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CHAPTER 1

INTRODUCTION

An investigation of the problem of a wire inside a cavity which

is excited by an external source has been undertaken. The effects of

this external source are coupled to the cavity interior and wire through

an aperture in the cavity wall. The currents excited upon the wire and

the fields within the cavity are to be determined . This boundary value

problem is an idealization of a wire in some metal enclosure. As

examples, the wire may be inside the shielding or housing of an elec-

tronic or mechanical unit on an aircraft , or it night simply pass from

one metal partition to another through a region which is essentially

empty .

This paper deals primarily with the problem formulation (Chapter

2) and the consideration of the many numerical difficulties which are

encountered in obtaining a solution (Chapter 4). In addition, an analogous

two—dimensional problem is considered (Chapter 3) and some sample

numerical results are given (Chapter 5).  In Chapter 6, in addition to a

summary of this work , several possible extensions are discussed . The

remainder of this introductory chapter is devoted to the modeling of the

problem and its historical background .

Modeling of the Physical Problem

In order to model the system of interest , a rectangular box

having an aperture in a side wall and enclosing a wire is considered .

1
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The appropriate geometry is shown in Figure 1. The problem is formu-

lated in the frequency domain. It should be noted, however, that given

the frequency domain solution, desired time domain quantities can be

obtained by numerical inverse Fourier transform.

As is usual in the investigation of complex problems, simplifi-

cations must be invoked to render the problem tractable. The assump-

tions and conditions of the cavity/wire -problem are summarized as

follows:

1. The cavity is the interior region of a perfectly conducting
rectangular box.

2. The material in the box is uniform, linear and isotropic.

3. The cavity is excited through a small aperture in a cavity
wall such that aperture dipole approximations may be used.

4. The wire is straight, circular and perfectly conducting, and
is oriented perpendicular to a side wall of the cavity.

5. The wire ends may or may not be in electrical contact with
the cavity walls.

6. The wire is thin at the frequency of operation and thin-wire
assumptions can be utilized.

Historical Background

In recent years, a great deal of work has been done on the

problem of scattering from wires in free space and efficient techniques

have been developed to handle them (Butler and Wilton 1975, Wilton and

Butler 1976). More recently problems for which a wire couples to an

aperture in an infinite planar screen have been considered (Lin, Curtis

and Vincent 1976; Butler and timashankar 1976; Seidel and Butler 1976).

Historically, the work done on the rectangular cavity problem

has been primarily concerned with formulating the dyadic Green ’s

2
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functions for the potentials and fields for a rectangular cavity . An

expansion for the electric field dyad was found by Weyl (1913 , 1915).

It was pointed out by Teichmann (1952) that the expansion was incom-

plete. This was later corrected by the addition of another term

(Teichmann and Wigner 1953). Several other authors have also shown that

that the additional term is necessary for completeness (Kurokawa 1958;

Collin 1973; Tai 1973; Howard 1974).

The dyad for the magnetic vector potential for the rectangular

cavity is formulated in Morse and Feshbach (1953, pp. 1849-1851).

More recently, this dyad and the dyad for the electric field were

formulated by Tai and Rozenfeld (1976) using the vector wave functions

C, ~ and Fi (Hansen 1935) and by Rahmat-Samii (1975) who also derives

the dyad for the electric vector potential. Both of these authors took

care to insure completeness of the expansions.

Recently, Cheng and Chen (1976) formulated the solution for the

problem of a rectangular cavity-backed aperture in an infinite screen.

However, at the present time, no numerical data has been presented

using this formulation.

It should be noted that at this time there appears to have been

no work performed on the cavity containing an interior scatterer. This

is probably due to the present uncertainty of computational methods

for evaluating the dyadic Green ’s functions in the cavity, especially

in or near source regions.

-+
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CHAPTER 2

FORMULATION

For the purposes of this problem, consider a perfectly conduct-

ing rectangular cavity. One corner of this cavity is located at the

origin of a Cartesian coordinate system (Figure 1). The dimensions of

the cavity are denoted by a, b and c in the x, y and z directions,

respective’y. Within this cavity, there is a perfectly conducting,

round thin wire of radius r(r<<X) which is parallel to the z-axis.

This wire may or may not be attached to either or both walls of the

cavity.

One of the walls of the cavity is perforated by a small aper-

ture whose center is located at 
~a ~ a’ 

> a1 z). The exterior region

to which the aperture couples the cavity interior may be of two differ-

ent types. The cavity may be located behind an infinite, perfectly

conducting, planar screen such that the cavity wall containing the

aperture is a portion of the infinite screen. Alternatively, the

cavity may be situated in a free space environment. In either case,

the excitation for the problem is provided by sources in the exterior

region.

Finally, it is assumed that the medium in both the interior

and exterior regions is homogeneous and isotropic and is characterized

by (c ,~.i) where ~ can be complex for a lossy medium . It is assumed

- - .—-- - -~~~~~ - - - -
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that the problem is time harmonic with angular frequency w and the

factor e~~
t has been suppressed throughout.

Dyadic Green’s Functions

In order to formulate an integral equation for this problem,

it is necessary to know the Green’s functions for the potentials and

the fields within the interior, or cavity, region. These Green’s

functions are dyadic in nature and, as one would expect, are singular

in the source region.

One can define the dyadic Green ’s function for the magnetic

vector potential by

(V2 + k2) 
~A~~

,r) - ! 6 ( - ~~’), (2.la)

x (k 2! + VV) • 

~A 
0 on S (2.lb)

where k is the wavenumber of the homogeneous , isotropic medium of the

cavity interior , ¶ is the identity dyad , a is an inward-directed unit
norma l vector on S where S is the surface of the cavity. This Green ’s

dyad has been derived by Tai and Ro zenfeld (1976) in terms of the

vector wave functions C, ~ and F~i and is shown as a matrix in Table 1.

Once has been determined , the Green ’s dyads for the electric

and magnetic fields due to an electric current source can be found .

They are defined by

~ (k
2
~ + VV) ~~ (2.2)

6
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C’

for the electric field and

(2.3)

for the magnetic field. The matrix forms of 
~e and are given in

Table 2. They were obtained by simply operating upon as prescribed

by (2.2) and (2.3).

It should be noted that this result for 
~~ 

agrees with that

derived by Tai and Rozenfeld (1976) directly using the vector wave

functions . It also would agree with a similar result obtained by

Rahmat-Samii (1975) if an obvious sign error in that paper were

corrected. Note that this agreement is a most important point . In

these two papers , the authors have taken great care to insure complete-

ness of the expansion functions for 
~e in the source region of the

cavity. The agreement between their results and that given here

demonstrates the fact that completeness is insured when the problem

is formulated through use of the potentials and the fields are then

derived from those potentials .

It now remains to determine the dyadic Green’s fun ction for

the electric vector potential. and its related field dyads . Consider

the Green ’s dyad for the electric vector potential defined by

(V 2 +k2) 
~~~~~~ 

- ~ d (~-~ ’) (2.4a)

on S. (2.4b)

~ v ~ ~ o

8
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Rahmat-Samii (1975) has obtained a solution for 
~~~~~ 

It is given in

matrix form in Table 1. Again the sign error has been corrected .

Now that is determined , the dyads for the electric and

magnetic fields due to a magnetic current source can be defined by

(2.5)

and

• (k 27 + . (2.6)

If is written in matrix form , it is found that

• - ~~~~~~~~ 
(2.7)

where the tilde denotes the transpose of the dyad.

As a matter of notation , an upper case G denotes a dyad due

to an electric current source; similarly a lower case g denotes a

dyad due to a magnetic current source. The subscript A , F , e or h

denotes the particular potential or field which is given by the dyad .

Before proceeding with the formulation of the integral

equation , it is worthwhile to consider a few of the general properties

of these dyadic Green ’s functions . Probably the most apparent property

is that each component of each dyad is in itself a triply infinite

Fourier sum. It can be seen, however , that any one of the sums can be

performed analytically using one of the following relationships:

10

- - - S  —• —



s i n k x s i n k x ’ a
m=1 k 2 +~

2 x x 2c4sinhc~a 
sinhctx< sinhcL(a-x~ ) (2.8a)

x

~ £
______ 

am cosk x cosk x ’ • c
n•O k 2 +cz2 X X aSiThcX~~ 

oshux< coshct(a-x.,,) (2 .8b)
x

~ k
Z X cosk x sink x a

in~l k2+ct2 x < x > 2 sinh~a coshctx< sinhc~(a-x > ) (2.8c)
x

~ k
X sink x cosk x -a

m~l k~+~
2 z < x > • 2 sinhaa sinhax<cosha(a-x>) (2.8d)

where

~~ 
, x< • min (x , x ’) x> = max(x,x’) , 0 < x , x ’ ‘C a

Equations (2.8) are easily derived by considering the ordinary differ-

ential equation

Id 2

(

___ 4. k~) 
g(x,x’) a 6(x-x ’)

on the interval (0,a) with various combinations of unmixed Dirichlet

and Neumann boundary conditions. The function g is then obtained by

a closed form construction to obtain the right-hand side of (2.8) and

also by a spectral expansion (to produce the left-hand side of (2.8))

An alternative technique to derive these equations has been given by

Collin (1960, p. 381).

11
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Another important property of these triple sums can be seen if

one remembers that both sinh x and cosh x approach + .~~. eX for large x.

Thus , if 
~~~

-
~~~

‘ I ~ 0, any one of the triple sums can be reduced to a

double sum which is exponentiall y convergent . This demonstrates that

outside the source reg ion , all components of all the dyads converge ,

and in fact, converge exponentially. Therefore, all dyad components

are uniformly convergent outside the source region (Titchmarsh 1939 ,

p. 4).

Since it is valid to differentiate a series term by term pro-

vided the resulting series is uniformly convergent (Titchinarsh 1939,

p. 37), the method used to construct the Green’s dyads for the fields

using (2.2) , (2.3) , (2.5) and (2.6) is valid outside the source region.

This leads to the next observation regarding relative convergence of

the sums . Note that the effect of a differential operator on each term

of any one of the sums is to introduce a multiplicative factor of in , n ,

or £ in the numerator. This will slow the rate of convergence of the

series. Thus, for [
~~

-
~~‘ ~ 0, components of and 

~F 
will exhibit the

most rapid convergence , whereas 
~e and which are constructed using

the second order differential operator VV’, will exhibit the slowest

convergence.

Integral Equation Formulation

To formulate the problem , one first uses the theories advanced

for small apertures by Bethe (1944). This theory allows a small aper-

ture, whose center is at the point 
~a’ 

in a perfectly conducting screen

to be replaced by equivalent electric and magnetic dipole moments

12
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located at 
~~ 

Fi gure 2 (a and b) depicts this equivalence. The

electric dipole moment 
~e 

is norma l to the cavity wall , and the mag-

netic dipole moment P~ is tangential to the cavity wall. Note that

now the aperture has been shorted, and thus one has in this equivalent

problem a wire scatterer in a rectangular cavity excited by the dipole

sources 
~e 

and P~. (A more precise definition of these dipole moments

will be considered later in this chapter.)

It is useful to make use of yet another equivalent problem . By

using the equivalence principle (Harrington 1961) one can replace the

wire scatterer in the cavity by unknown surface currents which are

located upon a mathematical cylindrical surface which coincides with

the surface of the wire in the original problem. This equivalence is

shown in Figure 2 (b and c). Now one must force the boundary condition

that the tangential electric field must vanish on the cylindrical sur-

face. When this is accomplished the two problems are equivalent and

the surface currents in the equivalent problem will be equal to the

surface currents induced upon the wire in the original problem.

Note that in this second equivalent problem one has a cavity

whose interior is entirely homogeneous and isotropic , and is driven

by the unknown sources ~~ P~ and ~~~~
. Thus the fields in the cavity

may be obtained by simply taking the scalar products of the appropriate

dyadic Green’s functions and the’~e sources and integrating over the

volume of the cavity.

The total electric field at the point ~ in the cavity can be

broken into two parts in the following manner:

13
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= + E5 (~) (2.9)

where ~ is the field produced by the aperture dipole moments 
~e 

and

and is the field produced by the surface current density is.

Thus

= 

~ ~~~~~~~ ~e + jk~ g~(r,r~) P~ (2.10)

and

• - ~fl. (1c2! + 
~~~~~~~ JJ ~~~~~~ 

35(r ’)ds’ (2.11)
wire

where ri = vii7~~ is the characteristic impedance of the medium interior

to the cavity.

Since the wire scatterer is assumed to be thin (r<<X) , one can

use the traditional thin wire approximations to simplify (2.11). These

approximations have been used extensively and are summarized as follows:

1. The circumferential component of current on the wire is
negligible and may be assumed to vanish.

2. The remaining axial component of current has no circumferen-
tial variation .

3. There is no current on the end caps of the wire and the axial
current must go to zero at the ends of the wire.

4. It is sufficient to require only the axial component of the
electric field to vanish on the wire surface.

If these approximations are incorporated into (2.11), and the

axial component of (2.9) is forced to vanish on the wire surface, one

obtains the following integral equation:

15
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• [~a (k 2T + VV) JJ ~~~~~~ 
‘

wire

+ 

~~
(
~
) = 0 (2.12)

where ~ is on the wire surface and ~ is a unit vector parallel to the

axis of the wire.

It is seen that (2.12) is an integro-differential equation in

which all three components of the dyadic kernel and all nine components

of the dyadic operator VV will , in general , couple. As will be seen

in Chapter 4, the Green’s functions are extremely difficult to calcu-

late numerically in or near the source region. Because of this problem ,

the feasibility of solving (2.12) for the most general case of arbi-

trary wire orientation is questionable. However, if one considers the

case where ~ is equal to one of the three cartesian unit vectors (let

that unit vector be ~ by convention) then (2.12) reduces to a scalar

integro-differential equation as follows:

. .~fl. (f.. . + k~) J J GA ~~‘) J1(z’)ds’ + • ~~i
(

~~~
) 0

wire
(2.13)

for ~ on the wire surface.

Note that if (2.13) can be inverted, a solution for J will be

obtained. However it should be remembered that ~~ contains ~ and Pe in

which as of yet are unknown. Thus it remains to obtain additional

constraints which will uniquely specify the values of these dipole

moments.

16



Aperture Equivalen t Dipole Moments

Before attempting to determine the dipole moments 
~e 

and

it is necessary to review the basis of small aperture theory. This

summary is patterned after that in a recent paper by Butler (1976) and

the work of Collin (1960). Consider an infinite perfectly conducting

screen at z = 0 which separates two half spaces of the same properties

(~i ,c). This screen is perforated b~ a small aperture centered about

the point (0,0,0). If the aperture is suff iciently small and ~ is

sufficiently far from the aperture, then the fields at ~ due to the

aperture can be approximated by the radiation from an electric dipole

with moment 
~e 

and a magnetic dipole with moment located at (0,0,0)

which radiate in the presence of the unperforated screen. This equiva-

lence is illustrated in Figure 3.

The moments of the electric and magnetic dipoles for the right

half-space (z>0), which are located at (0,0,0+) are given by

• ca~(E~~~(ö) - ESC$ (ö))~ (2.l4a)

and

a - • (~sc- (ö) - c~
SC+ (o)) (2.14b)

where (E
SC _

, ~
sc_
) are the short circuit fields in the left half-space ,

that is, the fields in left half-space in the presence of the unperfor-

ated screen . Similarly, ~~~~SC+
, ~

sc+) are the short circuit fields in

17
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the right half-space. The electric polarizability cie and the magnetic

polarizability &~ relate the specific excitation to the moments for a
given aperture. Polarizabilities are available in the literature

(Bouwkamp 1954 ; DeMeulenaere and Van Bladel 1977; Collin 1960, pp. 285-

302; Cohn 1951, 1952) for several small apertures. SpecIfically, for

an elliptical aperture defined by (x2/Z2) + (y2/w2) • 1 for t >

3E(~) 
(2.l5a)

a 
~ K(~)-E (~) 

(2.lsb)

i
~~ = .±. , (2.15c)

in 3
(~) E(~) - K(~)

and all other components of are zero. The square of the eccentricity

(~) is defined by

2
- 1 - (~)

and K and E are the complete elliptic integrals of the first and second

kind , respectively, as defined by Abramowitz and Stegwt (1965, p. SPO).

It should be noted that, where the small aperture theory is

based upon an aperture coup ling two half-spaces , in the actual problem

• of interest the interior region is a rectangular cavity and the exte-

nor region may or may not be a half-space.

- - -

• 
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First, consider the exterior region. Suppose the cavity is

behind an infinite screen, such that the exterior region is actually a

half-space. Then the short circuit exterior fields are easily deter-

mined from a knowledge of the incident field by application of physical

optics.

However, if the cavity is not behind a perfectly conducting

screen, the problem becomes more difficult. It now becomes necessary

to determine the short circuit fields on the exterior surface of a

rectangular box scatterer. This problem has been solved numerically

by Tsai , Dudley and Wilton (1974) . Since the short circuit fields are

related to the surface current and charge by

= ~

and

q a £ •

these values could also be provided by experimental measurements of

surface charge and current densities. Note that (~~5C_
, ~sc _ ) and

~ sc+ ~sc+) have been defined for the problem of interest to be the

short circuit fields in the exterior and interior regions, respective-

ly. For the remainder of this paper it will be assumed that ~~~~
j~

SC_
) are known .

Now consider the interior region of the problem as illustrated

in Figure 2c. It is readily seen that ~~~~ f~SC4~ will be driven by

the surface currents on the wire. However , this region is a cavity,

20



and the use of yet another equivalent problem is necessary in order to

account for this problem properly. If the method of images (Collin

1960) is applied to the equivalent problem depicted by Fi gure 2c , a new

equivalent problem can be obtained in which the aperture dipoles and

the wire currents have been imaged in such a way that there is a three-

dimensional infinite array of image sources in a half-space. A two-

dimensional cross-section of that array is given in Figure 4. This

means that ~~sc+ u1sC4) are produced by all of the sources in that half-

space except for the original aperture dipoles 
~e and located at

Now if it is realized that these arrays of image sources in the

half- space are equivalent to the ori ginal sources in the cavity (the

problem of Figur e 2c) , one obtains the following relations for the short

circuit fields in the cavity region:

Ge (
~~~a)P e + j knfi 

~~~~~~~

- 

~~ II G 
~~~~~~~~~~~~ 

(2.16a)

wire
and 

u1SC~~~) = 

~~ ~~~~~~~ ~ ~e + Pm

+ 1 1 ~~~(~~‘
i~’) ~ (~ ‘)d~ ’ (2.16b)

wire

where II is the unit vector in the wall of the aperture and the symbol

(‘) over the dyads indicates that the ori ginal or self term of the

image series (Green ’s function for half-space) has been deleted . Thus

2].



Source 
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~
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-Jz

P ‘~z~4:

Figure 4. Equivalent Interior Problem Which Accounts for Effects of
Wall Reflections and Wire Currents on Aperture Dipoles.
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-jk R

~A (r , ra) a 
~A (r ,ra) - 2 (2.17a)

and

-jkR
a g p~~~i r~~)  - 

2 (2.17b)

where ~ ~~~a L Now the des ired dyads may be obtained using the

following relations:

— (k 2T + VV) 
~A ‘ (2.l8a)

~~~= V X ~~A~~ (2. 18b)

— - V X , (2.l8c)

and

a (k 2Y + VV) g p . (2.18d)

The functions defined by (2.17) and (2.18) will be referred to as

deleted Green ’ s functions in an effort to indicate the deletion of

the singular, free space Green ’s function.

One now defines a1 and a2 to be the two cartesian unit vectors

which are tangential to the wall of the aperture in such a fashion

that x a2 - ti. For example , if the aperture were in the y 0 wall

of the cavity, then would be 2 , a2 would be ~ and El would be 9.
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Note that since has only a normal component and has only a

tangential component , there are only three non-vanishing unknowns :

P , P and P . If new unknowns E and ~L. are introduced such thate~ in
1 

in
2 

T~ 1

- E~
C_ (~a) - E~

C+ (~a) (2. 19a)

and

— u15~~(~~) - ~
SC+

(~a
) (2.l9b)

then by (2.14)

P

- ci
e 

ET ,  (2.20a)

- ci H.1. (2.20b)
1 11 1

and

P a - H.1. . (2.20c)m2 ‘p22 2

Now, if (2.20) is substituted into (2.16), which in turn is substituted

into (2.19) one obtains the following equations:

24
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(1 + c i G  
~ a a ~~~1. 

- jkn (ci
~ ~e ~ a’~a~~1.1 

~ ~ ‘~a~~r2~m..,.., e , ann n 11 ni ~~h fl~~

(r ) , (2.21a)- 

~~ II Ge (
~~~~

’)J (
~
•’)dS ’ 

-

n a
wire

a G (~ ‘~ a~~T 
+ - a ~ (r

in n m11 h11 a,ra)IHT1~ 
amn eh a

+ J j ’ Ghlz
(
~a~

•
~
) Jz~~

I
~~

5
~ 

H~~~(~~) , (2.21b)

wire

L_ c& Gh (r ,r)ET - am h21 a a T 1 
+ (1 - 

~~~~

+ JJ Gh (~~,~ ‘)j (r’) ds ’ = 

~~~~~~ 
(2.21c)

wire

It should be noted that the unknowns ET ,  
~~ 

and H.1. are

related to the unknown dipole moments by the aperture polarizabilities .

Thus if (2.20) is substituted into (2.10) one obtains

2 • E~ (r) — ci G ~~~ )ET - i~~~~11e 
~~ 

a

- jkflu g (r,r )H
in22 e , 

- 
a T1 

(2.22)

This means that (2.13) contains the unknowns ET ,  HT and H.1. in

addition to J~ . The three additional constraints provided by (2 .2 1)

25



when solved simultaneously with (2.13) will provide a unique solution

for the currents on the wire and the quantities ET , H.1. andn 1 2
It is helpful at this point to attempt to describe physically

the various terms in (2.21). First, it is noted that the terms con-

taining the deleted Green’s functions account for the fact that the

aperture dipoles will be affected by the fielas reflected back from the

cavity walls. This is apparent if it is remembered that these terms

are the fields in the aperture due to the array of the images of the

aperture dipole. These virtual sources account for all of the reflec-

tions and multiple reflections from the cavity walls.

It can also be noted that the integral term in (2.21) repre-

sents the field scattered back into the aperture by the wire and thus

accounts for the coupling between the currents on the wire and the

aperture dipoles. If all of these coupling effects are assumed to be

negligible, (2.21) reduces to (ET , u1.1.) = (Er , u1
sc_

). If on the

other hand these effects are not neglected, the difference between

(ET , L1.) and (E~
C
~, u1

5
~~) will in some way reflect the degree of to

which the cavity walls and the wire scatterer couple to the aperture.

26
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CHAPTER 3

A PRELIMINARY TWO-DIMENSIONAL PROBLEM

In an effort to gain insight for the three-dimensional cavity

problem, it is helpful to consider an approximately analogous two-

dimensional problem. For this case, the kernel functions would also

be singular Fourier series, although of lower dimensionality. Thus

where in the original problem the sums were doubly and triply-infinite,

they are one- and two-dimensional in this two-dimensional analog. In

addition to any insights which this effort might provide toward the

solution of the three-dimensional cavity, the solution to this analo-

gous problem may provide data pertinent to the physical problem being

modeled. For example, in this simpler model , it is feasible to account

for the actual coupling through a large aperture rather than use the

aperture dipoles for small apertures.

Formulation

The geometry of the analogous problem is shown in Figure 5. It

consists of an incident plane wave impinging upon a perfectly conduct-

ing infinite planar screen perforated by an infinite z-directed slot of

width d. The slot is backed by a rectangular cylindrical cavity of

depth a and width b. Within the cavity are L :-directed thin wires of

various radii. The incident plane wave is polarized such that ~ is

parallel to the slot. Thus only the E,, H~ 
and H~field components are

excited.

27

• S



y

b

- — h+d

Wire a

Figure 5. Geometry for Analogous Two-Dimensional Problem.
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One now formulates the problem, using the thin wire approxi-

mations described previously in Chapter 2, by expressing E
~ 

and Fly in

terms of the unknown aperture electric field and the unknown surface

currents on the wires. Then by forcing the boundary conditions that

and H~ be continuous through the aperture and 
Ez vanish on the wire

surfaces, two coupled integral equations are obtained . They are

h+d

~~~~~ (~
-__ + k2) 

Jh 

E~ (y’) (H~
2) (k~y-y ’~) + jS1(y,y’)]dy’

L I
+ Z .J~ J S2(x’,y,y ’)dc’

£al Lth wire

a - 2 H~
nC (o,y) , h(y<h+d (3.la)

and

h+d

E~ (y’) S2(x ,y,y’)dy’

r
- jkn ~ J~ J S3(x ,x ’ ,y ,y ’)dc ’

Pal 2.th wire

— 0 , (x,y) on surface of the 5th wire, for 5 a l ,2,...,L

(3.lb)

29



where E~ is the unknown aperture electric field , J~ is the surface

current density on the R.th wire, H~
UC is the y-component of the

incident magnetic field and n = v~i7~ is the characteristic impedance

of the space. The functions S1, S2, and S3 are defined by

S1(y,y ’) = I m sink),y sink),Y’ (3.2a)
m,n=o K~~-k

2

S2(x,y,y’) 
~
‘m,n.l K~~-k

2 ~ 
sink~Y sink~

i (3.2b)

and

S3(x , x ’ ,y,y ’) = sink x sink x ’ sink~,Y sink ),Y ’

(3.2c)

where K 2 a k 2 + k 2 
, k = ~!. and k =

riui x y x a y b

Note that any of the double sums in (3.2) can be reduced to a single

sum by use of (2.8) and will thus converge exponentially as long as

~ ~~‘ [that is , when (x ,y) ~ (x ’ ,y ’) ] .

Now as sume that no two wires touch one another and that no

wire is in the apertur e region . This means then that with the exception

of the first sum all of the infinite sums in (3 . la)  are uniformly con-

vergent . Indeed this first sum is uniformly convergent everywhere

except when y a y ’ in which case it diverges like ~ - . Similarly, all

30



sums in (3.lb) are uniformly convergent, with the exception of the

term where L=s , in which case one point on the surface of integration

will, coincide with the point (x,y).

It is now useful to make the approximation that the wire cur-

rent resides at the center of the wire and that field boundary condi-

tions are still enforced at the wire surface. This approximation is

commonly known as the reduced kernel approximation . For this problem

it can be stated by

I 
S3 (x ,x ,y ,y )dc 271r S3 (x 1x~ ,y ,y ) (3.3)

wire

where (x , y )  is the center point of the wire and r is the wire radius .

This can be justified by noting that S3. the Green ’s function for the

magnetic vector potential in the cavity , mus t contain the free space

two-dimensional Green ’s function, which goes as LnI~ -~ ’l . Note that

can be integrated analytically over the wire surface, where

~ is also on the wi re sur face , to give the desired result that

Ln(2rsin41~rd$’ — 2irrLn r

Since the wire is thin and the remaining portion of S.. is a smooth ,

homogeneous solution to the wave equation, it too can be validly approx-

imated by this technique. It should be noted that given the wire radii

small but finite , the application of the reduced kernel approximation

nakes all of the infinite sums in (3.lb) uniformly convergent .
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Reduction to Matrix Equation by Method of Moments

An effective technique for the numerical solution of integral

equations in electromagnetics is the method of moments (Harrington

1968). Consider the operator equation

a (3.4)

where L is a linear operator, ~ is a known vector, and ü is an unknown

vector for which the solution is desired . Using the method of moments ,

one approximates ü by a finite linear combination of expansion vectors

ü .  Thus let

N
i —  ~ a~ i . (3.5)

q=l q q

Now take the inner product of (3.4) with N testing vectors 
~~~~

. If

(3.5) is substituted into this result, and it is noted that L is

linear, one arrives at the matrix equation

N
Z <

~~ ,Lü >a — <~~ , f> , p a 1,2,3,.. .N . (3.6)
qal ~ 

q q

Note that (3.la) is a linear operator equation with an integro-

differential operator and unknown function E~(y) and the unknowns

Further, one has the boundary condition that E~ must vanish at each

edge of the aperture because the tangential electric field (Es) must

vanish at these two points. If the inner product for this space is

defi ned to be

32



1h+d
= j u(y)v(y)dy

h

the method of moments may be applied to approximate (3 .la) by a matrix

equation.

The optimum choice of expansion functions (ü~) and testing

functions (~~) for this integro-differential operator and these bound-

ary conditions has been the subject of many examinations (Butler and

Wilton 1975; Wilton and Butler 1976). It has been shown that one effi-

cient choice (Wilton and Butler 1976) is that of pulse, or piecewise-

constant, expansion functions and piecewise-sinusoidal testing

functions, denoted Pq and A respectively and defined in the coordinate

system of this problem by

1 IYY q I <

p (y) a ,~ (3.7)q
IYY q l >

and

sink(~-~y-y~~) , ~y-~~I < 
~~

A~(y) a (3.8)

0 , ;y-y~ 
> i~

where ~ a d/ (N+1) and Yq = h+q~. Thus the unknown aperture field is

approximated by

E~(y) Z EqPq(Y) 
- 

(3.9)
q— 1
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Figure 6 shows a plot of such an approximation as well as the

testing functions A (y). It should be noted that a half-pulse of zero

amplitude has been placed at each end of the aperture. This is done

because of the boundary condition that E~ vanish at each end of the

aperture.

In order to perform the inner product one takes advantage of

the piecewise-sinusoidal testing functions and the differential portion

of the operator, ~~— + k2 , and integrates by parts twice. The integral
dy2

portion of the result vanishes, leaving only three boundary terms.

If these expansion and test functions are applied to (3.la) and

the same expansion functions are substituted into (3.lb), the following

equations are obtained

~ q~i 
Eq(Fq (Yp~l) - 2COSk~F~ (YP) + Fq (Yp~1)l

+ ~ 
L~~1 

IzS2(xz~Yp~YL
) = - 2CH~~c(O,Y~) (3.lOa)

for p = 1,2,.. .,N and

N L
~ Eq J 

S2 (x 51y 51y )dy - jk~ ~ I~S3(x5,x~~y5,y~) = 0
qal Lal

tlq
(3. lOb)

for s 1,2,... ,L where

3~
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P
q (Y) a 

Iq 

~~~~~~~~~~~~~ + j S1(y,y ’)dy ’ - (3.11)

In (3.10) , ‘L = 2 ITr LJL is the current due to the uniform surface cur-

rent density on the Lth wire and ~q is the interval (Yq~ ~ iYq4) • The

point rL - (x t ,y z) is the centerpoint of the Lth wire and a (x 5 ,y 5)

is a point on the surface of the sth wire . However , for thin wires ,

this distinction is important only when Las. The constant

Yjp
+A

c a J A (y)dy a 2(l-coskt~)

results from assuming that both the incident magnetic field at the

aperture and the magnetic field in the aperture excited by the current s

on the wires can be approximated over the range of pth testing function

by their respective values at ~~
It is now observed that (3.10) represents two coupled matrix

equations for the unknowns CEq
} and {IZ}. These equations can be

solved simultaneously by standard matrix techniques, such as Gauss

elimination , to find the solution for the unknown aperture field and

the currents excited on the interior wires .

Numerical Considerations

• Although the problem has been formulated and the integral

equations have been approximated by matrix equation (3.10) , it is noted

36
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that one must be able to calculate the infinite sums S2 and S3. possibly

near the source where convergence is poor . The sums S1 and 
~2 must be

integrated , S1 over the source reg ion (3.1 1). Consequently, it becomes

necessary to develop techniques for handling these situations.

First it should be noted that in (3.lOb) it is valid to inte-

grate S2 term by term since S2 will always be uniformly convergent

over the range of the integration (Titchmarsh 1939, p. 36). It can be

shown that S1 in (3.11) can also be integrated term by term , even

though at yay ’, S1 diverges. Because S1 is uniformly convergent at

every other point in the range of integration, and because the ser ies

that results if S1 is integrated term by term is absolutely convergent,

it is valid to integrate S~, term by term (Titchmarsh 1939, pp. 44-45).

This is an important result since as a general rule it is numerically

more efficient to integrate the series term by term.

It remains to develop a technique for efficiently summing these

series , even when ~-~‘ f is small. it is expected that the convergence

will  be poor from a numerical standpoint . To demonstrat e the method

which is used to make this improvement , consider the special case of

S3 (3.2c). By applying (2.8a) to (3.2c) one finds that

2 sinhY~y<sinhY~ (b_y,)
S3 

a — ~ sink~x sink x x ’ 1b~~~’~ 
b (3.12)

mal b

where ~l~
2 a k2 - k2 .b x
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Note that j ust as easily the double sum could have been reduced

by eliminating the sum over m . Thus, there is always a choice of which

sum to remove analytically by (2.8) . Let ~~~ be defined as the asymp-

totic series of S3 such that its terms are the limit of the terms in

(3.12) for large m. Thus

Sr>, a Z ~~~‘ sinmir~ sin IT17I X e
_m

~ a . (3.13)
ma 1

Series S3 has exponential convergence, the rapidity of which increases

as (y-y ’ (Ia increases. It can easily be seen that if the sum over m

were removed analytically, S3 would converge exponentially like

I x-x ’ (lb . It is reasonable to assume from this that as a general rule

( y-y ’ I/ a should be compared to x-x ’ (/b and (3.2) should be reduced to

a single sum in that way which maximizes this exponential convergence.

For example , if Iy-y ’ (Ia > Ix -x ’ (/b , then (3 .2c) should be reduced to

(3.12) . Indeed, the validity of this general rul e can be substantiated

by the results of numerical testing.

Now return to (3.12) . Suppose , however , that although (y -y ’j/a

is larger than x-x’(/b , it too is small, and (3.12) remains poorly

convergent . Convergence of such a series can often be greatly improved

if a closed form expression can be found for the corresponding asymp-

totic series (Lewin 1975). This means that if S — 

~ 
s~ , s~ ~ Sn ’ as

n ~~, and st a 

~ 
a h where h is a closed form expression, then

D a 
~~ ~~ 

- se’) will converge more rapidly than S. Consequently, S
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can be evaluated by 5 a Ii + D. Thus if (3.13) can be evaluated in

closed form, the convergence of (3. 12) could be improved .

For this particular sum , S3, one rewrites (3.13) as

~ -masy 1 eS3 = 
~~~~~ ~ 

—i-—— (cosm81 - cosm82 ) (3.14)
m- 1

where

- ~dy-y
’ a !!]X.~X and 82 =

But it is known that (Jolley 1961, pp. 110-111)

cosnA — ~ - Ln (coshx - cosA) Ln2 . (3.15)
n= 1

With the use of (3.14) and (3.15), (3.12) becomes

2 1sinhY~y<sin hY~(b_y >)S a —  
~ 

s in k x s i n k x ’ I3 a mal ~ L 1b slnh vbb

/cosha - cos82\
- .

~~

. ] + Ln - coiç) 
. (3.16)

It should be noted that numerically the sum in (3.16) is

rapidly convergent regardless of how small ~~-~~~‘ is, so long as it

is not zero. Indeed at ~-~‘j  a 0, CL and 8~ go to zero and from (3.16)

it is seen that S3 possesses the expected logarithmic singularity.
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Although this procedure is demonstrated here only for S3, it

can also be successfully applied to any sum or term-by-term integration

of a sum which is needed in this problem. One will, however, need the

following asymptotic series in closed form:

e~~~ sinn A = tan k (sinA 
‘

~ 
, (3.17a)

nal \e -cosA/

n~1 
e~~ sinnA a 

2(coshx - cosA) ‘ 
(3~~Th)

n~l 
0-nx cosnA = 2 :oshx cosA (3.l7c)

and

2n+ 1

n~l 

e ’
~ - ~~— + xLnx-x - 

~~ ~n~~n+i~ 
(3.l7d)

where is the ith Bernoulli number as defined by Abramowitz and

Stogu n (1965, p. 804). In the literature, (3.17a) can be found in

Jolley (1961 , p. 110-111), (3.17b) and (3.17c) are found in Wheelon

(1968 , p. 38) , and finally, (3.17d) is found in Lewin (1958, p. 246)

or Lindelöf (1947, p. 140). In (3.l7d), the left side converges well

for large x and the ri ght side converges well for small x .

Sample Calculations

Now that the matrix equation has been formulated and methods

of computing its elements have been devised , solutions for various

cavity and wire configurations can be obtain via numerical solution
140
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on a digital computer. In this section, a few representative solutions

are presented.

It should be noted that a similar problem in which the infinite

screen is omitted can be solved using a formulation and computer code

previously developed (Seidel. 1974) to calculate the currents on an

array of cylindrical scatters in free space. From these currents, one

can easily calculate the electric field in the aperture. Therefore,

in addition to solutions of the problem at hand , solutions to the

similar problem are presented. These problems are referred to as the

flanged and unflanged solutions, respectively, flange meaning the

infinite planar screen of the initial problem.

First consider the case of a cavity with a depth (a) of .6X

and a width (b) of .8A. This cavity has an aperture width of .6A which

is centered in the cavity wall (d = .6A, h a .1A) . The cavity is

excited by a plane wave with unit magnitude electric field which

impinges on the cavity from the negative x direction. Figure 7 shows

a plot of aperture field for this cavity for the case of no internal

wires. It is seen that the difference between the flanged solution

and the unflanged solution is relatively small. Since the interior

fields are uniquely determined by the aperture fields, this indicates

that the presence of the flanges has little effect upon these interior

fields. Note also that the aperture fields go to zero at the edges of

the aperture and that they have a maximum magnitude of sli ghtly less

than unity. The fields are symmetric about the center of the aperture

because of the symmetry of the cavity itself and the symmetry of the

incident field.
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Figure 7. Aperture Field for Cavity with No Interior Wires .
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Consider now the same cavity and excitation , but with a wi re

of radius .OO1A located at the geometric center of the cavity, (.3X ,

.4X) . Fi gure 8 shows the aperture field for this case. Again the

difference between unflanged and flanged solutions is relatively small.

Note that this is also true for the currents excited on the wire, which

are (-1.00 - j  1.48)ma for the unflanged case and (-.94 - j  l.38)ma for

the flanged case. The one significant difference between this solution

and that for the case of no wires is that the maximum magnitude of the

aperture field is approximately three times larger with the wire than

without .

Again consider the same cavity and excitation , but now with

two wires of equal radii (r a .O O1X) which are symmetrically located

about the center of the cavity at (.3? , .25X) and (.3A, .55A).

Figure 9 gives the aperture field for this case. The currents on the

two wires are equal due to the symmetry and are (-.42 - j l .19)ma and

(- .42 - j  1.25)ma for the unflanged and flanged cases, respectively.

The same observations that were made for the case of one wire are also

applicable here , except that the peak magnitude of the aperture field

is for this case sli ghtly larger.

Finally consider the same cavity and excitation for one

centrally located wire (r a .001), but with a centered aperture of

width .4A. The aperture fields for this case are shown in Figure 10.

The wire currents are (.82 - j  1.71)ma and (.98 - j 1.48)ma for the

unflanged and flanged cases respectively. By comparison to Figure 8,

it is seen that as a result of shortening the aperture, the magnitudes

.43
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of the aperture field and current have slightly increased and the

phase has changed considerably. Again note that the difference

between unflanged and flanged solutions is relatively small.

Final Observations

At this point, a suamary of the portions of this two—dimensional

problem which will provide insight toward the three—dimensional cavity

problem is in order . Such items can be divided into two categories:

those which provide insight toward efficient computational methods and

those which lead to a better physical understanding of the problem.

First consider those items in the computational category. If

the improvement of convergence of the two—dimensional sums is necessary

in this problem , then surely it is necessary for the triple sums of the

three—dimensional problem. Such techniques as removal of the asymp-

totic series should be considered , although the amoun t of work done in

the literature on double sums is very small in comparison to that done

on single series . Another numerical technique which should be consid-

ered is the use of the reduced kernel approximation for the thin wire

scatterer. Remember that this approximation removed the necessity of

performing an integration of a diverging series.

Secondly, physical insight into the effects of modeling

approximations can be gained by noting the one overwhelming result of

the data presented. The interior cavity fields and the wire currents

are relatively insensitive to the presence of the infinite screen in

this two—dimensional analog which is particularly true near resonance
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regions . It is quite reasonable to assume that this will also be

true for the three—dimensional problem , and thus provides valuable

information relating to modeling the three—dimensional cavity

problem with or without the infinite screen. This finding is

importan t because it is much easier to consider the problem with

an infinite screen than without a screen .
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CHAPTER 4

NUMERI CAL METHO DS FOR CAVITY PROB LEM

Approximation by Matrix Equation

In order to obtain a solution to the integral equation (2.13)

for the three-dimensional cavity (with the coupled constraints in

(2.21)), it is possible to approximate the integral equation numeri-

cally by a matrix equation. This is generally accomplished by the

application of the method of moments, which was outlined in Chapter 3.

Consider the integro-differential equation (2.13) for the

unknown current J
~
(z). It is seen that the differential portion of

the operator is the harmonic operator (— + k2), which was encountered
dz2

in (3.la). Since by thin wire approximations one also knows that the

current must vanish at and zZ (the z-coordinates of the wire end-

points, with > z~), the use of piecewise sinusoidal testing func-

tions and pulse expansion functions is indicated (Wilton and Butler

1976), as was the case in the two-dimensional problem. For this

problem, these functions are defined by

1 IZ ~Zq I <

P
q
(Z) — (4.1)

0 IZ_ Z
q l >

and
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sink (&-{z-z ( ) , Iz -z <

A (z) = 
I’ 

(4.2)

0 , (z—z I > 
~~p

where ~ a (z
~
_ z
t)/(N+l) and Zq - + q~.

Figure 11 illustrates these expansion and test functions. It

is important to note that if the wire is attached to the cavity at one

or both ends , this choice must be sl ightly modified because the wi re

current does not necessarily vanish at the attached end. To rectify

this problem , the zero half-pulse at an attached end is replaced by a

half-pulse of unknown amp litude . Consequently, a new testing function ,

which is a half-p iecewise sinusoidal function , mus t be introduced .

These are shown in Figure 11 by dashed lines . In the subsequent

development of the matrix equation , it is assumed that the wire is

unattached. However, the extension to attached wires is straightfor-

ward.

Since j  is assumed to be uniform about the circumference of

the wi re it is hel pfu l to define the current to be the integral of

the current density about circumference of the wire . By this assump-

t ion

I 1(z) — 2irr . (4.3)

Now approximate I
~ 

by

N
— ~ I p (z) . (4.4)

q-1 q q
50
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If this is substituted into (2.13) and (2.21) and the inner product

defined by

U

= u(z) v(z)dz

is taken of (2.13) with the functions A , the following coupled matrix

equations are obtained:

I + ~ t = 0 , (4 .5a)
q=1 q •q q=l q q

p = 1,2,... ,N, and

q~l 
Qpq ‘q + 

q~l 
Q~q 

tq = E~ (4.Sb)

p 1,2,3. These functions provide the solution for the unknown

current amplitudes (I q } and the unknown aperture fields (t 11 t2,-t
3
) -

(ET ,1L1. ,H.1. ) driven by the exterior short circuit fields (E 11 E,, E 3)
n 1 2

The matrices in (4.5) are defined by

~ 
_
~ f l(A

q
(Z

p÷1) - 2COSkMq (Z p + Aq(Zp_j)] (4.6)

a CcteGe ~~p ’~ a~ ‘ (4.7a)

2 

~~~~m 11~ e21~~p i~ a) (4.7b)
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% b
3 * _ j Ckflct gm22 e~2~~p~~a) ‘ (4.7c)

cQ1q
= _ ~~~~ G (~~)enz a ‘ (4.8a)

C

~2q 
— 

~~h ~ a’~
’p~ 

(4.8b)
lz

C -Q3q a ~~ (r a i~ p ) (4 .8c)
2z

and

j krwL ~ - jk nct ~ 1r1 + a G 
nn 

- 

m11 e 1 m22 e 2 1 •
c c

a 1 - a - a (4 .9)Q * fl C in m11 h11 m22 12

a 

~~2n 
- a~~~g~ m22 22

1 - a  I
~
fl e

-j

where the deleted Green ’s functions in (4.9) are evaluated at (~ ,~~‘)

a’~ a~~ Define

)~~ 1Aq(Zp j K(z ~~ z ’)dz ’ (4.10)

•

where Aq is the interval (z -q ~~~
zq +!)and

K(z , z ’)  a 
~~~~ I G~ (~ ,~ ‘)d~ ’ , (4 .11)p J :z

-iT
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where 4)’ is the angular coordinate of a cylindrical coordinate system

about the wire axis (Figure 1). Also , C = 2(1-cosk~) and and j’

are on the wire surface. Note that to obtain (4 .8) ,  the integral over

the qth tubular surface segment on the wire has been approximated by

the product of the surface area of the segment and the integrand

evaluated at a point on the center of the segment .

In order to solve the coupled matrix equations (4.5), one need

only obtain a numerical solution to the partitioned matrix equation

~a ~b\~ f ! \  fo\
i 1 ~ = ( 

~ 
- (4.12)

~c ~d/ 
~
i
~~~ /  \~J

Note that if the effects upon the aperture field of the fields scat-

tered by the wires are ignored , ~~~~ = ~~~. On the other hand, if the

effects of the cavity wall reflections upon the aperture field are

ignored ~d 
= !, the identity matrix.

However , as in the two-dimensional problem , difficulty arises

in attempting to compute the elements of the matrix, each of which

contains one of the triply-infinite sums defined in Tables 1 and 2.

The computations which exhibit this difficulty can be categorized into

three basic types , the first of which is computation of any one of the

sums outside the source region. The second category is that of the

integral of GA over the surface of the wire , for which at one poin t
zz

of the integration GA will be divergent. Finally, the deleted
zz

Green ’s functions must be computed at the aperture. The remainder of

this chapter attempts to deal with precisely these difficulties.
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An Efficient Method of Computing the Sums
Outside the Source Region

As was noted in Chapt er 2 , each of the Green ’s functions

(Tables 1 and 2) can be reduced from a triple sum to a double sum

which is exponentially convergent for I r-r ’ I ~ 0 using (2.8) . Indeed ,

it is easily shown that the asymptotic series associated with any one

of these exponentally convergent series is of the form

-k lz -z ’I
= ~ f(m,n) e 

C 
(4.13)

m,n kc

where k~ a + (
fliT

) a a 0,1,2 and f(m,n) is a non-exponential

function of th and n.

As was found in Chapter 3, it is a good general rule to reduce

the triple sum in such a way as to produce the double sum with the most

rapid exponential convergence. For example, if

(.L. +
a 2 b 2

is greater than both

(L + ~~~~~~~~~~~~~~~~~~ and (.L_
b2 c2 a2 c2

then the sum over 1. should be reduced.

Following the lead from the two-dimensional problem in

Chapter 3, one would now attempt to find the closed forms of (4.13)
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for the various f(m ,n) and a. It turns out, however , that the list

of double sums for which a clo sed form is known is painfully short,

and does not seem to include (4.13) for any a and f(m,n) of interest

in this problem.

Another method which has been suggested is to remove the

known singularity from the series by expanding the singularity in the

same expansion functions as the series itself.  Both Tai and Rozenfeld

(1976) and Rahinat-Samii (1975) have removed a delta function singular-

ity from their series for in this way . However , this serves little

purpose because the known singularity of 
~e 

is not the delta func~~on.

In fact, as sho~~ by Howard (1974), the singularity of 
~e 

is actually

the longitudinal portion of !6(~ -~ ’) .

The third alternative , and the one that is used for this work ,

is to simply sum the double series in an efficient manner. Note that

because of the exponential convergence, as one attempts to make this

computation nearer and nearer the sour ce , the series will become more

and more poorly convergent . Thus one should expect to reach a point

such that for 
~~
-

~~~
‘ I less than some minimum value , numerical computa-

tion of the sum in this fashion becomes unfeasible.

However , some things can be done which make this method more

efficient. Because of the exponential convergence in the asymptotic

series (4.13), one would expect an efficient ordering of terms to be

in order of increasing k
~
. This takes advantage of the exponential

convergence as well  as the k~ in the denominator. At this point , it

is usefu l to partition the rn-n plane with successive curves
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(Bromwich , 1926, p.83). If the sum of all terms lying between two

successive curves is called Sqi then the double series can be converted

into the single series of the form

s =
q—l q

By the proper selection of these curves, the most efficient ordering

of terms can be determined.

For this problem such a choice would be that of ellipses with

semi-axes in m of aqa and semi-axes in n of aqb~ where aq is a monoton-

ically increasing sequence of constants. Such a partitioning is shown

in Figure 12. Note that for such a choice, each successive partition

contains terms for which k
~ 

is larger than in the preceding partition.

Also note that since the sum of terms in the qth partition is the qth

term of a single infinite series, methods used for determining the

convergence of single series can be applied.

To test this method, the sums were numerically computed via

digital computer. Figure 13 shows the notation used for the stun.

Note that it is assumed without loss of generality that a < b.

Numerically the series was truncated to include only those terms with-

in The maximum value of m was M. Note that the total number of

terms is approximately the area within C~ or NT ~~ M
2 . Let S~ a

s and R - s . Then is the error resulting from trunca-
qai~~ ~ q—p+1 q

tion. R..~ can be crudely bounded from above with an integral bound.

However, for actual computation, convergence was defined to have been
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reached when ratio (s IS ) was less than some small constant C forp p  S

consecutive values of o.

Note that any one of the Green ’s functions can be reduced to

three entirely different double sums. For the purpose of testing, the

Green’s functions were computed by all three double sums, and then

these results were compared. Indeed, the effectiveness of this test

is attested to by the several programming errors which it detected.

However, once these errors were corrected, extensive testing demon-

strated that the three values always agreed to approximately the

accuracy specified by the constant C~. This test also showed that the

general rule of reducing the sum so as to give the most rapid exponen-

tial convergence did, in fact, produce the particular one of the three

possible double sums which required the fewest number of terms.

Finally, extensive testing demonstrated that for cavity sizes

in the vicinity of the first resonance, the Green’s functions could be

easily obtained for values of I~-~’ I greater than A/20 (for larger
cavities, this minimum distance increases; for smaller cavities , it

decreases). Computations at even smaller values of ~~~-i
’
~~ are not

impossible, but rather more and more time consuming.

- Numerical Evaluation of the Integral
of the Singular Sum

Consider now that evaluation of A~(:~)~ defined by (4.10) and

(4.11). As earlier noted, when p q, the integrand G~ of the

integral over the tubular wire surface segment diverges at =

Even for p
~~ 

q, if p is near q then the integrand will converge poorly.

These two difficulties must be overcome .
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In order to sidestep the first problem , it would be helpful

to apply the reduced kernel approximation (assume all current resides

at center of wire). With this approximation, when p = q the integrand

would never diverge and, in fact, would be uniformly convergent every-

where on the surface of integration because 
~~~~ 

-
~~~

‘ > r. However, one

very important consideration is the validity of using the reduced

kernel approximation for the kernel (4.11). This kernel is known to

include the singularity of the free space kernel plus a remaining

smooth homogeneous solution. If r << A , it is justifiable to assume

that the smooth part of K is essentially the sane at the center of

the wire and at points on ‘the wire surface. Thus one needs a like

comparison for the singular portion.

Define and Kr to be the free space exact and reduced

kernels, respectively, given by

~ 

(
~ + 4r2 sin2 ~~~~~ d4) (4.l4a)

and

K ( ~ ) = + r2]~~
’2 

. (4.14b)

Since ultimately integrals of the kernels over ~ are needed , such

integrals will be compared . Let

.,

* K (F)d~ — 10 (4.15a)
J o
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and

= J ~~~~~~ 
= ln(~ + {( Z)2 + ~}l/2

) (4.lSb)

where 1~ has been defined by Butler (1975). Figure 14 shows a compari-

son of these two functions. It is readily apparent that such an

approximation is valid for the singular part of the kernel and thus

valid for the kernel (4.11).

Using the equation for GA from Table 1 (reducing it to a

double sum by (2.8b)) and applying the reduced kernel approximation to

(4.11), one obtains

4 coshi z<coshy (c-z>)K(z~~z’) 
~~~~

. 

y
C
silthI c

C F(x~,y~) (4.16)

where = k2 + k 2 -c x y

F(x~ , y )  = siflkxxcsiflkxXpSiflkyYcsinkyYp . (4.17)

(x
~
,y
~
) is the location of the center of the wire and 

~ 
= (x .~ + rcos4),

+ rsin4), z~) is a point on the wire surface. By using a hyperbolic

trigonometric identi ty , one can express (4.16) as the sum of two terms

by

K(z~~z~) = S( I :~-z ’ I )  + S(z +z ’) (4.18)

where

6i

___________ - b --— ~~~~ - - __________ -



5. I I

~~~ 
(z)

z/r ~

Figure 14. Comparison of the Integrals of the Free Space Exact
and Reduced Kernels.
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2 ~ cosh •y (c-B)
S(B) 

~E m ,Li ~~ ~~~~~~~~~ ~~ 
F(x ,y~) (4.19)

To evaluate Aq(Zp) defined by (4.10), one needs to calculate the

integral with respect to z’ of the kernel (4.18) and thus of (4.19).

If this integration is performed on (4.19) term by term, and sub-

stituted into (4.18) and (4.10), one finds that

Aq(Zp) Q(IZp
_Z
q I) + Q(Zp+Zq) (4.20)

where
S

A
P.

P( 8) A ’B a a - !
Q(a) (4.21)

A
P(B) + P(8) ,

8 * 0  8 = 0

and where P( 8) is the indefinite integral of S(B) given by

~ sinh ‘r (c-B)
P( 8) — - ~~~~ 

~ C F(x
~
,y) . (4.22)

n,n—l sinh

Thus , if P(3) can be evaluated for B > 0, then A
q (Zp

) can be evaluated

on the wire using the reduced kernel.

Consider the case where B = 0. Note that the hyperbolic sine

functions in (4.22) cancel , leaving
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sink x sink x sink y sink y
P(0) — - 

x x p y 
~ (4.23)

m,nal k2 + k 2 
- k 2

x y

It is now recognized that

P(0) 
~ 
S3(x ,x ,y ,y ) (4.24)

where S3 is defined by (3.2c). Thus P(0) can be readily evaluated

numerically using (3.16) for r > o. Note that in (4.22), because the

hyperbolic sine is an odd function,

P(2c - B) -P(3) . (4.23)

Thus by (4.24) and (4.25) it is also true that

P(2c) = 
~~
. S3(XciXp~YciYp

) . (4.26)

For B~0 or 2c, there appears to be no alternative other than to

perform the two-dimensional sum by the methods of the previous section.

Note that asymptotically P is of the following forts :

-k~8
easy ~ F C 

, 0 < 8 < c
n,n—l

Thus for B near zero (or near 2c, as indicated by (4.25)), poor conver-

gence is expected.

It is known that the reduced kernel (4.16) must contain the

singular portion free-space reduced kernel (4.14b) plus a smooth
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homogeneous function . By (4.18), S(8) must also contain that

singularity. If a function ~~z) is defined similar to (4.lsb) by

— j S(8)dB — P(z) - P(0) (4.27a)
0

and ~~(z) is defined by

— ~(z) - ~~~~ 
(4.27b)

then is the integral of a smooth function and thus itself is smooth.

Since P(O) is readily computed , ~(z) can be computed numeri-

cally for z greater than some minimum value z0. Note that the function

can be calculated by using (4.lsb) for any z. Thus ~5(z) 
can be

numerically evaluated for z > z . Note that if is smooth and z is

sufficiently small, ~5(z) can be interpolated for o < z < z
0
. Then if

is added to these interpolated values of ~~(z), ti (z) can be

found for o < z < z0.

To demonstrate the practicality of this technique, consider the

curves of Figure 15. They show the functi- ns 
~~~~~~~~~~~ 

~~~ ~~ (:) for

o < z < .5A. The cavity dimensions are a = .7X , b = .8A and c a .8X

with a wire of radius 4 * .OO1A located at x - .35A and y = .4A.c c
Note that for z < .2A , is almost linear and could be interpolated

quite accurately. The utility of this method is appreciated if it is

noted that for this example the calculation of P(z) took 98 terms at

- .2A , 242 terms at z a .1A and 2139 terms at : = .025A. In each

case, the convergence criteria was - lO~~ and a 3.
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Bef ore leaving this section , one important observation should

be made. By examination of (4.20), it is seen that Aq(Zp) is a func-

tion of two terms, one of which depends only upon Ip-q i and the other of

which depends only upon (p+q). This means that Aq(zp)can be calculated

for all values of q and p by 3N + 1 computations rather than N2 + 2N

calculations . Thus for N > 2, the computing time required can be

significantly decreased.

Numerical Evaluation of the Deleted Green ’s Functions

In the previous sections of this chapter all of the computation-

al difficulties in filling the matrix in (4.12) have been resolved in a

workable fashion except for evaluation of the deleted Green’s functions

in (4.9). These functions, defined by (2.17) and (2.18), must be

evaluated at the aperture ‘
~ a~ 

Note that although these deleted

functions are bounded solutions to the homogeneous wave equation at the

point 
~a’ 

they cannot be calculated directly from (2.17) because both

and 
~~~~~~ 

are divergent at

Ideally, one would like to have expansions for the various

free-space dyadic Green’s functions so that the singularities could be

removed from the cavity dyads term by term, as was discussed earlier

in this chapter. The resulting convergent sums would be precisely the

deleted Green’s functions of (2.17) and (2.18). However, at the pre-

sent time, practical techniques of employing this method are not

available.
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In this work, a different approach was taken that relies upon

some of the earlier observations of this chapter. Since the deleted

Green’s functions are homogeneous solutions to the wave equation, it

is logical to expect that they could be found by using an interpola-

tion method similar to that employed in the previous section to

evaluate Aq(Zp)~

Note that such an interpolation scheme would require the

evaluation of several different components of the various cavity dyads

at points near the source. If it is assumed that the accuracy of the

interpolations would improve as the points move nearer the source,

increased accuracy would require increased computation time.

Since the double sums in the dyads for the vector potentials

converge more rapidly than those for the fields, it is advantageous to

compute only the components of and 
~F 

at several points near the

source. Then by (2.17), the associated deleted Green’s functions for

the vector potentials could be subsequently computed. To find the

values of and in the aperture, an interpolation scheme was em-

ployed. To find the values of the other deleted Green’s dyads, the

differential operators in (2.18) were approximated by finite difference

techniques. Note that the points at which the dyads are computed

should be chosen carefully so that they provide the proper information

for the interpolation and finite difference techniques .

A crucial criterion for the success of this method is the

smoothness of the deleted Green ’s functions . Figure 16 shows plots of

GA and Re (GA ) as a function of distance from the aperture. Note
ZZ ZZ
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Figure 16. Example Computation for GA and the Real Part of GAzz
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that the deleted function is indeed smooth and could be approximated

near the source by interpolation techniques . Figure 17 shows similar

plots of and Re(~ F ) and the same observations can be made.
>7 >7

This method has been tested numerically for several aperture

location/cavity size confi gurations . For each confi guration , the

computations were made with the distances between the aperture and the

points at which the computations were made becoming successively

smaller. The calculated values of the deleted Green ’s functions for

the successively smaller distances were then compared in order to

determine if the process was convergent . In all cases tested , it was

indeed convergent. Although error bounds are not available, based

upon the numerical testing, accuracy to within 10 to 15 percent is

estimated for distances from aperture to computation points being

approximately .05X to .1A.

It should be noted that these values for the deleted Green ’s

functions are computed with less accuracy than any other terms in the

matrix of (4.12). Nonetheless , their computation requires far more

computer time than any of the other terms in the matrix. In addition ,

because these functions are always multiplied by the aperture polar-

izabilities (which are small for small apertures) in (4.9), they

manifest themselves primarily as perturbations and have only a slight

effect upon the solution , as will be seen in the following chapter .
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CHAPTER 5

NUMERICAL RESULTS FOR SAMPLE CASES

A computer code has been written which implements the

numerical formulation presented in the previous chapter. In this

chapter , selected numerical results are presented which demonstrate

the capabilities of this numerical code. The program allows for an

elliptic aperture in any one of the three walls de fined by x = 0,

y a Q or ~ = 0, and assumes that the wall containing the aperture is

an infinite planar screen. For all cases presented here, the aper-

ture was chosen to perforate the x = 0 wall of the cavity. Also

note that all lengths are in units of wavelength A.
As a first example, consider a relatively small cavity

whose dimensions are defined by a a .2, b = .25 and c = .3 which

encloses a wire of length .2 and radius .001. The wire is exactly

centered in the cavity (z~ = .05, 
~ 

= .25, X
c 

= ~~~ >‘c = .125).

The aperture is circular with a radius of .01 and has its center at

= (0., .125, .15). The exterior excitation is a plane wave

which imp inges from the ~ direction and is polarized such that the

electric field is in the -x direction .

Figure 18 shows the current excited upon the wire for this

confi guration . Since both aperture and wire are symmetric about the

plane z = ~~
.
, one would expect to observe symmetric properties in the
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Figure 18. Currents Excited on .2X Wire for a .2X x .2 5X x .3A Cavity .
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wire currents . This is indeed the case. The real part of the

current, which is excited by the magnetic aperture dipole moment ,

possesses even symmetry, where the imaginary part, which is excited

by T’e ’ has odd symmetry about z a .15. This relationship between

the real and imaginary parts of the current and and P
~ 

respec-

tively can be seen by examination of (4 .Sa) , (4.6) and (4.7) . Also

note the magnitude of the current which peaks at approximately .04 I.la.

One would expect currents on the order of 1 ma for the same wire in

a free space environment . Thus the shielding of the cavity reduces

currents by approximately five orders of magnitude.

Next consider the case of a much larger cavity containing a

longer wire . For this case , a = .4, b = .6 and c = 1.3, which is

la rger than the first several cavity resonances. Again the wire is

centered in the cavity ( z z = .l5 , z~ = 1.15, x~ = .2 , y~ = .3) and is

one wavelength long with radius r a .001. The elliptic aperture has

semi axes of .05 and .01 in the y and z directions, respectively and

is located at 
~a = (0 , .2, .4). Again , the incident plane wave

impinges from the -z direction with a -x directed electric field.

Since the wire is of resonant length, one would expect to

excite resonant currents. Indeed, as shown in Figure 19, this is the

case. Also, mote that the current magnitude now peaks at approxi-

mately 10 ~ia. This increase over the previous case can be attrib-

uted to three causes. First, the aperture is larger and thus more

energy is coupled. Second, the wire is of resonant length. Finally,

Tt~
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the smaller cavity is considerably below the lowest cavity resonance,

whereas the larger cavity is near several resonances.

Note that if one semiaxis of the aperture is much larger than

the other, the aperture begins to look like a short slot. One would

expect that the strongest coupling would occur when the slot is per-

pendicular to the wire and the incident electric field is perpend~.cular

to the slot. To test this, consider a cavity with dimensions .7 x .7

x .8 (a, b and c respectively) with a one-half wavelen gth wire of

radius r = .001 which is located in the cavity at — .15, z~ .65,

= ~~~~~~~ >‘c = .4. The aperture is located in the x = 0 wall 
~ a 

=

(0., .4, .4)], and has semiaxes of .07 and .01. The plane wave is

incident from the -x direction (normal to wall of aperture) and has a

z directed electric field.

Consider two cases: that where the slot is perpendicular to

the incident electric field, and that where the slot is parallel to

the incident electric field; that is, where the major semiaxis of the

aperture is in the y or z direction, respectively. Figure 20 shows

the current excited upon the wire for these two cases. It is readily

seen that the current excited when the slot is perpendicular to ~~1flC

is approximately twenty times larger than that excited when the slot

and are parallel. Thus the expected effects are observed.

Now consider the same case except change the polarization of

the incident plane wave such that the electric field is in the ~~

direction. Whereas in the previous case the incident electric field

was perpendicular to the slot, it is now parallel to the slot , and
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Figure 20. Currents Excited on .5A Wire for Slot Perpendicular and
Parallel to Directed Incident Electric Field.
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consequently one would expect the excited currents to be much smaller.

As shown in Figure 21 this is the case. Again the currents are shown

for both the slot perpendicular and parallel to the incident electric

field. Note that the currents are again related by a factor of ap-

proximately twenty, but are over five orders of magnitude less than the

currents shown in Figure 20. However, for the same wire and excitation

in free space, if thin wire approximations are used, there will be no

current excited upon the wire.

An examination of (4.5) shows the small, but nonetheless

nonzero current in Figure 21 is due to the depolarizing effects of

-d — .the cavity wall reflections . Indeed , if one lets ~ = T in (4.5),
this polarization will not excite the wi’~e in the cavity. Since for

small apertures, these effects manifest themselves as perturbations,

one does expect the currents excited ~iy this depolarizing effect to

be small.

Another effect of the cavity wall reflections is seen by

noting that for the case in Figure 20, since the excitation is nor-

mally incident, E
~
°(

~a
) is zero, and thus if the wall reflections

are neglected, P~ would be zero. However, the wall reflections

produce a small but nonzero and thus a small imaginary current.

Although not shown in Figures 20 or 21, there was actually an imagi-

nary part of the current, which in all, cases was more than two orders

of magnitude less than the corresponding real portion.

At this point it is helpful to ascertain the size of this

perturbation effect. In order to accomplish this, solutions were
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obtained in two additional manners. In the first, the cavity wall

reflections were neglected (~d = !). In the second, the wire scatter-

ing effects at the aperture were also ignored (~C = 
~~ ~d =

These solutions were then compared for several cases, including

those presented in this chapter. It was found that the difference

between solutions increased as the aperture size increased. This is

expected as the perturbation is on the order of the aperture polariz-

abilities, which increase as the size of the aperture increases.

However, in no case did the difference between the original solution

and the first additional solution exceed one percent (largest aper-

ture considered was circular with radius .05) and the difference

was much less for smaller apertures. The difference between the two

additional solutions was even smaller.

It is apparent that for these small apertures, a solution

closely approximating the exact one can be obtained by simply

neglecting these perturbation effects. Since for apertures much

larger than those considered, the applicability of small aperture

theory becomes increasingly questionable anyway, this result is

quite significant. Since the computation of these perturbations are

very time-consuming, thei r omission would substantially decrease

computing time .

Finally, consider the case of wires connected to the cavity

at one or both ends. Figures 22 and 23 show the wire currents for

these two cases respectively. The cavity size is .7 x .8 x .8 and

the wire axis is at (xe, ~~~ 
- (.15 , .5) with a wire radius r = .001.
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The aperture is located at = ( 0 . ,  . 3 , .6) and its semiaxes in the

y and z directions are .07 and .01 respectively. The plane wave is

normally incident upon the aperture from the -x direction and the

electric field is z directed.

In Figure 22 the wire is connected at z = .8 and as expected,

the axial (z) derivative of the current goes to zero at the wall.

Also, as expected, the current at the free end of the wire vanishes.

Similarly in Figure 23, where the wire is connected at both ends of

the cavity, the axial derivative of the current vanishes at both

z = 0 and z = .8. In both cases, the current magnitudes are on

the order of 10 1.ia. For a similar cavity and excitation, but hav-

ing a free wire (Figure 20, perpendicular slot) the current magni-

tude is also of this order.

Thus it has been shown that physically reasonable numerical

solutions can be obtained for a variety of cavity/aperture/wire con-

figurations. It should be noted however that important comparisons

between theory and experiment m ust await the publishing of experimen-

tal results applicable to this problem. Such comparisons would

demonstrate the applicability of the modeling and the accuracy of the

solution.
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CHAPTER 6

CONCLUSION

In this paper, the task was undertaken to formulate and numeri-

cally solve the problem of an aperture excited wire scatterer in a

rectangular cavity. The formulation in Chapter 2, although tedious,

was relatively straightforward. It was found that the major difficul-

ties of the problem lay in the numerical evaluation of the infinite

double sum Green t s functions for the cavity interior.

By considering the preliminary two-dimensional problem in

Chapter 3, valuable insi ght was obtained toward resolving the numerical

difficulties of the three-dimensional problem. It is important to

realize that the two-dimensional problem is also a significant problem

in and of itself. Two-dimensional problems in many cases provide

adequate models for more complex three-dimensional structures. In

addition , solutions to this problem have the advantage of being appli-

cable to large apertures whereas the major solution herein is restricted

to small apertures only.

The real significance of this work is contained in Chapter 4.

Here it was demonstrated that the dyadic Green’s functions for the

cavity prob l em can be calculated (although in some cases , only with 
-

.

considerable effort). This finding is particularly essential in or

near the source region. This is because the treatment of the singular
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kernel of an integral equation in the source region is crucial to its

numerical solution. Thus the ability to numerically solve the integral

equation for a scatterer in a cavity is demonstrated, and indeed ,

numerical results can be provided as found in Chapter 5.

Suggested Ext ensions of this Work

Perhaps mnre important than what this work has accomplished is

rather what extensions and applications can be found for it. In

general, the most immediate extensions of this work would be to elimi-

nate some of the restrictions caused by the initial assumptions of the

problem. The relevance of an extension can thus be measured by asking

how restrictive is the assumption which the extension eliminates.

A very important extension would be to allow a large aperture

in the cavity wall. It should be noted that in order to do this an

aperture field integral equation must be formulated and solved simul-

taneously with the integral equation for the wire (2.13). In general,

the aperture fields must be divided into a two-dimensional array of

surface patches, requiring large amounts of computer storage and time.

However if the aperture is small in one dimension (a slot), it need

only be divided into a one-dimensional array of surface patches.

A second extension of the present work would be to account for

more complex scattering geometries. This might include uniformly or

lumped loaded wires, more than one wire, or wires which are not paral-

lel to one of the coordinate axes. The first two of these suggestions

would be relatively straightforward (but only if each wire remains
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parallel to one of the coordinate axes) and would primarily require

extensive logic for their numerical implementation.

It should be noted , however, that the consideration of a wire

which is not parallel to one of the coordinate axes would require

considerable effort. First of all, integral equation (2.12) would

have to be used , and thus all none components of the dyads would be

needed. Lu addition, the benefits of piecewise—sinusoidal testing

(namely, the removal of the differential operator) are no longer appli-

cable. Probably the most important problem this extension would cause,

is that the methods outlined in Chapter 4 for evaluating the integral

of the kernel cpuld no longer be applied . Careful examination reveals

that this technique is crucially dependent upon the fact that the wire

is z—directed .

Finally, consider the application of this work to the case of

transient excitation such as an E~4P and characterize the response of the

aperture and its coupling to the wire within the cavity , based on the

obvious application of the singularity expansion method (Baum 1971),

which allows one to express the total response in terms of few parameters

via, the natural frequencies, natural modes and coupling coefficients.

Or one can follow the direct procedure to obtain the time dependent

solution by inverse Fourier transformation. Note that this would involve

the use of the time—harmonic solution at many angular frequencies w

over the spectrum of the excitation. It should be noted that for many
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transient excitations (including ~(P) the low frequency portion of the

spectrum is dominant. Thus for such excitations, a quasi—static solution

for the problem is needed for small w in order to perform the inverse

Fourier transform numerically.
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