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- = 
sup inf 

-

~: x~~~X p~~~P~~and
- 

inf sup
— 

p~~ P x~ X
where

= [x (t  +T) y(t # T) ]Z dt

and y(t ÷T) is the predicted value of x(t +T) based on values of x ( t  - 

~) wi th
r >  0.

It is shown that C 1 
=

for general N. For the particular value of N =2 which corresponds to a limited
acceletation for the target, we have

= 
~ 2 = 

(XT ) L E½ aT
2

I ~~0.569~½aT
2
]

where X is determined from the solution of a-ri eigenvalue problem for a fourth-
order differential equation.

The prediction algorithm p for which

= C(x ,p)

is a linear operator and the optimal subclass of maneuvers x is based on a
second-order correlation function a

E[~(t)~ (t+t)] = f a (s)a(s+r)ds .

For the particular case of N =2 we have

( -
~ •..2:.. rCOS h xC s —T/2) 

- 
sin ;~(s - T/2)a ~S ) — 

, L cosh(~T/2) sin XT/2 J
for

0~~~s~~~T

and
a(s) = 0 otherwise.

No restrictions were placed on ~ arid P other than those stated above
(i.e., X was not restricted to stationary processes and P was not restricted
to linear operators).

it is further shown that the strategies given above are good approximations
for the more general analysis in which hit probabili2y is the performance
measure. This is the case at least for ‘first cut ’ analyses.

3ounds such as this hel p avoid the expenditure of resources t~ achieve the
impossible or to achieve marginally small imorovement3 in fire contro l iesign .
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1. INTRODUCTION

‘~ The goal of this paper is to give some insights into how well a
fire control system can be expected to perform with noiseless informa-
tion and how well a target can avoid being hit with limits on its abil-
ity to maneuver. \Such a goal is very ambitious , so we shall make three
simplifying assumptions:

• The tracking data are noiseless. This gives an advantage to the
gun (see Reference 1) but is not too significant since optical and milli-
meter radar systems promise very accurate tracking and also since in
many cases the errors from evasive maneuvers far exceed errors resulting
from errors in state estimation .

• The target is limited only in the r.rn.s. value of the Nth

derivative of its path. That is, the class of maneuvers is limited
to those x(t) for which

CM
2 = R~~~m 11R [x (N) (t) ] zdt. 1.1

- .. . - s . 
~he. performante of the firô co?~er~r ~~ cha~acteriiea b’y the” r . m. s’. •

prediction error

c2 (x ,p) = R ÷ m  
1 
j

R 
[~ (t+T,p) - x(t+T)J2dt 1.2

where T is the time of flight of the bullet , p EP , P is the cl ass of
prediction algorithm such that x is the predicted value of x(t+T) given
all data on x(t-s) for $ > 0.

The last two assumptions are the closest concession we make to sta-
tionarity. The reason for averaging over time in Equation 1.2 is to
provide a measure that does not encourage the target to make a one-time
maneuver at the time of firing a single round but rather forces the
target to avoid rounds fired at unknown times or to avoid bursts of
rounds fired over time .

‘Harry L. Reed , Jr., “Some Bounds on the Generalized Fire Control
Prob lem ,” Ballistic Research Laboratories Report No. 1946, November
19”6 (AD A033043).
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Finally , the use of an r.m.s. error gives an incomplete measure of
ef fec t iveness  for maneuvers wit h s ta t i s t ics  that do not a l low an adequate
measure of probabi l i ty  of hi t  from the r . m . s .  error (see , for example ,
Reference 2). However, for optimal maneuvers , the r.m.s. error is a
fairly good measure (see Section 5).

We shall omit the subscript N unless its particular value is impor-
tant . The following is our overall strategy:

sup infLet = 

~ 
E ~ 

c(x,p) 1.3

0 inf supC p E P x E X C
~~~t~~ 

1.4

— sup inf
= e(x ,p) = 

~ ~
, ~(x ,p) 1.5

_•o supC = 
~ ~~ ~ 

C(x,p) 1.6

where is the class of stationary Gaussian maneuvers that sa t is fy

~

quati

~

on 1,1 an4 also satisfy. . .. . - . - - .  -.-

I I log I ~(w )I I
J 2 dw<~ o 1.l ÷ w

where ~(w) is the power spectral density of the Nth derivative .

Since C X and p E P , we have

0 -.0
C ~~~C ~~c 1.8

0 0

The argument that gives the middle inequality is a consequence of
the properties of sup and of inf, is common knowledge in game theory,
and is given in Appendix 1 for the benefit of the uninitiated .

We shall show that

-~0C C 1.9
0

and thus that

C = C .  1.10
0

Harry L. Reed , Jr. , “ Limitations of the R.M.S. Criterion for Fire
Control ,” Ballistic Research Laboratories Report No. 1805, July 1975
(AD A014986).
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We shall also evaluate c for N = 0, 1 , and 2 and show how to eval-
uate it for higher va lues of N.

Equa t ion 1.10 implies that  in a game between tw o “smart ” p layers ,
x and p0 are optimal strateg ies .

2. LOWER BOUND

For Gaussian maneuvers the optimal predictors are linear operators
of the form (see Reference 3)

x(t+T,ph
) = 

~~ 
X~~~~~(~~) 

T 
÷fh(s)x~~~(t~ s)ds 2 . 1

In t egra t ion by parts g ives

x(t÷ T)  - ~ (t+T , 
~~~ 

= 

f~

°
uN (T-s)x ( t+s)ds

~
f

h(s)x~
fl (t s)ds

where
u0 (t )  ~ (t) 2 .3

and for N >  0

N-l
uN (t)  = f or t~~~0 2 . 4

f o r t <0 .  2.5

Again we shal l  use

f ( t )  for uN (T_ t )
and

a ( t )  for x (N) (t)

unless the particular value of N is important to the argument at hand .

‘~Nor !~ert Wiener , Extrapola tion, IntervoZatf on, and S~oo~~’,~ n~ o ’ ~t t ~onar ’i
‘-~~e Je r ies, The Technology Press of M . I . T .  and John Wi l ey ~ Sons , I n c . ,

New York .
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Let

~ (s) = 

~~~~~ 
11R a(t)a(t+s)dt . 2.6

Equations 1 .1 and 1 .7 allow us to write

f0~
= J a(t)a(t÷s)dt 2.7

-

where
a(t) = 0 t < 0 2.8

and of course

C 2 = f°’[cz( t ) ] 2dt .  2 . 9

Using

b (r-s) = J a(t+r)a(t+s)dt 2.10
-

= J a(t-r)a(t-s)dt 2.11

and cft (r+s) = J a(t-r)ct(t+s)dt, 2.12
-

we can combine Equation 1.2 and 2.2 to write

C2 = f  dt 

~f [ f (s) a ( t + s ) -h ( s ) a( t - s ) ] d s ~
2 

2.13

= f d t  ~J tf(s)a(t÷s) -h(s)a(t-s)]ds~

+ ~fd t 
[f~

’
f(s)ct(t+s)ds~ 2. 14

8
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To minimize with respect to p. we pick h to satisfy

too

I f ( s ) c t ( t+ s ) d s  = j h(s)co(t-s)ds 2.15
Jo Jo

which puts the first term of the function in Equation 2.14 equal to zero .

To maximize with respect to x, we then pick a to maximize

C2 = 
.j

”'

dtLf f(s)cL(t+s)ds
~

= fdt ~ ,[
f(s)cL(s_t)ds~ 

2.16

= 
fdtLf

f(s+t)a(s)ds~
2

To do this, we set
- - - 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 0 

• 

2.l~ 

- . -

subject to

f
cx(r) ~a(r) = 0. 2.18

Therefore

1=00 f00

co (r) = k I dt 
~ 

f(r+t) f(s+t)a(s)ds. 2.19
Jo Jo

Multiplying Equation 2.19 by a(r) and integrating, we have

C2
C 2 = —jr 2 .20

Which shows that k ~ 0. Further

C 2 =
0 k0

9
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r _ _ _ _ _ _ _ _

where k 0 is the least ei genvalue of Equations 2 .9  and 2 . 1 9 .

In Section 4 we show how th is  ei genvalue problem i~ re la ted to an
eigenvalue problem for a system of d i f f e ren t i a l  equations and we evaluate
k for N = 0, 1 , and 2.0

3. UPPER BOUND

Even though the class X is only constrained by

C2 = R - ~ 00 
..L~~

atn 2dt

we can aefine

p (s) = 
R~~~00 IR 

3.1

and know that

- 

~i (%.J) = ~ L00~e _
~sd5 ~ 0.

Now we shall use the predicter which was defined in the previous
section by Equation 2.15 for the particular a(r) given in Equation 2.19.
Then Equations 1.7, 2.2, and 3.1 give (for any x)

e2 (x ,p0) = jdr fds f(s)f(r)~~(r-s) 

-

— 2 f ( s )h ( r )~~(r+ s) 
0 . .)

+ h ( r ) h ( s )~~(r-s) 
~~~

.

Using

~(r) = 
j~~~ (w) e~~

rdw , 3. 4

we can derive

= ~ (w) - H ( w ) 2 
~(w)dw 3.3

10 
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where

= 

f
h(t )e~~~

tdt 3.6

and

F(w) = 

f
f(t)e~~~

tdt 3.7

We shall show that

- H (w)j2 = ~~—. 3.8

and thus that

c2 (x ,p0) 
= 
J~

°
~ (w )dw = 3 . 9

for all X E ~

To do that , we first take the Fourier transform of Equation 2.15
to get

f e  
~~~~~ f°°f (s) a (t ÷s )d s = H ( w ) A ( w )  3.10

wher e

A(w) = 

j
a(t)e~~~

tdt 3.11

Some manipulation of the left hand side of Equation 3.10 g iv es

J
~

0
e~~ Wt dt 

j
f ( s ) z ( t + s ) d s

=J
°
e~~

Wt
dt f f(s)ct(t+s)ds 

_~f e h1
~
t
dt 
f

f(s)co(t+s)ds

= ~(w)A (w) - 
f00

e
1~ tt 

j

”'°°
f(s)a(s_t)ds

= ~ (w ) A ( w ) - ~~
00

e
iwt 

ff(t÷r)a(r)dr 

3.12

11
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Therefore

- H( W ) 2 = B( w ) /A( w ) 2 3.13

where
00IB(w)  = J e ~(t)dt 3.14

~ (t) = ff(t+r)a(r)rt :: 3.15

We then have

B( w ) 2 = B ( w) B ( w) = dp ~~~~~~~~~~~~~~ 3.16

Note that this convolution is an even function of p so that

IB (w)12 = Je~~~dp j~~
(~)8(IP1+~)d~ 3.17

Now using Equation 2.19, we have

= f d ~ j f (~ +r)a ( r) dr

ff(~÷IPI+s)~~(s)ds

= ~_f a (P~+s)a(s)ds 3.18

L 

12



and finall y

= 
foo

e
1~~~dp f°cx(IP!+s)a (s)ds

3.19

= ~— lA(w)~~w I

and we have from Equation 3.13 and 3.5 that

2
2(C ~~~~~ k0

as advertised in Equation 3.9.

Another approach to Equation 3.8 is to show that

B (w) = —
~
— A(w) 3.20

which can be shown by showing that

~ (t) = —“i-- a(t). 3.21

To do this , we combine Equation 2.19 and 3.15 to get

~(t) = ff(t+r)dr fkod~ 
f

f(r +~ ) f ( s + ~ ) a ( s)d s

3.22

= kol f(t+r)dr J f(r+q).8(q) dq
Jo Jo

Thus ~ (t )  satisfies the sane integral equation as a(t). In the
next section we relate this integral equation to the eigenvalue problem
for a differential equation. This eigenvalue problem has only one
l inearly independent solution (see Appendix 2) and so we can write

8(t) = y a(t) 3.23

13
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Then

j
[ B( t ) J 2dt = y 2 

j
[a ( t )} 2 dt 3.24

which gives

f~00 f00 -

I I f(t+r)a(r)dr dt y 2 j [a(t)]2dt 3.25
Jo Jo Jo

using the definition of 8(t) and which can be rewritten as

f
a(r)dr 

f
f(t+r)dt 

f
f(t+s)a(s)ds

3.26
= ~2 

j
[ct(t)]2dt

and finally (from Equation 2.19)

~~ 
f

~a~rn2~r = y 2 

j
[a(t))l 2dt 3.27

which gives

1 o.28

4. THE EIGE NVALUE PROBLEM

We have

= C 2 4.1

and

a(r)  = k fdt 
f

u(T-r-t)u(T-s-t)a(s)ds

(T-r fT- t  N 1 N 1 
4 . 2

= k I dt 
~ 

(T-r- t )  - (T- s-t)’  
- 

z(s)ds
° Jo Jo (N-l)! (N-l) !

for r ~ T.

14
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~~~~~~~~

We also have k > 0, and k is the least eigenvalue of this system
0 0 -

of equations.

If r > T

u(T-r-t) = 0 since t ~ 0

and thus

a(r) = 0 for r > T 4.3

If N = 0

U(r) =

and

a(r) = k j d t  ~~~~~~~~~~~~~~~~~~~~~~

= k0 
a(r)

So for N = 0

k = 1  4.4
0

and
CQ C 4.5

Let N ~ 1. We can different iate  Equation 4 . 2  to get for 0 ~ t ~ T

(2N) 
= ( 1)

N k0a 4 .6

M) (T) = 0 for M=0 to N-I 4 . 7

(0) = 0 for M=N to 2N-l 4.8

The uniqueness of the solution to this syst em of equa t ions is shown
in Appendix 2.

Now let N=l

c o =
0

15 
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&( o ) = ci(T) = 0

~~~~~~~~ 

t~

C =~~~CT 4.11
0 II

Finally let N = 2

k0

( )  = 
~

•
(~~~) ~ (T) = a(T) = 0

(The classical problem of the vibration of a clamped rod.)

Letting k0 
= X~~, we have

1 + cosh (A T) cos (A T) = 0 4.12

x T ~ 1.875

~ 
cosh[X (t-T /2)]

a = 

~~ cosh[X T/2] 
4.13

sinfx (t-T/2)}

sin[X T/2]

C0 
(~~~~~

(2 )  
4.14

~ .569 ~4 CT2) 4.15

16
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5. THE GENERA L PROBLEM

In this section we shall see how far we can go using hit probability
rather than the r.m .s. criterion . In doing this , we shall have to give
up the neatness of finding an exact answer. On the other hand , we shall
find bounds on the problem , and these bounds will be shown to bracket
the problem closely enough for many “first analyses.”

Let us discuss the problem where x(t) has a single spatial dimension .
Associated with a class of maneuvers is a probability distribution
function

ulx (t +T) - ~(t+T ,p) I x(t - s) , s > 0~ . 5.1

That is, u is the distribution of the error between the future position
and the predicted future position given the past. Let y be this error in
future position. We can average over time to find a distribution function

u(y I x ,p) . 5.2

The probability of hit q is

q(x ,p) = J du(~ I x ,p) , 5.3
—Z/2

where .e is the size of the target. The pilot wishes to keep q small.
His goal might be

o inf sup 54q 
~~X E X  p E P  q(x ,p ) .

Likewise, the gunner might try for

- 
sup inf

x E X  
q(x ,p) . .5

The set ‘

~~~ , the set P, the set XG, the maneuver ~~~~~~
, the prediction

algorithm p0 , and the error are as defined in Section 1.

We can define p
f ~2/(2~

.2
)

= ~~~~~~~ /.e) = q(x ‘p ) = e ° d~ 5.6
0 0 0

0
— 9~/ 2

17
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Since x is Gaussian , p maximizes the hi t  probability as well as
it minimizes the error. Thus

o _.o -q ~~q .  5. 1

We can also define

.... inf _.
q0 

= 
~ 

q(x ,p0) , 5.8

where is a variant of the algorithm p
0 and will be described in

Section 6.

As usual , we have

5.9

but this time we have not been able to collapse this chain of inequali-
ties. In fact we are only able to find a lower bound z~~’/~) such that

5.10

Nevertheless , these bounds may well still be useful for first esti-
mates since they provide a variation of no more than 70 percent . A
tabulation of the lower bound z and the upper bound ‘

~ ° and their ratio
is given in Table 1.

6. THE ALGORITHM

Define the algorithm j~ to be

= y0 
+ ~(t+T ,p0). 6.1

Then
u (y I x ,~0) = u(y  - y

0 I x,p0) . 6.2

The value y
0 is the value that maximizes

çy Z/2
q(y0,x,p0) = J du(y-y0) !x ,p0) 6.3

y=-Z/2

From Appendix C we have

18
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Table 1

C 
.
~
.
~
O (C)

.00 00 .000 1.382

.05 5.557 .072 1.434

.10 2.669 .149 1.486

.15 1.721 .229 1.524

.20 1.225 .317 1.585

.25 .935 .407 1.628

.30 .775 .481 1. 605

.35 .622 .578 1.652

.40 .548 .639 1.597

.45 .461 .722 1.604

.50 .354 .843 1.685

.55 .335 .864 1.571

.60 .316 .886 1.477

.65 .296 .909 1.399

.70 .274 .932 1.332

.75 .250 .954 1.273

.80 .224 .975 1.218

.85 .194 .990 1.165

.90 .158 .998 1.109

.95 .112 1.000 1.053
1. 00 .000 1.000 1.000
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q(x ,’~~) = 
sup 

q(y
0
,x , p )  ~ z(o/ .~ ) ~ z(? /.e) 6 .4

where ~ is the standard deviation around the mean. The last inequality
follows since z is a monotonically decreasing function and since ~ mini-
mizes the r.m.s. error.

Since the middle inequality in Equation 6.4 holds for all x , we
have

~~~~~ 
z(~~ /Z) . 6.5

7. CONCLUSIONS

With respect to the r.m.s. criterion and the r.m .s. bound on an
Nth derivative , the duel between a gunner and a target is a game with
a saddle point which can be precisely defined and hence stable strate-
gies exist for both players.

If hit probability is used as the criterion, we have been unable
to define a saddle point precisely. However , we can find bounds that
show that the difference between the performance for such a saddle point
and the saddle point for the r.m.s. case may well be small enough to use
the r.m.s. criterion as a good “first analysis.”

20 
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APPENDIX A

First consider e . We note that for each 6 ~ 0 there exists an x
0 6

such that

~~~~ C (X ~~,p) ~ C —

which follows from the definition of sup.

Thus
c(x6,p) ~ - 6

for all p which fol lows from the definition of inf.

Likewise, there exists a p 6 such that

0
c(x,p6) ~~ C + 6

for all x .

Thus
C 0 - 6 ~~~~f ( X 6 p 6 )~~~~C~~~~~6

for all 5 and thus

0C ~~ C .0

21
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APPENDIX B*

Statement of Pr,blem.

Let k > 0 be such that the differential equation

= (_l)nkX

X
(m)
(T) = 0 (ni=0,1,.. ,n-l)

x
(m)
(O) = 0 (m=n ,n+1 ,. ..,2n-1)

has a nontrivial solution. Prove that this solution is unique up to
constant multiples.

Proof.

The proof consists in showing that for any two nontrivial solutions
x and y the equality sign in Schwar z ’s inequality

l t T  \
2 

~~
T rT(\J xy dt) ~ J 
x2dt J y2dt

0 0 0

holds , which occurs if and only if y c x , c a constant.

To this end , we note first that

f x ~ dt = 
1 

f

(n)y
(n)

dt (8-1)

This follow s from

The analysis jn this appendix was provided by Mr. Walter 0. Egerland
of the Ballistic Modeling Division , Ballistic Research Laboratory.
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dt = 
( l ) nf

T
(2) 

dt

= yx~~~
h1 l )  

- JTx(
2n..I) tdt 

}

= 
(_l~fl+l

f

T
x(

2n_l)
y
~~~

= ~~~~~~ 
f

T
x (2n~ j ) yj

~~ 
j = l ,2 ,. . .n (B-2)

Next, we write the identify

pt
xy = x ( 0)y( 0) + J (x ’y + xy ’)dt,

0

and find success ivel y

xy = x ( O ) y ( 0) + ( 1 ) n 

f
t

( p (2fl) 
+ y ’x~

2
~~dt

= x( 0) y ( 0) + y~~~~~~x ’ 
~ x

(21
~~~ y~

- f (y (2n~ 1) ~~ + x(2h1_1)y~
I
)dt~

= x ( 0)y( 0) + ~~~~ [
~ 

(~ l) 3 y~
2
~~

j
~ x~ + ~ (2 n j j j ~

+ (~~)
n+l (n)

Integration over the interval [0,T], using (B-i) and (B-2) , yields

~~~~~~~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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fx y  dt = x(0)y(0)T - (2n - l)f Y dt

or 

1

T 
dt = 

x( 0)y ( 0) 
T. (8-3)

In particular ,

j

T

x2dt = 
X(0) T

and

fT = T.

Hence, equality in Schwarz ’s inequality holds , and the proof is complete.

25
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APPE NDIX C

Let u () be any distribution function which we will take for con-
ven-jence as having :ero mean . Then

~2 

f
~~

2 du(~) (C-l)

We want to relate o with

ç y+Z/2

q =  suP] du

It is convenient to find a function such that

> r(q) . (C-3)

This function is monotonically decreasing with q and thus we can use it
to define

q~~ z (a) . (C-4)

implicitly.

We can write

00 (m+ 1)2./2
= 

~~~ 
f ~

2du(~)

m 00 mZ/2

00 (m+l)Z/2 ~~ 2 (m+l) Z/2

02 >
~~~~ 

( & ) 2f du + ~~~~~~~

(

~~~~2~
) f du

m—O m L/ 2 in—- ~ m 9./2

~2 ~~~~~~~
(

lflt
~)

2

~~ + ± [m÷
1
~~]

2 
(C-5)

where

U
m J  

du~~~0,
m2./ 2

- _
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and Urn + ~~ q

and 00

= 1 .m

If we write

V Uin in (-1-rn)
we have

02 > ~
. 

= m-e~ 
2 

~~ 
, (C-6)

where

0~~~ u 0~~~ q ,  (C-fl

o 
~~ 

V
in 

+ V
m+l  < 2q , (C-B)

= 1. (C-9)

It is not hard to show that we have a lower bound for ~ defined

in Equation C-6 if we let

= q for m=0 , M-l , (C-b )

V
M 

= 1 - Mq, (C-il)

= 0 for rn > M , (C-l2)

where

M = greatest integer [l/q] . (C-l3)

The proof of this goes as follows :

(i) If v
0 

= q , go to step (iv)

(ii) tfv
0 < q a n d v0

+ v 1 = b ~~~q, put v = q a n d

= b - q. This will decrease ~ . Then go
to step (iv) .

28
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(iii) If + V
1 

= b < q, ~Ut V = b , 
~~~~ 

= 0 and reduce

and other to make = q. This again will

decrease . Then go to step ( iv) .

(iv) Now work on V 1 and ~~~2 as we worked on ‘ and s’. .

(v) Cont inue on with v and v 3, e t .

We then hav e

~2/~
2 

+ 
~ 2 

r’ -Mq , (C- 14)

which we can write in closed form as

= r(qJ = 
( M - l ) M ( 2 M - 1 )  q + (1 - Mq) . ~C- l5)

We now need only show that this function is nonotonically decreasing
for 0< q~~ 1, and we have imp licitly def ined :(~ ) .

First let q = 
~~~ 

. Then

( ) — G 4 — l ) ( 2 M — l )r q  - 24

which increases as q decreases.

We can write Equation C-l4 as

r(q) = + qM [4M
2 

~~i~l + 1] (C- 16)

For 
~~~~~~~~~~ 

< q ~ ~., M is fixed in Equation C- lô  and r~ q) varies only

as a constant times q. Since

-4M
2 

- 3M • 1 < 0 for q ~ 1 ,

we have that r(q) increases as q decreases from to

;~e should point out that  r~~ ) is not actual ly ach ievab le by a u ( ) .
In particular , there ~s a jump of ~ at zero and a jump of q/2 at ~/ 2  so
the interval (-~./4 , 3Z/ 4~ would have measure 3q 12 . Thus is only a lower
bound .

29 

~~~~~~- - - , , - ,~~~-~~~~~--~~~



r 
. - -  

~~~~~

- - - -

~~~~~~~~

---

~~~~~~~

--- - --

DISTRIBUTION LIST

No . of No . of
Copies Organization Copies Organization

12 Commander 1 Director
Defense Documentation Center US Army Air Mobility Research
ATTN: DDC-TCA and Development Laboratory
Cameron Station Ames Research center
Alexandr ia , VA 22314 Moffett Field , CA 94035

Office of Director of Defense 1 Commander
Research 8 Eng ineering US Army Electronics Research

Research and Advanced and Development Command
Technology Technical Support Activity

ATrN : Mr. L. R. Weisberg ATTN: DELSD-L
Assistant Director Fort Monmouth , NJ 07703
Elec 8 Phy Sci

Wash ington, DC 20301 1 Commander
US Army Communications Research

Office of Director of Defense and Development Command
Research 8 Engineering AUN: DRDCO-SGS

Engineering Technology Fort Monmouth, NJ 07703
ATTN: Mr. Ray Thorkildsen

Staff Assistant for 1 Commander
Ordnance Technology US Army Mis sile Research and

Wash ington , DC 20301 Development Command
ATTN : DRDMI-R

Director Redstone Arsena l , AL 35809
Institute for Defense Analysis
ATTN : Dr. J. Ross 1 Commander
400 Army Navy Drive US Army Missile Materiel
Arlington , VA 22202 Readiness Command

ATTN : DRSMI-AOM
Commander Redstone Arsena l , AL 35809
US Army Materiel Development

and Readiness Command I Commander
ATTN : DRCDMD -ST , N. Klein US Army Tank Automotive Research
5001 Eisenhower Avenue and Development Command
Alexandria, VA 22333 ATTN : DRDTA-UL

Warr en , MI 48090

4 Commander 5 Commander
US Army Aviation Research and US Army Armament Research and

Development Command Development Command
ATI’N: DRSAV-E ATTN: DRDAR-TSS (2 cys)

DRCPM-AAI-I DRDAR-TD , Dr. R. We igle
DRCPM-ASE DRDAR-TDS , Mr. V. Lindner
DRCPM-C0 DRDAR-SCF

12th and Spruce Streets Dover , NJ 07801
St . Louis , MO 63166

31 

-. .~



DISTRIBUTION LIST

No. of No. of
Copies Organization Copies Organization

1 Commander 1 Deputy Under Secretary of the
US Army Armament Materiel Army (Operations Research)

Read iness Command Wash ington , DC 20310
ATTN: DRSAR-LEP-L , Tech Lib
Rock Islan d , IL 61299 1 Commandant

US Military Academy
2 Commander ATFN : COL John L. Pa lmer

White Sands Missile Range Dept . of Engineering
ATTN : STEWS-TE-ML West Point, NY 10996

STEWS-MR-PA
White Sands , NM 88002 1 Commander

Naval Ordnance Systems Command
Commander Washington , DC 20360
US Army Tra ining and

Doctrine Command 1 Commander
ATTN: ATCD-FT Office of Naval Research
Fort Monroe, VA 23651 ATTN: Mr. S. M. Selig

800 North Quincy Street
Director Arl ington , VA 22217
US Army TRADOC Systems
Analysis Activity 1 Director

ATTN: ATAA-SL, Tech Lib Special Projects Off ice
White Sands Missile Range Department of the Navy
NM 88002 Washington , DC 20360

Commander 1 Commander
US Army Aviation Center Naval Weapons Center
ATTN: ATZK-D-MT ATTN: Code 753
Fort Rucker, AL 36360 China Lake, CA 93557

Cc~mmander 1 AF/XOOFA
U3 Army Combined Arms Combat Washington , DC 20330

Developments Activity
ATTN : ATCACC-C A 1 AF/ SAV
Fort Leavenworth , KS 66027 Washington, DC 20330

Comm ander 1 AFSC (DOVS)
MASSTER Andrews AFB
ATTN: ATMAS-OEP-Q Washington , DC 20331
Fort Hood , TX 76544

1 TAWC/OA (Mr . J. Durrenberger)
Commander Egl in AFB , FL 32542
Operational Test and Evaluation

Agency 1 AFWL (SA)
ATTN: FDTE-PO-OB Kirtland AFB , NM 87ll~
5600 Columbia Pike
Fal l s  Church , VA 22041

32

— - - -~~~~~~~~~~~~~~~~~~~ -- - ‘— .~~~~~~~~~ --~~~~~~~~~~~~~~~~ -~~ - - .~~~~~
--- — -,-

~~~~~~~~~~~~~ 
-

~~~~~ 
-



~ - - ‘ .-~~~~~~~~———- —- -- - -~~~~~--- ~~- - -. 

_

DISTRIBUTION LIST

No. of
Copies Organization

1 United States Air Force Academy
Department of Astronautics and

Computer Science
ATTN : DFACS/LTC E. J. Bauman
Colorado 80840

1 Martin Marietta
A1’TN: Dr. Joseph Sternberg
6801 Rockledge Drive
Bethesda , MD 20034

Aberdeen Proving Ground

Dir , USAMSAA
ATTN: Dr. J. Sperrazza

Mr. D. O’Neill
Mr. H. Burke

Cdr , IJSATECOM
ATTN: DRSTE-SG-H

DRSTE -SE
DRSTE-SY , J. Marley
DRSTE-AD

Dir , USANTD
ATTN: STEAP-MT-M

33 

- -- -~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -. - .- —~~~~~~~--~~~,—


