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Subject: On the Radiated Noise due to Boundary—Layer Transition

References: See page 34

Abstract: A theory is presented for the noise radiated by incompressible
boundary—layer transition that occurs on an infinite, rigid
flat plate. It is hypothesized that it is the intermittency
of the boundary—layer flow within the transition zone that is
dominant in noise production . Using Lighthill ’s analogy , it
is shown that dipole, quadrupole, and octupole sources are
generated. Under the assumption of low Mach nwnber flow, the
power spectral density per unit spanwise width of transition
for the radiated acoustic pressure is derived for the dipole
contribution (which is acoustically more efficient than the other
sources by a factor inversely proportional to the Mach number
squared). The spectral shape corresponds to one obtained by
passing white noise through a realizable bandpass filter . The
low—frequency cutoff scales with the burst frequency associated
with turbulent spot formation, and the high—frequency cutoff
scales inversely with the time required for the wall shear
stress to change from a laminar value to a turbulent value at
a given point of local laminar flow breakdown. As one example,
the theory is used to predict the noise radiated by an under-
water buoyant body for which there are experimental data. The
comparison is found to be very good at low frequencies, and
reasonably good at the high—frequency end of the spectrum .
However, if the acoustic energy generated by the fully—developed
turbulent flow over the body is added to the energy generated by
the transition zone, then the entire predicted spectrum agrees
to within 3 dB of the one measured . 
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NOMENCLATURE

A Defined through eq. (39)

a a constant , 4.185

B Defined through eq. (39)

b a constant, 2.544

c velocity of sound in the acoustic medium

D diameter of body

F frequency integral given by eq. (50)

G power spectrum for the acoustic pressure

g Emmons’ source—rate density function

I the ideal indicator function

I a more realistic indicator function

J J~ frequency depression factor

L3 
spanwise integral length scale associated with bursts

M Mach number

N expected number of turbulence bursts per unit time

p acoustic pressure (also p ’)

R time correlation function of I at given x1

standard deviation of I at given x1

R
3 

spanwise spatial correlation function of I

R,R1,R3 
sane as R,R1,R3, but for I

Re
~ 

transition Reynolds number

Reu unit Reynolds number

Re Reynolds number based on xx~ 1

Re Reynolds number based on AxAx

Re0 Reynolds number based on 0

r observation point coordinate



:~~~~~~~~~~~~~~~~~~~~~i - ~
-------.—

—6— July 28, 1978
GCL:jrp

S surface area of hydro/acoustic source region

s Laplace transform variable

T sample time

t time

t . rise time for wall shear stress to change state

Lighthill ’s stress tensor

u convection velocity of turbulence bursts

u . fluid velocities (1=1,2,3)

uL laminar boundary layer velocity profile

u~ leading—edge velocity of turbulence burst

u0 
free—stream velocity

uT turbulent  boundary layer veloci ty  prof i le

trailing—edge velocity of turbulence burst

u
~ 

friction velocity

V volume of hydro/acoustic source region

V ’ volume of hydro—acoustic image source region

V0 amplitude of I

x. Cartesian coordinates (1=1 ,2,3)

non—dimensional form of x
1

x0 
the value of x

1 
at the beginning of intermittent flow

Ax streamwise extent of intermittent flow

a one—half the apex angle of wedge formed by the locus of a
turbulence burst as it convects downstream

y the intermittency factor

A the retarded time delay T —

Kronecker delta function

a small quantity

variables of integration

0 viscous sub—layer thickness 
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e aspect angle

K free—stream convection wavenumber

A defined by eq. (29)

V kinematic viscosity

p f l uid mass densi ty

fluc tuating mass densi ty

0 the d i f ference  T
T 

— T
L

0.. viscous stress tensor
1J

defined by eq. (45)

T time delay

fluc tua ting wall shear stress , c~12j x 2 O

laminar boundary—layer value of wall shear stress

turbulent boundary—layer value of wall shear stress

radian frequency

Special no tation

(—) implies time deriva tive

<‘-——> implies expectation value
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1. INTRODUCTION

By contras t  w i t h  the  number of papers devoted to the i nv e s t i g a t i o n

of noise radiated by a region of f u l l y—developed turbulence , onl y a few

have addressed the sound field generated by the laminar—to—turbulent

transition zone [1 — 4 ] .  Ffowcs — Williams [1] discusses the t rans i t ion

zone noise in terms of the ini t ial  formation of turbulence spots.  The

elegan t analysis of a three—dimensional  d is turbance gruwing in accordance

with the equations of linear stability theory by Brooke Benjamin [5]

was incorporated into Lighthill’s theory [6] for the radiating component

of flow noise. A quadrupole source was assumed and it was thus shown

that sound radiation would occur essentially only when the wall was of

pressure release type . For an assumed rigid surface the imaging effect

transforms the quadrupoles into much less efficient octupole radiators.

Furthermore , even for the soft surface, the analysis shows that it is

only at the very beginning of spot formation where sound is generated .

Farther downstream the spot grows exponentially,  bu t the sound pressure

is found to decrease exponentially with time. Of course it could be

argued that the linear stability model breaks down as a spot develops which

may account for this conclusion . Ffowcs — Williams points out that the

theory may be app licable only if sound is truly generated in the early

stages of instability, but late enough such that the asymptotic theory of

Brooke Benjamin is established , while at the same time the spot amplitude

is still small.

Dolgova [4] considered the planar flow over a rigid surface and

analyzed the sound radiated by only the Tolimien — Schlichting wave growth.

~ 

. - ~~~~~~~ _ 

j
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As in l inear  s t ab i l i ty  models he let a pressure wave grow exponen tially

in the direction of flow , and then app lied Fourier and Hankel transforms

to ob tain an express ion for  the sound pressure and directivity function.

At low frequencies the pattern is dipole while at higher frequencies the

main lobe tilts to the downstream direction , gets sharper , and develops

several side lobes. The resulting expression for the sound pressure ,

however , shows no Mach number dependence.

Natural transition is characterized by essentially three distinct,

flow regimes. In the early stages of instabil ity , the laminar boundary

layer becomes disturbed in a linear, wavelike manner. It is here where

the theory of Dolgova [41 is applicable. Farther downstream, these

linear disturbances become more non—linear and three dimensional. The

analysis of Ref. [1] appears to be applicable in this regime , but breaks

down rap idly as turbulent bursts begin to form. Within this third flow

regime, where the boundary layer intermittently alternates between laminar

and turbulent , is where no fundamental flow noise theory has ye t been

developed . We hypothesize that this region of intermittent boundary—layer

flow may give rise to intense sound radiation [2,3]. We know from elemen-

tary boundary—layer theory that the mean velocity gradients and prof iles

are quite different between laminar and turbulent flow over surfaces.

In intermittent flow, we would expect that the wall shear stress (and other

viscous stresses) and the mean boundary layer velocities , bo th parallel

and normal to the surface , undergo gross fluctuations in time . According

to Lighthill’s analogy [6], fluctuating velocities give rise to quadrupole

noise sources , while fluctuating wall shear stresses give rise to dipole

sources [7]. At very low Mach numbers , M, this latter source would be 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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expected to dominate the noise field. This is deduced from the fac t

that the acoustic efficiency of dipole sources is of the order ti~ , while

- that of quadrupole sources is of order ~~~ viz., Ross [8]. From noise

measurements the author made [3] on an axisymmetric body with flush—

mounted hydrophones placed in and around the transition zone, the variation

is spectral level with velocity seemed to imply a dipole — type of source.

In this paper we will approach analytically the problem of noise

generated by intermittent boundary—layer flow as it occurs in natural

transition on a flat plate. We will assume the plate to be infinite in

extent and to be acoustically rigid. We will further assume incompressible

hydrodynamics describe the transitienal process. Our goal is to derive

an expression for the radiated noise spectrum . This spectrum , because of

our infinite extent assumption , will be derived in terms of the sound

pressure radiated per unit spanwise width of transition. Under the

assumptions that the acoustic wavelength is large, and that the boundary

layer is thin relative to a given local radius of curva ture , this theory

should have direct application to axisynimetric bodies and hydrofoils. One

would simply multiply the predicted spectrum by the circumference of the

body at the transition point (or the span of the hydrofoil at this point)

to get the overall acoustic spectrum .

As examples of the analysis , we will compute the radiated noise

spectra corresponding to the experimental conditions of Ref s [2) and [3],

compare them with the experimental data , and discuss the correlation in

terms of transitional flow noise and fully—developed turbulent flow noise

contributions . The theory presented here , for the noise radiated by

boundary—layer transition , suggests the critical hydrodynamic parameters

that govern this noise.
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II. ANALYSIS

Consider the uniform flow over a flat plate. If a laminar boundary

layer begins to form at the origin of our Cartesian coordinate system,

and if the flow direction is in the x
1
—direc tion , then the flow will

ultimately become non—linearly unstable at the downstream line x
1
=x
0

(see Fig. 1). There is then a short distance, Ax , over which turbulent

“bursts” occur. Along x1 x0 
+ Ax, the flow becomes fully turbulen t

while for x1 < x0, the flow is assumed completely laminar. In the analysis

to follow, we will treat Axdx
3
dx
2 

as our source volume.

The equation that describes the sound radiation from fluid—dynamic

sources is the well—known Lighthill equation [6]:

~
2

p’ — 
2~~~ p ’ 

—

2 c — _____ 
‘ 

(1)
1 ,j ~~~~~1 3

where p ’ is the fluctuating density, t is time , c is the sound

velocity in the medium surrounding the source region, and T... is

Lighthill’s stress tensor given by:

Ti. = pu~ u . — o . .  + (p ‘—p c ) t ~~. . ,  (2)

where p is the mean density.

Composing this tensor is Pu
~
U
~ t the fluctuating Reynolds stress

tensor; 0
1.j’ 

the fluctuating viscous shear stress tensor; and (p’—p ’c
2
),

a term that relates to heat conduction or non—linearity . For hydrodynamic

flows, this last term is zero which means that the fluctuating density is

related to the fluctuating pressure by

p ’ = p ’c
2
. (3)

From this point on, we will drop the prime from the fluctuating quantities ,

and solve eq. (1) for the acoustic pressure through use of eq. (3).

1.
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A. T.~ for  Boundary—Layer  Transi t ion

Within the region x0 
S x1 � x0 

+ Ax, the flow interm ittently

changes from laminar to turbulent regimes. A typical turbulence burs t

is shown schematically in Fig. 2. A burst will grow as it convects down-

stream at a mean convection velocity , u
~
. The locus of a typical burst

forms a wedge of apex angle 2ct. Etninons [9] first observed a to be on

the order of 9.6° for flat plate flows. This was reconfirmed later by

Schubauer and Klebanoff [10] , although it should be pointed out that

Farabee, et.al. [11] found propagation angles significantly greater than

this.

In reference to the elevation view of Fig. 2, we see that at a

given point on the x
1
—axis, the mean velocity profile and the wall

shear stress will undergo gross fluctuations in time as bursts are swept

by. We will assume that these fluctuations are much larger than the

velocity and shear stress fluctuations that occur within a burst itself

or within the fully—developed turbulent boundary layer that occurs at

> x
0 
+ Ax. For example, the wall shear stress under a turbulent

boundary layer can be calculated from [12]:

2 —1/5
T

T
(xl ) = O.O288pu 0 (u 0

x1/v) , (4)

while at some other instant of time, when the boundary layer is

laminar at x1: —1/2
T
L
(X
l) 

= O.332pVu
0
(Vx

1
/u
0
) , (5)

where V is the kinematic viscosity. Thus, as the flow regime alter-

nates between laminar and turbulent , we might expect fluctuations in the 
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wall shear stress on the order of

G(x 
~ 

T
T
T
L —3’lO

= 1 — ll.53(Re ) ‘ , (6)
T

T \ X
l/ T

T 
xl

where Re = u x / V is the local value of length Reynolds number .x1 01

Typically, Re 3 x 10
6
, so a(x ) 0 .9r  (x ). On the other hand ,x0 0 T O

under a fully—developed turbulent boundary layer , the magnitude of the

fluctuating wall shear stress relative to T
T 
(as deduced from the measure-

ments of Lu and Willmarth [13])is of order 0.1. Thus, our assumption

regarding the magnitude of the wall shear stress fluctuations during

bursting flow seems justified. Similar arguments can be set down for

the fluctuations in mean velocity.

Consequently, eq. (2) for T ..  may be written

T.. Pu~u~ - T0(x.,t) , (7)

where

T
0

(x .,t) = 012 = ~ 
>> a..(ij~ l2) (8)

which is the fluctuating wall shear stress due to the creation and

convection of turbulence bursts. If we further assume (because of

the slow rate at which a burst spreads laterally) that the mean

velocity fluctuation in the x3
—direction is small compared to u

1 
and

u2, then Ti. will have only three dominant components in addition to

T
0

(x 1, t ) .

J 
, - ~~~~- - - - -~~~~~-. ~~~~~~~~~~ - . - -- . - --~-.-_
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We have not yet been exp licit regarding the time dependence of

and u.~. It will prove exped ient to first solve eq. (1) subject to

our as sumed form of T .. and the appropriate acoustic boundary conditions .

B. Formal Solution

The solution to eq. (1) for flow over arbitrary surfaces was first

cons truc ted by Curle [14]. Powell [15] showed that when the surface is

rigid and planar , one could consider a new extended flow field obtained

by reflec tion of the original one in the p lane x
2 

= 0, as illus trated

in Fig. 3(a). Using Powell’s result , we find

p (r,t) = c
2
p’(r,t) = ~~~ 

~~ 
~ dV — 

~~~~~ 
.
~~~~

— —
~~ dS , (9)

V+’T’ S

where the integrands are functions of the retarded time variable (t—r/c)

and primes refer to the image—flow side of the plane. The radial coordinate

defining the point of observation is

r I x — f l I ,  (10)

where ri denotes the dummy variable of integration. By making the

far—field assumption, we can let r r ’ Ix ;, and then noting that

1/2

ii:i ~ = ~
(xl+:2+x3

} 

~ I (11)

we le t

~ iL~i ~t ’ ~t ~
~~~~~~

-
~~~x

i ~~~~~~~~~~~~~~~~~~~~~~~~~~

where t’ E t — IxI/c . From this we obtain the identities:

(12)
~
x

1 
c r

4 .
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and 2 x .x . 2
~~_ 1 _l..i L

~~~~~ 2 2 2 ~l3)
1 C r

Equat ion (9) may now be rewritten in the form :

4xrc2p(r ,t)/p 
~~2 fffu

l
2dv + 245

2 

~~2

÷ 2 

~~2 flfu2
dT + 1 

+ 2—~~~ 
~~2fff u1’u2 ’dV ’

+ 
2 fff (u

2
t) dV ’ + 2~ (—i) 

~~ ~~~~0ds. (14)

V ’ S

Each of the terms composing eq. (14) represent a hydrod ynamically —

generated acoustic source. The direction cosine preceeding each integral

tells us the order and orientation of each of these sources. We see that

the first and fourth terms have a cos2O directivity characteristic (see

Fig. 1 for definition of 0), indicating that they are longitudinal quad—

rupoles with axes parallel to the surface. These two sources, one being

in the image flow combine constructively to form a single longitudinal

quadrupole of twice the strength of one alone. The second and fifth terms

represent lateral quadrupoles because of the cross—term products and

directivity function sin 0 cos 0. However, when combining a lateral

quadrupole with its image , a less efficient octupole results. We can

safely neglect those source terms involving u1 u2 
and u

1
’u
2
’ under

our low Mach number assumption. The third and sixth terms also represent

longitudinal quadrupoles , but because (x2/r)
2 

= sin2O their axes are 

- - ..~~~~~~~-~~~~~~~~~~~~~~~~~ --~~~~~~~~~ .. - -- -- -~~~~~~~~ .--~~~~~~~ . - .
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perpend icular to the surface; when combined , complete cancellation occurs.

The last term of eq. (14) includes the image contribution and describes

a dipole source with axis parallel to the surface , Figure 3(b) illustrates

in an elementary manner the combination of these various sources.

Our solution to eq. (1) thus reduces to the sum of a volume integral

describ ing longitudinal quadrupoles and a surface integral describing

dipoles , i.e.,

p(r,t) = 

::2

0 

~~ 2 fffu
l
2
(fli~

t_r/c)dV(fl
i
)

+ 

*~ ff T0(fl .,t-r/c)dS(fl.). (15)

As pointed out in the INTRODUCTION, we can expect the dipole contribution

of eq. (15) to be of the order M 2 more efficient than the quadrupole

contr ibut ion.  As a first approximation , we would like to accept this

supposi tion , and examine in detail

p(r,t) -

~~~~~~~

-

~~

- 

*~ J]
’

T
o(n i~

t_r/c)dS (n
i
)
~ 

(16)

when M << 1.

C. Proposed Model for the Wall Shear Stress Fluctuations

We have developed the solution given by eq. (16) upon the notion

that it is the intermittency of the boundary layer within the transition

zone that creates noise. Intermittent boundary—layer flow is a situation

where we can construct a mathematical model for the fluctuating physical

parameters of interest. This model is analogous to that which the

I

_ _ _  _ _ _ _  ~~~~~~~~~~~
- . .- —- -

~~
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experimen talis t uses to distinguish time intervals when his sensor is

in irrotational fluid from those when it is in turbulent fluid. Clearly,

this is a zero—one function which we shall call the indicator function ,

I(x.,t). The use of such a function to describe intermittentl y turbulent

flows is not new, viz., Refs. [16—18], among others. However , as will

become apparent below , we will require the space—time correlation functions

of I(x.,t), and these functions have not been so well investigated for

boundary—layer transition [19].

Typically, the indicator function at a given point , x ., in the

Source volume may be illustrated as in Fig. 4(a). This function is zero

when the flow is laminar and is unity when turbulent. Also shown in this

illustration is the first time derivative of I(x.,t) which is a random

sequence of alternating Delta functions. Because eq. (16) needs only to

be evalua ted on the surface , the functional dependence of I on x
2 

is

not required. It is reasonable to let I be statistically homogeneous

in x
3 

because of our infinite plane surface assumption; however, I must

necessarily be non—homogeneous in x1.

The non—homogeneity of I in the x
1
—direction is due to the fact

that the boundary layer ultimately changes from fully laminar to fully

turbulent. As x1 increases beyond x
0 

more and more impulse functions

fill in the time scale. The time—average value of I(x1, t) is appropriately

called the intermittency fac tor , i.e.,

y(x
1) = lim 4 I(x 1,t)dt , (17)

and represents the fraction of time that the flow is turbulent. This is

~ -
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a predic table function for boundary—layer transition on flat plates [9]

as well as for axisymmetric bodies [20]. Another important mean property

- of I(x1, t) is the “burst frequency ”, N(x
1
). This function describes

the expected number of bursts that occur at a given point per unit time.

It too, may be predicted for most hydrodynamic flows [9, 11, 20]. Figure 5

shows , in princ iple, how the indicator function varies in time and space;

also shown are typical distributions of y and N.

With these definitions for I(x.,t), and its mean properties, we

propose that

T
0

(x .,t) = [l—I(x .,t)] TL
(x i) + I(x.,t) T

T
(x i) (18)

where i may take on the values 1 and 3. By taking the time derivative

of eq. (16) inside the integrals, we find :

= (T
T
_T
L) 

.

~~~~~ 
= G(x.) I(x .,t), (19)

where o was first defined in eq. (6).

At this point it is important to emphasize that eq. (18) implies

that the wall shear stress is capable of changing from a laminar value

to a turbulent value in an infinitesimally—short period of time (I’s

are Delta functions). Obviously, this would seem physically impossible.

However, we do know, from oscillograph traces of the velocity and/or

pressure fluctuations that occur in transition flows, that the flow state

can change in extremely short periods of time as turbulent bursts are

created at or swept by the measuring sensor [10—12] . Equation (18),

although idealistic , may be quite adequate for estimating the low—

frequency portion of the radiated noise spectrum . The techniques developed

by Scho ttky [21] in his classic analysis of shot noise would seem appropriate

here . 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
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At the higher end of the noise spec trum , corresponding to frequencies

whose periods are comparable to the actual t ime required for the wall

shear stress to change from a laminar to a turbulent value (or visa versa),

we have to take account of the duration and shape of the individual pulses.

That is, we mus t replace the sequence of Delta functions of Fig. 4(a) with

some other sequence , I, as depicted in Fig . 4(b). The time , t~~, represen ts

the short lag time required for the shear stress to change from one regime

to another. According to Stratonovich [ 2 2 ] ,  we can solve for the noise

spec trum using a random—point process description such as eq. (19) and

then modif y the result by multiplying by a “frequency—depression factor”.

This factor is nothing more than the square of the magnitude of the

Fourier transform of the individual pulse shape. The details of this

procedure will be discussed in Section II.F.

As a final point regarding eq. (18), we note that its time average

is simply:

[l—y(x
1
)} T

L
(x
l
) + y(x

1
) T

T
(x
l
) (2~~)

which is identical to that suggested by Ernmons [9 1 for the transition

region. Several experiments have verified this equation, e.g., Dhawan

and Narasimha [23].

D. Power Spectral Density of the Radiated Noise

Af ter the substitution of eq. (19) into eq. (16), the radia ted

acoustic pressure becomes:

p(r ,t) = ~(~ 1,n3,t-r/c) a(x0+~1) d~ 1d~ 3, (21)



___ -

—20— July 28, 1978
CCL:jrp

where the origin of our coordinate system has been displaced x0—units

downs tream in order to simplify the variables in our integrals. The

power spectrum can be calculated from the Fourier integral:

4 < p (r , t) p ( r , t+T)> cos ‘JJT dT , (22)

J
O

where <p(r,t) p(r,t+T)> is the autocorrelation function of p(r,t).

In general, T

<g(t) g(t+T)> = h i s  4 / 
g(t) g(t+-r)dt. (23)

T~~~~~)
0

Therefore, for p(r,t):

= 

4
2 2 2  ~fff<i(ni~n3~

t_r/c) ~~~1,~ 3,t-r/c+T)>

o(x
0
+~1) a(x0+~1) d~1d~3 d~1d~3

, (24)

where for the time being , we will not show the limits of integration .

It will prove useful to change the 4.-variables to spatial—separation

variables — i~., such that eq. (24) becomes:

~~~~~~ = 
co~

2
~ 

2 ffçç<~ (n1,n3,
t_r/c) ~(fl1~~1,fl3

+~3,t-r/c+r)>
4ir r c

0(x0+n1
) a(x

0
+~1

+~1
)d~1d~3 

dE
1
d~3

. (25)

If we assume I(xi~
t) to be stationary in time and homogeneous in x3,

eq. (25) may be written ~ithout any loss of generality as:

<np > = 

47~2r 2c2 I{fI:r 1

o(x0+~1) o(x0+fl1 +~ 1
) dr.1,dr)3 d~ 1d~ 3 

(26)
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The function <II ’> in this equation is the space—time correlation

function for the first time derivative of our indicator function.

Unfor tunately, this function has not been investigated in enough detail

for us to set down an explicit expression for it.

In order to continue the analys is, however, we will assume (as

Corcos [24] did for fully—developed turbulent flow) that <II’> can be

separated . The separation technique we will use , although somewhat

heuristic , is based on our physical notions of the transition process.

Let us write:

<II’> R~(~~) 111(n 1) RCr—~1/u ), (27)

where R
3
(~3
) represents the spanwise correlation function for the

bursts. It would seem reasonable that R
3 

is also a func tion of

We develop this dependence by writing the integral of eq. (26) which

is over namely,

R
3
d~3 

= d~ 3 
= 2L

3
(~1), (28)

-
~~~ -L3

where L
3 

is the transition—width integral scale. Chen and Thyson [20]

discuss a spanwise length scale in the region of transition where the

bursts begin to overlap; that is, where -
~ Ax. They write this scale

in the form

A 1.5 Ax tan a. (29)

Let us set L
3

(Ax) = A and L3
(O) = 0. It would then seem that

L
3(~1
) l.5~1 tan a (3Oa)

for ci = 9 . 60 . (30b)
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The second two factors of eq. (27) represent the time autocorrelation

function of I(r11,t) at a f ixed  point  in the  transition zone, ti
1
. In

p a r t i c u l a r ,

R
1
(r)
1

) R ( A )  = <~~(~ 1
,t) I(n1, t+A)>, (31)

where A = T _
~ 1

/U
c 

accoun ts for the added time delay due to the

convection of a turbulent burst over the distance (rj
1
+~1

) — fl1. It is

noted that this covariance is written in a form suggesting that

is the standard deviation of 1(t) at and that R is the normalized

autocorrelat ion funct ion  of I at the same point .  These par t icu lar

moments of I can be estimated if we assume a given probability density

function for the temporal process. Before doing this , however, le t us

make use of the fact that

2
< I I ’ > = — -~~2 <II ’> (32)

such t ha t  (S t ra tonovich , i b id . ,  p .  170) the power spectrum for  a point

process composed of Delta funct ions is equivalent to times the

power spectrum of the same process composed of unit impulse functions .

Consequently, eq. ( 2 2 ) ,  a f t e r  using eq. ’s (28) and (30b),  can be written

as:

G(r,w) = 
w
2cos22 

c0SWT 
ç[ffl 10(xo+fl1) a(x0+n1+~1)2ii r c

0

. R
1
(~ 1
) R(T—~1/ u )  dr i1dn3 

d~ 1
dT , (33)

where now

R
1
(T)
1
) R(A) = <I(~1, tj I(ri1, t+A)>. (34)

The standard deviation for our indicator function , I(fl1, t) is the

interinittency factor , y( f l 1), since by eq. (17)

I
_ __ _ _ _  _ _  ~~~~~~~ - - .
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T T

= u r n  
4 

I(fl1,t)dt = u r n  
4 

~~~ 1
2
(n 1,t)d t.

T-~0~
0 0

Thus , we let

R
1(n1

) = 1(n 1) .  (35)

In regards to R(A), we let the random seq uence of impulse func t ions  tha t

make up our indicator function be Poisson distributed . We select this

distribution because it is a discrete distribution (which it necessarily

must be) for a number of events (turbulent bursts) that all happen at

random times with an average of N events per unit time (our burst frequency).

Indeed , the exper imen tal investiga tion of turbul ence bur sts by DeMetz , et.al.

[25] does suggest a Poisson process. Under this assumption , the classical

correla tion func tion for  a random telegraph signal may be used (see Rice [26])

for R(A), i.e.,

R(A) = e
_ 2 T i

l~~~ I . (36)

Differentation of eq. (33) with respect to x
3 

gives the power

spec trum of the acoustic pressure rad iated per uni t spanw ise wid th of

transition. We find :

Ax Ax-~ 1

~C(w ;r) 
= ;:~:~ 

• 

q
1
’y(fl1

) a(x
0+fl1
) 

~~~ 

G(x
O+fll

+
~l
)

, {ç exp[-2N(T-~ 1/u)] coswTdr}d~ ldfl1. (37)

where the integral in braces is immedia tely recognized as the Laplace

transform of cos~JJT. Because

__D S
&[cosWT ] = ,

~ 
2~~2
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with s = 2N(n
1
), eq. (37) reduces to:

Ax Ax—n

2~C(r,w) w2cos2O I f 1 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~

2 2 2 I n1o(x0+n1)y(n1) i 2 2 c~ç 1dn 1. (~3 ir r c  ,j j  [4N (n 1) + w J
0

We would like to simplify this double—integral solution another

step farther by assuming that a(=T
T
_T
L
) is only weakly dependent om its

argument. In particular , through a Taylor series expansion of eq.’s (4)

and (5), it can be shown that

—1/5 —1 / 2
O(x 0+E) Ax0 (1 — ~~—) — Bx

0 
(1— 

~~~~~
— ), (39)

where 
2 

—1/5
A = O.0288pu 0 Re

1/2
B = 0.332pVu 0Re

with
Re
u 

= u
0
/v , which is the unit Reynolds number.

The maximum value which e assumes is Ax , the streainwise extent of the

transition zone. For incompressible boundary—layer transition , Ax can

be estimated from the following emperical relationship [20,23] between

the Reynolds number based on the transition poin t, x0 
and tha t based on

Ax:
2/3

Re
A 

= 60Re
~ 

. (40)

This relation can be rewritten in the form

c —1/3Ax max
— =  — 6ORex
0 x0 t 

— I _1_ ~~~~~~~~~~~~ ..__. ~~~~~~~~~~~~~ — -.— — —~~~ ——‘,— —. — ———.—.———.—.—.~ 
—.
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In connec tion with the discussion following eq. (6), we would expec t

the first term (the turbulent wall shear stress) of eq. (39) to dominate ,

so that
—1/5 —1/3

+ c )  
~ o (1 — l2Re

~ 
)

0(X
0
). (4 1)

This approximation implies tha t if the boundary layer were comp letely

laminar or comp letely turbulent over the distance Ax , then the mean value of

the wall shear stress changes insignifican tly over this streamwise distance. It

is analogous to the parallel—flow assumption commonly used in analyses

related to fully—developed turbulent boundary—layer flow.

Integration of eq. (38) over can now be performed ; we find :

Ax
w2cos

2
O 02(x

0
)u f’ rj

1y(n 1)C(r,w) 
= 

2 2 2 
c 

2 2 {exp[2N(Ax—n1)/u ]
X

3 2 i r r c  J (4N +u )
0

- exp[_2Nfl
l/u

~
]}dfl1. (42)

E. Intermittency and Burst Frequency Distributions

In order to perform the final integration of eq. (42), we need the

intermittency and burst frequency distributions for transition on a flat

plate. Emmons [9] first discussed these distributions and developed a

probabilistic model to predict them . He assumed the existence of a

source—rate density func t ion , g(x 0, z0, t), which specifies the rate of

production of turbulent point—source bursts per unit area on the surface

at posi tion x
1 

= x
0
, x

3 
= z0, and time t

0
. In his example , Emmons

assumed g(x0
,z0,

t
0
) to be constant; however, a later investigation

by Narasimha [27] which made use of the data of Ref. [10], showed that 

- -..~~~~~ -.- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~
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g(x0,z0,t0
) is more accura tely descr ibed by a Delta function. In

par ticular , g(x1) = n5 (x
1
—x
0
), where n is defined as the number of

sources per uni t leng th per uni t time along the line x
1 

= x
0
.

Farabee , et. al. [11] showed that for this assumed form of g:

1(n1) = l—exp (-c~*n~ 1
2/u 0), (43)

and N (~1) 
= ntan(a)rl

1
exp(_a*nfl 1

2/u
0
), (44)

where 
0* = (u

~
_u
~

)u
ø
tanct/(u u

~
) .  (45)

These equations depend upon the characteristic leading and trailing edge

velocities of a turbulent burst (Fig. 2), and upon n. The investigators

of Ref. [11] performed detailed measurements of the intermittent boundary

layer on a f la t fla t and fit eqs. (43) and (44) to their data. The

resulting expressions are as follows:

y(x
1
) = 1—exp[—4.l85x

1
2
], (46)

and N(x
1
) 1.272 ~~~~ 1

exp[-4.l85~ 1 ], (47)

where 
~
‘
~l 

= (x
1
—x
0
)/Ax = p

1
/Ax. (48)

Figure 6 show these distributions .

We non—dimensionalize the variable of integration in eq. (42)

according to eq. (48) ,  and then use eqs. (46) and (47) for y(x
1
) and

N(x
1
) to obtain:

2 2 2  2

~
C! ) (K.Ax) cos Oa (x

0
)u (Ax)

= 
2 2 2 F(K ,u0/u ), (49)

3 2 i r r c

where K = ut/u0, which is the free—stream convection wavenumber. The

frequency func tion , F, is given by:
u u

— — 2  0 —  — 2  — 2  0 — 2  — 2

~0 I 

tx
1
—x

1
exp(—ax

1 
) exp [b(—)(x

1
—x

1 
)exp (—ax

1 
)]-.exp[—b (—--)x

1 
exp(—ax

1 
) ] }  

—F(K,—) 2— 2 — 2 2 dx , (50)
c J b x

1 exp(—2ax1 
) + (KAx)

0
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where a = 4.185 and b = 2.544. We have been unable to integrate eq. (50)

to closed—form; however, this in tegral depends onl y upon the red uced

frequency. K~ x, and th e ratio of the free—stream velocity to the convection

velocity of turbulent bursts, u0
/u. Assuming u / u

0 
is independen t

of f requency , this ratio is known [10,111 to fall within the range

0.6 
~ 
u / u

0 ~ 
0.8. Thus, eq. (50) can be numerically— integrated for a

few discrete value of u / u
0 

and a range of KAx . We have performed

this numer ical in tegra tion by Simpson ’s rule. The produc t (KAx)
2
F(K ,u0

/u)

is presen ted graphically in Fig. 7 for three typical values of u / u
0
. This

f unc tion is seen to be weakly dependent on the convection velocity ratio ,

rises at 12 dB/octave at low frequencies , and asymp totically approaches a

constant for reduced frequencies greater than the characteristic frequency

of turbulent bursts. When multip lied by the numerical fac tor given in

eq. (49), Fig. 7 represents the low—frequency radiated noise spectrum for

boundary—layer transition of unit spanwise width.

Because Ô(x
0
) is propor tional to pu

0
2
, and u is propor t ional

to u0, we see tha t the spec tral level is propor tional to u
0
5 for

constant Ax. However, eq. (40) suggests that Ax is inversely pro-

por tional to u0, so eq. (49) predicts a u
0
3 

velocity dependence even

though the source of noise is di pole. The reason for this unexpected

behavior is that the solution is derived in terms of the detailed hydro-

dynamics. These details result in a source area that changes with velocity.

Thus, to be consistent with less—rigorous, flow noise order of magn itude

es t ima tes , the radiation—field pressure should be normalized by the area

of the source region , which is proportional to Ax. The mean—square value 

~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~ J
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of the sound pressure radiated per unit area would then be given by

the integration of eq. (49) over frequency divided by (Ax) 2. A 5th

power velo city dependence would thus be retained .

F. Frequency—Depression Factor

As discussed briefly in Section II.C, the power spec tral density

given by eq. (49) is most valid at frequencies lower than or comparable

to the burst frequency associated with turbulent spot formation. At

higher frequenc ies , we must take account of the actual shape and duration

of the individual pulses. We do this, by assuming a new indica tor func tion ,

i, as shown in Fig. 4(b). This function depends upon a lag time, t~ , which

represents the time it takes for the wall shear stress to change from a

laminar value to a turbulent value. We will assume that the time required

for the turbulent wall shear stress to return to a laminar value is also

given by t ... Thus, we assume a symmetrical pulse shape. With reference

to Stratonovich [22], we simply need to multiply eq. (49) by a frequency—

depression fac tor , given in general by:

f - .  . 2
= 

I) 
je

_lWt
dtI . (51)

—t/t —1Letting I V
0
e ~, where V

0 
t~ , e.g. Skudrzyk [28], it is easy

to show tha t

= [l+(w t
1
)
2
] .  (52)

It is apparent that when eq. (49) is multiplied by eq. (52), the

spectrum will roll of at 12 dB/octave above those frequencies inversely

proportional to t~~. The spectral shape of the radiated noise is therefore 

—.~~~~~
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analogous to the one we obtain by passing white noise through a

realizable bandbass filter . The low—frequency cutoff is predicted

by the presen t theory,  but the high—frequency cutoff can only be

estimated since there is very little information regarding the

magnitude of t~ . We expect though , that t~ would be on the order of

fractions of a millisecond , and it pr obably depends on the Reynolds

number , the flow velocity, and perhaps even on the kinematic viscosity.

III. EXAMPLES

We now consider application of the present analysis to two independen t

experimental situations where boundary—layer flow noise was measured ; namely ,

those of Ref s. [2] and [3]. Both of these experimental investigations

were performed in water at Mach numbers less than 0.02, which is of the

proper order of magnitude for our noise model. They used axisyminetric

bodies and concentrated on measuring the radiating component of flow noise

through the utilization of relatively large flush—mounted hydrophones and

distant receivers . The data of Ref. [2] were collected in a large lake

with a buoyantly—propelled vehicle equipped with a heinispherically—shaped

nose. The investigation performed by the author [3] used a blunt, flat—

faced nose body designed to operate in a large water tunnel. Calculations

performed for both headforms indicate that laminar separation is likely to

occur at the test velocities used. From hot—film anemometry studies , the

transition from laminar—to—turbulent flow was found to occur at the

predicted point of separation on the water tunnel body. Downstream of that

poin t, oscilloscope traces of the hot film signals indicated that turbulent

burs ts did appear , but Ax was very short , and essen tially constan t

(Ax 0.lD , where D = body diameter) over the range of velocities considered .
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We assume, since measuremen ts were no t repor ted , that the transition

zone for the hemispherical nose of Haddle and Skudrzyk ’ s buoyant body [2)

would exhibit similar behavior , i.e., Ax 0.1D.

Let us first apply eq. (49) to typical flow noise spectra reported

in Ref. [3]. We choose a hydrophone loca tion tha t is away from both the

transition and fully—developed turbulent regions of the body. We further

res tric t this loca tion to be in a region where noise emina t ing from the

transi tion zone is minimally affected by diffraction due to the nose

curvature. Hydrophone location 6 [Lauchle, ibid., Fig. 10(a)] best meets

these criteria; it is 7.62 cm. forward of the transition point within the

laminar boundary layer. We thus set r=7.62 cm., 000 , and the spanwise

width of the transition zone equal to the boc circumference.

The rise time, t .., can only be estimated . We have examined under a

microscope the oscilloscope traces of the signals from very small pinhole

microphones placed in the intermittent boundary—layer flow of a flat pla te

[25]. Microphone data were selected over hot wire or film data because of

the higher frequency response. From this examination, we crudely selected

0.25 msec. as the time required for the signal characteristics to change

as a turbulent burst swept by the sensor.

With Ax 3.42 cm., u /U
0
0.7 and r, 0, and t

1 
set at the above no ted

values, the spectra predicted by eq. (49) (together with the frequency—

depression factor) for u0
=7.62 and 10.67 m./sec. are compared with those

determined experimentally in Fig. 8. The correlation below about 10 kllz

appears to be good. The high—frequency portions of the measured spectra

may include contributions from additional noise sources, such as the fully-. 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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developed turbulent flow over the body, or the uns teady secondary flows

tha t occur a t the bod y mounting strut junctures.

Vecchio and Wiley [29] developed a theory for  the noise radia ted

by a fully—developed turbulent boundary layer . They compared their pre-

dic tion with the radiated noise spectrum of Haddle and Skudrzyk ’ s [ibid.,

Fig. 191 wooden buoyant body. This experimental spectrum was measured

about 30 in. away from the buoyant unit rising at 15.44 m./sec. Their

prediction underestimates the radiated sound for frequencies less than

about 2 kHz, but agrees quite well with the experimental levels at higher

frequencies .

As our second example, we apply the present theory for transition

zone radiated noise to this experimental situation. We let r be the

radius of a sphere whose surface area is the same as the surface area of

the bod y [2 ,291, and as in the first example, we let Ax = O.1D, where

D is 48.26 cm . for this particular buoyant body. With t
i
O.25 msec.,

our prediction is shown in Fig. 9 along with that prediction for the noise

generated by the f ully—developed turbulent boundary that occurs on the

body [Vecchio and Wiley , ibid., Fig. 1]. It appears that the levels

predicted for transition fill in that portion of the spectrum where the

theory for fully—developed turbulent flow underpredicts . Indeed , if we

assume the two noise sources are uncorrelated , we can add the energies

and obtain a composite spectrum as shown in Fig. 9. This composite agrees

very well with the measured spectrum.

IV. SUMMARY AND RECOMMENDATIONS

We have presented an analysis of the radiated sound due to boundary—
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layer transition. Our princip le assumptions were that the surface is

infinite in extent , planar , and rig id, tha t the transi tion process includes

a f in ite reg ion in termi tten t flow where the boundary layer f luc tua tes

randoml y be tween laminar and turbulen t, and that it is this intermittent

flow that generates the noise. Through use of Lighthill’s analogy , we

showed that the fluctuations between laminar and turbulent boundary—layer

flow give rise to dipole, quadrupole , and octupole noise sources. On the

basis of a very low Mach number assumption , we trea ted only the di pole

contribution in detail. We assumed that the flow is statistically homo-

geneous in the spanwise directions, non—homogeneous in the streamwise

direction, and stationary, but Poisson distributed in time. The power

spectral density for the acoustic pressure radiated per unit spanwise

width was derived. The level of the mean—square radiated pressure was

fo und to depend upon the square of the difference between the turbulen t

wall shear stress and the laminar wall shear stress that would occur at the

beg inning of transi tion , upon the square of the streamwise distance over

which turbulent bursts occur, and upon the veloci ty at which turbulen t

bursts are convected along the surface. The spectral shape corresponds

to tha t ob tained by passing whi te noise through a realizable band pass

filter with low and high frequency cutoffs dependent upon the characteristic

frequency of turbulent spot formation and the time required for the wall

shear stress to change from a locally laminar (or turbulent) to a locally

turbulent (or laminar) value, respectively.

We compared predictions using this theory with available experimental

data and observed rather good agreement. As expected , we observed better 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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agreement if the acoustic energy generated by the f u l ly developed turbulent

motion over the given experimental vehicle was added to the acoustic energy

generated by t rans i t ion .  This agreement suggests that  the present analysis

is applicable to axisymnietric bodies providing that the sound wavelength is

large and that the source region is small relative to the body radii of

curvature.

The analysis presented here represents a rigorous effort to include

the detailed hydrodynamics into an estimate for the sound generated by

boundary—layer transit ion. The result ing expression for this sound defines

two hydrodynamic parameters that critically control the level and spectrum

of the sound generated ; namely , Ax and t ... As Ax becomes smaller , we find

that less noise is generated at the same value of free—stream velocity . It

is recommended that  experimental investigation of this dependence be considered ,

i.e., previous efforts have not included Ax as a test variable. If Ax is

verified to be a controlling parameter of the radiated noise, then various

schemes of boundary—layer control to minimize Ax , while at the same time

being inherently quiet themselves, might be proposed .

There have been no known analytical or experimental studies specifically

directed toward the determination of the time it takes for the wall shear

stress to change state. This time, t
1
, plays an important role in the high—

frequency part of the noise spectrum. The larger t~ is, the lower the

frequency at which the noise spectrum begins to roll off. We night expect

that t~ scales with the turbulent velocities very near and normal to the

surface; these velocities scale with the friction velocity , ui,,. The viscous

sub— layer thickness , 0, identifies that region where ~u1
/~x1 

Is essentially

constant. Therefore , t . may be proportional to 0/u*. As discussed by 

— - --— .-- — - .-- . — — --- --— —- — .-- .--.. -. 
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Tennekes and Lumley [30], the Reynolds number , Re
3 

= Out/v , is small , falling

in the range 10—100. With u
~ =u0

/3O , we find :

t . — 900 Re0 v/u~ . (5 3)

For Re0 
= 30, and water flow at 10 m ./sec., t.. is calcula ted to be of the

order 0.2 msee. which compares very well with our crude estimate based on

oscillograph observations. From this dimensional reasoning, it appears that

t~ depends upon V and u
0
. We need to establish, however , a more precisa

value for Re
0 

during the initial stages of turbulent boundary—layer flow.

Caref ully designed experiments in both air and water, which utilize high—

frequency response sensors (pressures sensors may be best suited for this)

may provide a data base for t
1
. Equation (53) could serve as a data scaling

relation from which Re0 
may be deduced . 

.- -~~~~- .-- - — .- —--- .-- -,.
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lx i  
= X p +~~~X (FULLY TURB .)

~~~ ,~~f/z)v !~~
T

— U = x (BEG INNING OF INTERMITTENT FLOW)

x 2 

1 0

p — x
3

Figure 1. Definition of the coordinates used and a schematic
representation of the transition process.
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Figure 2. Schematic descrip tion of turbulen t burs ts and the boundary
layer development.
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Figure 3. (a) A schematic representation of the image flow concept;

and (b) the way in which multipole sources in the real flow
combine with equivalent sources in the image flow.
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0 : 1 _ 
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_ _ _

(b)

Figure 4. (a) An idealistic indicator function composed of unit
impulse functions and its first time derivative ; and ,
(b) a more realistic form of the indicator function and
its derivative 
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Figure 5. A schematic representation of I(x1,t) in space and
time , where y is its time average value and N is
the expected number of bursts per unit time.
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Figure 6. The intermittency and burst frequency dis tributions
from Farabee , et al. [111 
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Figure 7. Graphical presentation of the frequency integral
given by eq. (50).
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Figure 8. Comparison of the theory with experimental spectra
measured on the surface of a water tunnel flow noise
research vehicle [3].
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