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ABSTRACT

~~The assumption made in linear programming that the components

are deterministic (constant) numbers is rarely fu l f i l led  in prac-

tical applications. This has led to the development of the field

of stochastic programming where the random aspect of the coeff i-

cients in the objective function , technology matrix , and the

vector of resources are taken into account. this research we-~~

investigaten~the problem of a linear program with uncertainty

attached to the decision vector. For example , a decision to

order a certain amount of a perishable good might yield variable

amounts of this good at delivery due to spoilage.

Two models are considered :

1. The uncertainty is independent of the decision . A

decision x will yield an output x + e where e

is a random variable.

2. The uncertainty is proportional to the decision .

A decision x will yield an output x + ax where

a is a random variable.

As can be seen in the literature on stochastic programming , the

random nature of the program does not lead to a unique mathe-

matical problem and there are various models of stochastic

linear programs. In this study we chose to use the chance-

constrained approach to formulate two models incorporating the

two kinds of decision uncertainties described above. In chance-

constrained programs the criterion is the expected value of the

~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~
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objective function and the constraints have to be satisfied with-

in a predetermined fixed probability .

Using known methods of chance-constrained programming we

define deterministic equivalent problems for our two stochastic

models. It is assumed that the distributions of the random vari-

ables are known and convolutions of these distributions can easily

be obtained . In general this is not the case, this is why we then

proceed to find conservative approximations for our two models

(i.e., problems with the same objective functions whose feasibil—

ity sets are subsets of the original feasibility sets).
• 
We pre-

sent a set of random variables for which conservative approxima—

tions are easily obtainable linear programs . Bounds oh the

optimal value of the objective function are also defined . Using

these results , different kinds of sensitivity analyses are in-

vestigated . In this context a problem of trade-off between the

cost of reducing the variance of the uncertainties versus the

corresponding improvement in the objective function is defined

and a simple algorithm is presented to solve this problem .

Finally,  we outline how some of the results can be applied

to more general chance-constrained programs and conservative

approxima tions can be defined for these more general models. 

--- -- ---- -~~~ -- 
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INTRODUCTION

Stochastic Linear Programming is the field of study of linear

programming problems, where the random aspect of the coefficients

in the objective function, technology matrix, and the vector of

resources are taken into account. More than one approach has been

developed in this context such as the distribution problem (13] and

multistage Recourse Models (13]. In this research we will restrict

our study to the chance—constrained approach, a method originally

introduced by Charnes and Cooper [3]. Chance—constrained programming

allows constraint violations up to specified probability limits. This

study differs from the usual chance—constrained problem in that the

randomness in the decision vectors is studied rather than the coeff i—

cients of the objective function, technology matrix, and vector of

resources. For example, a decision to order a certain amount of a

perishable good might yield variable amounts of this good at delivery

due to spoilage. Another example is the uncertainty due to tneasur~.ng

errors. These are the types of uncertainty that we are trying to

incorporate into a linear program.

In Chapter I we present two basic models which will be analyzed

throughout this study. In Model I, the uncertainty is independent of

the decision. A decision x will yield an output x + e where e

is a random variable. In Model II, the uncertainty is proportional to

the decision. A decis5on x will yield an output x + ax where a

is a random variable. Using the approach developed by Charnes and

Cooper (4], deterministics equivalents for Models I and II are pre-

sented and discussed . Because of the difficulty of implementing in
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practice these deterministic equivalents, we looked for a class of

distributions for which approximations could be determined with

little effort. To this effect, in Chapter II a class of densities

and the corresponding set of random variables and their properties

are presented . In Chapter III, the results of Chapter II are exploited

to find “conservative approximations” to Models I and II under certain

assumptions. By “conservative approximation” we mean a problem with the

same objective function as the original problem and a feasibility set

which is a subset of the original feasibility set. In Chapter IV ,

sensitivity analysis of Models I and II are discussed with respect

to the cost vector, the vector of resources, the specified probability

limits, and variations in the densities of the random variables.

Finally, the “reducing of uncertainty” problem is presented . It is a

problem of trade—off between the cost of decreasing the uncertainty by

modifying the densities of the random variables versus the original

linear objective function.

In Chapter V an algorithm is presented for solving a special

kind of reducing of uncertainty problem which has the following general

formulation .

minimize ~~~ + ~~~~~~~~ (with d > 0)
d y

subject to Ax — By ~ b

x >  0

l > y > O

where A , 3 , b , c , d are given, A and B are m X n matrices,

c and d are n x 1 vectors and b is an m x 1 vector. x and y
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are n x 1 vectors of decisions.

Finally in Chapter VI, the basic two models are generalized to

joint—chance constraint models as developed in Miller and Wagner (lOJ.

The problems here are different from the usual joint—chance constrained

programming in that the constraints are not statistically independent

as is usually assumed . This is why we use the concept of associativity

of random variables, widely used in the field of reliability [2], and

the results of Chapter II to define conservative approximations for

these generalized models.

I
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CHAPTER I

A. Introduction

This research is concerned with a special kind of stochastic

program. We are interested in the usual linear program with one

important added feature. The decisions have uncertainty attached

to them. For example, a decision to order a certain amount of a

perishable good might in reality yield variable amounts at delivery.

Another example is the uncertainty due to errors of the measuring

instruments. It is this type of uncertainty that we are trying to

incorporate in a regular linear program. Of course the stochastic

nature of the uncertainties changes the character of the problem .

In this research we will use a chance constrained approach to the

problem. The linear constraints are to be satisfied within a certain

specified probability . The objective function will be the usual

expected value criterion. Two models wIll be presented .

B. Model I

First we will look at the following approach. Each variable x .

has an uncertainty attached to it in the form of the random variable

e . . The a priori decision is X
j 

and the outcome is X
j 
+ ej

This model fits well in the context of measurement errors. Within

certain bounds the error of measurement is a function of the measuring

instrument, not the quantity measured and therefore the error ej and

the quantity X
j 

are independent. This yields the following model:
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Model I:

n
minimize E ~ c4 (x4 + e4 )

.1 .J .1

subject to x c ~

Prob A~~(x~ + ej ) ~~b
j }~~~j  i 1, ... ,

where A , b , c , y are given , A is an m x n matrix, .c

an n x 1 vector, b and y are m x 1 vectors with the follow-

ing restriction on y : 0 < < 1 for i = 1, ... , m ; x is

an n x ~ vector of decisions and e is an n x 1 vector of

random variables. £~ is a polyhedral set defined by a set of

linear constraints.

C. Model II

Although in Model I the uncertainty e~ is independent of

the decision X
j 

this might not always be a desirable feature.

This is why we introduce a second model. Here the uncertainty is

proportional to the decision. For an a priori decision x~ we

have an outcome x~ + aj xj  where aj is a random variable.

This can be used to model spoilage in the diet problem where X
j

are the amounts of food ordered and ajxj the amounts spoiled

that cannot be used at consumption time (aj would have value

between —1 and 0 in this example). We have now the following

model. 

~~~~~~~~~~~ --~~~~ ~~~~~~~~~~~~~~~~~~~ 
- -~~~~~~~~~~

- - -
~~~~~~~~~~~~~~~~~~~~~~~
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Model II:

minimize E ~ c (1 + a .)x
~jl  ~ ~

subject to x ~

Prob { ~~ A~~ (l + czj )x j  ~~. b~
} ~ i 1, .. .,

where everything is defined as in Model I except for a which

is an n x 1 vector of random variables.

Model II overcomes the shortcomings mentioned for Model I.

However, we had to pay the price in in&reased complexity. This

complexity will make Model II much less tractable mathematically ’

than Model I.

We will now present schemes to solve Models I and II.

D. Deterministic Equivalents for Models I and II

We will use here the approach developed by Charnes and Cooper

in [3], (4]. In order to solve these chance—constrained problems

we will find what is known in the literature as “deterministic - s

equivalents” to these problems. A deterministic equivalent problem

is a reformulation of the original chance—constrained problem where

all random elements have been eliminated. Deterministic equivalents

for Models I and II will be presented in Theorems 1.1 and 1.4.

However we will first need the following definitions.
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Definition:

The distribution function of a random variable X is the

function G(z) defined as G(z) — Prob {X < z}

While the definition of the distribution function presents

no difficulty, we need to define the inverse of this function

for the general case.

Definition:

The inverse of the distribution function G(z) of a random

variable X is defined as follows:

G~~(y) sup Cz I G(z) < y}

for 0 < y < 1 and it is undefined elsewhere.

We will also need the following functions.

Definition:

We will call the “tilde” distribution function of a random

variable X the following function:

G(z)  — Prob {X < z}

Its inverse is defined as:

~~1( )  sup {z I G(z)  < y }

for 0 < < 1 and is undefined elsewhere. 

~~~~~~~~~ - . j
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Note: ‘

- 1. If X is a continuous random variable then G(z)

- Prob {X < z} — Prob {x < z} — ~(z) and G 1(~) — ö~~(y)

for O < y < l

2. If X is a discrete random variable then G ( z )  —

Prob {X < z} — Prob CX < z — l} = G ( z  — 1)

We will now proceed to define the deterministic equivalents

mentioned earlier .

1. Model I

Theorem 1.1:

The following linear program is a deterministic equivalent

- - 

_ to Model I:

minimize c (x + E(e ))
j — l

a 

subj ect to x c ~

i 1 , . . . , m

( a  *

where G~~(z) — Prob ~ ~ A~~ e4 < a
~j =l -~ -~

Proof:

For all i — i , . . . , m

_ _  _ _ _  _ _  
- -~~~~ -~~~~~~~~—---- _ _
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Prob A
1~ (x~ + ej) ~ b~

} ~

~~ Prob 
{~~~l 

~~~~~ ~ 
b~ - 

j~l 
A~~x~

} ~

~~~ 1 - Prob Aijej < b 1 
- 

j~l 
A

jJ
X~~

} ~~

~~~~~~ ~~. 
— 

~i[~~~
— 

j~~l ~
] ~

- 

j~~l 
A1~x .] ~ -

= b~ — 

j —l  
~~~~~ <~~

_l
(l —

n
~ A~ x > b . — ~

_l
(1 — y .) .1

j — l ~ 1.

Corollary 1.2:

If in Model I the random variables are continuous , then the

following linear program is a deterministic equivalent for Model I.

a
minimize ~ c4 (x. + E(e4))

j—l ~

subject to x c 0

a 1
~ A~ 4 x 4 > b ~~ _ G ~~~( l _ Y

1) i l , . . . , m
—l ~~~

( a
where G1(z) — Prob ~ ~ Are. < Z

f j — l
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Proof:

This is Theorem 1.1 with the observation that G~~~(y) = G ~~(i) for

O ~ ~ ~ 1 when ej  .i l~ . . .
~~ 

a are continuous.U

Corollary 1.3:

If in Model I the random variables are discrete, then the

following linear program is a deterministic equivalent for Model I.

minimize ~ c .(x + E(e .) )
.3 j  .3

subject to x c 0

~~ 
A~~x~ I b1 

- G~~~(l — ~~
) i 1, ...~~

where G ( z) — — 1) — Prob A1~ e~ ~5 z — l} .

Proof:

This is Theorem 1.1 with the observation that in this case

G1(z) — G .(z — 1) .1

2. Model II

Theorem 1.4:

The following nonlinear program is a deterministic equivalent

to Model II.

L. 
~~~~~~• • ~~~~~~~ • - ____________
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minimize c (1 + E(a ))x
j—l j

subj ect to x c 0

~~~~~~ . 

Aijxj  + G 1(l - i~ ) I b~ i — 1~ .... m

‘ 1
where ~a (z) — Prob A1~ x .a~ < z} .

Proof:

For all i = l , . . . , m

Prob A~~ (l + a~ )x~ ~ b4 I

- -  Prob ~~~~~~ Ib ~ 
- 

j~ l 
A1~x~~

} 
1

~~~~~ j

—
- 1 — Prob b~ — 

j~l 
A~~X~

} 
I 

~i

~~ 1 - 
i

G
X {bi

_ 

~~~ 

A~~x~]I 
1i

~~~ b~ - 

~~~~~~ 

~~~~ < ~~l(l - ~~

j
~
l 
~~~~ + ö 1(l - •

~~~~
) I b~ . I

_________ _________
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Corollary 1.5:

If in Model II the random variables are continuous then the

following nonlinear program is a deterministic equivalent for

Model II.

- 
- 

a
minimize ~ c .(l  + E(a .) ) x .

~
subject to x c 0

i = l ,

where jG~
(z) = Prob A~~c*~x~ ~

Proof:

By Theorem 1.4 and using the fact  that here ~
G

~~
(z) 1 G~~(z) and

— .G~~~(i) for 0 < < 1 .1

Corollary 1.6:

If in Model II the random variables are discrete, then the

following nonlinear program is a deterministic equivalent to Model II.

a
minimize ~ c4 (l + E(a .) )x .

j —l~~~ ~

subject to x £ 0

i = 1 , ...,m



where

~G ’ (z) = jG~
(z - 1)

and

~G~
(z) — Prob ~~~~~~~ ~~ z} .

Proof:

By Theorem 1.4 and using the fact that i~ x (z) — jG~
(z — 1) .1

E. Limitations of the Deterministic Equivalents of Models I and II

The deterministic equivalents presented in the preceding

section assume that the convolutions

(I) G1(z) = Prob ~~~~~ 5

(ii) 1~G~ (z) = Prob A1~a~x~ ~

can be calculated and the inverse can be determined exactly for

(i) , and in terms of x in (ii) . Although this can be done easily

when the random variables are independent and have normal dis-

tributions , as will be shown in Chap ter III, in genei~al it is no t

the case. These convolutions in the case of Ci) can be very

difficul t to calculate or in the case of (ii) it might be difficult

to express the inverse distribution exp licitly in one simple 
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expression of x . We will also point out that in practice the

distributions of the random variables themselves might not be

completely known . So far  the discussion has been concerned with

determining precisely the coefficients of the constraints; however ,

another difficulty arises: If we succeed in calculating these

convolutions and their inverses, Model I is a simple linear program

and can be solved . This is not the case for  Model II. We have

then a nonlinear program which might not only be difficult to

formula te but also to solve.

This is why we look for other ways of solving Models I and II.

We will concentrate on obtaining what we call conservative approxi-

mation problems for these models.

Definition:

A problem B is called a conservative approximation of a

problem A if and only if:

(i) The feasibility set of B is contained in the

feas ib i l i ty  set of A

(ii) A and B have the same objective function.

In the next chapter we will present a set C of random

-ar tab ..s ~~r ~~~~~~~~~~~~~ conservative approximations for Models I and

:~ canno t i~ DC easi v constructed with limited information

abo~ t the ranUom :arta~1es , but also are linear programming problems. 

-- --~~~~~~~~ --
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CHAPTER II

In this chapter we present a set of random variables C and

a correspond ing class C of densities and we discuss their

properties. These will be useful for defining conservative

approximations for Models I and II.

The set C consists of the continuous random variables which

have densities that are symmetric , unimodal with maximum at 0,

and with finite range. Examples of such distributions are the

truncated normal, the uniform distribution, certain Beta distributions,

the truncated double—exponential, and many others. In the context

of our models such distributions can be used to model many real

situations. The fact that the distributions have finite range is

certainly realistic. The symmetry and being unimodal with maximum

at the mean are more restrictive assumptions; however , anything

that can be modeled as a truncated normal would fit. As an example,

measurement errors can certainly be modeled using a truncated normal. -•

Spoilage is another example which could be modeled if the quantities

spoiled tend to have distributions concentrated around their means.

We will now turn to the study of this class of distributions.

A. The Class C of Densities and the Set of Random Variables C

Definition 2.1:

C is the class of densities f such that f c C if and

only if

a) f is symmetric around 0 : ~~x c (.~ Qo ,+~~~) f(x) — f(—,c)

b) f is unimodai. with maximum at 0.

- - -
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c) f has finite range: 3a , 0 < a < +~~~ such that

f ( x)  = 0 for x ~ (—a ,+a]

d) f is continuous .

Notation:

The distribution function of a random variable having density

f is denoted by F(x ) = f  f(u)du .

This class C has well—known properties that can be derived

from the symmetry of the densities.

Proposition 2.2:

If X is a random variable with density f c C then the

following properties hold :

(i) E(X)=0

(ii) F (x) = 1 — F(—x) Yx c (~~a~,+~~)

(iii) F(O) — 4 .
Proof:

(i) E(X ) f  xf (x)dx = 5 xf(x)dx + f xf(x)dx

changing variables in the second integral to u = —x

E(X) = fx f (x)dx + f  (-u)f(-u) (-du)

E(X) = f  xf(x)dx - f  xf(—x)dx .

--  
— -~~ -- -----. -.- --•-.—-----~~- ~~~~~~—-
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However by a) of Definition 2.1 f(x) - f(—x) Yx c

E(X) = f (x — x ) f ( x ) d x  = o

(ii) F (x) = f  f (u ) d u  changing variables to v — —u

~~~ F(x) = f f(-v)(-dv)

F(x) f f(—v )dv

By symmetry of f : f(—v) f(v) Vv

• ~~~ F (x)  = f f(v)dv

- f  f(v)dv — f  f(v)dv

— l — F ( — x )  .

(iii) By (ii)

F(0) = 1 — F(0)

~~~~~~~~ 2F (0 )  — l

~~~~~~~~ F(O) = 4 . .

-- — -~~~~~~ • - -~~~~~~~~~~ -— - —- —-~~~~~~~~ - _ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~



r - _ _ _ _ _ _ _ _ _ _ _ _ _ _

18

Definition 2.3:

For a density of the class C the inverse of the distribution

function F(x) is defined to be:

F 1(0) max t z  I F ( z )  — 0}

F 3 (l) = mm {z F (z )  — 1)

and for 0 < < 1

= {z 1 F(z)  = -

Using this definition more properties of C are presented

below:

Proposition 2.4:

For any density f ~ C having range [—a ,+a] the following

holds:

(i) F 1(0) = —a and F 1(1)

(ii) F~~ (4)
Proof:

Ci) Apply Definition 2.3.

(ii) Apply (iii) of Proposition 2.2.

Theorem 2.5:

If X is a random variable with density f t C then for

all real numbers c , cX is a random variable with density

belonging to C

I.

-- _
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Proof:

Call g(x) the density of CX . Then g(x) — f(.~)

a) g(x) — g (—x )  Yx £ (— ,+~) since g(x )  — 
f(~) 

— f (_  
~~
.) —

f(~~~) 
g(—x)

b) Case 1: c 10 as g(x) = f (~) 
g(x) is unimodal with

maximum at 0.

Case 2: c < 0 g(x) — 
f(~) 

= f(_~.) by symmetry of f

and this is the same as Case 1.

c) g(x) = f (~) 
has finite range [_ ~~ ,+ -

~~] 
for c 1 0 or

for c < 0

Definition 2.6:

Call C the set of random variables which have a density

belonging to C

Theorem 2.7:

If X c C and has a distribution function F and cX has

a distribution function G (c real number) then :

s [0 ,1]

G 1(y) — Ic IF~~
(y)

Proof:

£ [0 , 1] ~~z such tha t

—lz = G  (~)

—-

~

-- - - - - - -

~

-

~

— - - - — - -- - - - -
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and

G(z) y

~~ y — Prob {cX < z}

Ca8e ~: C > 0

~~~~~ y = Prob {x

—l z
~~~ F ~~~~~

~~ z = cF~~ (y )

= cF~~(y)

Case 2: c < 0

i=P rob~~X > ~~}

= 1 — Prob ~X < -
~~

( — c

since X c C

-

~

.F 1(y) j~y

~~ G 1(y) - lci F~~(y) .1

_

~

_ _ _ _ _ _ _ _ _ __ i_ _ __ i _ _ I
—

~ 

~~~~~~~~~~~~~~~~~~~~~~~~ — -
~~

- - - - - -  —•--- -- — - — - - 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Theorem 2.8:

If f~ r C , j  — 1,2 , then the convolution f
1 

* f 2 c C

Proof: ~~f 1 and f 2 t C

g f 1 *f 2

a) g is symmetric

‘9’ Z C (_øo ,=)

g(z) = f f 1(z - u)f2(u)du

changing variables u = —v

= 
f 

f 1(z + v)f
2(-v)(-dv)

= f f 1
(z + v)f

2(-v)dv

since f
1 

and f 2 are symmetric

g(z)  f f 1(-z — v)f 2(v)dv

— g (—z )

_ _



r
b) It is sufficient to show that g(z) is increasing in z

for z < 0 or Vz < 0 and ~z > 0 such tha t z + &z < 0

g(z  + 6z) — g(z )  
~ 

0 .

Then by symmetry g ( z )  is unimodal with maximum at 0.

g (z  + ~z) — g(z)

= + ~z - u)f 2(u)du - f ~~~ - u)f~ (u)du

z +~~ 5z

— f 
~~~~~~~~~~~~~ 

+ ~z - u) - f 1(z - u)3f2(u)du

+ f  [f1(z + ~ z - u) - f 1(z - u)]f2(u)du

z +~~~z

Changing variable in the f i rs t  integral to v — 2z + ~Sz — u

g(z + Sz) — g(z )

1.

= - + u) - f 1
(-z - ~ z + u ) ] f

2
(2z + ~ z - u)du

+ f (f 1(z + dz — u) — f 1(z — u)]f2(u)du

z+4~ z

Since f 1 is symmetric

— —



: I I i
—

~

•

+ u) = f1(z — u)

f 1(-z — 5z + u) = f1
(z + Sz — u)

~~ g(z + Sz) — g(z )

= f (f 1(z + ~z — u) - — u)](f2(u) - f2(2z+~ z — u)) du

z+4~sz

The proof will now proceed as follows. We shall show that :

1) f 1(z + 5z — u) — f 1
(z — u) 1 0 for z + 4 ~z < u < +~~~

2) f 2 (u) — f 2 (2z + dz — u) 10 for a + 4 ~z < u < + ~

Then it is clear that the whole integral is nonnegative and

g(z + Sz) — g(z)  
1 0 .

1) Case~~ :

~~ + 4 < +

.‘.._ z _ c s z < — u < — z — 4 s z

and

o < z + ~~z — u < 4 ~~z

.ue~~0 < z + ~~ z - u < ~~~~~z < — ( z - u) .

____ _ ___ _ ___ _  _ _ _  j
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As f 1 C C , f
1 

is symmetric and unimodal with maximum at 0.

f
1

(z + t5z — u) I — u ) )  — f 1(z — u)

~~ f1
(z + dz — u) — f

1
(z — u) 1 0 .

Case 2:

z + 5z < u < +=

Thea

z+ 6z — u < 0

as ~z > 0

z — u < z + 6 z — u < O

since f
1 

C C f
1
(x) is increasing for x < 0 and f 1(z + ôz — u) —

— u) 10

2) Case 1:

~~ + 4 .~~~ ~~ . 0

‘~ . 2 z + dz < 2z + d z — u < z + 4 ~~z

~~~~2z + 6 z - u < z + 4 6 z < u < O

as f 2 C C , f 2 (x) is increasing for x < 0

— f 2 (2z + Sz — u) 1 0 .

-_- —_

~

- -

~

_ - -_ _-_— -

~

--- - -_ -- -_ -~~~ -_~~~ _ _ _
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Case 2:

ii < 0 < +

f
2

(~~~~) — f.,(2z + 6z — u) — f 2 (u) — f 2 (u — 2z — t5z )

since f 2 is symmetric .

However

2z + dz < 0

__ 0 < u < u — 2z —

as f 2 C C f 2 (x) is decreasing for  x 1 0

c) If f . , j 1,2 , have ranges [—a ~~ +a~ ] then f 1 *

has a fini te  range :

[—a 1 
— a2, a1 + a2 ]

as (f 1 * f 2
) (z) = 0 for z ~ (—a 1 — a2, a1 + a2 ] since

f~~(z) — 0 for z ~ (_ a
j~ aj ] for j — 1,2

d) Since f 1 and f 2 are continuous ,

f * = f f 1(z - u)f2(u)du

is continuous.

No te:

An alternate proof for b) is outlined in a note on page 164

of William Feller ’s book (71.1

TT

~ 

_ _- -
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Corollary 2 .9 :

If X~ j  — 1, ..., a are independent and such that X~ c C

j = l , ..., n then ~ X . C C .
j—l ~

Proof:

True for n = 1

True for n = 2 by Theorem 2.8

Assume it is true for  n = k

k
i.e . ,  — * f , f density of X.

j =l
j i 3

Then gk C C .

However * 
~k+l = C C by Theorem 2.8. Therefore it is

true for k + 1 and true for all a

Corollary 2.10:

If the independent random variables X . j = 1, ..., a belong
.3

to C , then for all real numbers c j = 1, ..., a : c X . c C .

j = 1

Proof:

Apply Theorem 2.5 and Corollary 2.9.1



r - __ _ _ _ _ _ _ _
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B. Bounds on the Distribution Function of the Sum of Random Variables
Belonging to C

Theorem 2.11:

If X~ C C j  — 1, ..., a are independent with distribution

functions F1 and calling C — * F , then :
J i—i -J

For — 
~ F~~~~~~~(0) I X 1 0

j =l

- 

j~ ]. 
F~
1(O)

n < G(x)

— 2 ~ F ) (0 )
j—]. ~

For + ~ F~~ (O) < x < 0
j=l

— 

~l 
F~~~(0)

— 2 ~
j=i ~

Proof:

a n
By Corollary 2.9 ~ X4 c C ; therefore, g — * f, is

-‘ j—l

unimodal with maximum at 0. Therefore g(x) is increasing for

x < 0 and hence G(x) = f g(u)du is convex for  x < 0 . Further-

more, we know that

_ - -  -~~ _~~ - _~~~~~~~~ - - _  ~~~~~-— — _— ~~~~~~~~ — -~~~~~~~~~
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~~ F~~~~~~(O) ) 
— 0

\j— 1

and

- ~~ F ) (0 ) > - . c o
j=1 ~

G(0) = -
~~~ -

Therefore CCX ) has for upper bound the straight line from

(J~~l 
F~~~(O)~~O) to (0 , 4)
For x < 0 ,

x — F~~ (0)
G(x) <

— 2 ~ F~
1(O)

j l

Since G(x) C C it is symmetric and by symmetry for x 
~ 
0

x — ~ F~~~(0)

< G(x)  . I
— 2 ~ F 1

~(0)
j—l

Theorem 2.12:

If the independent random variables X~ j — 1, ..., n belong

to C , then : 

-—-- -~~~~~~~~ 
- _---  .--—-—-- _~~~

—--- -- —------- —- 
~ —- ------ _
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For x > 0

C(x) < mm {F . (x) }

For x < 0

max CF (x)} < G(x)

Proof:

It is sufficient to prove that for x < 0 F~ (x) < G(x)

Vj = 1, - . .,

Proof by Induction:

For n = 1, trivial F~ (x) < F . (x)

. For a = 2

For x < 0

G2 (x) - F Cx) (j = 1, 2 , G 2 (x) F1 * F2(x)
\ k#j

- 
f 

F~~(x - u)f
k

(u)d u - F~~(x)

= 
f 

F~~(x - u)f
k
(u)du - 

f 
Fj (x) f k (u)du

since 
.1 ~k~

’-’
~
”-’ 1
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+=

= 

£ 

(F~~(x - u) - F . ( x ) ] f
k
(u)du

- 
f 

(F .( x  - u) - Fj ( x ) ] f k (u)du + 
f 

[F ~~(x - u) - F
j

(x ) ] f
k

(u)du .

Changing variables in the second integral u = —t

= 
f 

[F~~(x - u) - Fj(x) ] f
k
(u)du + 

f 
[f~ (x + t) - F

j
( x ) ] f

k
(_t)(_dt)

since fk
(u) is symmetric : 

-

f 
[F~~(x - u) + F.(x + u) - 2F.(x)]fk

(u)du

f
k
(u) > 0  Vu it is sufficient to show that [F.(x — u) + F .(x  + u) —

2F~ (x) ] > 0 for u C [0 ,-+-o’] to insure that G2
(x) — F . (x) ~~ O

and C2(x) 1 F~ (x) j  = 1, 2 .

1) For u 0  -

[F ,(x — 0) + F~ (x + 0) — 2F~ (x) ] = 0

2) For 0< u < + ~

[F~ (x — u) + F~~(x + u) — 2F~ (x) ]

is an increas ing function of u since its derivative is:
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—f . Cx — u) + f~~ Cx + u) — f. (x + u) — f. Cu — x) 1 0

since f . is symmetric and unimodal and lu  — 
xl  1 Ix  + U j

for 0 < u < + ~

a) 0< u < - x ~~~~x < x + u < O < - x < u — x

b) -x< u < + ~~~~~0 < x + u < u - x .

Therefore it is true for n = 2

Assume it is true for n = k

Then for x < 0

F~ (x) < G
kCx) j = 1, . . . ,  k

Since C is closed under convolution the density g
kCx) 

C C

Then by the proof for a 2 :

For x < 0

G
k
CX) < G

k 
* F7~~1

(x) = Gk+l(x)

< G
k * Fk+l(x) = Ck÷l(x)

Therefore:

For x < 0

F . (x) < C
k
Cx) for j 1, . . . ,  k + 1

It is true for all a .1

- -- _ 
- -—-.—--_----— _ --- - — - - .4
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Theorem 2.13:

For all X~ t C j — 1, . . . ,  n independent random variables

with distribution function F~ and all real numbers c~ j = 1, - . . ,  a

GCx) = Prob { ~ c X . is such that for  — 
~ Ic 1F~~~

(0) Ix  1 0
j=l ~ j—1

a 1
— 

~ c .~ F . CO)

< G(x) < miri C Ic .jF .(x)}

— 2 ~ I c . I P ~~(o) j=l , .. .  ,n

j=l ~

and for ~~ l C ~~ I F ~~~

1(O) Ix 10
j=l

- 
1 

(c .IF
;
1(o)

max {Ic .IF~(x)} < G(x)  I
- 2 

~ !c . I F ~~(0)
j — l ~

Proof:

Apply Theorem 2.12 and 2.11 and Corollary 2.10 and Theorem 2.7.1

Corollary 2.14:

For all X~ c C j — 1, ..., a independent random variables

with ranges (— a~~+a .] and all real numbers Cj  j  — 1, ... , a

G(x) = Prob ~ c~ X~ < x~ is such that:
u—i

a
For ~ c . 1a 4 Ix l O

j — l  ~ -~

-----_

~

_ -

~

- -----

~

- - _ -

~

-_ ----- -_-- ----- _
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n

~ Ic 4 I a .
-~

a
2 ~ I d a
j—l ~

a
and for —~~~ c .1a 4 < x 1 0

• j=i ~ -J

X + lc~ Ia~
CCx) < 

a
2 ~ I c j la j

i—i

Proof:

Apply Theorem 2.13 with F~
1(0) — —a . from Proposi tion 2.4.1

Theorem 2.15:

For all X. C C j = 1, . . . ,  n independent with ranges

(—aj~
+a .] and real numbers c~ ~ 

= 1~ ...~~ a if

C(x) = Prob ~ ~ c4X4 < x~ it is true that:
(j=i )

For 0 < ? < 4

(2y - 1) ~ Ic (a  < G ~~~(y) I mm ~(c IF~~~(i)} 
.

• j i  j=l,...,n

1
For l > y 1 -~

max ~(c .IF
’(~)} 

< G ~~ (y) 
< (2~ - 1) j c  (a .

~ j i

_ _  _ _ _  -—~~~~~~ ---~~~~~---~~~~~~~~~~~ .~~~
_ _- _ _-_

~~-—~~ --
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Proof:

This is just a different way of stating Theorem 2.13. As

X~ c C , all the inverses of F. are concave and so is G 1(y)

and C2y — 1) ~ ( c . l a . is just the straight line joining C~~ (0)
j=i ~

G~~ Cl) and going through G_1(4) - The concavity of G~~ (y)

explains the inequalities.

As bo th F . and G are strictly increasing in their ranges

as X . c C for all j 1, - . . ,  n , then it is clear that

c (—~,0] ( C
j 

F~
l (x) I G (x)

Then y t [o~ 4~ 
, Ic~IF~~ IG

1
CY) .1

~~ _
—•--— ---— -—- -- - -_ ——__—- - - - • —--- -

~~
- —---- — - - • —_ —-

~~
- -_- --_- _ _ _ _ _ _ _ _
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CHAPTER III

In this chapter the results of the previous chapter are used

to find conservative approximations to Models I and II. The normal

case is treated separately at the end of the chapter .

A. A Conservative Approximation to Model I

Theorem 3.1:

If ej  C C j  1, ..., n with ranges (_ a
j~ +aj ] , the following

linear program is a conservative approximation to Model I for y 14

minimize

subject to X £ ~ 
-

~ 
A~ x 

~~. 
b~ + (2i~~ 

— 1) 
~ 

(A i Ia i = 1, ... ,

j—1. 3—I.

Proof:

(i) The objective function is ~~~ since Vj E(e~) — 0

as ej  c C -

(ii) From Theorem 2.15 it is clear that for Gi
(z) —

Prob ~~~~~ I zj  and 14 ~~~i = 1, ...~~~ m

(2( 1 - 
~~~ 

- 1) 
~~ 

a~ I A ~~I IG~
’(l - y~~~)

~~ (1 - 2i~~~) ~ a~~I A ~~ I < G ~~~(1 - y~~~)

i—i 

~ - - —~~~~~~~~~~m~~~~~-- _ - - _ - 
_~_-
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Using the deterministic equivalent of Theorem 1.]. it is true

that if x is such that for all i — 1, ... , m

~ A1 x . > b  + (2y -1) ~ a l A  I -

3—1 j — l  ~

Then

~ A . .x . > b . - G~~(1 - )
j=l ~~~~~ 1 i i

since 
~~~ 

— 1) 
~ 

a
3
IA~3

j I _G~
1(1 — and therefore:

3—1.

Prob Aij Cx
3 
+ e

3
) I b

il ~~
. 

for all i -

Hence it is a conservative approximation to Model 1. 1

B. A Conservative Approximation to Model II

Theorem 3.2:

If the ~2 of Model II contains the set Cx x I 0} and if

C C 3 — 1, .. .,  a with ranges [—a .,+a
3
] , the following linear

program is a conservative approximation to Model II for i 1 4 -
Tminimize c z

subj ect to X C

j~l 
~~~~~~~~ 

+ (1 - 21~ ) I A ~~ (a ~ ]x
3 1b~ i — 1, ..., a .
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Proof:

Ci) The objective function is ~~~ since E{n
3
} = 0 for

3 — 1 , .. .,  a as £ C -

(ii) If we call

~C Cz) — Prob A~3
x
3
e
3 I

Using again Theorem 2.15 and the fact that x 1 0 -

1for 
~~ 

I-~ i — 1, . . . ,  a

(2(1 - - 1) 
~~~ 

a
3

I A ~1I x . < ~G 1(l - ‘ri
)

~~~ (1 - 2v~ ) 

~~~ 

a
3

IA ~3
lx

3 ~C~~ Cl 
~~~~~~~~

Using the deterministic equivalent of Theorem 1.2 it is true

• that if x is such that for all i — 1, . . .,  m

~~ 
(A~3 

+ (1- 2
~
rj)(Aijla j

]x
j Ib i -

Then

~ A~ x + (1 - 2i~ ) 
~ I~~ Ia x . I b 1

3=1 3—1

and
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~~~~~~~~ 

A~3
x

3 
+ ~G~~~(l — 2v~)

a a
I ~ A x +(l — 2’

~’~) ~ lA i 
l a x  lb

i—i ii 3—1 ~ ii

and finally

Prob A
ij
(l + a

3
)x . I b

il 
I for all i -

Thus , this is a conservative approximation to Model I I I

C. Special Cases for y — 1 and y =

These two models presented in Theorems 3.1 and 3.2 are linear

programs and thus can be solved using the simplex method. They

do not yield the exact solution, but in the absence of a method

to obtain the exact solution these are valuable problems as they

give us a feasible solution set and an optimum for tha t solution set.

It is also to be noted that the solutions are exact for y 1 and

1
Y - ~~~~.

For y — 1 , since the random variables have finite range, the

problem is reduced to a linear program with the random variable

having their “worst ” values . This yields the programs:

Model I:

minimize

subject to x £ ~

a n
~ A~~x > b ~~+ ~ (A I a  i — l , . . . , m .

i—i  ii i_I ~ I



Model II:

Tminimize c x

subject to x e ~2

• 

~~~~~~~ 

CA~~~
3 

— lA~3
Ia
3
)x

3 
Ib i i = 1, .. . ,  a

when C x l  x I0 } C~~ -

For y = 4 , since the random variables are sy etric, the

problem is reduced to the linear program where all the random

variables are set equal to 0. This yields the two ident~ ca1 programs :

Model I:

. .minimize c x

subject to x c ~2

~~~1b .

Model II:

minimize ~~~

subject to x C ~

~~~ 
b

We will now prove these statements in the following theorem.

Theorem 3.3:

(i) Model I and the problem of Theorem 3.1 are identical

for y = 4  and y 1

(ii) Model II and the problem of Theorem 3.2 are identical

for i = 4  and y l  

~~~~~~~~~~~~~ - - - - - _ ~~~~~ --—~~~~~~~~~~~~~~~~~ - -~~~~~~~~~~~~~ - — —_—•~~~-_- .-~~~~~~~~~~~~~~~ - -~~ ~~~~~~~~ ---_--- -- -—~~~~~~
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Proof:

(i) For y a l

- 1) ~ IA~ (a — 
~ 

lA~ (a . G~~(1) Vi - 1, . . . ,

3— 1 
3

j—l ~~~~~~~~

and for

- 1) 
j~l 

k~3 a
3 = 0 = Vi = 1, . . . ,  a -

(ii) Similarly

- 1) 
j~l 

I A ~3 I a 3x3 = j~ l ~~~~~~~~~~~~~ 

= 
~~~~~~~~~~~~~~~

for

(2y . - 1) ~ IA~3 Ia~x3 
- 0 = .c~~(4)

for Y~~~ -~~~~V i = l ~ . .. , m .

Therefore, the constraints are identical.l

No te:

It should be noted that all previous results can be extended

to random variable e
3 

and with nonzero means but for which

the random variables e
3 

— BCe
3
) and — E(a

3
) belong to C -
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D. The Normal Case

The normal distribution does not belong to the class C

however as it is important , it shall be treated separately in

this section. The special properties of the normal distribution

enables us to formulate workable deterministic equivalents for

Models I and II.

Theorem 3.4:

If e . 3 = 1, - . . ,  a are distributed normally with means

~~~. 
and variance , then the following linear program is a

deterministic equivalent of Model I.

minimize c .x + cj i
~ —i~~~

subject to X C Q

1

j~l 
A
i?j 1 b~~ 

- 

j~ l 
A~3~ 3 

- - ~~~ 
(~~L 

A~
3

a~)2 
=

i — 1, . . ,  a

where 1f (z) is the distribution function of the standardized normal

with mean 0 and variance 1.

Proof:

a
Prob A~3

(x
3 

+ ej
) lb ~ ~~~

j~ l 
A~3

x
3 I 

b~~ 
- G~~Cl - y~~~)

_ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 1_ _ _i~~~~~_ _
~~~~~~~~~~~
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where

a
G (z) Prob ~ A .•e . < Z
i 

3— ]. 
13 3

by Theorem 1.1.

C i~~~~

”

~~ 

since a. have N(ii
3
,a.) as distributions , then

(j~ l 
A~ .a~)2) : 

-

-

z - 
~~~~~~G (z) —~~ (

~ ~~~~~~~
\j—1 13 3/

Hence if (1 - y . )  — G .Cz)

a
z — 

~ 
A
i~~

1.L

- 3— 1 
-J

1 

(3~~~
l 

A~~~

3

~~~~~
)2

and

A ~
:1— 1 — 1

—~~ (l— - r ](
~ 4

~~ 2)2
3— 1

~~ G~~[l - - - j~~l Aij uj  + ~~~[1 - yji(~~ 4~~ )2 
. 

- 
-~
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Hence for all i — 1, ~~. .,  m

Prob A~3
(x

3 
+ e

j
) I b~~ I Y~~~

~ 
A~3

x
3 

I b i — G~~(1 — 
~~~ 

by Theorem 1.1
3=].

~ ~~~ 

A .. x
3 
lb 1 

- 

j~l 
A1~~3 

- ~~~~~ - ~~ 4.~~)2 .1

Theorem 3.5:

If cx~ 3 = 1, .. - ,  a are distributed normally with means

and variance , then the following convex program is a

deterministic equivalent of Model II.

a
minimize c (1 + ~.i )x.

3=1 ~

subject to x c

j~ 1 
A
13
(l + ~~~~ + $

_h
(l - ~~ A~3

a~x~)21b~ -

Proof:

Prob A13
(l + a

3
)x~ 1b4 I~~1

~~ j al 
A1~x + - 

~~~ I b~

where
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—- - — _—- —--_

~~~~~~~~~

- - - . --- -••—•.--.--_-—

~~~

_- - -_ -.--- __ 

-,

.G (z) = Prob A~3
(l + a

3
)x . I b

il

by Theorem 1.2.

However since have for distributions N(IL ., a.)

iG~
(z) is normal N 

(j~ l 
A~3

x 3~ 3 ,(
~ 

A~ .a~x~
)2)

z - ~ A . .x .~i .
13 ~

- G (z)~~~~~~—~~ .
X 

(j~ 1 
A~ .a~ x~)2

Using the same reasoning as in the proof of Theorem 3.4

- 

j~~l 
A
13~ 3

x
3 
+ ~~

_ 1

(l - ~1i(3~~1 
A~.O~x~)2 .

Hence for all i = 1, .. . ,  m

Prob A~3
(1 + c~3

)x
3 I bj I 

Y~~

- 

~~~~~~ 

A
13
x
3 
+ ~~G~~~~~~(1 — ?~ ] I 

b
i

~ 
A~ 3

(l + ~j )X j  + ~~1[]. - y~~~

](3

~~~

1 

A~j n~ x~)2 I b~ -

The program thus obtained is convex since the above expression

is concave. This was shown in the l i terature in ( 8] . S  

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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If one does not wish to solve the preceding convex program

using the usual convex programming algorithm , a conservative

approximation for Model II can be derived in the normal case. This

applies if we have the constraint Cx I x I 0} included in the

set 0

Theorem 3.6:

If in Model II, Cx ( x I Q} C ~ and 3 = 1, - . .,  n are

norinaflv distributed with means ii . and variances , then for
1 4 the following linear progr~~ is a conservative approximation

for Model II .

minimize ~ c .Cl + ~i .)x .
j—l ~ •] 3

subject to X C 0

- j~ l 
[
~ 

+ 
~
i
3

)A ij + ~
_l
~i - ~~~~~~~~~~~ lb~ Vi 1, ~~~~~~ a

x > 0

Proof:

This can be established using the following two facts:

• 1) For x ‘ 0 Vi — 1, - - . ,  m

( k~3 I x .~~ )2  I 
~~~

j~~l 
lA ~3 Ia 1

x
3 I (

~ 
A~~~

j

a~~~x~~
)2

. 

- - - _ - - -~~~~~~~~~~~~~~~ - -~~~~~~~~~_ - - -  ~~~~~~~~~ - . - - - — --
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

- - - --
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2) For

— v~
) < 0 Vi i = 1, - . .,  a

Hence by 1) and 2)

1

- ‘
~~

1 

~~~ 

IA~3 Ia~X3 I~~~~[1 - y.]
~~~ 

A~
3
O~x~)2 .

Therefore for  y~ 14 
, for i — 1, ~~. .,  a if x 1 0 satisfies

j=l 
[(1 + ~~

3

)A
1
~~ + 

~~~~~
h [l - ~~1 IA ~3

Io 3]x3 
Ib ~

3=1 
Cl + ~~~~~~~~ + ~_l

[~ - ~~ 3=1 
I A ~3 a . lb 1 -

Then

1

j~~l 
(1 + ~ .)A

13x . + (1(1 - ~~ A~ .a~x~)2

I ~ (1 + ~~ )A~3
x

3 
+ ~~~C1 - y j  ~ I A ~~. ( a .x . lb 1

3— 1 3 1

~~ Prob A13
(l + c

3
)x . I bj I

This problem is a conservative approximation to Model 11.1

_--



—--- —-- --—-- —- --~~~~_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  

--~~~~~~~-~~~— 

47

CHAPTER IV

A. Sensitivity Analysis

In this chapter we will study the sensitivity of the optimal

solutions of Models I and II with respect to the following four

characteristics of the model.

1) The cost vector c

2) The right—hand side b of the constraints.

3) The probability vector y -

4) The distributions of the random variables Ce~ 3 1, . . .,  a

for Model I and i — 1, ...~~ a for Model II).

B. The Objective Function and the Right—Hand Side

1. Model I:

Model I presented in either its deterministic equivalent form

or conservative approximation form is a linear program and sensitivity

analysis on the cost vector or the right—hand side can be performed

in the usual manner according to linear programming theory.

When the approximation is used , although we have no guarantee

that a change in the approximate problem will reflect exactly a

change in the original problem , we can confidently say that in some

cases it will give an indication of the e f fec t  of that change.

For example, if the right—hand side b is modified as to expand

the original feasibility set, it is easy to see that the feasibility

set of the conservative approximation will also be expanded .

Similarly, a change in the cost vector c in the conservative approxi—
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ination will yield the conservative approximation to the modified

original problem. In short, if in the absence of other valid

method , we are ready to settle for this conservative approximation

solution, then the sensitivity analysis of the conservative approxi-

mation will give us results of the same validity as the solution

for which we settled .

2. Model II:

Model II in its deterministic equivalent form is a nonlinear

program and the sensitivity analysis will have to be performed

according to the specific nonlinear program that Model II represents.

However , we have noted that we might not be able to obtain this

formulatIon explicitly , in which case we cannot solve the original

problem . Here the conservative approximation derived earlier

will prove to be useful. In the case the 
~~~

. 3 1, . . .,  n belong

to the set C and y I 4 , the conservative approximation was
shown to be a linear program in Theorem 3.2 and the usual sensitivIty

analysis on the cost vector and the right—hand side can be performed

using the theory of linear programming . It is important to note

that this procedure will, yield the exact behavior of the optimal

solution with respect to variations in the cost vector and the right—

hand side, only when y - 4 and y — 1 . For 4 < y < i conserva—

tive approximations will be obtained ; that is to say the op timal

solutions will belong to a subset of the feasibil i ty set and will be

optimal among that subset. The motivation for  using this approxima-

tion is the same as discussed previously for  Model I.
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C. The Probability Vector y

y is given a priori in Models I and II. One might be interested

in the effect on the optimal value of the objective function of

relaxing the probability constraints by decreasing y or tightening

the probability constraints by increasing y . For example, if the

probability constraints represent production standards, what will

be the ef fec t  of modifying these standards on the optimal expected

cost? The analysis can be performed in many different ways:

modifying one constraint at the time, or many constraints.

1. Model I:

Both the deterministic equivalent and the conservative approxi-

mation are linear programs with y in the right—hand side and the

usual sensitivity analysis of the right—hand side can be used.

The mo t ivation for using the approximation has been discussed in

the previous section . Here we may add that the sensitivity analysis

can be performed easily on the approximation since the right side

is a linear function of y . If we choose to change only one

or modify all y~ i = 1, .. .,  a by the same ratio , we have the

usual one dimensional sensitivity analysis. However if we choose

to modify more than one or in general modify y , then this is a
multidimensional sensitivity analysis and it is discussed in Walters

(14].

The conservative approximation for Model I when e
j C C

3 — 1, .. .,  a and y 14 can be formulated as:

~~ Irri~ — — -~~ — -—— ~~ -~ _~~~~~~~~~ . ~~~~~~~.— _ _  _,____ .____ _______ 4 ___ - ___••_.•. _ • .__ ..__•~•___ —~~~~~——-——-- ‘-- -- ----- - - --- --- - - - -—-- -.
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minimize

subject to

~ A1 x Ib ~~+ (2Y 1 -1) ~ (A 1.(a i - l ,
3—1 i—I ~

or in a more convenient notation:

minimize

subject to Ax 1 b + By

where B is an n X a matrix with

Bi. 0 for i 
~ 3

and

n
- = ~ (A .(a , i = 1, . . ,  m

j—l 
ij j

and

2y. — 1 -

The most general sensitivity analysis would be to find all

optimal solutions for 0 1 < 1 -

Of course if we know the exact form of the deterministic

equivalent , we should perform the sensitivity analysis on this

problem and get exact results. However , it cannot be done directly

as sensitivity analysis of the ri ght—hand side of a linear program ,

because the right—hand side is not a linear function of y - The

usual sensitivity analysis can be performed for the parameter

_
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A — (A 1, 
~~~ 

) where A~ — G~
1
(l — y~) i — 1, - . .,  a and

then later converted back to y using the formulas :

1 — G~~(A .) i — 1, - . . ,  a -

Here again , as described for  the approximation , one—dimensional

or multidimensional analysis can be performed .

2. Model II:

In this case the y vector is not represented in the right—

hand but in the left—hand side of the constraints. We will not deal

with the deterministic equivalent as the left—hand side is dependent

on the distribution of the random variables and is dif ferent  for

every problem . However we will, mention that for the conservative

approximation, the one—dimensional case is a parametric column

linear program and this problem has been treated in Lawrence (9].

D. Variations in the Distribution Functions of the Random Variables

In this type of sensitivity analysis the probability vector y

has been specified and cannot be changed ; however, the distribution

functions of the random variables can be modified . For example,

if the random var iables represen t error in measuremen t, rep lacing

the measuring device with a more precise one will alter the distrIbu-

tion functions of the errors.

In the deterministic equivalent approach , a change in the dis-

tributions of the random variables produces a corresponding change

in the convolution. Since it is very dif f icul t  to describe mathe— —

tnatically this relationship for a general enough case , we will

concentrate our efforts on the conservative approximation approach . 

-~~~~~~- - - - —-~~~~~~ -~~~- — -~~~
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1. The Change in Distribution Functions for Random Variables
Belonging to C

From the formulation of the approximations, the main relevant

change in the distributions of which we want to keep track is

the change in the range of the densities. However , it is important

that the modified random variables still belong to C for the

approximation to be meaningful. We will give two examples of

such changes. A random variable X c C with density f

distribution function F and range [—a,+a] will be considered .

We want to reduce the range to [—Ga ,+Oa] where 0 < 9 < 1 .

Example 1: Truncation

The new random variable X will have range [—Oa ,+Oa] and

the following density f and distribution function F

O x < — O a

f (x)f (x )  = F(@a) — F (—$ a)  —6 a I x I

O x > e a .

0 x < - O a

~(x) = P-(ea) : ~~~~~~ -Oa I x I 9a

1 x > G a .

The properties of X are presented as shown in the following

theorem : 

--- - - - --~~~~~~ ---~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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Theorem 4.1:

If X C C , then X t C -

Proof:

a) f (x )  = f ( — x )  Vx since f ( x )  = f ( — x )  Yx -

b) f ( x )  is unimodal with maximum at 0 since f(x) is

unimodal with maximum at 0.

c) [— 8a,+8a] is finite and is the range of X -

d) f (x )  is continuous since f (x) is continuous .

ExamDle 2: Concentration of Mass

The new random variable X will have range (—8 a ,+6a]

and the following density ? and distribution function ~~ -

I 
- (0 x < — 8 a

?(x) — ‘ti f(~) — ea I x I Oa

0 x > 8 a .

0 x < — 8 a

~(x) —8a 
~ 

x < ea

1 x > 8 a

The properties of X are preserved as .is shown in Theorem 4.2.

• Theorem 4 . 2 :

If X C C  , X c C  - 
-

-- -— -- - -—— —~—~- - — -— - - -— —rn —
~~~~

- - -- - --~~~~- • -- - - -• - -- --—
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Proof:

a) For x t (— O a ,+Oa] ?(x) 4 f(~-) = 4 f(~~~) ? (—x)

as X t C -

b) As X c C f(x) is unimodal with maximum at 0 , so is

f(~) 
and 4 f(~) .

c) (—8a,+9a) is finite.

d) ?(x) is continuous since f(x) is continuous .~~

This second method gives immediately the corresponding chance

on the variance of the random variable.

Theorem 4.3:

For X c C and 0 < 9 < 1

Var (~) = ~2 Var (X) -

Proof:

+9a +9a

Var (~) = f  x~~(x)dx = f  ~~~
— f ( ~ )dx

change of var iables

xv~~~~

~~~~x 8 v

d x = 9 d v  —  

--~~~~~~~~~~ —- -- -—
-
~~~ 

____ i 
~~~— -— - - - —~~~~ - -— —~~~~—~~~-~~~~~~~~~~ ——---—~~~- -— —--— -— --—-—
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var (~) - f (8v)~ f (v ) O dv

— e
2 f  v2f (v )dv

— Var (X) . U

2. The Parametric Models:

8 is now the parameter for this sensitivity analysis with

each random variable having its parameter 8 . 3 = 1, - . .,  a .

The conservative approximation will be presented here.

Model I:

(For e
3 

c C j 1, . . . ,  a and y 1 4) -

minimize cTx

subject to

~ A. .x . lb . + (2i~~ — 1) ~ lA~ (a e i — 1, - .. ,  a -

3—1 ~~ 3—1 ~

Using a more convenient notation the model can be described as:

Tminimize c x

subject to Ax I b + B’8

where B’ Is an n x a matrix such that B~3 
— (,y . — l ) ( A

13
(a . -

- — - -  - -- ~~~~~~~~~~ - ---“- - - -- — —- --- --- - - - --- --—-—--- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
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This is a mui.tiparametric right—hand side linear program

and such problems have been discussed in D. Walters [14]. However,

any dimensional parametric problem can be discussed by using the

relation 9 = A + Be ’ , in particular if one sets e~ = 8 Vj

then it is reduced to a one—dimensional parametric problem .

Model II:

(For C j = 1, . .,  a and y .i-4 and Cx X I OJ c -

Tminimize c x

subject to x c 0

j~ l 
[A~3 

+ (1 — 
~~~~~~~~~~~~~~~ I b~~ 

i = l~ ...~~ a -

This is a parametric column linear program and we will refer

the reader to Lawrence (91.

The deterministic equivalents for Models I and II are not in

form amenable for this type of sensitivity analysis; this is why

the approximations are used here. We will mention again that these

approximation problems are identical to the original problems for

y 1 and y — 4 and that these are good approximations in the

neighborhood of y — 1 , as a variation 8 is felt most strongly

at y 1 as shown in Figure 4.1.

I-

-~~~~ - -~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
- - --

~~~~~~~
- -- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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j~ l 
~~~~~~~~~~~~~

~ 
j~ l 

(A ~3
(a~

0 1 y
i

approxima~~~~~~~~~~~ >G~~
(1 —

FIGURE 4.1

I~
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E. The Reducing of Uncertainty Problem

One problem of further interest is the problem of the trade—off

of the improvement of the optimal value of the objective function

when the uncertainty is increased versus the cost incurred by this

increased uncertainty . For example, in Section C, if there exists

a cost function associated with the vector y , the problem become
that of selecting optimal decisions x and standards y - The

same problem exists in Section D where y is fixed ; the variations

In the ranges of the random variables can have a cost associated

with them. The problem is optimizing the total cost of the original

function and the cost of reducing the uncertainty of the random

variables . This is why we will call this problem “the reducing of

uncertainty problem .”

1. Cost Functions:

The cost functions for the reduction of 8 or y that we are

going to consider have the following characteristics: They are non-

negative and increasing for decreasing values of 8 or y -

Essentially , the cost of reducing the uncertainties (reducing the

range [—a
3
,+a

3
] to (—8a

3
,9a

3
] with 0 < 8 < 1) goes up as the

range decreases. For y , the cost due to producing material not
meeting standards or not meeting the demand , for example , increases

as the probability y is decreased .

We will propose the following cost functions. We will use the

symbol ~ to represent both the vector 8 and y (-y = 2y — 1

as defined in 2. of Section C) to avoid repeating the discussion.



--

I

59

a) in the case where all reductions ä~, i = 1, j . .,  a are

equal to ~ 
, a reasonable cost function is:

d
c(s)  = -

~~~~ 
— d

0

with d
0 1 

0 - Then

c(l) = 0

h a  (c(~5)] = -

This is nonnegative and increasing for decreasing values

of d ( 0< 6 < 1 )

b) In the case a) above it might be unrealistic to postulate

that all uncertainty can only be removed at an infinite

cost. This is especially true for 6 y - Recall that

-r = 2y — 1 in the parametric problem where y is the

parameter . We can see that if the cost is infinite for

y 0 , this corresponds to infinite cost for y = 4
which is the cost of each constraint to be satisfied 4
of the time. It is clear that a modification to a) is

needed to reflect this fact , this is why we introduce b):

If Va

c(S) = 
d

1

+ ~ 
- 

d
1
+ 1 where d

1 
> 0 ; d0 ~ 

0

then c(l) = 0 ; c(O) = d1(d1 + 1)

L~~ 1 -~~ -~~~~~~— -
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c) When all y~, are not necessarily equal, the generalization ,

for S = 
~~l’ ~~~~~~~ 

6n~ 
, is:

a d3 a d3
c(S) — ~~ - 

0 
— ~~

j=1 d~~+ 6 . j=l d~~+ l

with d~, I 0 and d~ 1 0 for all j = 1, . . . ,  a -

d) A more global approach where the total uncertainty reduced

is taken into consideration is for S = (oi. 
~~~~~~~

- 1 
_ _ _—

~ d . 6 . + d  d .
3=1 ~~ ~ j=0 3

with d . I 0 Yj = 0, - ~~., a -

It is important to note that for = 8 . , we are talking
about reducing uncertainty when we reduce S - It is in this

context that the name “the reducing of uncertainty problem” was

devIsed . However, when S
j 

= ‘r~ 2i~ 
— 1 a decrease in S

corresponds to a decrease in y~, which is an increase in the

probability of the solution not being feasible and the cost function

then reflects the cost associated with this expected loss of

feasibility .

Many more cost functions could be proposed ; however , we will

restrict our attention to d) which is a generalization of a) and b).

This is because this cost function has the advantage of being

convex as will be shown in the following theorem . It is also

amenable to a solution scheme presented in Chapter V.

_ _ _
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Theorem 4 . 4 :

For d . 1 0 3 0 ,1, - . . ,  n and y I 0 the function

1 is convex .
d
0 
+ d y

Proof:

Consider any vector x and y such that x 
~ 

0 and y 
~ 
0 -

Then :

Case 1:

If

dTx I d
Ty 1 0

~~ d0
+ d Tx > d

0
+ d Ty I O

T T T Td x — d y  d x - d y
(d
0 
+ dTx) (d0 + dT

y) 
I 

(d0 
+ dTx)2 

1 0 -

Case 2:

If

dTy I d
Tx I 0

T T T T
~~ 0 I 

(d 0 

+

d

d

~~~

x

~~~

(O

Y

+ dTy) 
I

From Case 1 and 2 it follows that

- - - -- - -~~~~~- - -- - .- - - ----~~~~~~~~~~~~~~~ -------—- - - - •—•--- - -  ~~~ I
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T T

+ dTy 
- 

d0 + dTx 
I 

( r )
2

1 
> 

1 
— 

fl d
3

(y 4 — x
3

)

+ dTy 
— 

d

0 

+ dTx 3=1 (d0 
+ d Tx)2

T 1 
l ÷ v I  1x [y _ xl

d
0
+d y d

0
+ d x  Ldo +dx ]

Therefore 
T 

is a convex function.m
d
0 
+ d x

2. Applications to Model I:

For y ~4 and e. C C j = 1, . .,  n we have the following

conservative approximations .

a) For 6 = y .

The model can be formulated as follows using the notation

of 1) of Section 3.

minimize ~~~ + 
1 

- 
1

d
0~

4.dTy 
~ d .
j=0 3

subject to Ax — By 
~ 

b

l > y > O .

b) For 5 — 9 .

Here also using the notation 2) of Section D the model is

_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
_ _ _ _ _  _ _ _  

.

-

~~
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minimize cTx + 
T 

— n 
1

d
0
+ d e  

~ d ,
3=0 ~

subject to Ax — B’8 I b

1 > 0 > 0 .

These two problems a) and b) fall into the general pattern

of the following problem:

T 1 1
minimize c x + —

T a
d

0

+ d y  
~~ d .

j=O ~

subject to Ax — By 1 b

l > y l O

with d > 0  -

This problem is analyzed in Chapter V and an algorithm is

presented to solve it.

These conservative approximations do not yield the exact

solution. However , these problems are exact for y — 1 or 4
and for b) the approximation is very close for y near 1 as the

variable 8 reflects the change in the ranges of the random variables

and this variation is felt most strongly in the neighborhood of

y — 1 as mentioned earlier (see Figure 4.1) .

3. Applications to Model II:

For y 14 and n . C C 3 — 1, . . .,  a we have the following

conservative approximations .

- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ —- - --~~ ~~~~~~~— -~~~_ --—-~~--—---•-—------. - --- -
~~~~~~

-—
~~~~~~~~~

--------
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‘II a) For 5 — r

. . T 1 1minimize c x + —

d

0

+d Ty 
~~ d

3=0

subj ect to

n
~~ [A .. — y ( A . ( a  lx . Ib , i = 1, .. . ,  a

3=1 13 ij 3 3 1

x > O

1 > y I O .

b) For 6— 8

T 1 1minimize c x +  —

d
0
+d TO 

~ d .
3—1 ~

subject to

~~~~~~~ 

+ [1 - 2Yi](A .j~
a
j
8
j1xj lb 1 

i - 1, . . .,  m

x > 0

1 > 0 > 0 .

These two problems are nonlinear programs that can be solved

using the known algorithm and no special solution schemes will be

presented .
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CHAPTER V

In this chapter the following prograimning problem is analyzed 
- 

-

and an algorithm is specified for its solution.

A. The Reducing of Uncertainty Problem

Find the optimal solution (x ,y) which solves

minimize ~~~ + 
Td + d y

subj ect to Ax — By lb

x >  0

1 1 Y 1 0

with d > 0  and d0 > 0  -

This is a convex program as the feasibility set is a polyhedral

set and therefore convex, and its objective function is convex as

the sum of two convex functions since ~~~ is linear and 
T —

+ d y

is convex as shown in Theorem 4.4.

This problem is clearly defined if the following condition holds:

Condition 5.1:

There exists (x ,~~) such that

A x - B y  > b

11Y 10

and d
0 
+ dT~~ > 0



__ _ _  -- --

66

We will assume this condition is satisfied throughout this

discussion.

The strategy used to solve this problem will consist of solving

a different equivalent program and obtaining the original optimal

solution from the optimal solution of the second program . The term

equivalent program is used as defined below.

Definition:

Two programs are equivalent if there exists a scheme to obtain

the optimal solution of any one of the two problems knowing the optimal

solution of the other problem .

B. Two Equivalent Convex Programs

Theorem 5 .2 :

The following two programs are equivalent:

(a) minimize h (x)
xc0

where h(x) f(x) + g(x)  , f ( x )  and g(x) are convex functions

for x c 0 , and 0 is a convex set.

(b) minimize ~~~~

where

= a + miii {g(x) f(x) 
~~~ ~~~~

XCO

and 

----~~~~~~~~~~~ . - - - -- - - - - • - --~~~~~~~~~~~~ -~~~~~~~~~~~~~~~~~~~~~~
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8 — C a  { x j x c o  and f(x) < a} #~~) .~~

In other words, using the definition of equivalent programs,

the following statements are true:

(i) mm h(x) — mm •(a)
XCO

(ii) For any ~ optimal solution of (b) there exists at

least one corresponding ~ optimal solution of (a),

which can be obtained as follows: x C 0 such that

ala {g(x) I f ( x)  
~~. ~~~} = g(~) -

(iii) For any x optimal solution of (a) there exists at

least one corresponding optimal solution of (b),

which can be obtained as follows: ~ such that

— f ( x )  and ~ C 8

Proof:

Let us first establish two facts to be used later in the proof:

For any ~ such that ~ 0 and h(~ ) = mm h(x) then: 
•xc0

Fact l :

gG) mm {g(x) f ( x )  
~~. 

f ( ~~~ ) }  -

-
/ XE0

Fact 2:

$(f(~)) lain ~(a)

--• —

~

— --

~ -
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If Fact 1 were not true then there would exist an such that

c 0 and g(~) < g(~) and f(~) < f(~) which yields: ~~ C 0

such that h(~) = f(~) + g( ~~~) < f(~) + g(~~~) = h(~) -

This contradicts our assumption about x

Therefore Fact 1 is true.

If Fact 2 were not true then there would exist an ~ such that

t 8 and 4(a) < 4 ( f (~)) as c~~(&) = + ala {g(x) f (x) I
* *and a c 0 . There exists an x such that x 0 and

g(x *) = ala Cg(x) I f ( x )  I ~} -

* *Therefore, there exists x t 0 such that h(x ) =

* * — *f ( x ) + g ( x ) < a + g ( x ) = ~~~(a) .

Hence

h(x *) < (
~~~~)) .

However, Fact 1 established that

= f(~) + mm {g(x) f(x) 
~ 

f ( ~~~ ) }  = 
~(~ ) + g(~~~)

xEO

*
so there exists x £ 0 such that

h(x ) < fG) + g(~~~) = h(~)

which contradicts the assumption about x , therefore , Fact 2 is

true.
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Now we can prove :

(i) mm h(x) = m m  ~(a)
XCO aC8

As Fact 2 say that

~(f(~)) lain c~(a)
aC8

It is sufficient to show that:

1) f(~) C 0 -

This is true since

x E Cx I x C 0 and f(x) I

- 
. and therefore Cx x C 0 and f(x) 

~~ 
f ( ~~~~)}  

~~ 0 -

2) h(x) — $(f(x))

Fact 1 establishes this as:

= f(~) + mm Cg (x) f(x) 
~

= f(~) + g(~~~)

- h(x)

Hence as f (x )  t S and by Fact 2

= mm ~(a)
aCO

and since - 

--- - ±11
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~~~~~~
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~~~~~~~
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h(x)

and

h (x) = mm h(x)  -

It is true that

m m  h (x)  ala ~ (a) -

xe0

(ii) Va c S such that

mm ~(a) -

There exists x C 0 such that

g(~) = ala Cg(x) -I f(x) 
~~ . ~}

and

h(x) = f(x) + g(
~~~) 

= am h(x) -

XCO

Let x C 0 be such that g(~) = ala {g(x) I f (x )  < ; such

an ~ exists since & e 8 , then

f(~) = ~ and h(x) =

because if it were not true then f(~) < arid

h (x )  f(~) + g(i) <

—

~

-- — -_ - - —_- -— --- ~~~~~~— —-- - ----~ — _J~~~~~~~ _ -_~~~--_ — _ -



which yields the contradiction that there exists x c 0 such that

h(~) < ala ~(a) — ruin h(x )
acO xt0

as seen in (1) . Therefore

= + g(~~~) = f(;) + g(~~~) = h(~) -

Hence h(~) = ruin ~~a) mm h (x)  as seen in (i) .
XC0

(iii) Vx such tha t x S 0 and h(~) = ruin h(x) , then there
— — — 

xs0

exists a c 8 such. that a = f (x )  and

= mm ~(a) -

Let a C 0 such that ~ = f(~) ; such exists since

Cx X c 0 and f(x) 
~~. 

f ( ~~~) } 
~ 0 since x belongs to that set.

We have seen in (m ) and (it) that

h(x)  = ruin D(a)
asS

and

h(x)  = 4~(f(~ ))

Hence

= ruin D(a)
aCO

and a — f ( x )  is an optimal solution of (b).U

— —~~~~~~ ~~~~~~~~~~~ -~ 
--
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Program (b) is also a convex program as is seen in the next

two lemmas.

Lemma 5 . 3:

The sec 9 = Ca Cx x c 0 and f(x) <a ) ~ 0) is a convex

set.

Proof:

s 8 and a2 c 8 . There exist x1 s 0 and x2 c 0

such that

f(x1) I and f(x2) I a
2 

-

Hence for any A such that 0 I ~ ~~ 
1 it is true that:

A f ( x 1) + (1 - A ) f ( x 2) I A
1 + (1 - X)a2 -

However using the convexity of f(x) it is also true tha t :

f(Xx1 + (1 - X ) x 2 ) I Af(x
1) + (1 - A ) f ( x 2 ) I Aa 1 + (1 - X)a2 -

This inequality and the fact that 0 is a convex set clearly

shows that for any a1 c e a2 
.5. ~~ 1 

1 there exists an

x s 0 , namely Ax 1 + (1 — A)x 2 , such that f(x) I + (1 — A) a
2 

-

Therefore Aa’ + (1 — X) a 2 c 0 and 8 is a convex s e t .U

Lemma 5 .4 :

The function cb (a) is convex for  a c 0 -

-

~

- - -

~
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Proof:

Va1 a~ s -

cp (ct1) = a1 + ruin {g(x) f(x) I c~ } -

= a2 + mm (g(x) f(x) I a
2) -

As a1 c 0 and a4 c 8 there exists x1 s 0 and x2 s

such that

~~a
1) = a1 + g(x 1) with f ( x 1) 

.5 a
1

a2 + g(x 2 ) with f ( x 2 ) I -

For any A such that 0 I ~ I 1 , Aa1 + (1 - X)a2 s 0

by Lemma 5.3, therefore there exists:

+ (1 - A)a2) = Aa1 + (1 - A)a2

+ mm {g(x) I f (x )  < Act
1 + (1 — A)a2) -

xcQ

Now if we want to prove that 4(a) is a convex function for

a c 8 it is sufficient to show that

1 2 1 2
~(Xa + (1 — X)c & ) 

~ 
A~ (a ) + (1 — X)~~ a ) -

Since f is a convex function and 0 a convex set

- Ax1 +(1 — X)x 2 c O



-- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~

-- —~~~~ - -=- -— -

and

f ( A x 1 + (1 - A ) x 2 ) 
~~ 

A f ( x 1) + (1 - A)f(x2) I Act
1 

+ (1 - A ) a 2 .

- - Therefore:

ala C g ( x )  I f (x) I Act
1 + (1 - X)a2} I g(A x 1 + (1 - A ) x 2 ) -

xs0

Hence

+ (1 — A)a2) I Act
1 + (1 - A)a2 + g ( A x 1 

+ (1 - A) x 2 ) -

Using now the convexity of g(x) it is true that:

$ (Act1 + (1 - A)ct
2

) 
I Act

1 + (1 - A ) c t 2 
+ A g(x 1) + (1 - A ) g ( x 2 )

—~ ~(Aa
1 + (1 - X)a2) I A [ct

1 
+ g(x 1)]  + (1 - X ) [ c t

2 
+ g(x 2 ) ]

+ (1 - A)a2) I A~ (ct1) + (1 - A)~~~~(a 2)

~(a) is convex for a ~ 8 a

C. An Equivalent Convex Program to the Reducing of Uncertainty Problem

If we apply the results of Section B to our original problem

we obtain the following facts:

Theorem 5.5:

The following two problems are equivalent. 



_ _

(a) minimize 
T 

+ 
1 

T

d
0

+ d y

subject to Ax — By 1 b

x > 0

l > y > 0  -

(b) minimize ~~(c t)

subject to a s 8

where

~(a) = a + ala 1 cTx
(x ,y)cO ~d0 + d y j

0 ((x ,y) ( A x - B y > b  , x > 0  , l l y > 0 }

0 Ca {(x,y) I (x ,y) s 0 and ~~~ Ia) ~ -

Proof:

Apply Theorem 5.2 to the convex program (a).tm

Since it is our goal to use problem (b) to solve problem (a)

it is useful to study (b) further.

Proposition 5.6:

Under condition 5.1:

1 T —l
ruin — c x < c t  =

(x , y) cO ~ d0 + dTy 
— 

mm {_d0 
— dTy 

T
~ ~ 4(x ,y)sO

Proof: -

S ince d 0 1 
0 and d 

~ 
0 and x 

~ 
0 , y 

~ 
0

—- -- -— — 
- -- -—  -- -— -- --

~~~~~~

rn- -
~ 
--- 

~~~~~~~~~~~~~~~~~~~~~~ 

- - A - 
- 
~~~

~-
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mm -~ 1 I cTx < a — 1

(x,y)cO ~ d0 
+ dTy 

— 
max {d 0 + d

T

y cTx 
~~.

(x,y)cO

= 
-ala {_d 0 

- dTy I ~
T 
I 4 — mm {_a - d

T
y I cTx I } •

(x ,y)cO

Corollary 5.7:

1
= ~ + 

~(a)

where - 
-

= — ala {_d 0 
— d

T
y cTx I .

(x ,y)cO

Proof:

Apply Proposition 5.6.1

Proposition 5.8:

a
~b(a) is a bounded function for a s 0 - 5’ d . I ~(a) 1 0 -

j=o -~

Proof:

Since d0 I 0 and d I 0 and as (x ,y) c 0 ~~ 1 1 Y 1 0

0 Id 0 
+ dTy I ~ d . + ~~ d . 

~ ~~(ct) 10 .1
3=0 ~ j—0 ~

Proposition 5.9:

(i) If for iJ,(~) = ~~ d . - Then Va subject to a > a
3—0 -~

a
~(a) = ~ d . . 
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(ii) If for a ~,(a) = 0 - Then Va subject to ~ a

— 0 or ~P(a) is infeasible.

Proof:

Since ~(a) = — mm {_d
0 

- d
T

Y I cTx 
~~.

(x,y)cO

(i) If 4~~~) — ~ d. for cTx I & the minimum bound — ~~ d .
lao -~ _j =0

has been reached and relaxing the constraint cTx I a will

riot improve the object±ve function.

(il) Same reasoning as —d
0 

— d
T

y reaches its upper bound ;

however , ~~a) can be infeasible for a a -

Corollary 5.10:

n
If  f o r  a ~ d . . Then ~~~ is an increasing linear

3=0 ~

function of a for a 1 & : ~(a) — ~ + n
1 

-

3— 0

Proof:

~(a) = ci + 
~~~ct) 

-

a
Proposition 5.9( 1) shows that for ~ I ~ q~(a) = ~ d 4 , therefore

— 1 j =0 ~
for a l a  ~~~(c t )  - ~ + .1

i—U

Proposition 5.11:

The set S Is either the empty set or the whole real line or an

interval closed on the left and having +~~ as a boundary on the right. 

-- -~~~~~- -. _ - -~~~~~~~~~~~~~~~~ -~~~~~~~~~~~~ - . ~~~~
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Proof:

Lex a 5.3 established tha t 0 is a convex set and as it is

one—dimensional, 8 is an interval of the real line. If the

constraint set 0 is empty , 8 is empty as there does not exist

any (x ,y) such that (x ,y) c 0 and ~~~ I ci for any a

If the problem is unbounded , Corollary 5.7 tells us that

— a ~
-• 
~ ct)

and Proposition 5.3

+ ~~ d .

3— 0  
~

So that ~ (a) is unbounded if and only if 0 = (—~~,-f~~) . * 
-

The upper bound of the interval is always +~~ as for any

a s 9 . Then for any a I ~ , a c S since

S Ca I {(x ,y) I (x,y) s O  and ~~~ Ia) ~ 0)

if there exists ~~~~ s 0 such that ~~~ ~ & , then surely
cT~~< a  for a > a  -

If there exists a b such chat

T{(x,y) (x,y) £ 0 and c x < bi 0

and

{(x,y) I (x,y) s 0 and cTx Ib} ~ 0 

--- - - - - 
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then b is the left hand bound of the interval and the interval

is closed because the set

{(x,y) I (x ,y) C 0 and ~~~ Ia)

is a closed set. I

D. General Description of the Algorithm and Optimalitv Criterions

As we have mentioned , the idea for solving the original problem

is to first convert it into an equivalent convex program, solve

this problem, then retrieve the optimal solution. The algorithm

is concerned with solving the second problem. It will be done

in two phases.

Phase 1:

A sequence Ca~~~} is generated (a. s 0) such that a .~ 1 
>

from a starting feasible point a c 8 - (Incidentally i can be

negative as the starting point is not necessarily at the boundary

of the sec 0 .) This sequence is generated until an interval

[aj,aj+1] or [a~~1~a141] is identified where the optimal solution

lies. This is done simply by evaluating the p (a 1) ’ s and comparing

them until the following optimality criterion 1 is satisfied .

This criterion is to be used when the possibility of an unbounded

problem has been discarded .



.-~~--- - --~~- -~~~--~~~~~-~~ - - —

80

Qptiruality Criterion 1:

(I) If for ci , a’ , ci ’ ’ C 8 such that a ’ < a < a’’

it is true that

~(a) < ~~(ci ’) and ~ (a) <

Then the optimal solution lies in the interval [ci’ ,a’’]

(ii) If for a’ , a ’ ’ c 8 such that ci ’ < cm ’’ it is true that

=

Then Va s [a ’ ,cm ’ ’ ]  , a is an optimal solution.

(iii) If for a’ , 3 ’’ s 0 such that a’ < ci ’’ it is true that

< •(a’’) and Vci c S , a > c m ’ , then the optimal
solution lies in the interval (a ’,a’’] -

Proof:

As ~ (a) is a convex function and 0 is an interval as shown in

Lemma 5.4 and Proposition 5.11; Case (i) is derived from the fact

that ~(a) is unimodal. Case (ii) is true because a convex function

can be constant only at its minimum . Case (iii) is when ci ’ is

the left—hand boundary of the interval e ; then as 4~(a) is convex ,

either cm ’ is the optimum or the optimum is in the interval

[ci’,a’ ’]  .1

Phase 2:

Once such an interval has been identified , a minimum is found for

the range and thIs is the global minimum.



Optimality Criterion 2:

- 

If for & such that & s [cz ’,ci ’ ’ J  where (-zm ’ , cm ’ ’ ]  is the •

interval obtained from Phase 1, it is true that

~~&) I~~(a) V a C (a’,a ’ ’ ]  ,

then & is the optimal solution.

Proof:

Since ~(a) is convex over the interval 8 and (a’,a ’ ’]

was found to contain the optimal solution , this optimality criterion

is just stating that a local minimum is a global minimum.I

E. Feasibility and Unboundriess -

In this algorithm an initial problem is used to obtain a

starting feasible point or to determine whether the original problem

is unbounded or is infeasible.

Initial Problem:

minimize ~~~ — d
T

y — d0

subj ect to Ax — By I b

x >  0

1 1Y 1 0

Theorem 5.12:

If the initial problem is infeasible, the original problem is

infeasible - 
-

~~~~~~ ~~~~~±II:



- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

Proof:

Both problems have the same feasibi l i ty  set.I

Theorem 5.13:

If the initial problem is unbounded, then the or iginal problem

is unbounded .

Proof:

If the initial problem is unbounded , then there exists a vector

such that

— — 1 ’0 ~ (u ,w ,z , z )  1 0

and

Au — B w— 1 z
1

— 0

1w + 1z 2 
— 0

and

T- T-c u — d w < 0  -

It is obvious that w = z2 
— 0 since that is the unique

solution of I( + z2) = 0 w I 0 , z
2 
1 0

Hence, we have the vector (~ ,O ,z
1
,0) such that

0 ~ (&,O ,z~ ,0) 10

and

— -  _ . ~~~~~~~~~~~~~ rn - - _ _ _
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— 1Au — Iz a 0

and

c u < O

By Condition 5.1 there exists ~~~~ such that Ax — By lb

x 1 0 , 1 I y I 0 and d
0 

+ dTy > 0 - Then, the vector

(X~ ÷ ~~ is a feasible solution and makes the original problem

unbounded by increasing A to infinity (A I 0)

him (cT (x~~ + 
1 

T-
\ 

= -~~

d0 + d y)

since ~
T— 

< 0 and 1 
T— ~~

d
0 + d y

Theorem 5.14:

If there exists ~~~~ s 0 such that

T— T- (T  T

c x — d y — d
0 

ruin ~c x — d y - d 0(x ,y)cO

where

A x - B y > O
0 — ~~~(x ,y)

( x > O  ]- IYI0

Then

_dT~ - d0 — ruin ~_d
T
y - d 0 I cTx I c

T
~~} 

-

(x ,y)cO

A - 
- — -- — - 

~~iilui~~ ill~~



84

Proof:

TIf there existed (x ,y) c 0 such that c x c x and

T— T T= T- T—
— d y — d

0
< — d y — d

0 
then c x — d y — d

0
< c x — d y — d

0

for (~ , )  c 0 which contradicts our assumption.tm

Corollary 5.15:

Under the assumption of Theorem 5.14 the following is true:

= dTy +

where a _~~
T

~0

Proof:

Use the definition of ‘~(a) .1

F. The Parametric Linear Program ~(a)

We have already introduced ~~a) noting that ~~a) a + 
~~a) 

-

Phase 1:

As ji(a) is a parametric linear program the sequence Ca .)

used for Phase 1 of the algorithm will come naturally from the

values of cm where the parametric linear program changes basis .

= —minimize —d
0 

— d
T

y

subject to Ax — By I b

x > O

cTx < c m  -



~
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The initial problem gives us a starting feas ible point cm,~
with the feasible solution for ~i(~m )  as seen in Corollary 5.15.

The idea is then to first increase a until the optimality criterion

1 is satisfied or , if necessary , decrease a

Phase 2:

In Phase 2 we will use the fact that the points of the sequence

Ca .) are the points where the basis changes in the parametric l.p.

~ (a) -

From the theory of linear programming it is well known that

for points of the sequence Ca .)

For ci. < cm < cm .
1~~~ 

— i+l

— 
!p(a

1~1) 
— ~v(a~ ) a~~1~ (a

1
) — a~~ (a.~ 1)

~~a) = a +
— cm1 a

1~1 
— a.

and for ~~~~ .5. ~ I ~~

iP(a i) — ~~a.1 )  a .tjs(cm .1 ) — 
a. 

14
s(a.)

am — a1_1 cm~ —

We can now prove the following two theorems under the following

assumptions : au_i , a. , a~ 41 are 3 consecutive points of the

sequence generated from the parametric linear program ~ (a) which

satisfied the optimality criterion 1.
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Theorem 5.16:

For an interval (a
~
,a.+,] such that ~(a1

) < 
~

(a .+i
) ,

(1) If ~ (a
1÷1
) — ~p(a1) I 

0 then

p (a ) ruin c~(a) -

(ii) If 
~

(aj+i) — ~,(a.) > 0 then one of the following is

true.

(a) a~ s [a1,ci .÷1
) and ~ (a *) = ruin

ac(a . , a
~+11

(b) ~~~ ~ (cm .,a
~+i ] and 4(a ) ruin

as (a , a 
i÷l1

(c) cm* 
~ 
(aj,aj+1] and a** 4 [cmj,cL~÷i

] and

= ruin ~ (a)
1 aC[a

~
,aj+l]

* **where cm , a are defined to be:

* 
ajlp(ai+i

) — ci
141~~ (a

1
) 

J 
a~~1 

— a.
ci — a 1~~1 — cm~ 

+
~~f~p(a ) — ~~a~)

** 
a
i~
i(aj+1

) — aj+i~
,(a

i
) 

f~~~ 

aj+1 
—

ci — a
1~1 

— cm~ 
- 

~ ‘~~a1÷1
) — i~,(a~) 

-

Proof:

For the interval (a
1~

ct~÷11

-
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I
~ (a) = ~ +

where

— 
~~a1) cm .~ 1~

J(a
1) — 

a .
~~

(a
i+1)

a
~+1 

— a 1 ci .~~1 
— a~

The derivative for ~(a) in this interval is

~(a) = 1 - ~~~- (~ (a))[*(cm)]
2 

-

The roots of the derivative are the solution to the equation:

= -i-- (~p(cm))
or

F 
1i~
,(a. 1) — ~~a~) 

~ + 
aj+1~

P(a
i
) — a j tp (a .÷l )12 

= 
~~a.~ 1

) — ~~a~)

L ~~~~ 
- ai+1 

— a. j  a~÷1 
— ci.

— ~~a1
) a1~ 1’4 (ci .)  — ci .~ ,(a . 1 ) 

/~P(a.÷1) 
—

= +‘ Iai+l
_ 3

i — v  aj÷l
_ c i

i

which yields the two roots

* 
cm .
~~

(a
j+1

) — a~÷1~P(cm~ ) 
/ 

a
1~1 

— cm , 
—

a~~1 
— a. ~~~I~~(a1~1

) —

** 
ci
1*(cm .÷1) 

— cm .~~ 1
qi (a

1
) I cm .+l 

—

a = 
3
i+l 

— 
\I~~ cm .~ 1) 

- -~~(ci~~)

— ~~~~~~~~~~~~ — _— ~~~~~~~~~~~
- 

- -- -~~~~ — — —  . - ~ -—  _ -  - -— --—-  
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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(i) If — < 0 , no root exists for the derivative

and ~(c~) is monotone increasing for a s ( , ct~~,~] since

<

and

mm cp (cz)
(ctj,ai+i

]

If *(a.÷1
) ~p(ct1

) then

= ~i~(a~ ) ~ii(a~~1) for a ~

and 4,(a) = a + is an increasing linear function and

mm

* **(ii) In (a) and (b), a and a are. local minimums and as

•(a) is a convex function for a ~ (ct . , ct .+i] we have:

For (a): (*) mm ~(a)

For (b): q (ct**) mm
ac (a~~ aj+i]

* **Note that both a and a cannot belong to the interval

at the same time as ~(a) is convex and does not allow

two local minimums.
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* **(c) If neither a or a 
~ 

(czj,ctj+iJ then ~(c~) is

monotone increasing in the interval since c~(a) is

convex and < •(aj÷~’) . Therefore

a mm ~(a) .1

Theorem 5.17:

For an interval (a~~1~
c&.] such that ~~a.) <

(i) If ~~~~ ~(a~~1) < 0 then

a mm

(ii) If — ~~a~~1) > 0 then one of the following

is true:

(a) cz* C and (*) ruin

** **(b) a c La1 ~,
a
1
] and c~ (a ) = ruin

cLc[cL.i ~a~1

(c) ct* ~ and a~~ ~ and

a ruin

where:

* 
a.1~~a~) - a~~~a~~1) I ~ 

-

a = +41a . — —

** 
a~~1~ (a~ ) — ‘

~~~~—i~ f a. —

a a. — 
— 

—

~~~~



90 

- ____

Proof:

In a similar fashion to the proof of Theorem 5.16, it is

easy to show that the roots of the derivatives of c~(a) for the

* **interval (aii ,a~
] are the a and a mentioned in the

Theorem 5.16.

(i) If ~i(a~) 
— ~j,(a . 1) < 0 no root of the derivative

exists and ~~a) is monotone decreasing in the

interval since ~(a) is convex and 4 (c&i
) <

so

= ruin
aCta .1,a.]

(ii) The seine reasoning as for (ii) of Theorem 5.16 applies here.

Note, however, that the case r~
,(ct

1
) = *(aj+i) does not

arise, since then

1
= a . + *(ai

)

and

= a~~1 + 
~~a~)

which contradicts < a~ and $(a~~1) > 4 ( a .)  .1
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G. The Algorithm for Finding the Optimal a

Let us restate the original prob’em:

T 1
minimize c x +

d
0 

+ d y

subject to Ax — By > b

x > 0

l > y > O

with d > 0 and d
0 

> 0 and the condition that 3(x ,y) feasible

such that a
0 + d

T
~ > 0

Step 1:

Find a starting point.

1.0:

Solve the initial problem:

minimize cTx - dTy -

subject to Ax — By > b

x >  0

1 > y > O

This is a linear program and can be solved using the usual

algorithm.

Li:

If the problem is infeasible STOP . The original problem is

infeasible (Theorem 5.12).
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1.2:

If this problem is unbounded STOP. The original problem is

unbounded (Theorem 5.13).

1.3:

Otherwise call the optima l. solution (x,y) set ~~~ a a

GO TO STEP 2.

Step 2:

2.0:

Consider the problem:

~p(a) —minimize _dTy — d
0

subject to Ax — By > b

x >  0

l
~~-

y
~~~

O

1~c x < a

and •(ct) a a +

~p(a ) has for optimal solution (x,y) the optimal solution

of the Initial problem (Corollary 5.14).

has to be presented in a form ready for parametric

analysis (Note 1 at the end of this section shows how the transition

from Step 1 to Step 2 can be done easily).
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2.0.0:

If ~~a) a 
~ d . , ~j~(a) has reached its upper bound and

• j aO ~J

by Corollary 5.10; the function

1a a + a

j=O

is increasing linearly , so the search has to be done for a < a

hence set i : = 0 . GO TO 2.2.

2 . 0 . 1 :

If ~(a) > 0 , set i : = 0 . GO TO 2.1.

2.0.2:

If ~~a) = 0 , c~( a )  is not defined , we need to increase a

until ~~a) > 0 is found , such an a exists by Condition 1.

Set i : = 0

2.0.3:

Find the next point where the basis changes in the

parametric linear program ~~ci) by increasing a from a
~

2.0.4:

If *(a1~1
) 0 , set i : a . GO TO 2.0.3.

2.0.5:

If 4~(a1~1) > 0 , set c~(a1
) . Set i : — j + l  . GO TO 2.1. __ I



94

The algorithm resumes with a new feasible point for which

$(u) is defined .

2.1:

Find a
~+1 

the next point where the basis changes in the

parametric linear program t~ (a) by increasing a from a
1

2 . 1 . 0 :

If ~~a1~1
) a ~ d . , an upper bound for ~(a) has been

reached (Corollary 5.10) and ~(a) is increasing linearly beyond

(a) If ~(a~) > 1(aj+i) , 
the optimal interval is (a

i
,ai+11 .

GO TO STEP 3.2 (optimality criterion 1 (1)).

(b) If c~(a1) < $(aj+i) , GO TO STEP 2.1.2, the optimality

criterion 1 is not satisfied.

2.1.1:

If 4(a1+1) < $(a
i
) , set i : = I + 1 . GO TO 2.1.

Optimality criterion 1 is not satisfied .

2.1.2:

If *(a~~1
) > ~(a.)

Ca86 : j Q

CO TO 2.2. Only two points have been investigated ; the other

side of a needs to be investigated .
0
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Case 2: i~~~O

The optimal solution is in the interval (a11, aj+i1

GO TO STEP 3. ((i) of optimality criterion 1).

2.1.3:

If ~b (a~÷,) 
= ~b (a~) STOP. a s (a1,a~÷i

] is an optimal

solution ((ii) of optimality criterion 1).

2.2:

Find a
~_j 

the next point for which the basis changes in

the parametric linear program ~(a) when a is decreased from •a~

If ~(a) becomes infeasible for a a
1 , 

the optimal solution

is in the range (a .,a.~ 1
] . GO TO STEP 3.2. ((iii) of optimality

criterion 1).

2.2.0:

If ip (a . 1 ) a o , ~(a11) has reached its lower bound

(Proposition 5.8). Set ~(a~~1) = +~ .

2.2.1:

If ~(a~~1
) < ~ (a~ ) , set I : = i - 1 . GO TO 2.2.

2.2.2:

If $(a1_1) > ~(a~) , the optimal solution is in the interval

(cs~~~1~ a1
] . GO TO STEP 3. ((i) of optimality criterion 1).
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2 . 2 . 3 :

If 
~
(a
i i
) — •(a~) STOP. Va c (a 11, cr

1] a is an optimal

solution. ((ii) of optimality criterion 1).

Step 3:

Finding the optimal a once an interval has been identified .

3.1:

Interval (a~~1, cr~ ]

3.1.1:

If *(a~) 
— ~P(a~~1) < 0 the solution is either or in

the range (aj,aj+1] . GO TO 3.2. (Theorem 5.17 (i)).

3.1.2:

If ‘4,(a.) — ~(a~~1) > 0

* 
aj ,*(a i

) — a
1~
(a11) ~ 

a. — a.1
(a) Compute a = +4J 1,a

1 
— a11 

—

If a* 
~ 
[ai_i,ai] STOP. The optimal solution is

(Theorem 5.17 (ii)a).

** 
a4 1~ (a1) 

— aj~
4,(a

i 1
) I n

i 
— a

u(b) Compute a — / .~ •~~~
— a11 ~~a~ ; —

If a** c (a~_1~a11 STOP. The optimal solution is a**

(Theorem 5.17 (ii)b).
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(c) The optimal solution is either a~ or in the interval

• GO TO 3.2 (Theorem 5.17 (ii)c).

3.2:

Interval (a. , a.+,]

3.2.1:

If !1)(a i+l) — 
~L~(a .) < 0 STOP . The optimal solution is

by Theorem 5.16 (i) since the other interval has already been

investigated .

3.2.2:

If ~~a.~ 1) 
— ~p(a.) > 0

* 
a.’4~(a~÷1) — 

a.+1~
4l(a.) f a.~~ —

(a) Compu:e a — 
— a. 

~~~~
ct .+i) —

If a 
~ 
(aj,a.÷1] STOP. The optimal solution is a

(Theorem 5.16 (ii)a).

** aj*(aj÷1
) — a

1÷1~P(a1
) 

~ 
~~~~ —

(b) Comp ute a = a — a 
— 

‘ a ~ — ~a ~ 
•

i+1 I ‘~~~‘ i+l’ ~‘‘ i’

** **If a c laj,aj+11 STOP . The optimal solution is a

(Theorem 5.16 (ii)b).

Cc) STOP. The optimal solution is a
1 by Theorem 5.16 (ii)c

since the other interval has been investigated .

- - -~~~~~~-~~~~~“
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Mo te 1:

The transition from Step 1 to Step 2 in the previous algorithm

can be easily made by doing the following :

1. Modify the initial problem by adding the constraint

< m where ra is chosen large enough as not to affect

the outcome of the problem , (i.e., if at optinrality

m , then the initial problem is unbounded).

Initial Problem:

• T Tminimize c x — d y — d
0

subject to Ax — By > b

y < l

Tc x < m

x > O  y > O .

We will denote this linear program in standard form as:

• Tminimize u z

subject to Mz t

z > O

At optimality the current tableau is denoted :

—Tminimize u z

subj ect to f~iz =

z > O
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with optimal solution z = (x ,y , w)

2. For Step 2, modify this Optimal tableau in the following way :

a) Add ~ ,T to the current objective function ~
T where:

-,T ,
• u u - (u )

where s is the optimal basis and

T
u a (—c ,O)

b) Add t ’ to the current right—hand side c where:

0

a M
1
t ’ and t’ = :

S

— m + a
0

is the basic inverse with respect to the basis s

—tu + in t’ corresponds to the constraint ~~~ < m

3. The new tableau thus obtained should be either optimal

and ready for parametric analysis or a few more iterations

might be needed to achieve that state.

IL Finding the Optimal Solution to the Original Problem from
the Optimal a

Once an optimal a has been identified , Theorem 5.1 applied to

our p roblem , tells us that an optimal ~~~ can be fo und by solving

the problem.

k - - -
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minimize Td0 + d y

L 
subject to Ax — By > b

x > O

l
~~.

y
~~-

O

T —

c x < a .

However , Proposition 5.6 tells us that ~~~ is also the

optimal solution of the problem:

= —minimize —d
0 

— dTy

subj ect to Ax — By > b

x >  0

l > y > O

T -

c x < a

Since we have information about the problem ~~a) we can use

it to f ind ~~~

1. If ~ = ak , C (n .j , the sequence generated in the

algorithm , then ~~~ = (x k ,y k) . The optimal solution

of *(a k) is readily available.

2. If ak < < and ak € {a 1} , ak+l ~ (a~ } , then :

O
0

- -  k k  - - i •(x ,y) k = (x ,y ~ k + (a — a
k

)M 
k :

S 5 S

1
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and 
~~‘~~~G 0

is the optimal basic sequence for  
~~

csk ) ; (xk ,y k) is

the optimal solution of 
~

(ak) ; M~~ is the basic inverse at

optimality of 
~
l(a k ) and G is the set of indices of the non—

101
basic variables. The one in the vector • corresponds to the

• Lii
constraint cTx < a

This is just an application of parametric linear programming

where a is the parameter.

I. Convergence Property of the Algorithm

We will need the following propositions to establish the con-

vergence of the algorithm.

Proposition 5.18:

If the linear program ~~a) is nondegenerate, then the sequence

(a~} generated in the algorithm is finite.

Proof:

{a~} is the sequence of real numbers for which the basis

changes in the parametric linear program ~(a) . There is a one to one

correspondence between the sequence {a1
} and the sequence of basic

sequences of the problem ~i(a) . This sequence (of basic sequences)

is finite since there is a finite number of such sequences and none

• is repeated , because under nondegeneracy the objective function is

improved at each iteration. Therefore, the sequence {n i
} is finite.I
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Proposition 5.19:

Under degeneracy of ~i(a) , the sequence (a .)  is f in i te .

Proof:

In this case, a lexicographical scheme or another appropriate

rule of pivoting has to be used in solving the parametric linear

program ~p(a) to insure that none of the basic sequences is repeated

as is mentioned in the proof of Proposition 5.l8.U

We can now prove the finiteness of the algorithm .

Theorem 5.20:

The algorithm terminates in a finite number of steps.

Proof:

The initial problem terminates in a f in i te  number of steps

since it is a linear program and the simplex method terminates in

a finite number of steps (degeneracy is taking care of with a

lexicographical scheme). The algorithm then proceeds to generate

the sequence (a~} from a second linear program and Propositions

5.18 and 5.19 tell us that this sequence is finite. Once an interval

is identif led from this sequence in Phase 2, a small finite number

of steps is necessary to obtain the optimal solution.I

We have just seen that the algorithm terminates in a finite

number of steps, however how many steps are needed to obtain the

optimal solution is also of interest. An upper bound to this number

of steps could be calculated , but as in the simplex method , would
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not be indicative of the real amount of work needed for  the

algorithm. The best way to get a feel for this amount is to

compare it to the simplex method . Essentially, the initial problem

represents one whole linear programming problem, then it is modified ,

and parametric analysis is performed . We can confidently say that

the amount of work is of the order of the solving one linear

program and performing parametric analysis on the right—hand side.
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CHAPTER VI

In this chapter the models I and II are generalized to become

joint—chance constrained programming problems . Some approximations

are presented using the concept of associativity of random variables

and the results of Chapter II.

A. Generalized Models I and II

We would like to set more general constraints on the feasibility

sets of Models I and II. For example, we could add the constraint

that the probability of the solution being feasible be greater than

a certain specified number . This is why we introduced joint

probability constraints; joint probability constraints are found

in the literature in [1] and [10]; we will use these in the following

generalized models I and II.

Generalized Model I:

n
minimize E ~ cj (x . + e.)

j—l ~ 3

subject to x c 0

Prob A .~~(x. + e.) > b j  ~~~ 
1 =  1, ...~~ m

Prob 

~~~~ 

A~ . (x. + a .) > b
ill> 

1k k a + •~~,

where s is the set of indices of the rows of A s — (1 , . . . ,  m} ,

and 5k are subsets of s for k = m + 1, . .. ,  t

~7 is a polyhedral set defined by a set of linear constraints.

_ _ _ _ _
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• Generalized Model II:

minimize E ~ c4 (1 + a4)x
j—l ~

subject to x c 0

n
Prob ~ A4 .(1 + a4)x 4 > b4 > i — 1, .. . ,  m

~

n
Prob 

i€S
k ~~~ 

A
ij

(1 + a
j

)x
j ~ ~~~~ ~~

. ‘rk 
k = m + 1, • . . ,  t

s , and 0 are defined as in Model I.

The generalized models I and II fall in the category of chance—

constrained programming with joint constraints. However, the constraints

are not statistically independent since the e~ and a
j 

are involved

in all the constraints. Therefore, these problems cannot be treated

as described in (1] and [10). We will draw upon the theory of

associated random variables developed by Esary—Proschan and Walkup [6]

to determine conservative approximations to these problems.

B. Associated Random Variables

Definition:

Random var iables j — 1, . . .,  n are associated if

Coy (r(x),A (x)) > 0

for all pairs of increas ing binary functions 1’ , ~ where

X — (X1, X )
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Properties of associated random variables :

Theorem 6.1:

Increasing functions of associated random variables are

associated .

Proof:

See Barlow ’s book on Reliability, Chapter 2 [2) 1

• Theorem 6.2:

Independent random variables are associated .

Proof:

See Barl ow ’s book on Reliability , Chapter 2 [2].

Theorem 6.3:

If X1,X2 , ..., X are associated random variables, then for

all (x1, . . . ,  x )

Prob [X
1 

> x~, . . .,  X > x )  > U Prob [X
i 

> x1]i—i

n
Prob (X < x , • . . ,  X < x ] > U Prob [X. < x .]1 1 n a — 3.

i—i

Proof:

See Barlow ’s book on Reliab ili ty, Chapter 2 (2) 1
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We will now use the prev ious three theorems to prove theorems

relevant to our models. We will first define the following set

• of matrices.

Definition:

Let M be the set of matrices for which all the elements in

any column have the same sign.

We can now present the following results.

Theor~m 6.4:

If X~ j — 1, . ..,  n are independent random variables and A

is an m X n matrix belonging to M , then the random variables

~ A~~X . i — 1, . ..,  m are associated .

Proof:

Call T the set of indices of the column of A : T — (1 , . ..,  n}

and s the set of indices of the rows of A :  s = {l , . . . ,  m}

Consider the following sets

= {i I A1. < 0 for all i c s}

T’’ — (j I Aij .~~. 
0 for all i c s}

As A € M : T’ U T’ ’  = T

Now consider the set of independent random variables U

comprised of for 
~ 

c T’ and -.X~ for 
~ 

C T’ ’

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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By Theorems 6.1 and 6.2 the random variables ~ IA~ I (-X ) +
jeT’ ~

Z IA 1 Ix i i, . .. ,  m are associated since U is a set
j eT ’’ ~

of independent random variables therefore associated by Theorem 6 .2 ,

and ~ I A 1~~I X  is an increasing function of X which makes
j —l j

these random variables associated by Theorem 6.1. However , for

n
j = 1, . .. ,  in , 

~ 
IA~.I (—x ) + 

~ IA i jx A . X .
jeT’ ~ jET’’ ~ ii 3

by definition of T’ and T’’ .1

Theorem 6.5:

If j 1, . . . ,  n are associated random var iables and A

is a nonnegative m x n matrix then the random variables

~ A . .X. i a 
~~, . .,  in are associated .

Proof:

As A ‘ 0 , for ~ — 1, . . . ,  in , ~ A . x . are increas ing
j=]. 1~

n
functions of x ; then by Theorem 6.1 for i = 1, . . . ,  in , ~ ~~~~

j=l

are associated random variables.1

C. Conservative Approximations for the Generalized Models I and II

Using the results of Section B, we shall first present the

following approximations.

Theorem 6.6:

In Model I, if either (i) or (ii) below holds

I
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(i) e. j — 1, . . .,  n are associated random variables

and A > 0 for k = in + 1, . . . ,  t (where A
S
k

is the matrix consisting of the rows 1 of A such

that i e

(ii) e
j 

j — 1, . . . ,  n are independent random variables

and A e M  for k m + l , • . .,  t
k

Then, if x satisfies:

iESk 

= Prob A
ij

ej  ~ b1 
— 

~~~ 
A1~ x~]) ~ 

1k k — m+ 1, ...~~ t

then x satisfies:

Prob 

~~~~ ~~~~ 
Aij (xj  + e .) > b

i}~ ~~
. 

~k k m + l , • . . ,  t

Proof:

(i) Theorem 6.5 tells us that for i ~ s~ ~ A e are
i—i 

j

associated random variables. Applying Theorem 6.3 we have :

n n
Prob (~% 

~ 
e > z > It Prob ~ A~~e~ > z

iCS
k 

j al ~ iCS
k 

i_I.

Hence if x is such that:

i
~
S
k 
(~ - Prob A1~ e~ ~ b 1 

- 

~~ 
A 1~x4) ~
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then

Prob + 

~~~ 

A
i~
e
~ 
1b 1~~ 11k •

(ii) Theorem 6.4 tells us that for i e 5
k’ ~ A ..e. are

j l

associated random variables, from now on the reasoning

is the same as in ( i ) . U

Theorem 6.7:

In Model II if either Ci) or (ii) below holds:

(i) a
j ~ 1, . . . ,  a are associated random variables and

A > 0 for k = in -
~~ 1, . .. ,  t

—

(ii) a
j j  — 1, . . . ,  a are independent random variables and

A c M for k = in + 1, . . . ,  t

Then if x satisfies:

~ (~ - Prob A u x
3 
a~ < b - 

~ ~~ 
A1. x i 

~k k in + 1, . . . ,  t

x satisfies

Pr3~ 
~~~~ ~~~~~~ 

A~~ (l + 3
j

)X
j  ~~. 

b~ fl ~ 
‘
~k k - in + 1, . . . ~~
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Proof:

(1) As A > 0 , the matrix A c M where I~ \ /A \ x .
S
k 

— S
k \ S1~(j jj  \ S~•/j~

for all i and j . Therefore , by Theorem 6.4 1 e

~ A~ x a are associated random variables.
j—l

Similarly under (ii), as A e M , e M where

n(
~ \ — (A \ x and by Theorem 6.4 for I e s A .x a
~ 

S~~/1~ ~ 
S
~~/jj  j  k 13 ~ j

are associated random variables.

Now following the proof of Theorem 6.6, by Theorem 6.3 we have

( ( U  a

Prob~ (1 ~ A . .x a . > z > H Prob ~ A x a. > z

~ 
its~ ~~~~ 

~ ~ 
— — 

iCS
k 

j=1 ~ ~ 
—

Hence if x is such that:

~~~~ 
(1 

- Prob ~~~~~~ < b . - 

~~~ 

A
i
.x
.}) ~

then:

Prob

t~~~~~~t~~ 
A1~ (l + a~)x. > b 1~~ ~~~k 

.1

We shall now use Theorem 6.6 and 6.7 to present complete

formulations of the conservative approximations for Models I and II.

~~~~~~~~~~~ • _ _  

j
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1. Model I:

Theorem 6.8:

For either condition (1) or (ii) of Theorem 6.6 the following

problem is a conservative approximation to the generalized Model I.

minimize cTx + c ECe }

i—i 
j

subject to x e 0

~~~ 

A~~x. > b .  - G~~(1 
- y

~
) i — 1, . . . ,  n

itS
k 
(~ - 

~~~ 
~ 

k - in + l~ . .~~ t

where G
1
(z) = Prob 

~ 
A~ .e. < 

z}
j—1. ~

Proof:

This mode]. is valid by Theorem 6.6 and the deterministic

equivalent of Model I presented in Chapter l U

2. Model II:

Theorem 6.9:

For either condition (i) or (ii) of Theorem 6.7, the following

problem is a conservative approximation to the generalized Model II.
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a
minimize c (1 + E(cz~ ) ) x .

i_ l i -J 3

subj ect to x e 0

~~~ 

A~~x~ + 1c;’(l  - 
~~~~) ~ b~ i - 1. . . .~~ in

iCS
k 
(~ - 

1G [b1 
- 

~L A1~x]) ~ 1k k - in + 1, . . . ,  t

where 
1

G ( z )  * Prob ~~~~~~ < 
zJ

Proof:

This is the deterministic equivalent presented in Chapter I

with the approximation of Theorem 6.7 applied to it.U

D. Conservative Approximations for the Generalized Models I and II
Using the Results of Chapter II

If in addition to the conditions outlined in the previous section,

we utilize random variables e~ and belonging to the set C

defined in Chapter II, explicit conservative approximations can be

identified

1. Model I:

Theorem 6.10:

If  f o r  e~ i = 1, . . . ,  a e
j 

c C either the following (i)

or (ii) holds:

~~~~~~~ —- • - — -_~~~~~~~~~~--~~~~~~~•• -•• •-• • •- ••
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(1)  e
j j = 1, . .. ,  a are associated random variables and

A > 0 f o r  k in + 1, . .. ,  t
—

(ii) e. 3 a 1, . . . ,  n are independen t rando m var iables and

• A € M f o r  k = m + 1, . . ,  t

• Then for y > the following convex program is a conservative

approximation to the generalized Model I.

T
mln3.mize C X

subject to x e 0

n A .  b .
r i~ 1 i. -

~~~~ 
L x

j~~~~~
_ 

n
j—l 2 ~ IA.. I a . 2 ~ IA Ia .

3—1 
1.3 ~ 3=1 ~~

~~~~~~~ 
i = l , . .., m

~ L n (y .)  > Ln( y~ ) k = in + 1, . . . ,  t

ic s

where the [_a .~~a~ ] 3 = 1, . . . ,  a are defined to be the finite

ranges of e . 3 — 1, . . . ,  a

Proof:

1) As e
3 

c C for 3 = 1, - . . ,  a the objective function is

T
simply c x

2) As shown for Model I in Theorem 3.1 the first set of

constraints result of the inequality for y >

4 r~
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G ~ A x - b 1 ~~~~~~ 

A
13

x
3 

- b~) 3~~l 
IA 13 I a 3 

-i~~~~ j ~~~~~ 
I 

a

3—1

If we call the right—hand side y
1 

then it is obvious

that if y~ > then

Gi A
13

x
3 

- b
i] 

>

for all 1 — 1 , ...., m .

3) Theorem 6.8 yields the first approximation.

P r ob 

~~~k 
[j!l 

A
13 

(X
j 

+ e~) ~ b~
] ~ iCS~ [ - 

j~ i 
A
13
x
3]

However , since e
3 

e C 3 — 1, . . . ,  a then by Corollary 2.10

A
13
e
3 

c C and theref or e it symmetr ic and
3=1

a 1 [a
1 — C. b . — A x I — G. I ~ A . .x . — b .1 1 

3—1 ~ ~J ~~~j—i 
13 ~ 1

Using again the same inequality as in part 2)  since y > 4
we obtain that

Prob 

~~~~ 
[
~ 

A
13

(x
3 
+ e

j
) ib

jI~ 
~
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Henc e f o r  k — in + 1, - . .,  t the f o l lowing constraints are

conservative approximations.

~

iCS
k

or equivalently

~ Ln (y~ )  > Ln (y~ )  as y
1 

> > 0 i e
iCS

k

which makes the whole program convex since ~ Ln (y~ ) is a
iCS

kconcave function of y~ .1

2. Model II:

Theorem 6.11:

If for a
j 

c C 3 = 1, . . .~~ a either ( i) or ( ii) holds and

{x I x > 0)  C 0 .

(I )  a 4 3 = 1, .. ., n are associated and A > 0 f o r
k

. . . ,  t -

(ii) a 3 — 1, ..., a are independen t and A e M f o r
3 S

k

k— m + l , ..., t .

Then for y > 4 , the following nonlinear program is a conserva-

tive approximation to the generalized Model II.

T
minimize c x

subject to x e 0

j~ l ~~ 
+ IA~3 Ia3

) x
3 

- W
i [2 j~ l 

IA 13 ajxj] 
- b~ i - 1, .... in

_ _



r

i 1 , . . . , m

~ w~ > 
~k 

k — in + 1, - . . ,  t

ie S
k

Proof:

As a
3 

£ C f o r  3 — 1, - . . ,  a by Corollary 2.10

~ A~ 4X 4c14 e C
3—1 ~ ~

Prob A13
(l + a

3
)x

3 
> b

j I  ~~~~

~~ 1 - Prob A i jX3
a
3 

~~~ b~ - 

~~~ 

A
ji
x
il ~

As ~ A ..x a  c C
3*1 

LJ j j

~~~ Pro b A~3
x
3
a
3 
~ j~ l 

A
i3

x
j 

- bil ~
Applying Theorem 2.13

a a 1 j~~l 
Aij xj  

- b~ + 
j~~1 

IA 1~Ia3
x
3

Prob ~ A
13
x
3
a
3 

< 
~~ 

A~3
x
3 

— b i l ~ a
1j
~~ 

j al -~ 2 ~ k1.I a  x
3—1

since for y >4 
~~ 

A
13
x
3 

- b~ > 0 and F~~ ( 0)  - -IA
13 

1a
3
x
3

for F ( z )  — Pr ob {A
i3

X
j
cL
i 

< z} by Theorem 2.7 .



118

Therefore if for x > 0

~ A x — b
1 

+ ~ IA 1 Ia x
3— 1 > 1. .

3 a _ 1

2 ~ LA 14 Ia 4x
3—1 ‘ -‘

Then Prob A13
(l + a

3
) x

3 
> b~~ ~

Theorem 6.7 showed that

Prob (~j3L 
A13

(1 + a
3

)x .  > b
il) 1

~~ k 

Prob {~ 
A~3

(l + a
3
)X
3~ 

>b~

Therefore if for x > 0

~ ~~~ 
~~
1k -

IES
k

Then

H Prob A~4 (l + a .) x . > b
j] ~

iCS
k 

3*1

and

Prob 
(ink [j ~~l 

A13 
(1 + a

j
)x

j ~ 
b
1~
) 

~~ k -
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APPENDIX NOTATION

The vectors mentioned in the text (i.e., b , c , d) are

column vectors; superscript T denotes the transpose of a vector:

• b1

b ; bT (b 1, ~~
• •

~~ 
b )  -

b
a

• If A is an a X in matrix then :

A
13 

= the element in the 1
th row, ~~ column of A

• A~3 
— column of A

A1 i row of A .

x c X x is an element of the set X

3x there exist at least one x

X C Y set X is contained in the set Y

X U Y the union of the sets X and Y

X (~ Y intersection of the sets X and Y

I end of proof

I x~ absolu te value of x

0 the empty set

{x P1 the set of x having property P

{x
1
} the set {••• x

1~~
,x
1
,x141

, ...}

a
X X + X  + • • + x1 2 a

a
It x x x  - •• x1 12 a
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-

~~~~

-

~~~~
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(a,b) open interval from a to b

(a ,b] closed interval from a to b

[a] reference a in bibliography

I (through a symbol, e.g., ~) negation

if and only if

implies

Ln(x) natural logarithm of x

Prob ~E} probability of the event E occurring

E {X} expectation of the random variable X

f * g convolution of the densities f and g

a
* f f * f  * . . .* f

i 1 2 a
1—1

the inverse of the function F

A 1 the inverse of the matrix A -

If y is a vector the statement H

ral H
means y :

y > a means y > [
~
] -

[1 01
I— I \ the identity matrix

10 ii

Af the gradient of the function f .

r ~~~~~
—“-—- 

~~
- -

~~~~
-——-— -- —

a - ~~~~~~.. ~~~~~~~~~ -


