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FINAL REPORT FOR GRANT AFOSR 76-2951
Summary

The integration of feature extraction for pattern recognition and the
digital signal processing into one study as performed in this project has
resulted in advances in both areas, and the discovery of many new ideas
which are beneficial to both areas. There are common problems, such as the
finite sample size effect, in both pattern recognition and signal processing.
For example, digital signal processing techniques are much needed in extracting
effective features while statistical pattern recognition can be useful in
image processing. More specifically, this research has carefully examined
the fundamental problem of the finite sample size and its effect on feature
selection and classification rules. l!Most effective features for seismic
pattern recognition have been developed through the signal modelling study.
In the image recognition work, new results include the rotationally invariant
digital Laplacian operation and a new adaptive Kalman filtering technique
for efficient realtime image processing. Detailed computer results have
been developed and documented to support the theoretical study. Finally for
image classification, the specific problem of contextual information is

examined and a decision tree procedure is developed which can process both

the statistical and structural features for effective classification.
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II.

FINAL REPORT FOR GRANT AFOSR 76-2951

Statistical Feature Extraction

The work on the distance measures has been completed. Major effort
has been made on the study of finite sample size in statistical pattern recognition.
Appendix I has a more complete detail on this study. Under small sample
size, many existing theoretical results based on infinite sample assumption
are not valid. Many analytical problems under small sample size do not
have a solution yet. For example, the performance of the nearest neighbor
decision rule is not availeble at finite sample size except for specific
cases. These are difficult analytical problems. The experimental
results are very much dependent on the data used, but they do give us an
idea of the performance. There are certain decision rules which perform
better at small sample size than the others. And sometimes the degradation
in performance due to finite sample size is not significant. So the pro=-

blem is important and further work is necessary.

Seismic Pattern Recognition

Two best sets of features for automatic seismic classification are
the short-time spectral features, and the parameters of the autoregressive
moving average model. The ARMA provides a fairly good spectral matching
to many seismic record. The use of the AR model alone however is not
adequate. It is noted that learning samples should be chosen properly
as there are large within-class variationsof the seismic records due
to a number of reasons such as different geographical locations for
various events. Although a new set of seismic data tape was provided
by Seismic Data Analysis Center, the time limitation of the project
would not make it possible to pursue such study.

Signal modelling appears to play an increasingly important role.
This is a subject which is important to pattern recognition and signal

processing.




III. Image Pattern Recognition

Iv.

The modified gradient method, approximation to rotationally-
invariant digital Laplacian and an adaptive Kalman filtering method
are the three techniques which are theoretically sound and experimentally
proven by using both the aerial reconnaissance and FLIR imagery which
we have available. PFor the adaptive filtering method some new results
are shown in Appendix II. The filter has the capability to monitor the
object boundary and make proper adjustment in filter parameters. In
case the transition matrix is unknown, it can be estimated by using an
on-line estimation method which simultaneously estimate the parameters
and states. This filtering method thus requires little or no prior
knowledge to begl’&f&nd the processing is very fast and suitable for
realtime needs.

The rich contextual information in images makes it necessary to
extract both statistical features and the structural features. The best
way to utilize both kinds of features in classification is the binary
classification trees which process the features sequential)ly according
to their ranking. The decision will be based on majority vote. For
pre-designed trees the required deci!sion time may be a fraction of a
single stage classifier. Optimal tree design technique is available.
We feel that the sequential decision tree is very promising for use

in complex recognition systems.
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Appendix I for Final Report

FINITE SAMPLE CONSTDERATIONS IN STATISTICAL PATTERN RECOGNITION

C. H. Chen

Electrical Engineering Department
Southeastern Massachusetts University
North Dartmouth, Massachusetts 02747

Abstract

Most research on statistical pattern
recognition has been based on the assumption of
large/infinite sample size and thus the asymptotic
performance is of primary interest. In practical
recognition problems the sample size is often
limited and the actual performance may be quite
different from that theoretically predicted. The
design and evaluation of recognition systems must
take into account the finite sample constraint.
There has been little considerations of the
finite sample effects in statistical pattern
recognition because exact solutions are generally
unavailable. The close relation between the
dimensionality and sample size further complicates
the problem. This paper is concerned mainly with
the limitation of learning sample size. The
finite sample effects are considered in three
major problem areas: distance and information
measures, classification rules and contextual
analysis.

1. Introduction

A fundamental assumption frequently made in
statistical pattern recognition is that the number
of samples available for learning (training) or
classification is large or infinite. Thus the
asymptotic performance is of primary interest,
based on which the recognition system is designed.
In practice the sample size is limited because the
samples are costly or may not be easily available.
The actual performance may becomz quite different
from that theoretically predicted. There has been
little theoretical considerations of the finite
sample effects in statistical pattern recognition
because exact solutions are in general unavailable.
The close relation between the dimensionality and
sample size further complicates the problem. 1In
this paper, the effects of finite sample size will
be considered especially in the problem areas of
distance and information measures, classification
rules, and contextual analysis when the learning
sample size is limited. This study will enhance
the understanding of the fundamental behaviors of
statistical recognition systems so that better
systems can be designed.

2. Finite Semple Distance Measure

Distance measures are useful for feature
selection and extraction and for error bounds of
Bayes error probability. They have been exten-
sively examined in recent years under the assump-
tion of large sample size (see e.g. [1]). To
determine the distance measures from a limited
number of samples, a maximum likelihood estimation
procedure may be used [2]. The discussion here
will be 1imited to independent Gaussian samples
for divergence and Bhattacharyya distance but can
be extended to other cases.

Consider firstthe case of two univariate
Gaussian densities with means my and ma and the
same variance 02 which is known. Let "*" denote

the quantity evaluated by using the sample

estimates. Then the difference between the
estimated and known divergence is

s 1 3 SN2 2

3 == 2 [(m1 -my)° - (m1 - m,)] (1)

which has the expected value

E(J-J)=%—+%‘—>O (2)
1 2

where N. and N, denote the numbers of samples for
classes 1 and 3 respectively. The positive bias
given by Eq. (2) indicates that the divergence
evaluated by using a finite number of samples can
lead to an over optiministic estimate of the error
probability. The variance of the estimate is

p i 1 1 32 1 1
E(J = J)C = 3(3=—+ =) + WJ(= + =) (3)
“1 N2 Nl N2

which approaches zero as the sample sizes approach
infinite. Thus J is a consistent estimate of J.

Next consider the univariate Gaussian densities
with zero means and variances ¢S and 02 . The
divergence based on the sample estimatéd parameters
¥ xp -
£ -1 (%)
"5

» o]
Pe g
202

The ratio w = 62/02 has the F-distribution with
(Ws - Ns) degreei og freedom. The expected error

dué to’the finite sample size is




02 02
- Yo 20
BI-9=3 o2t 3w 220 (5)
02 2 al i §

where the positive bias can be significant for
small sample sizes. It can be shown that Eq. (L)
is also a consistent estimate.

The Bhattacharyya distance based cn the sample
estimated parameters is

g a 2

R e | (1 + w)

B = 5 log(z= + =) = | log ~=-2- (6)
(o] g

2 1

By using the Taylor series expansion of B with

respect to the true value B, and retaining terms

up to the second order in the expression, we

obtain:

02-'0‘2
E(B - B) = ——2 (1 - 7—2)
h(o2 + 01) 2
L a2 N
02 + 2c102 - al
- S - S— (1)
8(c2 + o2)2
oy
2
i 4 3 N2(Nl +2) ]
N, - 2 2N1(N2 = 2)(W, = &)

which is negative for -%-1 1+ /2 and positive

o
otherwise. As the samp}e sizes approach infinity,
the bias is not zero because of the series
truncation. However the sample size effect is
evident from Eq. (7).

Next consider the multivariate Gaussian
densities for p-dimensional measurements. Let Xx
and X, be the sample mean vectors corresponding
to the true mean vectors u, and u, of classes 1 and
2 respectively. Also let § be thé sample estimate
of the common covariance matrix z given by

N

p !
1 - -
S=e———{ ] (x, -%)(x, -%)"
Nl + N2 -2 i=1 1 1 i i
nguz
+ (x, = x,)(x, - x,)'} (8)
i=n1+1 | 2 % 2

where x is the vector measurement from either class
1 or class 2,

For infinite sample size the exact value of

the divergence is known and given by
-1
= - ' -

J=(uy =u) ]} (b = wy,) (9)
which is the same as the Mahalanobis distance.
The divergence using sample estimated parameters
is
) = %) (10)

where E[S] = i. The covariance matrix ;1 - ;2 is

e 5 =i
J = (x1 x2) 8 (x

El(x, - u, - %, o)Xy = wy = X, 4 u)')

Let k = %— + %— . The random variable J/k has a
1 2
Hotelling's T2 non-null distribution (see e.g [3])
with N. + N? samples and f = N1 + N2 - 2 degrees
of freedom given by
By Bee de ol (i

(= - -_— _—

Hp(klf' )d k e I r!
r=o

1

f =
$E e, )

2 (p/2)+r-1 “ -
(J/kf) d (%;), J > 0. (11)

I (1/2)(£+1)4r
(l + k—fT)

By using the formula

xﬂ-l
lm e dx =
(1 + x)
the expectation of J can be written

kfo . £J
f-p-1 f-p-1

B(u, v = u)

B3} = >3 (12)

which approaches J when the sample sizes become
infinity. Also we can show that

~ 2
2 _ r
Bt ai (r-p-1)(f-p-3)
(32 + 20k(p + 2) + plp + 2)k°1+ J°
3 2k!pl + 2fJ2 (13)
= =T :

which approaches zero as the sample sizes approach
infinity. Thus in the multivariate Gaussian case,
J is also a consistent estimate of J. For equal
covariance but unequal mean vector., the
Bhattacharyya distance experiences the same effe-t
as divergence as B = J/8,

For two multivariate Gaussin densities with
zero mean vectors and covariance matrices Xl and
whose unbiased estimates are V. and V
réspectively, the divergence baseé on sample
estimated parameters is

1 " ol
2 tr(VV" + V¥

Since the samples from the two classes are
independent,

& = o (1%)

ELT] = % tr(E(Vl)E(Vgl) + E(VQ)E(VIl)) -p

Both V, and V[l follow the Wishart distribution
with e*pectationa

1 | s
E(V,) = ], E(V]") = AT I, v1=1.2




Thus
> 1 +1
EJ] =J +3 tr(N2 ey
) o (15)
p+1
Li: *5 o R POND

g

where the bias term coincides with Eq. (5) for
p =1, i.e. the univariate case.

The above discussion clearly illustrates the
effect of finite sample size on the bias of the
sample estimated distance measures. In general
the estimated divergence has a positive bias while
the behavior of estimated Bhattacharyya distance
is less predictable. It is noted also that direct
estimation of the distance measures is possible if
nonparametric density estimate is employed; but it
would be more difficult to study the small sample
behavior.

3. Finite Sample Information Measures

For feature selection, more informative
features result in low classification errors.
However, if the sample size is limited, infor-
mation measures estimated from samples may not be
as effective. Consider the equivocation for m
classes defined as

m
-E[) P(w;/x)1og P(u,/x)] (16)

i=1

H =

where Piw,/x) = Pi is the a posteriori probability
of the itg class and the expectation is taken to
the space of x.

The sample-based equivocation using the

estimated a posteriori probability Pi is

“ m ~ #
H=-E[] P, logP

i=1

] (17)

i i

Let 6, be the parameter of the ith class, and ei

its eStimate. Assume that the sample size effect
is small so that we need consider only the first

two terms in the Taylor series expansion of Pi’

P, %P (18)

i 1 i)
where P! is the partial derjvative of P, with
respect to 6, evaluated at 6, = 6,. Theé difference
between the estimated and triue equivocations can
be written as

M 0 -
g Pi(e1 G}

m p
E iZIIP;(ei - 0,)(1 + log P,)

H=-H=

» 2 (19)
+ Pi(ei - 91) ]

which_is still a function of 6,. It is noted that
both P, and H are @ ded by using the first order
npproximations. If is an unbiased estimate of
6., then the expectation of the difference with
réspect to the estiyated parameter depends only

on the variance of 61 which is usually inversely

e e ———————————————

proportional to the sample size. The variance of

H given by E(H -AE(H))2 where the expectations are
with respect to @, is approximately proportional to
the variance of 6 or inversely proportional to the
sample size. Thué #i given by Eq. (17) is an
asymptotically unbiased and consistent estimate of
H. To examine the small sample behavior, specific
expressions for Pi and Pi are needed in order to
evaluate Eq. (19).

4, Finite Sample Discriminant Analysis

Although there is an enormous statistical
literature on discrimination in the Gaussian case,
the available small sample results are few and
inconsistent. The proposed effort will concentrate
on some special cases including the class of
exponential densities. The linear discriminant
function resulting from equal covariance matrices
is the most important special case. The common
covariance matrix may be determined from training
samples of both classes (Eq. 8) which is the
assumption made in many statistical literatures.
The difference between the error probabilities can
be approximated by truncated Taylor series as

I 1 -y2/2 Jm 1 -y2/2
——— T dy - i dy
o 4]
2 2 (20)
-(3 - J) 3 by J)2 4 ;
= == ex -§+—(1+—)exp-§'
W2ng 64v/2ng :
The expected value of the difference can be
obtained by using Eqs. (12) and (13). A sample
calculation for N. = N, =5, p=2 and J = L gives

the expected differencé - 0.0027 which is close

to the expected difference of - 0.0312 by using an
expression due to McLachlan [4] which is computed
in [5]. 1If J increases, the sample sizes must also
increase to maintain a good approximation in

Eq. (20). Similar analysis of error probability
for other discriminant functions using estimated
parameters may not be available however. In most
cases computer simulation is necessary to determine
the relations among performance, sample sizes and
dimensionality. A good example is the quadratic
discriminant function for unequal covariance
matrices [6]. Unfortunately consistent results
have not been reported in the literature[S5][7]
other than the linear discriminant function dis-
cussed above. In some cases including the
exponential densities, good theoretical approxi-
mation of error probability under finite sample
size is possible. The individual cases must be
examined separately and computer simulation must be
used when necessary. There does not appear to have
a unique solution procedure suitable for all cases.

5. Finite Sample Nearest-Neighbor Decision Rules

The nearest-neighbor decision rule (NNDR) is
attractive in the sense that the NN-risk is upper
bounded by twice the Bayes risk when the sample
size approaches infinity. For a given sample size
the 1-NNDR is uniformly better than the k-NNDR.




) 14

The small (finite) sample NNDR is important because
the data storage and computational requirements can
easily be met when the sample size is small. Also
in realtime processing, the number of samples that
can be processed at a given time must be limited.
However the small sample behavior of the NNDR is
very much unknown and much study is needed. So

far only the following restrictive cases have been
considered: Fix and Hodges [8] investigated the
small sample performance of 1-NNDR for univariate
and bivariate Gaussian distributions. Kanal, et.al.
[9] derived the NNDR error probability for binary
patterns. Levine, et.al. [10) showed that the
performance for small sample sets from uniform
distributions is close to its asymptotic value.

For multivariate Gaussian densities and allowing
the sample size to increase with k, the number

of nearest-neighbors, it is shown [5] numerically
that the k-NNDR has a performunce very close to

the Bayes linear discriminant analysis. This
indicates that under medium or large sample
condition, the NNDR is comparable to the Bayes

rule using the estimated parameters.

For 1-NNDR, the conditional error probability
given the measurement x and its nearest-neighbor
xJ is [11]

r(x, XJ) = P(“’l/X)P(“’e/XJ) + P(w2/x)P(w1/xJ) (21)

Now the usual assumption that P(mi/x ) approaches
P(wi/X) asumptotically does not holdJin the small
sample case. For a given parametric or non-
parametric density, the NN-risk for small sample
size can be obtained by taking the expectations
of Eq. (21) with respect to x, and x. Similar
expressions can be written foJ k-NNDR. As the
closed form expressions are generally not avail-
able for the expectations involved, tight bounds
must be established.

It should be noted here that the small sample
NNDF behavior examined here is a different problem
from the edited or condensed NNDR considered else-
where (see e.g. [12][13]). However the idea of
using a small set of selected learning samples is
important. Our experimental results with the
teleseismic data [14] have shown that there is
always a small subset of good learning samples
that dominate the performance. In other words the
performance would be insensitive to sample size for
good quality learning samples. Thus the small
sample NNDR performance need not be worse than the
asymptotic performance by properly selecting a small
set of learning samples.

6. Contextual Analysis for Image Recognition

A major weakness of statistical pattern
recognition is the difficulty to take the contextual
relations into account in the recognition process.
Character recognition is not considered here as it
requires a somewhat difference contextual analysis
[15]. An imagery pattern is rich in contextual
information part of which is statistical in nature.
A formal statistical approach to this problem is the
compound decision theory. The finite sample con-
straint in digital imagery patterns is caused by the
limited number of image samples available and the

limitation in spatial resolution and quantization
levels. In image interpretation and classification
study, an image is usually partitioned into a
number of subimages. A vector measurement may be
taken from each subimage. By assuming dependence
on the nearest four neighboring subimages, the
compound decision rule is to choose the class which
maximizes [16][17],

L
P(xo/wk)P(wk) 1 p(xj/wk) (22)
Jm=l
where w, =1, 2,...,m and x_ is the measurement of
the sub¥mage under consideration. Notice that the
part of the expression outside of the product sign
is identical to that used in a simple maximum
likelihood decision rule without considering
neighboring subimages at all. Fach multiplier
in the product term represents the contextual
contribution from an adjacent neighboring subimage.
The probability densities required for evaluating
Eq. (22) must be either assumed or determined from
the gray level histogram.

If we assume a Gaussian density for the
measurement x, then the finite sample discriminant
analysis is useful for subimage classification when
the contextual dependence is not considered. If
the contextual information is taken into account,
then the product terms in Eq. (22) produce
additional terms in the discriminant function caus-
ing some complexity in error probability computa-
tion. However, the effect of estimated parameters
based on finite number of image samples can still
be determined under Gaussian assumption. If both
the finite learning sample and the quantization
and spatial resolution constraints are considered,
the direct use of histogram would be more suitable.
Let the images of interest consist of objects on a
background with probability densities p(z) and q(z)
respectively where z denotes the gray level.
Suppose further that the objects occupy fraction
8 of the image area, so that the background
occupies fraction 1-86. Then the normalized
histogram of the image is the overall gray level
probability density 8p(z) + (1-8)q(z). The
thresholding technique [18] can then be used for
each subimage to decide for each pixel (picture
element) whether it belongs to the obJects or
background. Eq. (22) can be considered as
representing an object or background histogram
obtained from the object or background pixels of
all five subimages. A minimum error decision
threshold can be obtained from the two histograms
p(z) and q(z). If the subimages under consider-
ation has more pixels below the threshold then the
decision is in favor of the objects, otherwise the
decision will be the background.

The above procedure makes it easy not only to
implement the compound decision rule given by
Eq. (22) but also to determine the finite sample
effects, The four neighboring subimages obviously
increases the effective total number of pixels
used for classification. If the object and back-
ground histograms are modelled as Gaussian
densities then the error probability of the compound
Bayes decision rule can be determined from the
Gaussian models using estimated parameters. A more




general approach is to use the sampling distri-
bution of the histogram for ¢ quantization levels
and a total of n pixels for the image given by

I(n +q) i

P (23)
L 1)...r(rq *1) 4, i

r(r
where r. is the number of pixels belonging to the
ith quantization level. The Bayes estimate of p.,
the fractional number of pixels for the ith leve
is

e s Yy + ]

Py n+agq

Then it is possible to determine the mean recogni-
tion accuracy [19] taking into account the con-
textual information.

T. Remarks

Although it would be desirable to have sub-
stantial sample size for all pattern recognition
problems considered, limitation in sample size
frequently occurs in practice. Except for the
uninteresting case of too small sample size, the
recognition performance which depends on both
sample size and dimensionality need not be poor
at small sample size. In designing recognition
systems which operate at small learning sample
size, classification algorithms which are less
sensitive to sample size should be preferred.
Unfortunately no single method can be used to
examine the finite sample effects in all problems
considered. The sclutions must be problem
dependent. BSeries expansion and tight error
bounds should be used if exact solutions are not
available. Distinction among small sample size,
medium sample size, and large sample size should
also be made in each problem area.
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