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1 2 o)

]

where A is determined from the solution of an eigenvalue problem for a fourth-
order differential equation.

The prediction algorithm 1 for which

gy = e(x,,p,)

is a linear operator and the optimal subclass of maneuvers X, is based on a
second-order correlation function
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a(s) = 0 otherwise.

No restrictions were placed on K and P other than those stated above
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1. INTRODUCTION

\ The goal of this paper is to give some insights into how well a
fire control system can be expected to perform with noiseless informa-
tion and how well a target can avoid being hit with limits on its abil-
ity to maneuver. \\Such a goal is very ambitious, so we shall make three
simplifying assumptions:

+ The tracking data are noiseless. This gives an advantage to the
gun (see Reference i) but is not too significant since optical and milli-
meter radar systems promise very accurate tracking and also since in
many cases the errors from evasive maneuvers far exceed errors resulting
from errors in state estimation.

* The target is limited only in the r.m.s. value of the Nth

derivative of its path. That is, the class of maneuvers X& is limited
to those x(t) for which ’

. R
2 lim _1 (N) 5)
& 2R-/l; fx“" (t)ldde. |
- -e- - a - The-performamte of the ‘fire*oNerdr 18 thatacteri¥ed by the r.m.s. | ) I
prediction error
1i il .
e2(x,p) = g imm R / [x(t+T,p) - x(t+T)]2dt 1.2
e -R

where T is the time of flight of the bullet, p€ P, Pis the class of
prediction algorithm such that x is the predicted value of x(t+T) given
all data on x(t-s) for s 2 0.

The last two assumptions are the closest concession we make to sta-
tionarity. The reason for averaging over time in Equation 1.2 is to
provide a measure that does not encourage the target to make a one-time
maneuver at the time of firing a single round but rather forces the
target to avoid rounds fired at unknown times or to avoid bursts of
rounds fired over time.

1Harry L. Reed, Jr., '"Some Bounds on the Generalized Fire Control
Problem,'" Ballistic Research Laboratories Report No. 1946, November
1976 (AD A033043).




Finally, the use of an r.m.s. error gives an incomplete measure of
effectiveness for maneuvers with statistics that do not allow an adequate
measure of probability of hit from the r.m.s. error (see, for example,
Reference 2). However, for optimal maneuvers, the r.m.s. error is a
fairly good measure (see Section 5).

We shall omit the subscript N unless its particular value is impor-
tant. The following is our overall strategy:

_ sup_ inf
Let EO Xei pEPE(X,P) 1.3
o _ inf sup_ Sl m 1.4
oA pEP x€ X - %P :
T wa ) = ) 1.5
o ~0" 0 x € EG pEP 3 -
~0 S
T = X‘E‘PY e(x,p,) 1.6

where Xé is the class of stationary Gaussian maneuvers that satisfy
Equation 1,1 and also satisfy. .. .- . TR ee =0 @

ikl log | ¢(w)||
—/; 1+W2 dw < = s

where & (w) is the power spectral density of the Nth derivative.

~J

i X.C X EP
Since EG X and P,SFs we have

T <e <e%2<7?° 1.8
0 o

The argument that gives the middle inequality is a consequence of
the properties of sup and of inf, is common knowledge in game theory,
and is given in Appendix 1 for the benefit of the uninitiated.

We shall show that

° 1.9

and thus that
o

E =€ . 1.10
(o)

3

“Harry L. Reed, Jr., " Limitations of the R.M.S. Criterion for Fire
Control,'" Ballistic Research Laboratories Report No. 1805, July 1975
(AD A014986).
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We shall also evaluate € for N = 0, 1, and 2 and show how to eval-
uate it for higher values of N.

Equation 1.10 implies that in a game between two ''smart' players,

X5 and p, are optimal strategies.

2. LOWER BOUND

For Gaussian maneuvers the optimal predictors are linear operators
of the form (see Reference 3)

N-1 m ®
~ T h
x(t+T,p) = 3 x™ () — +f nes)x ™ (e-s)ds 2.1
m=0 ; 0
Integration by parts gives

x(t+T) - x(t+T, Py) =/quN(T-s)x(N) (t+s)ds
o

2.2
f hisye ™ (ees)ds
o
where
uo(t) = §(t) 2.3
and for N > 0
tN~1
uV(t) = (“1—-1-)—'— for t 20 2.4
=0 for t < 0. 2.5

Again we shall use

f(t) for uN(T-t)

and
act) for x™ ()

unless the particular value of N is important to the argument at hand.

SNorhert Wiener, Extrapolation, Interpolation, and Smoothing of Stationary
Time Series, The Technology Press of M.I.T. and John Wiley & Sons, Inc.,
New York.
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i mE ]
0(s) = o L 2—R_/}; a(t)a(t+s)dt. 2.6
Equations 1.1 and 1.7 allow us to write
#(s) = / a(t)a(t+s)dt 2.7
where
sttt =10 t <0 2.8
and of course
c? =f[a(t)]2dt. 2.9
o)
Using
¢(r-s) = / a(t+r)a(t+s)dt 2.10
= / alt-r)a(t-s)dt 2.11
and o (r+s) = f a(t-r)a(t+s)dt, 2,12
we can combine Equation 1.2 and 2.2 to write
-] 00 2
€2 = dt [f(s)a(t+s)-h(s)a(t-s)]ds{ 2sls
-0 o)
o © 2
= f dt ;-/- [f(s)a(t+s)-h(s)a(t-s)]ds%
o o
o 2
+ f dt ;ff(s)a(t-bs)ds} ¢ 2.14
-0 o
8
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To minimize with respect to p, we pick h to satisfy

ff(s)a(us)ds =f h(s)a(t-s)ds
o o

which puts the first term of the function in Equation 2.14 equal to zero.

To maximize with respect to x, we then pick a to maximize

o o0 9
f dt i/ f(s)a(t*-s)ds}
/-0 0

0 0 2
f dt ;f f(s)a(s-t)ds$

o o

L3 ) 2
f dt ;[ f(s+t)a(s)dsf 2

o o

s s le 3 ve 1S - u T

<Se2 2 f dtf f(s+t)a(s)dsf f(r+t)Sa(r)dr = 0
o] o o
f a(r) Sa(r) = 0.
o
Therefore

a(r) = kfdtf f(r+t) f(s+t)a(s)ds.
o o

Multiplying Equation 2.19 by a(r) and integrating, we have

To do this, we set

- “ . - v e .. » @ . ® e .

subject to

which shows that k 2 0. Further

e L, =T

(38
—

"

19

o
.

o
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where ko is the least eigenvalue of Equations 2.9 and 2.19.

In Section 4 we show how this eigenvalue problem is related to an
eigenvalue problem for a system of differential equations and we evaluate
k0 for N = 0, 1, and 2.

g
E
t

3. UPPER BOUND

Even though the class K is only constrained by

T e 5
(& B T [a(t)]=dt
= Ep

we can define

: R
o(s) = Rliwm 5% J/; a(t)a(t+s)dt 51

and know that

o(w) = “2—11;' / 6(s)e ™W3ds > 0. 2.2

LA A o . . T e ® - - & o

Now we shall use the predicter which was defined in the previous
section by Equation 2.15 for the particular a(r) given in Equation 2.19.
Then Equations 1.7, 2.2, and 3.1 give (for any x)

ez(x,po) =f drf ds % £(s)f(r)d(r-s)
(o] [o]

- 2 £(s)h(r)8(res) o
+ h(r)h(s)¢(r-s)€.
Using
6 (1) =/ ¢(w)eiwrdw, 3.4
we can derive
az(x,po) = | F(w) - H(w) |2 d(w)dw 3.5
10




where
[ H(w) =fh(c)e'““tdc 5.6 |
f o |
‘ and
F(w) =f £rr)e Mhae 3.7
o
We shall show that
| [Fw) - HW) |2 = £ 3.8
o
and thus that
1 c?
2 = = =
5 (x,po) ko"/;m@(w)dw ko 3.9

for all x € X.

To do that, we first take the Fourier transform of Equation 2.15

to get
® -iwt
fe dt ff(s)a(us)ds = H(w)A(w) 3.10
o o

A(w) =fa(t)e'”’tdt .11
(o]

where

Some manipulation of the left hand side of Equation 3.10 gives

fe'i"tdtff(s)a(us)ds
) o
o o 0 . 0
=/we-1mdtf f(s)a(t+s)ds -f e-IWtdtf f(s)a(t+s)ds
) 0 e (o]
= F(WA(wW) - feim: ff(s)a(s-t)ds
o o
= FWAW) - f T rf(ur)a(r)dr
o )

1l

...I--l-IliIllHlIlIlIllllli-llHhﬂilﬁ-i--n---.-.-n---h-h- . st dadtin




Therefore
[F(w) - HW |2 = [B(w)/A(W) |2 3.13
where
B(w) = / S e 3.14
B(t) = ff(ur)a(r)rt t=0 BL5
o
= 0 t<o0
We then have
[Bw)[? = B(w)B(w) = / ei”pdpf 8(q)8(p+q)dq 3.16
/- 0

Note that this convolution is an even function of p so that
00 i o0
1B [ = fewpdpfscq)eupl+q)dq 517
'~ 0

Now using Equation 2.19, we have

fS(q)Sclphq)dq =quf £(q+r)a(r)dr
(o] (o] 0

x f f(q+|p|+s)a(s)ds
(0]

0

= | Upl+s)ats)ds 5.18
(o]
(o]

12




and finally

=, 1 T
[B(W)B(W) | = r[e “Pap fu(:'phs)a(s)ds
0 J- (o}
3.19
il =
= AR |
o
and we have from Equation 3.13 and 3.5 that
C2
2 =
€ (X, ) N T
Py Ko
as advertised in Equation 3.9.
Another approach to Equation 3.8 is to show that
1 —
B(w) = — A(wW) 3.20
o
which can be shown by showing that
1
BliE) = == «(t). 3.21
ko
To do this, we combine Equation 2.19 and 3.15 to get
0 o0
B(t) =ff(t+r)drf kodqf f(r+q)£(s+q)a(s)ds
(o] o 0
3,22

= kof f(t+r)drff(r+q)8(q)dq
o (o}

Thus B(t) satisfies the same integral equation as a(t). In the
next section we relate this integral equation to the eigenvalue problem
for a differential equation. This eigenvalue problem has only one
linearly independent solution (see Appendix 2) and so we can write

B(t) = vy a(t) 3.23

13




Then

f [B(t)]%dt = YZ_[ [a(t)]2dt 3.24
o o
which gives
o0 20 2 0
f(t+r)a(r)dr [ dt = y2 [a(t)]2dt 3.25
o} o (o}
using the definition of 8(t) and which can be rewritten as
co -] 20
fa(r)dr ff(t+r)dt ff(t+s)a(s)ds
o o o
- 3.26
= vzf [2(t)]%dt
o
and finally (from Equation 2.19)
i— [a(r)]%dr = yzf [a(t))]%dt 3.27
o Jo (¢}
which gives
e 3.28
o
4. THE EIGENVALUE PROBLEM
We have
faz(r) = 2 4.1
0
and
o0 %0
a(r) = kofdt f u(T-r-t)u(T-s-t)a(s)ds
T g 4.2
= (T -T- t) (T-s—t) a(s)ds
(N-1)! (N-1)!
for r < T.
14
et i it adadie. i




We also have k0 > 0, and ko is the least eigenvalue of this system
of equations.

FE r > 7T
u(T-r-t) = 0 since t =0
and thus
a(r) =0 for r>T 4.3
IfN=0
u(r) = 4(r)
and
oo o0
a(r) = ko f dtf §(T-r-t)8(T-s-t)a(s)ds
(o} [o)
= ko a(r)
So for N = 0
kae=nl 4.4
o)
and
e. =€ 4.5
o)

Let N > 1. We can differentiate Equation 4.2 to get for 0 < t < T

a(ZN) = (-1)N koa 4.6
a(M) (T) = 0 for M=0 to N-1 &7
«™ (o) = 0 For MeN to -1 4.8

The uniqueness of the solution to this system of equations is shown
in Appendix 2.

Now let N=1

15




a(o) = a(T) = 0

a = ¥2JT C cos Gl' )

)

k
0

m
1]

Finally let N = 2

(The classical problem of the vibration of a clamped rod.)

Letting ko

2T

2

T CT

& (0) = d(0) = a(T) = a(T)

xo“, we have

T =
1 + cosh (Ao ) cos (XOT) 0

[}

R

AOT = 1.875

cosh[xo(t-T/Z)]

.

cosh[AoT/Z]

sin[Ao(t-T/Z)]

sin[xoT/Z]

)
.569 <% CT2>

4.9

4.10

4.11

4.14

4,15




S. THE GENERAL PROBLEM

In this section we shall see how far we can go using hit probability
rather than the r.m.s. criterion. In doing this, we shall have to give
up the neatness of finding an exact answer. On the other hand, we shall
find bounds on the problem, and these bounds will be shown to bracket
the problem closely enough for many 'first analyses."

Let us discuss the problem where x(t) has a single spatial dimension.
Associated with a class of maneuvers is a probability distribution
function

qx&+T)—i&+Tm)|xﬁ-sL s>OL il

That is, u is the distribution of the error between the future position
and the predicted future position given the past. Let y be this error in
future position. We can average over time to find a distribution function

u(y | x,p). 5.2

The probability of hit q is

R /2
q(x,p) = f du(g | x,p), 58
-2/2

where £ is the size of the target. The pilot wishes to keep q small.
His goal might be

inf
O e % psgpp q(x,p) - 5.4

Likewise, the gunner might try for
q. = sup inf a(x,p) - 5.5
o pEP x€X 2 ;
The set X, the set P, the set X_, the maneuver Xo, the prediction
algorithm Py and the error €, are as defined in Section 1.

We can define %/2

- 52/(2352)

1 e dg 5.6

. X _
q =q (/L) = q(x,.,p,) *

¥
3

~
€
o

-2/2

17




Since Xg is Gaussian, Py maximizes the hit probability as well as
it minimizes the error. Thus

@ <7. 5.7
We can also define
~ inf e
qO i X q(x)po) ’ 5.8

where P, is a variant of the algorithm P, and will be described in

Section 6.

As usual, we have

%

’

<qo<q°<a° 5.9
but this time we have not been able to collapse this chain of inequali-

ties. In fact we are only able to find a lower bound :(E;/Z) such that

z<a°<qo<q°<'q°. 5.10

Nevertheless, these bounds may well still be useful for first esti-
mates since they provide a variation of no more than 70 percent. A
tabulation of the lower bound z and the upper bound J° and their ratio
is given in Table 1.

6. THE ALGORITHM 30

Define the algorithm 5; to be

i(t-+T,5;) e x(t +T,p,) - 6.1
Then
uly | x,3,) = uly -y, | x,p,) . 6.2

The value o is the value that maximizes

w

y=2/2
q(¥ysXsPy) =/ du(y -y,) | x,p,) 6.
ys«8&/2

From Appendix C we have

18




z(e)

.00
.05
.10
.15
.20
.25
.30
.35
.40
.45
.50
.55
.60
.65
.70
.75
.80
.85
.90
.95
.00

5.557
2.669
L.721
L2235
.935
LTS
.622
.548
.461
.354
.335
.316
.296
.274
.250
.224
.194
.158
112
.000

Table 1

3 (e)
.000
.072
.149
.229
=317
.407
.481
.578
.639
722
.843
.864
.886
.909
.932
.954
.975
.990
.998

1.000

1.000

&Y

/2
1.382
1.434
1.486
1.524
1.585
1.628
1.605
1.652
1.597
1.604
1.685
1.571
1.477
1.399
1.332
1.273
1.218
1.165
1.109
1.053
1.000




LI‘ " ——— i s " o . Mot < it 1 el A i i

sup

q(x,'ﬁo) kit

A0 tR ) 2 @) R 2 ) 6.4 !

where 7 is the standard deviation around the mean. The last inequality
follows since z is a monotonically decreasing function and since o mini-
mizes the r.m.s. error.

Since the middle inequality in Equation 6.4 holds for all x, we
have

q, = 2 /0. 6.5

7. CONCLUSIONS

With respect to the r.m.s. criterion and the r.m.s. bound on an
Nth derivative, the duel between a gunner and a target is a game with
a saddle point which can be precisely defined and hence stable strate-
gies exist for both players.

If hit probability is used as the criterion, we have been unable
to define a saddle point precisely. However, we can find bounds that
show that the difference between the performance for such a saddle point
and the saddle point for the r.m.s. case may well be small enough to use
the r.m.s. criterion as a good "first analysis."

20




APPENDIX A

First consider Eo' We note that for each & 2 0 there exists an Xg
such that

inf
e

P (xé,p) > e -0

(o)

which follows from the definition of sup.
Thus
€(X5,P) > B s
for all p which follows from the definition of inf.

Likewise, there exists a Ps such that
o
e(x,pg) < + 8
for all x.

Thus
o
eo-6<f(x6p6)<s + 8

for all § and thus

2. % &,
0

21




APPENDIX B*

Statement of Problem.

Let k > 0 be such that the differential equation

x(2n) = (-l)nkx
™ = 0 T
x(m)(o) =0 (m=n,n+1,...,2n-1)

has a nontrivial solution. Prove that this solution is unique up to
constant multiples.

Proof.

The proof consists in showing that for any two nontrivial solutions
x and y the equality sign in Schwarz's inequality

2
iy T T
fxy dt | = f x2dt / yzdt
0 o )

holds, which occurs if and only if y =cx, c a constant.

To this end, we note first that

T T
f xy dt = = f My M ge (B-1)
(o] [o]

This follows from

*The analysis in this appendix was provided by Mr. Walter O. Egerland
of the Ballistic Modeling Division, Ballistic Research Laboratory.

23




T o
fxy dt (’+)/ M) g4
(o] (o]

n T T
- LD ;yx(Zn-l)l ] f xc2n-1)y,dt§
o

o

1}

n+l T
(-1])< / D) g
[o]

o
D+ g
—(%/; e (B-2)

Next, we write the identify
t
xy = x(0)y(0) + f (x'y + xy")dt,
o

and find successively

S

x(0)y(0)

n t
- C /’ 'y (), e (2n)y
(o}

+

n 5 '
x(0)y(0) (']t) ;y(.n-ux, RSN

t
- f (Y(Zn-l)xn o x(2n-1)yu)dt§
o

+

n = g ; . . .
x(0)y(0) (‘]t) [2 (_1)J+13y(2n-J)XJ & x(Zn-J)yJ§
J=

+

(_1)n+1 x(n) f(n)]

Integration over the interval (0,T], using (B-1) and (B-2), vields

24




14 T
f xy dt = x(0)y(0)T - (Zn-l)f Xy dt
o o}
4 x(0)y(0)
‘/0‘ xy dt = i pias T, (B-3)
T
f x2dt = _x(0)2 I
- 2n

3 (02
2 o ¥
/; y<dt = 5h it

Hence, equality in Schwarz's inequality holds, and the proof is complete.

or

In particular,

I —

and
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APPENDIX C

Let u(Z) be any distribution function which we will take for con-
venience as having zero mean. Then

g2 =/ £2du(g). (C-19

y+L/2
w 9P d 02
q y / u (C-2)

y-2/2

We want to relate o with

It is convenient to find a function such that
a2 r(q). (C-3)

This function is monotonically decreasing with q and thus we can use it
to define

q 2 z(0). (C-4)
implicitly,

We can write

- (m+1)2/2
o2 = E / 22 duit)
m

m=-=o 1/2

o )R/ 25 5 p(m+1)2/2
g2 ><§E: (%;).}F du + :E::(mzl) /. du

m=0 me/2 m=-w “my/2

L DR, e
m=Q m=-w

(m+1)2/2
My ® J/‘ du = 0,
mL/2
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where




and H_ o+ U < q

and b

If we write

we have “
2 2
02>z= m—£- V)
z : 2 m’
m=0
where
< <
0 e I
< <
0 Uy G 2q ,
«©
v =1
E : m

(C-6)

(C-7)

(c-8)

(C-9)

It is not hard to show that we have a lower bound for ¥ defined

in Equation C-6 if we let

Vo = 9 for m=0, M-1,
vy = 1 - Mq,
L 0 for m>M,

where

M = greatest integer [1/q].

The proof of this goes as follows:
(x) 1f Vo = 4, 80 to step (iv)
@)y If Vo < q and Vo ¥ V; =b>gq, put L and

vy b - q. This will decrease I . Then go

to step (iv).
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(C-10)
(C-11)

(C-12)

(C-13)




— - - ————— m-'m.-‘

(T QO I Bk & b < q, put L b, v, = 0 and reduce
and other vm's to make - This again will

decrease I . Then go to step (iv).
(iv) Now work on v, and v, as we worked on vy and v, .
(v) Continue on with v, and vy, etc.
We then have

Ml o, 2
o2/2% >Z "‘—43 * ’T [1-Mq], (C-14)

m=o

=

which we can write in closed form as

2
~1)M(2M -
o270 = r(q) = (M 1)?£‘M L) q + ¥T [1 - Mq]. (C-15)

We now need only show that this function is monotonically decreasing
for 0< q <1, and we have implicitly defined z (7).

First let q = % . Then

sop - BUED

which increases as q decreases.

We can write Equation C-14 as

2 v
“4M® - 3V
r(q) = “T + qM[——————“ i S 1] (C-16)
: 24
For VF%T'< q < %; M is fixed in Equation C-16 and r(g) varies only |

as a constant times q. Since

aM® -3M+1<0 forq<1,

g 1 1
we have that r(q) increases as q decreases from gt

We should point out that r(*) is not actually achievable by a u(*).
In particular, there is a jump of g at zero and a jump of q/2 at (/2 so
: the interval (-¢/4,32/4) would have measure 3q/2. Thus = is only a lower |
4 bound.
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