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FIi~AL ktkWO1~P FOR GRANT AFOSR 76-2951

The integrati on of feat ure extraction for pattern recognitio n and the

digita l si~n :~l processing int o one study as performe d in this project has

re sulted iii advances in both areas , and the discovery of many new ideas

which are beneficial to both areas . There are co on problem s , such as the

finite sample size effect , in both pattern recognition and signal processing.

For example , digital signal processing techniques are much needed in extracting

effective features while statistical pattern recognition can be useful in

image process ing. More specifically , this research has carefully examined

the fundamental problem of the finit e sample size and its effect on feat ure

selection and classification rules. I’~ st effective feature s for seismic

pattern recognition have been developed through the signal modelling study.

In the image recognition work, new results include the rotationall y invari ant

digital Lap lacian operation and a new adaptive lCsLl mAn filtering technique

for efficient realt ime image process ing. Detailed computer result s have

been developed and documented to support the theoretical study. Finally for

image classification , the specific problem of contextual information is

examined and a decision tree procedure is developed which can process both

the statistical and structural feat ure s for effective classification .
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I. Statistical Feature Extraction

The work on the distance measures has been completed. Maj or effort

has been made on the study of finite sample size in statistical pattern recognition .

Append ix I has a more complete detail on this study. Under small sample

size , many existing theoretical results based on infinite sample assumption

are not valid. Many analytical problems under small sample size do not

have a solution yet . For example, the performance of the nearest neighbor

decision rule is not available at finite sample size except for specific

cases. These are difficult analytical problems. The experimental

results are very much dependent on the data used , but they do give us an

idea of the per formance . There are certa in decision rules which perform

better at small sample size than the others. And sometimes the degradation

in performance due to finit e sample size is not significant . So the pro-

blem is important and further work is necessary.

II. Seismic Pattern Recognition

Two beat sets of features for automatic seismic classification are

the short—time spectral feature s, and the parameters of the autoreg ressive

moving average model. The ABMA provides a fairly good spectral matching

to many seismic record. The use of the AR model alone however is not

adequate. It is noted that learning samples should be chosen properly

as there are large within—class variationsof the seismic records due

to a number of reason s such as different geographical locations for

various events. Although a new set of seismic data tape was provided

by Seismic Data Analysis Center , the time limitation of the project

would not make it possible to pursue such study.

Signal modell1ng appears to play Sn increa singly important role.

This is a subject which is important to pattern recognition end signal

processing.
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III. Image Pattern Recognition

The modified gradi ent method , approxi mation to rotational ly—

invariant digital Lap lacian and an adaptive Kalman filteri ng method

are the three techniques which are theoretically sound and experimentally

proven by using both the aerial, reconnaissance and FLIR imagery which

we have available . For the adaptive filtering method some new result s

are shown in Appendix II. The filter has the capability to monitor the

object boundary and make prop er adjustment in filter parameters. In

case the transition matrix is unknown , it can be estimated by using an

on—line estimation method which simultaneously estimate the parameters

and states . This filtering method thus requires little or no prior

knowledge to beg~â~~nd the processing is very fast and suitable for

realtime needs .

The rich contextual information in images makes it necessary to

extract both statistica l. features and the structural, feat ures . The best

way to utilize both kinds of feature s in classification is the binary

classification trees which process the features sequentia l ly according

to their rAn1~{ng. The decision will be based on maj ority vote. For

pre—designed trees the required decision time may be a fraction of a

single st age classifier . Opt imal tree design technique is available.

We feel that the sequential decision tree is very promising for use

in complex recognition systems.
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Appendix I for Final Report

FINITE SAMPLE CONSID~2UtTIONS IN STATISTICAL PA!N’ERN RECOGNITION

C. H. Chev

Electrical Engineering Department
Southeastern Massachusetts University
North Dartmouth, Massachusetts O271~7

Abstract 2. Finite Sample Distance Measure

Most research on statistical pattern Distance measures are useful for feature
recognition has been based on the assumption of selection and extraction and for error bounds of
large/infinite sample size and thus the asymptotic ~ayes error probability. They have been exten—
performance is of primary interest. In practical sively examined in recent years under the assuxnp—
recognition problems the sample size is often tion of large sample size (see e.g. El]). To
limited and the actual performance may be quite determine the distance measures from a limited
different from that theoretically predicted . The number of samples, a maximum likelihood estimation
design and evaluation of recognition systems must procedure may be used [2]. The discussion here
take into account the finite sample constraint. vill be limited to independent Gaussian samples
There has been little considerations of the for divergence and Bhattacharyya distance but can
finite sample effects in statistical pattern be extended to other cases.
recognition because exact solutions are generally
unavailable. The close relation between the Consider first the case of two univariate
dimensionality and sample size further complicates Gaussian densities with means m and m and the
the problem. This paper is concerned mainly with same variance ~2 which is known~ Let ~~

“ denote
the limitation of learning sample size. The the quantity evaluated by using the sample
finite sample effects are considered in three estimates. Then the difference between the
major problem areas~ distance and information estimated and known divergence is
measures, classification rules and contextual
analysis. J — J ~~ ((m i — — Cm — rn2)

2] ( 1 )
a

which has the expected value

1. Introduction E(J — J) = 
4- 

+ 4— > 0 (2)

A fundamental assumption frequently made in
statistical pattern recognition is that the number where N and N denote the numbers of samples fr~rf samples available for learning (training) or classes1l and respectively. The positive biasclassification is large or infinite. Thus the given by Eq. (2) indicates that the divergenceasymptotic performance is of primary interest , evaluated by using a f ini te  number of samples canbased on which the recognition system is designed. lead to an over optiministic estimate of the errorin practice the sample size is limited because the probability. The variance of the estimate issamples are costly or may not be easily available.
The actual performance may become quite different E(J — J)

2 
= 3(4— + 

1 )2 + ~~ + 4-) (3 )from that theoretically predicted. There has been
little theoretical considerations of the finite
sample effects in statistical pattern recognition which approaches zero as the sample sizes approachbecause exact solutions are in general unavailable, i~fiflite Thus ~ is a consistent estimate of’ J .The close relation between ths dimensionality and
sample size further complicates the problem. In Next consider the univariate Gaussian densitiesthis paper, the effects of finite sample size will with zero means and var iances ~3.2 and . Thebe crnsldered especially in the problem areas of divergence based on the sample ~stimated parametersdlstan’:e and information measures, classification
rules, and r’~ntextual analysis when the learning ‘2 ~20~ 02sample size is limited. This study will enhance ( I,)
the under,tandii~ of the fund amental behaviors of 

+ 
~~~~~~ 

— 1

statistical recognition systems so that better
system s can be designed.

The ratio w ~2~~2 has the F—distribution with
(N , N2) degree~ o~ freedom. The expected error
du~ to the finite sample size is
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2 2
1 

02 1E(J _ J)=
~~~~~N 2 +—

~~N 2~~~
0 

EI(~1 — u 1 —~~2 +u2)(j1
_ u

1
_
~~2

+~~2
02 2 0

1 1~~

where the positive bias can be significant for N1 N2
small sample sizes. It can be shown that Eq. (14)
is also a consistent estimate. Let k 

4- 
+ 4— . The random variable J/k has a

The Bhattacharyya distance based cn the sample Hotelling ’s T2 non—null distribution (see e.g [3])
estimated parameters is with N + N2 samples and f = N1 

+ N
2 — 2 degrees

B = ~~ log(r1 + log (1 + )2 of freedom given by
(6)

14W

~2 
0
1 N’(~If , ~-)d 

j  —J/2k (J/2k)”
p k  k k e r!

By using the Taylor series expansion of B with r=o
respect to the true value B, and retaining terms 1
up to the second order in the expression, we 

B(~ + r ~
‘ — P +

obtain: ‘ 2
2 2

E(B — B) = 
0

2 
— 0

1 (1 — 
2 (j,kf)

(
~~

2)4T_l

+ o~) 
N
2 

- 2~ 
(1 ~~J )(l/2)(f+l ) 

d (h) , 
~ ~ 0. Cu)

+r
14 2 2  14

+ 
02 + 2e1a2 — 01 (7)  By using the formula

8(o~ + o~)
2 

.41—1

_ _ _ _  

N~(N1 +2)
[1_

N
14 

2
the expectation of J can be written

which is negative for -~~
- > 1 + /~ and positive E[~ ] 

kfp ~ (12)0 f — p — 1  f — p — 1
otherwise. As the sampie sizes approach infinity,
the bias is not zero because of the series which approaches J when the sample sizes become

infinity. Also we can show thattruncation. However the sample size effect is
evident from Eq. (7). E(J — j )

2

- p - i)( f  - p - 3)
Next consider the multivariate Gaussian

densities for p—dimensional measurements. Let [J 2 + 2Jk(p + 2) + p(p + 2)k2]+ J2

and ~ be the sample mean vectors corresponding
to th~ true mean vectors p and ii of classes 1 and 

— ~~j~pJ + 2fJ2

2 respectively. Also let be th~ sample estimate f — p — 1
of the common covar iance matrix ~ given by

which approaches zero as the sample sizes ~ppr i hN1 infinity. Thus in the mu]tivar~ate Gaussian cas1 
2 ~ (x

1 — ~1) ( x 1 — ~~~)‘ J is also a consistent estimate of J. F r  equalN1 + N
2 

— 
i~l covari,~n.~e but unequal mean ve~’t r. , the

Bhattacharyya distance experiences the same ~ff~-
as divergence as B = J I B .

+ Z (x~ — x
2

) (
~
ci — x2

) }
i=N1+1 For two multivariate Gaussin densities wit~,

zero mean vectors and covariance matrices and

where x is the vector measurement from either class ~2 
whose unbiased estimates are V and V2

1 or class 2. respectively , the divergence base~ on sample
estimated parameters is

For infinite sample size the exact value of 
= 
1 t r (V

1
V~~ + v2ç

1) — p (ia)the divergence is known and given by

= 
~~ l 

— u2 ) ’ r1(
~1 — 

Since the samples from the two classes are
independent ,

which is the same as the Mahalanobis distance.
The divergence using sample estimated parameters E[J ] = ~~‘ tr(E(V1

)E (V 1) + E(V2)F(V~~)) —

is 1
Both V and V follow the Wishart distribut~ n

— — x2) (10) with e~~ectat~ons N —1
where E (SJ ~~. The covariance matrix — is E(V

i) ~~ 
E(V~~) Ni 

— 1 ~i ‘ 
i •
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Thus proportional to the~sample size. The variance of
H given by E(H — ,E(H))2 where the expectations are

Et.J 1 = J + t r (  
p + 1 with respect to is approximately proportional toN2 — — 1 the variance of 0 or inversely proportional to the(15)—1 sample size. Thu~ H given by Eq. (17) is an• ~~~~~ + N~ 

+ 1 asymptotically unbiased and consistent estimate of— p — 1 2 H. To examine the small sample behavior, specif ic
expressions for ‘~i 

and P~ are needed in order towhere the bias term coincides with Eq. ( 5 )  for evaluate Eq . ( 1 9 ) .
p = 1, i.e. the univariate case.

14. Finite Sampl e Discrimin a nt Ana 1ysi~The above discussion clearly illustrates the
effect of finite sample size on the bias of the Although there is an enormous statisticalsample estimated distance measures. In general 

literature on discrimination in the Gaussian cas’- ,the estimated divergence has a positive bias while the available small sample results are few andthe behavior of estimated Bhattacharyya distance inconsistent. Th~ proposed effort will concentrateIs less predictable. It is noted also that direct on some special cases including the class ofestimation of the distance measures is possible if
exponential densities. The linear discr iminantnonparametric density estimate is employed; but it 
function resulting from equal covariance matrises

would be more difficult to study the small sample 
is the most important special case. The common

behavior. covariance matrix may be determined from traininu’
samples of both classes (Eq. 8) which is the3. Finite Sample Information Measures 
assumption made in many statistical literatures.
The difference between the error probabsUties canFor feature selection, more informative be approximated by truncated Taylor series as

features result in low classification errors.
However , if the sample size is limited , infor-
mation measures estimated from samples may not be f L.._ e

_
~
2
I2 dy — I i— ~~~~~ dyas effective. Consider the equivocation for m 

,,~~
-
,

- J ,~~classes defined as

m 2 2 (20)
H — E F )‘ P(w

1
/x)log P(w

1
/x)J (16)

i1  = 
— (J — J )  ~ (~i — (~ + ~ )exp 

~exp — 8 64v~’7 
B

where P~w Ix) = P is the a posteriori probability
of the 1t~i class ~nd the expectation is taken to The expected value of the difference can be
the space of x. obtained by using Eqs. (12) and (13). A sample

calculation for N = N
2 

= 5, p = 2 and •T = I g ives
The sample—based equivocation using the the expected diff~rence — 0.0027 which is cl~ se

estimated a posteriori probability P~ IS to the expected difference of — 0.0312 by using an
m . expression due to McLachlan [14] which is computed

H = — F I 
~

‘ P~ log 1~ 1 (17) in [51. If J increases , the sample sizes must also
i=l increase to maintain a good approximation in

Eq. (20). Similar analysis of error probability
Let, O~ be the parameter of the ith olass, and 0 for other discriminant functions using estimat~’d
it s estimate. Assume that the sample size effe~ t parameters may not be available however. In rn -st
is small so that we need consider only the first cases computer simulation is necessary to determine
two terms in the Taylor series expansion of I’~’ 

the relations among performance , sample sizes and
dimensionality. A good example is the quadratic

P
1 

+ P~(e 1 — l~~) (18) discriminant function for unequal covariance
matrices [6]. Unfortunately consistent results

where P’ is the partial derivative of P with have not been reported in the literature [5)[7]
respe c t1to O~ evaluated at 0~ = 0~~. Th~ difference other than the linear discriminant function dis—
between the estimated and true equivocations can cussed above. In some cases including the
to written as exponential densities, good theoretical approx i-

mation of error probability under finite sample
a size Is possible. The individual cases must be

H — H F ~ (P1(0 1 
— 0~~)(l + log examined separately and computer simulation must be

i1  used when necessary . There does not appear to have
(19) a unique solution procedure suitable for all cases.

+ P~(e 1 — e~ ) 2 J
5. Finite Sample Nearest—Neighbor Decision Rules

which is still a function of 0 . tt is noted that
both P and H are expended by ~ising the first order The nearest—neighbor decision rule (NNDF4) Is
approximations. If .. is an unbiased estimate of attractive in the sense that the NN—risk is upp.~r0 then the expectation of the difference with bounded by twice the Bayes risk when the sample
r~spect to the estimated parameter depends only size approaches infinity. For a given sample size
on the variance of which is usually inversely the l—NNDR is uniformly better than the k—NNDR .



The small (finite) sample NNDH is important because limitation in spatial resolution and quantization
the data storage and computational requirements can levels. In image interpretation and classif icat ion
easily be met when the sample size is small. Also study, an image is usually partitioned into a
In realtime processing, the number of samples that number of subimages. A vector measurement may be
can be processed at a given time must be limited, taken from each subimage. By assuming dependence
However the small sample behavior of the NNDR is on the nearest four neighboring subimages , the

• very much unknown and much study is needed. So compound decision rule is to choose the class which
far only the foll~~.ing restrictive cases have been maximizes [1611171,
considered: Fix and Hodges [81 investigated the 14
om al l  sample performance of l—NNDR for univariate 1~ / )p( r~ ( I 22• and bivariate Gaussian distributions. Kanal , et .al. 

X
0 ~~ 

45
k P X~ 54

k
(91 derIved the NND R error probability for binary
patterns. Levine, et.al. 110) showed that the where w 1, 2, . . .  ,m and x is the measurement of
perf rmance f r  small sample sets from un i form the sub~mage under consideration. Notice that the
distribut i rm is close to its asymptotic value , part of the expression outside of the product sign
F r  muitivarlate Gaussian densities and allowing is identical to that used in a simple maximum
the sample size to increase with k, the number l ike l ihood decision rule without  cons ide r ing
of’ nearest-neighbors , it ic shown [51 numerically neighboring subimages at all. Each multip lier
that the k-Nlrd~ has a performan-’e very close to in the product term represents the contextual
the Bayes linear diecriminant analysis. This contribution from an adjacent neighboring subimage.

• indicates that under medium or large sample The probability densities required for evaluating
condition , the NNDR is comparable to the Bayes Eq. (22) must be either assumed or determined fron
rule using the estimated parameters. the gray level histogram.

For l—NNDR , the conditional error probability If we assume a Gaussian density for the
given the measurement x and its nearest—neighbor measurement x , then the f i n i t e  sample discrini nant

is 111) analysis is useful for subimage classification when
the contextual dependence is not considered. If

r(x , x 1 ) P(w
1

/ x ) P ( w
2/x 

) + P(w /x)P(w /x ) (21 ) the contextual information is taken into account,
then the product terms in Eq. (22) produce

Now the u sual assumption that P(w
1/x 4 ) approaches additional terms in the discriminant function caus-

P (w
1

Ix )  asumptotically does not hold”in the small ing some complexity in error probability comp-sta-
sample case. For a given parametric or non— tion. However , the ef fec t  of estimated parameters
parametric densi ty ,  the NH—risk for small sample based on finite number of image samples can still
size can be obtained by taking the expectations be determined imder Gaussian assumption . If Loth

~f Eq. (21 ) with respect to x and x. Similar the finite learning sample and the quantization
expressions can be written fot~ k—NNPR . As the and spatial resolution constraints are consi lere t ,
closed form expressions are generally not avail— the direct use of histogram would be more ssitable.
able f r the expectations involved , tight boun ds Let th e images of interest consist of objects on a
must be established, background with probability densities p(z) and q(z)

respectively where z denotes the gray level.
I t sh o u l d  be noted here that the small sample Suppose further that the objects occupy fraction

NNDf~ • 1av i r examined here is a different problem 0 of’ the Image area, so that the background
fr.r th” edit ed or c n-lense’j HN! F considered else— occupies fraction 1—0 . Then the normalized
whet— - (no’ e.g. [1 1(13]). However the idea of histogram of the image is the overall gray leve l
using S rnIl •o t . of aele’ted learning samples is probability density 0p(z) + (1—0)q(z). The
i m p  rtsrit . ~ur experi mental results with the thresholding technique (18] can then be used for
tel oimrn jc tut u [lii i have shown that U t’0 eac h subimage to decide for each pixel (p ic ture
always u smal l ~;t s e ~ of’ got- I learning samples element) whether it belongs to the objects or
* h t  •i - m i r u t ~ the  per formance ,  in other words the background . Eq. (22) can be considered as

• pt’r ”- rmance would 4- c insensitive to sample size for  representing an object or background hist o gram
• gr c~ quality learnin g samples. Thus the small obtained from the object or background pix . ls of~

rumple Hl~iR t o r t o’mance need not be wo roe than the all five subirnages. A m i n i m u m  error decision
asyn ir t -  tic pe r fo rmance by properly selecting a small threshold can be obtained from the two histcgr’jm s
set of learning samples . p (z) and q(z). If the subimages under con~ 1der—

ati on has more pixels below the threshold then the
0 . “ontextual Analysi s for fmage hecognition decision is in favor of the objects , otherwise t L

decision will be the background .
-‘ major weakness of statistical pattern

rer’ gait I n  is the difficulty to take the contextual The above procedure makes it easy not only to
rei’ttit n s l r t - ~ account itt the recognition process. imp l ement the compound decision rule given by
Character recognition is n~ t consi d ered here as i t Eq. (22) but also to determine the finite ~amp 1e
requires a somewhat difference contextual analysis effects. The four neighboring subimages obviously
(151 . Art Imagery pattern is rich in contextual increases the effective total number of pixels
inf -rm atlon part of which is statistical In nature, used for classification. If the object and back—
A 1 rmal statistical approach to this problem is the ground histograms are modelled as Gaussian
c m p ~- r r rl ‘le’isi (n theory. The finite sample con— densities then the error probability of the compound
straint in digital imagery patterns Is caused by the Bayes decision rule can be determined from the

limited number f image samples available and the Gaussian models using estimated parameters. A more

—
~~~~
- - •
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