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Abs tract

The pivot and comp lement procedure i~ ~i heurietic for finding

approximate solution s to 0-1 programing problems . It uses the fact that

a 0-I program is equivalent, to the associated linear progra.~ with the

added requirement that all slack variables be basic. The procedure starts

by solving the linear program ; then performs a sequence of pivots aimed

at putting all slacks into the basis at a minima l cost in dual feasibility,

while taking care of occasionally arising primal infeasibilities by

complementing some nonbasic 0-1 variables; finally, it attempts to improve

the 0-1 solution obtained in this way by a local search based again on

complementing certain sets of 0-1 variables .

The computationa l effort involved in the procedure is bounded by a

polynomial in the number of constraints and variables. For the 67 test

problems with 20-200 variables and 5-37 cond traints on which the procedure

was run, the time used to solve the linear program on die average consider.2 b~v

exceeded the time used for everything else , and the total tine never exceeded

a few seconds . As to the quality of the solutions obtained , in 23 cases ,

or one third of the total , the procedure found an optima l solution ; for all

the capital budgeting problems (positive coefficients everywhere), the

solution found was within 0.157. of the optimum ; for 58 of the 67 pr ob i r ~~; , i~:

was within 17, of the optimum; and only in 1 case did the procedure not find

a feasible solution.

~
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PIVOT AND COM PLEMENT - A I W U R J  ~
‘ 1 t C

FOR 0-1 PROC RAMMING

by

Egon Balas and Clarence H. Martin

1. IntroductIon

Since large integer programs are hard to solve , practitioners

facing such problems and researchers trying to help them have a lways had

an interest in heuristics as a means of finding “good” approximate solutions .

The various enumerative algorithms for 8olving integer programs make ample

uge of heuristics , and the commercial codes based on th~ae algorithms are

often run in the “henristic mode ,” i.e., the” are stopped after producing

a feasible solution that looks satisfactory . Several heuristic procedures

for 0-I or general integer programming were proposed as approximate solu-

tion methods in their own right , and tested with varying degree of success

during the last 15 years (see, among others, the papers [241 , [23), [5 1

[261, [8 1, [28], [9 1, [191, [21], [12), [27], [101). Many more heuristic

procedures were proposed for various special combinatorial structures , like

scheduling and location problems , the traveling salesman problem , the quadra tic

assignment problem , etc .

While this research had strictly practical goals and its sole crite”~ rn

of success was emp irical , namely statistical performance on rand omly

generated test problems and/or some samples of real-world problems , a

rather different and more recent approach is aimed at devising heuristics

~~~~~ 
_ _ _
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with a guaranteed performance , namely procedures which are guaranteed to

get within a given proximity of the optimum by a computational effort

which is a polynomial function of the input. This approach , pioneered

in the mid-sixties by Graham 1 7 1 , has attractt i a large number of researchers

• after 1972, mainly as a consequence of the NP-completeness results of Cook

1 3 1 and Karp [14 J , and has led to a plethora of theoretically interesting

results , typified by (but by no means restricted to) [151 , [131,

[ill, [25], [21 , [4 ], etc . (see Carey and Johnson [6 1 and Korte [17]

for two recent surveys~ .

This work has yielded (and continues to yield) many interesting

insights; however , its underlying “worst-case ana lysis” approach has two

important shortcomings . One consists in the fact that the proximity to

the optimum that one is guaranteed to attain in polynomial time is usually

unsatisfactory for practical purposes. The other one is that usuall y there

is no strong correlation between the average and worst-case performance of

heuristics (or, for tha t matter , exact algorithms). This situation has

prompted yet another line of research , aimed at analyzing the expected ,

rather than worst-case , performance of algorithms . Work in this direction

is typified by the papers of Karp [161 and Rabin [22]. The questions asked

in this approach undoubtedly have more practical relevance than those in-

volved in worst-case analysis, and though the answers seem harder to come

by, there is little doubt that this line of research holds much promise and

will in time yield some practical results. En the meantime , practitioners

. .‘— 
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will continue to judge approximate aud exac t solution procedu~~s alike ,

by the empirical criterion of observed performance.

The heuristic procedure discussed in this paper , designed to “solve”

(in the sense of approximating the optimum) arbitrary 0- 1. programs , is

mathematically unexciting , but has performed remarkably well , both from

the point of view of the computational effort involved , and from that of the

quality of the solutions obtained , on a variety of test problems, some

randomly generated and some taken from the real world , ranging in size

from 20 to 200 variables and from .5 to 37 constraints. The approach uses

the fact that a 0-1. program (P) is equivalent to the associated linear

program (LP), plus the requirement that all slack variables be basic . Thus

the pivot and complement procedure starts by solving (LP), then performs

a sequence of pivots aimed at putting into the basis all nonbasic slack

variables at a minima l cost in dual feasibility, while eliminating

occasiona l primal infeasibilities by complementing some variables;

finally, it attempts to improve the 0-1 solution obtained in this

by a local search based again on complementing certain sets of variables.

The computational effort involved in the procedure is bounded by a

polynomial in the number of variables and constraints; but this bound is

a very weak one, and a more relevant piece of information is the fact that

the time spent on solving the linear program on the average considerably

exceeds the time spent on everything else.

As to the quality of the solutions obtained , there is no guarantee

of it , not even of obtaining a feasible solution at all , except for the
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class of problems with all coefficients nonnegative . But of the 67

test problems solved , the procedure found feasible solutions Lu 66 cases ,

and optimal solutions in 23 cases , one third of the total . Furthermore ,

in at least 58 cases the solution was within l7~ of the optimum , and for

the class of problems with all coefficients nonnegative , the solutions

were on the average within 0.157. of the optimum.

In the next section (2) we give a detailed description of the nivot

and complement procedure . Section 3 establishes a bound on the cotnputa-

tional effort involved in the procedure , while section 4 discusses our

• computationa l experience . Finally, section 5 examines the effect of our

heuristic upon a branch and bound procedure which uses it to find a starting

solution .

2. Description of the Pivot and Complement Procedure

The problem we address in this paper is

(ZOP) maximize E c .x
jeN ~

subject to E a,. x < bi, i l,...,m
jaN

xj
= O o r l JaN

where N = ~l,2,. . . ,nJ, and each Cj is assumed to be integer. The pivot

and complement procedure begins by solving the linear programming relaxa-

tion of (ZOP), namely
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(LP) maximize E c x
~

subject to E a.? < b~ , i = 1,... ,m
j€N~~ ~

~~~~~~~~~~ JaN ,

by the simplex method for variables with upper bounds .

We will use the following representation of the optima l tab1eau~

+ E a
j(-x j) ie{0)UI,

j eJ

where I and J represent the basic and nonbasic sets respec t tv~ ly. Each

variable at its upper bound of 1 is complemented (complementing x . means

substituting x . = 1 - x) and we have a~0 > 0, L€I , 
a~ < 1, ielflN, and

a~j 
>0~ jaJ .

The pivot and complement procedure has a search phase and

an improvement phase . The first one attempts to reach a “good” feasible

0-1 point by pivoting and sometimes complementing variables , the second

one attempts to improve the solution found in the first phase (if any)

by complementing certain sets of variables . Before describing the procedure

in its entirety, we introduce the concepts upon which it is based .

Pivots of Type I

A pivot of type 1 is one that maintains primal feasibility and

exchanges a nonbasic slack for a 0-1 variable in the basis. Thus we 
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seek i pivot in a column qai\N and a row p€I flN where p yields the

minimum in

mln [ win ~a~
’ /a } , mm ~(a~ - l)/a 3 )  .

q 
ialflN 

q

a~ >0 a ’ <0
iq iq

If the minimum is obtained for a ’ >0 , the 0-1 variable leaves the basIslq

at 0; otherwise , it leaves at 1. Each time a pivot of type I is perfum er ,

the number of fractional 0-1 variables decreases by at least one .

Pivots of Type 2

A pivot of type 2 is one that maintains prima l feasibility ar’d

satisfies two additiona l requirements . The first is that it i~ a’~’c ur changed

the number of basic 0-1 variables. This restricts the nonhasic variable

entering the basis and the basic variable leaving the basis to be either

both 0-I variables or both slack variables . The second requirement is that

the pivot strictly improve some measure of the nearness of the solutton to

integrality. One measure is the sum of integer infeasibilit~es defiri .~J as

I I
E min [a , l — a

1
) .

iaIflN io °

A second measure is the absolute value of the determinant of the basis .

Both measures were tested computationally and the results slightly savored

the former. The results reported in this paper were obtained by requiring

a pivot of type 2 to reduce the sum of integer infeasibilities by at least .01.

_ - .
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Pivots of Type 3

A pivot of type 3 is one that exchanges a nonbasic slack for a

basic 0-i variable , while sacrificing prima l feasibility. The slack

variable is restricted to enter the basis at a nonnegative level. Thu s,

if the pivot element is positive , the 0-l variable leaves the basis at 0;

otherwise , it leaves the basis at 1. The resulting solution is infeasible.

Complementing Variables in the Sea rch Phase

By complementing a nonbasic 0-1 variable y. (which may either be

an original 0-I variable , or its complement) we mean substituting y. = 1 - y1
1
.

In the search phase we complement variables when the current solution is

infeasible , to reduce the measure of infeasibility defined by

E max[0, - a~ )
u i  0

Thus a set S c Jfl~’ of kionbasic variables is a search phase candidate

Fet for complementing if

L max~O, - a )  > ~~ max [O, - a~ + E a~ .j.
iel iet jiS ~

We restrict the cardinality of such sets S to 1 or 2, and require the decrcase

in the infeasibility measure to be at least .01.

Complementing Variables in the Improvement Phase

The improvement phase begins with the feasible zero-one solution

identified in the search phase. We seek to improve this solution by

- _ _ _  
—• •
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complementing some variables. Let N
1 

and N° be the sets of 0-1 variables

currently equa l to I and 0 respectIvely, and define

0I. c 1 j€N
• d 4~~~~ 

-~ and
•‘ 

~~ -C~ JaN

f a~~ JCN°

~ .1 
~
_a
ij JaN ’ 

I = 1,... ,m.

We identify a set S~~N as an improvement p
hase candidate set for

complementing if

E d  >0 and
jes

E f  < b  - Z a~ i = l ,...,m .
— 

~~ jc& ~~~~

Complementing the variables in such a set thus yields a new feasible

0-I solution with a strictly improved objective function value . We

restrict the cardinality of these sets to 1, 2, or 3.

Variable Fixing

Let z be the objective function value of the curren t 0-1 solution ,

be the objective function value for the optimum solution to (LP), and

be the reduced cost of variable JaN at the LP optimum. Observe that

0 if variaole 3 is basic at the LP optimum, > 0 if it is nonbasic at 0,
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and C
j ~i 

0 if i t  t~ nonbasic a t  1. It is clea r tha t if lc~~I > - - 1

then in any 0-1 s o l u t i o n  b e t t e r  than the current  so lu t ion , vdciable  j

must assume the value it held in the LP optimum . Furthermore , if

> z~~ - z then variable j must have this same value in the current

• solution . Thus whenever we encounter a 0-I variable whose rec iced cos t

exceeds ZLP 
- z - 1. and which has the same value in the current solution

to (ZO P) as in the orig ina l so lu t ion  to (LP) , this varia ”le may be f i x e d

at that value fo r  the remainder of the procedure .

Rounding and Truncation Tests

At certain stages of the procedure the current ~sic sointion is

checked to determine whether rounding or truncating this solution will

provide a feasible solution to (ZOP). The rounded so1~ ti.~~. ~s obt-~tn2ci by

rounding all fractional 0-1 variables to the nearer integer value . If this solu-

tion is not feasible we then check the solution where all fractiona l 0-1.

variables are trdncated to 0.

The following is a statement of the pivot and complement prnc~ r ire :

SEARCH PHASE

STEP 1: Solve (LP). If the solution is integer , STOP: it is optimal.

Otherwise go to STE P 2 .

STEP 2: Search for a pivot of type 1. If none exists , go to STEP 3.

Otherwise perform the pivot of type 1 that results in the largest objective

function value and to to STEP 4.

_ _ _ _ _ _ _  •
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STEP 3: Search for a pivot of type 2. If none exists , go to STEP 5.

Otherwise perform the first pivot of type 2 found and go to STEP 4.

STEP 4: Examine the current basic solution. If it is integer, go to

IMPROVEMENT PHASE. Otherwise , go to STEP 2.

STEP 5: Check whether rounding or truncating the current basic solution

yields a feasible integer solution. If so, go to IMPROVEMENT PHASE . If

not, go to STEP 6.

STEP 6: Perform a pivot of type 3. Among all such possible pivots , choose

the one that minimizes the resulting infeasibility. Go to STEP 7.

STEP 7: Search for a single nonbasic 0-1 variable that can be comp lemented

to decrease the current value of the infeasibility measure . If none exist ,

go to STEP 9. Otherwise , complement the nonbasic 0-1 variable yielding the

largest improvement in the measure of infeasibility and go to STEP 8.

STEP 8: If the current solution is infeasible , go to STEP 7. If it is

feasible , check whether rounding or truncating the solution will yield a

solution to (ZOP). If so, go to IMPROVEMENT PHASE . If not , go to STEP 2.

STEP 9: Search for a pair of nonbasic variables that may be complemented

to decrease the current value of the infeasibility measure. If none

exist, STOP, the procedure has failed. Otherwise, complement the first

such pair identified and go to STEP 8.

IMPROVEMENT PHASE

STEP 1: Fix all free 0-1 variables that may be fixed on the basis of

reduced cost and the difference between the objective function values of

the (LP) optimum and the current 0-I solution. Go to STEP 2.



• •~~~~~~~~~~~~~~~ _ J . J T T~~~~~ 
-- --—- 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- •

~~~~~~~~~~
•
~~~~~~

•- —
~~~

—11—

• STEP 2: Search for a single 0-1 variable that may be complemented to

yield an improved 0-1 solution . If none exist, go to STEP 3. Otherwise,

complement the 0-1 variable that yields the best 0-1 solution among all

candidates and go to STEP I.

STEP 3: Search for  a pair of 0-1 variables that  may be complemented to

yield an improved 0-1 solution. If none exist , go to STEP 4. Otherwise ,

complement the first candidate pair identified and go to STEP 1.

STEP 4: Search for a triplet of 0-1 variables that may be complemented to

yield an improved 0-1 solution. If none exist, STOP, the current 0-1 solu-

tion is the final solution of the procedure. Otherwise, complement the

first candidate triplet identified and go to STEP 1.

To complete the description of the procedure, we furnish the following

details of implementation .

At the beginning of the improvement phase, the 0-1 variables are

ordered according to increasing absolute values of the reduced Costs of

the optimal (LP) tableau . Variables are fixed by simply removing those

at the end of the list from further consideration. The search for improve-

ment Phase complements proceeds from the beginning of the list.

When searching for potential improvement phase single and double

complements, all variables and pairs of variables in the set of free

variables are examined . However, when searching for potential triple

complements, the index of the first variable of the triplet

is restricted to the first third of the free variables ordered
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by reduced costs. In searching for all three types of improvement phase

complements , the objective function value improvement criteria are checked

first. Then before testing for feasibility , the objective function improve-

ment is checked to see if it would make the objective function larger than

the objective function value of the i.P optimum. If it does, the more

expensive tests for feasibility are not needed since the resulting 8Olu-

tion must be infeasible. Finally, when checking for feasibility, the

• constraints are examined in order of increasing s~ , where

— b~ - E a~ 3 
i —

3. A Bound on the Computationa l Effort

Next we calculate a bound on the amount of computation the pivot and

complement procedure may require after the solution of the linear program.

Let m be the number of constraints, n the number of 0-1 variables ,

and A the minimum acceptable decrease in the sum of integer infeasibilities

(in step 3) or in the sum of conunon infeasibilities (in steps 7 and 9).

We start by listing the number of arithmetic operations required

in the worst case by each step of the procedure, following the initial

solution of the linear program.

Search Phase

Step 2a (trying a pivot of type 1):

m(m + I) multiplications

ni(m + 1) comparisons 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



—13—

Step 2b (executing the pivot):

m n mul t ip l ica t ions

m a  additions

Step 3a ( trying a pivo t of type 2) :

2 m n  mul t ip l ications

m (2n + 1) additions

(3m + l)n  + 2m comparisons

Step 3b (executing the pivot):

m a multiplications

mn additions

Step 4: 2m comparisons

Step 5: m2 multiplications

2w2 additions

4m compatisons

Step 6: in
2 

4- inn multiplications

2
in + mn additions

m(m + 1) comparisons

Step 7: 2m n additions

(in + l)n comparisons

Step 8a (with return to Step 7):

in comparisons

Step 8b (with retur~ to Step 2, or end of search phase):

in
2 
s’sltiplications

2in
2 
additions

4m comparisons

~~~~~~~~~~~~~~
- - — • • “-- •- - - ~~~~~~~~ •

.
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Step 9: inn (a — 1) addit ions

(in + l)n(n - 1) comparisons

• Improvement Phase

Step 1: n comparisons

Step 2: 2mn additions

inn comparisons

Step 3: mn (n - 1) additions

• m a  (n - 1) comparisons

• Step 4: .
~ i n n  (n - l) (n - 2) additions

I

~~~mn (n - l)(n - 2) comparisons

• The total number of pivots of types 1 and 3 cannot exceed the

number in of slack variables. Thus there are at most m sequences of steps

ending in step 2b or 6. The longest such sequence is one that starts (after

step 6) with a subsequence S1 
of the form 7,9,8a ,...,7,9,8a,...,7,9,8b ,2

and continues with a subsequence S2 
of the form 2a ,3,4,...,2a,3,4,...,2a ,3,5,6.

Thus, the computational effort required by the Search Phase of the procedure

is at most in times the computational effort required by S
1 
and S2.

To evaluate the effort involved in a sequence S1, note that the

number of cycles 7,9,8a that can be executed consecutively so as to

reduce total infeasibility each time by at least A , is bounded by I/A ,

where I is an upper bound on the sum of infeasibilities. Since infeasibility 

-— ~~~~~~~~~~•~~ - -
~~~~~~

—-
~~~~

-- 

. 
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• only occurs as a result of a pivot of type 3, its maximal amount is at

mos t

I ~~ max
j i

Since the sequence S1 consists of at  most I /A cycles 7 ,9 ,8a ,

with 8a replaced in the last cycle by 8b, it requires at  most

2
• in mul t ip l ica t ions,

u r n  n ( n  + 1) /A + 2m2 additions ,

• and

IE (m + l)n(n + 1) + 2m 1/2A + 3m comparisons .

• To evaluate the effort involved in the sequence S2. we observe that

every application of step 4b reduces the sum of integer infeasibi l i t ies

by at leas t A , and that this sum is at moat m/2. Therefore S
2 
contains

at most m/2A cycles 2a,3,4 with step 4 replaced in the last cycle by

steps 5,6; and the sequence 
~2 

requires at most

(in
3 
+ m

2(3n + l ) ] / 2 A  + 2rn2 
+ i n n  mult ipl icat ions,

m
2(3n + l)/2A +3m

2 
+ inn additions,

and

(in
3 
+ m2(3n + 5) + mn ]/2A + in2 ÷ 3m comparisons .

J
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Thus the total computational effort required by the search phase

is at most

(in4 
+ rn 3(3n ÷ 6A +1) + 2m2nAJ/2A multiplications ,

1m
3(3n + 1OA +l)+ 2rn2(1n2 + In + An)]/2A additions ,

• and

(in4 
+ m

3(3n + 2A + 5) + m2 (1n2 + In + n + 21 + 12 A ) J / 2 A

comparisons

As to the improvement phase, since the costs are integer, complementing

a variable increases the value of the objective function by at least 1;

hence C = EIc 4~ 
is an upper bound on the number of times such complementing

i - I

can occur. The computationally mo8t expensive way of complementing variables

in this phase is to go through steps 1, 2, and 3 without finding anything to

complement, and then complementing 3 variables at the end of step 4. If

all complementing in the improvement phase occurs in this way (which is

the worst possible case), the computational effort involved in this phase

is bounded by

C m n (n2 + 6n + 11)19 additions

and

Cn(m (n - l)(n + 7) + l8(m + 1)]/l8 comparisons

Thus the pivot and complement procedure as a whole requires in the

worst case O (in4 
+ m

3
n) multiplications , O(in

3
~) additions, and

4 3 2 20(m + in a + in n ) comparisons.



• 4. Computational  Resul t s

The performance of the pivot and complement procedure was evaluated

using a set of 67 test problems . Information on these test problems ,

including their size , LP optimum, and 0-1 optimum (where known) is presented

in Tables I, II, and III. The problems in the PET series are from

Petersen (201, those in the ST series are from Senju and Toyoda [26], those

in the JS series are from Jeroslow and Smith (12], while those in the CB

series were generated by us. All these problems are of the capital budgeting

type. Those in the PET series have a real world origin. Those in the ST,

JS and CU series are randomly generated . The ST problems are published in

full in (26]

The JS and CU problems were generated as follows. The costs c~ are

random integers between 0 and 99; each a~~ is a random number between 0 and 9 ,

multipled by c~/lO; while bi is a random number between 5 and 9, multip lied

by s~ / lO , with s~ = Ea1~4 . The resulting capital budgeting problems are
j .1

somewhat harder , and also more realistic, than problems whose coefficients

are entirely random , with no relation between C
j 
and the corresponding ~~~

Since all these problems have only nonnegative coefficients and

therefore a feasible 0-I solution can always be found by truncating a

feasible LP solution , we generated the RG series by explicitly excluding

all problems in which either truncating or rounding the LP solution yielded

a feasible 0-I solution. Subject to this condition, the problems in the

RG series were generated as follows. The C
j 
were randomly drawn from
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the integers between 2 and 11 , the ~~ from the integers between -4 and

7, and the b~ were generated in the same way as for the JS and CB series .

The problems in the UM series are from Bouvier and Messoumian [1 ),

where they are given in full. They are randomly generated , with positive

• and negative entries in both the constraint matrix and the right-hand side

vector, and very tightly constrained , some with only a few feasible

solutions .

Final ly ,  the LS problems are from Lemke and Spielberg [18 1. They

are real-world problems and have positive and negative coefficients in

both the coefficient matrix and the right-hand side vector.

The code for the pivot and complement procedure was written in

FORTRAN IV and run with single precision arithmetic on the UNIVAC 1108 at

CMU (which uses the operating system EXEC II), with the exception of the

EM and LS series, which were run (on the same computer) with double precision.

The code was run in two versions . The first version did not attempt triple

complements in the improvement phase, while the second did. The results for

the version without triple complements appear in Tables IV , V , and VI, and

the results for the version with triple complements appear in Tables VII,

VIII, and IX.

The following observations characterize the performance of the

pr~ocedure:

I. The search phase found 0-I solutions for 66 of the 67 test

problems, the exception being EM 21.

2. The 0-I solution found by the procedure was optimal for 22

(or 1/3) of the 66 problems solved , and was within 17~ of the optimum
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for 58 problems. For the problems with positive coefficients (PE T , ST ,

JS , CB), the 0-1 solution found by the procedure was within 0.15% of the

optimum .

3. The search phase found a 0-1 solution using only pivots of

type 1 in 47 problems . These included all 41 of the capital budgeting

problems (PET, ST , JS , and CB series) and 6 problems in the RC series.

4. The search phase needed pivots of type 3 only for problems in

the EM and LS series. In the remaining problems, steps 1 through 5 were

sufficient to produce 0-I solutions.

5. The improvement phase improved upon the 0-1 solutions identified

in the search phase in 58 of the 66 problems in which a 0-1 solution was

identified. For 7 out of the remaining 8 problems the solution found in the

search phase was optimal. Thus in all but one of the cases when the solution

fou1..d in the search phase was not optimal, a better solution was found in the

improvement phase.

6. The version that included triple complements produced better

fina l. 8olutionS than the version that did not include triple complements

in 31 out of 66 problems . The increase in run times was between 10 and

1307..

7. The procedure succeeded in fixing 457. of all the 0-i variables

in the 67 problems . However, at least for the problems in the JS ,

CE, and RG series, the number of variables fixed tended to decrease

with the increase in the number of constraints .

8. The sum of the number of pivots (of all three types) and of the

number of complements in the entire procedure was always less than twice

the ni.nnber of constraints.
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TABLE I

TEST PROBLEM INFORMAT ION

Problem Size L.P. . I.P.

M N Optimum Optimum

PET 4 10 20 6155.3 
• 

6120

PET 5 10 28 12462.1 1211.00

PET 6 5 39 10672.3 • 1o618
PET 7 5 50 16612.8 16537

ST A 30 60 7839.3 7772

ST B 30 60 8773.2 8722

JS 1 5 100 3324.5 3320

JS 2 5 100 33611.9 3363
JS 3 5 100 2727 5 2720

Js 4 5 100 3467.9 3467

JS 5 5 100 3983.9 3977
js 6 ~ 

100 3488.1 3483

JS 7 5 100 4530.7 4523

JS 8 5 100 3369.2 3366

JS 9 5.. 100 3948.1 3945
JS 10 5 100 3859.9 3854

38 11 10 100 3507.4 3496

JS 12 10 100 3119.2 3i08

JS 13 10 100 3629.7 3617

JS iLl. 10 100 3722.6 3717

JS 15 10 100 3416.4 3407

~s i6 10 100 3126.3 3120

JS 1? 10 100~ 2939.5 2938

JS 18 10 100 3207.8 3201

JS 19• 10 100 
• 3028.4 

• 

3020

JS 20 10 100 • 3256.4 3250

PET - Petersen (201

ST - Senju and Toyoda (261

JS - Jeroslow and Smi th [121

- I —
~:~
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TEST PROBLEM INFORMAT ION

Problem Size L.P. I.P.

M N Optimum Optimum

• CB I • 5 200 7721.2 7718

CB 2 5 200 6955.7 6951

CB 3 5 200 7171.8 
• 

7170

CB 4 5 20Q 7923.8 7917

~B 5 
• 

5 200 9148.9 9143

CB 6 10 200 7115.6 7113
• CB 7 10 200 6943.8 6940

CB 8 10 200 6693.0 6690

• CB 9 10 200 6658.4 6654

CB 10 10 200 6642.9 6638

CB 11 20 200 7160.3

CB 12 20 200 6081.6

CB 13 20 200 • 6147.3

CB 14 20 200 6650.6

CB 15 20 200 6560.0

RG 1 5 100 646.6 644

RG 2 • 5 100 564.7 563

RG 3 5 100 607.7 605

RG 4 5 100 605.0 603

RG 5 
• 

5 100 557.1 5511.

RG 6 10 100 528.7 525

i~~~ 7 10 100 . 569.7 565

RG 8 10 100 .566.7 5611.

RG 9 10 100 603.7 600

RG 10 10 100 602.3 599
RG Ii 20 100 517.9

RG 12 20 100 553.1

RG 13 20 100 502.8

RG 14. 20 100 536.3

RG 15 20 100 558.2

CB - randomly generated with all positive coefficients .

RG - randomly gene rated with about 1/3 negative coefficients.

—---—
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TABLE III

TEST PROBLEM INFORMATION

• Problem Size LP. I.P.

M N Optimum Optimum

EM 19 25 20 -31.1 —47

EM 20 27 20 -33.9 . 
-47

EM 21 20 23 • -16.6 -35
EM 22 20 25 -19.3 —33
BM 23 20 27 . —20.6 

• 

—34

EM 24 20 28 -25.8  
• -38

EM 25 20 30 .29.0

LS B 28 35 -521.1 
• 

-550

LSC 12 44 -56.6 .-73
LS D2 37 74 638.6 540

LS E 28 89 -694.2 -1120

3M - Bouvier and Messoumian [1]

LS - Lemke and Spielberg (181

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



•x iu~ia:. iv

PIVOT AND COMPLEMENT PROCEDURE

WITHOUT TRIPLE CO!~FLE~.ENTS

Problem First Fina l Number of Tota l Percent
0-1 0-1 Variables CPU Time 3 P and C

Solution1 Solution 2 Fixed (seconds) Tinie4

PET 4. 5920 6090 
• 9 .12 33

PET 5 11111.0 11950 2 .18 42
• PET 6 10479 . 10584 6 . .31 50

PET 7 16235 16499 12 .66 21
ST A 7734. 7761 22 1.42 41
ST B 867.5 8722 + 25 160  32
38 1 3299 3320 + 60 1.33 18
JS 2 3343 3359 70 1.39 15
JS 3 2702 2709 21 1.69 19
Js 4 34.33 31162 76 .75 24.
JS 5 3965 3976 65 1.22 20
Js 6 3445 3476 55 .96 25
JS 7 4439 4519 53 1.08 26
JS 8 3333 3366 + 86 1.15 28

38 9 3914 3942 611. .62 27
JS 10 3800 3845 45 .96 30
JS 11 3438 3466 7 3.27 24
JS 12 3029 3106 30 2.89 20
38 13 3505 3592 3 3.49 30

Js 14. 3708 3713 511. 2.33 13
JS 15 3313 3401 32 1.92 25
JS 16 30811. 3109 2~i. 2.94 14
38 17 2908 2929 50 1.64 16
JS 18 3152 3191 • 38 • 2.511 19
JS 19. 2910 

• 

3005 11 2.39 31
JS 20 3111.3 3250 + 71 1.87 22

+ Optimal 0-1 solution
I Va lue of the firs t 0-1 Solution found
2 Value of the last 0-1 solution found
3 Includes some output time , but no input t ime,
4 The remainder of the time was spent in solving the LP. For instance , the

f i rs t  number , 33 , means that 67% of the total time was spent on solving the
LP , and 337. on all the rest.



F

-24—

TABLE V

PIVOT AND COMPLEMENT PROCEDURE

WITHOUT TRIPLE COMPLEI4ENTS

Problem First Fina l Number of Total Percent
• 0—I 0-i Va riables CPU Time 3 P and C

Solu tion’ Solution 2 Fixed (seconds) Time4

CB 1 7698 7717 161 11.20 18
CB 2 6937 6948 

• 

123 4.17 18
CB 3 7153 7166 111.4 

• 

3 6 4  20
• CB 4 7830 7895 28 5.06 30

CB 5 9107 9139 114 4.06 15
CB 6 7064 7105 102 ‘ 7.85 12
CB 7 6889 69 26 57 10.24 26

• CB 8 6612 6677 , 
60 9.114. 18

CB 9 6540 6638 ‘56 7.116 23
CB 10 657 1 6638+ 149 8.71 11
CB 11 7100 7144 65 15.23 8
CB 12 6011.2 6063 • 26 22 .94 10

• CB 13 6009 6131 22 29.97 12
CB 14 • 657 4 6633 41 21.43 10
CB 15 6507 6~4o 37 21.26 11
RG 1 

• 

638 644+ 82 1.15 33
RG 2 558 563 + 87 1.1 3 25

RG 3 605 + 605+ 81 1.17 18
RG 4 596 602 73 1.24 31
RG 5 551 553 50 1.39 22
RG 6 525+ 525+ 51 2.71 16
RG 7 565+ 565+ 48 2.43 21
RG 8 555 561 • 47 2.35 24
RG 9 591 595 19 1.88 32
RG 10 591 5911. 22 2.58 32
RG 11 510 510 10 5.73 22
RO 12 .537 • 54.0 2 • 6.46 26
RG 13. 11.77 £1.83 0 7.00 28
RG 14 518 521 ‘ 0 • 7.44 13
RG 15 ....5k5 54.8 6 4.33 26
+ Optima l 0-1 solution
1, 2 , 3, 4 See Table IV



PIVOT AND COMPLEMENT PROCEDURE

- • 
, . WITHOUT TRIPLE COMPLEMENTS

Problem First Fina l Number of Total Percent
0-1 0-1 Variables CPU Time 3 P and C

Solution’ Solution2 Fixed (seconds) Time4

EM 19 -11.7 + _11.7 + 6 
. .91 64

EM 20 -11.7 + -47 + 5 1.01
• EM 21 None .70 - 47

• EM 22 -43 
• 

~li.i ‘ • 0 .74 62

DM 23 
• 

-44 -4.2 0 .61 73

EM 211 -38 + -38 + 1 1.09 48
EM 25 -44 -43 + 0 .97 42

I~S B -550 + -550 + 1.0 .56 56

LS C -81 -73 + 1 .74. 83

LS D2 , 538 5140 + 3 8.54 81

LS E —2030 — 1153 3 6.58 73

+ Optima l 0-i solution
1, 2 , 3, 4 See Table IV
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TABLE VII

PIVOT AND COMPLEMENT PROCEDURE

WITH TRIPLE COMPLEMENTS

Problem First Fina l Number of Tota l Present
0-1 0-1 Variables CPU Time3 P and C

Solution’ Solution2 Fixed (seconds) Time4

PET 4 5920 6120 + 12 ,~~ .13 38
PET 5 11140 12400 + 15 .18 41
PET 6 10479 • 10588 6 .50 69

PET 7 16235 . 16499 12 .82 38

ST A 7734 7772 + 24 1.88 57
ST B 8675 8722+ 25 1.76 39
38 1 3299 3320 + .60 1.53 30
JS 2 3343 3359 70 1.k7 21
JS 3 2702 2716 4.0 2.68 50
JS 4 3433 • 31167 + 100 .81 31
JS 5 3965 3976 65 1.35 29 ,
Js 6 311.45 3478 63 1.22 42
J5 7 4.439 11.519 53 1.113 45
JS 8 3333 3366 + 86 1.114. 28
JS 9 3914. 3945 + 79 .91 39
JS 10 ‘ 3800 3845 45 • 

1.54 57
JS 11 34.38 34.95 38 4.86 50
JS 12 3029 3106 30 4.11 L~.l4.

JS 13 3505 3611 20 7.34. 68
JS 14 3708 3716 63 2.66 26
JS 15 3313 3403 33 3.71 62
JS 16 3084 3109 24 4.51 45
JS 17 2908 2931 62 2.00 33
JS 18 3152 3191 38 • 3.35 40
JS 19 2910 

• 

3005 11 4.95 68
JS 20 3143 • 3250 + 71 1.92 26

+ Optima l 0-i solution

1, 2 , 3, 4 See Table IV

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _ _ _ _ _ _  .4
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TABLE VIII

PIVOT AND COMPLEMENT PROCEDURE

WIT H TRIPLE COMPLEMENTS

Problem First Fina l Number of Tota l Percent
0—I • .0—1 Va riables CPU Time3 P and C

Solution1 Solution2 Fixed (seconds) Time4

CB 1 7698 7717 161 4.35 22
CB 2 6937 6950 136 6. 144 49
CB 3 7153 . 7166 144. 4.18 32
CB Li. 7830 7913 95 11.88 71
CB 5 9107 9111.2 137 5.26 36
CB 6 70611 7110 138 10.52 36
CB 7 6889 6929 69 2Ô.87 614.
CB 8 6612 6683 86 19.110 61
CB 9 6540 6638 56 18.4.1 70
CB 10 6571 6638 + 149 8.89 16
CB 11 7100 7149 81 27.30 49
CB 12 • 6042 6064 28 119,80 59
CB 13 6009 6131 22 50.21 47
CB 111 6574 6634 11.5 36.30 47

• CB 15 6507 6511.0 37 37.22 11.8

RO 1 638 64.4 + 82 1.12 33
RG 2 558 563 + 87 1.11 25
RO 3 • 

605 + 605 + 81 1.17 20
RG 14. 596 602 73 1.28 34
RG 5 551 553 50 1.99 39
RG 6 525 + 525 + 51 3..53 25
RG 7 565 + 565 + 48 2.97 36
RG 8 555 561 . 47 2.88 11.0

fiG 9 .591 598 46 3.91+ 69
RG 10 591 599 + 65 2.90 11.2
RG 11 510 510 10 

• 
8.14.4 49

RG 12 537 • 5114 8 12 21 . 59
RG 13 . 4.77 4.90 0 16.79 71
RG 114 518 524’ 0 11.58 49
RG 15 5115 .550 

• 

20 6.94. 55
+ Optima l 0-1 solution

1, 2, 3, 4 See Ta ble IV
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• TABLE IX

PIVOT AND COMPLEMENT PROCEDURE

• 

— 
WITH TRIPLE COMPLEMENTS

Problem Fi rst Final Number of Total Percent
. 0-1 0-1 Variables CPU Time3 P and C

Solution1 Solution2 Fixed (seconds) Time4

EM 19 ‘-47 + -11.7 + 6 .93 65

• EM 20 -4.7 + _L1.7 + 5 1.06 61

EM 21 None • . •.
.. 

. .70 47

EM 22 4. —4.1 0 .88 69
• EM 23 ~~~~~~~~~ -41 0 .83 80

EM 24 -38 + -38 + 1 1.28 56
EM 25 -44 _ls.3 + 0 1.25 . 

56

LS B -550 + -550 + 10 .72 -
, 

67

LS C 
• 

-81 —73 + 1. , 1.13 
• 89

LS 538 - 511.0 + 3 18.45 
• 

91

LS E -2030 —1153 3 10.32 83

+ Optima l 0-I solution -

1, 2 , 3, 4 See Table IV
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To compare the performance of our procedure with Toyoda ’ a

prima l effective gradient me thod [ 2 7 ) ,  which is an improvement over

Seaju and Toyoda [26) , and is held by practitioners to be an efficient

heuristic for 0-1 capital bud geting problems , we coded up Method I of

[27) and solved with it the 41 capital budgeting proble ms in the PET ,

ST, .75, and CE series . Toyoda ’s procedure starts with all variables

at 0, and through a dynamic ranking procedure sequentially selects

variables to be set equal to I as long as feasibility can be maintained .

The results obtained with Toyoda ’s primal effective gradient method

are shown in Table X. Table XI provides a suaina ry comparison between the

two versions of the pivot and complement procedure and Toyoda ’s method for

the problems in the ST, .JS, and CB series , which are grouped by the number

of. cons t raints in the problem . The reported results are averages for the

prob lems in the set . The I optimum refers to the integer optimum , except

for the set of 5 twenty cons t raint problems in the CE series for which

the 0-1 optimum is not presently known , and is therefore replaced by the

LP optimum.

The results appearing in Table XI show that the pivot and complement

procedure without triple complements provides considerably better solutions

than Toyoda ’ s met hod in addition to pz~oviding information contained in the

LP solution. Furthe rmore , the values of many variables in the optimal 0-I
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TABLE X

TOYODA ’ S PRIMAL EFFECTIVE G RADIENT METHOD

Problem Value of CPU Time~ Problem Value of CPU T ime’
Solution Solution

• Found • 
Found

PET 11. 6010 .05 CB I 7235 3.32
PET .5 11970 .11 CB 2 6643 3.53
PET 6 9888 .15 CB 3 6813 

• 
3.38

• PET 7 
• 

15897 .22 CB 11. 7515 3.66
ST A 7719 .68 CB 5 8897 3.66
ST B 8709 1.08 CB 6 6571 5.45
JS 1 3212 .86 CB 7 6633 5.22
JS 2 3319 .81 CB 8 . 6086 5.23
JS 3 2625 .81 CB 9 6215 5.22
Js 4. 3255 .86 CB 10 6010 5.30

JS 5 3903 .95 CB 11 6507 9.37
Js 6 3366 .86 CB 12 5503 8.43
JS 7 11.1146 .97 CB 13 5695 8.96
JS 8 3281 .78 CB 14 6024 . 8 .85

JS 9 3749 .96 CB 15 5960 9.64
JS 10 3759 .88
JS 11 3216 1.38
JS 12 2857 1.37

JS 13 311.33 1.31
JS 111 36514. 1.54
JS 15 3278 1.28
JS 16 2863 1.32
JS 17 2707 1.31
JS 18 2840 1.29 .

JS 19 29114 1.21
JS 20 2914. 1.21

• . I Includes some output time (less than in the case of the pivot and complement
• procedure), but no inpu t time .

_ 
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TABLE XI

g~~~~~y CC~4PAR 1SON OF THE PIVOT AND COMP1~~!ENT PROCEDURE
WITH TOYOD&’S METHOD

Problem Si ze Number in Pivot and Complement Toyoda
Series M N Sample without Triple with Triple

Complemeni~s Complements 
—

Time %Optimum Time %Optimum Time ~Optimum

ST 30 60 2 1.51 999 1.65 100.0 .88 99.6

5 100 10 1.111. 99.9 1.111 99,9 .87 96.9

JS 10 100 10 2.53 99.7 3.911. 99.8 1.32 93.2

CB 5 200 5 
• 

4.23 99.9 6.42 99.9 3.51 9 5 3
CB 

•~ 10 200 5 8.711. .99.9 15.60 99.9 5.28 92.5
CE 20 200 5 22 .17 99.7 11.0.20 99.7 9.05 ’ 91.1 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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solution are discovered . This is purchased at the cos t of abou t twice

the CPU time required for Toyoda’s method. The version that includes

triple complements provides some further improvements in the quality of

the fina l solution , but the increases in CPU time are often substantial.

Note however , that these times are still very low in comparison to those

required by any exact algorithm.

5. The Heuristic Used With an Exact Algori thm

Besides its use as a heuristic to find approximate solutions for

large 0-1 programming problems , the pivot and complement procedure can

also be used to enhance any 0-1 programming algorithm whose performance

depends on the quality of 0-I solutions found early in the procedure . In

order to test the pivot and complement procedure in this capacity, a

branch and bound/ implicit enumeration algorithm was implemented and tested

on the above described problems with and without the heuristic. In the

version which uses the heuristic , the pivot and complement procedure in

its entirety is applied at the start to find an initial 0-1 solution and

associated lower bound, and to remove from the problem all 0-1 variables

whose reduced cost exceeds the gap between the bounds ; and whenever a new

0—i solution is found, step 2 of the improvement phase is used in an at tempt

to improve the solution just found. Apart from this feature, the code has

the usual characteristics of many bra nch and bound/implicit enumeration codes.

It fo llows a rigid depth first  strategy until a node is fathomed by bounds 1

infeasibility or integrality. Then it backtracks flexibly to the node with

the best projected value (weighted sum of objective function value and integer

infeesibility). Branching occurs on the variable with highest up or down
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penalty , provided the current  value of the var iable  is not wi th in  0.1 of

0 or 1. The better  of the two new ly c reated nodes is considered f i r s t .

Monotone variables , as well as variables whose reduced cost exceeds the gap

between the upper and lower bound s on the objective function value , are

fixed as soon as they are discovered . At each node the truncated and rounded

LP solutions are tested as possible new incumbent solutions . Logical tests

are used at each node on each of the initia l constraints , p lus the four

most recently obtained surrogate constraints .

Both the basic code and the one augmented by the pivot and complement

procedure were run with double precision arithmetic on the UNI VAC 1108

computer of CNU for  53 of the test problems . Tables XII and XIII compare

the performa nce of the two codes in terms of the nodes generated for

finding an optimal solution , the nodes generated for proving optimality,

and the total CPU time in seconds (excluding input but including some

output) required to solve the problem.

A summary comparison of the performance of the two codes is presented

in Table XIV. The average time required for solving the problems in the ST ,

JS , CB , and BC series is tabulated , with the results grouped by the number

of const’raints.~ Problems JS 13 and CB 7 are not included in the averages

since they were not solved by the basic code. The fact that the augmented

code almost uniformly dominates the basic code by a factor of about 2

• indicates that the pivot and complement procedure is likely to be a very

cost effective addition to any branch and bound/implicit enumeration

• code when used to solve 0-1 programming problems .
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TABLE XII

PE RFORMANCE OF TWO VE RSIONS OF BRANCH AND BOUND
Basic : without the heuristic
Augmented: with the heuristic

Problem Nodes to Find Nodes to Prove Total Time
Optimum opt imali ty

Basic Augmented Basic Augmented Basic Augmented

PET 4. 11 1 11 6 .7 .11.

PET 5 5 1 12 11 1.0 .8
• PET 6 13 11 22 - 20 1.9 2.1

PET 7 31 16 39 24 3.8 3.1

ST A 108 1 . 159 79 101.3 38.6

ST B 89 1 397 360 257.7 158.0

JS 1 100 1 153 55 28.1 6,6

JS 2 57 15 57 . 15 10.5 3.0
JS 3 31 14. 39 22 8.6 6.3
JS 4. 9 1 9 1 1.8 1.2
JS 5 511. 29 85 51 13.6 4.9
Js 6 85 56 93 64 12.8 5.3
JS 7 99 55 105 64 15.1 7.1

JS 8 28 1 36 6 5.7 1.7
JS 9 37 1 42 15 5.9 1.8
JS 10 10 10 28 23 • 

4.4 4.2

JS 11 206 57 287 126 94.3 36.0
JS 12 465 195 561 375 206.0 109.8
JS 13 * 734. * 779 * 248.0
JS 14 33 8 87 59 24.5 10.6
JS 15 4.9 18 535 505 154.3 108.3

JS 16 53 911. 103 129 37.2 37.9
JS 17 4. 3 4 3 2.7 3.2
Js 18 65 47 99 77 29.4 19.0

JS 19 25 115 197 2.58 68.0 86.7
JS 20 3 1 36 36 • 10.2 5.7

• * Problem solution exceede d node storage limits .
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TABLE XIII

PERFORMANCES OF TWO VERSIONS OF BRANCH AND BOIJNI)

Basic: wi thout the heurist ic
Augmented: with the heuristic

Problem Node~’ ~o Find Nodes to Prove Total Time
Cptimum Optimality

Basic Augmented Basic Augmented Basic Augmented
• 

CB 1 258 34 260 • 35 77.5 8.3
CB 2 114 33 47 35 19.1 12.11
CB 3 44. . 40 4.6 42 15.2 9.3
CB 4. 378 385 650 669 261.3, 160.8
CB 5 285 249 292 252 110.5 36.7
CB 6 332 8 369 56 174.3 23.0
CB 7 763 4.07 * * 251.0

CB 8 69 107 83 118 55.1 
- 69.0

CB 9 272 176 • 292 236 154.0 111.8
CB 10 219 1 24.2 56 131.2 20.5
RG 1 4.2 1 60 29 11.0 2.8
RG 2 11. 1 7 6 2.6 1.7
RG 3 2 1 13 9 3.8 2.0
RG 4. 118 60 118 60 21.0 5.0
RG 5 156 104 4.98 44.7 94.14. 48.0

RG 6 
• 

218 1 397 226 134.0 43.1
RG 7 5 1 358 411 135.1 . 87 . 9

RG 8 64 27 100 63 32.9 14.8
RG 9 68. 57 168 163 53.0 39.8
RG 10 124 1 180 58 21.1 12.9
BM 19 8 1 14. 13 3.3 3.3
~ 1 20 14 1 17 10 4.9 3.2
BM 21 188 188 258 258 148.8 49.2
BM 22 90 83 131 125 2 14.7 25 .3

~M 23 42 29 127 108 25.8 23.5
EM 214. 

• 
89 

- 

1 149 76 33.8 21.0
EM 25 196 1 588 • 4.14. 130.5 102.1

* Problem solution exceeded node storage limits
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TABLE X IV

SUMMARY COMPARISON OF THE TWO VE RSIONS OF BRANCH AND BOUND

Basic: without the heuristic
Augmsnted: wi th  the heuris t ic

Problem Size Number in Average Time
Series M N Samp le

Basic Algorithm Augmented Algori thm

ST ‘ 30 60 2 179.5 
• 

98.3

JS .5 100 10 10. 7 4 .2

JS 10 100 .9 69.6 49.7

CB .5 200 5 96.7 4.5.5

CB 10 200 4. - 128.7 56.1

RG 5 100 5 26.6 11.9

RG 10 100 5 85.2 39.7 

—- -
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variables ; finally, it attempts to improve the 0-1 solution obtained
in this way by a local search based again on complementing certain sets
of 0-I variab les .

Th, computational effort involved in the procedure is bounded by a
polynomial in the number of constraints and variables. For the 67 teat
problems with 20-200 variables and 5-37 constraints on which the procedure
was run , the time used to solve the linear progra m on the average

• considerably exceeded the time used for everything else , and the total
• time never exceeded a few seconds . As to the quality of the solutions

obtained, in 23 cases , or one third of the total , the procedure found
an optima l solution; for all the capital budgeting problems (positive
coefficients everywhere), the solution found was within 0.l5~ of the
optimum; for 58 of the 67 problems , it was within 1% of the opttimim ; and
only Ln 1 case did the procedure not find a feasible solution.
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