AD=-AD59 873

UNCLASSIFIED

CARNEGIE~MELLON UNIV PITTSBURGH PA MANAGEMENT SCIENC--ETC F/6 12/2

PIVOT AND COMPLEMENT = A HEURISTIC FOR 0=1 PROGRAMMING.(U)

FEB 78 E BALAS: C H MARTIN N00014=-75=-C=-0621
MSRR-414 NL

Jlo i

T

A
e

22 et me |

MICROCOPY RESOLUTION TEST CHART
ATIONAL BUREAU OF STANDARDS-1963-1

e s

ADAQH9873

CoPY.

—— .

DOC FILE.

Carnegie-Mellon University

PITTSBURGH, PENNSYLVANIA 15213

-
.

o

:
Ry |

e
——

GRADUATE SCHOOL OF INDUSTRIAL ADMINISTRATION

WILLIAM LARIMER MELLON, FOUNDER

i

e N b Sl & i
lad We

<
Lo

OCT 12 197

0 S i

i

e

1 =
NALC Ao 400y 1

‘ . -
| W P43a~77:78 L A

. j o
3

| p
(Management gciences Research ReggngEo:’klﬁ»

{

\

h 8
===l

j

| PIVOT AND COMPLEMENT - A HEURISTIC,
| FOR -1 PROGRAMMING ¢ /

ey

ADAQS9873

>

7 P b
/! u

-t
-

DDC FILE_COPY.
o

—WNEgon/éalas and Clarence %//Martin //
AT e Y

/

P—

e

Febrwary 1978 | /

This report was prepared as part of the activities of the Management
Science Research Group, Carnegie-Mellon University, under Grant
MPS73-08534 AO2 of the National Science Foundation and Contract
NO0014-75-C-0621° NR 047-048 with the U.S. Office of Naval Research.
Reproduction in whole or in part is permitted for any purpose of the
U.S. Govermment. =~ e
J3-2 257 |
Management Science Research Group
Gradate School of Industrial Administration
Carnegie~Mellon University
Pittsburgh, Pennsylvania 15213

L

Y s —

Abstract

The pivot and complement procedure is a heuristic for finding
approximate solutions to 0-1 programming problems., It uses the fact that
a 0-1 program is equivalent to the associated linear program with the
added requirement that all slack variables be basic. The procedure starts
by solving the linear program; then performs a sequence of pivots aimed
at putting all slacks into the basis at a minimal cost in dual feasibility,
while taking care of occasionally arising primal infeasibilities by
complementing some nonbasic 0-1 variables; finally, it attempts to improve
the 0-1 solution obtained in this way by a local search based again on
complementing certain sets of 0O-1 variables.

The computational effort involved in the procedure is bounded by a
polynomial in the number of constraints and variables. For the 67 test
problems with 20~200 variables and 5-37 constraints on which the procedure
was run, the time used to solve the linear program on the average considerably
exceeded the time used for everything else, and the total time never exceeded
a few seconds. As to the quality of the solutions obtained, in 23 cases,
or one third of the total, the procedure found an optimal solution; for all
the capital budgeting problems (positive coefficients everywhere), the
solution found was within 0.15% of the optimum; for 58 of the 67 problems, it

was within 1% of the optimum; and only in 1 case did the procedure not find

a feasible solution.

PIVOT AND COMPLEMENT - A HEURISTIC

FOR 0-1 PROGRAMMING

by 1

Egon Balas and Clarence H. Martin

1. Introduction

' Since large integer programs are hard to sclve, practitioners
facing such problems and researchers trying to help them have alwa}s had
an interest in heuristics as a means of finding ''good" approximate solutions.
The various enumerative algorithms for solving integer programs make ample
use of heuristics, and the commercial codes based on these algorithms are
often run in the "heuristic mode," i.e., they are stopped after producing |
a feasible solution that looks satisfactory. Several heuristic procedures
for 0-1 or general integer programming were proposed as approximate solu-

tion methods in their own right, and tested with varying degree of success

during the last 15 years (see, among others, the papers 24y, [231; [5 1,

: [26], [8 1, [28], [9], [19], [21], [12], [27]), [10]). Many more heuristic
procedures were proposed for various special combinatorial structures, like

scheduling and location problems, the traveling salesman problem, the quadratic

assignment problem, etc.

While this research had strictly practical goals and its sole criterion

of success was empirical, namely statistical performance on randomly
generated test problems and/or some samples of real-world problems, a

rather different and more recent approach is aimed at devising heuristics

o

;-_E

W i
1

)
Wi

T we
B.fl Seliio f
£3

P ICATION

WTY (07ES
7wt

LIS 2

NN

17
Ll

| ACCESSION for
NS
A

with a guaranteed performance, namely procedures which are guaranteed to
get within a given proximity of the optimum by a computational effort

which is a polynomial function of the input. This apbroach, ploneered

in the mid-sixties by Graham [7], has attracted a large number of researchers

after 1972,_main1y-as a consequence of the NP-~completeness results of Cook
[3] and Xarp [14], and has led to a plethora of theoretically interesting
results, typified by (but by no meéns restricted to) [15], [13],

[111, [251, [2], [&4], etc. (see Garey and Johnson [6] and Korte [17]
for two recent surveys).

This work has yielded (and continues to yield) many interesting
insights; however, its underlying "worst-case analysis' approach has two
important shortcomings. One consists in the fact that the proximity to
the optimum that one is guaranteed to ;ttain in polynomial time is usuélly
unsatisfactory for practical purposes. The other one is that usually there
is no strong correlation between the average and worst-case performance of
heuristics (or, for that matter, exact algorithms). This situation has
prompted yet another line of résearch;‘aiﬁed at analyzing the expected,
rather than worst-case, performance of algorithms. Work in this direction
is typified by the papers of Karp [16] and Rabin [22]. The questions asked
in this approach undoubtedly have more practical rglevance than those in-
volved in worst-case analysis, and though the answers seem harder to come
by, there is little doubt that this line of research holds much promise and

will in time yield some practical results. In the meantime, practitioners

| “"’—'%—-——‘

<3

will continue to judge approximate and exact golutiom procedures alike,
by the empirical criterion of observed performance.

The heuristic procedure discussed in this paper, designed to ''solve'

(in the sense of approximating the optimum) arbitrary O-1 programs, is

mathematically unexciting, but has performed remarkably well, both from
the point of view of the computational effort involved, and from that of the
quality of the solutions obtained, on a variety of test problems, some

randomly generated and some taken from the real world, ranging in size

from 20 to 200 variables and from_§ to 37 constraints. The approach uses
the fact that a 0-1 program (P) is equivalent to the associated linear
program (LP), plus the requirement that all slack variables be basic. Thus
the pivot and complement procedure starts by solving (LP), then performs

a sequence of pivots aimed at putting into the basis all nonbasic slack
variables at a minimal cost in dual feasibility, while eliminating
occasional primal infeasibilities by complementing some variables;

finally, it attempts to improve the 0-1 solution obtained in this way

by & local search based again on complementing certain sets of variables.

The computational effort involved in the procedure is bounded by a
polynomial in the number of variables and constraints; but this bound is
a very weak one, and a more relevant piece of information is the fact that
the time spent on solving the linear program on the average considerably
exceeds the time spent on everything else,

As to the quality of the solutions obtained, there is no guarantee

of 1t, not even of obtaining a feasible solution at all, except for the

-

class of problems with all coefficients nonnegative. But of the 67

test problems solved, the procedure found feasible solutions im 66 cases,
and optimal solutions in 23 cases, one third of the total. Furthermore,
in at least 58 cases the solution was within 1% of the optimum, and for
the class of problems with all coefficients nonnegative, the solutions
were on the average within 0.157% of the optimum.

In the next section (2) we give a detailed description of the pivot
and complement procedure. Section 3 establishes a bound on the computa-
tional effort involved in the procedure, while section 4 discusses our
computational experience. Finally, section 5 examines the effect of our
heuristic upon a branch and bound procedure which uses it to find a starting

solution.

2. Description of the Pivot and Complement Procedure

The problem we address in this paper is

(Z0oP) maximize ¥ c,xj
jeN J
subject to T aijxj < bi’ i=1,...,m

jeN

Oor1 jeN

»
.
]

where N = {1,2,...,n}, and each c, is assumed to be integer. The pivot

J

and complement procedure begins by solving the linear programming relaxa-

tion of (ZOP), namely

(LP) maximize £ ¢ x
JeN i)
subject to jENaijxj = bi’ it=1,...,m

OF < hosasale jeN,

by the simplex method for variables with upper bounds.
We will use the following representation of the optimal tableau:
/

X, = a + ¥ a

) 1efo}ur,
p & io jeJ

130°%;

where I and J represent the basic and nonbasic sets respectively. Each

variable at its upper bound of 1 is complemented (complementing x. means
J

U

substituting xj =1~ x!) and we have a 5

j 1o >0, ieI, a

<1, ieINN, and

a;j >0, jeJ.

The pivot and complement procedure has a search phase and
an improvement phase. The first one attempts to reach a ''good" feasible
0-1 point by pivoting and sometimes complementing variables, the second

one attempts to improve the solution found in the first phase (if any)

by complementing certain sets of variables. Before describing the procedure

in its entirety, we introduce the concepts upon which it is based.

Pivots of Type 1

A pivot of type 1 is one that maintains primal feasibility and

exchanges a nonbasic slack for a 0-1 variable in the basis. Thus we

G

seek a pivot in a column q¢J\N and a row pel(IN where p yields the
minimum in

/

min{ min [ai'o/a' T min {(aio - 1)/ai'q]] .

tet iq eI NN
>
aiq 0 81q<0

If the minimum is obtained for a{q > 0, the 0-~1 variable leaves the basis

at 0; otherwisé,.iﬁ leaves at 1. Each time a pivot of type 1 is performed,

the number of fractional 0-1 variables decreases by at least one.

Pivots of Type 2

A pivot of type 2 is one that maintains primal feasibility and
satisfies two additional requirements. The first is that it leave unchéanged
the number of basic 0-1 variables. This restricts the nonbasic varizble
entering the basis and the basic variable leaving the basis to be either
both 0-1 variables or both slack variables. The second requirement is that
the pivot strictly improve some measure of the nearness of the solution to

integrality. One measure is the sum of integer infeasibilities definel as

i min{a’ , 1 - ai |
1eINN io =

A second measure is the absolute value of the determinant of the basis.
Both measures were tested computationally and the results slightly ‘avored

thie former. The results reported in this paper were obtained by requiring

a pivot of type 2 to reduce the sum of integer infeasibilities by at least .0l.

e

Pivots of Type 3

A pivot of type 3 is one that exchanges a nonbasic slack for a
basic 0-1 variable, while sacrificing primal feasibility. The slack
variable is restricted to enter the basis at a nonnegative level. Thus,
if the pivot element is positive, the O-1 variable leaves the basis at 0;

otherwise, it leaves the basis at 1. The resulting solution is infeasible.

Complementing Variables in the Search Phase

By complementing a nonbasic 0-1 variable i (which may either be
an original 0-1 variable, or its complement) we mean substituting Yy = 1 -y,
In the search phase we complement variables when the current solution is

infeasible, to reduce the measure of infeasibility defined by

% max{0, - a/ }
1el 16

Thus a set SCJNN of nonbasic variables is a search phase candidate

get for complementing if

£ max{0, - a, } > £ max{0, - a/ + £ a’.].
fel et o " s 1J

We restrict the cardinality of such sets S to 1 or 2, and require the decrecase

in the infeasibility measure to be at least .0l.

Complementing Variables in the Improvement Phase

The improvement phase begins with the feasible zero-one solution

identified in the search phase. We seek to improve this solution by

complementing some variables. Let N1 and N° be the sets of 0-1 variables

\

currently equal to 1 and O respectively, and define

. C jCNo
d, = J 1 and
3 -C jeN
3
o
5 § aij jeN
i] - 1 i=1,...,m.
aij jeN

We identify a set SSN as an improvement phase candidate set for

complementing if

xd >0 and j
Ef. . .<b ~ ¥ a, i 1,50csm
jes =1y 1

Complementing the variables in such a set thus ylelds a new feasible

0-1 solution with a strictly improved objective function value. We

restrict the cardinality of these sets to 1, 2, or 3.

Variable Fixing

Let z be the objective function value of the current 0-1 solution,

Z.p be the objective function value for the optimum solution to (LP), and
Es be the reduced cost of variable jeN at the LP optimum. Observe that

-

Ej = 0 if variaole j is basic at the LP optimum, ¢, > 0 if it is nonbasic at 0,

3

=9

and ¢ < 0 if it is nonbasic at 1. It is clear that if \Ejl Dz ez =]

B LP
then in any 0-1 solution better than the current sclution, variable j

must assume the value it held in the LP optimum. Furthermore, if

‘;j‘ P Ben~ B then variable j must have this same value in the current

solution. Thus whenever we encounter a 0-1 variable whose rediced cost
exceeds zLP e and which has the same value in the current solution
to (ZOP) as in the original solution to (LP), this variahble may be fixed

at that value for the remainder of the procedure.

Rounding and Truncation Tests

; At certain stages of the procedure the current basic solution is
checked to determine whether rounding or truncating this solution will
provide a feasible solution to (ZOP). The rounded solution is obtained by
rounding all fractional 0-1 variables to the nearer integer value. If this solu-
tion is not feasible we then check the solution where all fractional 0-1
variables are truncated to O.

The following is a statement of the pivot and complement procedure:

SEARCH PHASE

STEP 1: Solve (LP). If the solution is integer, STOP: it is optimal.
Otherwise go to STEP 2.

STEP 2: Search for a pivot of type 1. If none exists, go to STEP 3.
Otherwise perform the pivot of type 1 that results in the largest objective

function value and to to STEP 4.

-

-10-

STEP 3: Search for a pivot of type 2. If none exists, go to STEP 5.
Otherwise perform the first pivot of type 2 found and go to STEP &.
STEP 4: Examine the current basic solution. If it is integer, go to
IMPROVEMENT PHASE. Otherwise, go to STEP 2.

STEP 5: Check whether rounding or truncating the current basic solution
yields a feasible inteéer solution. If so, go to IMPROVEMENT PHASE. 1If
not, go to STEP 6.

STEP 6: Perform a pivot of type 3. Among all such possible pivots, choose
the one that minimizes the resulting infeasibility. Go to STEP 7.

STEP 7: Search for a single nonbasic 0-1 variable that can be complemented
to decrease the current value of the infeasibility measure. If none exist,
go to STEP 9. Otherwise, complement the nonbasic 0-1 variable yielding the
largest improvement in the measure of infeasibility and go to STEP 8.

STEP 8: 1If the current solution is infeasible, go to STEP 7. 1If it is
feasible, check whether rounding or truncating the solution will yield a
solution to (Z0OP). 1If so, go to IMPROVEMENT PHASE. If not, go to STEP 2.
STEP 9: Search for a pair of nonbasic variables that may be complemented
to decrease the current value of the infeasibility measure. If none
exist, STOP, the procedure has failed. Otherwise, complement the first

such pair identified and go to STEP 8.

IMPROVEMENT PHASE
STEP 1: Fix all free 0-1 variables that may be fixed on the basis of
reduced cost and the difference between the objective function values of

the (LP) optimum and the current 0-1 solution. Go to STEP 2.

-11-~

STEP 2: Search for a single O-1 variable that may be complemented to
yield an improved 0-1 solution. If none exist, go to STEP 3. Otherwise,
complement the 0-1 variable that yields the best 0-1 solution among all
candidates and go to STEP 1.
STEP 3: Search for a pair of 0-1 variables that may be complemented to
vield an improved 0-1 solution. If none exist, go to STEP 4. Otherwise,
complement the first candidate pair identified and go to STEP 1.
STEP 4: Search for a triplet of 0-1 variables that may be complemented to
yield an improved 0-1 solution. If none exist, STOP, the current 0-1 solu-
tion is the final solution of the procedure. Otherwise, complement the
first candidate triplet identified and go to STEP 1.

To complete the description of the procedure, we furnish the following
details of implementation.

At the beginning of the improvement phase, the 0-1 variables are
ordered according to increasing absolute values of the reduced costs of
the optimal (LP) tableau. Variables are fixed by simply removing those
at the end of the list from further consideration. The search for improve-
ment Phase complements proceeds from the beginning of the list.

When searching for potential improvement phase single and double
complements, all variables and pairs of variables in the set of free
variables are examined. However, when searching for potential triple

complements, the index of the first variable of the triplet

1s restricted to the first third of the free variables ordered

-12-

by reduced costs. In searching for all three types of improvement phase
complements, the objective function value improvement criteria are checked
first. Then before testing for feasibility, the objective function improve-
ment is checked to see if it would make the objective function larger than
the objective function value of the LP optimum. If it does, the more
expensive tests for feasibility are not needed since the resulting solu-
tion must be infeasible. Finally, when checking for feasibility, the

constraints are examined in order of increasing 8/» where

s, =b, - I

a i=1,...,m.
i i chl ij

3. A Bound on the Computational Effort

Next we calculate a bound on the amount of computation the pivot and
complement procedure may require after the solution of the linear program.

Let m be the number of constraints, n the number of 0~1 variables,
and A the minimum acceptable decrease in the sum of integer infeasibilities
(in step 3) or in the sum of common infeasibilities (in steps 7 and 9).

We start by listing the number of arithmetic operations required
in the worst case by each step of the procedure, following the initial
solution of the linear program.

Search Phase
St;p 2a (trying a pivot of type 1):
m(m + 1) multiplications

m(m + 1) comparisons

-13-

Step 2b (executing the pivot):
mn multiplications
mn additions

Step 3a (trying a pivot of type 2):
2mn multiplications
mn(2n + 1) adﬁitions

(3m + 1)n + 2m comparisons

Step 3b (executing the pivot):

mn multiplications

mn additions

Step 4: 2m comparisons

Step 5: m2 multiplications
2m2 additions
4m comparisons

Step 6: m2 + mn multiplications

m2 + mn additions

m(m + 1) comparisons
Step 7: 2mn additions
(m + 1)n comparisons
Step 8a (with return to Step 7):
m comparisons
Step 8b (with returu to Step 2, or end of search phase):
m2 multiplications
2m2 additions

4m comparisons

Step 9: mn (n - 1) additions
1
7 (m + 1)n(n - 1) comparisons

Improvement Phase

Step 1: n comparisons
Step 2: 2mn additions
mn comparisons

Step 3: ma (n -~ 1) additions

-;-mn (n - 1) comparisons

Step 4 -;-mn (n - 1)(n -~ 2) additions

k T;- mn (n - 1)(n -~ 2) comparisons

The total number of pivots of types 1 and 3 cannot exceed the
number m of slack variables. Thus there are at most m sequences of steps
ending in step2b or 6. The longest such sequence is one that starts {after

step 6) with a subsequence S, of the form 7,9,8a,...,7,9,8a,...,7,9,8b,2

1

and continues with a subsequence S2 of the form 2a,3,4,...,2a,3,4,...,2a,3,5,6.

Thus, the computational effort required by the Search Phase of the procedure
is at most m times the computational effort required by S1 and 52‘

To evaluate the effort involved in a sequence Sl’ note that the
number of cycles 7,9,8a that can be executed consecutively so as to

reduce total infeasibility each time by at least A, is bounded by I/A,

where I 1is an upper bound on the sum of infeasibilities. Since infeasibility

-15-

only occurs as a result of a pivot of type 3, its maximal amount is at

most

I = max zla

31 ol

Since the sequence S1 consists of at most I/A cycles 7,9,8a,

with 8a replaced in the last cycle by 8b, it requires at most

mz multiplications,
Imn(n + 1)/0 + 2m2 additions,
and

I[(m +)n(n + 1) + 2m]/2A + 3m comparisons.

To evaluate the effort involved in the sequence SZ' we observe that
every application of step 4b reduces the sum of integer infeasibilities
by at least A, and that this sum is at most m/2. Therefore S2 contains
at most m/2A cycles 2a,3,4 with step 4 replaced in the last cycle by

steps 5,6; and the sequence S, requires at most

2

[m3 + m2(3n + 1)]/258 + 2m2 + mn multiplications,

m2(3n + 1)/24 +-3m2 + mn additions,
and

[m3 + m2(3n +5) +mn}/24 + m2 + 3m comparisons.

-16-

Thus the total computational effort required by the search phase

is at most
(m4 + m3(3n + 6A +1) + 2m2nA)/2A multiplications,

'[m3(3n + 100 + 1)+ 2m2(1n2 + In + On)]/2A additions,

and

4
[m' +m(3n+ 28 + 5) + m>(In® + In + n + 2T + 124)]/24

comparisons
As to the improvement phase, since the costs are integer, complementing

a variable increases the value of the objective function by at least 1;

hence C = 2|cj\ is an upper bound on the number of times such complementing
can occur. The computationally most expensive way of complementing variables
in this phase is to go through steps 1, 2, and 3 without finding anything to
complement, and then complementing 3 variables at the end of step 4. ' 1If

all complementing in the improvement phase occurs in this way (which is

the worst possible case), the computational effort involved in this phase

is bounded by ’
Cmn (n2 + 6n + 11)/9 additions
and

Cnfm(n - 1)(n + 7) + 18(m + 1)]/18 comparisons

Thus the pivot and complement procedure as a whole requires in the

worst case O(ma + man) multiplications, 0(m3n) additions, and

O(ma + m3n + m2n2) comparisons.

17

4. Computational Results

The performance of the pivot and complement procedure was evaluated
using a set of 67 test problems. Information on these test problems,
including their size, LP optimum, and 0-1 optimum (where known) is presented
in Tables I, II, and ;II. The problems in the PET series are from
Petersen [20], those in the ST series are from Senju and Toyoda [26], those
in the JS series are from Jeroslow and Smith [12], while those in the CB
series were generated by us. All these problems are of the capital budgeting
type. Those in the PET series have a real world origin. Those in the ST,

JS and CB series are randomly generated. The ST problems are published in
full in [26].

The JS and CB problems were generated as follows. The costs cj are

random integers between O and 99; each'a,, is a random number between 0 and 9,

1]

multipled by c,/10; while bi is a random number between 5 and 9, multiplied

b
by 31/10, with 8; = ?aij'

somewhat harder, and also more realistic, than problems whose coefficients

The resulting capital budgeting problems are

are entirely random, with no relation between c, and the corresponding a,

3

Since all these problems have only nonnegative coefficients and

It

therefore a feasible 0-1 solution can always be found by truncating a
feasible LP solution, we generated the RG series by explicitly excluding
all problems in which either truncating or roundiﬁg the LP solucion'yielded

a feasible 0-1 solution. Subject to this condition, the problems in the

RG series were generated as follows. The c, were randomly drawn from

]

-18-

the integers between 2 and 11, the a from the integers between -4 and

1)
7, and the bi were generated in the same way as for the JS and CB series.

The problems in the BM series are from Bouvier and Messoumian [1],
where they are given in full. They are randomly generated, with positive
and negative entries in both the constraint matrix and the right-hand side
vector, and very tightly constrained, som; with only a few feasible
solutions.

Finally, the LS problems are from Lemke and Spielberg [18]. They
are real-world problems and have positive and negative coefficients in
both the coefficient matrix and the right-hand side vector.

The code for the pivot and complement procedure was written in
FORTRAN IV and run with single precision arithmetic on the UNIVAC 1108 at
CMU (which uses the operating system EXEC II), with the exception of the
BM and LS series, which were run (on the same computer) with double precision.
The code was run in two versions. The first version did not attempt triple
complements in the improvement phase, while the second did. The results for
the version without triple complements appear in Tables IV, V, and VI, and
the results for the version with triple complements appear in Tables VII,

VIII, and IX.

The following observations characterize the performance of the
procedure:

1. The search phase {ound 0-1 solutions for 66 of the 67 test
problems, the exception being BM 21.

2, The 0-1 solution found by the procedure was optimal for 22

(or 1/3) of the 66 problems solved, and was within 1% of the optimum

-19~

for 58 problems. For the problems with positive coefficients (PET, ST,
JS, CB), the 0-1 solution found by the procedure was within 0.15% of the
optimum.

3. The search phase found a 0-1 solution using only pivots of
type 1 in 47 problems. These included all 41 of the capital budgeting
problems (PET, ST, JS, and CB series) and 6 pfoblems in the RG series.

4, The search phase needed pivots of type 3 only for problems in
the BM and LS series. In the remaining problems, steps 1 through 5 were
sufficient to produce 0-1 solutions.

5. The improvement phase improved upon the 0-1 solutions identified |
in the search phase in 58 of the 66 problems in which a 0-1 solution was
jdentified. For 7 out of the remaining 8 problems the solution found in the
search phase was optimal. Thus in all but one of the cases when the solution
fouid in the search phase was not optimal, a better solution was f0un§ in the
improvement phase.

6. The version that included triple complements produced better
final solutions than the version that did not include triple complements
in 31 out of 66 problems. The increase in run times was between 10 and
130%.

7. The procedure succeeded in fixing 45% of all the 0-1 variables
in the 67 problems. However, at least for the problems in the JS,

CB, and RG series, the number of variables fixed tended to decrease
with the increase in the number of constraints.

8. The sum of the number of pivots (of all three types) and of the
number of complements in the entire procedure was always less than twice

the number of constraints,

. |

TABLE I
TEST PROBLEM INFORMATION

Problem Size L.f.

M N Optimum
PET 4 10 20 6155.3
PET 5 10 28 12462.1
PET 6 5 39 10672.3
PET 7 5 50 16612.8
ST A 30 60 7839.3
ST B 30 60 8773.2
JgS 1 5 100 3324.5
Js 2 5 100 3364.9
JS 3 5 100 2727.5
s b 5 100 3467.9
JS 5 5 100 3983.9
JgS 6 5 100 3488.1
JS 7 5 100 4530.7
JS 8 5 100 3369.2
J 9 5. 100 3948.1
Js 10 5 100 : 3859.9
Js 11 10 100 3507.4
JS 12 10 100 3119.2
JS 13 10 100 3629.7
Js 14 10 100 3722.6
JS 15 10 100 3416 .4
Js 16 10 100 3126.3
JS 17 10 100 2939.5
Js 18 10 100 3207.8
Js 19 10 100 3028.4
JsS 20 10 100 32564

PET - Petersen [20]
ST - Senju and Toyoda [26]
JS - Jeroslow and Smith [12]

T'--'-.'-.-.-.-'.'-".--"".-"Ulllllllllllllllllgl'

1.P.
Optimum

6120
12400
10618
16537

772

8722

3320

3363

2720

3467

3977

3483

4523

3366

3945

3854

3496

3108

3617

3717

3407

3120

2938

3201

3020

3250

TADBLE 11

TEST PROBLEM INFORMATION

Problem Size L.P. I.P.
M N Optimum ' Optimum

CB 1 5 200 7721.2 7718

CB 2 5 200 6955.7 6951

CB 3 5 200 7171.8 ' 7170

l CB 4 5 200 7923.8 7917

CB 5 5 200 9148.9 9143

CB 6 10 200 7115.6 7113

CB 7 10 200 6943.8 6940

CB 8 10 200 6693.0 6690

‘CB 9 10 200 6658 .4 6654

CB 10 10 200 6642.9 6638

CB 11 20 200 7160.3

CB 12 20 200 6081.6

CB 13 20 200 - 6147.3

CB 14 20 200 6650.6

CB 15 20 200 6560.0

RG 1 5 100 646.6 614

RG 2 5 100 564.7 563
; ‘ RG 3 5 100 607.7 605
? RG 4 5 100 605.0 603

RG 5 5 100 557.1 554

RG 6 10 100 528.7 525

Ré 7 10 100 . 569.7 565

RG 8 10 100 566.7 564

RG 9 i0 100 603.7 600

RG 10 10 100 602.3 599

RG 11 20 100 517.9

RG 12 20 100 553.1

RG 13 20 100 502.8

RG 14. 20 100 536.3

RG 15 20 100 558.2

CB - randomly generated with all positive coefficients.

RG -~ randomly generated with about 1/3 negative coefficients.

e ———

TABLE III

TEST PROBLEM INFORMATION

Problem Size L.P. T.R.
‘ M N Optimum ' . Optimum
BM 19 25 20 -31.1 =47
BM 20 27 20 -33.9 : =47
BM 21 20 23 - -16.6 -35
BM 22 20 25 -19.3 -33
BM 23 20 27 . -20.6 -34
BM 24 20 28 -25.8 © =38
BM 25 20 30 -=29.0 -43
g 1S B 28 35 -521.1 -550
IS C 12 44 -56.6 =73
LS D, 37 74 638.6 540

LS E 28

BM - Bouvier and Messoumian [1]
LS - Lemke and Spielberg [18]

89 -69402 -1120

_-—-q-u-n--ul---u-llIlu-...l.-...........'..!-..

TADLE Av
PIVOT AND COMPLEMENT PROCEDURE
WITHOUT TRIPLE COMFLEWENTS

Problem First Final Number of Total Percent

0-1 0-1 Variables CPU Time3 P and C
Solution! Solution? Fixed (seconds) Time4
PET 4 5920 6090 , 9 R 33
PET 5 11140 11950 2 .18 42
PET 6 w0479 10584 6 . .31 50
PET 7 16235 T 16499 12 A8 28
ST A 7734 7761 22 1.42 41
ST B 8675 8722 + 25 1.60 32
JS 1 3299 3320 + 60 1.33 18
JS 2 3343 3359 70 1.39 15
3 3 2702 2709 21 1.69 19
s b 3433 3462 76 .75 24
JS 5 3965 3976 65 1.22 20
JS 6 3445 3476 55 .96 25
Js 7 4439 4519 53 1.08 26
JS 8 3333 3366 + " 86 1.15 28
JS 9 3914 3942 64 .82 27
JS 10 3800 3845 45 .96 30
JS 11 3438 3466 ? 3.27 24
JS 12 3029 3106 30 2.89 20
, JsS 13 . 3505 3592 3 3.49 30
ﬁ JS 1k 3708 3713 5k 2.33 13
JS 15 3313 3401 32 1.92 25
JS 16 3084 3109 24 2.94 14
J8 17 2908 2929 50 1.64 16
JS 18 3152 3191 _ 38 . 2,54 19
JS 19 2910 : 3005 11 2.39 31
Js 20 3143 3250 + 71 1.87 22

Optimal O0~1 solution

+

1 Value of the first 0~1 solution found

2 Value of the last 0-1 solution found

3 Includes some output time, but no input time

4 The remainder of the time was spent in solving the LP. For instance, the
first number, 33, means that 67% of the total time was spent on solving the
LP, and 337 on all the rest.

..llIlIllIllIllll--..............______________'“__ﬂ PR _J

“2b-

TABLE V
PIVOT AND COMPLEMENT PROCEDURE
WITHOUT TRIPLE COMPLEMENTS -

Problem First Final Number of Total Percent

0-1 0-1 Variables CPU Time3 P and C
Solutionl Solution? Fixed (seconds) Time4
CB 1 7698 7717 161 L.20 18
CB 2 6937 6948 123 4,17 18
CB 3 7153 - 7166 14k 3.64 20
CB 4 7830 7895 28 5.06 30
CB 5 9107 9139 114 4,06 15
CB 6 7064 7105 102 7.85 12
CB 7 6889 6926 57 10.24 26
CB 8 6612 6677 60 9. Lk 18
CB 9 6540 6638 56 7.46 23 |
CB 10 6571 6638 + 149 8.71 11 |
CB 11 7100 7144 65 15.23 8
CB 12 6042 6063 . 26 22.94 10
CB 13 6009 6131 22 29.97 12 |
CB 14 6574 6633 41 21.43 10 |
CB 15 6507 6540 37 21.26 11 {
RG 1 638 6L + 82 1.15 33
RG 2 558 563 + 87 1.13 25
RG 3 605 + 605 + 81 1.17 18
RG 4 596 602 73 1.2 31
RG 5 551 553 50 1.39 22
| RG 6 525+ 525 + 51 271 16
| RG 7 565 + 565 + 48 2.43 21
| RG 8 555 561 . 47 2.35 24
RG 9 591 595 19 1.88 32
RG 10 591 594 22 . 2.58 32
RG 11 510 510 10 5.73 22
RG 12 537 - 540 2 6.46 26
RG 13. W77 483 0 7.00 28
RG 14 518 521 0 7.4k 13
RG 15 _545 548 6 4.33 26

+ Optimal 0-1 solution
1, 2, 3, 4 See Table IV

Problem

19
20
21
22
23
24
25

hhbh 2EEEEEER

LS E

+ Optimal 0O-1 solution
1, 2, 3, 4 See Table IV

-

First

R e

PIVOT AND COMPLEMENT PROCEDURE
WITHOUT TRIPLE COMPLEMENTS

Final
0-1 0-1
Solutionl Solution?
47 + =47 +
47 + =47 +
None
-43 -41
-44 -42
-38 + -38 +
=44 =43 +
-550 + -550 +
-81 =73 +
538 540 +
-2030 -1153

.-

Number of
Variables
Fixed

6
5

o = O O

o

1

w W =

Total

CPU Time3

(seconds)

91
1.01

.70'
74

.61
1.09
.97
.56
.74
8.54
6.58

Percent
P and C
Timea

64
59

47
62

73
48
42
56
83
81
73

| ——

,n----u---u--!--unl-n-IIu-I-llI-Ill!IIlllIIlIlllllllllllllllllllllllllllllll||

-26-
TABLE VII

PIVOT AND COMPLEMENT PROCEDURE

WITH TRIPLE COMPLEMENTS

Problem First Final Number of Total Present

0-1 Jg=1 Variables CPU Time> P and C
Solutionl Solution? Fixed (seconds) Time4
PET L 5920 6120 + 12 © a3 38
PET 5 11140 12400 + 15 .18 41
PET 6 10479 . 10588 6 .50 69
PET 7 16235 . 16499 12 .82 38
ST A 7734 7772 + 24 1.88 57
ST B 8675 8722 +- - 25 1.76 39
Jg 1 3299 3320 + 60 1.53 30
‘ Js 2 3343 3359 70 1.47 21
JS 3 2702 2716 4o 2.68 50
JS 4 3433 3467 + 100 .81 31
JS 5 3965 3976 65 1.35 29
: JS 6 3445 3478 63 1.22 42
b Js 7 4439 k519 53 1.43 45
: JS 8 3333 3366 + 86 1.14 28
Js 9 3914 3945 + 79 .91 39
JS 10 3800 3845 ks 1.54 57
JS 11 3438 3495 38 L.86 50
JS 12 3029 3106 30 b.11 bl
JS 13 3505 3611 20 7.34 68
JS 14 3708 3716 63 2.66 26
Js 15 3313 3403 33 3.71 62
JS 16 3084 3109 24 4.51 s
JS 17 2908 2931 62 2.00 33
JS 18 3152 3191 38 3.35 4o
JS 19 2910 " 3005 11 4.95 68
Js 3143 . 3250 + 71 1.92 26

N
o

+ Optimal O-1 solution
1, 2, 3, 4 See Table IV

S —

-y~

TABLE VIII
PIVOT AND COMPLEMENT PROCEDURE
WITH TRIPLE COMPLEMENTS

Problem First Final Number of Total Percent

0-1 0-1 Variables CPU Time3 P and C
Solution! Solution? Fixed (seconds) Time*
CB 1 7698 7717 161 4.35 22
CB 2 6937 6950 136 6.4k 49
CB 3 7153 . 7166 144 4,18 32
CB &4 7830 7913 95 11.88 71
CB 5 9107 9142 B 5 5.26 36
CB 6 7064 7110 138 10.52 36
CB 7 6889 6929 69 20.87 64
cB 8 6612 6683 86 19.40 61
CB 9 6540 6638 R 18.41 70
CB 10 6571 6638 + 149 8.89 16
CB 11 7100 7149 81 27.30 49
CB 12 6042 6064 28 49,80 59
CB 13 6009 6131 22 50.21 47
CB 14 6574 6634 Ls 36.30 47
CB 15 6507 6540 37 37.22 48
RG 1 638 64l + 82 1.12 33
RG 2 558 563 + 87 1.11 25
RG 3 605 + 605 + 81 1.17 20
RG 4 596 602 73 1.28 34
RG 5 551 553 50 1.99 39
RG 6 525 + 525 * i 3.53 25
RG 7 565 + 565 + 48 2.97 36
RG 8 555 561 . 47 2.88 4o
RG 9 591 598 46 3.94 69
RG 10 591 599 + 65 - 2.90 42
RG 11 510 510 10 8. 44 49
RG 12 537 : 5kl 8 12.21 . 59
RG 13 . b77 490 0 16.79 71
RG 14 518 52l 0 11.58 49
RG 15 545 55 20 6.94 55 |

+ Optimal 0-1 solution
1, 2, 3, 4 See Table 1V

Mm - — J

PIVOT AND COMPLEMENT PROCEDURE

Firat

Problem
0-1
N Solutionl
BM 19 =47 +
BM 20 -47 +
BM 21 None
BM 22 -43
BM 23 -4y
BM 24 -38 +
BM 25 44
LS B -550 +
Be -81
Ls D, 538
IS E -2030

+ Optimal 0-1 solution
1, 2, 3, 4 See Table IV

TABLE IX

WITH TRIPLE COMPLEMENTS

Final
0-1
Solution?

47 +
-47 +

Number of
Variables
Fixed

6
5

o » © O,

10

[y

w W

Total

CPU Tiue3

(seconds)
.93
1.06

Percent
P and C
Time4

65
61
47
69
80
56
56
67

89
91
83

~29-

To compare the performance of our procedure with Toyoda's
primal effective gradient method [27], which is an improvement over
Senju and Toyoda [26], and is held by practitioners to be an efficient
heuristic for 0-1 capital budgeting problems, we coded up Method I of
[27) and solved with it the 41 capital budgeting problems in the PET,
ST, JS, and CB series. Toyoda's procedure starts with all variables
at 0, and through a dynamic ranking procedure sequentially selects

variables to be set equal to 1 as long as feasibility can be maintained.

The results obtained with Toyoda's primal effective gradient method
are shown in Table X. Table XI provides a summary comparison between the
two versions of the pivot and complement procedure and Toyoda's method for
the problems in the ST, JS, and CB series, which are grouped by the number
of constraints in the problem. The reported results are averages for the
problems in the set. The % optimum refers to the integer optimum, exéept
for tﬁe set of 5 twenty constraint problems in the CB series for which
the 0-1 optimum is not presently known, and is therefore replaced by the
LP optimum.

The results appearing in Table XI show that the pivot and complement
procedure without triple complements provides considerably better solutions
than Toyoda's method in addition to providing information contained in the

LP solution. Furthermore, the values of many variables in the optimal 0-1

AT S WAFRERS E e

R ——————————

TABLE X

‘TOYODA'S PRIMAL EFFECTIVE GRADIENT METHOD

1

Problem Value of CPU Time Problem Value of CPU Time
Solution Solution
‘Found ’ Found

PET &4 6010 .05 CB 1 7235 3.32
PET 5 11970 31 CB 2 6643 3.53
PET 6 9888 - e .-CB 3 6813 3.38
PET 7 15897 : .22 CB 4 7515 3.66
ST A 7719 .68 CB 5 8897 3.66
ST B 8709 1.08 CB 6 6571 5.45
JS 1 3212 .86 CB 7 6633 5.22
JS 2 3319 .81 CB 8 . 6086 5.23
JS 3 2625 .81 CB 9 6215 5.22
JS 4 3255 .86 - CB 10 6010 5.30
JS 5 3903 <95 CB 11 6507 .3
JS 6 3366 .86 CB 12 5503 8.43
Js 7 4446 .97 CB 13 5695 8.96
Js 8 3281 .78) CB 14 6024 8.85
Jds 9 3749 .96 CB 15 5960 9.64
Js 10 3759 88 ;

Js 11 3216 1.38

Js 12 2857 1.37

Js 13 3433 1.31

JS 14 3654 1.54

Js 15 3278 1.28

Js 16 2863 1.32

Js 17 2707 1.31

Js 18 2840 1.29

Js 19 2914 ' 1.21

JS 20 2914 T2l

1 Includes some output time (less than in the case of the pivot and complement
procedure), but no input time.

|

-3le=

TABLE XI

"+ 'SUMMARY COMPARISON OF THE PIVOT AND COMPLEMENT PROCEDURE
WITH TOYODA'S METHOD

Problem Size

Series

a @

CB
CB
CB

M N

30 60
5 100
10 100
5 200
10 200
20 209

Number in
Sample

Complemenis

Time %Optimum Time %Optimum

2 . .m
10 1.14
10 2.53

b.23
8.74
22.17

99.9
99.9
99.7
99.9
99.9
99.7

Pivot and Complement
without Triple

with Triple
Complements

1.65 100.0

1.4
3.9%
6.42
15.60
4o.20

99,9
99.8
99.9
99.9
99.7

Toyoda

.88
.87
1.32

*3.51

5.28

9.05

Time %Optimum

99.6
96.9
93.2
95.3
92.5
91.1

-32-

solution are discovered. This is purchased at the cost of about twice
the CPU time required for Toyoda's method. The version that includes
triple complements provides some further improvements in the quality of
the final solution, but the increases in CPU time are often substantial.
Note however, that these times are still very low in comparison to those

required by any exact algorithm.

5. The Heuristic Used With an Exact Algorithm

Besides its use as a heuristic to find approximate solutions for
large 0-1 programming problems, the pivot and complement procedure can
also be used to enhance any 0-1 programming algorithm whose performance
depends on the quality of O-1 solutions found early in the procedure. In
order to test the pivot and complement procedure in this capacity, a
branch and bound/implicit enumeration algorithm was implemented and tested
on the above described problems with and without the heuristic. 1In the

version which uses the heuristic, the pivot and complement procedure in

its entirety is applied at the start to find an initial 0-1 solution and
associated lower bound, and to remove from the problem all 0-1 variables

whose reduced cost exceeds the gap between the bounds; and whenever a new

0-1 solution is found, step 2 of the improvement phase is used in an attempt
to improve the solution just found. Apart from this feature, the code has

the usual characteristics of many branch and bound/implicit enumeration codes.
It follows a rigid depth first strategy until a node is fathomed by bounds,
infeasibility or integrality. Then it backtracks flexibly to the node with
the'best projected value (weighted sum of objective function value and integer

infeasibility). Branching occurs on the variable with highest up or down

=3

penalty, provided the current value of the variable is not within 0.1 of

0 or 1. The better of the two newly created nodes 18 considered first.
Monotone variables, as well as variables whose reduced cost exceeds the gap
between the upper and lower bounds on the objective function value, are

fixed as soon as they are discovered. At each node the truncated and rounded

LP solutions are tested as possible new incumbent solutions. Logical tests

are used at each node on each of the initial constraints, plus the four

most recently obtained surrogate constraints.

Both the basic code and the one augmented by the pivot and complement
procedure were run with double precision arithmetic on the UNIVAC 1108
computer of CMU for 53 of the test p;oblems. Tables XII and XIII compare
the performance of the two codes in terms of the nodes generated for

finding an optimal solution, the nodes generated for proving optimality,

and the total CPU time in seconds (excluding input but including some
output) required to solve the pfoblem.

A summary comparison of the performance of the two codes is presented
in Table XIV. The average tim<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>