
r - - -—- - -

~O~ fl59 903 Øfi~y OSINCER WATZRWAYS CXPERIMCp i’ STATIOW VICKSSmS MISS 19 9/2
TIeCE—OIPtNSIOt4A~ IRAPHI CS COeAT IB IL ITY SYSTEM. VEPSION t o . He—CYCCU)
.At 79

uNC LASSIFIED Pg.

_ _ _ II
I
‘I

-
~~~~~~ I



I . Ifl~ ~~
______ ~~ OH 2 2
I. I ~: 

~
~ L8

HHI ‘ 11H114 u~H~
It I ‘ I~it ’ I

Ni • I~ JI~



(
~WATER WAYS
EXPERIMENT

~~~ STATION

~~~~~~~~ ~ . ~ i Vicksburg, Miss.

:111 1 I . .~

~___ 
.+-) al ~~~~~~~~~~~~~~~~~-

~ ~i~~i~ &~! MOST-COMPUTER
a) ~ a) U) a5 ‘d • .c~ $~. a)

~ u ;u~ H. PLEMENTATION
. .~~~~a)

~~ ~~~~~1~~~~~~ -i P c ~ .P u ) P1J

.~~~ Cj -$~~~4~~~~ r-l )~~~~~~~~~ a)~~~~~ 4.) 4.)

0 0 C
4 

. 
_ _ _ _ _ _ _ _ _ _

~~f,frJaIJIIL?J
~~~~~~~~ ~ r th. WES Automatic Dot
Mc, ‘d O)~~~~~~~~~ Q)

~~ !.! c•~ s11~e C.nt•r

8~~9 1 4
- ~~~~~~~~~~~~~ F~~~

(1~J THREE-DIMENS IONAL

GRAPHICS COMPATIBILITY SYSTEM ,~

I Version 2 .~ ,

) HOST-COMPUTE R IMPLEMENTATION GUIDELINES
— .~~~~ —

/

mcii ~~ tts Sss~Uccc Ssfl $istl 0
~,A~ OJIeIS

is!TIIlVTIS%/lVAtkAIIIjTY ~.a
Pu t. AVAI L oA,, V4CIAA.

L4~L __

Jul y 5 , 1978

“O~ 9 ~-OO

3—D GCS Version 2.0 Host—computer Implementation Guidelines

I. In~roduction .

The following paragraphs develop guidelines for imple-
menttng GCS on a host computer system. Included will be the
definition of computer-dependent Graphics Status Area (GSA)
initialization values, functional specifications for each
of the 3D GCS computer—dependent routines , a discussion of
factors involved in supporting 3D GCS on a computer system ,
and a description of a phased sequence for bringing up GCS
on a new computer sYstem.

II. Graphics Status Area Initialization.

In this section , each. of the computer—dependent elements
of the Graphics Status Area will be listed along with the
procedures required to calculate the value , if appropriate.

KTERM GCS string terminator character. Default value is
the internal computer character set representation
of an ASCII bacicelash (“\“) character.

KUCASE Upper case shift character. Default value is the
internal computer character set representation of
an ASCII less-than (“(“) character.

KLCASE Lower case shift character. Default value is the
internal computer character set representation of
an ASCII greater-than (‘5”) character.

KSUBCH Subscript escape character. Default value is the
internal computer character set representation of
an ASCII underscore (“_“) character.

KS UPCH Superscript escape character. Default value is the
internal computer character set representation of
an ASCII pound sign (“#“) character.

KWRTPL Standard alphanumeric output file. Default value
is the computer system default alphanumeric output
Fortran file number.

KRDFL Standard alphanumeric input file. Default value is
the computer system default alphanumeric input
Fortran file number.

KOUTPL Standard graphics output file. Default value is
the computer system default graphics output Fortran
file number if one exists.

a
III. 3D GCS Computer-dependent Routines.

This section describes the functions embodied in each of
the 3D GCS computer—dependent routines. This discussion
will include interface specifications and functional speci-
fications. Since these functions are computer—dependent ,
the requirement to implement these routines in ANS Fortran
is relaxed. However , use of a higher—level language for
implementation is recommended for ease of maintenance. The
functions are grouped into four categories: packing , job
control, character set conversion , and I/O. Within these
categories, the routines will be listed alphabetically.

*

S

Packing Routines

The packing routines provide for packing and unpacking
arbitrary length bit strings (GCSBIT , GCSBTR), for packing
and unpacking single characters (GCS~CH, GCS 1 PK), and for
extracting the left—most n—character wide field from a
character string (GCSSTD). Two former computer-dependentroutines , GCSPCK and GCSUPK, have been rewritten to call
GCS1 CH and GCS1 PK and are now device and computer system
independent.

GCSBIT(N EX T ,IWIDTH ,IWORD ,IBITLC ,IBTYP)

NEXT is a word contai.ning the bits to be packed
right—justified , zero—fill.

IW IDTH is the number of bits to be packed (i. e., the
number of bits in NEXT).

1W03D is the word in the buffer in which packing will
Occur .

IBITLO is the number of bits currently used within
IWORD .

IBU)’ is an array in which the bit string is accumulated.
The calling routine should provide a buffer one
word larger than the actual buffer size since
GCSBIT will leave overflow bits in this word.

Comments: This routine accumulates a packed bit string of
arbitrary length within a buffer provided by the
calling program. This allows the formation of
strings of bits in which the storage of the bits
ignores word boundaries.

a

GCSBTR (NEXT, IW IDTH ,IWORD , IBITLC , IBUF)

NEXT is a word in which the bits retrieved will be
placed right—justified , zero—fill.

II IDTH is the number of bits to be retrieved (t. e.,
placed in NEXT).

IWORD is the word in the buffer from which bits are
currently being retrieved.

IBITLC is the number of bits already retrieved from
1101W.

IBtJF is an array containing the bit string from which
bits will be retrieved. The calling routine
should provide a wor~1 of zero bits immediatelyfollowing the IBUF array.

Comments: This routine retrieve s string of bits (up to one
word) from the packed bit string orovided by the

• calling program (1. e., the buffer IBUP). Word
boundaries will be ignored during retrieval .

$

GCS1 PK(N ,INCHAR ,IBUPR)

N is the character pos i t ion wit h in the o u t p u t
character string into which the KBYTEL-width
character is to be packed.

INCHAR is a word containing one KBYTEL-width character
right—justified , zero-fill.

IBUPR is the output character string word into which
the KBYTEL—widht character will be inserted.

Comments: This routine inserts the KBYTEL-wtdth character
contained in INCHAR into the Nth KBYTEL-wldth
character position of the output character string
IBtJFR. Character positions are numbered left to
right. Note that KB’fTEL is not a fixed quantity
and may vary during execution.

I

GCS 1 Ca (N , ISTRNG .NUCHAR)

N the character position within the input character
s~tring from which the ~BYT~ L-wtdtb character isto be extracted.

ISTRNG is the input character string (maximum length is
one word).

NUCH.A.R is a word in which the KBYTEL-width character is
placed .

Comments: This routine extracts the Nth KBYTEL-wtdth charac-
ter from the input character string word and places
it in the output word (NUCHAR) right-justified ,
zero—fill. Note that KBYTETJ is not a fixed quantity
and may vary during execution .

-~

GCSSTD (N, ISTRNG ,NtJSTRG)

N is the number of left—most characters from the
input character string to comprise the output
character string .

ISTRNG is the input character string.

NUSTRG is the left—justified output character string
padded with zero bits if necessary to fill the
word .

Comments: This routine places the left—most N characters
from the input character string in the output
character string word padding , if necessary, with
zero bits. Both the input and output character
strings may be of maximum length of four cnaracters
or one word whichever is greater.

Job Contro l Routines

Only two job control rout ines currently are required ,
GCSJOB and GCSTBK. These routines are intended to access
opera~

.tng system facilities for services or to c~~i..alzi
information.

I

GCSJOB(J OBID ,IDUSER , IROUTE • ICLASS ,IDATE , ITI~~)

JOBID is a word in which the job ID of the run will be
returned.

IDU~~~ iS a word i~ whiuh ~he ID of the person executingthe program will be returned.

IROUTE is the routing address to which the output should
be sent.

ICLASS is the job security classification.

IDATE is the date of the run.

ITIME is the time of the call to GCSJOB.

Comment: The GCS terminator character is appended to the
end of each field of information being returned to
the calling program . The calling program has the
responsibility of insuring that the current termi-
nator is the default termina ’-r.

A maximum of twelve charac~ers including the GCSterminator character are aLLowed to be returned
for each field. The only exception is that the
security classification may be up to eight word s
long.

If a parameter is not defined on a particular
operating system , a valid GCS text string consist-
ing of only the default GCS text string terminator
must be provided.

****** This routine is still under development. ~~~~~~~
****** The description above is subject to
****** change. Providing this routine is opt- ~~~~~~***
~~~~~~** tonal until development is completed.

.~

I

GCSTBK (IERROR)
IERROR contains the GCS error number.

Comments: This routine invokes the computer system error
traceback routine. It is implemented so that
tracebacks can occur when GCS errors have been
identified. It is important that the traceback
not abort execution of the program. If no
traceback function exists or the traceback
aborts execution of the program, this routine
should be nul l

.0

I

Character Set Conversion Routines

These routines provide for converting between the GCS
internal character set ASCII and the host computer internal
character set. Note that even if the hoBt computer character
set can support both upper and lower case characters , the
mechanism must still be provided to support the GCS case
shifting function. This may require that duplicate conver-
sion tables be included whose only difference is that all
upper case characters be mapped to lower case when lower
case has been specified . If the host computer character set
does not support the entire ASCII special character graphics,
then some special characters may also differ between upper
and lower cases , If this occurs , however, the special charac-
ters (,), +, — , = , *, / , (, >, and \must be supported in
both cases. Only the printable characters need be converted;
control characters and character indecies with no graphic
symbol associated with them need not be handled unless desired.
It should be emphasized that every attempt should be made to
accommodate the standard mapping between ASCII and the host—
computer character set defined by the host—computer manufac-
turer for the operating system being utilized.

I

~CSCVT (IN, lOUT)

IN is the charcter to be converted in host—computer
internal character set right—justified , zero—fill.

lOUT is a word in which the character will be placed
after being converted to ASCII right—justified ,
zero-fill.

Comments: This routine converts from host—computer internal
character set to ASCII. The case—shifting constant
will have been added to the host—computer character
before this routine is called. Therefore , the
case shifting should be recognized by the magni-
tude of the character bit value.

I

GCSRVT(I~N,IOUT)

IN is the character to be converted in ASCII
right—justified , zero—fill.

lOUT is a word in which the character will be placed
after conversion to host—computer internal
character set.

Comments: This routine converts from ASCII to host—computer
internal character set. Since ASCII supports
both upper and lower case , it way be necessary
to map lower case characters into upper case
characters if the host—computer character set
supports only upper case.

1

I
GCSOPS (IIILCD)

IPILCD is the Portran file number of the sequential
file to be opened.

Comments: This routine opens a file for sequential acce8s.

4

In~ut/Output_Rout ines

Three classes of I/O routines are included in this
category : sequential f i le I/O , random file I/O , and
telecommunications interface rout ines.

The sequential file I/O routines GCSOFS , GCSRFS , GCSWFS ,
and GCSCPS are required for use by devices which place plot
output on sequential files, Use of these routines is
required since Fortran I/o may place undesirable control
information on a file when using unformatted I/o (Formatted
I/O cannot be used since it is line—oriented with line
length restrictions on some computers).

The random file I/o routines GCSOPR , GCSRFR, GCSWFR , and
GCSCFR are required for supporting GCS segmentation and
structure facilities. These routines are required since
iNS Fortran does not have random file I/O capability.

The telecommunication routines T INPUT and TOUTPT are
required for communication between GCS device—dependent
routines and devices connected to the host—computer via

• telecommunications lines. These are required since the
interface may connect directly to the operating system
telecommunications service rout ines.

I

GCSRPR (IFILCD , INDEX , IBECNR , IRECLN , IRECRD)

IFILCD is the Fortran file number of the random file.

INDEX is an array in which the random file index may
be maintained.

IRECNR is the record number of the record to be retrieved.

~~ECLN is the length of the record to be retrieved.

IREORD is an array into which the record will be read.

Comments: This routine performs a random (direct) read of
the desired record from the specified file. It
the record is larger than the buffer array
IRECRD, only the first IRECLN words will be placed
in the buffer area. If the record is smaller than
the buffer area, the remaining words of the buffer
will be unchanged. If the record does not yet
exist, the buffer array will be zero—filled.

GCSRFS (IFILOD,ILENG , IBtJPPR • IST&T)

IPILCD is a Fortran file number.

ILENG specifies the length of the input buffer.

IBUPFR is an array of size ILENG word s into which
the data will be read.

ISTAT is a status indicator. Valid values are:

o = End. of file
>0 = Actual number of words read
(0 = Error occured during the read operation.

Absolute value is actual number of words
read.

Comments: This routine reads the next physical recor d from
the file into the buffer. If the number of words
read is less than the buffer size , unused buffer
locations will not be modified. If the number of
words read is greater that the butter size , only
the first ILENG words of the record will be placed
in the buffer. Excess words are discarded . Note
that in all cases, the number of words read will
be indicated in ISTAT . If an end—of—file is
encountered , ISTAT is set to zero.

GCSOFR (IF ILCD ,INDEX , INDXSZ)

IPILCD is the Fortran file number for the random file.

INDEX is an array in which the index for the random
file can be maintained if not maintained by
the operating system .

INDXSZ is the number of words In the INDEX array.

Comments: This rout ine opens a file for random acce ss and
initializes the index for the file if necessary.

I

GCSWFS (IFILCD ,LENGTH , IBtJFFR , ISTAT)

IFILCD is a Fortran file number.

ILENG specifies the number of words of data to be
written.

IBTIPPR Is an array containing the ILENG word s of
data to be written.

ISTAT is a status indicator. Valid values are:

o = No error during processing.
1 = Error during processing.

Comments: This routine writes the ILENG words of data in
the buffer to the file. No other information
may be placed on the file. This means that it
may not be possilbe to use unformatted Fortran
I/o since control information is frequently
written to the file along with the data. Also ,
it may not be possible to tuse formatted Fortran
I/O since the number of characters which can be
written is often limited to one line and end —
of—line symbols may be inserted within the data
stream. Since files written using GCSWFS are
often read by tape drives attached to other than
the host—computer , it is important that the
information written to the file contain no
computer—system dependent control information.

I

GCSCFS (IFILcD , IEOF)

IPILCD is the Fortran file number of the seq~ entialtile to be closed.

IEOP is an end—o f— file request flag. If set to one ,
an end-of—file mark is written on the end of
the file. All other values inhibit writing of
an end—of-file.

Comments: This routine closes the file specified in IFILCD
if required by the computer system. An end-of-
file mark must be written if IBOP has value 1.
The close operation takes place with no rewind.

0

GCSWFR(IFILCD ,INDEX , IRECNR , IR~CLN , IRECRD)

IFILCD is the Fortran file number of the random file
to be written upon.

INDEX is an array which way be used to maintain the
index for the random file.

IRECNR is the number of the record to be written.

IRECLN Indicates the number of words in the record to
be written.

IRECRD is an array of IRSCLN words containing the data
to be written.

Commentsz This routine writes or rewrites the record~indicated . It the record did not exist before ,
the record will be written. It the record already
exists and is being modified , the record ahould
be rewritten In place.

T

— -

GCSCFR(IFILCD)

IFILCD is a Fortran file number.

Comments: This routine closes the random file indicated
by IPILCD. Cisoing a random file way require
invocation of an operating system support
routine to write the index on to the file.

4
4

T INPUT (ICOUNT ,IBUFFR • IPRiv~ T)

ICOUNT is the number of ASCII characters to be accepted
from the terminal .

IBtJPFR is a buffer into which the ASCII characters will
be placed one character per word , right—justified ,
z e r o — f i l l . The buf fe r is considered to conta in
ICOUNT words.

IPR~~T is an array containing a prompt sequence which
is used to initiate the input operation. The
first word of the array contains a count of the
number of characters in the prompt sequence and
is also the number of word s in the IPRMPT array
minus 1. The prompt characters are in the same
format as would be passed to TOU ’TPT .

Comments: This routine in i t ia tes an input operation which
asks for ICOUNT ASCII characters to be read from
the terminal. If less than ICOtJN T characters
are received , the remaining buf fe r posit ions are
zero—filled . If more than ICOUNT characters are
received , excess characters are ignored. The
input operation is prefixed by sending the prompt
sequence to the terminal (if IPRNPT(1) is not
equal to zero). Preferably, this would occur as
part of the input request but, on some systems ,
it way be necessary to call TOtJ TPT to send the
pr ompt to the terminal. The important thing is
to make the delay between the time the prompt
is apparent to the terminal operator and when
input can be accepted by- the operating system
indetectable to the terminal operator.

Note that input characters placed in IBUPFR must
be ASCII. If ASCII originates at the termina l,
the characters must not be modified before being
placed in the buffer. It is also important that
any characters being buf fe red within TOUTPT or
the operating system be sent to the terminal
prior to the prompt sequence.

I

TO UTPT (ICO TJN T • IBUPFR)

ICOUNT is the number of characters to be transmitted
to the terminal.

IBUPFR is an array of ICOUN T words. Each word contains
one ASCII character , right—justified , zero—fill.

Comments: This routine transmits the ASCII characters
within IBUFPR to the terminal unmodified with
no additional characters inserted ... If desirable ,
the characters may be packed into buffers before
sending to the terminal. In this case , the
buffer should be sent when full or when TOUTPT
is called with ICOUNT equal to zero.

I

IV. 3D GCS Implementation Factors.

3D GCS makes few assumptions about the capabilities of
the computer and operating system in whose environments it
will function. Essentially, 3D GCS (or even 2D GCS) can
be successfully and easily supported on any computer system
which has the following characteristics:

a) A word size of 32 bits or larger.

b) A loader which allows several libraries to be searched
during the linkage edit of the user program.

c) A capability for reading and writing direct access
(random access) files.

d) A capability for sending arbitrary length string s of
ASCII characters to a display device (required for
interactive devices only).

With these capabilities , it is a relatively straight-forward
task to bring up 3D C1CS. Section V contains a phased sequence
for accomplishing this.

Circumventing the lack of any of these capabilities or
characteristics can be a laborious undertaking and , in the
case of direct file I/o, may not even be possible. The
following paragraphs are designed to assist the tmplementor
in modifying 3D GCS to accommodate limitations in the host—
computer system.

Word Size

GCS was originally developed for computers whose words
consist of at least 32 bits and in which may be stored at
least four host—computer characters. There are only three
areas in 3D GCS where this limitation is critical.

Wherever GOS mode and option names are specified , only
the first four characters of each mode or option name are
significant. 3D GCS assumes these four characters occupy
positions in the same word . The processing of these modes
and options takes place in many GCS routines. Besides
USET and UPSET , included in these routines are UCOLOR ,
UDOIT , UPORNT , UQUERY, all user—callable segmentation
routines , and all user—callable structure routines. These
routines all call the computer—dependent routine GCSSTD to
extract the first four characters of the option. GCSSTD
can be written to process multiple—word character strings.
However, the comparisons which take place in USE?, UPSET,
UQUERY, and the others will require code modification to
cause correct matching . An easier solution , if available ,
is to use double word integers.

There are several areas within GCS in which character
• string constants are define and initialized by DATA

statements (e. g., UTAXIS). These will have to be located
and modified as necessary. They can frequently be found by
looking for the character strings “/4H’~ and “,4E”.

The third area in which GCS requires this restriction
is in the storage of character descriptors for the GCS
character set. Each stroke of a character is stored in a
24—bit field in the lower portion of a computer word as
follows :

ITI Ooo~ MMM [~
Xaiag ~mag I

This 24—bit field is split into the three 8—bit subf ie lds
shown above. The X and ~f bytes represent percentages of acharacter enclosing box in sign/magnitude forznat . (S=1
represents negative). The 14MM field has value 0 for a
visible stroke and has value 5 for a move. The T field
flags the last stroke in the character when set to 1.
While it is possible to store the character stroke in a
three—byte field , unless a computer is byte—addressable ,
such a packing scheme is too ine f f i c ien t to be acceptable .
Once again , use of double — word integers is indicated , if
available. If not , each stroke may be stored in two—word
table entries with the appropriate changes made to the
referencing code in GCSSIM and GCSSYM . The recommended
split is to place the opcode (14MM), termination (T), and
X fields in one word and the Y field in another. The
termination f ield should be moved down so that it does not
make the contents of the word negative when referenced
arithmetically.

Cyclic Library Searches

GCS is organized into device—in dependent routines ,
computer—dependent routines (which are device—independent),
and device—dependent routines. Normally, all device—
independent rout ines are stored in one device—independent
library, and each set of device-dependent routines are
stored in a separate device-dependent library . The
appropriate device—de pendent l ibrary is selected at load
time for the device to be used. A linkage edi tor or loader
which can search several libraries as if one (actually,
logically concatenate the l ibrar ies) is a great aid in
using GCS on a computer system. Such an editor will perform
a cyclic search to sat isfy all external references. Some
linkage editors and loaders canno t search a l ibrary a second
time . Frequently, this e f fec t can be achieved by listing
the device— independent and device—dependent l ibraries twice
causing each to be searched twice. A more practical approach
might be to store the computer—dependent routines and GCSSI.’I
in eacl~ of the device—dependent l ibraries.

Direct Access L/O

It will be very difficult to support GCS on a computer
system which does not support direct access file I/O. This
is because both the GCS s t ructure capabi l i ty and the ~CSsegmentation capability require direct access files for
storing the data. (It is also intended that the planned
support for Hershey characters will require tha t these also
be stored on a direct file). The best attempt to support
GCS on such a computer system would be to .3imulate direct
access files using sequential files. It should not be
expected that GCS will function efficiently when using
structures or segmentation in this case.

Telecommunications Pro to col

When sending graphics command s to a display device
connected via a telecommunications line , GCS assume s that
any number of characters can be transmitted to the display
device without sending some sys tem—dependent end—of- l ine
terminator character such as a carriage return character.
At times, such lines may exceed the capacity of an operating
system buf fe r . This is not critical provided the operating
system does not insert such an end—of—file character arbi-
trarily within the logical stream of data. If it does , the
correctness of the picture being displayed may be thwar ted .
Every attempt should be made to provide such a transparent
flow of characters to the terminal. If it cannot be accom-
plished , the device—dependent routines within GCS must be
modified to bracket the inserted end—of-line characters with
command s that keep the end—of-line characters from effecting
the visual output. Note: input operations do not require
an unlimited line length .

V . . Phased Im~ lementation Sequence.

The following steps describe the sequence of act ions
necessary to bring 3D GCS up on a new computer system. It
is assumed that 3D GCS source is available on tape in the
form of card images.

1) Read the source tape on to disk in a form in which the
source can be manipulated using the host—computer
standard source program library maintenance procedures.
Note that for proper organization later into object
libraries , it may be necessary to store the device—
independent source programs in one file and each set of
device—dependent source programs in separate files.
Other computer systems may allow all the source programs
to be kept together. If an INC LUDE , COPY , or *QLLL
capability is available , the Graphics St atus Area (GSA)
should be placed in a module which can be included and
the code in the source programs replaced with COPY ’s ,
INCL UD E ’s , etc.

2) Establish the computer—dependent initializations for the
Graphics Status Area. Then edi t these values into the
appropriate places in the source code where the GSA
init ial ization statements are located.

3) Implement the computer—dependent routines described in
this document. These should be thoroughly tested before
attempting to use them within GCS. Once debugged , the
source code should be placed with the other device—
independent source programs.

4) Compile all device—independent routines into one object
library in a form which can be searched by the loader or
linkage editor . If compilation errors are de tec ted ,
they should be corrected and this step repeated until no
compilation errors occur.

5) Compile all device—dependent routines for~the devioeupon which development will occur into another obJect
library in a form which can be searched by the loader
or linkage editor. If compilation errors are detected ,
they should be corrected and this step repeated until
no compilation errors occur. It is highly recommended
that the development device selected be one for which a
set of GCS device—dependent routines already exists
even if this must be an alphanumeric device (alphanumeric
terminal or line printer).

S

6) Write a test program which invokes the basic GCS functions.
A typical such program might oe as follows:

CALL USTAR T
CALL USET(”PERCENT UNIT S ”)
CALL UDA.REA (0.,100.,0.,100.)
CALL UMOVE(0 . , 0 .)
CALL UPEN(100.,100.)
CALL tJPRINT(50.,50.,”TEX T “)
CALL tJEND
STOP
END

This program will draw a diagonal line from the lower
left corner of the display surface to the upper right
corner of the display surface and will display the
word “TEXT ” at a location where the lower left corner
of the first character position is at the center of the
display surface with the characters extending to the
right. Continue testing GCS until it is apparent that
GCS is functioning satisfactorily for the development
device. Note that to use GCS , it will be necessary to
insure that the BLOCK DATA subrout ine for the display
device selected be loaded since it is the subroutine
which initializes the GSA.

7) Repeat steps 5 & 6 for each display device to be supported.
Read the 3D GCS Device—Dependent Implementation Guidelines
if a device not already supported by GCS is to be used.

8) Design and implement a control card procedure or other
mechanism which makes device selection convenient for
the user. Typically, this can be accomplished by passing
the name of the device to the control card procedure as
a parameter. The control card ,rocedure will then cause
the appropriate control cards to be processed so that
the appropriate device—dependent library will be used by
the linkage editor or loader. While this step is optional ,
it is strongly recommended since it greatly facilitates
using GCS.

I

