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ABSTRACT

%

“'The assumption made in linear programming that the components

are deterministic (constant) numbers is rarely fulfilled in prac-
tical applications. This has led to the development of the field
of stochastic programming where the random aspect of the coeffi-
cients in the objective function, technology matrix, and the
vector of resources are taken into account. in this research we
investigateﬂyhe problem of a linear program with-uncertainty
attached to the decision vector. For example, a decision to

order a certain amount of a perishable good might yield variable

amounts of this good at delivery due to spoilage.

< -1
Two models are considered:
1. The uncertainty is independent of the decision. A

decision x will yield an output x + e where e

is a random variable.

2. The uncertainty is proportional to the decision.
A decision x will yield an output x + ax where

oo 1is a random variable.

As can be seen in the literature on stochastic programming, the
random nature of the program does not lead to a unique mathe-
matical problem and there are various models of stochastic
linear programs. In this study we chose to use the chance-
constrained approach to formulate two models incorporating the

two kinds of decision uncertainties described above. In chance-

constrained programs the criterion is the expected value of the




S —

objective function and the constraints have to be satisfied with-
in a predetermined fixed probability.

Using known methods of chance-constrained programming we
define deterministic equivalent problems for our two stochastic
models. It is assumed that the distributions of the random vari-
ables are known and convolutions of these distributions can easily
be obtained. 1In general this is not the case, this is why we then
proceed to find conservative approximations for our two models
(i.e., problems with the same objective functions whose feasibil-
ity sets are subsets of the original feasibility sets). We pre-
sent a set of random variables for which conservative approxima-
tions are easily obtainable linear programs. Bounds onh the
optimal value of the objective function are also defined. Using
these results, different kinds of sensitivity analyses are in-
vestigated. 1In this context a problem of trade-off between the
cost of reducing the variance of the uncertainties versus the
corresponding‘improvement in the objective function is defined
and a simple algorithm is presented to solve this problem.

Finally, we outline how some of the results can be applied
to more general chance-constrained programs and conservative

approximations can be defined for these more general models.
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INTRODUCTION

Stochastic Linear Programming is the field of study of linear
programming problems, where the random aspect of the coefficients
in the objective function, technology matrix, and the vector of
resources are taken into account. More than one approach has been
developed in this context such as the distribution problem [13] and
multistage Recourse Models [13]. 1In this research we will restrict
our study to the chance-constrained approach, a method originally
introduced by Charnes and Cooper [3]. Chance-constrained programming
allows constraint violations up to specified probability limits. This
study differs from the usual chance-constrained problem in that the
randomness in the decision vectors is studied rather than the coeffi-
cients of the objective function, technology matrix, and vector of

resources. For example, a decision to order a certain amount of a

perishable good might yield variable amounts of this good at delivery
due to spoilage. Another example is the uncertainty due to measuring
errors. These are the types of uncertainty that we are trying to
incorporate into a linear program.

In Chapter I we present two basic models which will be analyzed
throughout this study. In Model I, the uncertainty is independent of
the decision. A decision x will yield an output x + e where e
is a random variable. In Model II, the uncertainty is proportional to
the decision. A decision x will yield an output x + ax where a
is a random variable. Using the approach developed by Charnes and
Cooper (4], deterministics equivalents for Models I and II are pre-

sented and discussed. Because of the difficulty of implementing in




practice these deterministic equivalents, we looked for a class of
distributions for which approximations could be determined with

little effort. To this effect, in Chapter II a class of densities

and the corresponding set of random variables and their properties

are presented. In Chapter III, the results of Chapter II are exploited

to find "conservative approximations'" to Models I and II under certain

assumptions. By ''conservative approximation' we mean a problem with the
same objective function as the original problem and a feasibility set
which is a subset of the original feasibility set. In Chapter IV, :
sensitivity analysis of Models I and II are discussed with respect

; to the cost vector, the vector of resources, the specified probability
limits, and variations in the densities of the random variables.
Finally, the '"reducing of uncertainty'" problem is presented. It is a
problem of trade-off between the cost of decreasing the uncertainty by

modifying the densities of the random variables versus the original

linear objective function.
In Chapter V an algorithm is presented for solving a special
kind of reducing of uncertainty problem which has the following general

formulation.

minimize ch + —%— (with d > 0)

subject to Ax - By > b

( where A, 3, b, c,d are given, A and B are m X n matrices,

¢ and d are n x 1 vectors and b is an =m x 1 vector. x and vy




are n x 1 vectors of decisions.

Finally in Chapter VI, the basic two models are generalized to
joint-chance constraint models as developed in Miller and Wagner [(10].
The problems here are different from the usual joint-chance constrained
programming in that the constraints are not statistically independent
as is usually assumed. This is why we use the concept of associativity
of random variables, widely used in the field of reliability (2], and

the results of Chapter II to define conservative approximations for

these generalized models.




CHAPTER 1I

A. Introduction

This research is concerned with a special kind of stochastic
program. We are interested in the usual linear program with one
important added feature. The decisions have uncertainty attached
to them. For example, a decision to order a certain amount of a
perishable good might in reality yield variable amounts at delivery.
Another example is the uncertainty due to errors of the measuring
instruments. It is this type of uncertainty that we are trying to
incorporate in a regular linear program. Of course the stochastic
nature of the uncertainties changes the character of the problem.

In this research we will use a chance constrained approach to the
problem. The linear constraints are to be satisfied within a certain
specified probability. The objective function will be the usual

expected value criterion. Two models will be presented.

B. Model I

First we will look at the following approach. Each variable xj
has an uncertainty attached to it in the form of the random variable
ej . The a priori decision is xj and the outcome is xj + ej
This model fits well in the context of measurement errors. Within
certain bounds the error of measurement is a function of the measuring

instrument, not the quantity measured and therefore the error ej and

the quantity xj are independent. This yields the following model:




Model I:

n
minimize E {jzl cj(xj + ej)}

subject to x e Q

Aij(xj-i-ej)lbi}z_yi 181, ey B

where A, b, ¢, Y are given, A 1is an m x n matrix, .c

an nx 1 vector, b and y are m x 1 vectors with the follow-
ing restrictionon y : O E-Yi <1 for 1=1, ..., m; x 1is

an n x 1 vector of decisions and e 1is an n X 1 vector of
random variables. Q 1is a polyhedral set defined by a set of

linear constraints.

C. Model II

Although in Model I the uncertainty e, is independent of

3

the decision xj , this might not always be a desirable feature.
This is why we introduce a second model. Here the uncertainty is
proportional to the decision. For an a priori decision xj we

have an outcome x, + a.xXx, where a is a random variable.

3 3 3

This can be used to model spoilage in the diet problem where x

3

are the amounts of food ordered and o ,x, the amounts spoiled

33

that cannot be used at consumption time (a, would have value

3

between -1 and 0 in this example). We have now the following

model.




Model II:

n
minimize E {jgl cj(l + uj)xj}

subject to x € Q
n
Prob {‘z Aij(l + aj)xj > bi} 2%y = 1. ooy m
j=1
where everything is defined as in Model I except for @ which
is an n x 1 vector of random variables.

Model II overcomes the shortcomings mentioned for Model I.
However, we had to pay the price in increased complexity. This
complexity will make Model II much less tractable mathematically -
than Model I.

We will now present schemes to solve Models I and II.

D. Deterministic Equivalents for Models I and Il

We will use here the approach developed by Charnes and Cooper

f in [3], [4]. 1In order to solve these chance~constrained problems
we will find what is known in the literature as ''deterministic
equivalents' to these problems. A deterministic equivalent problem
is a reformulation of the original chance-constrained problem where

all random elements have been eliminated. Deterministic equivalents

for Models I and II will be presented in Theorems 1.1 and 1l.4.

However we will first need the following definitious.




Definition:

The distribution function of a random variable X is the
function G(z) defined as G(z) = Prob {X < z} .

While the definition of the distribution function presents
no difficulty, we need to define the inverse of this function
for the general case.

Definition:

The inverse of the distribution function G(z) of a random

variable X 1is defined as follows:

G-l(Y) = sup {z | G(2) < v}

for 0 <y <1 and it is undefined elsewhere.

We will also need the following functioms.

Definition:

We will call the "tilde'" distribution function of a random

variable X the following function:
G(z) = Prob {X < z} . !

Its inverse is defined as:
E7Hy) = sup (2 | G(2) < v}

for 0 <y <1 and is undefined elsewhere.




1. If X 1is a continuous random variable then G(z) =
Prob {X < z} = Prob {X < z} = G(z) and G-l(v) = é-l(y)
for 0<y<1l.

2. If X 1is a discrete random variable then G(z) =

Prob {X < 2z} = Prob {X <z -1} =G(z - 1) .

We will now proceed to define the deterministic equivalents

mentioned earlier.

1. Model I
Theorem 1.1: ;

The following linear program is a deterministic equivalent

to Model I:

n
minimize 2 c

+ E(e,))
3
j=1

3 b

(x

subject to x € Q

n

] A% 2h e &‘1(

f §a%y 25y 1 1 - Yi) i (RTINS |

~ n s
where Gi(z) = Prob {jzl Aijej < z} b

Proof:

For all {i=1, ..., m




Prob{z Ay x +ej)>b} A

n n
<= Prob {jzl Aijej 2k, - 21 Aijxj} i

n n
<> 1 - Prob {jzl Ajgey < by - ) Aijxj} 2 1y

» n
- l_Gi[bi-jZ 15 j]

|V

Corollary 1.2:

If in Model I the random variables are continuous, then the

following linear program is a deterministic equivalent for Model I.

n
minimize 321 ey (xj + E(ej))

subject to x € Q

n
-1
jzl Aijxj z_bi - Gi (1 - Yi)\ i &1 oM
where G, (z) = Prob j .
: i Mt }




Proof:

This is Theorem 1.1 with the observation that Gil(y) =éi(y) for

0<y<) when e j=1, .o, n are continuous. B

3

Corollary 1.3:

If in Model I the random variables are discrete, then the

following linear program is a deterministic equivalent for Model I.

n

minimize Z c.(x, + E(e.))
= 3 ]
j=1
subject to x € Q
- -1
- ' - i =
jzl Aijxj 2b, -Gy (1 Yi) f &1, coiy ™

n
where Gi(z) = Gi(z - 1) = Prob S 2 A ,e, <2z - l} .

Proof:

This is Theorem 1.1 with the observation that in this case

E;i(z) =6 (z-1) .1

2. Model II
Theorem 1l.4:

The following nonlinear program is a deterministic equivalent

to Model II.




n

minimize z

1+ E(a ))x
j=1 54

subject to x € Q

z Ai x, +

j=1 373 Gy (l - Yi’ = b

i™x

where i&x(z) = Prob ;jzl Aij 3 j }

Proof:

For all i=1, ..., m

1

n
Prob { Zl A +apx, > bi} 27,

n
<= Prob { 2 A, 1] j 3 Z_bi = .Z Aijxj} 2 Yy

j-l J’l
n
= 1 - Prob{ ) Agyy%s < by j{l Aijxj} =%

'“1'1::[ zAijj]

n
- ti[bi - jzl Aijxj] Sl =ity

n
~-1
D, = jzl Aijxj < 48 a- Yi)

n

e-o{Ax-’-G

et (1-Y1)>b.l
j-

11
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Corollary 1.5:

If in Model II the random variables are continuous then the
following nonlinear program is a deterministic equivalent for

Model II.

n
minimize 1 c.(1+ E(a,))x,
i e

subject to x € Q

n
=1 ;
)] Aijxj + ti (1 Yi) 2 by s LA

j=1 |

n
where ti(z) = Prob {jzl Aijajxj ﬁ_z} .

Proof:

By Theorem 1.4 and using the fact that here iéx(z) = iGx(z) and

-1

¢ () for 0<y<1l.H

~-1
G ) = ;6

Corollary 1.6:

If in Model II the random variables are discrete, then the

following nonlinear program is a deterministic equivalent to Model II.

n
minimize jzl cj(l + E(aj))xj

subject to x e Q

A, .X + G'-l
x

L ijj i (l-Yi)z‘bi isl, eeey M

0 o~—p




where
U = -
iG (z) iG (z 1)

and

n
4G (2) = Prob {jzl A 504%; g_z} :

Proof:

By Theorem 1.4 and using the fact that if;‘c(z) = ti(z -1 .8

E. Limitations of the Deterministic Equivalents of Models I and Il

The deterministic equivalents presented in the preceding

section assume that the convolutions

n
(1) G;(z) = Prob {jzl Aijej,i z}

/s

n
(ii) ti(z) = Prob {jgl Aijajxj < z}

can be calculated and the inverse can be determined exactly for

(i), and in terms of x in (ii). Although this can be done easily

when the random variables are independent and have normal dis-

tributions, as will be shown in Chapter III, in general it is not

the case. These convolutions in the case of (i) can be very

difficult to calculate or in the case of (ii) it might be difficult

to express the inverse distribution explicitly in one simple




T
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expression of x . We will also point out that in practice the
distributions of the random variables themselves might not be
completely known. So far the discussion has been concerned with
determining precisely the coefficients of the constraints; however,
another difficulty arises: If we succeed in calculating these
convolutions and their inverses, Model I is a simple linear program
and can be solved. This is not the case for Model II. We have
then a nonlinear program which might not only be difficult to
formulate but also to solve.

This is why we look for other ways of solving Models I and II.
We will concentrate on obtaining what we call conservative approxi-

mation problems for these models.

Definition:

A problem B 1is called a conservative approximation of a

problem A if and only if:

(i) The feasibility set of B 1is contained in the
feasibility set of A .

(ii) A and B have the same objective function.

In the next chapter we will present a set C of random
variables for which conservative approximations for Models I and

11 cannot only be easily constructed with limited information

about the random variables, but also are linear programming problems.




CHAPTER II

In this chapter we present a set of random variables C and
a corresponding class C of densities and we discuss their
properties. These will be useful for defining conservative
approximations for Models I and II.

The set C consists of the continuous random variables which ;
have densities that are symmetric, unimodal with maximum at O,
and with finite range. Examples of such distributions are the
truncated normal, the uniform distribution, certain Beta distributions,
the truncated double-exponential, and many others. In the context

of our models such distributions can be used to model many real

'situacions. The fact that the distributions have finite range is
certainly realistic. The symmetry and being unimodal with maximum
at the mean are more restrictive assumptions; however, anything
that can be modeled as a truncated normal would fit. As an example,
measurement errors can certainly be modeled using a truncated normal.
Spoilage is another example which could be modeled if the quantities
spoiled tend to have distributions concentrated around their means.

We will now turn to the study of this class of distributionms.

A. The Class ( of Densities and the Set of Random Variables C

Definition 2.1:

C 1is the class of densities f such that f ¢ C if and

only if

a) f 1is symmetric around 0 : Vx £ (-=,+®) f(x) = f£(-x)

b) £ 1is unimodal with maximum at O.
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c¢) f has finite range: 3a , 0 < a < +» such that
f(x) =0 for x ¢ [-a,+a]

d) f 1is continuous. j

Notation:

The distribution function of a random variable having density

X
f 1is denoted by F(x) = J' f(u)du .

This class C has well-known properties that can be derived

from the symmetry of the densities.

Proposition 2.2:

If X 1is a random variable with density f € C then the

following properties hold:

(1) E(X) =0

(ii) F(x) = 1 - F(-x) Vx & (-=,+x)

(111) F(0) -% :

Proof:
) 0 4o
(1) E(X) = f xf (x)dx = f x£ (x)dx + f x£ (x)dx
-0 -0 0

changing variables in the second integral to u = -x

0 -0
= E(X) = fxf(x)dx + f (-u) £ (-u) (-du)
-0 0
0 -0
= E(X) = fxf(x)dx - fxf(—x)dx v

-0

h—-—-—-——._____._._.__.
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However by a) of Definition 2.1 £(x) = f(-x) VX e (-»,»)

0
= E(X) = f(x - x)f(x)dx = 0 . !

»

(i1) F(x) = £(u)du changing variables to v = -u

8

-X
= F(x) = ff(-v)(—dv)
]

40
= F(x) = ff(-v)dv v

-X

By symmetry of f : £(-v) = f(v) Vv

+x
= F(x) = ff(v)dv
-X
4 -x
= ff(v)dv - ff(v)dv
=1 - F(~-x) .

% (i1i) By (i)

F(0) = 1 - F(0)

= 2F(0) =1

-bF(O)-%-.I
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Definition 2.3:

For a density of the class C the inverse of the distribution

function F(x) is defined to be:
F-l(O) = max {z | F(z) = 0}
FL(1) = min {z | F(2) = 1}

and for 0 <y <1

Fley ={z | F(2) = v} .

Using this definition more properties of C are presented

below:

Proposition 2.4:

For any density f ¢ C having range [-a,+a] the following

holds:

(i) F_l(O) =-a and F (1) = +a
(i1) F-l(%—) '

Proof:

(1) Apply Definition 2.3.

(ii) Apply (iii) of Proposition 2.2.

Theorem 2.5:

If X 1is a random variable with demsity f ¢ C then for
all real numbers c¢ , cX is a random variable with density

belonging to C .




Proof:

Call g(x) the density of cX . Then g(x) = f(%) .

|
.
|
|
|
|
|
|
|

a) g(x) = g(-x) Vx ¢ (-»,+») since g(x) = f(f) = f(- %) =
f(ﬁ) - gl=x) .

et

c
b) Case 1: ¢ >0 as g(x) = f(%) g(x) 1is unimodal with

ki e M e

maximum at O.

Case 2: c <0 g(x) = f(f) = f(f%) by symmetry of f
and this is the same as Case 1.

c) g(x) = f(%) has finite range [— % ,+ -] for ¢ >0 wor

a
{% s = E] for c <0 .

Definition 2.6:

Call C the set of random variables which have a density
belonging to C .
Theorem 2.7:

If X e C and has a distribution function F and c¢cX has

a distribution function G (¢ real number) then:

vy € [0,1]

¢ Tey) = |elr e

Proof:

vy € [0,1] 3z such that

z = ¢ Ley)
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and

G(z) = v

=> y = Prob {cX < 2z} .

E | Cage L: ¢ >0

=>Y=Prob{X§_§'}
o
-l =2

- 2 = cF T(y)

- G l(y) = cF t(y)

Case 2: ¢ <0

since X € C

i -1 b4
; =F *TeT
| (v) %

= ¢ y) = |e|F i . m




Theorem 2.8:

1f fj eC, j=1,2, then the convolution f£

Proof: Vfl and fz e C
g=f£f *f

a) g 1is symmetric

Vz ¢ (.o’m)

40
g(z) = f fl(z - u)fz(u)du

changing variables u = -v

-

= f fl(z + v)fz(-v) (-dv)
4

+o
= ffl(z + v)fz(-v)dv

-0

since fl and f2 are symmetric

4o
g(z) = ffl(-z - V)fz(v)dv

-

= g(-2)

e SR
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T ————

b) It is sufficient to show that g(z) 1is increasing in =z

for 2 <0 or Vz <0 and 6z >0 such that z + 8§z < 0
gz + 8z) - g(z) >0 .

Then by symmetry g(z) is unimodal with maximum at O.

g(z + 82) - g(2) |

+o +o
= ffl(z + 8§z - u)fz(u)du - ffl(z - u)fz(u)du 1

z+%52 : i
= f [fl(z + 8§z - u) - fl(z - u)]fz(u)du

+<
+ f [fl(z + 8§z = u) - fl(z - u)]fz(u)du .
z+%—dz

Changing variable in the first integral to v = 2z + 3z - u

g(z + d8z) - g(2)

O
N

[fl(-z 4+ u) - fl(-z - 8z + u)]fz(Zz + 8z - u)du

t\ NTH

40
+ f [£,(z + 62 - w) - £,(z - W, (Wdu .

z+—;'dz

Since fl is symmetric




fl(—z 4+ u) = fl(z - u)

fl(-z - 8z +u) = fl(z + 8z - u)

= g(z + 82) - g(z)

4
= f [fl(z + 8z - u) - fl(z - u)](fz(u) - f2(22+dz - u))du .
3

The proof will now proceed as follows. We shall show that:

1) fl(z+Gz-u)-f1(z—u)_>_0 for z+%525u5+~

2) £,(u) - £,(22+dz - u) 20 for z+F oz <u<e .

Then it is clear that the whole integral is nonnegative and

g(z + 82) - g(z) >0 .
1) Case 1:
il
z+-2-62_<_u§_z+dz

4z

N

= -z - 3§z < -ug-z-

-8z <z-ugx<- 8z

N

= and

Of_z+5z-—ui%62

”0_<_z+62-u5__%621-(z-u)




As fl el , f1 is symmetric and unimodal with maximum at O.

fl(z + 8z - u) > fl(—(z -u)) = fl(z - u)

-bfl(z-t-éz-u)-fl(z-u)lo.

Case 2:

2+ 68z <uc<+= .

Then
z+8z-u<0
as 8z > 0
Z2-u<z+6z-uc<0

since f; ¢ C f,(x) is increasing for x < 0 and f,(z + 8z - u) -

fl(z-u) >0.

2) Case 1:

->Zz+sz§_22+dz-uiz+%az
=->22+52-uiz+%-621u§_0

as f,eC, f,(x) is increasing for x <0

= £,(u) - £,(2z + 8z - u) 20 .




Case 2:
u<0<+

fz(u) - fz(Zz + 8z - u) = fz(u) - fz(u - 2z - §2)

since f2 is symmetric.

However

2z + 6z < 0

->O_<_u_<_u-22—62
as f2 e C fz(x) is decreasing for x > 0

= fz(u) - fz(u -2z - 6z) >0 .

c 1If £, , j = 1,2 , have ranges -a,,+a, then £, * £
) g0 3 ns[JJ] )

has a finite range:
[-al - a3, + aZ]

as (fl * fz)(z) =0 for z # [—a1 - 35,3, + 32] since

fj(z) = 0 for =z # [-aj,aj] for j = 1,2 .

d) Since f1 and fz are continuous,

40
fl * f2 = ffl(z - u)fz(u)du

is continuous.

Note:

An alternate proof for b) is outlined in a note on page 164

of William Feller's book [(7].W
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Corollary 2.9:

If X j=1, ..., n are independent and such that Xj g C

n
§®1, .o.on then | X eC.
=t >

+ True for n=1
« True for n = 2 by Theorem 2.8

« Assume it is true for n =k

k
= =%

gy Pl fj » £, density of Xj

3

Then g € (ol

However 8 * Ek+l =84 € C by Theorem 2.8. Therefore it is

true for k + 1 and true for all n .

Corollary 2.10:

If the independent random variables Xj j=1, ..., n belong
n
to C , then for all real numbers c o=l ey TS z X, & € .
3 jup 33

Proof:

Apply Theorem 2.5 and Corollary 2.9.8




B. Bounds on the Distribution Function of the Sum of Random Variables
Belonging to C

Theorem 2.11:

If Xj eC j=1, ..., n are independent with distribution

n
functions F, and calling G = * F then:
] j=l 9
g -1
For - ) F, (0) >x >0
j=1 3
n
x -} Fr(0)
iil < G(x) .
-2 I ¥
=1
T -1
For + ) F_(0) <x<0
L
n
x- ) F_l(O)
j=1 3
G(x) < = %
iz § ¥l
g=d
Proof:
n n
By Corollary 2.9 Z X, € C ; therefore, g= * f is
j=1 3 j=1

unimodal with maximum at O. Therefore g(x) is increasing for

X
x < 0 and hence G(x) = J' g(u)du 1is convex for x < 0 . Further-

more, we know that
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T -1

G(Z F. (0)) =0 -
J=1 : f
and

o e
Y F.(0) > =
j=1

G(0) =§

Therefore G(x) has for upper bound the straight line from

g 1
(321 Fj (0),0) to (o, 5)

For x <0 ,

e |
x - ) F.(0)
gs1 7
|
-2 3 FiT(0)
J=l

G(x) <

Since G(x) € C it is symmetric and by symmetry for x > 0

T -1
x- ) F.(0)
j=1 3

<G(kx) . 2

T -
-2 ) F, (0
s=1

Theorem 2.12:

If the independent random variables Xj j=1, ..., n belong

to C , then:




For x>0

G(x) < min {FJ. (x)} .

For x <0

max {F.(x)} < G(x) .
J=1, cc.,0 i

Proof:

It is sufficient to prove that for x < 0 Fj (x) < G(x)

Ml =1, .05 B .

Proof by Induction:

* For n =1, trivial F,(x) iFj (x)

3

« For n=2

For x <0

G,y (x) - Fj(x) (j :#;.,2 » Gy(x) = F, * Fz(x))

4o

= f Fj(x - u)fk(u)du - Fj(x)

4o +o
= fFj(x - u)fk(u)du - f Fj(x)fk(u)du

4o
since ffk(u)du =]

-0




30

40
- f [Fj (x = u) - Fj (X)]fk(u)du

+x 0
= f [Fj(x -u) - Fj(x)]fk(u)du +f [Fj(x - u) - Fj(x)]fk(u)du -

Changing variables in the second integral u = -t
+oo 0
= f [Fj (x - u) - Fj (x)]fk(u)du + f [fj (x+t) - Fj (x)]fk(-t)(-dt)
0 o
since fk(u) is symmetric:
4o
= f [Fj(x - u) + Fj (x +u) - ZFJ. (x)]fk(u)du
0

fk(u) >0 Vu it is sufficient to show that [Fj (x - u) + I-‘j (x +u) -

2F"1 (x)] >0 for u e [0,+] to insure that Gz(x) - FJ. (x) >0

and Gz(x) > B (x) 3 =12 .

]
l) For u=20

[Fj(x -0) + Fj(x + 0) - ?.Fj(x)] = 0

2) For O <Lu<im

[Fj(x - u) + Fj(x+ u) - 2Fj(x)]

is an increasing function of u since its derivative is:




L i i A b e ek - A By
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—fj(x-u)+f(x+u)-f(x+u)-fj(u-—x)3_0

3 ]

since fj is symmetric and unimodal and |u - x| > |x + uf

for 0 <u <4,

a) 0<u<-x=x<x+u<0<-x<u-x

) -xsus+=mwO<x+u<y=-x.

Therefore it is true for n = 2 .

* Assume it is true for n = k .
Then for x < 0

Fy) <6, §=1, ..o, k.

Since C 1is closed under convolution the density gk(x) EeiC. o
Then by the proof for n = 2 :

For x <0

G (x) <G *F _,(x)= Gy (%)

k+l

* =
T L6 T =@ .

Therefore:

For x <0

F_.(x)in(x) for J = 1, ausy KL

It is true for all a . B




32

Theorem 2.13:

For all X, eC j =1, ..., n independent random variables

3

with distribution function Fj and all real numbers cj Jm e ey

n n
G(x) = Prob { ] c.X. <x} is such that for -} |c IFTI(O) 5% >0

n

2= |cj1FJtl<o>
i:l < G(x) < min  {|e,|F,(x)}

-1 j=l,...,n 3 3

=2 ¥ e lr (o Lo

jm1 4 3

t: -1
and for Z lchFj (0) <x <0

J=1
n
X - Z [c [Ffl(O)
e g
max {le, |F.(x)} < 6(x) < .
j=1 R R i % e =1
L L =2 ] e JE to)
j’l J j

Proof:

Apply Theorem 2.12 and 2.11 and Corollary 2.10 and Theorem 2.7.H

Corollary 2.14:

For all X, e¢C j=1, ..., n independent random variables

with ranges [-a ,+aj] and all real numbers cj S I L o S

3
n
G(x) = Prob { Y c.X j_X} is such that:

o
For ) |e,la,2x3>0
qap 4




|a
i1 5 A
2 jzl |Cj|aj
n
and for _jgl chlaj <x<0
n
X + jzl ch|aj
s T
2 c.la
ol
Proof:

Apply Theorem 2.13 with FEI(O) = -aj from Proposition 2.4.0

Theorem 2.15:

For all Xj eC j=1, ..., n independent with ranges

[-aj,+aj] and real numbers cj 3 =il e, oy 1E

n
G(x) = Prob{ } ¢.X, < xp it is true that:
iy HE =

For 0 <Y 5.%

|a

n
vy =12y ) le

-1 -1
<G "(y) < min le  |F. ()¢ -
551 { ik }

34 = j=l,...,n

For lz_yl}z-

[a

n
max  {leFi o cetm s @ =D 1 e

j=l,...,0 i=1 "y




Proof:

This is just a different way of stating Theorem 2.13. As

X, € C, all the inverses of Fj are concave and so is G-l(y)

]
s =1
and (2y - 1) Z lcjlaj is just the straight line joining G ~(0) ,
=1
-1 -1/1 -1
G “(1) and going through G 7). The concavity of G “(y)

explains the inequalities.

As both Fj and G are strictly increasing in their ranges

as Xj €eC forall j=1, ..., n, then it is clear that
-1
Vx e (-=,0] ch|1='j (x) < €(x) .

1

1 ot =
Then Y ¢ [O, 2] i lchFj (v) 26 “(y) .B

|
|
'
i
|
s
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CHAPTER III

In this chapter the results of the previous chapter are used
to find conservative approximations to Models I and II. The normal

case is treated separately at the end of the chapter.

A. A Conservative Approximation to Model I

Theorem 3.1:

If ej eC j=1, ..., n with ranges [-aj,+aj] , the following

linear program is a conservative approximation to Model I for 1-% .

minimize ch
subject to x € Q
n

jzl Apgxy 20y + {2y, = 1) 3-2-1 lAij.aj §m Ly save B

Proof:

(i) The objective function is ch since Vj E(ej) =0

as e, € C .

b
(ii) From Theorem 2.15 it is clear chat for Gi(z) =

n
o2
Prob {jgl Asey f_z} and v, 23 Vi=1, s

n
@@ -vp -0 1 alagl ceia- vy
3=1

= (1 -2v)) 2 alA <Gl( -y -
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Using the deterministic equivalent of Theorem 1.1 it is true

that if x 1is such that for all i =1, ..., m,

n n
) Agys 2b, + 2y, - 1) Zl aleij| .

j=1
Then
Todow >b, - G - v,)
jep 1373
; =1 .
since (2Yi - 1) jzl aj ij Gi (1 yi) and therefore:

Prob Z Ay (x +e)>2b

3 i(2Yy for all 1 .

Hence it 1s a conservative approximation to Model 1.8

B. A Conservative Approximation to Model II

Theorem 3.2:

If the Q of Model II contains the set {x | x > 0} and if

8, €€ 3 =1, ..., 1 with ranges [-aj,+aj] , the following linear

3

program is a conservative approximation to Model II for vy >

=

minimize ch
subject to X £ Q
n

jgl [Agy + - ZYi)lAianj]xj 2b, i=1, ., 1,
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Proof:

(i) The objective function is ch since E{a,} = 0 for

3

=1, ..o " a8 a. €C .

j
(11) If we call

n
1Gx(z) = Prob {321 Aijxjej ﬁ,z§

Using again Theorem 2.15 and the fact that x > 0 .

for vy

N

1‘1 N T

o
QQ-vy3 -1 ) a

-1
£ .6 (Q~-v)
i j=1 ix >

|
38l
n

= !
- - sy jzl oylig i, £ 6,70 - v) .

Using the deterministic equivalent of Theorem 1.2 it is true

that if x 1is such that for all i =1, ..., m:

n
321 (a, + Q- Z‘Yi)lAianj]xj 2b, .
; Then
n n 4
jzl Aggxy + - 2v) jzl lAijlajxj > b,

and

skt e
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¢ -1
I a x, + 6 (1 - 2y

)
j=1 ii7j i
) L
> A..», * (1 =2v) A .lax 2P
o S
and finally
n
Prob jzl Ay +apdx, 2bp>y,  forall i.

Thus, this is a conservative approximation to Model II. &

C. Special Cases for y =1 and vy = %

These two models presented in Theorems 3.1 and 3.2 are linear

programs and thus can be solved using the simplex method. They

do not yield the exact solution, but in the absence of a method

to obtain the exact solution these are valuable problems as they

give us a feasible solution set and an optimum for that solution set.
It is also to be noted that the solutions are exact for y =1 and
-l
Y 7
For Yy = 1, since the random variables have finite range, the
problem is reduced to a linear program with the random variable

having their "worst" values. This yields the programs:
Model I:

minimize ch

subject to x € Q

n n
jzl Aijxjg_bi+j§l [Aij[aj L wl, oy B
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Model II:

minimize ch
subject to x € Q
n
‘z (Aij = !Aijlaj)xj 3_bi it e
j=1
when {x | x>0} ca.
For y = %-, since the random variables are symmetric, the

problem is reduced to the linear program where all the random

variables are set equal to 0. This yields the two identical programs:

Model I:
PV T
minimize e X
subject to x e Q ’
Ax > b .
Model II:
; T
minimize cxX

subject to x € Q

Axlb.
We will now prove these statements in the following theorem.

Theorem 3.3:

(1) Model I and the problem of Theorem 3.1 are identical
for y = % and y=1 .

(i1) Model II and the problem of Theorem 3.2 are identical

for vy =4% and y=1 ,




Proof:

(i) For y =1

n n o
(2y, ~ 1) ok daow T4 Iaj=G (1 Wi =1, sess B

oy TR ey T i
and for vy = %
n
-1(1
{2y, = 1) ) lAijlaj °“°1(2) IS (SRES

j=1

(ii) Similarly

n n -1
(2y; = 1) 1 1A lax, = .Z A, |a.x, = G, (1)

gwy - BTy AT
for 1 Lo, Vi= 1, oo, m ;3
n
-1(1
2y, - 1) 321 |Aij|ajxj 0= G (2)

for vi'% P i TR T
Therefore, the constraints are identical.l

Note:

It should be noted that all previous results can be extended
to random variable ej and aj with nonzero means but for which

the random variables e, - E(ej) and aj - E(uj) belong to C .

3

| PR
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D. The Normal Case

The normal distribution does not belong to the class C ,
however as it is important, it shall be treated separately in
this section. The special properties of the normal distribution f
enables us to formulate workable deterministic equivalents for

Models I and II.

Theorem 3.4:

1f ej j=1, ..., n are distributed normally with means

uj and variance c§ » then the following linear program is a

deterministic equivalent of Model I.

n

minimize jZl e, xj + jzl j j

subject to x ¢ Q
s 1
jzl Aijxj 2b jzl 5 14y 3 (l s ( ) AiJ j)

i =y cevy W

where ¢(z) 1is the distribution function of the standardized normal

with mean 0 and variance 1.

Proof:

n
Prob{ ] A, .(x, + e

L e

Yi

=1
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where

n
G, (z) = Prob :121 Ayey < z}

by Theorem 1.1.

However since ej have N(uj,oj) as distributions, then
Gi is

.
jup 1 = [
n
- A P
z iZl "y
<==> Gi(z) = ¢ 5 l
) Ai.ci)z
jop 1303
Hence if (1 - Yi) = Gi(z)
{
n
2 - A, .U
. jzl B
1-v,=9 1

b
¥ .3 g\7
(jzl Aijcj)

and

z A
JL1U

1
g 2 52)?
[, 4
- Gll-yiess § A
i i i

=1l
r11%*¢“‘ﬁ(zﬁu)

=4 11 -y,

o)




Hence for all i =1, ..., m

Prob Z Agylx +ej)>b}1vi

j=1
¢ -1
- jzl Agg%y 20y - Gy (1 - ;) by Theorem 1.1
1
A, = 1l - .
- le 1% 2P jzl Ajghg = 0 Y Yi](jzl AYS0 j> a

Theorem 3.5:

1f Gj j=1, ..., n are distributed normally with means
u, and variance c? , then the féllowing convex program is a
deterministic equivalent of Model II.

n
minimize c. (1 + u,)x.
L ) J)J

subject to x € Q

2 -1 %
jzl Aij(l + uj)xj +¢ (1 - Yi](jzl Al °j j b, .
Proof:
Prob { Z A (l + cxj)xj 3_bi} Z'Yi
j=1
= Z A 1% % iG [1 - Yi] 2 by
i=1
where




(6, (2) = Prob {jgl Ay +a)x, <b 1}
by Theorem 1.2.

However since a have for distributions N(uj,cj)

3

1
n —
2 2
16, (2) is normal X jzl Aiiju (2 Ai )

A, % W,
Ja Clele
s 1
2 2.2
A
(jZl ij j J)

Using the same reasoning as in the proof of Theorem 3.4

1

-1 B =1 § g2 222
G l-v.]= A, + 1 -y, 5
ix[ YJ.] jzl J-Jujxj » Yl](jzl ij J J
Hence for all i=1, ..., m
Prob‘li Ay ("+G)xjibi}->-¥i
<= z A .x, + Gl[l Y.l 3 b
13 3 > (i
j=1
1
2.2\2
- Z AL+ u)x, + = = ] 0.5 2 b, »

The program thus obtained is convex since the above expression

is concave. This was shown in the literature in (8].8
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If one does not wish to solve the preceding convex program
using the usual convex programming algorithm, a conservative
approximation for Model II can be derived in the normal case. This
applies if we have the comstraint {x | x > 0} 1included in the

set Q ,

Theorem 3.6:

If in Model II, {x [ x>0} CQ and o, j =1, say W Are

3
normally distributed with means uj and variances c? » then for
Y 3;% the following linear program is a conservative approximation
for Model II.
o
minimize Z c, (1 + u.)x.
subject to x e Q
n -1 '
’ jz]_ [(l + uj)Aij + 9 (1 - Yi)oleiJ.]]xJ. _>_bi Yl =1, iiny m

x>0.

Proof:

This can be established using the following two facts:

1) Por 30 Vim]l, ..., m

B . % gonz3
(j,f,l 'Aij"‘j"j) 2 LA

1
n / n 5
& g2

jzl lAijlcjxj 3_( ) Aijcjxj) ‘
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v
YT

2) For ¥y

¢-1[1 - yi) <0 i 4 =1, ... m s

Hence by 1) and 2)

1
=il L 2 2.2\2
1- A (X, < [(1- A .
o[ Yiljzlljl“_¢ v](Z 1333)
Therefore for Yy _>_-i— y for 1 =1, ..., m if x > 0 satisfies :
2 -1
jzl [(1 + uj)AiJ. + 4 [1- Yi]IAij]cj]xj > by
n -1 n
= Lk YA, X, + 1 -y, A .log, >b. .
.Zl (L +u)a e + 671 - vy 'Zl aglog 25y
J J
Then
1
T 2 2233
) L+ uax, 4 1=, 2 A
j=1 1\ 5=1 13 0 J
n -1 n
1+ A, + L o=y |a.X, .
ljzl L+ u)h e+ 0 (1 = y.1 jzl (AiJ[oJxJ 2By

= Prob Z A (l-r-aj)x > ].}Z_Yi-

This problem is a comservative approximation to Model II.H
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CHAPTER IV

A. Sensitivity Analysis

In this chapter we will study the sensitivity of the optimal
solutions of Models I and II with respect to the following four

characteristics of the model.

1) The cost vector c¢ .

2) The right-hand side b of the comnstraints.

3) The probability vector vy .

4) The distributions of the random variables (ej b Bl R

for Model I and aj j=1, ..., n for Model II).

B. The Objective Function and the Right-Hand Side

1. Model I:

Model I presented in either its deterministic equivalent form

or conservative approximation form is a linear program and sensitivity

analysis on the cost vector or the right-hand side can be performed

in the usual manner according to linear programming theory.

When the approximation is used, although we have no guarantee

l ‘ that a change in the approximate problem will reflect exactly a
change in the original problem, we can confidently say that in some
cases it will give an indication of the effect of that change.

For example, if the right-hand side b is modified as to expand

the original feasibility set, it is easy to see that the feasibility
set of the conservative approximation will also be expanded.

Similarly, a change in the cost vector ¢ in the conservative approxi-

“——_—_—_.ﬁ_‘j
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mation will yield the conservative approximation to the modified
original problem. In short, if in the absence of other valid
method, we are ready to settle for this conservative approximation
solution, then the sensitivity analysis of the conservative approxi-
mation will give us results of the same validity as the solution

for which we settled.

2. Model II:

Model II in its deterministic equivalent form is a nonlinear
program and the sensitivity analysis will have to be performed
according to the specific nonlinear program that Model II represents.
However, we have noted that we might not be able to obtain this
formulation explicitly, in which case we cannot solve the original
problem. Here the conservative approximation derived earlier
will prove to be useful. 1In the case the aj j=1, ..., n belong
to the set C and vy 1-% , the conservative approximation was
shown to be a linear program in Theorem 3.2 and the usual sensitivity
analysis on the cost vector and the right-hand side can be performed
using the theory of linear programming. It is important to note
that this procedure will yield the exact behavior of the optimal
solution with respect to variations in the cost vector and the right-
hand side, only when ¥y =% and y =1 . TFor % <y <1 conserva-
tive approximations will be obtained; that is to say the optimal
solutions will belong to a subset of the feasibility set and will be
optimal among that subset. The motivation for using this approxima-

tion is the same as discussed previously for Model I.




C. The Probability Vector vy

Y 1is given a priori in Models I and II. One might be interested
in the effect on the optimal value of the objective function of
relaxing the probability constraints by decreasing <y or tightening
the probability constraints by increasing Yy . For example, if the
probability constraints represent production standards, what will
be the effect of modifying these standards on ﬁhe optimal expected
cost? The analysis can be performed in many different ways:

modifying one comstraint at the time, or many constraints.

1. Model I:

Both the deterministic equivalent and the conservative approxi-
mation are linear programs with Yy in the right-hand side and the
usual sensitivity analysis of the right-hand side can be used.

The motivation for using the approximation has been discussed in

the previous section. Here we may add that the sensitivity analysis
can be performed easily on the approximation since the right side

is a linear function of y . If we choose to change only one Yi

or modify all Y4 i=1, ..., m by the same ratio, we have the
usual one dimensional sensitivity analysis. However if we choose

to modify more than one or in general modify Yy , then this is a
multidimensional sensitivity analysis and it is discussed in Walters
[14].

The conservative approximation for Model I when e, € C

3

J =3, soes B ANE Y 3_% can be formulated as:
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minimize ch

subject to

n n

jZl Aijxj > bi + (ZYi = 1) jzl |Aijlaj s L R

or in a more convenient notation:

minimize ch

subject to Ax > b + ﬁ;

where B is an n x m matrix with

Bij =0 for i # j
and
B, = 1 la,l
B,. = A, .|a, i = 1. covy m
1i =1 alg) )
and

;i = ZYi =l

The most general sensitivity analysis would be to find all
optimal solutions for 0 5_? < 1.

Of course if we know the exact form of the deterministic
equivalent, we should perform the sensitivity analysis on this
problem and get exact results. However, it cannot be done directly
as sensitivity analysis of the right-hand side of a linear program,
because the right-hand side is not a linear function of Yy . The

usual sensitivity analysis can be performed for the parameter




-1
A= (kl, Saa Xm) where Ai = Gi (1L - Yi) i=1, ..., m and
then later converted back to Y using the formulas:
Yy - 1 - ci(xi) S Ul R T
Here again, as described for the approximation, one-dimensional

or multidimensional analysis can be performed.

2. Model II:

In this case the y vector is not represented in the right-
hand but in the left-hand side of the constraints. We will not deal
with the deterministic equivalent as the left-hand side is dependent
on the distribution of the random variables and is different for
every problem. However we will mention that for the conservative
approximation, the one-dimensional case is a parametric column

linear program and this problem has been treated in Lawrence (9].

4

D. Variations in the Distribution Functions of the Random Variables

In this type of sensitivity analysis the probability vector vy
has been specified and cannot be changed; however, the distribution
functions of the random variables can be modified. For example,
if the random variables represent error in measurement, replacing
the measuring device with a more precise one will alter the distribu-
tion functions of the errors.

In the deterministic equivalent approach, a change in the dis-
tributions of the random variables produces a corresponding change
in the convolution. Since it is very difficult to describe mathe-
matically this relationship for a general enough case, we will

concentrate our efforts on the conservative approximation approach.
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1. The Change in Distribution Functions for Random Variables
Belonging to C :

From the formulation of the approximations, the main relevant
change in the distributions of which we want to keep track is
the change in the range of the densities. However, it is important
that the modified random variables still belong to C for the
approximation to be meaningful. We will give two examples of
such changes. A random variable X ¢ C with density £ ,
distribution function F and range [-a,+a] will be considered.

We want to reduce the range to [-8a,+8a] where 0 < 8 < 1 ,

Example 1: Truncation

The new random variable X will have range [-8a,+6a] and

the following density f and distribution function F .

0 X < -9a

~ i f(x) "

f(x) = T(3a) - F(=8a) fa < x < fa
0 Xx > fa .
0 X < -9a

f(x) = F(x) - F(-%a) -8a < x < %a

F(ea) - F(-ga)

1 x > fa .

The properties of X are presented as shown in the following

theorem:




Theorem 4.1:

If§ X e C , then Tet .

Proof:

a) £(x) = £(-x)

b) £(x)

Vx since f(x) = £(-x) Vx .

is unimodal with maximum at O since £(x) is

unimodal with maximum at O.

c) [-da,+6a]

d) f(x)

Example 2:

The new random variable

and the following density f

The properties of

Theorem 4.2:

is continuous since

~

is finite and is the range of X .

f(x) 1is continuous.

Concentration of Mass

X will have range [-3a,+8a]

and distribution function F .

0 X < -8a
f(x) = " £l= -9a < x < fa
0 9 s -
0 X > 8a .
0 X < -8a
= X
F(x) = F(-e-> -68a < x < Ba

1’ x > 6a .

X are preserved as_is shown in Theorem 4.2.

tf YsC,XsC




|
i
|
|

a) For x ¢ [-6a,+0a] f(x) = = f(-) = = f(:i) = F(-x)

as XoenC .
b) As X e C f(x) 1is unimodal with maximum at 0, so is
% 1 X
(f2) s 2ef2).
¢) [-8a,+6a] is finite.

d) f(x) is continuous since f(x) is continuous.®

This second method gives immediately the corresponding chance

on the variance of the random variable.

Theorem 4.3:

For X e C and 0 < 5 <1

var (X) = 62 Var (X) .
Proof:
+8a +8a 2
var (X) = f xzf(x)dx = f %-f(—g-)dx
-fa -%a
change of variables
v=23
9

= x = gv

dx = 8dv




B

+a 2
= Var (X) = f_(e_ve)__ f(v)8dv
-a

+a
= 02 fvzf(v)dv !

-a

= 92 Var (X) .0

2. The Parametric Models:

8 1is now the parameter for this sensitivity analysis with 3
each random variable having its parameter ej q) T AR S e

The conservative approximation will be presented here.

Model I:
. 1
For ejec j =1, <.y n and Ylf'
: T
minimize e X

subject to

n n
Yy A..x,>b, + (2y, -1) ] |a,la.e, & 3 vis B s
qug I 1 i P

Using a more convenient notation the model can be described as:

minimize ch

subject to Ax > b + B'®

' $ ! = pr -
where B' is an n x m matrix such that Bij (2, l)lAianj




56

This is a multiparametric right-hand side linear program
and such problems have been diécussed in D. Walters [14]. However,
any dimensional parametric problem can be discussed by using the
relation 9 = A + B8', in particular if one sets ej =0 Vj,

then it is reduced to a one-dimensional parametric problem.

Model II:

(For aj e€ j=1, ..., n and Y.l'% and {x | x >0} C Q)

ey T
minimize ¢ X

subject to x € Q

n
1 [A,

— | 2 { =
] 1 + (1 zYi)‘Aijlajej]xj 3_bi At S e &

3

This is a parametric column linear program and we will refer
the reader to Lawrence [9].

The deterministic equivalents for Models I and II are not in
form amenable for this type of sensitivity analysis; this is why
the approximations are used here. We will mention again that these
approximation problems are identical to the original problems for
y=1 and y = 2 and that these are good approximations in the

2
neighborhood of y =1 , as a variation 6 is felt most strongly

at Yy = 1 as shown in Figure 4.1.
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FIGURE 4.1




58

E. The Reducing of Uncertainty Problem

One problem of further interest is the problem of the trade-off
of the improvement of the optimal value of the objective function
when the uncertainty is increased versus the cost incurred by this
increased uncertainty. For example, in Section C, if there exists
a cost function associated with the vector Yy , the problem become
that of selecting optimal decisions x and standards y . The
same problem exists in Section D where y is fixed; the variatioms
in the ranges of the random variables can have a cost associated
with them. The problem is optimizing the total cost of the original
function and the cost of reducing the uncertainty of the random
variables. This is why we will call this problem ''the reducing of

uncertainty problem.”

1l. Cost Functions:

The cost functions for the reduction of 8 or ¥y that we are
going to consider have the following characteristics: They are non-
negative and increasing for decreasing values of 6 or vy .
Essentially, the cost of reducing the uncertainties (reducing the
,80a,] with 0 < 6 < 1) goes up as the

range [-a ,+aj] to [-fa

3 |
range decreases. For Yy , the cost due to producing material not
meeting standards or not meeting the demand, for example, increases
as the probability y is decreased.

We will propose the following cost functions. We will use the

symbol & to represent both the vector & and ; (; =2y -1

as defined in 2. of Section C) to avoid repeating the discussion.




a) In the case where 2ll reductions 61 i= 1. ..., n ‘are

equal to § , a reasonable cost function is:

d

0
c(8) o do
with dj > 0 . Then
c(l) =0
lim {c(8)] = +=

§-+0

This is nonnegative and increasing for decreasing values
of 8§ (06 <1) .

b) In the case a) above it might be unrealistic to postulate
that all uncertainty can only be removed at an infinice
cost. This is especially true for 6 = ; . Recall that

-~

Y = 2y = 1 in the parametric problem where Yy is the

parameter. We can see that if the cost is infinite for

Yy = 0, this corresponds to infinite cost for vy = -

= -

2
which is the cost of each constraint to be satisfied

of the time. It is clear that a modification to a) is

E needed to reflect this fact, this is why we introduce b):

5E éi-G v

0

then c¢(l) =0 ; c¢(0) = 4———< <
/ dl(dl + 1)




c) When all Yy are not necessarily equal, the generalization,

for 6§ = (61, e dn) s
| ]
n do n do
C il Boswaial e
i= + i=
JRld] + 8, eldy 4l
with d) >0 and d) >0 forall j=1, ..., a,

d) A more global approach where the total uncertainty reduced

is taken into consideration is for § = (61, R Gn)
A 1 . 1
c(s) = E =
.6, +d ] -4
j:l 0 J=0 J
* with d, 20 V§=0, ...,

It is important to note that for Gj = ej , we are talking
about reducing uncertainty when we reduce 6§ . It is in this
context that the name ''the reducing of uncertainty problem'" was
devised. However, when Gj = ;J = ZYj - 1, a decrease in §
corresponds to a decrease in Yi which is an increase in the
probability of the solution not being feasible and the cost function
then reflects the cost associated with this expected loss of
feasibility.

Many more cost functions could be proposed; however, we will
restrict our attention to d) which is a generalization of a) and b).

This is because this cost function has the advantage of being

convex as will be shown in the following theorem. It is also

amenable to a solution scheme presented in Chapter V.
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Theorem 4.4:
For dj 20 j=0,1, ..., n and y > 0 the function
3
T

d0+dy

is convex.

Proof:

Consider any vector x and y such that x >0 and y >0 .

Then:
Case 1:
1f
aTx > d%y > 0
=4, +dx>2d +dy 20
- i , _dx - aTy =
@y + T (do & dTy) % (do + de)z 3
case 2:
1f
dTy > aTx >0
- 0 > de -~ dTy 5 de - d?17
i (do + de)(do + dTy) 5 (do + de)Z

From Case 1 and 2 it follows that

I T TR T —




1 1 e o s

- >
. +d'y d. +dlx

0 0

(do + de)Z

n d. (e, %)
e e et DR MR

T = 1y TEN2
dg+dly dy+dx jl(do+dx)
<=D l’ri 1T+V[ lT X[y-x].

d0 + d'y do + d'x do + d %
Therefore Y P is a convex function.

T

d,. +d'x
0
2. Applications to Model I:
For vy 3;% and ej eC j=1, ..., n we have the following

conservative approximations.

a) For 6 = ; z
The model can be formulated as follows using the notation

of 1) of Section 3.

minimize cx +

subject to Ax - By > b

b) For &§ =16 .

Here also using the notation 2) of Section D the model is




minimize e x + =

subject to Ax - B'6 > b

1>8>0.

These two problems a) and b) fall into the general pattern

of the following problem:

< orals T
minimize gix F -

subject to Ax - By > b

with d >0 .

This problem is analyzed in Chapter V and an algorithm is
presented to solve it.

These conservative approximations do not yield the exact
solution. However, these problems are exact for y =1 or % .
and for b) the approximation is very close for <+ near 1 as the
variablg 8 reflects the change in the ranges of the random variables

and this variation is felt most strongly in the neighborhood of

Yy = 1 as mentioned earlier (see Figure 4.1).

3. Applications to Model II:

and ¢, € C j=1, ..., n we have the following

N

For v >

conservative approximations.




minimize ch + : it nl
dO + d’y z dj
j=0

subject to

n -~
) [Aij - Y|Aijlaj]xj 2b, i=1, ..., m

g=1
x>0
1>y20
b) For & =8
minimize ch + 1 o nl
8
d0 + d z 4
j=1
subject to
n
jzl [Aij + [1 - ZYi]|Aij|aj6j]xj 3_bi i = e R
x>0
L>8 30«

These two problems are nonlinear programs that can be solved

using the known algorithm and no special solution schemes will be

presented.
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CHAPTER V

In this chapter the following programming problem is analyzed

and an algorithm is specified for its solutionm.

A. The Reducing of Uncertainty Problem

Find the optimal solution (x,y) which solves
T
minimize c X +

subject to Ax - By > b

with d >0 and 4, >0 .

0
This is a convex program as the feasibility set is a polyhedral

set and therefore convex, and its objective function is convex as

; 1
the sum of two convex functions since ch is linear and — T

do-i-dy

is convex as shown in Theorem 4.4,

This problem is clearly defined if the following condition holds:

Condition 5.1:

There exists (X,y) such that

<
jv
o

Ax - B

»i
|v
o

=
|v
~
iv
o

and d, +d%y >0 .

0




66

We will assume this condition is satisfied throughout this
discussion.

The strategy used to solve this problem will comnsist of solving
a different equivalent program and obtaining the original optimal
solution from the optimal solution of the second program. The term

equivalent program is used as defined below.

Definition:

Two programs are equivalent if there exists a scheme to obtain
the optimal solution of any one of the two problems knowing the optimal

solution of the other problem.

B. Two Equivalent Convex Programs

Theorem 5.2:

The following two programs are equivalent:

(a) minimize h(x)
xeQ

where h(x) = f(x) + g(x) , £(x) and g(x) are convex functions

for x € Q, and © is a convex set.

(b) minimize ¢(a)
aeb

where

¢(a) = a + min {g(x) | £(x) < a}
xeQ

and
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4

<

8 ={a| {x]| xeQ and £(x) <a} # 0} .

In other words, using the definition of equivalent programs,
the following statements are true:
(1) min h(x) = min ¢(a) .
xeQ aed
(ii) For any a optimal solution of (b) there exists at
least one corresponding X optimal solution of (a),
which can be obtained as follows: x € Q@ such that

min {g(x) | £(x) < a} = g(x) .
xe

(iii) For any X optimal solution of (a) there exists at
least one corresponding & optimal solution of (b),
which can be obtained as follows: a such that

a=f(x) and a € 9 .

Proof:

Let us first establish two facts to be used later in the proof:

For any x such that x ¢ @ and h(x) = min h(x) then:
xeQ

Fact 1:
g(x) =min {g(x) | f(x) < £(x)} .
xef
Fact 2:

¢(£(x)) < min ¢(a)
ach

D —
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If Fact 1 were not true then there would exist an x such that
xeQ and g(x) < g(X) and £(X) < £(X) which yields: X e Q
such that h(X) = £f(x) + g(X) < £(X) + g(X) = h(X)

This contradicts our assumption about % .

Therefore Fact 1 is true.

If Fact 2 were not true then there would exist an & such that

ae8 and ¢(@) < ¢(£(X)) as ¢(@R) =a + min {g(x) | £(x) < a}
xeQ

- * *
and a € 8 . There exists an x such that x ¢ Q@ and

gx) = min {g(x) | £(x) < a} .
xef

. .
Therefore, there exists x € @ such that h(x*) =

* * - * -
f(x) +8(x) ca+g(x)=4¢(().

Hence

h(x') < 8(£(X)) .

However, Fact 1 established that

S(E£(x)) = £(X) + min {g(x) | £(x) < £(X)} = £(x) + g(x)
xef

*
so there exists x €  such that

hx) < £@) + g3 » B

which contradicts the assumption about X , therefore, Fact 2 is

true.




Now we can prove:

(1) min h(x) = min $(a) .
XeQ aeh ﬂ

As Fact 2 say that

6(£(x)) < min ¢(a)
aeb

It is sufficient to show that: ﬂ’

1) f(x) € 9 . i

This is true since
xef{x| xeQ and £(x) < £(x)}
and therefore {x | x e Q@ and £(x) < £(x)} # 0 .
\ 2) h(x) = $(£(x)) .
Fact 1 establishes this as:
$(£(x)) = £(x) + min {g(x) | £(x) < £(x)}
XeQ

= £(x) + g(x)

= h(x)
Hence as f(xX) € 9 and by Fact 2

$(£(X)) = min ¢(a)
acd

and since

i.." —— o— T |
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$(£(x)) = h(x)

and

h(x) = min h(x)
xed

It is true that

min h(x) = min $(a)
xeQ aehd

(ii) ¥a ¢ 8 such that

¢(a) = min ¢(a)
aed

There exists x € © such that

g(X) = min {g(x) | £(x) < a}
xef

and

h(x) = £(x) + g(X) = min h(x) .
Xe

Let x € Q@ be such that g(x) = min {g(x) | f(x) 5_5} s such
Xe

an x exists since a ¢ © , then
£(x) =a and h(x) = 4(a)

because if it were not true then £(x) < a and

h(x) = £(x) + g(X) < ¢(@)




which yields the contradiction that there exists x ¢ 2 such that

h(x) < min ¢(a) = min h(x)
aed xeQ

as seen in (i). Therefore

d(a) = a + g(x) = £(x) + g(x) = h(x)

Hence h(X) = min 4(a) = min h(x) as seen in (i).
aef Xell

(iii) V¥x such that z € @ and h(x) = min h(x) , then there
xXeQ

exists a € ® such that a = f(x) and

6(a) = min $(a)
ach

Let a e 8 such that a = f(x) ; such & exists since
{x | xeQ and f(x) < £(x)} # 9 since x belongs to that set.

We have seen in (i) and (ii) that

h(x) = min $(a)
ced

and
h(x) = 6(£(x)) .
Hence

$(£(x)) = min ¢(a)
ach

and a = f(x) 1is an optimal solution of (b).MH
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Program (b) is also a convex program as is seen in the next

two lemmas.

Lemma 5.3:

The set 9 = {a | {x | x e @ and f(x) < a} # #} is a convex

set.

Proof: |

Val € 6§ and az € 8 . There exist xl e and x" & @

such that

f(xl) g_al and f(xz) i,az
Hence for any X such that 0 < A <1 it is true that:

1

ABCxTY + (1 - WE(=DY < aed + (1 - 0a? .

However using the convexity of f(x) it is also true that:

X

£OX" + (1 = V) € 3G & (1 = WEGED) & het & @ - 2)ad .

| This inequality and the fact that Q 1is a convex set clearly

shows that for any al €8 , 32 €%, 0< A< 1 there exists an

)

X e Q2 , namely Ax™ + (1 - X)x2 , such that £(x) f_kal + (1 - A)az "

Therefore Aal + (1 -~ .\)a2 €9 and 8 4is a convex set.l

Lemma 5.4:

The function ¢(a) is convex for a € 6 .
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Proof:

Mo e 8 , 8" &8 .

¢(al) = ol + min {g(x) | f(x) g_al} .

xXeQ |
i
¢(a2) -gt b min {g(x) | £(x) g_az} |
xef
As al € 6 and az € 6§ there exists xl e @ and xz € 2 3

such that

pCal) = al + gxl) with £(xY) <ol .
¢(a2) = Gz + g(xz) with f(xz) <a

For any A such that 0 <X <1, Aal + (1 - A)az ]

by Lemma 5.3, therefore there exists:

1

SO+ €1 = 1382y = dat # (1 = A

+ min {g(x) I f(x) E_kal + (1 - A)az}
xeQ

Now if we want to prove that ¢(a) is a convex function for

a € 8 it is sufficient to show that

s(al + (1 - Mad) <ol + @ - need .

Since f 1is a convex function and Q a convex set

1

+ (1 - )‘)x2 e Q

Ax




and

il

EGxE + (1 - Mxd) < AEGD) + (@ - NEED < ot + (@ - A)e? .

Therefore:

min {g(x) | £(x) < xal + (1 - Na?} < gOxd + @ - 1)x?)
xeQ

Hence

S s et & gl e = D

sat + @ - Me?) < a

Using now the convexity of g(x) it is true that:

st % (@ - a2y < dat + @ - Wud # rglt) + @ - Vglxd)
e sl + @ - 0ad) <afed + ghH] + @ - M? + 36D

b ¢(/\al + (L = X)GZ) < J\¢(al) @ (1 = A344a%)
#(x) 1is convex for a ¢ 6 .M

C. An Equivalent Convex Program to the Reducing of Uncertainty Problem

If we apply the results of Section B to our original problem

we obtain the following facts:

Theorem 5.5:

The following two problems are equivalent.




1

T
d0+dy

(a) minimize ch +

subject to Ax - By > b

x>0
1>y>0.
(b) minimize ¢ (a)
subject to o € 8

where

$(a) = a + min -———l—ﬁf— ‘ ch g_u)

(x,y)eQ do +d’y s

Q={(x,y) | Ax -By>b, x>0, 1>y >0}
8 = {a| {(x,y) | (x,y) € @ and cTx < a} # 8} .

Proof:

Apply Theorem 5.2 to the convex program (a).

Since it is our goal to use problem (b) to solve problem (a)

it is useful to study (b) further.

Proposition 5.6:

Under coandition 5.1:

| )

‘ 1 T
min = I cx<a T - .
(x,y)snl d. +d'y min {-d -d'y | e'x < u}
0 0 -
(x,y)eQ

Proof:

Since do >0 and d >0 and x>0,y >0
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Apply Proposition 5.6.H

Proposition 5.8:

min s . T | ch‘i a; = 1 - =
(x,y)e (dg + d7y max {do +dy | e'x < a}
(x,y)eQ
-min {-do - dTy | ch < a} min {-d = dTy | ch < u}
(x,y)eQ (x,y)eQ
Corollary 5.7:
_ 1
s
where
p(a) = -min {-do - dTy I ch < a} :
(x,y)eQ
Proof:

n
Y(a¢) is a bounded function for a e 6 . Z dj >y() >0.
j=0

Proof:

Since do 20 and 4 >0 andas (x,y) c Q= 13>y > (=

T n n
Oido+dy12d=+zdjiw(a)10-l
j=0 J%0
Proposition 5.9:
X 3 n
(1) 1f for a P(a) = Z dj . Then Va subject to o >
j=0
n
w(a) = ) d

j=0 1




(12) If for a ¥(a) = 0 . Then Va subject to @ < a
Y(a) = 0 or Y(a) is infeasible.

Proof:

Since Y(a) = - wmin {~d - dTy | ch < u}
0 —
(x,y)eQ

n

n
(1) If vy(@) = z d. = for ch < a the minimum bound - Z d,
jmg _ = ey A

has been reached and relaxing the constraint ch <o will
not improve the objective function.
(ii) Same reasoning as —do - dTy reaches its upper bound;

however, $(a) can be infeasible for a < a .

Corollarv 5.10:

n
If for & w(a) = Z dj . Then ¢(a) is an increasing linear
j=0
function of « for a > a: ¢(a) = a + -
) d
j=0 3
Proof:
1
¢ (a) a + ey "

n
Proposition 5.9(i) shows that for a >a  ¢(a) = ) d
j=0

, therefore

3

for a>a ¢(a) =a+ .@

7 g

L

Proposition 5.11:

The set 6 is either the empty set or the whole real line or an

interval closed on the left and having <+~ as a boundary on the right.
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Proof:

Lemma 5.3 established that © 1is a convex set and as it is
one-dimensional, 6 is an interval of the real line. If the
constraint set Q 1is empty, 6 1is empty as there does not exist
any (x,y) such that (x,y) ¢ @ and ch < a for any a .

If the problem is unbounded, Corollary 5.7 tells us that

1
$(a) = a + T
and Proposition 5.8 ;
|
a + nl < ¢(cl,) |
+) d, ?
j=0 |

So that #(a) is unbounded if and only if 8 = (-=,4+=) . . f
The upper bound of the interval is always <+~ as for any |

ae9 . Then for any a >a , a € 8 since |

8 = {a | {(x,y) | (x,¥) € @ and e < a} # 0}

if there exists (X,7) € @ such that c'x < a , then surely

Yos : - ]
ecx<a for a>a. e

If there exists a = b such that

{(x,y) | (x,y) ¢ @ and e'x < b} =9

and

{(x,y) | (x,y) ¢ @ and Tk <bl# 0




then b 1is the left hand bound of the interval and the interval

is closed because the set

{(%,y) | (x,y) € @ and ch < a}
is a closed set. W

D. General Description of the Algorithm and Optimality Criterions

As we héve mentioned, the idea for solving the original problem
is to first convert it into an equivalent convex program, solve
this problem, then retrieve the optimal solution. The algorithm
is concerned with solving the second problem. It will be done

in two phases.

Phase 1:
A sequence {ai} is generated (ai € 8) such that Gi+l > ai
from a starting feasible point a € 8 . (Incidentally i can be

negative as the starting point is not necessarily at the boundary
of the set 6 .) This sequence is generated until an interval

or is identified where the optimal solution

[25-1%541]
lies. This is done simply by evaluating the ¢(ai)'s and comparing

(ag,04,]

them until the following optimality criterion 1 is satisfied.
This criterion is to be used when the possibility of an unbounded

problem has been discarded.

e A Sl O, SR Bt S i AT
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Optimality Criterion 1l:

(1) If for a , a' , a'' € 8 such that a' <a < a''

it is true that

¢(a) < ¢(a') and ¢(a) < ¢(a'") .

Then the optimal solution lies in the interval [a',a''] .

(ii) If for a' , a'' € 8 such that a' < a'' it is true that

$(a’) = $(a"")

Then Va e [a',a''] , @ is an optimal solution.
(iii) If for a' , a'' € 8 such that a' < a'' it is true that
¢$(a') < ¢(a'"') and Yae 6§ , @ > @' , then the optimal

solution lies in the interval (a',a'’]

Proof:

As ¢(a) 1is a convex function and 8 1is an interval as shown in
Lemma 5.4 and Proposition 5.11; Case (i) is derived from the fact
that ¢(a) is unimodal. Case (ii) is true because a convex function
can be constant only at its minimum. Case (iii) is when a' is
the left-hand boundary of the interval 6 ; then as $(a) 1is convex,

either a is the optimum or the optimum is in the interval

[a',a''] .
Phase 2:

Once such an interval has been identified, a minimum is found for

the range and this is the global minimum.
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Optimality Criterion 2:

If for a such that a ¢ [a',a''] where [a',a''] 1is the

interval obtained {rom Phase 1, it is true that
$(a) < ¢(a) Vae [a',a"'],
then o 1is the optimal solution.

Proof:

Since ¢(a) 1is convex over the interval 8 and [a',a'']
was found to contain the optimal solution, this optimality criterion

is just stating that a local minimum is a global minimum. 3

E. Feasibility and Unboundness -

In this algo;ithm an initial problem is used to obtain a
starting feasible point or to determine whether the original problem

is unbounded or is infeasible.

Initial Problem:

minimize ch - dTy - do

subject to Ax - By > b

Theorem 5.12:

If the initial problem is infeasible, the original problem is

infeasible.
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Proof:

Both problems have the same feasibility set.B

Theorem 5.13:

If the initial problem is unbounded, then the original problem

is unbounded.

Proof:

If the initial problem is unbounded, then there axists a vector

(G,G,zl,zz) such that

and

and

S LS

It is obvious that w = 22 = 0 since that is the unique

solution of I(w + zz) =0 w30, 22 >0 .

Hence, we have the vector (ﬁ,o,zl,O) such that

0 # (3,0,2°,0) >0

and
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Au -1z =0

and

cTG < 0.

By Condition 5.1 there exists (§,§) such that Ax - B; >b ,

T

%560 >y>0 and d, +d y > 0 . Then, the vector

0

(A + x,y) 1is a feasible solution and makes the original problem

unbounded by increasing A to infinity (A > 0)

lim CT()\G) +——l—'T: = -®
Ao d0 +d'y
since cTG < Q0 and ik, < 4o B
T_
do +d7y

Theorem 5.14:

1f there exists (X,y) € @ such that

l Tz - a5 -dy = min {ch -dly - a |
(x,y)eQ

where

Ax - By 2 0 1

Q = {(x,y) .

l X2V liyz_os

Then
a5 - 4y = min {-dTy -dy | efx < cTE} :

(x,y)ef
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Proof:

T

If there existed (X,y) € @ such that c'x j'cTE and

-dT; -d, < —dT§ -d then cT; - dT; -d, < cT§ - dT§ -d

0 0 0

for (;,;) € @ which contradicts our assumption.l

0

Corollary 5.15:

Under the assumption of Theorem 5.14 the following is true:

: IR
y(ao) d'y + do

T
where ao X eTX .

Proo:f:

Use the definition of %(a) .W

F. The Parametric Linear Program y(a)

We have already introduced ¢(a) noting that ¢(a) = o + wta)

Phase 1:

As (o) 1is a parametric linear program the sequence {ai}
used for Phase 1 of the algorithm will come naturally from the

values of o where the parametric linear program changes basis.

¥(@) = -minimize  -d - aly

subject to Ax - By > b
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The initial problem gives us a starting feasible point a
with the feasible solution for W(Jo) as seen in Corollary 5.15.
The idea is then to first increase a until the optimality criterion

1l is satisfied or, if necessary, decrease a .

Phase 2:

In Phase 2 we will use the fact that the points of the sequence
{ai} are the points where the basis changes in the parametric 1.p.

P(a) .

From the theory of linear programming it is well known that
for points of the sequence {ai} :

For &, < a < @,
S

w(ai+1) - W(ai) " ai+lw(ai) - aiw(ai+l)

b(a) = @ o
%141 T % %141 T %4
and for %y S0 sa,
wla) = blay ;) abla, ) = a,  ¥(@)
I,')(a) = @, = @ g S * B2
i~ Ti-1 i Ti-1

We can now prove the following two theorems under the following
assumptions: ui—l s ai y ai+l are 3 consecutive points of the

sequence generated from the parametric linear program g(a) which

satisfied the optimality criterion 1.
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Theorem 5.16:

For an interval [ai,ai+l] such that ¢(ai) < ¢(ai+1) "

(1) 1If W(ai+l) - v(a)) < 0 then
$(a,) = min ¢ ()
1 ae(a,,a ]
17441
(ii) 1t w(ai+l) - w(ai) > 0 then one of the following is
true.
* 5 * . (
(a) & € [ai,ci+l] and ¢(a ) ae[amlg i ¢ ()
i’ i+l
*%* *% ]
(b) o € [ai,ai+l] and ¢(a¢ ) = [ min ] ¢ ()
aeldii4

* k%
() o & [o,a,,,] and o ¢ [a;,e;,,] and

o(a,) = min ¢ (a)
o acgla,,a ]
i’ 7i+l

* *k
where a , & are defined to be:

*
a

ax OgV(agg) oy qv(ey) l’ e e
a = - 4/ - .
o -a v(ai+l) w(ai)

Prooi:

For the interval [a

T

aiw(ai+l) % ai+lw(ai) 1
= +
= w(ai)

i+l i

%441
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2 1
g
where
B lla(otiﬂ) - Ib(mi) i ai+l¢»(ai) - aiw(ai+l)
1~ % b

The derivative for ¢(a) in this interval is
3 " Bk -2
5 #(@) =1 - = (W)@l .
The roots of the derivative are the solution to the equation:

@)1 = 2 @)

or
b}
$Og) 2 W8 g - “i‘““m)] by ) - wis)
%441 T % Sl T Y %141 T %4
w(ai+l) - w(ai) °‘1+1'4’(°‘i) - aiw(ai+l) wla, ) - vlay)
o a g a - % o ’t a -
%341 T Y i*l ~ %4 i+1 ~ %4
wnich yields the two roots
B T L T e +J Gip1 T %
%41 T % bagyy) - ey
R T S 7 L T L _‘/ o
301 - O ¥a,,) - @)

——
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(1)

(i1)

If y(a

) - w(ai) < 0, no root exists for the derivative

i+l
and ¢(az) is monotone increasing for a € [ai,ai+1] since
¢(ai) < ¢(ai+l)
and
$(a,) = min ¢ (a)
i cela, ,a ]
i’ i+l
If w(ai+l) = w(ai) then
y(a) = w(ai) = w(ai+l) for a e [ai,ai+1]
and ¢(a) = a + ETi_Y is an increasing linear function and
¢
$(a,) = min ¢(a) .
= aela,,a,,.]
i’7i+l
* %%
In (a) and (b), & and a are local minimums and as

¢(a) 1is a convex function for a ¢ [“i’°i+1] we have:

For (a): ¢(a*) = min ¢ (a)
as[ai,ui+l]

For (b): ¢(u**) = min d(a) .
agla;,0.,1

* %%
Note that both & and & cannot belong to the interval

at the same time as ¢(a) 1is convex and does not allow

two local minimums.
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* *%
(¢c) 1If neither a or o ¢ [ai,ai+l] then 9(a) is

monotone increasing in the interval since ¢(a) is

convex and ¢(ai) < ¢(a ) . Therefore

i+l

¢(ai) = min o(a) . B
el ,a; ]

Theorem 5.17:
For an interval [ai_l,ai] such that ¢(ai) < ¢(ai_l)
(i) 1f ¢(di) - W(ai_l) < 0 then

¢(a,) = min $(a) .

ae[ai_l,ai]

(iiy If w(ai) - w(ai_l) > 0 then one of the following

is true: ‘
4
* *
(a) a € [ai_l,ai] and %(a ) = min $(a)
ae[ai_l,ai] i
(b) a** € [ai_l,ai] and ¢(a**) = min o (a)

acfa,_;,0,] :

*¢ ] 4 **é 4
(¢) o [ai_l,ai and o [ai_l,ai] an

¢(ai) = min ¢ ()
as[ai_l,ai]

where:

) = (e, )

) - ¥, _p)




Proof:

In a similar fashion to the proof of Theorem 5.16, it is

easy to show that the roots of the derivatives of ¢(a) for the

* *%
interval [ai_l,ai] are the @ and o mentioned in the

Theorem 5.16.

(1)

(i1)

If w(ai) - w(ai_l) < 0 no root of the derivative
exists and ¢(a) is monotone decreasing in the
interval since ¢(a) 1is convex and ¢(ai) < ¢(ai_l)
so

$p(a,) = min $(a) .
% ac(a a.l
i-1’71

The same reasoning as for (ii) of Theorem 5.16 applies here.
Note, however, that the case w(ui) = w(ai+l) does not

arise, since then

il
¢(ai) =a, + E?E;T

and




G. The Algorithm for Finding the Optimal a

Let us restate the original problem:

minimize ch + __l_—i‘—

d0 + d'y

subject to Ax - By > b
x>0

Lay 29

with d >0 and d, > 0 and the condition that 3(x,y) feasible

0
such that do + dT§ >0 .

Step 1:

Find a starting point.

1.0:
Solve the initial problem:
minimize ch - dTy - d0
subject to Ax - By > b
x>0
i2v29.
This is a linear program and can be solved using the usual
algorithm.
L.18

1f the problem is infeasible STOP. The original problem is

infeasible (Theorem 5.12).

91
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—
.
~n
.

If this problem is unbounded STOP.

unbounded (Theorem 5.13).

3

Otherwise call the optimal solution

GO TO STEP 2.

wn
"
m
~

~n
o

Consider the

problem:

y(a) = -minimize

subject to

and ¢(a) = a + E?éf .

The original problem is

(X,¥)

w(ao) has for optimal solution (x,y) the

of the initial problem (Corollary 5.14).

T
set cx=a .
o

optimal solution

w(ao) has to be presented in a form ready for parametric

analysis (Note 1 at the end of this section shows how the transition

from Step 1 to Step 2 can be done easily).




————

93 |
2.0.0:
n
1f W(ao) = 2 dj , V(o) has reached its upper bound and
3=0 ‘
by Corollary 5.10; the function
1
$(a) = o + g
d
=0 3
is increasing linearly, so the search has to be done for a £ga i |
hence set i : =0 . GO TO 2.2. ;
{
2.0.1:
If w(ao) >0, set i :=0. GO TO 2.1. ]
2.0.2:

If w(ao) = 0 ¢(a°) is not defined, we need to increase a

until Y(a) > 0 is found, such an a exists by Condition 1.

i+1 the next point where the basis changes in the

parametric linear program ¥(a) by increasing o from o, -

Find «a

2.0.4:
5E w(ai+1) =0, set i :=41i+1 . GO TO 2.0.3.
2.0.5
EE w(ai+l) >0, set ¢(ai) =40 , Set i :=1i+1 . GO TO 2.1.

i‘l - — ' — . I . oot
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The algorithm resumes with a new feasible point for which

¢(a) 1is defined.

2.1

Find « the next point where the basis changes in the

5 1

parametric linear program ©(a) by increasing o from a; -

2.1:0:

n
) = z d, , an upper bound for y(a) has been
=0

If vlagy,

reached (Corollary 5.10) and ¢(e¢) is increasing linearly beyond

b T B
(a) 1If ¢(ai) > ¢(ui+l) , the optimal interval is [“i’“i+l]
GO TO STEP 3.2 (optimality criterion 1 (i)).
(b) 1If ¢(ai) < ¢(ai+l) , GO TO STEP 2.1.2, the optimality
criterion 1 is not satisfied.
2:8.1:
If ¢(ai+l) < ¢(ai) s et L s =4 +1 . GO TO 2.1.

Optimality criterion 1 is not satisfied.

Lohois

If ¢(a,,,) > ¢(ai) :

i+l
Case 1: i=20

GO TO 2.2. Only two points have been investigated; the other

side of al needs to be investigated.




T ————— _

Cagse 2: 1 # 0

The optimal solution is in the interval [ai—l’ai+1] .

GO TO STEP 3. ((i) of optimality criteriom 1).

2.10.3:

If ¢(a = ¢(ai) STOP. e € [ai,ai+l] is an optimal

i+1)

solution ((ii) of optimality criteriom 1).

2.2

Find @, the next point for which the basis changes in

1

the parametric linear program y(a) when o is decreased from @ .

If ¢(a) becomes infeasible for a < ai , the optimal solution

is in the ran (o e
nh ange | 1’71+l

criterion 1).

2.2.0:

If ¥, ;) =0, ¥(a,_) has reached its lower bound

(Proposition 5.8). Set ¢(ai_l) = 4o ,

2298

If ¢(ey_q) < $(ay) , set 1= i-1. GO TO2.2.

If ¢(ai_l) > ¢(ai) , the optimal solution is in the interval

[ai_l,ai] . GO TO STEP 3. ((i) of optimality criterion 1)

] . GO TO STEP 3.2. ((iii) of optimality

95
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2.2.3:

If ¢(ai_1) = ¢(ai) STOP.

solution. ((ii) of optimality

Step 3:

Ya ¢ [ai_l,ai] a 1is an optimal

criterion 1).

Finding the optimal o once an interval has been identified.

Interval [ai_l,ai]

Falal?

1f w(ai) - w(ui_l) < 0 the solution is either a or in

GO TO 3

the range. [ai’°i+1] 3

3:1:2:

If w(ai) - Y@, ;) >0

i-1

1
.2. (Theorem 5.17 (i)).

x  9gqv@@) -ae, ) [ e -ag

(a) Compute o = -

*
If o e [a,_;,0,]

(Theorem 5.17 (ii)a).

+
e V"’(“i) STCHE)

%*

STOP. The optimal solution is o

% ai_lw(ui) - aiw(ai_l) @, =y

(b) Compute o = =

- %k
[ G- [ai_l,ai]

(Theorem 5.17 (ii)b).

i - ai_l ‘JJ(Gi) o 'U(Gi_l)

*%
STOP. The optimal solution is a
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(c) The optimal solution is either @, or in the interval

[ai’ai+ll . GO TO 3.2 (Theorem 5.17 (ii)c).

Interval [ai,ai+l]

3.2.1:

Ef w(ui+l) - w(ai) < 0 STOP. The optimal solution is @,
by Theorem 5.16 (i) since the other interval has already been

investigated.

322

If vl ) - v(a) >0

an -a,
i+l 1

141) = V(@) o

w e caare)
(a) Compute o = +V¢(°‘

i1 ~ %4

* *
If a ¢ [ai,a STOP. The optimal solution is a

i+l]
(Theorem 5.16 (ii)a).

e W¥ag ) —ay vy e - ey

(b) Compute a = -
b T 1V“’(°‘1+1) = iag)

ek Kk
EER e [ai,ai+l] STOP. The optimal solution is «

(Theorem 5.16 (ii)b).

(c) STOP. The optimal solution is a, by Theorem 5.16 (ii)c

since the other interval has been investigated.




Note 1:
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The transition from Step 1 to Step 2 in the previous algorithm

can be easily made by doing the following:

1. Modify the initial problem by adding the constraint
cTx <m where m 1is chosen large enough as not to affect
the outcome of the problem, (i.e., if at optimality

CT§ =m , then the initial problem is unbounded).

Initial Problem:

»
f
!
i
;
i
5
i
i
i

minimize ch - dTy - do

subject to Ax - By > b

We will denote this linear program in standard form as:

minimize uTz
subject to Mz =t

z>0.

At optimality the current tableau is denoted:

minimize GTz
subject to Mz = t

23>0




with optimal

2. For

a)

b)

3. The new tableau thus obtained should be either optimal
and ready for parametric analysis or a few more iteratiocns

might be needed to achieve that state.

H. Finding the Optimal Solution to the Original Problem from

99

{
solution z = (§,§,G) .
Step 2, modify this optimal tableau in the following way:

T

Add u' to the current objective function GT where:

G'T =qu' - (u')Tﬁ
s
where s 1is the optimal basis and

u' = (—cT,O) .

Add t' to the current right-hand side t where:

o

t' = M;lt' and t' =

-m + Q
o

M;l is the basic inverse with respect to the basis s .

- T
-m + o in t' corresponds to the comstraint c'x < m .

the Optimal o

Once an optimal @ has been identified, Theorem 5.1 applied to
our problem, tells us that an optimal (§,§) can be found by solving

the problem.
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1

T
d0 +dy

minimize

subject to Ax - By > b

However, Proposition 5.6 tells us that (x,y) is also the

optimal solution of the problem:

¥@) = -minimize -4, - Ty

subject to Ax - By > b

x>0
1>y>0
Tx <a

Since we have information about the problem ©(a) we can use

it to find (X,y) .

L. If 4= a s A € {ai} , the sequence generated in the
algorithm, then (x,y) = (xk,yk) . The optimal solution

of w(ak) is readily available.

= : )
2 BE @ <@ <o, and a € {ui} » 4y € ‘ai} , then:
0
0
- - k k - -1
(%,7) o = (2753) * (@ =o M, I
S S S

= o
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and (E,;)G - 0 ,

St is the optimal basic sequence for w(ak) s (xk,yk) is
the optimal solution of w(uk) 2 M-t is the basic inverse at
s

optimality of ¢(ak) and G 1is the set of indices of the non-
0

basic variables. The one in the vector corresponds to the

P e e

constraint ch La.
This is just an application of parametric linear programming

where a 1is the parameter.

I. Convergence Property of the Algorithm

We will need the following propositions to establish the con-

vergence of the algorithm.

Proposition 5.18:

If the linear program ¢(a) is nondegenerate, then the sequence

{a,} generated in the algorithm is finite.

i
Proof:
{ai} is the sequence of real numbers for which the basis
changes in the parametric linear program Y(a) . There is a one to ome

correspondence between the sequence {ai} and the sequence of basic
sequences of the problem #(a) . This sequence (of basic sequences)
is finite since there is a finite number of such sequences and none
is repeated, because under nondegeneracy the objective function is

improved at each iteration. Therefore, the sequence {ai} is finite.B
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Proposition 5.19:

Under degeneracy of %(a) , the sequence {ai} is finite.

Proof:

In this case, a lexicographical scheme or another appropriate
rule of pivoting has to be used in solving the parametric linear
program Y(a) to insure that none of the basic sequences is repeated

as is mentioned in the proof of Proposition 5.18.8
We can now prove the finiteness of the algorithm.

Theorem 5.20:

The algorithm terminates in a finite number of steps.

Proof:

The initial problem terminates in a finite number of steps
since it is a linear program and the simplex method terminates in
a finite number of steps (degeneracy is taking care of with a
lexicographical scheme). The algorithm then proceeds to generate
the sequence (ai} from a second linear program and Propositions
5.18 and 5.19 tell us that this sequence is finite. Once an interval

is identified from this sequence in Phase 2, a small finite number

of steps is necessary to obtain the optimal solution.B

We have just seen that the algorithm terminates in a finite
number of steps, however how many steps are needed to obtain the
optimal solution is also of interest. An upper bound to this number

of steps could be calculated, but as in the simplex method, would
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not be indicative of the real amount of work needed for the
algorithm. The best way to get a feel for this amount is to

compare it to the simplex method. Essentially, the initial problem
represents one whole linear programming problem, then it is modified,
and parametric analysis is performed. We can confidently say that
the amount of work is of the order of the solving one linear

program and performing parametric analysis on the right-hand side.




I———

CHAPTER VI

In this chapter the models I and II are generalized to become
joint-chance constrained programming problems. Some approximations
are presented using the concept of associativity of random variables

and the results of Chapter II.

A. Generalized Models I and Il

We would like to set more general constraints on the feasibility
sets of Models I and II. For example, we could add the constraint
that the probability of the solution being feasible be greater than
a certain specified number. This is why we introduced joint
probability constraints; joint probability comstraints are found
in the literature in [1] and [10]; we will use these in the following

generalized models I and II.

Generalized Model I:

n
minimize E c.(x, + e,
;jzl 179 J);

subject to x € Q

n

‘ n
Prob N {jz Ai'(xj * ej) Z-bi}s:-Yk ksmadl, suey &

lies, =1 M

L
where s 1is the set of indices of the rows of A s = {1, ..., m} ,
and s, are subsets of s for k=m+1, ..., t .

2 1is a polyhedral set defined by a set of linear constraints.




105

Generalized Model II:

n
minimize E {jzl cj(l + aj)xj$

subject to x £ Q

n
Prob {jzl Aij(l + aj)xj > bi} 2%y i =1, «eop m

| n |
Prob itﬁ % 1 Aij(l + aj)xj 3>bi =N k=m+1, ..., t .
ssk j=1

s 5 S and Q are defined as in Model I,

The generalized models I and II fall in the category of chance-
constrained programming with joint constraints. However, the constraints
are not statistically independent since the ej and Qj are involved
in all the constraints. Therefore, these problems cannot be treated
as described in [1] and [10]. We will draw upon the theory of

associated random variables developed by Esary-Proschan and Walkup [6]

to determine conservative approximations to these problems.

B. Associated Random Variables

Definition:

Random variables X j=1, ..., n are associated if

3

Cov (I'(X),a(X)) >0

for all pairs of increasing binary functions [ , A where

X = (Xl, ceay Xn)




Properties of associated randem variables:

Theorem 6.1:

Increasing functions of associated random variables are

associated.

Proof:

See Barlow's book on Reliability, Chapter 2 [2].H

Theorem 6.2:

Independent random variables are associated.

Proof:

See Barlow's book on Reliability, Chapter 2 [2].

Theorem 6.3:

If Xl, 29

(xl, Teery xn)

X

all

Prob [X1

Prob [Xl <

Proof:

aetory Xn

are associated random variables, then for

X

X

n

n

n
>x ] > T Prob [X
n g 1

n
f_xn] > NI Preb [Xi
' i=1

See Barlow's book on Reliability, Chapter 2 [2].H

£ %1

> xi]

1L




We will now use the previous three theorems to prove theorems
relevant to our models. We will first define the following set

of matrices.

Definition:

Let M be the set of matrices for which all the elements in
any column have the same sign.

We can now present the following results.

Theorzm 6.4%:

If X, j=1, ..., n are independent random variables and A

3

is an m x n matrix belonging to M , then the random variables

n
b A%, 1=1, ..., m are associated.
=1

Proof:

Call T the set of indices of the column of A:T = {1, ..., n}

and s the set of indices of the rows of A:s = {1, ..., m} .

Consider the following sets

= fy | A, <0 forall 4 ¢ s}

ij

T"=(j|A1j10 for wll 1e s8] .

43 AeM:T"UT'" =T ,
Now consider the set of independent random variables U

comprised of X, for j e T' and =X, £ for jJeT'' .,

]

3
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By Theorems 6.1 and 6.2 the random variables Z lAijI

jeT’
|a,.|X, 1 =1, ..., m are associated since U 1is a set
o130

jeT
of independent random variables therefore associated by Theorem 6.2,

n
and Z lAijlxj is an increasing function of Xj which makes

i=1

these random variables associated by Theorem 6.1. However, for

n
- T TR R S O o R e U e T
by definition of T' and T'' .B
Theorem 6.5:
If X, j=1, ..., n are associated random variables and

3

is a nonnegative m X n matrix then the random variables

n
Z Ai.x. i=1, ..., m are associated.

g1 241
Proof:
n
A4s A >0, for i=1, ..., m, z A'jxj are increasing
j=1 %
functions of x ; then by Theorem 6.1 for i=1, ..., m, Z A,
j=1

are associated random variables.B

A

X.

STl

C. Conservative Approximations for the Generalized Models I and Il

Using the results of Section B, we shall first present the

following approximations.

Theorem 6.6:

In Model I, if either (i) or (ii) below holds




(i) e, =1, ..., n are associated random variables

and A >0 for k=m+1, ..., t (where A
S ~ Sk

is the matrix consisting of the rows i of A such
that 1i e sk).

(ii) ej j=1, ..., n are independent random variables
and As eM for k=m+1, ..., t .

k

Then, if x satisfies:

n

n
i 1 - Prob z Ajce s b~ Z A X >y k=mEl, . oum €
iESk [j-l ij 3 i j=1 ij ;] k

then x satisfies:

Prob’ N z A (x +e)>b:L Z-Yk k= m+d, ooy £ o
liesk qu1 1171

Proof:
(1) Theorem 6.5 tells us that for i ¢ Sk 2 Aij y A
associated random variables. Applying Theorem 6.3 we have:

n
Prob N z A > T Prob 2 A8, > 2, .
iesk { 1 j i iesk {j-l 133 }

Hence if x 1s such that:

2 )
T (1-pProb{ } < 2 A
issk {j-l 1] j i j’
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then

Prob N Z Aij j + z A, ,e, > b Z-Yk .

tes, (=1 oy RS
n
(ii) Theorem 6.4 tells us that for i ¢ s , Z A .e. are
k jol ij ]

associated random variables, from now on the reasoning

is the same as in (i).W

Theorem 6.7:

In Model II if either (i) or (ii) below holds:

(i) @, j=1, ..., n are associated random variables and

b
A 20 for ki=m+ 1, .. 00 & =
% =
(ii) aj j=1, ..., n are independent random variables and
A € M for k=m+1l; «v.; t
k

Then if x satisfies:
T {1 - Prob |3 A < Z A, .x ) 2%y EREEl, ...t
tes, |y 1790 = 53 i
x satisfies ‘
Prob ‘ ‘ ? (1 *ex, > bi)' L7 w4l ey (B |
[£8, 152 ity
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Proof:

(1) As A > 0 , the matrix KS e M where (Ks ) - (A ) X
K K ki3 )iy 3

for all i and j . Therefore, by Theorem 6.4 1 € Sy ;

X A, .x.a, are associated random variables.

i A

Similarly under (ii), as A_ e M, A ¢ M where
%k *k

n
A = (A ) x, and by Theorem 6.4 for i e's ! oA, .x.
( Sk)i] ( Siliy 3 oy WT

are associated random variables.

Now following the proof of Theorem 6.6, by Theorem 6.3 we have

n
Prob‘ n { ¥ A %oy 2 x§ H Prob { ¥ Agg%soy 2 z: :

lies j=1 j=1

Hence if x 1is such that:

n
ié: 1 - Prob {jgl AL%iey <b Z A J} 2
k
then:
1“1:0!:s N z A (l+cs)x >b }}3_ B
§E li'l )

We shall now use Theorem 6.6 and 6.7 to present complete

formulations of the conservative approximations for Models I and II.




-

1. Model I:
Theorem 6.8:

For either condition (i) or (ii) of Theorem 6.6 the following

problem is a comservative approximation to the generalized Model I.

n

minimize Tx + Y c.Ele,}
=1 -
subject to x € Q
g -1
jgl Aijxj 2b, -Gy (= Yi) il s, 0

n
n fi-clb, - § a.x|}>2v Ew e L, vy £
les, i[i j=1 iJ;J i

n
where Gi(z) = Prob §-Z Aijej g_z} .

Proof:

This model is valid by Theorem 6.6 and the deterministic

equivalent of Model I presented in Chapter 1.8

2. Model II:

Theorem 6.9:

For either condition (i) or (ii) of Theorem 6.7, the following

problem is a conservative approximation to the generalized Model II.
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n
minimize jgl cj(l + E(aj))xj

subject to x € Q

n
-1
jzl Aijxj + ti 1 - Yi) > bi i 15 e, m

n
n {1- 6. ib. - § A, .x]|])>¥ k=m+1, ..., t
e ix[i j=1 ij J] k

n
where iGx(z) = Prob { ) Aijxjaj E_z}
j=1
Proof:
This is the deterministic equivalent presented in Chapter I

with the approximation of Theorem 6.7 applied to it.H

D. Conservative Approximations for the Generalized Models I and II
Using the Results of Chapter II

If in addition to the conditions outlined in the previous section,
we utilize random variables ej and aj belonging to the set C
defined in Chapter II, explicit conservative approximations can be

identified.
l. Model I:

Theorem 6.10:

If for e J =L sovy B @

3 € C either the following (i)

3

or (ii) holds:




(i) ej j=1, ..., n are associated random variables and
A >0 for k=m<+ 1, io., £ .
Sy ~
(ii) ej j=1, ..., n are independent random variables and
A eM for k=m+1, ..., t .
s
k
Then for vy 3_% the following convex program is a conservative
approximation to the generalized Model I.
: T
minimize c'x
subject to x €
n A b
: i B e .
Yy Zl = xj 2 = 58 e Saon o
2 T lagla Z g el
j-l 3] j’l i [
yi > Yi et
] 1 La(y,) 3_Ln(Yk) k=m+1l, ...; ¢t
ies
k
where the [—aj,aj] j=1, ..., n are defined to be the finite
ranges of ej gLy i, N,
Proof:
1) As ej e C for j=1, ..., n the objective function is
simply ch i
2) As shown for Model I in Theorem 3.1 the first set of

constraints result of the inequality for vy 3_%




] >(Z i bi)+j§1 gl :

Z A .x, =b
% [i"l i373

2 4

If we call the right-hand side Yy then it is obvious

that if ¥ 2% then

i
L]

for all {1 =1, ..., m .

3) Theorem 6.8 yields the first approximation.

ies

n
Prob ! N 2 Agyx +e)>bi”_ i Gi[bi- Zl Aijxj].
k b

& 3
ies Sy j=1

However, since e, ¢ C j =1, ..., n then by Corollary 2.10

]

Z A qe; € C and therefore it symmetric and

n
1 -G, [ Z Aij j] = Gi[jzl Ajg%g - bi]

Using again the same inequality as in part 2) since vy > %

we obtain that
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Hence for k=m+ 1, ..., t the following constraints are

116

conservative approximations.

B ¥:. 2%
ies i k

or equivalently

) Ln(yi) 3_Ln(Yk) as y, 2 v, 2 0 ies,
iesk

which makes the whole program convex since Z Ln(yi) is a

iesk
concave function of ¥y .

2. Model II:
Theorem 6.11:

If for aj eC j=1, ..., n either (i) or (ii) holds and

{z]x20cCa. :

] (1) aj j=1, ..., n are associated and As >0 for
k

(ii) aj j=1, ..., n are independent and A, € M for
k

k=ML, cany €

Then for ¥y 1-% , the following nonlinear program is a conserva-

tive approximation to the generalized Model II.

minimize ch

subject to x € Q

n
[Aij + ‘Aij‘aj]xj = wi [2 jzl IAijlajxj] i bi i= l, ceey @
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wi>Yi i=1, Sem
in wi>Yk k=m+1 5 L
esy
Proof:
As aj eC for j=1, ..., n by Corollary 2.10
Z A
o e
Prob{ Y A (l i aj)xj 1bi] L
: n
<« ] - Prob A <b A >
: j§1 1595 = Z 1373
y
A A, . c
s j;1 lejaje
n
<==> Prob z Ajjajf_z 1ij-bi >Yi
3 i=1
Applying Theorem 2.13
S 5 Zijj-bi+§|AiJ|jj
j=1 j=1
ProbZAxa_ZAx-b>
S Rl T T
- L

1
since for Yy L& g jzl Aijxj - b >0 and Fj (0) -lAijl j j

for F(z) = Prob {Aij 58y & z} by Theorem 2.7.
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Therefore if for x > 0

n n
jzl A% - by +i-z-1 |A“|ajxj
w, = > Y.,
] a 1
2 jzl lAijlajxj

n
Then Prob {jzl Aij(l + c:nj)x:j > bi} A P

Theorem 6.7 showed that

j=1 iesk

n n
Prob | N [ )] Aij(l & aj)m::i lbi] > B Prob {jzl Aij(1+uj)xj} 2b, .

iesk

Therefore if for x > 0

Then

n
I Prob| } Aij(l + ozj)xj _>_bi] 2V

ies j=1

and

n
Prob in [2 Ay +ax _>_bi] 2y, -8
esy j=1
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APPENDIX NOTATION
The vectors mentioned in the text (i.e., b , ¢ , d) are
column vectors; superscript T denotes the transpose of a vector:
bl
peliled =0 ca b .
b
n
If A is an n x m matrix then:
Aij = the element in the ith row, jth column of A |
A-j = jth column of A é
Ai- = ith row of A .
x e X x 1is an element of the set X
ix there exist at least one X
XcY set X 1is contained in the set Y ?
XuUY the union of the sets X and Y
§ XNy intersection of the sets X and Y
] end of proof
[x] absolute value of x
) the empty set

{x | P} the set of x having property P

{Xi} the set {e*« xi—l’xi’xi-l-l’ .--}

X X, + X, + cc0 4+ x

{=1 i 1 2 n
> n
b xi xlx2 L xn
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(a,b)
(a,b]

(n]

/

-

=

La(x)
Prob {E}

E {X}

open interval from a to b

closed interval from a to b
reference n in bibliography

(through a symbol, e.g., #) negation
if and only if

implies

natural logarithm of x

probability of the event E occurring
expectation of the random variable X

convolution of the densities f and g

* X ees %
fl f2 fn

the inverse of the function F

the inverse of the matrix A .

a vector the statement

means Yy =

see

..
e

means Yy > {:

L3 ]

the identity matrix

the gradient of the function f .




