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PREFACE

This report describes work on new design methods for filters used
in discrete data control systems. Design methods are developed first
for sampling rates to minimize the bit requirements for each filter
coefficient then new design methods for digital filters that minimize
the need for digital multiplication are described. Interactive soft-
ware for aiding design and implementation of digital filters was

written and is described in the report.
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INTRODUCTION

This report describes work on new design and implementation
methods for filters used in discrete-data control systems.
Specifically, the following tasks were undertaken:

1. The development of design methods that use

the sampling interval as a design parameter
to minimize the bits required to represent
each filter coefficient.

2. The development of new design methods for

digital control algorithms to minimize the
need for digital multiplication.

3. The development of interactive software to

aid in the design and implementation of
digital control algorithms.

4. A method of fault analysis for digital
control algorithms.

Each task is discussed with details given via copies of each

report generated during the contract period. These reports
are provided as appendices.
¥ 1. DESIGN USING THE SAMPLING RATE AS A DESIGN PARAMETER

Both digital and analog filter synthesis generally involve
tradeoffs. For instance, low ordered filters may have either
sharp rolloff or flat passbands but not both. High order filters
can have excellent frequency response characteristics but involve
a large number of components or multiplications, both of which
increase errors. In sampling time synthesis there are tradeoffs
as well. Exact coefficients can be easily found for quite a
few first order filters but the sampling time which yields such
coefficients causes the filters to have serious magnitude errors
due to aliasing. On the other hand, a sampling time which is i

very short will cause the filter frequency response to be very




|
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sensitive to coefficient quantization. The tradeoff between

aliasing errors and coefficient quantization errors is to be
kept in mind in synthesizing sampling times for bilinear z-
transform filters. In fact, the tradeoff considerations are

an important step in the synthesis procedure.

First Order Filters

The technique for synthesizing sampling time is essentially
the same for both first and second order filters. However,
because there are only two coefficients in the first order
filters and because frequency independent bounds can be found
for the first order filters, the first order case is developed
first.

For the design a realistic approach is to make the magnitude
(or phase) response errors as samll as possible while retaining
a short enough sampling interval to avoid aliasing errors. One
means of finding coefficients which will give small error is to
generate a number of sets of coefficients and then find the
truncated and bounded values for each. Next, take the differ-
ence between the designed coefficients and the respective quan-
tized values and determine the maximum error for each set of
coefficients. The set with the smallest maximum magnitude error
is then the set of coefficients to use unless the sampling
interval associated with that set is too long to meet the aliasing
specifications. A maximum bound on frequency error could be
given and the sampling times and coefficients which give a mag-
nitude error less than the bound would be considered. If the

frequency response error criterion is not met, then it is
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necessary to generate more coefficients using different sampling
times than used previously and repeat the procedure above. If
the magnitude response error criterion is not satisfied after
several hundred sampling times have been tried it would be
necessary to use a longer word length to realize the coefficients.

While the procedure above seems quitc .ong, it is possible
to combine all of the steps of the process into an interactive
computer program. The block diagram of such a program is shown
in Figure 1l.1.

The first block of Figure 1.1 asks for input of the analog
filter coefficients, the word length desired, the maximum absolute
value for the magnitude response error, AIHI, and the maximum
number of iterations to be done before it is decided that a
longer word length is necessary. Block 2 initializes the sampling
time for a certain pass. On the first pass the sampling time
will be set to .Ol'tmax as an initial value where tmax is the
maximum value the sampling interval can be, set to avoid aliasing
errors. Blocks 3 and 4 are self-explanatory, where block 3 uses
equations for a digital filter found from an analog filter via
the bilinear z~transform to generate the digital coefficients.

The fifth and sixth blocks are similar to each other. In each,
the difference is found between the designed (infinite precision)
digital coefficients and the quantized coefficients. The differ-
ences are found for the rounded coefficients and then A|H| is
derived by using the magnitude of the desired and actual filters.
The same calculations are also done for the truncated coefficients
Then A|H| of the rounded values is compared to the A|H| of the

truncated values and the smallest of those two A|H|'s is chosen

B ——— ——
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for that sampling interval. If the AIHI chosen is less than the
maximum allowable magnitude error, specified in the first block,
then the sampling time and the associated digital coefficients
are printed out along with the type of quantization to be used.
Also, if the A|H| chosen on a particular iteration is smaller
than any chosen on any previous iteration then it is stored

along with its corresponding sampling interval and the previously
stored values are discarded.

Whether or not A|H| is less than the previous smallest
value, the sampling time is increased by .Ol-tmax. If the sam-
pling time is then less than or equal to tmax a new set of coef-
ficients, differences, and magnitude response errors is gener-
ated. If the sampling time is greater than tmax then the
procedures of blocks 15 through 18 are executed. If there is
at least one A|H| of those considered which meets the error
criterion then the sampling time which gave the smallest A|H|
is output along with the A|H|. Otherwise a test is done to
see if the maximum number of iterations have been run through.

If they have then it is advisable to increase the word length

and run through the iterations again. If the maximum number

of iterations has not been reached then a new set of sampling
times should be tried. A search can be made around the immediate
area of the sampling time which gave the lowest AIHI, using a
smaller sampling time increment for the new iterations. Another
possibility is to merely offset the new sampling times from those
of the previous pass by a certain amount, for example .001'tm

ax’

A FORTRAN program which realizes the block diagram of Figure 1.1
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has been used to illustrate the procedure.

Second Order Filters

The block diagram in Figure 1.1 for first order filter
synthesis serv .« as well for second order filters. If a second
order low pass section is being designed, a possible evaluation
technique would be to evaluate A|H| at Q@ = 0 and at the 3-db
point for every sampling time considered. For a bandpass struc-
ture AIHI could be calculated at the 3-db points and the pole
frequency. In the example programs the user is allowed to
choose what radian frequencies the magnitude error is to be
evaluated at, and how many frequencies are to be evaluated.

The block diagram in Figure 1.1 allows every sampling
interval and corresponding set of coefficients which have a
A|H| smaller than the maximum error bound to be printed out.
The reason for this is very simple. In some cases a certain
sampling rate will be more desirable than another even if it
does not give the minimum magnitude response error. Such a
case occurs when the clock rate for the filter is limited to a
certain range of values. By printing all sampling times which
have magnitude errors within the desired bound, there is more
design freedom permitted.

So far the discussion has centered about magnitude response
design. Howecver, a bilinear z-transform digital filter will
not generally have the same phase response as the corresponding

analog filter. However, digital filters do have phase response

et i man
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and it is sometimes desirable to retain the accuracy of that
response. It is possible to make the phase response accurate

in the same manner that was used for the magnitude response.

In fact, the block diagram of Figure 1.1 can be used for the
phase by replacing |Hl by © in the diagram. A longer flow
chart could be developed which allows filters with accurate
phase and magnitude to be designed.

In terms of design limitations, the primary considerations
are those of aliasing and processor (or component) speed. When
deriving a program to find a sampling time which results in
small frequency response error, it is necessary to put an upper
E bound on the length of the sampling interval to reduce aliasing
errors. If the sampling rate is too low, a filter will be
aliased to the point where it no longer performs its designed

task. To reduce aliasing errors, it could be required that the

T

sampling rate be at least ten times the highest pole frequency.
1 There are various such rules of thumb aimed at avoiding aliasing
errors and which ever is appropriate should be used.

Digital hardware is limited in terms of clock rates it can
operate at. Some computers can perform an instruction in a
3 matter of nano-seconds while others require several micro-seconds
to do the same instruction. Similarly, discrete digital com-
ponents such as multipliers, adders, and shift registers are
I limited in speed. When designing a digital filter it is important
to realize the constraint of digital hardware speed on sampling

ﬁ time. If a computer program is used to realize a filter, the

program may be ten, twenty, or even over a hundred instructions
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long. Often, large filter structures are better realized using
discrete digital components which are dedicated to the filtering
because the discrete components have an advantage in speed over
a computer program. Whatever method of realization is used
though, thz2 design should not allow the clock rate of the filter

exceed the speed of the structure used to realize it.

Example Designs
A commonly used filter design is the maximally flat, or
Butterworth, filter. The low pass Butterworth filter has the
property that the filter magnitude response is as flat as possible
'Vat w = 0. For the present example, a fifth order Butterworth
low pass digital filter is synthesized using the method de-
scribed in the first part of this chapter. The analog transfer |

function, H(s), is given by

1 1 1

StL 24 618s+1.0000 s2+1.618s+1.0000

H(s) = (1.1)

so that H(s) has unity gain and unity bandwidth. The example
demonstrates the use of both the first and second order synthesis
programs. The bilinear z-transform allows the transfer function

to be broken up into first and second order cascade sections so
there is no partial fraction expansion to worry about. For the
example, the assumptions are that an eight bit word and a magnitude
error of less than 10—5 are desired.

The first order section, Hl(s), of H(s) is given by

]

i -
B8y = N




Figure 1.2 shows the sequence of interactive inputs to the program.
The first three inputs are self explanatory. After the word
length was input, the program used 100 sampling times between O
and the maximum sampling time allowed. An appropriate sampling
time was not found and the graph of Figure 1.3 resulted. The
graphs are not meant to be an absolute means of measuring the
error of the filter but merely a way of determining whether to
proceed or to try another word length or error bound. The mnext
input given in Figure 1.2 was a l(one) to indicate that on the
next iteration the same range of sampling times was to be used
but the sampling times would be offset from the previous set of
sampling times. The amount that the second set was offset was
one-tenth of the spacing of the first set of sampling times.
Therefore, there was a sampling time selected between each of

the first sampling times. Again the error bound was not met,
resulting in Figure 1.4 which is very similar to Figure 1.3.
Rather than continue on the same track, it was felt that a better
approach would be to "blow up" the region around the sampling
interval which gave the minimum error. 100 sampling times were
chosen between the two sampling intervals which were adjacent to
the point which gave the least error. The input of 2 in Figure
1.2 resulted in the expansion about the minimum point and the
graph of Figure 1.5. The error bound was still not met but there
seemed to be promise so another expansion was done. Figure 1.7
shows that the error bound was finally satisfied by three sampling
times. The output lists the three sampling times which allowed

the error criterion to be met and the corresponding coefficients
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and the type of coefficient quantization to be used on each set
of coefficients. Figure 1.6 shows the graph of the final expansion.
The 1listing on Figure 1.7 prints, as a final set of values, the
minimum magnitude error found and the sampling time which gave
the minimum error. If there had been no sampling times which
caused the error bound to be satisfied on that last round, then
it probably would have been necessary to use a longer word length
or accept a slightly relaxed error bound. Sometimes it is possible
to do enough passes to find a sampling time which gives low
enough error but in order to set the sampling time it would require
an infinitesimal adjustment and so the sampling time is not prac-
tically realizable. Even with programmable clocks, the adjustment
is usually only down to about 10-7 so adjustments below that
level are not possible.

The two second order sections, H2(s) and H3(s), are given
by

Hy(s) = — 1 1.3)

s +.618s+1.0000

Hy(s) = L (1.4) E
s%+1.618s+1.0000

Since there is no one general frequency which results in a maximum
for the partial derivatives in the expﬁnsion AH [1,2], then
several frequencies should be chosen to check those partial
derivatives. In the examples, four frequencies were chosen for

each section. Three were in the passvand and one was in the
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transition band of each filter section. The graphs of Figures
1.8 and 1.9 show the relative errors of the filters against the
sampling times for Hz(z) and H3(z), respectively. Some of the
errors are so large that most of the error points appear to be
very small but, in reality, only a few of the plotted points
resulted in filters which satisfied the error bounds.

The second order filter errors behave much differently than
the first order filter errors. The first order errors tend to
decrease as the sampling interval gets longer, while the second
order errors tend to increase. Also, the second order errors,
with a few exceptions as noted on the graphs, are generally
much lower than the first order errors. Therefore, it seems
that the word length restrictions on a filter would come from
the filter's first order section or sections. The design tech-
nique, then, should state that the first order sections should
be synthesized before the second order sections in order to get
a good bound on the word length requirements.

After considerable effort with more examples this approach
appeared to be somewhat limited, in fact, the method does not
generally work. To simplify the coefficient problem and to
totally eliminate the multiplier, a different procedure was tried

as shown in the next section.
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2. NEW DESIGN METHODS FOR DIGITAL CONTROL ALGORITHMS

The use of conventional digital control algorithms requires
the implementation of a recursive difference equation on a com-
puter. Here multiplication and addition operations are employed.
The finite length arithmetic causes roundoff errors to occur and
these errors can be highly dependent on the sampling interval.
Of particular importance are the coefficient rounding errors,
because if the coefficients are not rounded properly the al-

gorithm may be unstable or not exhibit the desired magnitude

and phase characteristics. Filter designs employing the bilinear
z-transform are very subject to these errors because the coef-
ficient sensitivity becomes increasingly critical as the filter

; order increases.

To avoid the whose process of multiplication and to decrease
the filter sensitivity to the sampling interval, a radical new
approach to filter implementation has been investigated. The
initial idea is that any filter can be approximated by a non-
recursive filter with a transfer function of the form

N
H(z) = £ a
k=0
Now if the filter can be structured in such a way to make the coef-
ficients powers of 2, all multiplication can be done via shifting.
If this is done, high order nonrecursive structures can be used

to approximate even low order recursive filters with definite

advantages.
The first advantage is that implementation can be done

directly using large scale integrated circuits. Such an imple-

|
|
‘
|
|
|
E
|
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mentation allows the shifting operations to be designated under
computer control so that a design can be used to implement a
variety of different filters.

The second advantage is that linear phase can be implemented
and this can be very useful in control system design.

The details of this work are provided by the report in

Appendix 1. Here the design methodology along with several

examples provide the necessary background for this implementation.

Experiments have also been tried on recursive filters using
the implementation procedure given in the report. The results
up to this time are mixed, however, using the integer design

approach we feel that good recursive filter implementations can

be obtained.
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3. INTERACTIVE SOFTWARE
Four interactive digital filter design packages were written
that are valuable to the designer of digital control algorithms
and/or digital signal processing algorithms. These are:
a. A Digital Filter Design Program Utilizing
the Bilinear Z Transform
b. Programs for Weighted Least Squares Design
of Nonrecursive and Recursive Digital

Filters

c. A Fortran IV Design Program for Low-Pass
Butterworth and Chebychev Digital Filters

d. A Fortran IV Design Program for Butterworth
and Chebychev Band-Pass and Band-Stop
Digital Filters
All of the programs are written in FORTRAN and run on the
DEC PDP-11 and the DEC GT-40 Graphics System. The detailed

descriptions are given in Appendices B, C, D and F. Card

decks were sent to WPAFB during the course of the contract.

4. TFAULT DETECTION

Because of the need to understand how well a digital control
algorithm is operating, some work was done on detecting when a
discrete time algorithm is not operating correctly due to hard-
ware or software failure. A parameter identification algorithm
was used with the method being described via the report of

Appendix E.
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ABSTRACT

The difference routing digital filter (DRDF) is a F1R
filter whose coefficients are equal to zero, or integral powers
of two. The basic DRDF structure is reviewed, and two coefficient
restrictions are detailed that will insure bounded input, bounded
output stability as well as a finite impulse response. Next,
three parallel structures are presented. Each of these new
structures will significantly reduce the RMS error between the
desired impulse response and the actual filter response. The
optimum structure appears to be a filter with a parallel struc-
tured transversal part with integer valued taps followed by a
recursive part that in the low pass case is a digital integrator.
For this new structure, an analysis is given of the RMS error
performance in both the time and frequency domain. This analysis

is supported by extensive computer simulation results.
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I. INTRODUCTION

Finite impulse response (FIR) digital filter structures are
attractive in a variety of applications. Among their advantages
are the inherent stability and the ease of realizing a linear
phase characteristic. Numerous methods now exist [1]-[3] for
the design of FIR structures.

One disadvantage of conventional digital FIR filters, in
many applications, is the slow operating speed due to the large ;
number of required multiplies. Various methods [4], [5] and , 4
[6] have been proposed in the past to reduce or eliminate this
multiplier requirement. This paper focuses on the low pass g
difference routing digital filter (DRDF) [4]. This filter
structure consists of a transversal part with coefficients
restricted to be zero, or integral powers of two. As originally
proposed, the DRDF is limited in the minimum RMS error that can
be obtained between the ideal and actual filter impulse response.

To reduce this error, three parallel structures are presented,
each of which can significantly reduce the RMS error between the

desired filter response and the actual filter response. These

three methods are all structurely similar, but there are distinct

differences in the design philosophy used. In the first two
methods, a parallel structure is created that approximates the
error that would have occurred in the original design. This

error signal is added in such a way as to provide overall error

reduction. In both cases, the parallel structure can be imple-

mented with minimal additional hardware. The third approach,

PN

which appears to be optimum, also uses a parallel filter structure.
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In this latter case, the purpose of the parallel structure is
to provide integer valued taps that more accurately approximate
the desired filter function. This third approach has two prin-
ciple advantages over the first two methods: (1) reduced hard-
ware requirements, and (2) a more straightforward and logical
design procedure.

Several examples of improved performance with the new
Structures are given using computer simulation. An analysis
of the RMS error performance of the optimum structure is also
given in both the time and frequency domain. The analysis is
seen to agree very favorably with computer simulation results.

This work was all done with low pass filter designs.
However, similar results can also be obtained for both band

pass and high pass circuits.




IT. LOW PASS DRDF STRUCTURE

The structure of a low pass DRDF is shown in Figure 1. The

of the transversal part are restricted

coefficients ao = i aN_1

to be zero or integer powers of two. The recursive part is a

digital integrator with a single coefficient b, equal to minus

i
H one. The coefficients of the transversal part are chosen to be

approximations to the differences between successive values of

the desired filter impulse response hD[nT]
Ry = hD[JT] = hD[(J-l)T] (1)
Thus, if the input signal to the filter is a unit impulse,

§[nT] for n = 0

]
[

(2)
=0 for n # 0.

Therefore, the output y(nT) will be an approximation to the
desired impulse response itself
N-1

h_[nT] = y[nT] = y[(n-V)T] + = a, §[(n-j)T] (3)
D §=0 3

The use of a digital integrator places one restriction

i on the aj coefficients to insure a finite impulse response

: (FIR) filter, the sum of the aj coefficients must be zero.

This is shown as follows. If the filter is FIR, then we

desire y[(N-1)T] to be zero.

Hence:
ylON=-DT] = y[(N-2)T] + ay , =0 (4)
but, N-2
y[(N-2)T] = L a, (5)
j=0




Therefore:
N-1
(6)

The restriction of equation six is not a practical problem.
Since the desired finite impulse response in practice will

always damp out to zero at (N-1)T as in Figure 2, we have:

N-1

h [(-D)T] = 0 = y[(-DT] = 5 a, 7
§=0

Therefore, the restrictions on the aj coefficients are:

G gesE e 0, 1, 2,

N-1
(8)




-30-

III. DRDF OPERATION AND DESIGN

The design of a DRDF is based on approximating a desired
finite impulse response. Consider a desired impulse response
hD[nT], the first few samples of which are shown in Figure 3.
Without loss of generality, assume hD[O] is zero. Further,
consider that hD{nT] has been amplitude scaled (hD[nT] = F-hS[nT])
such that the maximum change is:

max [b_[§T] - h_[(G-1)T]] = e

where Km is the largest exponent being considered in the design.
Thus, the DRDF will approximate a scaled version of the desired
impulse. This scaled value is then multiplied by a scale factor
(F) to give the desired impulse response as in Figure 4. This
will insure that the coefficient values will be able to follow
the maximum slope of the scaled impulse response, hs[nT].

Note that:

max [hy[5T] = b [(G-DT]| = F S

Therefore, as Km increases, the scale factor F will get smaller.
The value of the first coefficient, ag is selected from O, t2h;
K=0,1, ..., Km so as to be closest to the first change

hS[T] - hS[O]. Since hS[O] equals zero, we have
a = hS[T] 9)

The design proceeds recursively, selecting aj from O, tl, 2 ue

to minimize:

j-1
- {hs[(j+l)T] -1 ak}[ (10)

| a
] k=0
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Figure 5 is a comparison of the entire desired impulse response
sequence hD[nT] and the error for the DRDF approximation for
Km=4. Figure 6 is a comparison of the desired magnitude response
and the error for the DRDF magnitude response. For this example
T = 0.05 sec and N = 200. The "IDEAL" Chebychev impulse response
used in this and all subsequent examples was obtained from syn-
thetic division of the H(Z) found using the impulse invariant
design [7].

Figure 7 is a plot of the RMS error between the desired
impulse response and the actual DRDF impulse response for the |
four pole Chebychev filter. The RMS error is expressed as a
percentage of the peak value of the impulse response, and it
is plotted vs Km. It is seen that little improvement results
beyond a Km of 3 or 4. The parallel structure introduced in the

next section provides a method of significantly reducing this

RMS error.

IV. PARALLEL DRDF STRUCTURE

It was shown in the previous section that increasing Km
beyond 3 or 4 dces little to further reduce the percentage RMS
error. There may be many applications where further improve-
ment is desirable. One way to do this is to both double the
sampling rate and also the number of ﬁransversal stages. For
example, doubling the sampling rate and doubling the number of

transversal stages will cut the RMS error in half. Since it

may not always be possible to double the sampling rate, and
since doubling the required number of stages is not attractive,
another alternative is desirable. Three different alternative

designs are considered below.

h--'“—"-"--'l"l!'l-ll-----‘--n----u----..s...—— ot ——
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In the first method, an error sequence e[nT] is defined as

the difference between the desired impulse response and that

actually generated by the DRDF. That is:

SEnEY = hylnT] = b, [0T] (1)

If the error sequence e[nT] of equation 11 could somehow
be approximated, é[nT] and added to the DRDF output, the new
signal h;[nT] = hA[nT] + ;[nT] would be a better approximation
to the desired signal. Since e[nT] is itself a finite duration
sequence, it is possible to approximate it with a second DRDF
filter as shown in Figure 8. These two parallel filters can
share much of the basic DRDF hardware as shown in Figure 9.

Note that the parallel DRDF will have its own scale factor Fz.
In some cases, F2 can itself be satisfactorily approximated

by an integral power of 2, however, in general this is not the
case.

Conceptionally, this process of approximating the DRDF
error could be continued to two, three or more parallel stages.
Of course, at some point it will be more expedient to use a
conventional filter structure.

Figure 10 is a plot of the percentage RMS error vs Km for
the basic DRDF and for one and two parallel stages. This is for
the Chebychev filter used in previous examples. It is seen that

the RMS error is reduced by a factor of about 3 each time a

parallel branch is added. Thus, RMS errors well below 17 of

the peak value of the impulse response are feasible with this

approach.
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The parallel filter does not approximate the error wave-
form nearly as well as the basic DRDF matches the original
desired impulse response. This is because the error sequence
is quite noise-like with rapid changes. The error waveform for
the Chebychev filter was shown in Figure 5. Except for the
final sequence valdes, the error signal is very much like white
noise. The sinusoidal appearance of the final sequence values
is due to the fact that the small ripple values in the desired
impulse response is being matched by a zero output from the
DRDF.

It has been found that a consistently beéter approximation
to the error signal may be made by roughly quantizing the
error signal to integer powers of 2 or zero. Thus, the new
filter shown in Figure 11 would be similar to that of Figure 9,
but without a second integrator. This is the second design
method.

Figure 12 is a plot of the percentage RMS error vs Km for
the basic DRDF and for one and two parallel stages where the
parallel sections are rough quantizations of the error signals
to integer powers of 2 or zero. A comparison with Figure 10
shows that this second approach is clearly better. Similar
improvements for other filters have also been found, and the
results of Figures 10 and 12 may be considered typical.

The third method is aimed directly at the reason why the
basic DRDF error performance does not improve as Km goes beyond
3 or 4. This is because as Km increases, the allowable tap
values are spread further apart. If, however, as Km increased,
all the integer values were allowable, then clearly the quanti-

zation would improve and result in reduced RMS error. It is
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worth noting at this point that uniform quantization intervals
of any desired value could be achieved with appropriate scaling.
This then represents a rough quantization of the transversal
coefficients with the subsequent integration acting to smooth
the overall impulse response.

Because of the speed and cost benefits, it is desirable to
obtain integer value taps with shifting and adding rather than
by the use of hardware multipliers. A direct appféach would
be to have a parallel filter section for various integer values
of 2. 1In this case, each tap weight would be constructed from
its binary equivalent. For example, for a tap value of 5 (101)
there would be three parallel filter sections with connections
made to the first and third, but not to the second section.

Each section would have its own adder. Figure 13 shows such
a filter which is capable of producing tap values O to 7, and
with suitable two's complement circuitry, -7 to +7.

A similar approach, but one with further hardware economies,

is to permit both positive and negative values of the integer
values of two. Refer to Table I. This shows how the integers
up to 42 could be implemented with just three parallel sections.
The first section could have up to five shifts, the second sec-
tion up to three shifts, and the third section a single shift.
Thus, 31 is implemented as 32-1 rather than as 16+8+4+2+1.
The optimum implementation of this concept will be dependent
on the application and device technology. One possible struc-
ture is presented by Kishi et al. [8].

Thus, we have considered a third method of reducing RMS

error that of creating integer value taps. We have also looked
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at several possible implementations of the integer tap concept.
A major advantage of the integer tap approach is that separate
scale factors (hardware multipliers) are not required in the
integer tap approach. A second advantage with this method is
that error performance continues to improve as the number of
shifts is increased. In the basic DRDF and the other parallel
filter approaches, improvement leveled off beyond a Km of 3 or
4.

Figure 14 compares the performance of the DRDF with the
integer tap approach for the four pole Chebychev filter. In
the graph at Km = 4, the basic DRDF is allowing taps values
of 0, +1, +2, +4, 18 and +16, while the integer approach is
allowing all the integer values 0, +1, +2, +3 . . . . +16.

For this filter, the integer approach surpasses the best re-
sults of the other methods at a maximum integer value of +138.

Figure 14 compares the performance of the basic DRDF with
the integer tap approach for the four pole Chebychev filter.

The design of the integer taps would proceed in a recur-

sive fashion similar to the basic DRDF design. Tap values aj

would be selected from the allowable integers O, tl, 32, s

iMAX to minimize:

i-1
L ak}[ (12)

la, - {h_[(G+1)T] -
4 - k=0
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V. TIME DOMAIN ERROR PERFORMANCE

An important measure of performance will be the RMS error
between the desired impulse response sequence hD[nT] and the
actual sequence hA[nT]. In the time domain, the RMS error can

easily be calculated for any filter design from:

N-1 h_[nT] - h, [nT]
i w3 =B z & (13)

n=0

where the subscript T stands for time-domain.

It is desirable to be able to estimate what this error may
be for a particular filter without going through the actual
design procedure. In this section, the time-domain RMS error
of the integer tap approach is estimated.

The errors measured at the filter output may be assumed to
be uniformly distributed with zero mean-and variance Q2/12 [&l.
In the case of integer taps Q = 1. Since the mean is zerc, the
RMS error will be 1/v12.

In actual practice, the designer would want to know how
the RMS error compared with the peak value of the impulse response
sequence. Therefore, it is desirable to have an estimate of the
peak value of the impulse response sequence. This estimate can
be made using the following rules.

1. The main lobe of a typical high order low pass filter will
have a width that is approximately equal to the reciprocal of

the cutoff frequency.

2. The average slope of the main lobe will be about one half

its maximum value.

LANL_
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Therefore, an estimate of the peak output of a DRDF can
be made given the filter cutoff frequency, fco, the sampling

interval, T, and the maximum integer, Im.

Im 1

2T 2 fco (14)

P s

In Table II, a comparison is made of actual and estimated

RMS errors as a percentage of the peak value of the impulse
response sequence. The percentage estimates are obtained by
dividing the RMS estimates obtained from equation (13) by the
peak value estimates from equation (14). In all cases, the
estimates represent a conservative bound on the actual error.
The RMS error estimate as a percentage of the peak value (Eé)
is thus seen to be:

E” =._2T_ (15)

i Im/3
Therefore, for a fixed sample rate, the percentage RMS error is

inversely proportional to the maximum integer value, Im.

VI. FREQUENCY DOMAIN ERROR PERFORMANCE

Since filter performance requirements are often given in
terms of the frequency domain, it is important to evaluate the
frequency response error performance.

The error sequence e[nT] is defined in equation (11) as
the difference between the desired impulse response and that
actually generated by the filter. 1In the frequency domain, the

magnitude of the error at any frequency wy can be obtained by

evaluating the z transform of e[nT) at z = eriT. Therefore,
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the magnitude response of the error may be written as:
A T N-1

Efu) & Bleeet™) = %
n=0

e[nT]z_nT

(16)

If equation (15) is evaluated for a set of frequencies W,
Wys wee Uy 9o then we can define an expression for the RMS error

in the frequency domain.

M;l (E(wj» 2
Ew = i . SO 7)

We can see from equation (15) that the value of E(w) and
hence, the value of the RMS error Ew is a function of the number
of coefficients, N in the FIR filter used to generate the impulse
response. In 1973, Chan and Rabiner [9] showed that Ew, the RMS

error in the frequency domain is found from:
Ew = /N ET (18)

here ET is the time domain RMS crror defined in equation (13).
Estimates of the frequency domain RMS error can be derived
from the time domain RMS error estimate by application of
equation (18). Table III is a comparison of the estimated
frequency response errors with the actual errors for the Cheby-

chev filter previously used.

VII. OPERATION EXAMPLES
Specific examples are given in this section of the time and
frequency domain performance of DRDF structures compared with

the ideal time and frequency responses. The marked improvement
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using the integer filter is also shown. Because the performance
is so close to the ideal, especially if an integer filter is used,
only the error (difference from ideal) is plotted along with the
ideal waveforms.

Figure 15 shows the ideal impulse response for the Cheby-
chev filter used in previous examples. Also, plotted with an

expanded amplitude scale are the error waveforms for an integer

filter with Im = 16. The improvement gained with the integer
filter is readily apparent by comparing Figure 15 with the basic
DRDF results of Figure 5. There are reductions in both the peak
and RMS errors. This same improvement is mirrored in the fre-

quency domain as seen in Figure 16 which shows the ideal magni-

tude response along with the magnitude errors for the integer
filter. Compare Figure 16 with the results shown in Figure 6.
Figure 17 shows the ideal step response for the same Cheby-
chev filter. Again, the error waveforms are plotted on the same
time scale and we see the improvement achieved with the use of
the integer filter. The step response also indicates that the
filter is BIBO stable. Very similar results are obtained with

all other low pass filter designs.

VIII. SUMMARY

The structure and performance of the difference routing
digital filter (DRDF) has been explored. Design restrictions
and the basic filter design have been detailed. Examples of
the RMS error performance were given.

Three enhanced DRDF structures were presented. Each of

these new approaches used parallel filter sections. The parallel
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filters could share much of the basic DRDF hardware. The optimum
approach was to use integer value taps constructed from three
parallel sections. The need for hardware multipliers was avoided
through the use of shifting and adding.
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