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FULLY MULTIDIMENSIONAL FLUX-CORRECTED TRANSPORT

I. INTRODUCTION: FCT DEFINED

Consider the following system of equations
w,+ fi=0 (1)

where w and f are vector functions of independent variables x and 1. A simple example of such
a system of equations would be the one dimensional equations of ideal, inviscid fluid flow:

p v

w=|pvl|, f=]| pvi+P

pE) pVE + Pv

where p, v, Pand E are the fluid density, velocity, hydrostatic pressure and specific total energy

respectively.

We shall say that a finite difference approximation to Eq. (1) is in conservation (or "flux")
form when it can be written in the form
witl = w — Ax,™! [F/+(l/2) = Fieam ()

Here w and f are defined at the spatial grid points x; and temporal grid points ", and Ax, =

L

3 (x,4; — x,-1). The F,,( are called transportive fluxes, and are functions of f at one or

more of the time levels t". The functional dependence of Fon f defines the integration scheme

(leapfrog, Lax-Wendroff, Crank Nicholson, donor cell, etc.).

It is well known that higher order (order 2 and above) schemes for numerically integrat-
ing Eq. (1) suffer from dispersive "ripples" in w, particularly near steep gradients in w. Lower
order schemes, such as donor cell, Lax-'Friedrichs, or high order schemes with a zeroth order
diffusion added, produce no ripples but suffer from excessive numerical diffusion. Flux-
corrected transport (FCT) is a technique developed by Boris and Book [1-3] which embodies
the best of both of the above worlds. In its simplest terms, FCT constructs the net transportive
flux point by point (non linearly) as a weighted average of a flux computed by a low order
scheme and a flux computed by a high order scheme. The weighting is done in a manner which

insures that the high order flux is used to the greatest extent possible without introducing rip-

*Manuscript submitted May 17, 1978.




ples (overshoots and undershoots). This weighting procedure is referred to as "flux-correction"
or "flux-limiting" for reasons which shall become clear later. The result is a family of transport
algorithms capable of resolving moving contact discontinuities over 3-4 grid points, and shock
fronts over 2 grid points, without undershoot or overshoot [1-3]. Formally, the procedure is as

follows:

1) Compute FL(j/7), the transportive flux given by some low order scheme guaranteed to

give monotonic (ripple-free) results for the problem at hand
2) Compute F/1(, 5, the transportive flux given by some high order scheme
3) Define the "antidiffusive flux":

_—
Avan = Fliap

L
1+(1/2)

4) Compute the updated low order ("transported and diffused") solution:

/ (o —1 L L
wll‘ o W," e Axl lF/+\'l/2) 5 Fl—(l/2)

n+1

5) Limit the A,,(/2 in a manner such that w"*" as computed in step 6 below is free of

overshoots and undershoots:

c B
Avam = Cram Avaryr 0 Chap €1

6) Apply the limited antidiffusive fluxes:

with = w/d— Ax,™! [Aﬁu/z) - ASam
The critical step in the above is, of course, step 5 which will be discussed shortly. In the
absence of the flux limiting step (4515 = 4,,¢1/2), w"*" would simply be the time-advanced,

high order solution.

We note that this definition of FCT is considerably more general than has been given pre-

viously.

II. MULTIDIMENSIONAL FLUX-CORRECTED TRANSPORT

Before proceeding to a discussion of flux limiting, let us see how the procedure given

above might be implemented in multidimensions. An obvious choice would be to use a

Strang-type time-splitting procedure [4] when it can be shown that the equations allow such a
2




technique to be used without serious error. Indeed, such a procedure may even be preferable
from programming and time-step considerations. However, there are many problems for which
time-splitting produces unacceptable numerical results, among which are those involving
incompressible or nearly incompressible flow fields. This technique is straightforward and shall
not be discussed here. Instead we consider as an example the fully two-dimensional set of equa-
tions

wo+/fo+8=>0 3)

where w, f, and g are vector functions of x, y, and «. In finite difference flux form we have

l -
witl=w!;, — AV} [F:+(l/2).j = Fi—am.j + Gi j+am = Gi j-am (4)
where now w, fand g are defined on spatial grid points x,, y; at time levels 1", and AV, ; is a
two dimensional area element centered on grid point (i, j). Now there are two sets of tran-

sportive fluxes Fand G, and the FCT algorithm proceeds as before:
1) Compute FA /5. j and GE;, /2 by a low order monotonic scheme
2) Compute F/1y, ;and G¥,,(/y by a high order scheme

3) Define the antidiffusive fluxes:

— H L
Aivan,; = Fram, ;i — Fiam. i
— H L
A, jvam = Glivam — Glivam

4) Compute the low order time advanced solution:

=1 | g2 L L '
wih = wi;— AV} [F,+(1/2)._/ = Flam, i * G eam = G,.‘j—u/z)]
5) Limit the antidiffusive fluxes

ASam. = Aisam.; Cram. 0< Ciam,; €1
< <

1

¢
Aifjram = Ai jram, i Cj+am 0<C,  +am

6) Apply the limited antidiffusive fluxes:

d = c
witl = wih, — AV} [Aﬂ(l/z)../ = ASam,; + ASivam ~ AI,C,;—(l/z)]
As can be easily seen, implementation of FCT in multidimensions is straightforward with

the exception of Step 5, an algorithm for which is the subject of this paper. First, however, let




us see how flux limiting is presently implemented in one spatial dimension.

ITII. FLUX LIMITING IN ONE SPATIAL DIMENSION —

THE ORIGINAL ALGORITHM

The original algorithm for flux-limiting in one dimension was given by Boris and Book

[1]. In our notation it is:

c ! :
ASam = Si+a/2 max lO, min ’|41+(1/2)|r

d d d d
Si+a [W,'iz o W:"H] Ax i, Sivan [W/‘ = wl”‘l] AX,—I” ()

where

+1if 4,0, 20

Siva/m =1 1if 4,4/ <0

The intent of this formula is that antidiffusive fluxes should neither create new extrema, nor
accentuate already existing extrema, in the transported and diffused solution w' ‘That the
above formula does, in fact, perform precisely this task can be verified by the reader with rela-
tive ease. We shall examine here some of the less obvious properties of this very powerful, yet
simple, formula. In the process we shall gain insight into which of these properties we shall
wish to carry over into a multidimensional flux limiter. We first observe that certain quantities
do nor appear in the above formula: 1) w//, — w/“ the first difference of w' at the point where
the antidiffusive flux 4,,y is evaluated; and 2) antidiffusive fluxes other than A, +q2- This
last property is the most notable since there are conceivably two fluxes directed into or out of a

cell. A formula guaranteeing that the two fluxes acting in concert shall not create ripples would

apparently require a knowledge of borh. We shall return to this point momentarily.

In Figure 1 we show the eight possible configurations of w' in the neighborhood of a

positive A4,,(;/, ( directed to the right in our diagrams). Configurations 1-4 show the "normal"

situation, with A, having the same sign as wdy — w/ (as might be expected of an

"antidiffusive flux"). We note that if either w/{, — w/¢, or w! — w!, has a sign opposed to that

of A4,.q/, as in configurations 2-4, the antidiffusive flux A, 12 IS completely canceled. This,

4

-




- w"'"-———--——u—‘

however, is in total agreement with the stated intent of Eq. (5) since otherwise configuration 2
would allow accentuation of an existing maximum, configuration 3 accentuation of an existing

minimum, and configuration 4 accentuation of both. In the remaining configuration 1, the flux

limiter (5) will reduce the magnitude of A4,,(;/7 sufficier’s to guarantee that neither a max-
imum at grid point / + 1 nor a minimum at grid point / will be formed, again in precise agree-
- ment with its stated intent.

Configurations 5-8 are identical to configurations 1-4, respectively, except that sign of w/¢,

— w/¥ has been reversed (The "antidiffusive fluxes" are now directed down the gradient in w').
Since the sign of w/¢, — w/“ does not enter into the flux correction formula (5), the tes/u‘l/ts of
the formula are identical to those for the previous four cases: the antidiffusive fluxes are can-
celed for configurations 6-8 and limited in configuration 5 to the extent necessary to prevent a
new maximum at grid point i + 1 and a new minimum at grid point i Examination of !
configurations 6-8 reveals that A, , (/) actually presented no hazard insofar as extrema creation |
or enhancement (at least in moderation). Certainly there was no cause for completely cancel-
ing the flux. Even in configuration 5 the flux may have been limited to a greater extent than
necessary. At first it would seem that configurations 5-8 represent errors introduced by the

simplicity of the flux limiting formula (5). However, extensive tests by this author indicate

that in the relatively rare instances in which configurations 5-8 occur in practice, the "errors"
introduced by Eq. (5) represent, in fact, the correct action to take in terms of producing accu-
rate profiles in w”*!. More importantly, they represent the mechanism by which £q. (5) can

guarantee that ripples are not formed under any circumstances, as we shall see presently.

Consider two antidiffusive fluxes, acting in concert, attempting to produce or accentuate
an extremum. 'We therefore have 4,,(; and A4, (j,; either both directed toward, or both
directed away from grid point i. We see from Figure 1 that, in general, an antidiffusive flux

directed opposite to the gradient in w' will be completely canceled. Therefore the only cases of

fluxes acting in concert that we need be concerned with are those where two adjacent fluxes are

both parallel to the local gradients in w'”. These are precisely the cases of already existing




extrema, in which case borh fluxes will be canceled (as in configurations 2-4). This is the reason

that Eq. (5) needs no informaticn on any antidiffusive flux other than 4, ).

In Figure 2 we see that the above-mentioned assumptions regarding antidiffusive fluxes
acting in concert break down completely in multidimensions. It is possible in more than one
dimension for more than one antidiffusive flux to be directed into or out of a cell, all of these
fluxes being directed parallel to the local gradient in w', without that cell being an already
existing extremum. Therefore the problem of dealing with multiple antidiffusive fluxes acting in
concert cannot be avoided by simply canceling all fluxes antiparallel to the local gradient in w'.
It is clear then that any formula which purports to perform flux limiting in more than one
dimension without resort to time splitting must contain information about antidiffusive fluxes

other than the one being limited.

IV. FLUX LIMITING IN ONE SPATIAL DIMENSION -

AN ALTERNATIVE ALGORITHM

We describe here in one spatial dimension an alternative flux limiting algorithm which
generalizes easily to multidimensions and which, even in one dimension, exhibits a superiority

to the limiter described in the previous section (Eq, (5)) with regard to peaked profiles.

Referring to Figure 3, we seek to limit the antidiffusive flux 4,/ such that

c
Asam = Cram Avayy 0 Cugp €1 (6)

and such that 45, acting in concert with 4,5, will not allow

1 d =1 C ()
w/t = w— Ax " A4S0 = ASan
to exceed some maximum value w, ™ nor fall below some minimum value w™" We leave the

determination of w, ™ and w,™" until later.

We define three quantities:

P* = the sum of all antidiffusive fluxes inro grid point i

= max (0, A_(”z)) — min (0, A,+(”1)) (7
0t = (w™ — w9 Ax, (8)

min(l, Q*/P") if P* >0
R* = 0 it Pt =0 9

6
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Assuming that w™* > w'd (it must be), all three of the above quantities are positive and R/*
represents the least upper bound on the fraction which must muitiply all antidiffusive fluxes into

grid point i/ to guarantee no overshoot at grid point ..
Similarly we define three corresponding quantities:

P, = the sum of all antidiffusive fluxes away from grid point /

= max (0, 4,,qp) — min O, 4,_q/2) (10)

0 = (Wi~ w™") Ax, (1)
_|min(], o~/P") if P~ >0

B 0 if P~ = (12)

Again assuming that wmin < w we find that R;” represents the least upper bound on the
fraction which must multiply all antidiffusive fluxes away from grid point j to guarantee no un-

dershoot at grid point i.

Finally we observe that all antidiffusive fluxes are directed away from one grid point and
into an adjacent one. Limiting will therefore take place with respect to undershoots for the
former and with respect to overshoots for the latter. A guarantee that neither event comes to

pass demands our taking a minimum:

min (R,:.l. R,‘_) if A:+(l/2) 20

CI+“/2) e min (Rl+’ R::—l) if Aivan <0 i

Furthermore, we shall call upon our previously described experience with the original flux

limiter and set
Avqp =0if Avap W —w <0 (14)
and either AWy ~ w4 <0
or A,.qp (W= w2y) <0

In practice the effect of Eq. (14) is minimal and is primarily cosmetic in nature. This is

because cases of antidiffusive fluxes directed down gradients in w'@ are rare, and even when
they occur usually involve flux magnitudes that are small compared to adjacent fluxes. If Eq. (14)

is used, it should be applied before Eq. (6) through (13).




We come now to a determination of the quantities w ™ and w™" in Eqs. (8) and (11).

A safe choice is

w3 = max (w/,, w w!) (15)
w™ = min (w4, w4 wH, (16)

This choice will produce results identical with those of Eq. (5) in one dimension, including the

occurrence of the "clipping" phenomenon to be mentioned shortly.

A better choice is:

w? = max (w/, w'

w2 = max (w’ |, w? wi,) (17)
wl = min (w/, w/%

2 whay) (18)

This choice allows us to look back to the previous time step for upper and lower bounds on

w ™" = min (wl,, w

W,"+l.

It is clear that these two methods of determining w,™* and w™" represent only a small
subset of possible methods. The alternative flux limiter described in equations (6) through (14)
admiits of any physically motivaied upper and lower bound on w/” ! supplied by the user, intro-
ducing a flexibility unavailable with the original flux limiter (5). However, with the exception
of one example in the next section (which shows graphically the potential power of this flexibil-

ity), we shall henceforth use Eq. (17) and (18) to evaluate w™" and w™* in one dimension.

V. COMPUTATIONAL EXAMPLES — ONE DIMENSION

We consider one dimensional passive convection in a constant velocity field. We have Eq.
(1) with w = p and f = pv with v = constant. We choose our transport algorithm to be that
given in [3] for LPE Shasta. On the standard square wave tests we find that our results for the
original flux limiter (5) and for the alternative flux limiter (6) through (14) are identical to
within round-off (the same is true for traveling shock waves in the coupled one dimensiona!
equations of ideal inviscid fluid flow). To find differences between the limiters in one dimen-

sion we must look to passive convection of peaked profiles. We choose the problem given by

Forester [5], a guassian of half-width 2Ax. In Figure 4 we show the results after 600 iterations
8
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for the trivial case v = 0. On the left we see the fimilar "clipping" phenomenon with the origi-
nal flux limiter, caused by a zeroth order diffusion term in the low order portion of the LPE
Shasta algorithm. This diffusion term causes the peak in w' to be smaller than the peak in w/,
leaving the criginal flux limiter (5) with no way of resurrecting the original peak. This process
occurs repeatedly, eventually leaving the characteristic three point top. The alternative flux
limiter, shown on the right, "remembers" the old value of the peak and is able to resurrect it

each time step.

In Figure 5 we show the same problem after 600 iterations but this time for € = v Ar/Ax
= (0.1. We see that clipping occurs with both flux limiters, but to a lesser extent with the alter-

native flux limiter (6) through (14).

At this point we removed the flux limiter entirely and again ran the problem 600 itera-
tions with € = 0.1. The results convinced us that the amplitude and phase properties of the i
high order portion of LPE Shasta were incapable of resolving the high wave numbers of which
the gaussian is composed. Consequently it was decided to switch to a higher order algorithm, a
leapfrog-trapezoidal transport algorithm which uses eighth order spatial differences. The algo-
rithm is, then, second order accurate in time and eighth order in space, with an amplification

factor that is effectively unity across the entire Fourier spectrum, and phase properties consider-

ably better than those of fourth order algorithms. The leapfrog portion of this algorithm is
identical to the eighth order Kreiss-Oliger scheme [6]. A fourth order version of this same
algorithm was used later in the two-dimensional solid body rotation tests. We ran the gaussian
test problem again 600 iterations with e = 0.1 with no flux limiter and were convinced that the

algorithm did indeed have the resolving power necessary to do the problem. A low order
scheme, donor cell plus a zeroth order diffusion term with coefficient %, was added to com-

plete the FCT algorithm, which we dub 2-8 leapfrog-trapezoidal. A more detailed description

of this algorithm is found in the appendix.

Figure 6 shows the results of 2-8 leapfrog trapezoidal run 600 iterations with € = 0.1 with

i both the original and alternative flux limiters. The results are better than those in Figure §,

9




and again the alternative flux limiter proves superior, but nontheless disappointing. The clip-
ping would appear to be due entirély to the flux limiters, not to the phase or amplitude proper-

ties of the high order scheme.

A careful examination of exactly what happens to a one point peak in a finite difference
code reveals the real source of the above problem. Consider a profile with a local peak at grid
point i in passive convection at constant velocity > 0. At each succeeding time step the func-
tion value at grid point i will decrease and that at i + 1 will increase (Figure 7). Eventually
they will both reach some intermediate value, and the actual original peak value will not appear
anywhere on the grid, since it’s position now lies midway between two grid points. At this
point even the new flux limiter (6) through (14), (17) and (18), has lost the information it
needs to allow the peak to be resurrected in suceeding time steps, and will "clip" the new peak
at grid point i + 1 as it tries to form, based on the assumpiion that it is, in fact, an overshoot.
The effect is magnified, since the clipping itself introduces phase errors in succeeding iterations,
the net result being the profiles dipicted in Figure 6.

It is clear, then, that if we are to successfully treat a one-point extremum within the con-

text of FCT we must use information other than just the grid point values themselves. In what

follows we shall utilize the flexibility of the alternative flux limiter to use as w,™** and w,™" any

values that we choose. In Figure 8 we show a possible way of extracting information about
extrema which do not lie exactly on a grid point at the time. Basically we define w ek to be
the w value at the intersection of the line segments formed by connecting the point (x,_,, w))
with (x,, w/¥ and the point (x,4;, w/4,) with (x,45, w/?;). If the x coordinate of this intersec-

tion lies between x, and x,,,, then we consider this wP ¢, to be an allowable w™ or w™n for

either w/*! or w/;!. We now have

wf = max (w/, w9

wmax = max (we,, wl, wi, wrk, wil) (19)
w? = min (w/, w

wmn = min (why, wh, whi, witln, w2th) (20)

Equations (19) and (20) together with equations (6) through (14) now determine the

10




alternative flux limiter (for this section only).

In Figure 9 we show the results of using Equations (19) and (20) to determine w,™** and
w,™" on the gaussian test problem run 600 iterations with € = 0.1. Clearly the problem has
been solved — we recover the gaussian profile with no dispersive ripples and minimal loss in
amplitude. We have not performed this test merely to show the power of the extrapolation
technique just described to determine w™* and w™", Rather this calculation serves to show the
power of using information other than that available on the one dimension&l grid. In multidimen-
sional flux limiting, this information comes from the other coordinate directions, as we shall

see.

VI. FLUX LIMITING IN MULTIDIMENSIONS

The alternative flux limiting algorithm presented in section IV generalizes trivially to any
number of dimensions. For the sake of completeness we present here the algorithm for two

spatial dimensions.

Referring to Figure 10, we seek to limit the antidiffusive fluxes 4,.¢/y,; and 4, ;12

such that

(& e
ASam, = Civam.j Aivam. j

Civam.; S ,
. ©)

0 < 1
C -
ASivam = C jram A jsay 0 C jpam S1

and such that 452, » ASa/. j» ASj+a/2, and AS,_( ) acting in concert shall not cause

RN ~1[4¢ c c c
witl = wl’, — AV [A.m/z).j —AZqm. it A jvam — Al j—am

to exceed some maximum value w,™ nor fall below some minimum value w™".

Again we compute six quantities completely analogous to those computed in Eq. 7

through (12):

P}, = the sum of all antidiffusive fluxes into grid point (i, j) (7
= max (0, A:—(l/2).j) — min 0, A,+(|/2),j)

+ max (0, A, _,_(1/2)) — min ‘0, A,,j+(\/2))

QI.+/ — (W',mfx = wl’,dj) A Vl.j (8’)

mia(l, Qt/P}, if P, >0 ,

R:/- 0 . prl+11=0 (9)
11




P, = the sum of all antidiffusive fluxes away from grid point (i, /)

= max (0, 4;.q/2,,) = min (0, 4;_q2, ) i
+ max (0, 4, ;,q/2) — min (0, 4, ;-q/2)

0r) = (w4 = Wi 4V, .

- _ |minQ, Q7/P7) if P, >0 f

R; 0 if P, =0 o

Equation (13) becomes

- _ |min (R%y ,, R if Ay, ; 20
i+(1/2.J = |min (R}, R73y, ) if Aivam.; <0

min (R*;41, R7) if A, jeqp 2 0

Ci+n = \min (R Rije1) if A, jeqiy < 0 13)
while Eq. (14) becomes
Airiir, j=0if Aivasp, ; (W, — wi4) <0
and either 4,,q/,; (Wy, ; — w/d,, ) <0
or Aisazn,; (Wi = widy ) <0
A, e = 0if A, jeq Wy — wi4) <0
and either 4, ;.5 (W9, — wl44) <0
or 4 jram Wi = wi4_,) <0 (14)
and Eq. (17) and (18) become
o w?; = max (w/;, w/%) an
wit = max (wily ;, wi; why 0 Wi W)
W), = min(w};, w(%) (18"

wit = min(wly ;, why why o whion whia)

Again, the effect of Eq. (14') is minimal, but if it is used it should be applied before Eq.

(6) through (13). Note that our search for w™* and w™" now extends over both coordinate
directions. Where finite gradients exist in both directions, this procedure will allow us to stop
the clipping phenomenon in regions where a peak exists with respect to one coordinate direc-

tion but not in the other, as we shall see in the next section.

VII. COMPUTATIONAL EXAMPLES - TWO DIMENSIONS

We choose as our two dimensional test problem that of solid body rotation. That is, we

have Eq. (3) with f = wv,, g = wv,, v, = =Q(y — y,), and v, = Q(x — x,). Here Q is the

12




(constant) angular velocity in radians/sec and (x,, y,) is the axis of rotation. The configuration
is shown in Figure 11. The computational grid is 100 x 100 cells, Ax = Ay, with counterclock-
wise rotation taking place about grid point (50, 50). Centered at grid point (50, 75) is a cylinder
of radius 15 grid points, through which a slot has been cut of width S grid points. The time
step and rotational speed are chosen such that 628 time steps will effect one complete revolu-
tion of the cylinder about the central point. A perspective view of the initial conditions is

shown in Figure 12.

Our high order scheme for the following tests is a fully two dimensional, fourth order in
space, second order in time leapfrog-trapezoidal scheme, the leapfrog step of which is a two
dimensional fourth order Kigiss-Oliger scheme [6]. The low order scheme is simply two

disvensional donor cell plus a two dimensional zeroth order diffusion term with diffusion

coefficient % A more detailed description of this algorithm is found in the appendix.

We wish to emphasize that the only difference between calculations in the following com-
parisons is in the flux limiting stage itself. The high order fluxes, low order fluxes, and hence
the (unlimited) antidiffusive fluxes are all computed in the full two dimensions without using
time-splitting. In each case we are comparing the fully two dimensional flux limiter given by
Eq. (6" through (14'), (17') and (18') with a rime split application of Eq. (5). Time splitting is
the only way that Eq. (5) may be utilized in a multidimensional problem. Note that in the
latter case we are not time splitting the entire transport operator, but only the flux limiter (5).

In this way we are testing only the limiters themselves.

: ; . L 1 :
In Figure 13 we show a perspective view of the two calculations after y revolution (157

iterations). Figure 14 presents a comparison of the results of the two calculations for one full
revolution (628 cycles). Two features are obvious. The first is a much greater filling-in of the
siot with the time split Eq. (5) than with the fully two dimensional flux limiter. The second is ‘
the loss of the bridge connecting the two halves of the cylinder in the case of the time-split %

application of Eq. (5). Less obvious is the lack of clipping of the peaked profiles defining the

13




front surface of the cylinder for the case of the fully multidimensional limiter. Clearly this is
due to the fact that the multidimensional flux limiter can look in borh directions to determine
whether or not a genuine maximum exists. Note that there are two factors working in favor of
the fully multidimensional flux limiter: 1) the ability to look in both directions to find minima
and maxima, as just mentioned; and 2) the ability to scan both w/"; and w/; to find maxima and

minima. Both of these factors are responsible for the improved profiles.

VIII. THE STRIATIONS CODE - A TWO DIMENSIONAL INCOMPRESSIBLE

FLUID CODE USING FULLY MULTIDIMENSIONAL FCT

i A two dimensional (X — ) plasma cloud initialized in a region of constant magnetic field
B, directed along the 7 axis, with an externally imposed electric field E, directed along the X
axis will tend to drift in the E, x B, direction (along the negative y axis) (see Figure 15). If
: the ion-neutral collision frequency is finite, Pedersen conductivity effects will produce polariza- ,
tion fields which tend to shield the inner (more dense) regions of the cloud from E,, causing ‘
this inner portion of the cloud to drift more slowly than the outer portions of the cloud. This
results in a steepening of gradients on the back side of the cloud. Arguments similar to those
above, applied to infinitesimal perturbations imposed upon this back side gradient, show that
the back side of the cloud is physically unstable to perturbations along X. For a detailed

description of this problem, see [7].

The equations of motion for the electron fluid are:

(ON,/31) + V< (N, V,) =0 (21)

v, (NVY) =E, VN, (22)

V,=-(c/B,) V,¥ x 2 (23)

Here N,, V,, and ¥ are the electron density, electron velocity and perturbation electric
field potential respectively, and ¥, is the two dimensional divergence operator X % + Oiy

The magnitudes of B, and E, are 0.5 gauss and S millivolts per meter respectively. Our rest

frame here is that of the (¢/B,)E, x Z velocity. A few trivial vector identities will convince the

reader that V'V, = 0, meaning that the electrons move incompressibly. Clearly time-splitting
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the transport operator would be disastrous here, and a fully two dimensional scheme is re-

quired.

Eq. (22) is solved for ¥ using an elliptic solver, and Eq. (23) then yields the electron
velocity field. We then utilize exactly the same multidimensional FCT transport aigorithm used

in the previous section for solid body rotation to integrate Eq. (21) in time.

Our computational mesh consists of 40 grid points in the X direction, 160 grid points in
the J direction, periodic boundary conditions in both directions, and Ax = Ay = 0.31 km. Our
“cloud" consists of a 1-D gaussian: !
=i )2
} N,(x,y) = N, (1 + 10e friteh /64)
where N, is the ambient background electron density and y, is the spatial center of the gaussian t

distribution. Superimposed upon this distribution is a random x-dependent perturbation with a

maximum amplitude of 3 percent.

Figures 16-20 show isodensity contours of N,/N, for the above configuration at various
times in the integration. It is seen that, as expected, the back of the cloud (the upper half in
the plots) is unstable, growing linearly in the very early stages of development. Non-linear
effects soon enter the physics, however, as each striation successively bifurcates, producing
smaller and smaller scale structures, in agreement with the results of the ionospheric barium

cloud releases which we are attempting to model. Two points which bear on the numerics

should be noted: 1) the intense gradients dictated by the physics are nor diffused away, nor do
there appear in the problem any of the "ripples" associated with numerical dispersion which
normally appear when steep gradients try to form; 2) precisely because we did not have to
resort to time-splitting, none of the usual time splitting phenomena, such as temporal density

oscillations ans spurious density values, are evident.

CONCLUSIONS

We have shown that the algorithm presented in Eq. (6') through (14'), (17) and (18"

does, in fact, represent a workable multidimensional flux limiter. In addition, due to the flexi-

bility in determining overshoot and undershoot criteria inherent in the method, the algorithm
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produces results which are consistently equai or superior to those produced using a time-split
version of the original flux limiter (5), at least for the admittedly limited class of problems

presented here.

For multidimensional problems where time splitting is unacceptable, or for problems
where the "clipping” phenomenon associated with the original flux limiter (5) is a serious prob-
lem, the new algorithm presented here represents the only way that FCT may be implemented.
For these problems the choice is clear, for there is only one option. Yet even in situations
where the constraints mentioned above do not apply, benefit may be gained by implementing
the new algorithm rather than time splitting Eq. (5). We do not yet have enough experience to

give any guidelines, and can only ask the prospective user to try the method.

Certainly the possiblities for modifying the basic scheme are endless. One could, for
instance, limit the antidiffusive fluxes only with respect to maxima, or to minima; or he could

limit the fluxes sequentially for maxima and minima, rather than limiting maxima and minima

simultaneously in the manner presented here (this last procedure will introduce an asymmetry
between the treatment of maxima and minima which may or may not be desirable). Even
within time-split codes there are possibilities. One could time split the one dimensional form of

the new algorithm rather than time splitting Eq. (5); or fully multidimensional flux limiting

could be performed at the end of each sweep of a time-split scheme.

On NRL’s Texas Instruments ASC computer, the calculations presented in section VII
required 93 seconds and 125 seconds of CPU time for the time-split and fully multidimensional
cases respectively, a cost penalty of slightly more than 30% for the multidimensional limiter.

Of course this extra cost is highly problem dependent. For instance the striations code

described in section VIII spends 80% of its time solving Eq. (22), making the net cost penalty

of fully multidimensional flux limiting only a few percent.
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The above fourth and eighth order forms are used as the high order fluxes in the main

body of this paper.
The low order flux of the leapfrog-trapezoidal FCT schemes is simply donor cell plus

a zeroth order diffusive flux with coefficient % The donor cell algorithm requires that

f = vw, where v is a convective velocity. Specifically,

L = DC 1 0 0 fipt
Fiam =Vieam wiran — §(X,+1 -x) (WS, — w’) At

where

s
Virap = 7(V, + Vi)

w2 = wif Virap 2 0
: )
/ wl, ifviiqm <0

i w1 for leapfrog step
L w/" for trapezoidal step

A detailed description and analysis of these and other high order FCT algorithms will

be discussed in a forthcoming report by the present author.
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Fig. 1.

diffused solution w"

The eight possible configurations of the transported and
in the neighborhood of a positive (rightward-

directed) antidiffusive flux 4,,(;/5. Note that configurations 1 through
4 differ from configurations 5 through 8 only in the sign of the quantity

(wi'il ~ w’ho .

Ai-‘/z,j
Ai, ]‘%
4 wAitn, |
i j+1
wid '
j
j1
/
i-1 i i+1
—
X

Fig. 2. Perspective view of a two dimensional profile of the tran-
sported and diffused solution w' showing the four possible
anitdiffusive fluxes affecting the grid point (i, j), the directions of
which are indicated by arrows. Note that all of the fluxes are paral-
lel to the local gradient in w' (as "antidiffusive" fluxes might be
expected to be), and that w/¢, is not an extremum. This situation is
impossible in one dimension, and it is precisely this impossibility
which allows fluxes to be limited without regard to neighboring
fluxes (see text). In two or morc spatial dimensions a flux-limiting
formula must take into account effects due io multiple fluxes acting
in concert.
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15¢

10p

i-1 i i+1

—l

X

Fig. 3. One dimensional profile of the transported and diffused
profile w', showing the two antidiffusive fluxes A4,,(,; and
A,_q /2 whose collective effect must be taken into account with

respect to overshoots and undershoots in the final value of
1
witl,

OLD LIMITER NEW LIMITER

LPE SHASTA
600 CYCLES

=0 (V=0)
— ANALYTIC
x COMPUTED

Fig. 4. Comparison of old and new flux limiters on narrow gaussian
profile in passive convection for the trivial case of a vanishing velo-
city field. The transport algorithm is LPE SHASTA. Note the
"clipping" phenomenon associated with the old limiter.
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15¢
LPE SHASTA
600 CYCLES
«=0.1
— ANALYTIC
10r x OLD LIMITER

o NEW LIMITER

Fig. 5. Same comparison as in Fig. 4 except that the
velocity fluid is now finite. The profile has been con-
vected through 60 grid points. Note the reduced clip-
ping with the new flux limiter.

15
2-8 LEAPFROG - TRAPEZOIDAL
600 CYCLES
€=0.1
— ANALYTIC

10 x OLD LIMITER
O NEW LIMITER

-5

Fig. 6. Same comparison as in Fig. 5§, but with a more accurate tran-
sport algorithm (2-8 leapfrog-trapezoidal). Again note the reduced clip-
ping with the new flux limiter.




to t o+t to+24At to+34t to+aAt
P S - J__l—l-
i1 0 i+t
—_—
X

Fig. 7. Time sequence of profiles produced by a "perfect” convection
scheme acting on the variable p with € = 0.2. The actual analytic
profile is shown as a solid line, and the grid point values are shown as
dots. Note that at time ¢, + 4Ar a grid point value at (i + 1) has
been generated which is higher than any grid point value at the previ-
ous time step. This is the reason that even the new flux limiter,
using Eq. (17) and (18) for w™X and w™" must still "clip".

\
/
b ®‘/- w P%3 (IF INTERSECTION
LIES BETWEEN x; AND
/ \, Xi+1)
/ \
/
/ \
o \
wW td / g \
| / \\
4 \
/ b
/ L .
/
.I \
/7
/
1 1 1
i1 i i+ +2
X

Fig. 8. A possible scheme for extracting information about extrema
which exist between grid points at a given point in time. An extremum
is assumed to exist between grid points iand i + 1 if the intersection of
the right and left sided extrapolations of w@ has an x coordinate
between x, and x,,,. The w coordinate of the intersection is then used
in the computation of w™* and whin (see text).
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151

2-8 LEAPFROG-TRAPEZOIDAL

600 CYCLES
€=01
— ANALYTIC

10f o NEW LIMITER WITH wPeak

COMPUTATION (SEE TEXT)

S
I

Fig. 9. Same as Fig. 6, except that Eq. (19) and (20), which utilize the
wPek computation illustrated in Fig. 8., are used to compute w™** and
w™" in the new flux limiter. Values for the old flux limiter, since they
are identical to those shown in Fig. 6, are not shown. Note that the
clipping has been virtually eliminated.

w!d PROFILE:
j+1 [- .
Aij+v
. Aive, i Ait 1,
y 1K o —_— . -— .
Aij-v
j-1 ' 2|
i-1 i i+1

—

X

Fig. 10. Two dimensional profile of the transported and
diffused values w'’, showing the four antidiffusive
fluxes A.qnm. 0 Aicap. o AL+ and A, _an)
whose collective effect must be taken into account with
respect to overshoots and undershoots in the final value
of w'il. A perspective view of a similar profile is

shown in Fig. 2.
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?
15 CELLS
100
CELLS
— 25
CELLS
l— 100 cELLS—

Fig. 11. Schematic representation of two dimensional solid
body rotation problem. Initially w inside the cut-out
cylinder is 3.0, while outside w = 1.0. The rotational speed
is such that one full revolution is effected in 628 cycles.
The width of the gap separating the two halves of the
cylinder, as well as the maximum extent of the "bridge"
connecting the two halves, is § cells.
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INITIAL CONDITIONS

Fig. 12. Perspective view of initial conditions for
the two dimensional solid body rotation problem.
Note that only a 50 x 50 portion of the mesh cen-
tered on the cylinder is displayed. Grid points
inside the cylinder have w, , = 3.0. All others
have w, , = 1.0.
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NEW LIM TER

\
m, m,

m \\\
I
f',',':} il

\\'
\\
,,,'J.'nll,"..

i

il

Fig. 13. Comparison of perspective views
of the w profile after 157 iterations (1/4
revolution) with both the old and new flux
limiters. The perspective view has been
rotated with the cylinder, so that direct
comparison with Fig. 12 can be made.
Again we plot only the 50 x 50 grid cen-
tered on the analytic center of the cylinder.
Features to compare are the filling-in of the
gap, erosion of the "bridge", and the rela-
tive sharpness of the profiles defining the
front surface of the cylinder.

NEW LIMITER

4"“ lm
w"ll"n"'"m .m \

Fig. 14. Same as Fig. 14, but after 628
iterations (one full revolution). Again note

decreased diffusion with new flux limiter.
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PLASMA DENSITY
ENHANCEMENT

a) t=0 @

|5

15" 18"
x
|5

b) t>0

Fig. 15. Schematic representation of the development
of a plasma cloud (plasma density increasing toward the
center) in crossed electric and magnetic fields. Super-
imposed on the bulk E, x B, motion is a steepening of
the rearward side of the cloud. This same side is physi-
cally unstable to small perturbations.
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Fig. 16. Isodensity contours of
plasma density at t = 0 sec. The ini-
tial destribution for N,/N, is a gaus-
sian in y, centzred at y = 12.1 km,
plus a small random perturbation in x.
Contours are drawn for N,/N, = 1.5,
35, 55, 75 and 9.5. The area
between every other contour line is
cross-hatched. Only 120 of the 160
cells actually used in the y direction
are displayed. Boundary conditions
are periodic in both directions. In our
plot B, is toward the reader, and E, is
directed toward the right, and we
have placed outselves in a frame
moving with the (c/|B,|») E,x B,
velocity. The upper portion of the
gaussian is physically unstable to per-
turbations, while the lower half is
(linearly) stable.
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Fig. 19. Same as Fig. 16, but for r =
304 sec. Development is fully non-
linear, as the intense gradients and
associated high Fourier wave numbers
become apparent.
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Fig. 20. Same as Fig. 16, but for ¢t =
407 sec. Several plasma bifurcations
are apparent, in agreement with the
experimental results from ionospheric
barium cloud releases, and we have
maximum to minimum density varia-
tions resolved over only 2 cells.
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