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A DISTRIBUTED SHORTEST - PATH ALGORITHM

Pierre A. Rumblet***

Massachusetts Institute of Technology
Electronic Systems Laboratory

Room 35—203
Cambridge , Mass. 02139

ABSTRACT

The problem of routing in a data network is often treated by assigning traffic dependent
lengths to the links of the network and routing traffic from node i to node j  along
the shortest path from i to j . We present a distributed algorithm in which the nodes
cooperate to find all shortest paths. It runs asynchronously in every node and does not
require the network topology, or even the number of nodes in the network, to be known a
priori by the nodes.

INTRODUCTION

The problem of routing in a computer network is often treated by assigning traffic dependent
lengths to the links of the network and routing the traffic from node i to node j along
the shortest path from i to j. If a central facility (like in TYMNET (13) monitors the
traffic then the shortest paths can be computed at the central location by using classical
shortest path algorithms (2). The difficulty arises when the traffic is rnea~ured locally,
so that each node knows only the lengths of its outgoinq arcs. This is the case of the
ARPANET (3) which employs a distributed algorithm to estimate the shortest paths. Errors
in such estimates lead to inefficiencies, as explained in [3).

We present an algorithm in which the nodes cooperate to find all shortest paths. It works
well when the ratio of the longest to the smallest arc lengths is not too large, and can
be seen as a generalization of an algorithm due to Gallager [4) that finds paths containing
as few arcs as possible. Other distributed shortest path algorithms have been proposed
recently (53, (63, (7]. Comparisons between them awaits sim.ilating them all on comparable
networks as worst case behavior is not a reliable indicator of the goodness of an algorithm.

We first describe precisely our model and assumptions. This is followed by an explanation
of the theoretical basis on which th. algorithm rests, including sufficient conditions for
its correctness. We then describe the algorithm, explain how it can be optimized and give
simulation results .

Description of the Network

The network consists of a finite set N of N nodes, and a set A , included in N x N, of
directed arcs. To each arc (i,j) in A is assigned a number (real or c )  L((i,j)), called
the length of arc (i ,j). We say that node i is upstream (downstream) of mode j if
(i ,j ) CA U),i)EA) . A node can be both upstream and downstream of another node.

A chain is a finite sequence of nodes such that each node except the last is upstream of
the next node in the sequence. The length of a chain (i1

, i
2 

i ) is def ined as

E
~ 
L((i~~ ~J+1

>
~~
• A loop is a chain that starts and ends with the same node. A path is

chain that contains no loop.

We constraint the t(.)’s to be non—negative, and such that all loops have positive lengths.

*0* This work was supported in part by the Advanced Research Projects Agency of the
Department of Defense under Grant N00014-75-C—l183 and in part by Codex Corporation ,
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•D.B. Johnson (8) has noted that ~l~oi~ithms similar to the one given below work even if
negative lengths are allowed, but can then have very long running times.

Description of the Initial and Terminal States of Knowledge.

The desired terminal state of knowledge is for each node to know the first arc
and the length of a shortest path to each other node at fini te distance .

The amount of initial knowledge that the algorithm given below requires to achieve this goal
is very small. If initially the computers at all nodes are eventually given a signal to
start, the identity of their nodes, the number of downstream nodes and the lengths of the
arcs to those nodes,then our objective will be achieved , but the algorithm will not terminate!

In order for the algorithm to stop we require that •ith.r one of the following also be known
to each node i:

(a) the number of nodes located at finite distance from i

(b) an upperbound LMAX on th. length of any arc of finit, length.

Prom a data network point of view it is reasonable to assume that LMAX is given, as the
length of an arc is usually represented by a short binary number. In contrast, the n~~~ er
of nodes located at finite distance is usually random, as modes and links can fail. In the
version of the algorithm given below, we assume that LMAX is known.

THEORETICAL BASIS FOR THE ALGORITHM

It is easy to find the lengths and the second and terminal nodes of k + 1 shortest chains
starting at a node when knowing the lengths of its outgoing arcs and the lengths and terminal
nodes of k shortest chains starting at each of its downstream neighbors: if the set of nodes
downstream from node i is N~, a k + 1st shortest chain startin~ at i has the form ( i,j ) ,

or (i.C~) .  where C~ is one of k shortest chains outgoing from a node jE Ni.

Thus , if the number of chains of length less than x is fini te for all x (a sufficient
condition for this is that all loops have positive length) , then, by generating recursively
all chains in order of increasing length, we can find the shortest paths to all nodes
located at finite distance, and the first arcs of those paths. The algorithm can atop at
a node when the length of the longest known chain is greater than the length of the longest
known path + LMAX , as the shortest paths to all nodes lo~~ ted at finite distance are then
found.

One might wonder why we do not generate inseediately all shortest paths. Unfortunately it is
not always possible to find k + 1 shortest paths starting at a node when knowing only the
lengths of its outgoing arcs and k shortest paths starting at each of its downstream
neighbors. However , it is possible to generate recursively a relatively small set of chains
containing all paths of interest , as follows.

At step 0, node i knows the distance to itself (0) and the length ~~~~~~~~ (L(( i , j ) ) )  of
jE 

~.j
~~~ shortest outgoing path. It transmits these facts to its upstream neighors. The

algorithm proceeds recursively: if at step k + 1 node i has rece~ ved from all nodes Jr Nj
the lengths and destinations of all shortest paths shorter than Z , and node i has also
received the £~‘s, then it can compute zr’: — m m  ( L ( ( i ,j ) ) +  e.~ . Moreover , let ~~ be

JENi
the set of downstream neighbors of i that have transmitted the lengths ~~~ of their
shortest paths to node n. Node i can compute d : m~4~ (L ( ( i ,j ) )  + d4 ) .  If

hal in 
‘ indin < ç , then d

in is the length of the shortest path from i to n. Node i finds

for all ncN with non-empty Hi m  and transmits to its upstream neighors the lengths and
destinations of all shortest path. discovered during step k + 1, and also

It 1. easy to verify that if the length of all loops are positive , then as k grows ,
becomes greater than the length of any finit, shortest path. The algorithm can stop whenZ~ has grown by more than LMAX , wi thout any new shortest path having been found.
The algorithm that follows implements what has just been outlined with one important
diffe rence: it runs asynchronously in every nods . A step at a node i is then the amount
of time between two successive transmissions of the ~~‘5.



We first describe the .c~~puting resources and. datA Structures at each node,. and the meaning
of the symbols in relation with what was explained previously. We then defin, th. instruc-
tion BROADCAST that we will use later , give the initialization and main routines of thealgorithm, and show how it can be improved.

Description of the Computing Resources

Each node of the network contains a computer capable of adding, subtracting, storing and re-
trieving numbers, and branching on positive, and zero results. We will first assume that the

-amount of available memory is infinite, but we will show later that at most N~ (2N + 1) plus
a few nm.~~ ers need to be stored in mode i , where N~ is the number of nodes that are downstreamof node i.
Computers at different modes need not be synchronized, but we require that computers be able
to write into the memory of computers located upstream. In the context of data networks,
this would be done by having a node send a message to an upstream neighbor, this is easiest
when all links are duplex.

Data Structure at Node i

EVery node i must have memory space for the following:

a) the variables LMAX, N and LP. LMAX is defined as an upperbound on the length of an
arc of finite length and Lllj  is the number of nodes downstream of node i. LP represents
the length of the longest known shortest path.
b) the numbers D(j )  and the arc index BA(j ) , j c14.When the algorithm terminates, 0(J) is set

.to the distance from i to j  and BA(j )  is set to the index of the first arc on a shortest
path to j,  if D(j )  <~~~.
C) the numbers I ( (i ,j ) )  and 0 ( ( i,j)) and the arrays Q ( ( i ,j ) j .) , ( i ,j)EX . I( ( i ,j ) )  arid
0 ( ( i,j)) are write and u read~ pointers pointing to elements of Q(( i ,j ) ,4. Q((i ,j) ,4
contains the sequence of chain lengths and chain terminal nodes broadcast by node J, except
that Q ( ( i ,j ), 1) is initially set to zero.

The Ins truction BROADCAST (B) at Node i

B is either a distance or a node label. In every node j such that (j,i)cA:

-V

81 Q( ’(j , i ) , X ( ~j ,i))  + 1 4 -  B

82 I ( ( j , i ))  + IC(j,i)) + 1

It is important that instruction 82 be executed after instruction 81 as can be seen by
examining lines M9 to Nil of the main routine below.

The Initialization Routine at Node i

LP 4-0
Q ( ( i ,j ) , l )  + 0 ( i ,j )r A
I (( i , j) )  + 1 (i ,j ) cA 

__________________

O(( i , j))  + 1 (i,j)tA ~~~~~~~~~~~ 
~~~~~~~~~ - ...

D(j) 4- jcN : .~~
D(i) + 0 ‘ ~~ ~~~~~~~ L
BROADCAST (i) ~~~~~~~~~

IF (N — 0) then .~

begin
BROADCAST f:e )
stop O~sTR~~~ !~ ’ ” ,~ C ! S
end - ..-

go to main routine —— - --- - — — .

flLL
I

‘~J P~~ ~~d *~
, ~~~~ U
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-ThS Main Routin. at Node~~~ . .~~ S I ~~~~~~ ~ Find next- shortest chain in set
~~ rind ~cNi such that L((i,5))+Q (j,5), O((i,j))) — win LC(i , j))  + Q((i ,J) , O ( (i,j)))

jcNi
1(2 x + LC(i ,~ )) + Q((i ,j ) , O((i ,~ ) ) )  ‘ 

x is its length
1(3 if (x > LP + IMAX ) then Check if can stop
1(4 begin
MS BROADCAST (oo)
1(6 stop
Mi end - -~Ms it (0(i,5)) — X ((i,5)’)) then BROADCAST Cx) End of step, x — £
1(9 while C0((i ,~ ))  — X ( ( i,~ ) ) )  wait ‘ Wait for transmissIon from neighbor1(10 0((i ,5) ) + 0((i ,~ )) + 1.
Nil y +Q((i,5) , 0((i ,5) ) Read new data
1(12 if (y is a length) then go to Ml length or destination?
1(1.3 else
1(14 begin
10.5 if (D(y) > x) then
1(16 begin New shortest path
1(17 BROADCAST Cx) Broadcast its length x
1(18 BROADCAST (y) Broadcast its destination p
1(19 0(y) + x Record the length
1(2 0 BA(y) + (i,~ ) Record the first arc en path
1(21 I.? + x Update LP
1122 end

H 1(23 gQ to MB
1(24 end

Minimization of the Coentunication and Storage Costs

In place of transmitting the lengths x in lines 1(8 and Ml7 , it is enough to transmit the dif-
ference between x and the sum of the differences previously transmitted. As such a difference
is not greater than IMAX , it can be represented by a short binary number. Also, differences
equal to zero need not be transmitted at all.

The amount of required memory space can be reduced by noting that if two adjacent elements of
Q ( ( i,j ) , .) are lengths, the smallest one can be discarde~~ Thus Q((i ,j ) , °) need to have size
2N only, as it will contain at most N destinations and N lengths. Moreover, the 0((i , j))-l
first elements of Q (( j , j ) , .) can be discarded , so that typically Q C (i,j) , ~~) contains much less
than 2N elements and dynamic storage schemes could be used.

SIMULATION RESULTS

Three quantities are important in distributed algorithms: the amount of computation at each
node, the amount of cosnunication (number of bits transmitted) on each link, and the time to
completion. This last quantity is often dominated by the time it takes to exchange messages
between nodes. Thus an algorithm in which many short messages are exchanged will generally
take more time than an algorithm in which few long messages are exchanged, even if their com-
munication costs are equal.

If the smallest arc length is 1, and the largest is LMAX, it is easy to see that the amount
of computation at node i is no more than of the order of N~ .N .LMAX, and the amount of corn-
munication per link is no more than of the order of N log (N) + N.LMAX. log (LMAX) bits. How-
ever , as with other algorithms of this type (103 , the typical behavior is much less.

In order to get rough estimates of performances, we have simulated the algorithm under the
following conditions, we used the topology of the ARPANET at a time when it had 55 nodes and
69 duplex links (9 , rig . 13. we assigned to each arc independently a random integer length
uniformly distributed between 1 and LMAX . We optimized the output sequenc. as explained
earlier , and divided it into packets, including in a packet the output produced between two
wwaitsse (line 1(9). The time of transmission of a packet was chosen as deterministic (1 time
unit) in one case, and randomly chosen from an exponential distribution of mean 1, truncated
at 10, in another case. The algorithm was initiated at a randomly selected node, then each
node signaled to its neighbors that it was time to start. Results are summarized below as a
function of LMAX. Although their sensitivity to the various assumptions is unknown, the
number of destinations ~~~ length tra nsmitted is encouragingly small , considering that the
exact shortest pethe are obtained • More precise results await the simulation of a complete
network (including the data traffic. and having the arc lengths depend on the measured traf-
fic) or the implementation of the algorithm in a working network.

_ _  - . -_ _  -~ -
~~



u~Ax Average - Number 1kverage -Number Average Number Time to Completion 
- - -

of packets of destinations of lengths Deterministic Random
transmitted per transmitted per transmitted per Transmission Transmission
link link link Times Times

1 11.8 -~ 55 10.6 20 35.9

10 19.5 55 39.1 36.5 63.4

100 29~7 55 75.4 64.5 76.0

C~~~uni.cationa costs are not significantly different for deterministic and random transmission
times, we give only their averages.
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