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I. INTRODUCTION

Recently, the Army has shown interest in minimizing "collateral

damage'" to civilian arcas and to friendly troops. ‘This intcrest has
created a need for tacilities to permit "full scale'" testing under i
simulated low-level blast loadings caused by explosive charges. ("Full

scale'" walls would be of realistic sizes wherein regular construction
miaterials and methods are useable.) The need for such facilities
apparently has not been met satisfactorily. Facilities exist, e.g.
the DASACON conical tube at Dahlgren, Virginia, permitting full scale
testing; yet operationally they may have shortcomings: cxpense of
operation in terms of manpower and/or energy requirements or, in-
adequate simulation of the waveform characteristics of conventional
explosive blast waves. In response to an Army request involving

such full scale testing, we have studied a possible modification of
the 2.4m (8') tube portion of the existing BRL Dual Shock Tube
Facility!*?, Figure 1 from Reference 1, to give the desired testing
parameters - acceptance of walls to 3.7m (12') height, subjected to
peaked pressure pulses up to 70 kPa (10 psi) of v 50ms positive
duration.

Testing beyond the open end was not considered because of the
jet-like characteristics of the flow emitted. Close in, pressures
are uneven across a planar surface immersed normal to the flow, a
result predicted from a simple model, and found in carly experiments
by Bertrand?. Farther away, when the shock is more planar, the desired
pressure levels are not assured under the tube's operating limits.

The modification considered is basically an adjustment on the
driver/driven tube lengths and test station location to give the
desired pressure wave form, and is a somewhat natural extension of
the classical shock tube cperation cycle, but with an area change.

The peaked pressure waveform is obtained by testing at stations within
a distance interval defined by the intersection of the leading and
trailing waves of the breech-reflected expansion fan with the primary
shock. The interaction of the expansion waves with the shock weakens
it, thereby giving the desired decaying pressure pulse. The flow in
an cquivalent straight shock tube is used to follow the wave pro-
cesses. Specifying the desired positive duration of the peaked wave
then determines the appropriate tube lengths, for the straight tube,
then, by imposing a simple physical requirement, these tube lengths
can be carried over to determine the desired area-changed tube lengths.

1. B. P. Bertrand, "BRL Dual Shock Tube Facility," BRL MR 2001,
U. S. Army Ballistic Research Laboratory, Aberdeen Proving
Ground, MD, August 1969. AD 693264.

2. B. P. Bertrand, "Proposed Improvement of BRL Dual Shock Tube
Facility," BRL Technical Note No. 1733, U. S. Army Ballistic
Research Laboratory, Aberdeen Proving Ground, MD, April 1970.
AD 871736.
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The driving pressures for the area-changed shock tube are computed
following the methods of Alpher and White,3 who also treated area-
changed shock tubes but whose interests were in stronger shocks, with
the driver tube looking into a smaller area driven tube. The principal
features of our calculations apparently have not previously been done
explicitly for the subsonic flows occurring here and up to the wave
interaction regions involved. Results are presented of calculations
for the driver pressures for the 2.4m tube for several test condi-
tions, involving two different (larger) areas of driven tube.

II. DETERMINATION OF DRIVER PRESSURE

The flow situation for the area~changed tube is depicted in
Figure 2, along with its wave diagram or x-t plot. Following Alpher
and White, we may write the expression for the diaphragm pressure
ratio p4c/p1, after the diaphragm is broken and flow processes are

established, as (ideal, one-dimensional flow throughout)

=€ 2. a S 2 (1)

The pressure ratios in the expression are interpreted to be

p4c/p3a - the pressure (ratio) required to expand unsteadily
the gas in region 4 from reést to a Mach number M

3a’
P../pP, - the pressure required to expand steadily the gas
3a’*3 =
from M, to M_*;
3a 3
p3/p2 - the pressure across the contact surface separating
driver~ from driven-gas, with Pz = Py;
pz/p1 - the pressure required to compress the test gas in

region 1 through the shock of strength M1 or Ms'

Assuming the processes are isentropic and accounting for the steady or
unsteady nature, we may write Equation (1) as

3. R. A. Alpher and D. R. White, "Flow in Shock Tubes with Area
Change at the Diaphragm Sectiom,” J. Fluid Mech 3, 457-70
(1958).

*For subsonic flow M < 1, a steady expansion ie more effictent in
the conversion of thermal to kinetic energy than an unsteady expansion.

4, E. L. Resler, Shao-Chi Lin, and Arthur Kantrowitsa, "The Production
of High Temperature Gases in Shock Tubes,”J. Appl. Phys. 23, 1390-99
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In regular shock tube testing, the gases in regions 1 and 4 are
usually specified, as is the desired test overpressure; thus a driver
pressure can be determined. In the area-changed tube the unknowns
are p,  as well as M3 and MSa‘ Equations to connect these are the
expression for isentropic nozzle flow in terms of the nozzle areas:

+
Y4 1
Y4'1

1l
5 2
53 2+(Y4-l) M3a

1
== ] (3)
MSa 2+(y4—1) M32

»—->| J>>

and an expression connecting M3 with the driven gas:

u us/a1 uz/a1

] bk | = (a3Z§331 ﬂa3g/%4‘ (34/h1) (4)

M3 =

V]
[FX I OS]

where a similar decomposition into steady-unsteady processes as in
Equation (1) is made, and results in:

(u,fa, )(a fa,)
AR | 1754

< 2

1
eyl My 2 2
L %) ] (5)
2+(Y4‘1) M3 2+(y4—1) M3a

We now combine Equation (5) with Equation (2) and rewrite (2) as

2y
Ja) Cas/ Y4l
Pyc  (up/a;) (ay/a,)
5;— = [ W, ] P,/P; (6)

Equations (5), (6) and (3) may then be used to determine the required
driver pressure p,., knowing the desired testing pressure pz/p1 and

the nozzle area ratio A4/A1. Solution techniques - e.g. the Newton-

Raphson method or iteration - may be used on this system of equations.

11




We have used a graphical procedure offering some simplicity and
utility to the worker at the site. This is now illustrated. From
Equation (3) we have

el
Yyt
4 2 1/2
(f_zt_ MSa) 5 [2* (vy-1) M3a]
A M - 2 2
183 2+ (y4-1) M3

which, on substituting into Equation (5), gives

1 (uz/al) (al/a4)

M (7)
3 Yd'l
y,+1
(_&1_ MSa) 4 2
iy B Ll T L
Or rearranging
Y41
Y, +1 2
4 g
(A, LAL) 4 2+ (v,-1) M
2 4"7'1 M 5 4 3a (8)
(uz/al) (alfa4) 3 .Y4-1
Y+l
M 4
3a

The right hand side of Equation (8) determines a curve Z3a plotted
vs Mach number; similarly, the left hand side determines a curve Z3
(a straight line on a log-log plot). Thus for given pz/p1 -

or (uz/al) (al/a4) - and A4/A1, the points Z3 = Z3

Mach numbers M3a and M3 upstream and downstream, respectively, of

% determine the

the nozzle, and in particular M3 of Equation (6) and, thereby, the

required driver pressure Pyes

Some sample values have been calculated for their specific
interest and to illustrate the procedure, An attractive feature is
that different area ratios and test pressures are reflected only in

a change in (straight line) intercept (for the same gases) of the Z3

curve. The area ratios considered were for 2.4m (8') diameter
driver tube and Case (a)-3.7m (12') and Case (b) - 4.6m (15')

12
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diameter driven tubes, with ¢ test overpressure p, = 73 kPa (10.6 psi).
Gases had -

sty /5 a, = a

Case (¢) is similar to (a) but p’g = 34.5 kPa (5.0 psi). The values

for the various quantities entering into the construction of the graph
are tabulated in Table IA.

TABLE IA - PARAMETERS FOR TEST FFLOWS

1/6

Case (Ag/AD wplay My 2R R ) By,
a 0.444 0.4022 1.27 4.346 12
b 0.284 0.4022  1.27 4.033 1.72
c 0.444 0.219 1.14 7.982 1.34

>

The graphs for these cases are plotted in Figure 3 as functions of
Mach number.

For the three cases the Mach numbers determined_ agye tgbuylated in

Table IB as well as the driver pressures (absolute) as determined
from Equation (6).

TABLE IB - CALCULATED NOZZLE MACH NUMBERS AND DRIVER PRESSURES

Case (kpa) 4 (psi) nOM, v M,

Sa S

a 800 116 0.6 0.50

b 1564 227 0.68 0. 55

C 252 37 0.40 0.25
From these sample cases, it is seen that a 2.4m diameter driver

section coupled to a 3.7m diameter driven section to give test over-
pressures up to 70 kPa (10 psi) is well within the 1100 kPa operating
limits of the present TBD 2.4m shock tube. A 4.6m driven section

at this overpressure could not be accommodated, however. For
reference we have considered a range of test over-pressures p.,g and

their required driver pi=zssures Pac for the 2.4mt S.7m (8':12Y)

13




arca-changed tube. Results are plotted as Figure 4.* Maximum ng is

seen to be v 93 kPa (13.5 psi) for the 1100 kPa driver operating
limit,

In addition, some cases have also been treated involving
the 1.7m (5 1/2") diameter tube of the BRL Dual Shock Tube Facility,
to illustrate the obtainable test pressures, along with associated
driver pressures. Wave durations were not worked out., The 1.7m tube
has provision for heating of the driver gas to eliminate the contact
surface discontinuity, i.e. for tailoring of the interface.

For small disturbances, identity of the acoustic impedance pa
across the interface assures that waves are transmitted without change,
For the same gas on either side of the interface, the requirement
reduces to identity of the sound speeds, Hence, also, in the tailored-
interface mode

u2/a2 = us/a3 = M3'

With the desired test condition (hence MS) known, one may enter

the plot of Figure 3 to select a particular pair (there is a range)

My M_’,1 for which Z3 = ZSa’ as required by Equation (8) in the solution

for Pye Through this point (M3,23) is passed a straight iine
paralleling previously computed straight-line Z3 curves for othler
conditions; and this gives the intercept value, from which the driver
sound speed ratio a4/al is determinable, Consequently, the driver

gas temperature or the heating may be determined. Then the driver
pressure including the heating is again determined from Equation (6).
Three sample cases are given in the following Table II, for the 1.7m

tube coupled to a 3.7m diameter driven tube, with T, = 300° K.

*Because of the relatively large exponent occurring in Equation (6),
small rounding errors in the early stages of calculations can yield
variations from our final results. The accuracy conforms to the
approximate nature of the inquiry, and does not appear to be the
limiting feature in the iube modification.

14
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DETERMINATION OFF POSITIVE PULSE DURATTON

Wave Advance in the Straight Shock ‘Tube

peaked wave.
action between the
R_ from the breech to weaken the shock pressure, thus giving the peaked
pressure wave form.
tube, illustrates a possible set of events and the pressures at various
For sufficiently strong rarefaction waves the shock reduces
to one of the characteristics of the rarefaction wave exiting from the
interaction region; for weak rarefaction waves overtaking the shock, a
weakened shock with lowered shock pressures emerges®. In both instances
we may take the peaked wave's positive duration as the interaction time
of the shock with the reflected expansion fan from the driver breech.
The problem, therefore, is to determine this time from the operation
cycle of our area-changed shock tube,

stations X.

faction wave.

We turn now to questions on the positive duration of the desired
As mentioned in the Introduction, we rely on the inter-

incident shock S) and the reflected rarefaction wave

The wave diagram of Figure 5, for a straight shock

As a point of departure, we make use of calculations involving a
straight shock tube chosen to give the same downstream conditions as
the area-changed tube. The interaction problem and the relevant times
will be solved for the straight tube. Then asking for a simple physical
requirement enables a transforming of the computed numbers to the
actual tube.

Most of the features of the wave interaction problem in the
straight shock tube are well known. The interactions delineate in the
(x,t) - plane a number of regions of shock tube flow. These have been
labeled in the Figure 5 according to standard practice. We focus on
the interactions involving the reflected leading and trailing waves
of the expansion fan connecting straight shock tube regions 4 and 3.
Where and when these overtake the incident ‘shock wave tell a) where a
test wall should be placed to experience a peaked pressure pulse and
b) what positive duration is to be expected. Conversely, if the
positive duration is specified, the problem formulation allows driver
and driven lengths to be determined.

Thus, considering the propagation of the forward-facing, reflected
rarefaction waves R, we note that they will first interact at the
contact surface K.
rarefaction or compression waves, but always to a transmitted rare-

The transmitted rarefaction wave thus continues onward,
overtakes and interacts with the primary shock. This interaction gives
rise to four possibilities depending on relative strengths of the

This interaction may lead to weak reflected

I. I. Glass and J. G. Hall, Handbook of Supersonic Aerodynamics,
Sectton 18, Shock Tubes, NAVORD Report 1488 (Vol. 6) 1959.

16
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interacting waves: strong rarcfaction wave relative to shock gives 1)
reflected rarefaction or 2) compression waves and a transmitted
rarefaction wave; or weak rarefaction wave relative to shock gives 3) re-
flected rarefaction or 4) compression waves and a transmitted

(weakened) shock, The different initial conditions required to

achieve these cases could be a means of achieving different pressure
pulses with changed wave slopes, if desirable. For this study it

turns out that the last-named interactions did not have to be considered
in such detail,

B, Determination of Wave Speeds

The progress of the R | wave* from the breech after reflection
requires knowledge of its wave speed C through the various uniform
regions. The wave speed is obtained from the Riemann invariants
governing the simple flow. Across the backward facing R_ wave
connecting regions 3 and 4:

2 2 ™M 2 }
g d = ~ a = a * =
% 1 4 3 Y4 13 3 3 Yy 1

u, = 0
a Yol
A Mg+ 1,
as 2 i
b T R R
Mo
P, a Y4"1
2. ;
¥z . %3
Wave Speeds: C3-= Uz-az, € 4= -ay

Across the forward-facing R, wave connecting 3 with 5:

*The notation i8 R = rarefaction, S = shock, and arrows indicate
direction; and C_4 = wave speed of backward-facing wave in region 4.

17
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Wave speeds: C_ 3 = ug + ag; Lo ="+ ag

weak R_ KR
Farther along, the interaction R, Kes ]?r
wea

compress. wave, S_KR,

If we assume the result R+ KR+, our calculations lead to a

contradiction in the pressures across the wave as well as in the slopes
of leading and trailing wave. In this regard, the criteria and out-

come for this interaction, as stated by Courant and Friedricks,6 )
page 180, give an incorrect result here, whereas those by Glass and llall, -
page 95-6, and Landau and Lifshitz? (for acoustic waves) page 255-6,
predict the results we indeed find.

The interaction results, then, in reflected compression waves
coalescing to a shock and a transmitted rarefaction wave. For the
E weak waves expected here, the compression waves have the same properties
s as weak shocks.® Hence we assume the shock wave equations are
applicable and also that entropy changes across the '"forming shock"
may be neglected, i.e., the process is also assumed to be isentropic.

With these assumptions, regions 5 and 6 are connected by

6. R. Courant and X. D. Friedrichs, Supersonic Flow and Shock Waves,
Interscience Publishers, Inc., New York (1948).

7« L. D. Landau and E. M. Lifshitz, Fluid Mechanics, Pergamon Press
Ltd., London, 1959,

18
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a =l ;

O 5 5 1)5 ‘(Y4+1) (p()/ps) + (Y4—1)
Zy4

2/Y4

)

and P, ag

using the isentropic assumption.

On the other side of the contact surface, across the transmitted
forward-facing R, connecting regions 2 and 7, one has 1

B 2 a. = —3——-'
PR e T
1 1
and
b
p a e
7 7
l == ()
P, a

where the known conditions for region 2 are obtained from the shock
strength p2/p1 or MS, i.e., from tables of straight shock tube

properties,

The first equation is recast into more useful form:

o
p 2Y1
2 7
u =Uu 4+ —a — =1

and making use of equalities across the contact surface

e T U By " Foo ¥y T Fo

19




results in Y,-1

Zyl
p p
2 7 5 4
u, = u, + ——a_ [(—++ =) -1} =u
7 2 yl—l 2 P Pg 6

P, ‘[ 2/¥,
" s G - DYGD G,y 0D

yielding a single equation for p7/p5 in terms of previously determined

quantities. Solution then permits the calculation of particle and
sound speeds Ugs g and u,, a, applicable for these regions.

The transmitted leading and trailing waves of the expansion then
propagate onward with velocities (u2+a2) and (u7+a7), respectively,

to interact with the shock giving the locations within which one may
expect a peaked wave, and also determining its duration. Specific
cases of test conditions must now be entered to obtain actual numbers.
The problem formulation is usually done in non-dimensional coordinates

X = %, T = %E where L and a are convenient reference length and sound
speed, respectively. The non-dimensional time interval between inter-
section of leading and trailing waves of the expansion with the shock
thus yields the reference length, if we set the real time interval
equal to the pulse duration. The numbers as yet apply to a straight

shock tube, chosen to give the desired equivalent downstream conditions.

In converting over to the area-changed shock tube, we recognize
that the driver lengths should not in general be equal, since different
pressure ratios are involved across the diaphragm. Thus, velocities
and wave speeds must be different; and, the wave speed in the area-
changed tube must slow down in the steady, subsonic expansicn to match
the downstream conditions set for the equivalent straight shock tube.

The wave diagram in Figure 6 shows a possible wave-speed
comparison (as seen from numbers to be given later) and illustrates
how a simple conversion of tube lengths may be made: we demand
that the real times be equal, for both straight and area-changed
shock tubes, for the leading wave of expansion to be reflected from
breech and to travel back to the diaphragm station. The flows to
the leading waves are then identical beyond, neglecting the time
required in traversing the short transition piece (which implies an
assumption on the length of this piece).

20




This particular calculation may be done analytically for the
intersection point of leading with trailing wave of the reflected
exp:msion8 and wave progress then continued at constant speed to
the diaphragm station X = 0 at Tye

P T

From the nondimensional times

the real times for the arrival at X = 0 are equated

L, At L, At
el L
4 str 4 c

to arrive at driver length conversion. j

C. Sample Calculated Wave Speeds and Results

The actual test conditions are used in the calculations
outlined. As a specific example, we choose the test condition
ng = 73 kPa (10.6 psi). For this case the previously obtained flow

parameters are given to an equivalent straight shock tube:

M = 1.27 Ty 2o 7/5

p,/p; = 1.72

u, = 0.4022a; = u,

M, = ug/ag = 0.5 (Mg, = 0.6 for A4/A1 = 0,444)
az = 0.8044a1

‘With these conditions, the driver sound speed is

a, = 0.88484a1

8. R. K. Lobb, "On the Length of a Shock Tube," UTIA Report 5,
Institute of Aerophysics, University of Toronto, 1950.
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Then the wave speeds for the reflected expansion are

C3 =u, +a (0.4022 + 0.8044)u1 = 1,2066a

+ 3 3 1
C+5 = ue + ag = 0.72396 a,
C+2 = u, e, s (0.4022 + 1.083)a1 = 1.4BSZa1

"

C+7 S u, + a (-0.0610 + 0.9911)a1 = 0.,9301 a,

(C_4

1l

=1
1

&
|

= - 0.88484 al)

4 4
(C_3 = Uy = Ay = = 0.402231)

With these results, one is in position to follow the rarefaction
wave from diaphragm break to its interaction with the primary shock.

A characteristics calculation with desk calculator yields the
extent of the breech reflection, for leading (&) and trailing (t)
waves:

= 1,1301

—
|

X=-1,0, it = here) .

T, 2.15147 4

The intersection point X, of reflected leading wave with

3
trailing wave is found to be

X, = - 0.6094; 1

3 = 1.,5151,

3

Continuing, the reflected leading and trailing waves moving with
velocities C 3 and C,5, respectively, overtake the contact surface
K moving with velocity u,. We have bypassed a detailed (but more

accurate) characteristics calculation, and have followed both waves'
arrival only up to the leading wave's intersection with K, at XK:

= 3.0302

-
I

= 5.21607

-
I

This procedure, as seen by inspection of the wave diagram, Figure 5,
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Should give a lower estimate on the actual trailing wave's inter-
section point with K and hence an upper estimate to be made on the
tube lengths,

Beyond the contact surface K, the transmitted leading and
trailing waves of the rarefaction move to intersection with the shock,
with velocities C,2 and C+7,respectivcly. The procedure for this

interaction is again to follow the rarefaction waves only up to the
leading wave's intersection Xs with shock. Here also a dectailed

characteristics calculation is bypassed in the interest of simplicity.
Similarly, a lower estimate on actual intersection position and time
is expected for the trailing wave. The results then are

Ts, g 15,2495
Xs = 19.367,
T = 24,728
SImAT
The (nondimensional) interaction time
al At
&%= Ts,t 5,0 T L,

thus fixes the desired peaked wave's duration (which may be
transmitted with some positive pressure, depending on conditions,
nevertheless). Choosing the wave duration At = 50 ms then determines
the required (straight tube) driver length:

a; 50 (1073)

L4 str AT

L, 1847 5.80 ft. =
i atin m ( )(a1 335 m/s or

1100 ft/s)

The test wall is placed at XS, where the leading wave of the rare-

faction intersects the primary shock and determines the driven tube
length Ll:

Ll = Xs L4 = 19,367 (1.77m)

by

34.3m (112.3 ft) ;

as we have remarked earlier, L, as determined is probably an upper

estimate. b
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These numbers are as yet based on the straight shock tube with
downstream conditions identical to the desired conditions. To
maintain this identity through wave speeds and interaction points in
the wave diagram, we asked that the real times be equal after
diaphragm break - for straight and for area-changed tube - for the
leading waves of the expansions to travel back to the diaphragm
station. Thus, using the numbers appropriate for the straight tube
and for the area-changed tube for the case considered in the
beginning of this section and following the procedure outlined
earlier, we arrive at

ATC ATstr
At = —— = L
4c a4c 4 str a, SEr
and with numbers inserted
i 1,756 _ 1,7747
LT i L4 str 0.88484 a,
or L4C = 1.142 L4 St
- 3
For L4 O 1.77m (5.80 ft),
L4c = 2.02m (6.62 ft)

Then, having forced this partial simultaneity on driver wave motions,
we are assured that the downstream behavior in the two shock tubes
will be reasonably matched. Hence the driven tube length is as
computed- 34.3m (112 ft),

IV. CONCLUSIONS

Using an extension of the normal straight shock tube operating
cycle, we have determined appropriate tube lengths and driver
pressures for requisite operation/modification of an existing BRL
2.4m (8') shock tube to permit full scale testing. Walls and
structures of 3.7m (12') height are acceptable for simulated blast
loadings of~70 kPa (10 psi) having pulse durations of 50 ms. Other
loadings and the appropriate tube lengths are derivable without
difficulty using the procedures developed.

The results are based on idealized shock tube operation, with
approximations introduced to obviate the need for an extensive
computer program. In an actual design to the full sized tube, one
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should expect departures from such ideal operation due to boundary
layer growth and imperfect diaphragm effects such as non-instantaneous
opening and loss of energy to the opening process.

Due to the relatively short length of driver required, a much
smaller prototype tube with required area change ratio could be
constructed from BRL existing shock tubes, and the wave characteristics
determined empirically and compared with calculations, to see what
modifications should be incorporated into the full sized facility,
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Figure 1. BRL Dual Shock Tube Facility
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Figure 6. Wave Diagram ITlustrating Driver Tube Lengths
Relationship
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