"“ at a location where the lower left coraer
of the first character position is at the center of the
display surface with the characters extendling to the
right. Continue testing GCS until it is apparent that
GCS 1s functloning satisfactorlly for the development
device. Note that to use GCS, it will be necessary to
insure that the BLOCK DATA subroutine for the display
device selected be loaded since it is the subroutine
which initializes the G3A.

7) Repeat steps 5 & 6 for each display device to be supported.
Read the 3D GCS Device-Dependent Implementation Guldellines
if a device not already supported by GCS 1s to be used.

8) Design and implement a control card procedure or other
mechanism which makes device selection convenient for
the user. Typically, this can be accomplished by passlng
the name of the device to the control card procedure as
a parameter. The control card nrocedure will then cause
the appropriate control cards to be processed so that
the appropriate device-denendent library will be used by
the linkage editor or loader. While this step is optlonal,
1t 1s strongly recommended since 1t greatly facllitates
using GCS.

